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Vector Quantization of Image Subbands: A Survey 
Pamela C. Cosman, Member, IEEE, Robert M. Gray, Fellow, IEEE, and Martin Vetterli, Fellow, IEEE 

Invited Paper 

Abstract-Subband and wavelet decompositions are powerful 
tools in image coding because of their decorrelating effects on 
image pixels, the concentration of energy in a few coefficients, 
their multirate/multiresolution framework, and their frequency 
splitting, which allows for efficient coding matched to the statistics 
of each frequency band and to the characteristics of the human 
visual system. Vector quantization (VQ) provides a means of 
converting the decomposed signal into bits in a manner that takes 
advantage of remaining inter and intraband correlation as well 
as of the more flexible partitions of higher dimensional vector 
spaces. Since 1988, a growing body of research has examined 
the use of VQ for subbandwavelet transform coefficients. We 
present a survey of these methods. 

I. INTRODUCTION 
MAGE compression maps an original image into a bit 
stream suitable for communication over or storage in a 

digital medium. The number of bits required to represent 
the coded image should be smaller than that required for 
the original image so that one can use less storage space 
or communication time. There are two basic types of com- 
pression. Lossless compression, which is also called noiseless 
coding, data compaction, entropy coding, or invertible coding, 
refers to algorithms that allow the original pixel intensities 
to be perfectly recovered from the compressed representation. 
Lossy compression algorithms do not allow that. This paper 
is concerned with digital compression techniques, and if an 
image is analog in space and amplitude to begin with, one 
must first render it discrete in both space and amplitude. 
Discretization in space is generally called sampling. This 
consists of examining the intensity of the analog image on 
a regular grid of points called picture elements or pixels. 
Discretization in amplitude is often called quantization. This 
consists of mapping a number from a continuous range of 
possible values into a finite set of approximating values. The 
term analog-to-digital (AD) conversion is often used to mean 
both sampling and quantization, that is, the conversion of a 
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Fig. 1. Image compression systems 

signal that is analog in both space and amplitude to a signal 
that is discrete in both space and amplitude. Such a conversion 
is by itself an example of lossy compression. 

A general system for digital image compression is shown in 
Fig. 1 (a). It consists of one or more of the following operations, 
which may be combined with each other or with additional 
signal processing: 

Signal decomposition: The image is decomposed into 
several images for separate processing, typically by linear 
transformation by a Fourier or discrete cosine transform 
or by filtering with a subband or wavelet filter bank. The 
goal is to concentrate energy in a few coefficients, to 
reduce correlation, or to provide a useful data structure. 
Quantization: High-rate digital pixel intensities are 
mapped into a relatively small number of symbols. 
This operation is nonlinear and noninvertible; it is 
"lossy." The conversion can operate on individual pixels 
(scalar quantization (SQ)) or groups of pixels (vector 
quantization (VQ)). Quantization can include throwing 
away some of the components of the signal decomposition 
step. 
Lossless compression: Further compression is achieved by 
an invertible (lossless, entropy) code such as Huffman, 
Lempel-Ziv, or arithmetic code. The idea here is to 
assign codewords with a few bits to likely symbols and 
codewords with more bits to unlikely symbols so that the 
average number of bits is minimized. 

A bewildering variety of image compression systems have 
been proposed, which involve various choices for each of the 
three basic components. The JPEG still-image compression 
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standard, for example, uses a discrete cosine transform for 
the first step, SQ with different quantizer step sizes for the 
different transform coefficients in the second step, and run- 
length coding combined with Huffman coding for the third 
step, as shown in Fig. l(b). This paper is concerned with 
those image compression systems that use a subband or 
wavelet decomposition for the first step, some form of VQ 
for the second step, and any lossless coding (or none at all) 
for the third step, as shown in Fig. l(c). We also briefly 
consider systems based on scalar quantization (SQ) because 
of its simplicity and historical importance. It also provides 
comparisons with the systems using VQ. Although SQ can 
be viewed as a special case of VQ with 1-D vectors, many 
systems using SQ are uniquely suited to 1-D vectors and do 
not immediately generalize to larger dimensions. 

This paper treats only subbandNQ systems used for image 
compression. VQ can be used for many other types of image 
processing besides compression [ 11, and subbandNQ systems 
can similarly be used for noncompressive purposes as well. For 
example, waveletNQ systems have been used for signature 
verification [2], for automatic target recognition from high- 
range resolution radar returns [3], and other clustering and 
classification uses. This survey paper will not include these 
other uses of subbandNQ. 

The organization of the paper is as follows. In Section 11, 
we present a brief introduction to subband and wavelet image 
coding systems. We begin with a description of the subband 
decomposition. The reader is expected to be already somewhat 
familiar with this material, and we include it primarily to estab- 
lish the notation we will use for the remainder of the paper. 
For thorough introductions to subband and wavelet coding, 
the reader is referred to a plethora of books, tutorials, and 
survey articles [4]-[9]. Section I1 also discusses some issues of 
entropy coding, SQ, and bit allocation as they apply to subband 
image coding systems. Section 111 presents a brief overview of 
several VQ techniques that have been studied in the context of 
subband coding. Section IV presents a survey of a wide variety 
of subbandNQ systems. Last, Section V discusses differences 
between VQ applied to subband coefficients and VQ applied 
directly to image pixels, and offers some conclusions. 

11. SUBBAND SYSTEMS FOR IMAGE CODING 

A. Subband Decompositions 

Subband coding was introduced in the context of speech 
coding in 1976 by Croisier et al. [lo] and Crochiere et al. 
[ 111. Croisier et al. were the first to solve the critical problem 
of aliasing cancellation after decimation and reconstruction 
in subbands, using “quadrature mirror filters” (QMF’s). The 
theoretical extension of subband filtering from 1-D to 2-D 
was made by Vetterli [ 121. Two-dimenisonal subband filtering 
was first applied to image coding by Woods and O’Neil [13]. 
A subband decomposition is produced by an analysis filter 
bank followed by downsampling. Any or all of the resulting 
subbands can be further input to an analysis filter bank and 
downsampling operation for as many stages as desired. Fig. 
2 shows one stage of such a system using 2-D separable 

HH + G I ( ~ ) P  

Fig. 3. One stage of subhand reconstruction with 2-D separable filters. 

filters. In the figure, J, 2 denotes downsampling by a factor of 
two, H0 denotes a lowpass filter, and H I  denotes a highpass 
filter. The initial high and lowpass filters and downsampling 
are applied to the rows of an image. The subsequent filters 
and downsampling are then applied to the resulting columns. 
Because there are only two filters, this is called a two- 
channel system. Multichannel systems have been much less 
explored than two-channel systems. The image is split into four 
bands-LL, LH, HL, and HH-according to whether the rows 
and columns received the low- or high-frequency filtering. The 
reconstruction operation consists of an upsampling operator 
followed by a synthesis filter bank, as shown in Fig. 3. One 
stage of reconstruction is used for each stage of decomposition. 
In this paper, we use the term “decomposition” to refer to the 
filtering and downsampling operations for as many stages as 
desired. 

Ideally, decomposition followed by reconstruction will pro- 
vide a perfect replica of the original signal. This perfect 
reconstruction requirement is usually built into the decompo- 
sition as a requirement if real inputs and analog arithmetic are 
assumed, but it is only an approximation when dealing with 
digital signals because of round-off error in the arithmetic. 
Furthermore, we are here interested in image compression, 
in which case the decomposed signal is compressed in a 
lossy fashion, typically by SQ or VQ. The term “encoding” 
refers to the combination of decomposing and quantizing with 
or without subsequent entropy coding. The term “decoding” 
refers to the inverse operation to encoding; therefore, it con- 
sists of the combination of inverse quantization followed by 
reconstruction. 

If all four of the subbands are subjected to another stage of 
filtering and downsampling, this leads to a uniform decomposi- 
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Fig. 4. (a) Two stages of uniform decomposition leading to 16 uniform sub- 
bands; (b) three stages of pyramidal decomposition leading to 10 octave-band 
subbands; (c) wavelet packet. 

tion, as depicted in Fig. 4(a). This decomposition is a balanced 
tree. If only the low band is further decomposed, this is referred 
to as an octave-band decomposition (which is also often 
called a logarithmic-tree or pyramid’ decomposition). This 
situation, which is represented by a highly unbalanced tree, 
is shown in Fig. 4(b). In fact, for the fixed maximum depth 
of the tree, this octave-band decomposition is as unbalanced 
a tree as one can have. For the fixed maximum depth of the 
tree, the balanced tree produced by a uniform decomposition 
and the maximally unbalanced tree produced by a pyramidal 
decomposition represent the two extremes of possible choices. 
Anything between these extremes is called a wavelet packet 
[15]. An example of a wavelet packet is shown in Fig. 4(c). 

Techniques for producing image subband decompositions 
can be quite general. One type of decomposition, called a 
wavelet transform, uses octave-band filter banks with regu- 
larity conditions imposed on the lowpass filters. The wavelet 
transform can be interpreted as a subband decomposition of 
the signal into a set of overlapping frequency channels having 
the same bandwidth on a logarithmic scale. In this paper, 
we will refer to this type of octave-band decomposition as 
a wavelet decomposition. The more general term “subband 
decomposition” will be used for the uniform-band case and as 
the general term. 

The various subbandNQ systems surveyed used a wide 
variety of filters. One of the goals of signal decomposition 
theory is to find conditions such that in the absence of noise 
or quantization, the overall reconstruction is perfect or nearly 
so. The simplest and shortest filter-the Haar wavelet-is 
important for historical and theoretical reasons but is rarely 
used as part of a wavelet/SQ or waveletNQ scheme. By far, 
the most common choice is one of the quadrature mirror filters 
QMF’s that are listed in [16]. Many authors refer to these 
as “Johnston’s near-perfect reconstruction filters” or near-PR 
filters. The second most popular choice is one of the family 
of Daubechies orthogonal filters [17], [SI. The biorthogonal 
filters [IS], [19], which possess the advantage of linear phase, 
are also common. The Gabor functions, which are Gaussians 
modulated by complex exponentials, are more rarely used. Use 

’ Strictly speaking, a pyramid decomposition is an overcomplete represen- 
tation often used in computer vision and first used for image compression by 
Burt and Adelson [14]. 

of the latter for wavelet transforms is motivated by the fact 
that they have joint localization in the spatialkpatial-frequency 
domains that is optimal in a certain sense and that, according 
to recent experiments, the majority of receptive field profiles 
of the human visual system fit quite well this type of function. 
The choice of filter reflects a tradeoff among many factors, 
such as spatial localization, frequency selectivity, regularity, 
and coding gain. A number of papers have examined the 
question of selecting filter coefficients [20]-[24], but as this 
survey is concerned with quantization, no more will be said 
on filters. 

B. Entropy Coding 

Let { Y,} be a source that produces symbols from a discrete 
alphabet A.  In our application, Y, is a sequence of indexes 
produced by quantizing (scalar or vector) another sequence 
X,. Define the k-tuple probabilities p ( y k )  = Pr(Yk = yk)  
for all yk = (yo, y l , .  . . , E Ak,  which is the set of all 
k-dimensional vectors with coordinates in A. A noiseless code 
for Y, is an invertible mapping of the sequence Y, into binary 
symbols V,. The goal of noiseless coding is to have the small- 
est possible average number of binary symbols per original Y, 
symbol. The basic strategy underlying noiseless coding is to 
assign codewords with a few bits (short length) to symbols 
or groups of symbols with high probability and codewords 
with more bits (long length) to unlikely symbols or groups 
of symbols so that the average number of bits is minimized. 
Approaching the optimal performance in terms of minimizing 
bits may conflict with the other possible design goals of 
the noiseless coder, which involve encoding speed, decoding 
speed, memory requirements, delay, and progressivity. 

Noiseless codes can map individual Y, into a varying 
number of bits (e.g., Huffman coding) or fixed numbers of Y, 
into a varying number of bits (e.g., Huffman codes applied 
to vectors), or they can map variable numbers of Y, into 
fixed numbers of bits (e.g., Tunstall or Lempel-Ziv codes) or 
varying numbers of symbols into varying numbers of bits. 
Shannon theory demonstrates that the smallest achievable 
noiseless coding bit rate for a stationary and ergodic source 
Y is given by the entropy rate p(Y) defined by H ( Y )  = 
limk4m k P 1 H ( Y k ) ,  where 

H ( Y k )  = - P(Yk)10&P(Yk) 
y k E A k  

This optimal performance is provably achievable in the limit of 
coding arbitrarily large input vectors or permitting arbitrarily 
large delay in variable input length codes. In the special case 
where {Y,} is a memoryless process, then H ( Y )  = H(Yo) ,  
which is the so-called marginal entropy. An important point 
here is that simple Huffman coding on individual symbols is 
not guaranteed to perform close to the optimum. The optimum 
can be achieved to arbitrary precision only if one codes groups 
of increasing size. 

If the original signal is decomposed and quantized, then the 
application of noiseless coding can provide further compres- 
sion without any additional loss of information. However, if 
such entropy coding is to be permitted then superior perfor- 
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mance is obtainable in principle by designing the quantizer to 
provide the smallest possible entropy rate while maintaining 
the desired fidelity. Many of the coding systems surveyed here 
use entropy coding on the bit stream, and many do not. In 
most cases, those systems that do use entropy coding do not 
try to match the quantizer design with the subsequent entropy 
coding but merely tack the entropy coder onto the end. Those 
systems that include entropy coding in their reported results 
are pointed out as such. Whenever entropy coding is not 
mentioned in relation to a particular algorithm, that means the 
algorithm did not include entropy coding. In general, those 
systems that do not use entropy coding could improve their 
results by incorporating these techniques, although the amount 
of improvement is unknown and may perhaps be small. In 
a small number of published results, the authors report the 
entropy rate of the bit stream and intend this to be indicative 
of the achievable bit rate. As discussed above, because the bit 
rates of actual implementable entropy codes may or may not 
approach the entropy rate of the source, results reported only 
as entropy rates should not be placed in direct comparison 
with results that report actual bit rates. 

C. Scalar Quantization 

Quantization is the mapping of a large set of possible inputs 
into a smaller set of possible outputs. In SQ, the inputs are 
individual numbers. SQ includes such operations as “rounding 
to the nearest integer.” The possible outputs-in this case the 
integers-are called quantization levels, reproduction levels, 
or reconstruction levels. Integers are evenly spaced; therefore, 
this is an example of uniform quantization. In general, the 
quantization levels do not have to be integers, nor are they 
evenly spaced. The spacing between the reproduction levels is 
often called the bin width. To specify a scalar quantizer, one 
needs the set of possible reproduction levels and a rule for 
mapping input scalars to reproduction levels. 

In the simplest application of SQ to subband coefficients, 
one simply applies a uniform quantizer with bin width A to 
all coefficients, i.e., the real line is carved up into disjoint 
intervals of length A [25], [26]. A coefficient lying in a 
particular interval is represented by the midpoint (centroid with 
respect to Lebesgue measure) of the interval. The intervals are 
numbered. The coefficient is mapped into an index labeling 
the interval in which it lies, and these indexes are then coded 
using an entropy code. As A gets bigger, the interval size 
grows, the distortion increases, and the entropy decreases so 
that the compression is greater. As A gets smaller, distortion 
goes down, but compression is less. The resulting quantization 
indexes can then be entropy coded. A typical approach is 
to use a Peano or zigzag scan through the coefficients to 
form a 1-D data stream and then apply either a simple scalar 
Huffman or an arithmetic code to the result. Both Huffman and 
arithmetic codes can be combined with run-length coding to 
take advantage of the many zero coefficients remaining after 
quantization. 

An alternative is to exploit both the spatial and frequency 
localization of wavelets. Lewis and Knowles [27] proposed to 
model edges across scales by gathering nonzero coefficients 

corresponding to a given spatial location in bands oriented in 
the same direction. A further development taking dependencies 
across scales into account is Shapiro’s landmark SQ method 
based on embedded zerotrees [28]. This successful variation 
on uniform SQ attempts to take advantage of the many zeros 
that appear in the quantized coefficients (increasing as A does) 
and of the location correspondence between those zeros. An 
extension to this SQ algorithm attempted to jointly optimize 
the scalar quantizers and the zerotree structures by examining 
distortionhate tradeoffs [29]. These methods are described 
further in Section IV-B together with the VQ algorithms based 
on them. 

One way to improve on simple uniform SQ of all subbands 
is to adjust the quantizers to the different bands. One could 
use an analog of the JPEG quantization table. Nonuniform 
SQ’s can also be used. For example, a Lloyd-Max quantizer 
could be designed for each subband based either on a training 
sequence of typical data or on a model of the data [30], [31]. 
With a Lloyd-Max quantizer, the quantization law is tailored 
to the pdf of each subband. In the discrete case, the value 
of the probability mass function associated with a coefficient 
value IC is estimated by the frequency of occurrence of IC in 
the training sequence for that subband. 

Each subband can itself have a variety of SQ’s available 
for coding different coefficients within that subband. For 
example, the encoder can classify the activity level of blocks of 
coefficients within the band and transmit that class information 
to the decoder so that it knows which SQ to use for coding 
those coefficients [13]. On the other hand, the classification 
can be made on the baseband, which is assumed to be 
transmitted first, and that way, the decoder can perform the 
same classification and use the correct quantizer for each later 
coefficient without the encoder having to explicitly send the 
class information as overhead [ 321. 

Another popular design is to employ quantizers with a center 
“dead zone,” which zeros out large numbers of coefficients 
and makes subsequent entropy coding very efficient (see, e.g., 
[33]). Such a method requires a “significance map,” which 
indicates where the coefficients of large magnitude are located. 
A variety of methods, such as run-length coding, could be used 
for efficiently coding this sparse positional information [34]. 

Some works on wavelet compression place little emphasis 
on the quantization operation and focus almost entirely on 
the signal decomposition. Donoho et al. [35] essentially use 
the dead zone idea without explicitly quantizing the nonzero 
coefficients. Their “hard thresholding” method sets to zero all 
coefficients having energy less than a predetermined threshold, 
forming a “dead zone.” The remaining coefficients are not 
explicitly quantized. If operating on real numbers, this method 
mathematically amounts to no compression at all since there 
is no compression in going from any number of real numbers 
to a much smaller collection of real numbers. On a computer, 
real numbers are, of course, approximated by floating point 
numbers. Thus, there will be some compression, but it is not 
immediately quantifiable since the location of the nonthresh- 
olded coefficients has to be sent as well. Thus, the scheme 
presented in [35] is not yet a compression scheme. A simple 
approach would be to explicitly quantize the nonthresholded 
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coefficients, for example, with a uniform quantizer having a 
stepsize of the order of the threshold. The error would, of 
course, increase proportionally to the number of remaining 
coefficients, which we assume is small. However, the locations 
of these coefficients must be sent as side information with an 
overhead of the order of log, N bits for a signal of size N 
unless some prior information is known. 

Donoho et al. also consider a “soft thresholding” approach 
that corresponds to attenuating all of the coefficient values 
according to some weighting function instead of making the 
“hard” comparison and zeroing. Again, quantization is not 
considered in their scheme, but the same discussion as above 
can be used to arrive at a realistic compression scheme. 

Note that the classes of signals considered by Donoho et 
al. contain many discontinuities (e.g. like images), and thus, 
the wavelet basis is indeed an interesting choice because of 
its ability to focus on edges. For other classes of signals (e.g. 
containing sinusoidal components like musical sounds), that 
advantage is not clear. 

Some subband/SQ methods attempt to compute the quan- 
tization steps of the different subbands to minimize a noise 
power weighted by the sensitivity function of the human visual 
system [36], [37]. This is a very important line of investigation 
since perceptually based quantization will outperform quanti- 
zation based on mean squared error (MSE) by a large margin, 
especially at low bit rates. 

D. Bit Allocation 

Bit allocation is the problem of assigning bit rates to 
a number of sources that are to be encoded. In the case 
of subband coding systems, the different sources may be 
the different subbands but not necessarily. The goal of the 
allocation is typically to minimize the overall distortion of the 
coder subject to constraints such as a maximum overall bit rate, 
where the overall distortion can be defined in different ways. 
If the quantization is to be scalar without subsequent entropy 
coding, then there is the constraint that the assignment must 
be integer. There are a variety of other possible constraints 
that will be discussed later. 

It is well known from experience that the low-frequency 
subbands have higher variance than the high-frequency sub- 
bands, and this higher variance means that they have “more 
information” and ought to be allocated more bits. How many 
more bits? A small number of researchers decided on arbitrary 
numbers. For example, a low-frequency band might get 2 
bits per pixel (b/pixel), and a higher frequency band only 
1 b/pixel, with perhaps some highest frequency bands being 
discarded altogether (0 b/pixel). Other researchers allocated 
bits to be proportional to the logarithm of the variance of each 
subband. In such a case, the variances would typically need 
to be transmitted to the decoder in order to recompute the 
allocation there. 

The most common bit allocation method is one we will 
refer to as the “equal-slope’’ method. It is applicable to both 
scalar and vector quantizers. The idea is based on what is 
known in economics as “Pareto optimality.” We assume that 
a variety of quantizers have been designed for each subband. 

For each subband, we can, in tum, apply each of the quantizers 
that were designed for it and compute the resulting distortion 
and bit rate. These distortionlrate points can be plotted in 
the (D,R) plane, and the lower convex hull of the set can 
be extracted for each band. We call these the distortionhate 
curves. The “equal-slope’’ method, which was invented and 
reinvented in different contexts and from different viewpoints 
[38]-[43] indicates that the overall system should operate by 
finding a point of equal slope along the D ( R )  curve for 
each band. For the given D ( R )  curves related to those fixed 
VQ’s, this bit allocation strategy was shown to be optimal 
for an orthogonal decomposition in the sense of minimizing 
the mean-squared error (MSE) of the reconstructed image. 
The intuitive explanation for this “equal-slope’’ method is as 
follows: Suppose you are operating an encoder with a variety 
of quantizers available to encode two sources. The variety of 
quantizers, which operate at different rates, yield a spread of 
possible distortions and rates for each source. If the channel 
allows you to increase your overall rate slightly, which source 
should you choose to increase? One source may be encoded at 
a flat part of its D ( R )  curve; therefore, an increase in the rate 
will cause only a trivial decrease in the distortion. However, 
another source may be encoded on a steep part of its D ( R )  
curve so that a rate increase causes the distortion to drop 
sharply. One would choose to add bits to that source until 
it too reaches an equally flat part of its D ( R )  curve, at which 
point adding an additional bit to either source would produce 
the same drop in distortion. A variety of further refinements 
to this “equal-slope’’ bit allocation scheme have been tried, 
mostly involving attempts to weight the distortion so as to 
reflect human visual sensitivity. 

The equal-slope intuition for determining bit allocation 
indeed reflects asymptotic results from quantization theory, 
as does the older method of allocating bits proportional to log 
variances. It is worthwhile to describe these results briefly to 
provide an appreciation for their relevance and limitations. For 
details, see, e.g., [44, ch. 8-101 and [451-[471. 

If a single continuous random variable Y is quantized to 
a very high resolution or small distortion, then asymptotic 
approximations yield two conclusions. Denote the quantizer 
output by Q ( Y )  and the average distortion by D = E[(Y - 

The optimum quantizer in the sense of minimizing the 
average distortion subject to a fixed (asymptotically large) 
number of quantization levels N 5 2R is given approx- 
imately by D x C T $ ~ - ’ ~ ,  where CJ$ is the variance 
of the random variable. Equivalently, for a given av- 
erage distortion D ,  the optimum rate R is given by 
R M log,(o$/D). This result is most important when 
entropy coding is not applied to the quantizer output. 
The optimum quantizer in the sense of minimizing the av- 
erage distortion subject to a fixed output entropy H ( Y )  5 
R is approximately achieved by a uniform quantizer 
with (asymptotically small) bin width A, yielding an 
average distortion of D = A2/12 and a marginal entropy 
of H ( Q ( Y ) )  M h ( Y )  - i log,A2, where h ( Y )  is the 
differential entropy of the continuous random variable Y. 
Thus, the rate as measured by entropy for an optimized 

Q(y))‘I. 
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Fig. 5. Vector quantizer. 

quantizer is H ( Q ( Y ) )  M h ( Y )  - tlog2(12D). This 
result is the appropriate approximation when subsequent 
entropy coding is permitted so that one wishes to trade off 
entropy with average distortion. Keep in mind, however, 
that one must code increasingly large vectors and not just 
the scalar Y in order to guarantee closeness to even the 
marginal entropy. 

We can summarize these results as follows: Given asymp- 
totically small distortion (or high rate), the optimal rate of a 
quantizer Q operating on a random variable Y yielding average 
distortion D = E[(Y -Q(Y))2]  is given by y ( Y ) -  log, D+ 
e, where y ( Y )  is a statistic of the random variable (half of 
the log of the variance if entropy coding is not used and the 
differential entropy if it is), and c is a constant. If the random 
variable is Gaussian, then the differential entropy is given by 
h(Y)  = $ log2(27i.ea$) and, hence, is proportional to half of 
the log of the variance; in both cases, the optimal rate takes the 
form $log,(a$/D)+c, where c is a constant not depending on 
the source or distortion. In this case, the optimal rate translates 
directly into an optimal bin width A. 

These single random variable results then yield bit allocation 
results by simultaneously considering several random vari- 
ables, say Yl , Y2, . . . , YK,  possibly corresponding to different 
transform coefficients. The bit allocation game now becomes a 
question of minimizing the total average distortion over all K 
random variables given a constraint on a total bit budget for all 
random variables. If RI, is the rate for the kth random variable 
(either log2 NI, for an NI, level quantizer or H ( Q k )  for a 
constrained entropy quantizer) and Dk = E[(Yk - Q ( Y k ) ) ’ ]  
is the average distortion of the kth quantizer, then the goal 
is to minimize the total average distortion XI, D k  subject to 
an overall rate constraint XI, R k  5 R. This problem can be 
easily solved by converting this constrained minimization to an 
unconstrained minimization using a Lagrange multiplier. The 
unconstrained problem is to minimize X I ,  Dk(Rk)  + A  X I ,  R k  

for some X 2 0. This can be shown directly or by using 
variational principles. In the latter case, we take derivatives 
with respect to R k  and equate to zero: DL(Rk) + X = 0 for 
each k .  This is precisely the “equal-slope” method. Each Rk is 
chosen to satisfy D ~ ( R I , )  = -A. In the case where D I , ( R ~ )  = 
ee-2Rk,  we have = -A, or RI, = (1/2)10g(2c/A). 

This is the “rule of thumb” whereby the bit allocation is an 
affine function of the log of the variance c. 

If all of the random variables are independent and if 
they are such that the standardized random variables (YI, - 
E(Yk)) /cy ,  are identically distributed, then the optimal bit 
allocation allocates bits to Q k  proportional to loga$k plus 
some constant in the case where no entropy coding is used. 
The same conclusion follows for the case with entropy coding 
if the random variables are also assumed to be Gaussian. 
If the random variables do not share the same standardized 
distribution, then additional terms must be included. 

Last, if one has correlated Y k ,  then these results do not 
hold. If, however, the variables are jointly Gaussian and one 
first applies a Karhunen-Loeve transform, then one produces 
uncorrelated variables that are also independent and to which 
one can apply these asymptotic approximations and draw sim- 
ilar conclusions to the effect that the optimal rate allocations 
for both approaches are proportional to the log variance. 

The key points of the preceding discussion for our case 
of decomposing signals by a transform (such as the wavelet 
transform) can now be summarized: To have a rigorous basis 
for the common rule of thumb that bit allocation should 
be made proportional to the logarithms of the coefficient 
variances, the following assumptions are required: 

The rate is asymptotically large (or the distortion is 
asymptotically small). 
The original data being transformed are jointly Gaussian. 
The transform is the Karhunen-Loeve transform. 

These assumptions are often not valid in practice. The most 
interesting bit rates for many applications are not asymp- 
totically large, image intensities are not well modeled by 
Gaussian, and wavelet transforms can at best only approx- 
imate the Karhunen-Loeve transform. In particular, wavelet 
transforms can render data approximately uncorrelated but not 
independent. Nonetheless, this approach remains common. 

111. VECTOR QUANTIZATION 

In VQ, the inputs are vectors rather than scalars. A typical 
VQ system is depicted in Fig. 5 ,  where an input vector X ,  
consisting of blocks of pixels is quantized by being encoded 
into a binary index in, which then serves as an index for the 
output reproduction vector or codeword. If the code has a fixed 
rate of b b/input vector, then i, has length b. With a variable 
rate code, the indexes in have variable length, and b is their 
average length. The compressed image is represented by these 
indexes in, and the compressed representation requires fewer 
bits than the original. 

The operation of the decoder is thus completely described 
once we have specified the codebook. The operation of the 
encoder requires a choice of the mapping rule. The basic 
Shannon source code model provides an encoder that is 
optimal for a given codebook if the goal is to minimize an 
average distortion. If d ( X ,  X )  2 0 measures the distortion or 
the cost of reproducing an input vector X as a reproduction X 
and if we further assume that the overall distortion (or lack of 
fidelity) of the system is measured by an average distortion, the 
optimal encoder for a given codebook selects the vector Y, if 
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d ( X ,  y Z )  5 d ( X ,  y 3 ) ,  all j .  The optimal encoder thus operates 
in a nearest neighbor or minimum distortion fashion. With 
full-search VQ, the encoder determines the closest codeword 
in its collection by an exhaustive search. A constrained search 
can speed up the encoding but may not be guaranteed to find 
the overall nearest neighbor in the codebook. The choice of 
distortion measure permits us to quantify the performance of 
a VQ in a manner that can be computed and used in analysis 
and design optimization. By far, the most commonly used 
distortion measure for image compression is the MSE, in spite 
of its often cited shortcomings. 

There are many approaches to code design. The two most 
common approaches are to use some subset of a lattice to force 
a highly structured codebook or to apply a clustering algorithm 
such as the Lloyd (Forgey, Isodata, k-means) algorithm. The 
generalized Lloyd algorithm (GLA), which is sometimes re- 
ferred to as the Linde-Buzo-Gray (LBG) algorithm, has been 
described in detail in a variety of places (see, for example 
[48], [49], [44], [50]). It iteratively improves a codebook by 
altemately optimizing the encoder for the decoder (using a 
minimum distortion or nearest neighbor mapping) and the 
decoder for the encoder (replacing the old codebook by 
generalized “centroids”). For squared error, centroids are the 
Euclidean mean of the input vectors mapping into a given 
index. Code design is almost always based on a training set 
of typical data rather than on mathematical models of the 
data. Where the GLA is mentioned in this paper, a training 
set should be assumed unless stated otherwise. 

The GLA is a descent algorithm when run on either a prob- 
abilistic model or on a training set, and hence, it can always be 
used to improve a codebook in terms of reducing distortion. 
Many other clustering algorithms have also been applied to VQ 
design, including pairwise nearest neighbor (PNN) methods, 
Kohonen’ s self-organizing feature maps, simulated annealing, 
deterministic annealing, stochastic gradient methods, compet- 
itive learning, and other neural network methods. (Several 
are mentioned in [44].) Most of the relevant literature for 
subband coding focuses on either constrained forms of the 
Lloyd algorithm or on lattice codes. 

Entropy-Constrained VQ (ECVQ): Ordinary VQ strives to 
minimize average distortion subject to a constraint on the num- 
ber of codewords. This is equivalent to minimizing average 
distortion for a given rate, when rate is measured by the log 
of the number of codewords. This is a suitable optimization 
formulation when the system is indeed fixed rate and no 
subsequent entropy coding takes place. As we have argued 
for scalar entropy coding of quantizer outputs, if we intend 
to entropy code the outputs of a VQ, then it makes more 
sense to design the quantizer with the entropy coding in 
mind, that is, to minimize the average distortion subject to 
a constraint on the quantizer output entropy rather than on 
the number of codewords. An algorithm for accomplishing 
this was developed by Chou et al. [51] by modifying the 
GLA to include an entropy coding stage. Mathematically, 
this is accomplished by modifying the distortion measure 
from a simple squared error to include a log probability 
term multiplied by a Lagrangian multiplier. This results in 
an expected modified distortion equaling the ordinary MSE 

plus the quantizer output entropy. This causes the optimal 
encoder to replace a simple minimum squared error rule by 
the minimization of the squared error plus a log probability 
term that reflects the number of bits that will be needed to 
send the particular codeword. 

Entropy constrained VQ can improve rate-distortion perfor- 
mance when a VQ is followed by an entropy coder, but the 
price for the improvement is added computational complexity. 
Vector generalizations of the asymptotic results previously 
described for scalar entropy coding suggest that when the rate 
is high (or distortion small), the optimum entropy constrained 
VQ is approximately the multidimensional generalization of a 
uniform quantizer, that is, a lattice VQ [47], [52]. Thus, the 
performance gains achievable by entropy constrained VQ over 
optimized lattice VQ are likely to be small except for very low 
bit rates, which are the bit rates of most interest here. 

A. Vector Quantizers with Constrained Structures 

Shannon theory states that VQ can perform arbitrarily close 
to the theoretical optimal performance for a given rate if 
the vectors have sufficiently large dimension. Unfortunately, 
unconstrained VQ is limited to fairly small vector dimensions 
and codebook sizes because of the search complexity. One 
approach to reduce this complexity is to impose constraints 
on the codebook. This means that the codewords cannot have 
arbitrary locations as points in k-dimensional space but are 
distributed in a restricted manner that either allows an easier 
search for the nearest neighbor or else allows for a search 
that does not necessarily produce the nearest neighbor. In this 
section, seven different constrained structures are described, 
all of which have been used as part of subbandNQ schemes. 
The imposed structural constraints return computation savings, 
memory savings, or sometimes both. Due to space constraints, 
we limit ourselves to describing the functioning of each 
structure, but references are provided for design algorithms. 

I )  Lattice VQ: A lattice A, in R, is composed of all 
integral combinations of a set of linearly independent vectors 
that span the space. In one dimension, a lattice quantizer is 
a uniform quantizer with a (theoretically) infinite number of 
levels, where the entire real line is partitioned into a countable 
set of equal size intervals of length A. In 2-D, a lattice is a 
set of points with a regular arrangement in the plane: 

C = {t E R2 : t = Am for all integer pairs m = (m l ,  mz)} 

where A is a nonsingular (2 x 2) matrix called the generator 
matrix of the lattice, and m is an integer vector. This concept 
generalizes to N dimensions. Conway and Sloane [53], [54] 
have determined the best known lattices for several dimen- 
sions, as well as fast quantizing and decoding algorithms. 
Some important n-dimensional lattices are the root lattices 
A,(n 2 I), Dn(n 2 a) ,  and E,(n = 6 ,7 ,8 ) ,  the Barnes-Wall 
lattice A16 in dimension 16, and the Leech lattice A24 in 
24 dimensions. These latter give the best sphere packings 
and coverings in their respective dimensions. Two critically 
important issues in lattice VQ concern the truncation -and 
scaling of the lattice. The truncation region, which is also 
called the region of support, is the subset of the lattice 
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that will actually be coded. For those input points in the 
“overload region,” that is, the region of possible input space 
that extends beyond the chosen lattice subset, the output 
distortion (“overload distortion”) is not bounded in the same 
way as it is in the interior of the lattice (“granular distortion”). 
For each cell in the region of support of a lattice VQ, the 
reproduction vector is taken to be either the midpoint of the 
cell or else the centroid of the training vectors lying in that cell. 
It is desirable to scale the lattice (or equivalently, the source) 
to minimize the total distortion. The choice of support region 
can also have an important effect on the encoding speed. 

2) GaidShape VQ: When the distortion measure is squared 
error, gainkhape VQ provides a simple means of increasing 
vector size and sequentially coding the vector shape and its 
gain without requiring any normalization of the input vector. 
Input vectors are first encoded into a unit energy shape vector 
by a maximum correlation search, and then the optimum 
gain for the given shape is found by a simple SQ. The 
product codebook is suboptimal in theory because it imposes 
a structural constraint on the codebook, but in practice it can 
improve performance by allowing larger dimensions for the 
shape codebook [ S I .  When a product codebook is used, the 
sequential encoding rule is optimal in the sense of minimizing 
MSE [ S I .  

3) Tree-Structured VQ (TSVQ): In TSVQ, the codeword is 
selected by a sequence of binary minimum distortion decisions 
comparing the input vector to stored vector reproductions at 
each available node. The encoder produces binary symbols 
to represent its sequence of decisions from the root node of 
the tree through the terminal node. This binary sequence or 
pathmap is the final codeword. Code trees can be balanced 
if all indexes have the same length R, yielding a fixed rate 
code, or unbalanced with indexes of differing length, yielding 
a variable rate code. Compared with a full-search unstructured 
VQ, the search complexity of a balanced tree is linear in the bit 
rate instead of exponential but at the cost of a roughly doubled 
memory size. For unbalanced trees, the search complexity 
remains linear in the average bit rate, but the memory can 
be considerably larger unless constrained [41]. 

4)  Multistage VQ: Multistage VQ divides the encoding task 
into several stages [44], [56]-[%I. The first stage performs a 
relatively crude encoding of the input vector using a small 
codebook. Then, a second-stage quantizer operates on the 
error vector between the original vector and the quantized first 
stage output. The quantized error vector provides a refinement 
to the first approximation. At the decoder, the reproduction 
vectors produced by the first and second stages will be added 
together. Additional stages of quantizers can provide further 
refinements. Unlike full-search VQ, whose encoding complex- 
ity and memory requirements increase exponentially with the 
dimension-rate product, in multistage VQ, the increase is only 
linear. This has particular utility in subband coding since either 
the rate or the dimension can be made large, which allows it 
to respond to the occasional need for a locally high bit rate 
in subband coding. 

Multistage VQ is sometimes referred to as residual VQ, 
but those words better apply to a variation on multistage 

nongreedy search such as a full search or an M-algorithm. The 
codebook corresponding to a multistage VQ can be viewed 
as the collection of all possible reproductions that can be 
constructed by adding one codeword from each of the stages. 
This codebook can be viewed as a direct sum codebook 
because it corresponds to all possible sums of one reproduction 
codeword per layer or as a product codebook because the 
Cartesian product of the indexes provide a composite index 
that can be used to produce the final reproduction. If this 
codebook is searched in a greedy fashion one stage at a time, 
the resulting code is naturally progressive, but it need not 
find the best of all possible reproduction words in the direct 
sum codebook. Allowing the encoder to look at the entire 
reproduction will lead to better performance, but the search 
complexity grows accordingly. Design algorithms specific to 
this encoder structure can then be used [59]-[61]. 

5)  Predictive VQ (PVQ): PVQ is a straightforward vector 
extension of traditional scalar predictive quantization (DPCM). 
The encoder makes a prediction of the incoming vector based 
on previously encoded vectors. The difference between the 
actual input vector and its prediction is called the residual 
vector. This residual is vector quantized. Because the encoder 
only uses the previous outputs in making its prediction, the 
decoder is able to make the same prediction. After dequan- 
tizing the residual vector, the decoder adds the prediction to 
it to form the reproduction vector. The prediction is often a 
simple linear predictor that takes a weighted average of nearby 
previously encoded coefficients. 

6) ClassiJied VQ (CVQ): The input x, is subjected to a 
classifier that generates an index in, an integer from 1 to 
m, and this identifies which subcodebook C, to search for 
the nearest neighbor [62]. The codeword corresponding to 
x, thus consists of two parts: an index in specifying the 
codebook and an index U, specifying the selected word in that 
codebook. The first part of the codeword is typically referred 
to as side information although it can be longer or shorter 
than the second part. The classifier can be based on texture 
properties, edge directions, features of diagnostic or scientific 
importance or irrelevance, perceptual masking, or a variety of 
other criteria. 

7) Finite-State VQ (FSVQ): Like a classified VQ, a finite- 
state VQ has multiple codebooks, and the next vector to be 
encoded is referred to the appropriate codebook. Unlike CVQ, 
however, no side information is sent to the decoder to inform 
it of which codebook to use. That information is inferred using 
the next-state rule. The next-state rule uses various information 
available to the decoder in order to decide which codebook to 
use. For instance, reconstructed vectors from nearby locations, 
the codebook that was used the last time (corresponding to the 
previous state of the system) and the codeword that was chosen 
from that last codebook, are all pieces of information available 
to both the decoder and the encoder that can be used to decide 
which codebook to use for the current vector (corresponding 
to the current state of the system). The decoder and encoder 
both know the next-state function. Assuming that the decoder 
and encoder start with the same codebook and that there is 
no channel noise, the decoder will always be able to track 
which codehook the encoder is using next since the next-state VQ that effectively uses the same codebook but allows a ..._.. ...._ L 
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function employs only information available to both parties 
[631, [@I. 

8) Trellis-Coded VQ (TCVQ): Trellis-coded quantization 
(TCQ) and TCVQ can be viewed as an extension of the 
FSVQ approach with a lookahead search. They are source 
coding analogs to the Ungerboeck coded modulation approach 
[65] to channel coding (error control coding) on narrowband 
channels. The TCVQ encoder can be thought of as having 
a supercodebook that is partitioned into a collection of 
subcodebooks. At any time, the encoder may have only a 
few of the subcodebooks available. A popular choice is to 
have the supercodebook be a lattice and the subcodebooks 
be sublattices. The encoder has a collection of possible 
states and allowed transitions between those states. Each 
of the transitions between states corresponds to one of the 
subcodebooks. As a form of FSVQ, this system’s encoder 
in a given state could view a single source vector, look 
at all of the available subcodebooks, and find the nearest 
neighbor. The encoder could communicate this word to the 
decoder with a two-part binary vector. The first part tells the 
encoder’s next state by sending an index of which allowable 
transition is being taken. The second part indexes which of the 
possible codewords in that particular codebook was chosen. 
This implementation, however, suffers the shortcoming of 
allowing a good short-term choice to lead to a bad state, 
which could in turn lead to bad long term behavior. Hence, 
the TCVQ is allowed to look ahead to find the best available 
sequence of paths for a sequence of input vectors. This ensures 
better long run behavior at the expense of added coding delay. 
A variety of design algorithms for the supercodebook and 
subcodebooks based on lattices and on clustering have been 
considered [66]-[68]. 

9) Hierarchical VQ (HVQ): Although the adjective “hier- 
archical” has been applied to many variants of VQ (and other 
things), we here consider the technique of Chang et al. [69] 
for replacing nearest neighbor computations by a fast table 
lookup. We illustrate the idea for an 8-D vector. Suppose that 
we have a vector (YO, Y I ,  . . . , Y7) with 8 bhymbol. We wish to 
construct a code of 1 b/symbol. Using a full-search codebook 
would require computing the squared error between this input 
vector and all 28 vectors in the codebook. A TSVQ would 
reduce the computation to eight binary comparisons. HVQ 
can reduce this to no computation at all. Off-line, each of 
the four input pairs (Yo,Yl), ( Y z , Y ~ ) ,  (Y4,Ys). (Y6,Y7) is 
encoded using (possibly different) 8-b 2-D codebooks, that 
is, codebooks having a total of 28 words. Subsequently, one 
can implement that mapping of input pairs into codewords 
via table lookup. There are 28 x 28 = 216 = 65536 possible 
input pairs and 28 = 256 possible codewords; therefore, a 
table providing one of 28 indexes for each 2“ possible input 
pairs provides a nearest neighbor mapping from all possible 
inputs to all possible reproductions. Furthermore, this stage 
achieves a compression of 2:l since the total of 16 b for the 
original vector (2-D vector with 8 b for each coordinate) is now 
reduced to 8. The next stage takes the reproduction pairs and 
combines them two at a time to form two 4-D vectors. These 
are each quantized with a (possibly distinct) 8-b codebook, 
where a table lookup again replaces the precomputed nearest 
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Fig. 6. Hierarchical VQ: Each arrow is implemented as a table lookup having 
65 536 possible input indexes and 256 possible output indexes. The table is 
populated by an off-line minimum distortion search. 

neighbor mapping. The process can be repeated once more. 
The overall operation results in a compressed vector at 1 
blsymbol with no computation. The HVQ has the nice property 
of being easily scalable, as one can put out indexes at rates 
of 8, 4, 2, or 1 bhymbol. Further stages will yield further 
compression. The overall operation is depicted in Fig. 6. 

The obvious cost of this method is memory, but this 
can be an acceptable price to avoid numerical computation. 
The method can be applied to an image by sequentially 
compressing rows and then columns. Hierarchical VQ did 
not have much impact in its original form because it was 
essentially a means of implementing simple VQ on raw data, 
e.g., speech samples or image pixels, and such simple VQ, 
even if it is full search, does not usually perform well in 
comparison with transform or subband codes. However, HVQ 
can perform both subband coding and VQ together by table 
lookup, resulting in a fast software-only implementation of 
subbandNQ image coding systems [701. 

Iv. VECTOR QUANTIZATION FOR IMAGE SUBBANDS 

In this section, we present a survey of many algorithms that 
use VQ on the coefficients from a subband decomposition. The 
algorithms are grouped initially according to whether the VQ 
operates in a purely intraband mode or whether it employs any 
interband information. One could argue that there is no such 
thing as a purely intraband subband coder, that is, one that 
quantizes the bands entirely separately. At the least, the coder 
must make some decision about how to allocate bits among 
the bands, and the quantization process cannot be said to be 
completely separate if the bands share a fixed total number of 
bits. We will refer to this situation, however, as an intraband 
coder and use the terms “interband VQ’ or “crossband VQ” to 
indicate any algorithm that attempts to exploit explicitly the 
correlation between the bands. Such methods include those 
systems that quantize coefficients from different bands in 
common vectors or that explicitly use information from one 
band to affect the coding in another band. 

Intraband methods have used a wide variety of different 
VQ structures, and Section IV-A on intraband methods is orga- 
nized according to the VQ structure. Section IV-B includes the 
relatively few methods that form the vectors intraband but use 
interband information to better code the intraband vectors. The 
bit allocation optimization in this situation is more complex. 



COSMAN et U[.: VECTOR QUANTIZATION OF IMAGE SUBBANDS: A SURVEY 211 

Section IV-C discusses those methods that form the vectors 
across bands. This can be done in a number of different ways, 
and Section IV-C is organized according to vector-forming 
strategies. The bit allocation problem becomes quite different 
in these cases since there may be no explicit assignment of 
bits to bands. When coefficients from different bands form a 
vector, the target rate of the VQ does not simply and directly 
allocate bits to each band, as with intraband VQ’s. The use of 
a training sequence can indirectly allow greater rate to those 
bands with greater variance; weighted distortion measures and 
other means can also accomplish this. Section IV-D discusses 
subbandNQ systems for color images. Such systems often 
form the vectors out of coefficients from different color planes. 

Most researchers chose to test their algorithms on the 8-b 
grayscale image called Lena of size 512 x 512 and to report 
their results as peak-signal-to-noise ratio (PSNR), which is 
defined by 

where D is the MSE between the original and compressed 
test images. When specific PSNR results are reported for this 
image, we include a brief summary of those values. There are 
other images that are considered to provide a more rigorous 
test of a compression system, and within the information 
theory community, researchers often use simulations of ideal 
sources (e.g., performance of a quantizer for a simulated unit- 
variance Gaussian source). However, the results reported for 
Lena have some utility for comparison purposes. When the 
Lena image of size 256 x 256 was used, we included those 
results, with the knowledge that it is more difficult to achieve 
equally high PSNR’s on that smaller image. In this paper, 
when the size is not stated, the larger one is understood. In 
some cases where other test images were used, we briefly 
mention the reported results, although for results on color 
images and video sequences, refer to the specific papers in 
question. We note that when an algorithm attempts to minimize 
a perceptual distortion measure rather than MSE, the PSNR 
results are of little use and are generally not reported. 

A. VQ on Separate Bands 

When quantizing the subbands separately, the quantizer 
design problem involves the selection of a vector dimension 
(and vector shape) in each subband as well as a bit rate for 
each subband. This bit allocation is often achieved in an ad 
hoc way. Some methods solve an optimization problem in 
which the overall quantization distortion is minimized subject 
to a constraint on the overall bit rate. The resulting quantizers 
can be unrealizable due to excessive complexity or memory 
requirements, and therefore, the optimization methods usually 
invoke constraints on encoding complexity or memory as well. 
Additional sophistication can be added to the optimization 
problem by including perceptual factors in the distortion 
measure or by having the optimization choose the vector 
dimension for each subband as well as the bit rate. With 
simple quantization schemes like PCM, Lagrange multiplier 
solutions to the optimal bit allocation problem exist. For 

more complex subband VQ strategies, it can be solved by 
conventional nonlinear smooth optimization techniques. 

The vector-forming strategy is usually simple in the in- 
traband case. Most systems employ square blocks of size 
1 x 1, 2 x 2, or 4 x 4, together with the obvious tiling 
strategy. Some systems used vectors of size 2 x 4 or 4 x 
2, which provide an intermediate dimension with a still- 
simple tiling strategy. Such rectangular blocks are usually 
taken to be oriented along the direction of the detail (either 
horizontal or vertical) of each high frequency subband, because 
that way, there is greater intercoefficient correlation. One 
study that examined codeword orientation concluded that these 
rectangular vectors oriented along the direction of greater 
intercoefficient correlation were superior to vectors oriented in 
the perpendicular direction [7 11. Two other studies suggested 
that under particular quantization strategies, there might be 
advantages to scrambling the coefficients within a band when 
forming intraband vectors [72], [73]. 

1) Multistage and Residual Vector Quantizers: The earliest 
effort at separately encoding the bands focused on multistage 
VQ [74]. Early work was with a two-stage coder [74], [75], 
and a later study used a variable-rate coder with as many as 
48 stages [76]. 

In 1741, a two-band partition in horizontal and vertical 
frequencies yielded a total of four subbands, the lowest of 
which was encoded using multistage VQ. The error in the 
first stage was quantized to refine the reconstruction. The bit 
allocation algorithm used the fact that perceptually significant 
errors tend to occur in clusters in high-entropy parts of the 
input image. Application of this technique to a 512 x 512 
monochrome image resulted in good quality at 0.5 b/pixel. 
Higher quality at the same bit rate was attained by increasing 
the number of subbands to 16. 

Multistage VQ for subband coding of super high-definition 
images was developed in a series of articles [77], [75], 
[78]. Several QMF’s were examined from the viewpoints of 
reconstruction accuracy, coding gain, and low-pass character- 
istics. A two-stage encoder was introduced in which the first 
stage is applied to the subband coefficients, and the second 
stage is applied in the spatial domain. The system employed 
4 x 4 blocks in a four-band decomposition. The lowest band 
was scalar quantized. Bit allocation was proportional to the 
logarithm of the subband variance. Codebooks were designed 
by the GLA. 

Variable rate multistage VQ was used in [76]. Variable rate 
multistage VQ examines the energy of the residual vector 
after each stage. If it falls below a predetermined threshold, 
the encoding stops. The method requires side information to 
inform the decoder of the number of stages to expect for each 
vector. The vectors were first classified according to their 
energy level, which was scalar quantized separately with a 
Lloyd-Max quantizer. Each vector was then quantized with 
either a fixed- or variable-rate multistage VQ, depending on 
the vector size. In the different levels, 4 x 4, 8 x 8, and 16 x 16 
vectors were used. For each stage, the classified VQ’s used 
two or four classes. Each class contained four code vectors. 
No theoretical analysis was performed to allocate bits. The 
decomposition used a 20-tap Daubechies wavelet filter. Results 
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on Lena were 30.06 dB at 0.222 b/pixel, with reasonable 
complexity and memory requirements. The lowband attained 
a PSNR of 41.14 dB at 6 b/pixel using a fixed-rate 48- 
stage VQ with four code vectors per stage operating on 16-D 
vectors. This effort is in contrast with almost every other study 
surveyed in that most work uses SQ or tiny vector sizes for 
the low band. 

One study used multistage VQ with a multipath search 
of the direct sum codebook, which could almost yield the 
performance of a full-search while having only slightly more 
computational complexity than a sequential search [79]. Be- 
cause it is an iterative descent algorithm based on a Lagrangian 
minimization, the entropy-constrained residual VQ (EC-RVQ) 
design algorithm attempted to jointly optimize each stage 
codebook to minimize the reconstruction error over all the 
training data subject to a constraint on the output entropy 
of the RVQ. The system could be used with large vector 
sizes (e.g., 8 x 8). The decomposition was into seven bands 
using a computationally efficient IIR allpass polyphase filter 
bank based on 2-D decompositions. Bit allocation was by 
the “equal-slope’’ method. For the Lena test image, PSNR’s 
of 28.28 and 31.05 were achieved at 0.10 and 0.16 b/pixel, 
respectively. 

Semi-orthogonal spline-wavelet-packets [80] were used 
with interpolative/residual VQ on the baseband and full-search 
VQ on the other bands in [81]. Before quantization, a decision 
was made for each subimage of the percentage of coefficients 
to be retained, which depended on the desired compression 
ratio. Those wavelet packet coefficients with magnitude below 
a threshold would be set to zero. If the number of nonzero 
entries in a vector was below a predetermined value, the 
vector was set to zero. Compression results were PSNR’s of 
29.02 and 27.47 dB at 0.1 and 0.08 b/pixel, respectively, for 
the Lena test image. 

Multistage subband VQ was shown to be robust against 
fading channels in wireless communications [82]. The idea 
is that the burst error behavior typical of fading channels 
can cause the loss of several bits describing a single stage 
in a multistage VQ. Provided the lost stage is not the first 
stage, the remaining stages will still provide a good overall 
reproduction. The first stage bits are given the extra protection 
of error correcting codes. The particular implementation uses a 
seven-band decomposition with Johnston QMF filters, a three- 
stage VQ for the baseband, and scalar-quantized individual 
coefficients with entropy-coded location information for the 
higher bands. Performance was reported on a simulated digital 
european cordless telecommunication (DECT) system to be 35 
dB at 0.69 b/pixel and a channel SNR of 15 dB. 

2) Lattice Vector Quantizers and ECVQ: For the encoding 
of intraband subband coefficients, lattice VQ has been explored 
more than any other single type of VQ. One series of articles 
used a biorthogonal wavelet decomposition in the form of 
a quincunx pyramid together with a lattice quantizer based 
on a suitably scaled and truncated version of the A16 lattice 
[83]-[85]. For Lena, a PSNR of 30 dB was obtained when 
the entropy rate was 0.064 b/pixel. However, the actual bit 
rate obtainable for this PSNR was not specified. Their work 
compared the quincunx pyramid and the A,, lattice against 

the dyadic wavelet and the Es and 0 4  lattices, finding the 
former combination to be superior. The later work focused on 
the issues of scaling and truncating the lattices and counting 
the number of points within the truncated area [85]. The basic 
method was to truncate the lattice as a pyramid, encoding those 
input vectors inside the truncation region by finding the nearest 
lattice point and encoding those input vectors in the overload 
region (outside the truncation region) by projecting onto the 
pyramid’s outer shell. The index for the nearest lattice point on 
that outer shell would then be encoded, as well as a quantized 
version of the projection distance, so that the decoder could 
reconstruct those vectors by projecting back out. Results were 
a PSNR of 30.3 at 0.174 b/pixel for the Lena test image. A 
related paper examined the use of lattice VQ with an elliptical 
truncation region [86]. The elliptical region of support was 
thought to be useful because neighboring wavelet coefficients 
retain some positive correlation; in two other studies, this 
perceived problem was solved by removing the correlation by 
forming vectors from nonneighboring coefficients [72], [73]. 

Another study pointed out that the entropy rate achieved 
in [84] was not at all representative of the actual bit rate 
achievable because the number of available codewords in the 
lattice codebook could be orders of magnitude larger than the 
number of codewords actually used by a given test image 
[87]. This work also examined a drawback to the pyramidal 
truncation shape of [85]. Input vectors lying outside the 
truncation region could be in a “columnar region” or a type 
of “wedge region,” depending on whether they project to a 
lattice point with all nonzero coordinates or to a lattice point 
with one or more zero coordinates. If the projection distance 
were not quantized, the distortion incurred by quantizing input 
vectors falling in a columnar portion of the overload region 
would be bounded by the shape of the Voronoi region of the 
lattice points in an untruncated lattice. However, the distortion 
incurred by input vectors in a wedge region of the overload 
zone might not be bounded except by the bounds on the input 
vector range itself. This drawback was discussed and solved in 
[87] by using a dual density lattice composed of two concentric 
pyramidal volumes of lattice points both centered on the origin 
with the inner pyramidal volume having a denser placement 
of lattice points. By allowing the density of lattice points in 
the outer volume to be much lower, the truncation of the outer 
lattice did not need to be so severe, and the volume of the 
overload wedge regions could be reduced as much as desired. 
The design algorithm then involved selecting scale factors and 
pyramidal heights for both lattice sections. 

Lattice VQ was compared against ECVQ and against un- 
structured full-search VQ designed by the GLA in [43]. A 
four-level octave-band decomposition with nine-tap QMF’s 
produced 13 subbands. Bit allocation used the “equal-slope’’ 
method. Initial comparisons were made for 8-D vectors from 
selected subbands. ECVQ performed best at low rates. The Ea 
lattice did best at higher rates, possibly because ECVQ was 
strongly constrained by its limited number of codewords. The 
2, lattice with centroid reproductions did almost as well as Ea. 
Most of the lattice VQ gain over SQ was found to be due to the 
joint encoding and joint centroids; the denser sphere packing 
of Ea seemed less important. Using ES for the finest scale, 0 4  
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for the next scale, and A2 for the coarsest levels resulted in a 
PSNR of 30.9 dB at 0.136 b/pixel (where that cited rate was an 
entropy rate and assumed an ideal entropy coder). The authors 
mentioned the utility of shifting the subimage by one pixel 
horizontally, vertically, or diagonally prior to decomposing 
and downsampling it further as a means of extending the 
training sequence size at the coarser levels. 

A method for incorporating some features of human vision 
within the framework of subband lattice VQ was presented 
in [72]. A 13-band decomposition was performed with a 
Daubechies wavelet filter. Vectors of four and 16 dimen- 
sions were formed intraband. Vectors composed of distant 
coefficients were found to provide better results than vectors 
composed of adjacent coefficients, although details on the vec- 
tor composition were not provided. Psychovisual experiments 
were performed to determine the maximum unit size for each 
lattice and for each subband such that no granular noise would 
be visible. This threshold, which was called the differential 
visibility threshold, depended on the viewing distance and 
on masking effects and was used (approximated by a piece- 
wise linear function) to normalize each input vector prior 
to quantization. The 2 lattices were found to be generally 
superior to the D, E ,  and A lattices. Transparent quality on 
high-quality monitors was achieved at between 0.42 and 0.78 
b/pixel, depending on the complexity of the input image. 

A comparison of the granular distortion and overload distor- 
tion for various lattices on subband coefficients was presented 
in [73]. For generalized Gaussian sources at low bit rates, the 
2 lattice was shown to provide better performance and lower 
computational complexity than the Ea and Leech lattices. 

A small number of studies have examined the flexibility 
of the wavelet packet decomposition [15] for image coding 
[88]-[90]. One study that used VQ employed nonstationary 
wavelet packets based on filters varying at each stage of 
the tree-structured decomposition 1901. The complete tree 
was pruned into the best basis subtree which minimized a 
perceptually weighted distortion [91], 1921 for a given bit 
rate. Each subband was separately quantized with lattice VQ’s 
(D, and E,) with a dead zone. Bit allocation was by the 
“equal-slope” method. 

A trellis-coded VQ based on lattice codebooks was used 
in an intraband fashion on the decomposition produced by 
separable biorthogonal wavelet filters of nine and seven taps 
1931. In the different subbands, the VQ dimensions were 1, 4, 
16, and 64, and the bit allocation was based on [94]. Results 
on Lena were 28.9 dB at 0.265 blpixel and 29.2 dB at 0.281 
blpixel. 

One study compared lattice VQ and kd-tree structured VQ 
for scalable video compression [95]. The goal was to decouple 
the frame rate, resolution, and bandwidth of the encoding from 
those of the decoding by using successively larger codebooks 
that were nested subsets of the largest codebook. 

A hybrid SQECVQ system was used in [96]. The input 
image was decomposed into 10 octave-band subbands by 
three stages of a 12-tap QMF. Subbands were blocked into 
4-D vectors. If the standard deviation of an input vector was 
below a threshold, it was quantized to zero. Otherwise, the 
component magnitudes were individually compared against a 

different threshold. If they were all below it, the vector was 
quantized with an ECVQ. If not, the components were scalar 
quantized with a modified scalar quantizer that had uniformly 
spaced decision thresholds but output levels based on interval 
centroids. In either case, the output indexes were Huffman 
coded. Use of the VQ provided an improvement in both 
SNR and subjective quality compared with SQ with run-length 
entropy coding or with block Huffman coding. 

3) Pruned Tree-Structured Vector Quantizers (PTSVQ): 
PTSVQ and lattice VQ used for packet video were both exam- 
ined in [97]. One scheme used an octave-band decomposition 
with the 16C QMF filter, resulting in seven subbands. Separate 
PTSVQ’s were designed by the GLA for each subband. The 
tree structure can be exploited in a straightforward manner for 
layered ATM video coding. High-priority packets contain the 
initial information from a smaller subtree, and enhancement- 
layer packets, subject to cell loss, code deeper into the tree. 
A second scheme used time-domain aliasing cancellation 
parallel filter banks to produce 64 uniform subbands. These 
were lattice quantized (A,,, Es). Samples of magnitude below 
a given threshold were excluded from VQ encoding via run- 
length coding. The remaining samples were grouped together 
for VQ coding. The method is not quite a pure intraband 
method; if a vector could not be completely filled with 
the samples from one subband, samples from the following 
subband were added. The enhancement-layer coder was used 
for the residual error from the base-layer coder. The algorithm 
involving 64 uniform subbands with lattice VQ was found to 
be superior to the seven-band octave band decomposition with 
PTSVQ; therefore, the former algorithm was investigated with 
a variety of cell-loss rates, motion-compensated prediction, 
and interpolation schemes. 

TSVQ was also used intraband in [98] and [99]. In the 
former work, 2 x 2 or 4 x 4 blocks were coded from a four-band 
decomposition of image sequence data. Motion compensation 
was conducted on the low band. A small subtree was used for 
encoding unless the MSE of the quantized block exceeded a 
predetermined threshold, in which case, a large tree would be 
used. In [99], binary trees were created for 4-D vectors for the 
higher six bands of a 10-band pyramidal decomposition using 
a five- to seven-tap biorthogonal wavelet filter. Blocks were 
of size 4 x 1, 1 x 4, or 2 x 2 to follow the detail direction. 
Given the large starting size of the bands for these super high- 
definition images, large superblocks (of size 16 x 16) that could 
be zeroed out all at once for greater efficiency were defined. 

4) Full-Search Unstructured VQ’s: Full search of an un- 
structured codebook has been examined by many researchers. 
Separate VQ’s were designed by the GLA for each resolution 
level and preferential direction in [loo]-[ 1021, [94]. The first 
of these used a recursive biorthogonal wavelet transform and 
was basically a comparison of linear and modified linear spline 
filters. The second was a comparison of the GLA and the 
Kohonen neural network (K“) or self-organizing feature map 
design algorithm. The K” method uses a neural clustering 
network in which the weights, or VQ codewords, between a 
large number of locally interconnected nodes adaptively self- 
organize their values in order to reflect the best feature maps, 
or codebook, representing the input vector patterns. For the 
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subbands of the recursive biorthogonal wavelet transformed 
image, the unstructured full-search codebook produced by the 
K” algorithm was found to yield approximately the same 
PSNR as one produced by the GLA, using about 15 times less 
computation during training [loll .  The latter two papers used 
a five-stage biorthogonal wavelet decomposition and encoded 
with scalars in the lowest band, 4-D vectors in medium bands 
and 16-D vectors in the high bands. In this work, noise shaping 
was applied across the subbands by minimizing a weighted 
MSE where the weights were proportional to the log of the 
variance of each subband, and the constants of proportionality 
were chosen experimentally to match human vision. The 
distortion expression was minimized subject to the total bit 
allocation constraint with a Lagrange multiplier method. The 
authors included a comparison of different wavelet filters. 

Another use of visual masking with subband VQ used a 
uniform 16-band decomposition with a masking function as- 
sociated with each coefficient [lo31 in a manner similar to [36]. 
The distortion measure was designed to ignore differences 
between elements of the two vectors that are smaller than 
the threshold suggested by a visual masking function. The 
lowest band was coded with DPCM, and higher subbands were 
coded with full-search unstructured VQ. The bit allocation was 
determined by an optimization procedure that minimized a 
distortion expression subject to constraints on the total bit rate, 
the complexity (maximum codebook size), and the possible 
vector sizes. 

Nonseparable filter banks with hexagonal regions of support 
were applied to hexagonally sampled (or resampled) images 
in [104]. The resulting subbands had hexagonal shapes, with 
higher subbands having twice the bandwidth of lower ones. 
The subbands then had orientation properties which were not 
limited to vertical and horizontal directions, and the basic 
structure is believed to be similar to that found in the human 
visual system. (In Section IV-D, an algorithm is described 
that used diamond-shaped filter banks [105].) Full search 
unstructured VQ’s were designed for each subband separately 
using the GLA. Performance results were not given. 

Another study that used hexagonal filter banks with un- 
structured full-search VQ was [106]. Vectors were of size 
4 x 4 for all bands of a 10-band decomposition. Variable 
sized multiresolution motion estimation was performed. Bit 
allocation was based on the log of the variance and on 
the determinant of the covariance matrices, together with a 
weighting factor that accounted for some simple aspects of a 
visual model. 

Although not precisely “image” data, the output of super- 
computer ocean models, consisting of values of six different 
physical variables at each point of a large rectangular 3-D grid, 
represents an interesting application of waveletNQ methods 
[ 1071. Using a symmetric biorthogonal wavelet filter on 2-D 
data [ 1081, four levels of octave-band decomposition resulted 
in 13 subbands. Full-search unstructured VQ’s were designed 
for each subband using training data obtained from the first 91 
time steps in the sequence. The optimal codebook sizes and 
vector dimensions for each combination of total bit rate and 
total complexity were obtained by a nonlinear optimization 
procedure as in [109]. The experiment was also repeated with 

first-order frame prediction (in which the prediction for the 
next frame was simply the quantized version of the previous 
frame), which provided 3-5 dB gain over the nonpredictive 
version. 

5)  ClassGed VQ’s: An intraband CVQ was used on the 
motion-compensated frame difference signal decomposed into 
four subbands by an eight-tap separable QMF [llo].  The 
fourth band was discarded. The remaining bands were divided 
into 4 x 4 vectors. Blocks in subbands 1 and 2 were assigned 
to one of four classes based on the variance of the coefficients 
in the block. The lowest variance class was not encoded, and 
the other three used three different VQ’s. The third subband 
used only two classes of which the lower variance one was 
not coded. The VQ’s were all full-search unstructured VQ’s 
designed by the GLA. 

In [ 1 111, each image in the sequence was decomposed into 
seven bands with the Daubechies four-tap filter. Blocks of 
size 4 x 4 were used for the first pyramid level and 2 x 2 
blocks for the second level. The first frame of a sequence 
was used to generate full-search codebooks for each subband. 
In all subsequent frames, each vector was compared with the 
corresponding vector in the previous frame. The difference 
was classified by being compared with some small threshold, 
and side information informed the decoder of the result. If the 
difference was less than the threshold, no further action was 
taken for that vector. Otherwise, the vector was quantized and 
used to update the cluster mean. If the difference between 
the current codewords and the previous ones exceeded a 
predetermined threshold, new codewords were transmitted 
to the decoder. With smaller codebooks for the diagonal 
directions, a PSNR of 36 dB was achieved at 0.35 b/pixel 
for the first 20 frames of the “Claire” sequence. 

A combination of classification with PTSVQ and multistage 
VQ was proposed in [ 1121 as being particularly well suited to 
the design of scalable compression systems. 

6)  Other VQ Structures: An early intraband method used 
alphabet and entropy constrained VQ (AECVQ) [ 1131, which 
was designed as follows. An initial large codebook was 
designed by the GLA for each subband. Codeword lengths 
were assigned to codewords based on their probabilities. 
Successively smaller codebooks were chosen from these same 
codewords by an iterative process. Each training vector was 
mapped to the codeword which minimized a weighted com- 
bination of MSE and codeword length. Then, the centroid of 
each partition cell was computed, and one of the preexisting 
codewords was reassigned to that cell. The reassignment alters 
both the overall rate and distortion of the code. In a manner 
similar to PTSVQ, this AECVQ allows one codebook to 
provide a range of distortionhate operating points. A three- 
level octave-band decomposition yielded 10 subbands. Vectors 
of size 2 were used in the lowest four bands, and 4-D vectors 
were used in the others. Bits were allocated among the bands 
by the “equal-slope” method. For Lena, PSNR was 34.3 dB 
at 2 to 3 b/pixel. 

One intraband method used a “linear” VQ codebook, which 
is a structure unlike any of the ones described previously 
[I 141. The image was split into seven subbands using separable 
QMF’s (eighth-order Johnston’s filter at the first stage and 
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lower orders at the next stage). Lloyd-Max SQ was used 
on the baseband, and VQ was applied to the other bands in 
dimensions of 4, 8, or 16. Bits were allocated based on the 
variances of each subband, which had to be transmitted to the 
decoder in order to recompute the allocation there. For a vector 
of length N ,  the “linear” codebook consists of M concatenated 
symbols, where M >> N .  To find the appropriate codeword 
for an input vector, the input vector of length N is first 
compared against the first N symbols of the linear codebook. 
Then, it is shifted over by one and compared against symbols 
2 , 3 ,  . . . , N + 1. For a given number of possible reproduction 
vectors, the linear codebook takes up much less space than 
the full-search unstructured codebook. This method was used 
with prediction and with adaptive arithmetic coding applied 
to the output bit stream. For the Lena test image, the authors 
claimed transparent quality at 0.2 b/pixel. 

In [115], the pyramidal structure of the wavelet decom- 
position was used to advantage with a hierarchical motion 
compensation technique, which significantly reduced the com- 
putation of motion compensation. A second-order separable 
QMF was used to produce seven octave-band subbands. Mo- 
tion estimation performed on the baseband was refined using 
the baseband of the higher level and using the original image. 
The frame difference image was encoded using a fast search 
algorithm known as approximation elimination search [ 1161. 

Gain/shape VQ was used with variable-sized rectangular 
intraband vectors in [117]. A prediction error image from a 
motion-compensated image sequence was decomposed into 16 
subbands by separable QMF’s. Each subband was divided into 
regions that would get encoded and ones that would not. For 
each region to be encoded, the encoder would have to describe 
to the decoder the location of the region in addition to encoding 
the coefficients for the region. Choosing the regions to be 
square blocks would cost a few bits for location information 
but would include many irrelevant (low magnitude) coeffi- 
cients. Arbitrarily shaped regions would consume almost no 
data rate for the encoding of irrelevant coefficients but would 
cost much overhead for location information. The compromise 
chosen was to allow nine different rectangular shapes up to a 
maximum size of 3 x 3.  For each candidate group of rectangles, 
a quality measure was based on the visual weighted sum of 
prediction error energy covered by the selected rectangles. The 
set was iteratively improved by a greedy relaxation algorithm 
that could add or remove rows or columns to the rectangles 
within the data rate constraint. The chosen rectangles were 
encoded with a gairdshape VQ of the appropriate dimension 
designed by the GLA. The storage requirements for the nine 
VQ’s could be constrained by mapping all codebooks of 
smaller dimension into the codebook of the largest dimension. 

7) Additional Transforms: A few studies examined the use 
of additional transformations within the SubbandNQ frame- 
work. For instance, one can use a DCT on the baseband of the 
decomposition and then scalar quantize the DCT coefficients. 
Only two algorithms used additional transforming on all (or 
most) of the bands following a subband decomposition and 
preceding VQ. 

A waveletNQ algorithm incorporating a neural network 
was presented in [118]. Neural networks can compress data 

by approximating a data vector with a vector of reduced 
dimensionality. A QMF was used to decompose an image 
into seven octave-band subbands. The highest of these was 
not coded, and the lowest was coded with DPCM. The neural 
network structure consisting of n units at the input and output 
layers and k units in a hidden layer (where k < n) was applied 
to the remaining bands. The k-dimensional vectors of the 
hidden layer were quantized by full search of an unstructured 
VQ designed by the GLA. A PSNR of 29.1 dB was obtained 
at 0.25 blpixel for the 256 x 256 Lena test image. 

Vector transform coding (VTC) is a vector generalization 
of conventional transform coding techniques such as JPEG. 
VTC includes a vector transform (VT), which decorrelates 
vectors, followed by VQ [119]. The vector transformation 
does not reduce the intervector correlation as much as the 
DCT does, but it preserves the intravector correlation much 
better, which makes subsequent VQ more efficient. A sub- 
bandNTNQ scheme was proposed in [120]. The image was 
decomposed into seven subbands with the Daubechies four- 
tap filter. Each band was independently transformed with the 
2-D VT. Bits were allocated among subbands in a heuristic 
way and were allocated among vectors within a band in a 
way that considered both perceptual importance and energy 
distribution. The method provided a PSNR of 29.2 dB for 
Lena at 0.25 b/pixel. 

B. Interband Information for  Intraband Vectors 

The correlation between coefficients in different subbands 
can be exploited in a variety of ways. Section IV-C treats 
those algorithms that form vectors across bands. This section 
looks at ways in which crossband information can be used to 
advantage in the coding of intraband vectors. For example, 
the zerotree structure can be used to predict insignificance of 
coefficients in one subband using knowledge of coefficients 
in another. Finite-state VQ can be used by forming vectors 
intraband and using crossband information to determine the 
state. In this section, we survey these various methods. 

Pentland and Horowitz [121] used the PNN algorithm to 
design separate VQ’s for each subband in a standard QMF 
pyramid but then estimated conditional probabilities across 
subbands for the VQ outputs by simple conditional histograms. 
These crossband conditional probabilities were then used in a 
conditional entropy coding scheme using both Huffman and 
run-length coding. This provided the quality of the original 
VQ scheme at a much-reduced bit rate. An example reported 
34.9 PSNR at 0.42 b/pixel. 

Podilchuk et al. presented a system in which vectors were 
composed of intraband coefficients, but interband information 
was used to obtain a localized codebook search strategy 
[122]-[124]. Ten-tap I-D QMF’s were first used temporally, 
then in the spatial horizontal direction, and then in the spatial 
vertical direction, resulting in eight bands. Another round of 
spatial filtering split the low band into 4. Of the 11 bands, 
only these four and the low-spatial/high-temporal frequency 
band were coded. In [122], the lowest band was coded with 
SQ. Noting the sparse nature of the higher bands, a VQ 
codebook was designed with 960 “sparse” binary vectors of 
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size 9 x 9. Each codevector consisted of either a single strip 
or a single dot of various widths and sizes. By transmitting 
the index number for one of the codebook entries along with 
the foreground and background intensities to be used as the 
two binary levels, the upper subbands could be coded at no 
greater than 0.3 b/pixel. This method was called geometric VQ 
(GVQ). The encoded low spatio-temporal frequency band was 
used to reduce the codebook search and estimate the local 
areas in the remaining bands where perceptually significant 
edge-like data is located. Using the low band to estimate the 
structure of the higher bands required no bits and reduced the 
data rate and search complexity. In later work [123], [124], 
delay was reduced by substituting a two-tap Haar filter for the 
temporal decomposition, the GVQ codebook was designed for 
3 x 3 vectors, and different coding strategies for the lowest 
band were examined (adaptive DPCM and unbalanced TSVQ). 

A few studies attempted to predict insignificance across the 
bands using the zerotree idea developed by Shapiro [28]. In 
an octave-band decomposition, each coefficient X ;  (except 
those in the lowest band and the three highest bands) is 
related to exactly four coefficients in the next higher band. 
Those four coefficients correspond to the same orientation and 
spatial location as X i  does in the original image. Each of 
these four is in tum related to four in the next band, and so 
on. These coefficients are collectively called the descendants 
of Xi .  The relationship is depicted in Fig. 8. In an octave- 
band decomposition, it is often true of image data that when a 
coefficient X i  has magnitude less than some threshold T ,  all 
of its descendants will as well. The collection of coefficients 
is then called a zerotree with respect to the threshold T ,  
and the coefficient X i  is called the zerotree root. Shapiro’s 
embedded zerotree wavelet (EZW) algorithm uses this zerotree 
structure to efficiently “divide and conquer” the coefficients in 
an iterative SQ approach. The zerotree root is the wavelet 
equivalent of the end of block (EOB) symbol in JPEG coding. 
That is, when a sequence of scanned coefficients ends with 
a tail of zeros, one simply cuts off the tail with a special 
symbol. The zerotree grows exponentially with the depth, 
whereas in JPEG, there is no such growth, thus making the 
zerotree potentially more powerful. Note also that predicting 
insignificance (as does Shapiro [28]) is more powerful than 
predicting significance (as do Lewis and Knowles [27]) since 
the latter does not lead in general to an exponentially growing 
tree of coefficients (e.g., edges are more or less one pixel 
wide in all subbands). 

A vectorial algorithm that is close to the iterative refinement 
zerotree approach of Shapiro used a multistage lattice to 
progressively refine the vectors of coefficients [ 1251. Each 
input vector was coded with a series of vectors of decreas- 
ing magnitudes {llyjll = ujIIz1l;j = 1,2 , . . .} ,  where the 
following are defined: 

number of coding stages analogous to the number 
of passes through the dominant and subordinate lists 
in Shapiro’s algorithm 

I lyj I I magnitude of the reconstruction codevector at stage 
j 

a < 1 approximation scaling factor 
11x11 magnitude of the input vector. 

j 

At each stage, the orientation of the reconstruction vector 
was selected from a finite set of unit energy codevectors. 
This so-called orientation codebook was designed based on a 
regular lattice (D4, Ea, R16). Higher dimensional codebooks 
resulted in slightly better PSNR values. At 0.4 b/pixel, the 
algorithm outperformed JPEG by 2.5 dB and outperformed 
the EZW algorithm by a small amount. Further analysis and 
experimental results are presented in [126]. The algorithm was 
also applied to the interframe prediction error signal resulting 
from an overlapped block matching motion compensation 
technique [ 1271. 

Another scheme that uses interband information for intra- 
band coding in the spirit of Shapiro’s algorithm but extended 
to video is presented in [128]. The quantization is scalar 
and embedded, and zerotree structure and conditional entropy 
coding take interband information into account. 

Kossentini et al. incorporated interband information into 
their multistage RVQ subband system of [79] by using high- 
order conditional entropy coding conditioned within subbands, 
across subbands, and across VQ stages [129]. By jointly 
optimizing the overall quantizer structure within and across 
subbands while constraining both entropy and complexity, 
explicit bit allocation was avoided. As in their earlier work, the 
Lagrangian formulation was used to incorporate the entropy 
constraint. The product codebooks of the RVQ were searched 
using tree-structured searching techniques and not in the usual 
greedy fashion of a multistage encoder. The complexity was 
controlled by using small alphabets in the individual stage 
quantizers. Although described for general VQ, the reported 
results focus on scalar residual quantizers used with a three- 
level balanced tree-structured IIR all-pass polyphase filter bank 
with 64 uniform subbands. PSNR’s were reported for Lena of 
37 dB at 0.5 b/pixel and 34.1 dB at 0.25 b/pixel. This approach 
was extended to a video codec [ 1301 by incorporating motion- 
compensation prediction and a form of universal coding. Two 
coders simultaneously encode the input: one using motion- 
compensation prediction within the subbands and the other 
using purely intraframe subband coding. The coder with the 
minimum Lagrangian is selected and specified by side infor- 
mation to the decoder. An average PSNR of 35.13 dB was re- 
ported for the Miss America test video sequence at 15.98 kb/s. 

In [131], PTSVQ’s were designed for each of the 13 
bands produced by a four-stage octave-band decomposition 
with Daubechies eight-tap filters. The baseband was scalar 
quantized, and the next three bands were quantized as 2-D 
vectors. Before encoding these three bands, one bit of side 
information for each vector was sent to the decoder to tell it 
whether the vector and its descendants should be treated as a 
zerotree. If so, those vectors were never encoded. Otherwise, 
the 2-D vectors in those small bands were coded, and at the 
next level of the pyramid, additional bits of side information 
were sent to the decoder to say whether the 4-D vectors at the 
next level and their descendants should be treated as zerotrees 
or not, and so forth. The higher levels of decomposition 
used 8-D and 16-D vectors. In one version of the algorithm, 
the zerotree decision was made by hard thresholding, and in 
another version, it was decided by a distortiodrate tradeoff. A 
PSNR of 30.15 was obtained for Lena at 0.174 b/pixel. 
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Fig. 7. Crossband vector from uniform subbands. 

C. Crossband Vector Methods 

Vectors that are put in to the VQ can be formed of 
coefficients from different subbands. We refer to these as 
crossband vectors. In a uniform subband decomposition, the 
crossband vector typically consists of one coefficient from each 
subband, as shown in Fig. 7; in the example shown, the vector 
dimension is 16. Sometimes the lowest band will be coded 
separately, and the crossband vector formed from the other 
bands. Sometimes, the highest bands will also be excluded 
from the vector and not coded at all. 

In an octave-band decomposition, a crossband vector can 
be formed out of X ,  and its descendants, as shown in Fig. 
8. We refer to this as a “same orientation” crossband vector. 
In the example shown, the vector dimension is 21. Clearly, 
the dimension of the “same orientation” crossband vector can 
become large very fast. The octave-band decomposition can 
also lead to a “same level” crossband vector, as shown in Fig. 
9; here, the dimension is 3. For both the “same orientation” and 
“same level” crossband vectors, there is no natural vector to 
include the coefficients from the low band. These coefficients 
could be tacked on individually to any one of the crossband 
vectors, which would increase the dimension by one. However, 
recognizing that the low band has very different characteristics, 
both perceptually and statistically, from the other bands, most 
subbandNQ methods that employ a crossband vector-forming 
strategy choose to code the low band separately. 

With all three types of crossband vectors, the idea of a 
weighted distortion measure which accords different weights 
to different components is appealing since the coefficients of 
the vector are not all of the same type. This is true both for 
the “same orientation” vectors, whose components come from 
different levels of the hierarchy, and for the other two types 
for which the components come from the same level. In either 
case, the components have different statistics and different 
perceptual importance. For instance, the diagonal orientation 
is considered to be of less perceptual importance than the 
horizontal or vertical. 

1) Crossband Vectors from Uniform Subbands: The first 
study of crossband VQ’s was by Westerink et al. [132]. 
After splitting the image into 16 uniform subbands by 32-tap 
separable QMF’s, 16-D vectors were formed as in Fig. 7. 
Full-search unstructured VQ’s were designed using1 the GLA. 

Fig. 8. Same orientation crossband vector from octave-band subbands. 

L 
Fig. 9. Same level crossband vector from octave-band subbands 

The paper also analyzed the coding gain of VQ over SQ and 
briefly examined the effect of training sequence size on VQ 
performance. 

Entropy-constrained VQ (ECVQ) and entropy-constrained 
predictive VQ (ECPVQ) were examined for crossband vectors 
in [133]. The uniform 16-band decomposition from separable 
QMF’s was encoded with a variety of vector-forming strate- 
gies, including SQ separately for all bands, 16-D crossband 
vectors, and 15-D crossband vectors with the low band coded 
separately. Different types of entropy coding that were tailored 
to various possible buffering constraints were considered. 
Of the systems examined, the most promising used SQ’s 
separately for the 15 high-frequency bands and used ECPVQ 
on 2-D vectors for the low band. This yielded a PSNR of 30 
dB at 0.3 b/pixel for the Lena test image. 

In [134], separable 32-tap QMF’s were used to split the 
image into 16 subbands. The coefficients were encoded as 16- 
D crossband vectors by finite-state VQ. The master codebook 
had 256 codewords determined by the GLA. For each input 
vector x, let U and I denote the input vectors whose coefficients 
lie directly above and directly to the left, respectively, of 
the coefficients that compose x. For each x ,  the state code- 
book is composed of the 16 codewords m from the master 
codebook that have the smallest value of distort ion(m, U )  + 
distortion(m, l ) ,  where the distortion is MSE. Since the 
decoder has already decoded U and I before it receives x, it is 
able to determine the same state codebook as the encoder. The 
input vector x is encoded by finding the nearest neighbor in 
this state codebook. If the distortion produced by this nearest 
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neighbor is greater than some threshold, then the nearest 
neighbor from the master codebook is chosen instead, and side 
information must be sent to the decoder to inform it of this 
change. This limits the maximum distortion and can prevent 
the finite-state machine from becoming derailed. The method 
provided PSNR’s of 30-34 dB for images Peppers, Airplane, 
and Zelda at 0.3 b/pixel. 

2) “Same-Orientation I ’  Crossband Vectors from Octave- 
Band Subbands: Huh et al. used classified VQ on the 
coefficients resulting from a three-stage wavelet decomposition 
using Johnston’s near-PR filters [135]. For purposes of 
classification, the 21-D vectors as shown in Fig. 8 were 
further grouped together. Those vectors corresponding to 
the same spatial location but different orientations in the 
original image, including the single coefficient from the lowest 
band, formed a 64-D group (21 + 21 i 21 + 1 = 64). These 
ti x 8 blocks were categorized into four classes, depending on 
the directional activity: horizontally active, vertically active, 
diagonally active, inactive. This class information was sent 
separately to the decoder. Depending on the class, certain 
of the 64 coefficients were discarded altogether, with the 
remaining ones divided into between three and seven smaller 
subvectors of dimensions ranging from 1 to 11. Only one 
subvector of one class actually retained coefficients that cross 
bands. Therefore, this method is essentially one that used the 
interband correlation for purposes of classification but did 
not code the coefficients as crossband vectors. The algorithm 
produced PSNRs of 34.1, 32.3, and 30.2 for Lena at 0.5, 
0.33, and 0.21 b/pixel, respectively. 

The same research group tried this classification method 
with two-channel conjugate VQ [136], [137]. Conjugate VQ 
is a structure that can save on both memory and computational 
complexity. Where a regular VQ might employ a single 
codebook with N 2  vectors, a two-channel conjugate VQ 
allows N 2  possible reproduction vectors using two codebooks 
(A and B) with N vectors each. Each reproduction vector is 
made from some combination of a codeword from A and a 
codeword from B. As before, coefficients from the 10 bands 
were grouped into 8 x 8 blocks for classification into the 
four classes. Based on the class, the blocks were divided into 
smaller subvectors for encoding with two-channel conjugate 
VQ. A PSNR of 31.8 dB was obtained at 0.32 b/pixel for the 
Lena test image. 

Vectors of dimension 64 were also examined in [ 1381, where 
the 21-D vectors as shown in Fig. 8 were grouped together 
from different orientations, including the single coefficient 
from the lowest band. The method used nonlinear interpolative 
VQ [ 1391 in which a high-dimensional vector is encoded using 
a size-reduced feature vector, and the decoder reconstructs the 
high-dimensional vector using an optimal nonlinear interpola- 
tion. In [138], the reduced-size feature vector was composed of 
the 16 low-frequency elements out of the 64. A biorthogonal 
filter with three to five taps was used. The 16-D encoder 
codebook was generated by using the GLA on a training 
sequence, and the 64-D decoder codebook was designed by 
projecting the resultant subspaces of the 16-D vector space into 
the 64-D vector space. The decoder and encoder codebooks 
would then have the same number of codewords. A PSNR 

of 31.78 dB was obtained at 0.203 b/pixel for the 256 x 256 
Lena test image. 

A variable-dimension same-orientation VQ scheme was 
proposed in [140] for use in intraframe coding situations 
of high motion and scene changes. The decomposition was 
into 10 bands using a biorthogonal five- to seven-tap wavelet 
basis. Starting with a 21-D same-orientation vector as shown 
in Fig. 8, the coefficients were “merged” in a bottom-up 
quadtree fashion as described in [141], in which the decision 
to merge depended on whether any of the differences between 
neighboring coefficients exceeded a predetermined threshold. 
The resulting vector could have dimension 5, 9, 13, 17, or 21, 
and was encoded with a weighted distortion measure using 
a codebook of the appropriate dimension which had been 
designed by the GLA. 

In [ 1421, a three-level octave-band decomposition from 
rectangular separable Gabor-like wavelets was used with 21- 
D same-orientation crossband vectors. Those vectors with 
all components below a specified threshold were designated 
zerotrees and not coded. The remaining coefficients were 
reorganized into 5-D interband vectors (one coefficient from 
the coarser level and four from the next) and 16-D intra- 
band vectors (4 x 4 blocks from the finest bands). The 5-D 
interband vectors were encoded using a weighted distortion 
measure, and the intraband vectors were encoded using an 
unweighted full-search VQ. The method was extended to 
color images by separately coding luminance and chrominance 
coefficients, discarding lower subbands of the chrominance 
components, using a weighted quadratic distortion measure 
based on perceptual sensitivity, and using a classified VQ 
[143]. Two classification strategies were adopted: one based on 
subbands with common frequency orientation and the other on 
separating edge, texture, and homogeneous regions. A PSNR 
on the luminance component of 28.19 dB was achieved at 0.14 
b/pixel, but it should be kept in mind that code optimization 
was with respect to a weighted distortion and not the MSE 
inherent in SNR. 

3) “Same-Level” Crossband Vectors from Octave-Band Sub- 
bands: Vectors were formed as in Fig. 9 in [144]. A 24-tap 
QMF was used to decompose images into seven subbands. The 
baseband was coded using predicted meanlresidual VQ on 2 x 2 
blocks. The previously encoded blocks were used to make a 
prediction of the mean value of the next block to be encoded. 
This predicted mean value was removed from the block to be 
encoded. The decoder was able to make the same prediction 
using its available encoded blocks. The prediction was added 
back to the decoded vector to form the reconstruction. A 
truncated Laplacian of Gaussian operator V2G was applied by 
both the encoder and the decoder to the reconstructed baseband 
image. The zero crossings of this filtered subimage indicated 
the positions of the edges. Only those coefficients from the 
medium and high bands that correspond to edge locations were 
coded. In one scheme, a 3-D vector was formed from the three 
medium bands by taking the corresponding pixels from the 
three different orientations. In another scheme, the residual 
baseband subimage was formed by taking the difference 
between the actual and the reconstructed baseband. Then, a 4- 
D vector was formed by adding the corresponding coefficient 
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from this residual image to the 3-D vector of the previous 
scheme. In either case, the medium bands were dequantized 
and inverse transformed to obtain a baseband at the next level. 
The edge detector was applied to the new baseband in order to 
determine the edge positions to be encoded in the high bands. 
The same method was applied to image sequences, where 
block matching was used to estimate block motion, and the 
subband filters were then applied to the motion-compensated 
frame difference image [144], [145]. Results for Lena were 
a PSNR of 34.1 at a bit rate between 0.69 and 0.50 blpixel, 
depending on whether the bit rate was calculated as the fixed 
rate of a constant wordlength code for the codebook addresses 
or as the entropy of a variable wordlength code. 

In a series of two articles, Buhmann and Kiihnel developed 
the notion of VQ with complexity costs, which they referred 
to as entropy optimized VQ, and demonstrated its use for 
coding wavelet coefficients [146], [147]. The basic idea is a 
variation on ECVQ, but the formulation is more general and 
the specific algorithm different. The authors noted that the 
traditional VQ design strategy, as followed by the GLA, relies 
exclusively on the distortion errors for placing the reproduction 
vectors. The number of reproduction vectors is assumed to be 
chosen in advance. By incorporating into the cost function an 
application-dependent complexity measure, the optimization of 
distortion and the intrinsic constraints on the codebook can be 
allowed to affect each other in some appropriate fashion. The 
test images were decomposed with a separable QMF filter to 
yield seven subbands. The lowest band was scalar quantized. 
The remaining bands were formed into 3-D vectors at each 
level, as shown in Fig. 9. GLA clustering was compared 
against entropy-optimized VQ, with the latter resulting in 
significantly higher PSNR’s on test images. The GLA method 
produced considerably smaller codebooks than tht entropy 
optimized VQ. The latter was able to place reproduction 
vectors in sparsely populated areas, preserving psychovisually 
important image features like edges more faithfully. In the 
experiments, the two methods were required to have the same 
output entropy rather than the same output bit rate (in which 
case, ECVQ may have been the more appropriate benchmark). 

A type of “same-level” crossband vector was used in [148], 
where the image was decomposed into even and odd sym- 
metric size and orientation-selective bandpass filter outputs. 
At each level of resolution, an 8-D vector space resulted 
from a polar representation of local amplitude and local phase 
from four orientation-selective analytic bandpass filters. This 
hyperspace was partitioned in a feature-specific way, taking 
into account properties of the human visual system. The small 
hypercube at the origin was assumed to correspond to an 
irrelevance zone conforming to the threshold properties of 
human vision. All vectors in that region could be quantized 
to the origin. The regions around the hypersphere coordinate 
axes represented intrinsically 1-D image features, as only 
one orientation filter was giving a strong response. Regions 
between two axes were differentiated into those corresponding 
to 1-D image features whose orientations did not exactly co- 
incide with the preferred axis of an orientation filter and those 
that corresponded to certain intrinsically 2-D features such as 
discontinuities. These regions needed to be quantized relatively 

finely, and a saturation function in accordance with masking 
effects was applied. Vectors in the residual space arising from 
intrinsically 2-D image features such as curved lines and 
textural features that activate more than two orientation filters 
could be quantized more coarsely. The quantization step thus 
involved only simple decisions and nonlinear transformations 
followed by uniform quantization with no codebook search or 
distance calculations. The VQ yielded an uneven probability 
density function for the vectors, and an ideal entropy coder 
was assumed. Satisfactory subjective image quality was found 
at 0.78 b/pixel for the 256 x 256 Lena test image. 

A crossband gairdshape VQ used for a 64-band decompo- 
sition was briefly described in [34], although this paper is 
primarily concerned with elaborating upon an error-resilient 
technique for efficiently encoding positional information. In 
two papers, SQ was used on wavelet coefficients, and cross- 
band vectors were used to design subsequent entropy coders 
[149], [150]. In [149], the output of a six-band quasiperfect 
reconstruction filter was quantized with SQ followed by arith- 
metic coding, and a crossband VQ was used to provide the 
arithmetic coder with a probability density function. In [150], 
SQ was applied to the coefficients of a 10-band pyramidal 
decomposition where the FIR filter banks were allowed to 
be different at each level of the decomposition. The images 
decomposed were motion-compensated progressive frames 
derived from a novel adaptive block matching algorithm. The 
interband information was used to design a universal variable 
length entropy coder for vectors that were composed of the 
SQ output values. 

4 )  Wavelet Hierarchical VQ (WHVQ): Vishwanath and 
Chou [70] realized that the subband decomposition and VQ 
could be accomplished together by table lookups using the 
HVQ structure. This provides a number of benefits: natural 
scalability, ease of incorporation of perceptual considerations 
into the code design, and a very fast software implementation 
that requires only table lookups and no computation for 
the decomposition, quantization, and reconstruction. There 
is significant computation off line when the tables are filled 
since, as with ordinary HVQ, the tables simply capture the 
result of a complicated mapping from one discrete space into 
another. 

The system uses separable subband filters and operates 
alternately on rows and columns. Each stage in the hierarchical 
coder does one row or one column decomposition along with 
a VQ. In this way, quantization is done across the subbands 
of the wavelet transform. The system is best suited to short 
filters to concentrate their effects within the vector size used 
by the VQ. As with ordinary HVQ, each stage will combine 
pairs of indexes to form individual indexes, providing a 2:l 
compression. Unlike ordinary HVQ, these tables do not simply 
implement the result of nearest neighbor searches. They also 
include filtering and downsampling prior to the quantization. 
Each stage consists of two steps. The first is simply an 
HVQ on the preceding stage, which will be raw pixels in 
the first stage and quantized wavelet coefficients thereafter. 
The first step, providing 2: 1 compression, successively maps 
nonoverlapping pairs of k-dimensional blocks produced by the 
previous stage into a single quantized block corresponding to 
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a 2k-dimensional vector. The second step maps two of the 
first-step output blocks into a stage-2 output block but does so 
using overlapping blocks because the wavelet decomposition 
requires the larger window. This step is designed by clustering 
the reproduction vectors of the previous stage in a sliding- 
block manner, each time shifting the window by IC. 

Following each stage, downsampling and necessary delays 
are easily done without computation. Each stage operates in 
only one dimension so that rows and columns are handled by 
alternating stages. The overall effect of a single stage is to 
produce wavelet coefficients and to compress by 2: 1. 

The system is inherently fixed rate, and no entropy con- 
strained versions exist for optimizing for entropy coding. 
Using the Daubechies-4 filter and the 256 x 256 Lena image, 
the reported PSNR was 29.62 dB for 0.5 b/pixel and 27.26 dB 
for 0.25 b/pixel. On a Sparc 2 with 16M of memory, encoding 
and decoding took 16.67 ms for the 0.5 b/pixel image and 19 
ms for the 0.25 b/pixel image. The encoding required 64 KI3 
of memory per stage. 

D. Subband VQ Methods for  Color Images 

The great potential for efficient exploitation of properties 
of the human visual system for monochrome subbancWQ 
systems is even greater for color subbancWQ systems. The 
earliest color subbandNQ system was by Kim et al. [151], 
and it did not explicitly incorporate models of human vision, 
although some such ideas were employed, for example, for 
deciding which frequency bands to drop. Later subbandrVQ 
systems for color images began to explicitly exploit models of 
human vision [152], [153] and color vision [154], [155], [105]. 

The first color subbandNQ system used DPCM together 
with either CVQ or FSVQ [151]. RGB images were trans- 
formed to the YIQ color system, and each color plane was 
filtered by symmetrically extended QMF’s to produce 16 
uniform frequency bands. For Q and I planes, only bands 
Q11, 111, 112 and 1 2 1  were retained. The 12 lowest frequency 
bands of the luminance plane were retained, producing a total 
of 16 bands to be encoded. The low bands (YII, 111, Q11) 
were encoded by DPCM. Different approaches were tried for 
the higher bands. Each 4 x 4 vector was coarsely classified 
as being shade, high variance, or one of several edges. This 
classification was sent to the decoder as side information, and 
the appropriate codebook was used. An improved version used 
an FSVQ to select the codebook in a manner very similar to 
that of Aravind and Gersho [63]. In a continuation of this work, 
Kim et al. used a three-component multirate representation 
of the image composed of a chrominance subimage pair, 
a medium- to low-frequency luminance image, and a high- 
frequency luminance residual. The method used FSVQ and 
DPCM in coding these components with noticeable improve- 
ment over the earlier work [156]. 

Safranek et al. presented two examples of perceptually op- 
timized coding algorithms [ 1521. Variable-rate DPCM coding 
together with a model in which the quantization threshold for 
just noticeable distortion is a function of three parameters 
(center frequency or subband number, background intensity, 
and background texture) led to transparent coding of color 

images at rates ranging from 0.2 to 2.0 b/pixel, depending on 
the input. For high-quality coding of sparse images, such as 
high-frequency subbands in 3-D coding of video signals, a ge- 
ometrical VQ was used whose codevectors were edge-related 
shapes rather than traditional designs based on minimum MSE. 
In the coding of teleconference scenes, average bit rates for 
high-frequency subbands were in the range of 0.01 to 0.3 
b/pixel. 

Spatial frequency dependence of the human visual system 
was incorporated into the VQ distortion measure in [153]. 
This work used two complementary thresholds, known as the 
visibility threshold and the annoyance threshold, in the global 
evaluation of the distortion during the splitting design of the 
codebook for each class. These techniques claimed to yield 
visual VQ of the chrominance component of a color video 
digital signal with no visible impairment and with a high 
compression ratio. 

Full search of an unstructured codebook was examined 
for color images in several studies. In [157], 2-D uniform 
band decomposition was applied to the error image obtained 
after motion-compensated interframe prediction. The lumi- 
nance error image was decomposed into 16 subbands and 
the chrominance error image into eight subbands. These were 
limited to 16 bands total by taking 10 luminance bands and six 
chrominance bands, discarding the lower energy ones. Sixteen- 
dimensional crossband vectors were formed as in Fig. 7 and 
quantized by full search of an unstructured codebook designed 
by the GLA. Each subband location has an “area of influence” 
of size 5 x 5 in the original image. The subband location was 
considered significant if the percentage of nonzero pixels in its 
area of influence was greater than a predetermined threshold. 
The insignificant subband locations were run-length coded, 
and the subband coefficients from the significant locations 
were vector quantized. This sample selection scheme can help 
prevent buffer overflow. 

In another study using full-search unstructured VQ, Van 
Dyck and Rajala [154], [155] formulated the bit allocation 
problem as an optimization problem where the objective func- 
tion depended on the distortion-rate curves of the quantizers 
and on a set of perceptual weights. These weights were derived 
from data provided by measurements of the mean detection 
threshold of the human visual system for color transitions 
along the luminance, red-green, and blue-yellow directions. 
Minimization of the objective function constrained by the 
desired bit rate gave a perceptually optimal bit allocation. 
Three subbandNQ cases were examined. In all cases, the 
color image was decomposed two levels by a QMF (32- 
tap filter D) to form seven subbands. In the first two cases, 
the color components of the lowest frequency subband were 
scalar quantized. Case 1 combined the three color components 
of each pixel of the higher frequency subbands into a 3- 
D vector, whereas case 2 created 4-D vectors from 2 x 2 
blocks in each subband color component. In the third case, 
the chrominance components of the lowest frequency subband 
were also vector quantized with 2 x 2 blocks. In all cases, 
a full-search VQ was generated by the GLA. To obtain 
the required compression ratio and the high color fidelity 
required for HDTV applications, the VQ was done in the 
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perceptually uniform C.I.E. L*a*b* [I581 space and AClCz 
space. Subsequently, Van Dyck and Rajala used VQ with a 
separable diamond subband coder in order to take into account 
the higher sensitivity of the human eye to horizontal and 
vertical edges than to diagonal ones [105]. By first diagonally 
interpolating the input image and then filtering with 1-D 
filters, a decomposition into subbands that more closely match 
the orientation of the human visual system was obtained. 
Performance evaluations showed that for compression ratios 
in the range of 10: 1 to 20: 1, a five-band system with diamond- 
shaped subbands yielded results comparable with those of a 
seven-band rectangular system. 

A comparison of ECVQ and ECTCQ for color video se- 
quences was conducted in [159]. The RGB format was con- 
verted to YUV. The luminance component underwent a seven- 
band decomposition, and each chrominance component was 
decomposed into four bands. The lowest frequency subband 
used a variant of the H.261 coder, and the higher frequency 
bands were coded either with ECVQ on 2 x 2 blocks from 
a particular subband color component or with ECTCQ. The 
authors concluded that the system could provide good quality 
video for moderately complex scenes at around 400 kb/s at 
10 framesls. 

In [ 1601, a “same-orientation’’ crossband vector was formed 
after three levels of decomposition with a Gabor-like wavelet 
filter applied to a color image in the YUV color space. For 
each color plane, the lowest band was scalar quantized. For the 
next higher bands, 15-D vectors were formed by taking five 
coefficients from each color plane: One coefficient from the 
lower band combined with the 2 x 2 block from the next higher 
band of the same orientation. At the highest level, the UV color 
planes were discarded, and the luminance plane was encoded 
as 4 x 4 intraband blocks. Unstructured full-search codebooks 
were designed by the GLA for each group of vectors. A PSNR 
of 28.2 dB was achieved at 1.13 b/pixel for the color Lena 
test image. 

V. CONCLUSIONS 

Subband decompositions and VQ are two powerful tools 
for image compression. Recent years have seen an explosion 
in the research efforts to put the two tools together in useful 
ways. VQ applied to subband coefficients raises some issues 
that are distinctive and not shared with VQ applied to raw 
pixel data or other types of transform coefficients. Some of 
these issues include the following: 

In the image domain, strategies for forming vectors are 
relatively simple. Image pixels that are closer together 
are more highly correlated, and a VQ performs better if 
its input vectors have components that are more highly 
correlated. Therefore, vectors in the image domain are 
formed as compact little collections of adjacent pixels. 
Gains in perceptual quality or efficiency can be attained 
by tweaking the shape or size of the block [161], but 
the basic strategy is straightforward. With subband coef- 
ficients, correlations exist both intraband and interband, 
and the best vector-forming strategy is not obvious. 

Similarly, predictive and finite-state methods are more 
straightforward in the image domain since (for still im- 
ages) only one type of correlation can typically be ex- 
ploited. The adjacent blocks that have already been en- 
coded can be used to help encode the next block either 
with prediction or a finite-state method. In a subband 
decomposition, predictive and finite-state methods can use 
either intra or interband information. 
Methods for exploiting properties of human vision are 
considerably less developed in the image domain than 
in the frequency domain. While some visual system 
characteristics, such as textural masking, can and have 
been exploited by purely image domain VQ, much more 
sophisticated attempts have been made for coefficients 
resulting from a DCT or subband decomposition since 
those representation lend themselves more naturally to the 
realization of visually based coding. That is, it is rather 
difficult in the image domain to conclude that some pixels 
are a priori less important than others but with transform 
coefficients that determination is more easily made. 
Spatial information is diffused with the subband filtering; 
therefore, coding methods that are based on segmentation 
or object recognition may be more difficult to implement 
with a subband transform. However, the hierarchical 
nature of the decomposition does mean that any sort 
of segmentation or motion-compensation information that 
can be extracted from the low bands can perhaps be used 
“for free” by the decoder since it is usually assumed that 
the low bands will be transmitted first, and they can 
be examined by the decoder to aid in the subsequent 
decoding. For example, lower resolution small blocks 
can be used to predict the locations of high-resolution 
larger blocks in a “coarse-fine’’ searching strategy for 
block-based motion compensation. 
The multiresolution nature of subband decompositions 
and the progressive nature of some quantization methods 
both provide means of making reconstruction quality 
scalable or progressive. Scalability implies that there is 
a “successive approximation” property in the bit stream. 
As the decoder gets more bits from the encoder, the 
decoder can decode a progressively better reconstruction 
of the image. This can be achieved by adding subbands 
(also called layers) to the currently decoded image or by 
improving coefficients in the subbands. While this added 
feature is attractive for a number of applications (the 
most obvious being progressive transmission of images 
over slow telephone lines), it was long thought that it 
would lead to less efficient compression. As Shapiro’s 
embedded zerotree algorithm [28] demonstrates, how- 

’ ever, scalability can be achieved while being competitive 
with other approaches. With scalable coding, a single 
encoder can provide a variety of rates to customers 
with different channels or display capabilities. Since 
images can be reconstructed to increasing quality as 
additional bits arrive, it provides a natural means of 
adjusting to changing channel capacities and a more 
effective means of using a relatively slow channel (as 
in progressive transmission). Improved performance in 
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scalable coding may be achievable by better melding 
the decomposition and quantization operations than is 
currently done. In addition, current scalable coders tend to 
be computationally more complex than their nonscalable 
counterparts. 

At the current state of the art, subbandNQ coders are 
very competitive with subbandSQ coders that incorporate 
sophisticated lossless coding. In some cases, the VQ pro- 
vides improved distortiodrate tradeoffs at the expense of 
increased complexity. Performance improvements continue to 
be reported on both sides. The ability of VQ to incorporate 
other signal processing into the compression process has not 
yet been well exploited. Although Shannon theory supports 
the distortionhate superiority of VQ over SQ, much current 
work is focusing on exploiting properties of human vision 
and dependencies across scales, and it remains to be seen 
whether VQ algorithms can achieve the advantages predicted 
by theory while exploiting these properties in a flexible and 
low-complexity way. It is not unlikely that future generations 
of image coding standards will incorporate subband or wavelet 
decompositions and SQ or VQ. The future gains in subband 
coding are perhaps more likely to result from improved 
quantizing of the coefficients rather than from improvements 
in the filtering techniques themselves. 
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