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ARTICLE OPEN

A summary-statistics-based approach to examine the role of
serotonin transporter promoter tandem repeat polymorphism
in psychiatric phenotypes
Arunabha Majumdar1,2,5, Preksha Patel3,5, Bogdan Pasaniuc2,4 and Roel A. Ophoff3,4✉

© The Author(s) 2021

In genetic studies of psychiatric disorders in the pre-genome-wide association study (GWAS) era, one of the most commonly
studied loci is the serotonin transporter (SLC6A4) promoter polymorphism, a 43-base-pair insertion/deletion polymorphism in the
promoter region (5-HTTLPR). The genetic association signals between 5-HTTLPR and psychiatric phenotypes, however, have been
inconsistent across many studies. Since the polymorphism cannot be tested via available SNP arrays, we had previously proposed
an efficient machine learning algorithm to predict the genotypes of 5-HTTLPR based on the genotypes of eight nearby SNPs, which
requires access to individual-level genotype and phenotype data. To utilize the advantage of publicly available GWAS summary
statistics obtained from studies with very large sample sizes, we develop a GWAS summary-statistics-based approach for testing the
variable number of tandem repeat (VNTR) associations with various phenotypes. We first cross-verify the accuracy of the summary-
statistics-based approach for 61 phenotypes in the UK Biobank. Since we observed a strong similarity between the predicted
individual-level 5-HTTLPR genotype-based approach and the summary-statistics-based approach, we applied our method to the
available neurobehavioral GWAS summary statistics data obtained from large-scale GWAS. We found no genome-wide significant
evidence for association between 5-HTTLPR and any of the neurobehavioral traits. We did observe, however, genome-wide
significant evidence for association between this locus and human adult height, BMI, and total cholesterol. Our summary-statistics-
based approach provides a systematic way to examine the role of VNTRs and related types of genetic polymorphisms in disease risk
and trait susceptibility of phenotypes for which large-scale GWAS summary statistics data are available.

European Journal of Human Genetics (2022) 30:547–554; https://doi.org/10.1038/s41431-021-00996-6

INTRODUCTION
Large-scale human genetic studies have resulted in major
breakthroughs for our understanding of the genetic architecture
of complex human traits. SNP arrays for genome-wide association
studies (GWAS) in up to millions of subjects are extensively used
for the detection of common risk alleles for polygenic disorders
such as schizophrenia [1] and bipolar disorder [2]. On the other
hand, the approach of high-throughput sequencing in tens of
thousands of individuals has identified rare and deleterious
sequence variants contributing to neurodevelopmental disorders
such as autism spectrum disorder [3] and schizophrenia [4]. One
type of genetic variation that was extensively studied before the
advances in genomic technology, the variable number of tandem
repeats (VNTRs) class of variants [5], has eluded further large-scale
analysis in the genomic era. SNP arrays allow for the high-
throughput collection of single nucleotide variants but not for
VNTRs, microsatellite polymorphisms, and related genetic variants
that are also abundant in the human genome.
In genetic studies of psychiatric disorders, one of the most

commonly studied locus in the pre-GWAS era [6], is the serotonin

transporter (5-HTT or SLC6A4) promoter polymorphism, a 43-base-
pair insertion/deletion polymorphism in the promoter region (5-
HTTLPR) with a long (L) and a short (S) allele. The SLC6A4 gene
was long considered a strong candidate gene for neurobehavioral
traits and disorders. The reason is that many antidepressant drugs
were reported to selectively inhibit the function of the serotonin
transporter (5-HTT or SLC6A4), the gene product of which
mediates the reuptake of monoamine serotonin (5-HT), a key
neurotransmitter in the brain. Consequently, genetic variants such
as the 5-HTTLPR were considered important factors to modulate
the expression of the serotonin transporter protein under certain
physiologic conditions. However, the genetic association signal
findings between 5-HTTLPR and psychiatric and neurobehavioral
phenotypes have been found to be inconsistent across studies,
few indicating an association, for example, when interacting with
stressful life events [7], but a meta-analysis with a total sample size
of more than 14,000 participants failed to provide any evidence
for association with depression with or without stressful life events
[8]. Another systematic gene x environment interaction (GxE)
meta-analysis of this locus showed that the published studies are
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underpowered and that the main effects of 5-HTTLPR genotype
and the interaction effect of stressful life events on risk of
depression are negligible [9]. Another meta-analysis of 54 studies
that included 40,749 subjects, in which environmental effects as
well as phenotype outcomes were taken very broadly, reported a
positive GxE effect with the S allele associated with increased
stress sensitivity [10].
Since the 5-HTTLPR VNTR cannot be tested via available SNP

arrays, we previously proposed an efficient machine learning
algorithm to predict the genotypes of 5-HTTLPR based on
genotypes of eight nearby SNPs [11]. The predicted VNTR
genotypes can then be used for association testing with a
phenotype of interest. However, this approach requires access to
individual-level genotype data for the eight SNPs and phenotype
data; hence, it cannot utilize the advantage of publicly available
GWAS summary statistics obtained from studies with very large
sample sizes across various neurobehavioral phenotypes. In order
to revisit the 5-HTTLPR for genetic analysis in the largest study
samples available, we developed and applied a GWAS summary-
statistics-based approach for association testing of this locus.
In short, in a training dataset that has PCR-based genotypes for

5-HTTLPR and the eight SNPs considered for our machine learning
algorithm [11], we fit a linear model to estimate the allele dosage
of 5-HTTLPR based on the eight SNPs. We use this prediction
model to impute the allele dosage of 5-HTTLPR in a GWAS dataset
(where 5-HTTLPR genotypes are not available) and perform
association testing with the phenotype. We devise a summary-
statistics-based version of this two-step procedure in which we
only need the GWAS summary statistics at the eight SNPs for the
phenotype. We first cross-verify the accuracy of the summary-
statistics-based approach for 61 phenotypes in UK Biobank (UKBB).
We contrast the association statistics computed by the summary-
statistics-based approach and our previous genotype-based
method. Since we observed a strong similarity between the two
approaches, we applied our method to the available neurobeha-
vioral GWAS summary statistics data with large sample size as well
as of other disorders and traits. We found no genome-wide
significant evidence for association between the 5-HTTLPR and
any of the neurobehavioral traits. We did observe, however,
genome-wide significant evidence for association between this
locus and human adult height, body mass index (BMI), and total
cholesterol. Our approach provides a systematic way to re-assess
and examine the role of specific VNTRs and related types of
genetic polymorphisms in disease risk and trait susceptibility of
phenotypes for which summary-level data from large-scale GWAS
are available.

METHODS
Prediction of 5-HTTLPR genotypes based on tag SNPs
In an ideal scenario, if the genotype data of 5-HTTLPR is available along
with the phenotype of interest in a sufficiently large study sample, we can
directly assess the association between 5-HTTLPR and the phenotype. The
PCR-based assay to genotype the serotonin transporter promoter
polymorphism has suffered from technical difficulties as demonstrated
by the lack of Hardy–Weinberg equilibrium in genotype data for this locus
[9]. With the rise of use of SNP genotyping arrays, we previously proposed
a method to predict the 5-HTTLPR VNTR genotypes based on nearby tag
SNPs, which also requires the individual-level genotype data of the tag
SNPs. We now move one step further, beyond the need to access
individual-level genotype data but to leverage the largest available sample
sizes for genetic studies used for GWAS. Our approach to examine the
5-HTTLPR VNTR is similar to the summary-statistics-based method
proposed by Gusev et al. [12] to evaluate the association between the
genetic component of a gene’s expression and a phenotype.
The serotonin transporter (SLC6A4) promoter polymorphism is a tandem

repeat polymorphism, also called the 5-HTTLPR, with two alleles: one long
allele (L) and one short allele (S), hence the three possible genotypes SS,
SL, and LL. Using additive coding, i.e., counting the number of L alleles in a
genotype, the coded genotype can take three possible values: 0, 1, 2.

Suppose, we have a reference dataset containing the genotype data of
5-HTTLPR and the surrounding eight SNPs tagging 5-HTTLPR (Table 1),
which we considered in our previous work [11]. We use an individual-level
genotype dataset for these nine variants (5-HTTLPR and eight tag SNPs)
that consists of 276 Dutch individuals comprising 126 normal individuals
and 150 individuals diagnosed with schizophrenia [11]. We consider a
linear regression model to estimate the component of the 5-HTTLPR
genotypes that can be predicted by the eight tag SNPs.

g ¼ δþ γ1x1 þ γ2x2 þ � � � þ γ8x8 þ 2 (1)

Here g denotes the genotype of 5-HTTLPR, and xj denotes the genotype
of jth tag SNP, j= 1,…,8. Let γj denote the regression coefficient
corresponding to jth tag SNP’s genotype. We consider the genotype
vector of each tag SNP to be normalized (zero mean and unity variance).
We note that the predicted component of 5-HTTLPR genotypes, ĝ,
obtained from the linear regression can be continuous. The least square
estimation of γ1,…,γ8 does not depend on the distribution of the noise ϵ.
Since the sample size of the Dutch dataset (n= 276) is much larger than
the number of tag SNPs, a linear regression model is adequate for model
fitting instead of a penalized regression.
Let X denote the genotype data matrix for the eight tag SNPs (Table 1).

Using the multiple linear regression model stated above, we obtain the
least square estimate (LSE) of γ= (γ1,…,γ8)’ as: γ̂ ¼ X 0Xð Þ�1X 0G, where G is
the genotype vector for 5-HTTLPR. Once we estimate γ, it is considered
fixed in the down-stream analysis. If the 5-HTTLPR genotypes are missing
in a different dataset, but the genotypes of the eight tag SNPs are
available, we can use bG ¼ bγx to predict the 5-HTTLPR genotypes, where x is
the genotype vector for the tag SNPs.

Evaluating association between 5-HTTLPR and a phenotype
Suppose, for n unrelated individuals in a new dataset, Y denotes the
phenotype of interest, G denotes the genotype of 5-HTTLPR that is
unobserved. We assume that the individual-level data for Y and genotypes
of the tag SNPs are available, but the 5-HTTLPR genotypes are missing.
Consider a linear regression of Y on unobserved G as follows:

Y ¼ Gαþ e (2)

Let X denote the genotype data matrix for the eight tag SNPs. Since G is
unobserved, we can use our previously proposed machine learning
method [11] to predict G based on X, and perform a test for association
between predicted G and Y.
When individual-level data of Y and genotype data of the tag SNPs are

also not available, we propose the following summary-statistics-based
approach. We use the prediction model that was obtained from linear
regression fitted in the Dutch reference dataset (Eq. 1) to predict the
genotypes of 5-HTTLPR as: Ĝ ¼ X γ̂. Thus, we consider Y ¼ Ĝαþ e, where e
is the random error. In this paper, we assume that bγ is the same between
the Dutch and other European populations. Next, we obtain the LSE of α in
the linear regression Y ¼ Ĝαþ e.

α̂ ¼ Ĝ0Ĝ
� ��1

Ĝ0Y ¼ 1
n γ̂0V γ̂ð Þ γ̂

0X 0Y (3)

Here, V is the LD matrix for the eight tag SNPs. We derive the above
formula using the facts that, Ĝ ¼ X γ̂ and X’X= nV, since the genotype

Table 1. Tag SNPs of 5-HTTLPR.

Chromosome Base-pair position (GRCh38) SNP LD

17 30245735 rs1487971 0.54

17 30263512 rs2129785 0.37

17 30262460 rs11651241 0.25

17 30421334 rs4794873 0.1

17 30365556 rs887469 –0.02

17 30787445 rs1061342 0.04

17 30161773 rs4494608 –0.07

17 29448649 rs7217677 0.17

The fourth column provides the linkage disequilibrium (LD) between
5-HTTLPR and its tag SNPs.
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vector for each tag SNP is normalized. Suppose, Y is also separately
regressed on the genotype of jth tag SNP as follows:

Y ¼ Xjβj þ 2j (4)

where Y and Xj are normalized. Let βj denote the marginal GWAS effect size
of jth tag SNP on Y. LSE of βj is given by:
β̂j ¼ ðX 0

j XjÞ�1X 0Y ¼ 1
n X

0Y ) X 0Y ¼ nβ̂j . Since Xj is normalized, X 0
j Xj ¼ n.

Denote the vector of estimated marginal GWAS effect size across the eight
tag SNPs as: β̂ ¼ ðβ̂1; ¼ ; β̂8Þ0 . Hence, for the tag SNPs considered
together: X 0Y ¼ nβ̂. Thus, we can rewrite the expression of LSE of the
effect size of 5-HTTLPR on Y, α̂ (Eq. 3), as follows:

α̂ ¼ 1
n γ̂0V γ̂ð Þ γ̂

0 nβ̂
� �

¼ γ̂0β̂
γ̂0V γ̂

(5)

Next, we derive the expression of standard error of α̂. Let us define the
constant Kwv ¼ γ̂0V γ̂. Hence,

var α̂ð Þ ¼ 1
K2
wv

var γ̂0β̂
� �

¼
γ̂0cov β̂

� �
γ̂

K2
wv

(6)

Here, covðβ̂Þ ¼ σ2y
n V is the variance-covariance matrix of β̂, where σ2y ¼

var Yð Þ and V is the LD matrix of the tag SNPs. So,

var α̂ð Þ ¼ 1
K2
wv

γ̂0cov β̂
� �

γ̂
h i

¼ 1
K2
wv

σ2y
n
γ̂0V γ̂

" #
¼ 1

K2
wv

σ2y
n
Kwv

" #
¼ σ2y

nKwv
(7)

In practice, Y is normalized before running a GWAS. Hence, we assume
that σ2y ¼ 1. Suppose Zβ be the vector of marginal z-scores of associations
between Y and the tag SNPs. We can rewrite the expression of Z-statistics
for testing α= 0 as follows:

Zα ¼ α̂
pvar α̂ð Þ ¼

γ̂0Zβp γ̂0V γ̂ð Þ (8)

For a sufficiently large sample size, each element of Zβ follows a normal
distribution. Hence, Zα also follows a normal distribution asymptotically. If
Zα= z, a p value of association between 5-HTTLPR and Y can be obtained
as P(U > z2), where U follows a χ2 distribution with one degree of freedom.
Thus, given Zβ; γ; V , we can test α= 0. Therefore, using summary-level

data on genetic association between a phenotype Y and the tag SNPs of 5-
HTTLPR, the estimated prediction model for 5-HTTLPR genotypes (based on
the Dutch reference dataset), and an estimate of the LD matrix of the tag
SNPs, we can test for association between 5-HTTLPR and Y. We do not
require any individual-level phenotype data and genotype data of 5-HTTLPR
and related tag SNPs. We can use an estimate of V, the LD matrix of the tag
SNPs, obtained based on the European individuals in 1000 genome data. To
further increase the number of individuals in the LD reference panel, we
combined the 276 Dutch individuals in our reference dataset with the
European individuals in 1000 genome. We also provide the LD between
5-HTTLPR and its tag SNPs in Table 1. In the rest of this paper, we refer to our
summary-statistics-based approach as VNTR.s.

VALIDATION OF SUMMARY-STATISTICS-BASED APPROACH IN
UK BIOBANK
In order to cross-verify the accuracy of the summary-statistics-based
approach (VNTR.s), we conducted a phenome-wide association
study for 5-HTTLPR and 61 phenotypes in the UKBB based on both
of the individual-level prediction of 5-HTTLPR genotypes [11] and
the summary-statistics-based approach VNTR.s. We contrast the
results of association analyses obtained by these two methods to
assess the accuracy of VNTR.s. We discuss the procedure of
analyzing a single phenotype in UKBB (e.g., height).
First, we implement our previous machine learning approach

(vertex discriminant analysis [11]) for 287,969 white British
individuals in UKBB. We used the individual-level genotype data
of the tag SNPs (Table 1) to predict 5-HTTLPR genotypes for the
UKBB individuals. In our previous work [11], we estimated the
coefficients of the 5-HTTLPR genotype prediction model based on
the Finn dataset in which individual-level genotype data for both
5-HTTLPR and the tag SNPs were available for 2147 normal

participants [11]. We used the same coefficients (Supplementary
Table S3) to predict the 5-HTTLPR genotypes in UKBB. Next, we
perform a linear regression of the phenotype on the predicted
5-HTTLPR genotypes to compute a p value of association while
adjusting for relevant covariates, such as, age, sex, and top 20
principal components (PCs) of genetic ancestry. We refer to this
approach as VNTR.g.
Next, we apply VNTR.s for the same phenotype in UKBB. We

perform a linear regression of the phenotype on the genotype of
each tag SNP of 5-HTTLPR, while adjusting for the same set of
covariates, age, sex, and top 20 genetic ancestry of PCs. We obtain
the summary statistics of association between the phenotype and
each tag SNP from these regressions. We now assume that only
the summary statistics for each tag SNP are available. Using the
summary statistics and estimate of the LD matrix for the tag SNPs
(as described above), we apply VNTR.s to compute the p value of
association between 5-HTTLPR and the phenotype.
We applied VNTR.g and VNTR.s for 61 phenotypes in UKBB to

compute the p values of association along with z-scores. We note
that the genotype data for one of the tag SNPs, rs1061342 on
chromosome 17 (Table 1), was missing from the UKBB individual-
level genotype dataset available to us. Albeit under this limitation,
we implemented VNTR.g and VNTR.s based on the remaining
seven tag SNPs (Table 1). In our previous work [11], we evaluated
the relative contribution of the tag SNPs to the prediction
accuracy of the 5-HTTLPR genotypes with respect to partial and
cumulative R2. The partial R2 for rs1061342, the missing SNP in
UKBB, was very modest (Figure 1 in Lu et al. [11]) and the
cumulative R2 increased from 0.83 to 0.84 after adding rs1061342
to the prediction model (sixth row of Table 2 in Lu et al. [11]). The
total cumulative R2 of the full prediction model was 0.85. Thus,
from the viewpoint of a stepwise regression, the prediction
accuracy gets saturated before rs1061342 is added to the
prediction model. Therefore, we emphasize that the comparison
between VNTR.g and VNTR.s remains meaningful, albeit under the
limitation of our UKBB individual-level genotype dataset.
Next, we contrast the results obtained by VNTR.g and VNTR.s for

61 UKBB phenotypes. Encouragingly, the p values obtained by the
two approaches are very similar (Table 2). For example, for
FEV1–FVC ratio, VNTR.g produced a p value of 1.6 × 10–8 and VNTR.
s produced a p value of 3.2 × 10–8 (Table 2). For Albumin, VNTR.g
produced a p value of 0.95 and VNTR.s produced a p value of 0.93
(Table 2). In the following, we provide an overall summary of the
similarity.
For a UKBB phenotype, let P.g and P.s denote the p values

obtained by VNTR.g and VNTR.s, respectively. Let y and x denote
–log10(P.g) and –log10(P.s), respectively. Pearson’s correlation
coefficient between y and x based on 61 UKBB phenotypes was
estimated as 0.98. Spearman’s rank correlation coefficient was
estimated to be 0.9. If we fit a linear regression of y on x, we obtain
the following regression equation: y= –0.16+ 1.15x. Here, the
slope regression coefficient was estimated as 1.15 with a standard
error of 0.03, and the intercept coefficient was estimated to be
–0.16 with a standard error of 0.07. Similarly, we regressed x on y
and obtained the following regression equation: x= 0.19+ 0.83y.
We also performed the non-parametric Kolmogorov–Smirnov (KS)
test to evaluate if x and y have the same distribution. The KS test p
value was 0.99 that strongly implies that x and y have the same
underlying distribution. A plot of the observed values of x and y
(Fig. 1) displays good concordance between the results obtained
by VNTR.g and VNTR.s.
Thus, the overall analysis of 61 UKBB phenotypes demonstrates

an excellent agreement between the outputs of VNTR.g and VNTR.s.
This validates the use of VNTR.s for testing the association between
5-HTTLPR and a phenotype of interest based on publicly available
summary-level data for association between the tag SNPs and the
phenotype.
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APPLICATION OF THE SUMMARY-STATISTICS-BASED
APPROACH TO VARIOUS PHENOTYPES
Using publicly available summary statistics data from GWAS with
large sample sizes, we implemented VNTR.s to study association of
5-HTTLPR with a range of phenotypes mainly focusing on
psychiatric and neurobehavioral phenotypes. We applied VNTR.s
to nine psychiatric phenotypes in the psychiatric genetics
consortium (PGC). We then examined 131 phenotypes using
summary statistics available at the GWAS Atlas [13] (https://atlas.
ctglab.nl/) from psychiatric, cognitive, neurological phenotype
domains, each based on reasonably powered GWAS with sample
size of N > 50,000 subjects. Most of these studies are based on
UKBB data, and all the studies are based on European ancestry.
Since individual-level genotype and phenotype data used in these
GWAS are not publicly available, it is very challenging to
implement VNTR.g in this context.
Based on a genome-wide significant threshold of p value 5 ×

10–8, we did not find any significant association between
5-HTTLPR and the psychiatric phenotypes in PGC (Table 3). For
example, the smallest p value was 0.002 for bipolar disorder
(Table 3). Among the psychiatric phenotypes analyzed from GWAS
atlas, we also did not find any significant association (Table 4 and
Supplementary Tables S1 and S2). We provide the GWAS marginal

association p values for each pair of the tag SNPs and the
psychiatric phenotypes in PGC (Supplementary Table S4).
Among the cognitive phenotypes analyzed from this resource,

none of the phenotypes was associated; a nearly significant
association was observed only for intelligence (Table 5). We also
analyzed a set of neurological phenotypes and found no
association (Table 5). However, we observed significant associa-
tions between 5-HTTLPR and human adult height, BMI, total
cholesterol, impedance measures to estimate the trunk fat-free
mass, and the trunk predicted mass (Fig. 2). Thus, none of 107
psychiatric phenotypes in GWAS Atlas and nine psychiatric
phenotypes in PGC was found to be associated with 5-HTTLPR.

DISCUSSION
We successfully developed and applied a GWAS summary-
statistics-based approach to examine the direct effect of the
serotonin transporter (SLC6A4) promoter VNTR polymorphism (5-
HTTLPR) on susceptibility of neurobehavioral traits and psychiatric
disorders in the largest available samples for genetic studies.
Despite the long-debated history of this locus as having direct as
well as moderating effects on traumatic events and stress on
depression [7–10] (and so many other reports of a wide-range of

Table 2. Association p values for 61 phenotypes in UK Biobank obtained by VNTR.g and VNTR.s.

Phenotype VNTR.g VNTR.s Phenotype VNTR.g VNTR.s

Height 6.01E–12 3.95E–15 Sodium in urine 0.17 0.16

FEV1–FVC ratio 1.56E–08 3.15E–08 Gamma glutamyltransferase 0.17 0.09

Mean platelet volume 7.26E–07 3.12E–08 FVC 0.18 0.08

Platelet distribution width 1.87E–05 1.75E–05 Cystatin-C 0.22 0.23

Testosterone 0.0002 0.0005 Calcium 0.24 0.15

Alcohol intake frequency 0.0002 0.0001 RBC distribution width 0.27 0.57

Basal metabolic rate 0.0005 0.0001 Alkaline phosphatase 0.28 0.49

SHBG 0.001 0.002 Corneal hysteresis 0.3 0.28

Atherosclerosis-related 0.001 0.001 Lymphocyte count 0.31 0.24

Platelet count 0.003 0.002 Potassium in urine 0.34 0.26

Mean corpuscular hemoglobin 0.02 0.2 Body mass index 0.34 0.3

Overall health rating 0.02 0.01 Creatinine in urine 0.37 0.47

IGF-1 0.03 0.03 Apolipoprotein B 0.4 0.4

Lipoprotein-A 0.03 0.05 Apolipoprotein A 0.41 0.58

White blood cell count 0.04 0.05 Direct bilirubin 0.41 0.58

Urate 0.05 0.03 Triglycerides 0.43 0.48

Hemoglobin A1c 0.05 0.01 High light scatter reticulocyte count 0.48 0.22

Aspartate aminotransferase 0.06 0.11 LDL direct 0.49 0.53

Eosinophil count 0.09 0.2 Phosphate 0.53 0.43

Waist–hip ratio 0.1 0.11 C-reactive protein 0.55 0.68

Alanine aminotransferase 0.11 0.1 Microalbumin in urine 0.6 0.38

Asthma 0.11 0.12 Monocyte count 0.61 0.42

Mean sphered cell volume 0.13 0.66 Autoimmune-related 0.64 0.56

Creatinine 0.13 0.34 Cholesterol 0.64 0.71

Tanning (quantitative) 0.13 0.1 Glucose 0.69 0.93

BMD Heel T-score 0.14 0.14 Hair color 0.8 0.64

Total protein 0.16 0.13 HDL cholesterol 0.91 0.99

Total bilirubin 0.16 0.33 Oestradiol higher than 212 pmol/L 0.91 0.82

RBC count 0.16 0.58 Urea 0.92 0.79

Sodium 0.17 0.16 Albumin 0.95 0.93

Rheumatoid factor higher than 16 U/mL 0.99 0.92
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behavioral phenotypes and personality traits that continue to
flood the PubMed publication records), we found no evidence of
association between the 5-HTTLPR and any of these traits.
We examined a broad range of psychiatric, cognitive, and

neurological phenotypes using publicly available summary
statistics. The most significant finding was for association between
5-HTTLPR and intelligence [14] but not reaching the well-
established genome-wide significance threshold for common
allele associations in GWAS studies [15] and without additional
correction for multiple testing given the many traits tested in our
study. Further analysis of some 400 disorders and traits in the
GWAS Atlas belonging to other domain categories (e.g. environ-
ment, immunological, metabolic, respiratory, skeletal) and with
reasonably powered GWAS sample sizes of N > 50,000, of which
many are based on the UKBB data [13], yielded no significant
results except for adult height [13], total cholesterol [16], BMI [17],
and two related traits that were available in the UKBB and

included in the GWAS Atlas, i.e., impedance measures to estimate
the trunk fat-free mass and the trunk predicted mass. Only adult
height, however, remains significant after correction for multiple
testing. One of the eight SNPs of the 5-HTTLPR predictor,
rs11651241, is strongly associated with adult height, which might
explain the strong association signal in our study. By and large, our

Table 4. 5-HTTLPR association p values obtained by VNTR.s for the first
set of psychiatric phenotypes in GWAS atlas (https://atlas.ctglab.nl/).

Phenotype p value

Alcohol intake frequency 1.73E–06

Ever vs never smokers 0.0002

Champagne/white wine intake 0.003

Able to pay rent/mortgage as an adult 0.009

Subjective well being 0.009

Extraversion 0.009

Ever vs never drinkers 0.02

Frequency of inability to cease drinking in the last year 0.02

Frequency of consuming six or more units of alcohol 0.02

Frequency of feeling guilt or remorse after drinking
alcohol in the last year

0.04

Major depressive disorder, single episode 0.06

Recent trouble relaxing 0.06

Former vs current drinkers 0.08

Current tobacco smoking 0.08

Weight change during worst episode of depression 0.1

Light smokers 0.1

Former vs current smokers 0.11

Depression possibly related to stressful or
traumatic event

0.12

Ever had period extreme irritability 0.12

Recent worrying too much about different things 0.13

Drinks per week 0.17

Trouble falling or staying asleep, or sleeping too much 0.2

Frequency of memory loss due to drinking alcohol in the
last year

0.2

Ever depressed for a whole week 0.2

Reason for reducing amount of alcohol drunk: health
precaution

0.23

Thoughts of death during worst depression 0.24

Felt loved as child 0.25

Frequency of unenthusiasm/disinterest in last 2 weeks 0.26

Frequency of tiredness/lethargy in last 2 weeks 0.28

Someone to take to doctor when needed as a child 0.28

Fraction of day affected during worst episode of
depression

0.29

Frequency of depressed days during worst episode of
depression

0.29

Been in serious accident believed to be life-threatening 0.29

Ever worried more than most people would in similar
situation

0.29

Recent restlessness 0.3

Why stopped smoking: financial reasons 0.3

Been in a confiding relationship as an adult 0.31

Ever had prolonged feelings of sadness or depression 0.31

Fig. 1 Plot of –log10(p value) obtained by VNTR.g and VNTR.s for
61 phenotypes in the UK Biobank. If y denotes –log10(p value) for
VNTR.g and x denotes –log10(p value) for VNTR.s, the estimated
linear regression equations were obtained as: y= –0.16+ 1.15x and
x= 0.19+ 0.83y.

Table 3. 5-HTTLPR association p values obtained by VNTR.s for the
psychiatric phenotypes in the psychiatric genetics consortium.

Disorder Number
of cases

Number of
controls

p value

Bipolar disorder 20,352 31,358 0.002

Attention deficit
hyperactivity disorder

19,099 34,194 0.01

Eating disorder 16,992 55,525 0.01

Post-traumatic stress
disorder

30,000 170,000 0.1

Schizophrenia 13,833 18,310 0.2

Autism spectrum
disorder

18,381 27,969 0.3

Major depressive
disorder

59,851 113,154 0.4

Tourette syndrome 4819 9488 0.6

Alcohol dependence 14,904 37,944 0.8
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analysis represents the most systematic effort to examine the role
of the serotonin transporter promoter polymorphism 5-HTTLPR in
neurobehavioral traits without finding evidence for any direct
effect of this VNTR to disease or trait susceptibility. Considering
our findings and our understanding of the polygenicity of
complex traits, together with the challenge of quantitative
phenotyping in the realm of neurobehavioral traits and life
events, we conclude that the 5-HTTLPR alleles are also very
unlikely to play a measurable role in GxE interactions resulting in
human disease and behavior.
Minimac3 is a well-known method for genotype imputation in

GWAS [18]. It is based on state space reduction of the hidden
Markov model, and is computationally much faster than Minimac2
[19]. Border et al. [20] proposed an efficient approach for imputing
genotypes of a VNTR polymorphism using Minimac3 and
integrating two reference panel datasets containing genotypes
of both VNTR variants and genome-wide SNPs, and the haplotype
reference consortium data widely used for imputation [21]. They
demonstrated good accuracy of the method and applied it to
impute VNTR genotypes in the UKBB. When individual-level
genotype data of the SNPs surrounding a VNTR locus are available,
this approach is useful for imputing the VNTR genotypes.
However, due to multiple steps of analysis involved with the
method and complex statistical models underlying Minimac3, it is
challenging to design the summary-statistics-based version of the
approach. Thus, our method is more useful in the absence of
individual-level data.
A limitation of our study is that we considered the biallelic

short/long alleles of the VNTR polymorphism instead of consider-
ing the actual number of repeats. Even though this is a common
strategy for association testing, it does not utilize the complete
allelic diversity. Since, our approach is adaptable to the prediction

of a multi-allelic VNTR variant, it is possible to extend the method
to consider the actual number of repeats in the analysis.
Our approach to using GWAS summary statistics for predicting

involvement of a VNTR polymorphism in human complex traits,
without the need for individual and large-scale PCR-based
genotyping, is not limited to the 5-HTTLPR locus. We applied
and developed a computational framework that can easily be
expanded to include predictors of other types of genetic and
genomic variants for testing their involvement in quantitative and
qualitative traits and disorders. We showed that the individual-
level genotype data-based method and the summary-statistics-
based approach (VNTR.g and VNTR.s) perform equally well, which
gives confidence about the reliability of the GWAS summary-
statistics-based approach. This method is analogous to that of the
transcriptome-wide association studies (TWAS), which we pre-
viously developed [12] and successfully applied to identify novel
genes associated with complex diseases [22–25]. While the initial
TWAS approach is a summary-statistics-based version of predict-
ing gene-expression for association testing, we are now also able
to impute (and test for association) the genetic component of
allelic variation of more complex genetic and genomic poly-
morphisms such as VNTRs and other types of recurrent structural
variation in the human genome. With the increased efforts of
whole genome sequencing of larger cohorts for genetic studies,
novel computational methods have been developed to directly
test for association of VNTRs, microsatelites, and other repeat
structures [26–28]. For now, however, with the extensive data
collection and availability of much larger GWAS studies with
genome genotyping array data of hundreds of thousands of
participants, our approach provides a more efficient way of testing
for involvement of VNTRs and other types of haplotypes-
associated genetic variation in complex traits.

Table 5. 5-HTTLPR association results obtained by VNTR.s for some cognitive and neurological phenotypes in GWAS atlas (https://atlas.ctglab.nl/).

Phenotype Phenotypes class p value

Intelligence Cognitive 5.10E–08

Pairs matching test—number of incorrect matches in round Cognitive 0.04

Pairs matching test—time to complete round Cognitive 0.13

Handedness Cognitive 0.14

Trail making test—duration to complete numeric path (trail #1) Cognitive 0.16

Symbol digit substitution test—duration to entering value Cognitive 0.44

Reaction time Cognitive 0.46

Fluid intelligence test—number of fluid intelligence questions attempted within time limit Cognitive 0.55

Numeric memory test—maximum digits remembered correctly Cognitive 0.61

Trail making test—duration to complete alphanumeric path (trail #2) Cognitive 0.68

Symbol digit substitution test—number of symbol digit matches made correctly Cognitive 0.82

Symbol digit substitution test—number of symbol digit matches attempted Cognitive 0.92

Headache Neurological 0.02

Knee pain Neurological 0.03

Back pain for 3+ months Neurological 0.03

Neck or shoulder pain Neurological 0.06

Hip pain Neurological 0.3

Migraine Neurological 0.37

Alzheimer disease Neurological 0.55

Headaches for 3+ months Neurological 0.56

Knee pain for 3+ months Neurological 0.83

Neck/shoulder pain for 3+ months Neurological 0.88

Stomach or abdominal pain Neurological 1

Back pain Neurological 1
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Fig. 2 Plot of –log10(p values) for 50 phenotypes with most significant p values obtained by VNTR.s. Horizontal bars for the psychiatric
phenotypes in the psychiatric genetics consortium (PGC) are colored purple. Rest of these phenotypes were analyzed using summary statistics
obtained from studies based on UK Biobank. The vertical dashed bar corresponds to the genome-wide significance threshold –log10(5 × 10–8)= 7.3.
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DATA AVAILABILITY
The datasets analyzed during the current study are available from the psychiatric
genetics consortium (https://www.med.unc.edu/pgc/), UK Biobank (https://www.
ukbiobank.ac.uk/), and GWAS atlas (https://atlas.ctglab.nl/). All data generated during
this study are included in this article and its supplementary materials.
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