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Abstract

Choice-Based Assortment and Price Optimization
by
Yanqgiao Wang
Doctor of Philosophy in Engineering - Civil and Environmental Engineering
University of California, Berkeley
Professor Zuo-Jun Max Shen, Chair

Online recommendation systems ask these questions everyday: How to describe cus-
tomers’ purchasing behavior? How to design a product assortment in order to maximize
their expected profit/revenue with given customers’ behavior? What is the optimal pricing
strategy for an assortment? Even further, how to jointly design optimal assortment and
pricing at the same time in an efficient way? The answers to these questions have a direct
influence to the profitability and feasibility of the recommendation systems.

My thesis handles assortment and price optimization problems with various applications
in online e-commerce and travel related recommendations, such as flight, rental car and
hotels. For example, for car rentals in Expedia, they would like to offer customers a recom-
mendation page of cars with different brands, prices, types, options, etc. What is a good
recommendation for the customers so that they would have a good shopping and traveling
experiences? First, it needs to be relevant to customers’ choice behavior that can be learned
from previous purchasing history or from marketing surveys; second, the recommendation
cannot be too specified, which means that those rental cars in the recommendation page
cannot be too similar in terms of their attributes; third, it cannot take too long to show the
recommendations to the customers - an efficient algorithm is required. In this thesis, we will
show our approach to assortment and price optimization problems.

The main contributions of my thesis is: 1) We formulate the assortment and price opti-
mization problems in a choice-based way, which provides a good balance between relevance
and variance of the products in an assortment; 2) We develop applicable recommendation
algorithms that run in polynomial time and can be dynamically adapted; 3) Compared to
the previous literature, our results are more advanced in terms of efficiency and applicabil-
ity. Specifically, this thesis is consist of three essays in choice-based assortment and price
optimization problems.

In the first essay, we study the joint constrained assortment and price optimization prob-
lem under the nested logit model with a no-purchase option in every choice stage. The
cardinality or space constraints are imposed separately on the assortment of products that
are offered in each nest. Specifically, cardinality constraint on a nest limits the total num-



ber of products that can be offered in that nest, and space constraint on a nest limits the
total space consumption of products within that nest. The goal is to jointly determine the
optimal assortment with optimal prices to maximize the expected profit per customer under
cardinality or space constraints. By using our solution approach, this problem is simplified
to find the fixed point of a single-variable unimodal expected profit function, where efficient
searching algorithms can be applied. Furthermore, we provide a piecewise convex fixed point
representation to facilitate computing. The optimal solution under cardinality constraints
and a 2-approximate solution under space constraints can be obtained efficiently.

In the second essay, we study choice-based constrained assortment and price optimiza-
tion problems under the multilevel nested logit model with a no-purchase option in every
choice stage. For the constrained assortment optimization problem, each candidate product
is associated with a fixed profit. The goal is to identify the optimal assortment satisfying
cardinality or space constraints to maximize the expected profit per customer. Under car-
dinality constraints, there is a limitation imposed on nodes in the second lowest level. A
polynomial-time algorithm with computational complexity O(n max{m,k}) is provided to
locate the optimal assortment for the m-level nested logit model with n products, where k is
the maximum number of products within any node in level m — 1. Under space constraints,
every product consumes a certain amount of space and candidate assortments must satisfy
the space limitation. However, the assortment optimization problem becomes NP-hard under
space constraints, thus we develop an algorithm to find a 2-approximate solution in O(mnk)
operations. For the price optimization problem, we aim to find the profit-maximizing prices
for all products. With product-differentiated price sensitivities, the expected profit function
is no longer concave even under the two-level nested logit model, but we are able to reduce
the multiproduct price optimization problem from a high dimensional optimization to the
maximization of a unimodal function in single-dimensional searching space, in which the
optimal prices can be found in a tractable manner.

In the third essay, we know that assortment and pricing decisions are of significant im-
portance to firms and have huge influences on profit. How to jointly optimize over both
assortment and prices draws increasing attention recently. However, in the most existing lit-
erature that considers joint optimization problem, they either impose strong restrictions on
the choice structure or have strong assumptions on the price sensitivity parameters. More-
over, currently there is no flexible and comprehensive way to deal with the joint effect of
assortment and pricing under multistage choice structure since the tangle between the as-
sortment and prices makes the joint optimization problem less tractable. In this paper, we
study the joint capacitated assortment and price optimization problem where the consumer
choosing behavior is governed by the multistage tree logit model. Under the cardinality con-
straints, we develop an efficient algorithm that runs in polynomial time to find the optimal
assortment with optimal prices. Under the space constraints, the assortment optimization
problem is NP-hard even under tree logit model with only two levels. We can obtain a
2-approximate solution within the same time scale compared to the joint optimization prob-
lem under cardinality constraints. For a tree logit model with N candidate products, both
algorithms run in O(GN log G) where G is the number of grid points for each node. The



complexity can be further reduced to O(GN log K') under mild conditions, where K is the
maximum number of children nodes that a nonleaf node could have in the tree structure.
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Chapter 1

Introduction

In the first essay, the problem of choosing a set of products so as to maximize the expected
profit is referred to as the assortment optimization problem. The goal of price optimization
problem is to find the optimal pricing strategy to maximize the expected profit per customer.
The multinomial logit model and the nested logit model are often used to describe the
customer purchasing behavior. How to jointly optimize over both assortment and prices is of
significant importance to study. However, assortment decisions greatly influence the pricing
strategy and vice versa. We study the joint constrained assortment and price optimization
problem under the nested logit model, which includes two stages of customers’ choosing
process. In the first stage, the customer chooses either to leave without purchasing (the
no-purchase option) or to consider to buy within a nest of products that are grouped based
on their attribute similarities. If she chooses to consider buying from a nest of products,
then she can still either choose the no-purchase option within that nest or select an actual
product in the second stage. Moreover, each nest has a scale parameter that is less than one
to measure the similarity of products in that nest. For the joint optimization problem, we
find a bridge that connects the pricing problem with the assortment optimization problem
so as to resolve the tangle between assortment and pricing decisions. This bridge is a scalar
that is defined as the node-specific adjusted markup. Due to practical operational limitation,
we consider cardinality or space constraints on the assortment in each nest separately.

We first formulate the joint constrained optimization problem as a bilevel optimization
program with assortment optimization and price optimization as its outer and inner problem,
respectively. Then it can be simplified as an optimization over a single-variable unimodal
function by observing the connection between the inner and outer optimization problems.
Furthermore, the optimal solution has a piecewise convex fixed point representation. Our
solution approach is one step further than 1) joint assortment and price optimization problem
under the multinomial logit model that is studied in [48]; 2) price optimization problem under
the nested logit model [19]; 3) assortment optimization problem under the nested logit model
[18].

In the second essay, we consider the constrained assortment and price optimization prob-
lems under choice models, where we aim to offer products bundle with diversity to attract
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more customers and gain more profits. Preferences and choosing behaviors of customers can
be modeled by discrete choice models that play an important role in revenue management
and demand modeling. The multinomial logit model, developed by [34] according to random
utility maximization (RUM) theory, is extensively used to capture the customer choosing
behavior. More complicated choice processes have been modeled under the extensions of
the multinomial logit model, such as the nested logit model, the mixed logit model, etc. In
this essay, we consider the constrained assortment and price optimization problems under
the multilevel nested logit model that is able to capture the multidimensional similarities
of products. We assume that customers choose their desired attributes of the products se-
quentially based on an m-level tree structure, each level of which corresponds to a certain
attribute of the product. Thus products are grouped by (m — 1)-dimensional similarity in
the m-level nested logit model if we consider the root node is in level 0.

Regarding the constrained assortment optimization problem, we assume that the prices
of all products have already been exogenously given. The probability of choosing a product,
which is a function of assortment, can be computed within the multilevel nested logit model
framework. Our objective of the constrained assortment optimization problem is to find the
expected-profit-maximizing assortment which also satisfies cardinality or space constraints.
For cardinality constraints, there is a limitation of the number of products that can be offered
within the nodes in level m — 1 separately. Space constraints limit the available space for
displaying products in the m — 1 level separately, that can be the shelf space or volume
space limitation in a physical retail store. We also study the multistage price optimization
problem, where assortment and costs of products are fixed. However, instead of having a
fixed profit, which is price minus cost, the price vector becomes the decision variable. The
choice probability and profit of a product is determined by its own price, thus the price
optimization problem becomes a multidimensional optimization problem with respect to the
prices of all products.

In the third essay, a decision-making problem that firms always face is to choose a set of
products that satisfy either cardinality or space constraints with proper prices to offer to the
consumers in order to maximize their profit, which can be addressed as the joint capacitated
assortment and price optimization problem. For the capacitated assortment optimization
problem, the goal is to identify a set of products under certain constraints to offer to con-
sumers so as to maximize the expected profit when the prices of candidate products are
exogenously given. Price optimization refers to the problem of setting an expected-profit-
maximizing price for each product within a fixed assortment selection, where the attractive-
ness of a product is inversely proportional to its price. The assortment optimization applies
to the case where a firm cannot control the prices but is able to decide which products to
offer to the consumers, and the price optimization is vice versa. For firms that have the
ability to have control over both assortment and prices of products, joint optimization is
necessary and worth studying. This fact is intuitive, for example, if some products with
“oood” quality or brand are added to a firm’s consideration set, the optimal assortment and
pricing strategy may change, since the demand for those products with even higher price
may increase because consumers may have an overall “good” impression on the newly offered
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assortment and can tolerate high prices of some products.

However, assortment decisions are very sensitive to price changes, and similarly, optimal
prices of products are also completely different given different offered assortment. On the
other hand, the mutual dependence of capacitated assortment and pricing decisions increases
the hardness of modeling and quantifying the joint effect of capacitated assortment and
pricing. Most existing approaches do not have a tractable solution to jointly optimizing
over capacitated assortment and prices, especially for the case where the consumers follow
a complex choice structure, such as the tree logit model with an arbitrary number of levels
and products.

To resolve the issues in modeling the joint effect and provide practical operations insights,
we study the joint capacitated assortment and price optimization problem under the tree
logit model [10]. Due to the practical display limitation, we consider both cardinality and
space constraints on the assortment decisions, which impose cardinality and space limitation
on nodes of the second lowest level in the tree structure, respectively. Under the tree logit
model, consumers follow an m-level tree structure. The choosing process can be considered
as a desired set reduction process, where the desired set is originally set to be the entire
choice set and being reduced as choosing process goes on until only one product or the no-
purchase option is left. For example, if a consumer wants to buy a history book on Amazon,
after she specifies that the category is history under the “shop by category” list, all the other
books that do not belong to this category will be eliminated from the desired set and not be
purchased by her, in which case, history can be viewed as the first desired attribute that she
wants from the book. Subsequently, the consumer further continues to choose the second
attribute and so forth until a book with m desired attributes or the no-purchase option has
been chosen in the end. Hence in this tree structure, the node in level [ corresponds to
a subset of products that share [ attributes in common, and all the leaf nodes that share
the same parent node stand for actual products having m common attributes. Specifically,
the no-purchase option is in the first level of the tree. The choice model with multistage
structure has practical motivation and usefulness; see recent studies in [30] and [22].

While retailers tend to set higher prices of products to gain more profit, consumers
typically would consider less to buy a product with high price. So the products with higher
price always have lower demand. Therefore, the joint effect of assortment and pricing can
be translated as the tradeoff between promoting the willingness to buy of consumers and
maximizing retailer’s profit. The tangle in the joint effect can be unraveled by our efficient
approach to the joint capacitated assortment and price optimization problem.



Chapter 2

Joint Nested Logit Model

2.1 Literature Review

[26] show an extensive review of the assortment optimization and price optimization prob-
lems under various choice models. For the work that is related to this essay, [18] study
the constrained assortment optimization problem under the nested logit model and their
approach can be adapted to solve the joint assortment and price optimization problem if
feasible prices are restricted on finite grid points. Our model does not have this restriction
by defining the price of a product on R.q. [11] study the assortment optimization prob-
lems under the nested logit model with no-purchase options in all nests. [16] consider the
constrained assortment optimization under the nested logit model with constraints across
nests. [29] find structural conditions of the optimal assortment under the nested logit model.
By assuming that the price-sensitivity parameters are identical within nests, [31] prove the
expected profit function is concave with respect to market share vector. [19] show the ex-
pected profit function is unimodal under mild assumption on dissimilarity parameter and
price-sensitivity parameters, whereas they relax the assumption in [31]. In this essay, we
also have the same assumption that is in [19].

[39] study the constrained assortment optimization problem under the multinomial logit
model. [47] considers the constrained assortment optimization problem under the general
attraction model. Under the mixed multinomial logit model, customers are segmented into
groups based on their social demographic information, [7], [41] and [23] study the assortment
optimization problem. [18] consider the constrained assortment optimization problem under
the nested logit model. [30] and [50] study the unconstrained and constrained assortment
optimization under the multilevel level nested logit model, respectively. However, most of
the research listed above only consider assortment optimization problems without the joint
effect of assortment and pricing decisions.

[15] find the multinomial logit profit function is concave with respect to the market share
vector. Under the nested logit model, [19] show the profit function is concave in terms of
the aggregate market share and unimodal of the adjusted nest-level markup. Under the
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multilevel nested logit model, [30] and [22] find an efficient approach to get the optimal
pricing strategy. [50] consider no-purchase options in every choice stage under the multilevel
nested logit model and study the price optimization problem.

For the literature considering the joint assortment and price optimization problem, [9]
[32] obtain the structural properties of the optimal solution. [48] considers the multinomial
logit model and proves that the joint optimization problem has a fixed point representation.
Furthermore, [49] considers the search cost in the joint optimization problem. [6] study the
joint problem in a game theory perspective. [27] consider the joint optimization problem
under the nested logit model and obtain a competitive equilibrium. Under the nested logit
model, [18] and [12] restrict prices on a grid of points. Our model does not have this
restriction, while both approaches have real applications in practice. Under the multilevel
nested logit model, [51] study the joint optimization problem, however, the authors only
allows one no-purchase option. [37] proposes a linear program formulation with price bounds.
[24] considers the nonparametric choice model for the joint assortment and price optimization
problem.

2.2 Main Results and Contributions

We summarize our main results and contributions as follows:

1. We study the joint constrained assortment and price optimization problem under the
nested logit model in this essay. We formulate the joint optimization problem as a bilevel
optimization program with the price optimization problem and the constrained assortment
optimization problem as its inner and outer problem, respectively. Focusing on the inner
price optimization problem with a fixed nonempty assortment, we introduce a scalar that
is referred to as the node-specific adjusted markup, which is proved to be a useful bridge
connecting the inner and outer problems jointly.

2. In our problem setting, the consumer choosing process can be described under the
nested logit model with m nests and N products, where n,,, is the maximum number of
products within any nest. We impose the cardinality or space constraints separately on each
nest, which limits the number of products or space consumption of products within that
nest. We first decompose the joint constrained assortment and price optimization problem
into m bilevel joint subproblems, then we introduce an equivalent formulation of the joint
subproblem that is referred to as the assortment subproblem. The assortment subproblem
optimizes over a scalar instead of an assortment, and its objective function is convex, which
makes it tractable to solve.

3. The main result in this essay is that we prove the joint constrained assortment and
price optimization problem has a fixed point representation of a single-variable unimodal
profit function. We also prove that the size of a collection that includes an optimal assort-
ment under cardinality or space constraints is polynomially bounded by O(N) or O(nyax V),
respectively, thus a solution approach that is based on discretization can be applied to find
the joint optimal solution. Furthermore, we propose a piecewise convex fixed point represen-



CHAPTER 2. JOINT NESTED LOGIT MODEL 6

tation to further facilitate calculation. By applying our solution approach, the joint optimal
solution and a 2-approximate solution can be obtained in an efficient way.

4. To the best of our knowledge, we are the first to study the joint constrained assortment
and price optimization problem under the nested logit model where the utility of a product
is a function of the price of this product. [48] considers the joint optimization problem
under the cardinality constraints when the customer choosing behavior is governed by the
multinomial logit model, which is tractable based on its linearity nature. [18] study the
joint optimization problem the nested logit model where there exists nonlinearity in general.
However, the authors only restrict the possible prices on some prespecified values and do not
consider constrained assortment in their problem setting.

Organization

The organization of the essay is as follows. In Section 2.3, we present the modeling frame-
work and problem formulation of the joint constrained assortment and price optimization
problem under the nested logit model. Section 2.4 shows the joint optimization problem
under cardinality constraints is tractable and an optimal solution can be efficiently obtained
via a piecewise convex fixed point representation. In Section 2.5, we consider the joint opti-
mization problem under space constraints and show how to find a 2-approximate solution.
We illustrate our solution approach in Section 2.6 by showing a numerical example of the
joint optimization problem under cardinality constraints.

2.3 Modeling Framework

Suppose that the customer purchasing behavior can be described by the nested logit model
with m nests, the set of which is M = {1,2,...,m}. For a nest i € M, there are n; products,
the set of which is denoted as N; = {1,2,...,n;}. The total number of products is denoted
as N = >,._,,n;. For product j € N;, it is represented as a 2-tuple (i, j) and its price is p;;,
thus the price vector for nest i is P; = (pi1, pi2, -+, Din;). Price matrix P = (P, Py, ..., P,,)
contains all prices for all the products in the nested logit model. A customer first chooses
either to select a nest or to leave without purchasing anything; if she selects a nest of products
in the first stage, then she can still choose either to exit without buying or to select a product
in the second level. The no-purchase option in the first stage is denoted as a null tuple (0),
and the no-purchase option within nest 7 is denoted as an order pair (i,0). For product (i, j)
with price p;;, the preference weight that is assigned by the customer is

Vij (pij) = eXP(Oéij - ﬁijpij)a

where a;; is the price-independent deterministic utility and 3;; is the price-sensitivity pa-
rameter. Note that both «;; and f;; are different across products. By convention, we treat
the preference weight of no-purchase options vy and v;y as nonnegative constants.
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The vector S; = (Si1, Si2, ..., Sin;) € {0,1}™ is used to denote the assortment of products
that are offered in nest i. The binary decision variable S;; equals to one if product (i, j)
is offered and zero otherwise. If we offer S; with price vector P; for a nest i € M, the
probability of choosing product j out of N; is

vi; (i) Sij
Vi L(S; # D) + Djen, Vij(Pig)Sij’

Qji(Si, Pi) =

where if S; # J, the customer has a probability of v;0.5;;/(vio + ZjeNi ;5 (pij)Sij) to leave
without purchasing. Note that if S;; = 0, then the price p;; of product (i,;) becomes
irrelevant to our goal.

For nest 7 € M, the expected profit of assortment .S; with price vector P; is

Ri(Si,Pi) = Y Qa5 Pi)(pij — cij)
JEN;
e, (Pig = €ij)vig(pij) Sij
Viol(Si # &) + D ien, Vij (Pij)Sij

where ¢;; is the cost of product (i, j). We use Vi(S;, P;) = (vio1(S; # &)+ 2 5en, vij(pij)Sij) "

to measure the attractiveness of S;, where 7; € (0, 1] measures the dissimilarity of products

in nest 7. The closer 7; is to one, the less similarities between products within nest 7 are.
To guarantee the uniqueness of the optimal pricing strategy, we assume that

maxen, 5ij/ Minjen, Bi; < 1/(1 — ;) for i € M as in [19]. If we offer assortment matrix

S = (51,52, ...,Sy) over all nests, then the probability that a customer considers to buy a

product in assortment S5; is

Vo + Diens Vi(Si, Pi)

We remark that >, ,, Q:(S,P) < 1and X,y Qji(Si; Pi) < 1if vg > 0. The total expected
profit for assortment S with prices P is written as

Q’L(S7 P) =

Diens Vi(Si, Pi) Ri(S, Py)
II S,P = i 57P R; Si;Pi = =
( ) zeZMQ ( ) ( ) Vo + ZieM ‘/1(517 PZ)

The cardinality or space constraints are imposed on each of the nest separately. For the
cardinality constraints C;, it restricts the number of products that are offered in nest ¢ to not
exceeding C;, thus the set of feasible assortments at nest ¢ is denoted as 3; = {S; € {0,1}™ :
> N Si; < C;}. Similarly, space constraints S; limit the space consumption of assortment S;,
then the set of feasible assortments at nest i is §; = {S; € {0, 1} : > ..y wi;Sij < S;} where
w;; < S; is the space requirement of product (i, j). Without loss of generality, we assume
that C; < n; and S; < ZjeNi w;; since it becomes uncapacitated assortment optimization
otherwise. The feasible set of assortments over all nests is the cartesian product of S
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over i € M, which is denoted as & = &7 x &y x -+ x §,,. We aim to jointly determine the
expected-profit-maximizing assortment that satisfies the cardinality or space constraints and
the optimal price matrix to the following problem

max max [I(S, P). (2.1)

Sex PERgo

Throughout the essay, we use S* = (SF : i € M) and P* = (P} : i € M) to denote the
joint optimal solution and let Z* = TI(S*,P*) be the maximum expected profit that we
can obtain per consumer from the collection of feasible assortments &. We remark that if
Si; = 0, then the price of product (i, 7) becomes irrelevant, thus we set p;; = 0 as well.
In the following sections, we show that problem (4.1) is tractable by building a bridge that
connects the inner pricing problem and the outer assortment optimization problem.

2.4 Joint Optimization Under Cardinality Constraints

We present our solution approach to problem (4.1) under the cardinality constraints. In
Section 2.4, we decompose problem (4.1) into joint subproblems. The union of the solutions
to the joint subproblems at all nests is an optimal solution to problem (4.1). In Section 2.4, we
show an equivalent formulation of the joint subproblem, which is referred to as the assortment
subproblem. Then we show the expected profit function can be transformed to a single-
variable unimodal function and there exists a piecewise convex fixed point representation of
problem (4.1) in Section 2.4.

Joint Subproblem

In this section, we consider problem (4.1) by decomposing it into joint subproblems at all
nests. The joint subproblem is a bilevel optimization problem with the price optimization and
assortment optimization problem as its inner and outer problem, respectively. By solving
the inner pricing problem, we present an equivalent formulation of the joint subproblem,
which is only related to assortment decision variables.

Before introducing the joint subproblem, we first show that R;(S}, P) is at least as large
as Z* if S¥ is not empty as in the following claim.

Claim 1. If S¥ # J, then we get R;(Sf, P}) = Z*.

We defer the proof of this claim to Appendix A.2. The joint subproblem at nest i € M is
defined as follows

max max V;(S;, P;)(R;(S;, P;) — Z7). (2.2)

Si€S; PieR’;io

The following claim shows the relationship between the union of the solutions to joint sub-
problems at all nests and problem (4.1).
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Claim 2. For each i € M, let (S;,P;) be optimal to the joint subproblem (2.2) at nest i,
then (S1, 5, ..., Sm; P1,Pa, ..., Py, is an optimal solution to problem (4.1).

The proof of Claim 2 can be found in Appendix A.2. Joint subproblem (2.2) is a bilevel
optimization problem: the inner optimization problem is a pricing problem for a fixed as-
sortment; the outer optimization problem is a constrained assortment optimization problem
where prices have already been set “optimally” for each feasible assortment.

Next we focus on the inner pricing problem at nest ¢ with a fixed nonempty assortment
S;, which is shown as follows

S.
Pi(S;)eR!

where the dimension of price vector P;(.S;) is |.S;| instead of n; since the prices of the products
that are not in assortment S; are irrelevant. Note that P;(.S;) is a function of assortment S;,
we use P; to denote P;(S;) later in this essay for notational purpose. With a slight abuse
of notation, 5; is also used to denote the set of products in assortment S;. The next lemma
shows the conditions that should be satisfied by the price vector at optimality of problem
(2.3).

Lemma 1. The optimality condition of problem (2.3) with a given nonempty assortment S;
and a constant Z* is

0; = 72" + (1 —7)Ri(S:, 0;) (2.4)
where the node-specific adjusted markup 0; = p;; — c¢;; — 1/5;; is invariant for all j € S;.

Proof. Proof: For notational brevity, let g; = Vi(S;, P;)(R;(S;, P;) — Z2%), V; = Vi(S;, Py),
R; = R;(S;,P;) and Q(jli) = Q;i(S:,P;). The first derivative of the objective function g;
with respect to the price p;; of product j € 5; is

0g; Vi OR;
I (V(Ri—Z*)+‘/¢i>
Opij Opij Opij
where
V; _ .
oy = ilvio + D v (=Bivig) = =B ViQUl),
ng JES;
OR; . 1
E —Bi; Qi) (pij — ¢i — B Ry).
After plugging terms, we obtain
09i | " 1
— = =B ViQUl)[vi(Ri = Z%) + pij — ¢iy — o— — Ril.

ODij
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Let dg;/0p;; = 0, it follows that
1 *
Pig =G = 5o = %z + (1= 7) R,
ij

where the right hand side of the above equation does not depend on j, thus p;; — ¢;; — 1/8;;
is independent of j, which can be denoted as 6;. ]

Lemma 1 shows that 6; = p;; — ¢;; — 1/;; is invariant within assortment S; at optimality
of problem (2.3), which in turn indicates that the price p;; of product j € S; should be
set as 0; + ¢;; + 1/B;; at optimality. Therefore, the price vector P; can be rewritten as
P, = (0; + ¢ij +1/8; : j € S;), which has a one-to-one increasing correspondence with 6;.
Thus, it suffices to consider the node-specific adjusted markup 6; that is a scalar instead of
the price vector P;. Similar to the discussion before Lemma 1, note that 6; is also a function
of assortment S;. Later in this essay, we focus on the scalar 6; instead of the vector P;,
thus we have Rz(SuPz) = R,(Sl,&), ‘/Z(SZ,PZ) = V;(Suez) and Q]|Z(S“PZ) = Q]|z<51792) at
optimality accordingly. Throughout, 8} is used to denote the scalar that corresponds to the
optimal price vector P;.

Since Equation (2.4) is a necessary condition of the inner pricing problem for a given
nonempty assortment .S;, if this S; is the optimal assortment S} to problem (4.1) and S} #
J, then S and the corresponding 67 should also satisfy 0F = v2Z* + (1 — ;) R;(SF, 7).
Specifically, we set 87 = Z* if S¥ is empty without loss of generality. According to Claim 1,
we have 07 is a scalar that is always greater than or equal to Z*. By observing the relationship
between R;(S;,6;) and 0;, the optimality condition (2.4) can be further simplified in next
corollary.

Corollary 1. The optimality condition (2.4) of problem (2.3) can be rewritten as
Z* = 6i(Si, 0:)0; — wi(S;, 0;), (2.5)

where 5i(Sz‘70i) = 1/%‘ - (1/%‘ - 1)%‘(5@',91‘); Ti(Sz‘,@z‘) = Z]‘esi Qj\i(Siaei) and wz‘(Sz‘,Qi) =
(L7 = 1) Xjes, Qiii(Si,6:)/ By

Proof. Proof: For notational brevity, let Q(j|i) = Q;i(S:,6;), 7 = 7:(5;,60;) and w; =
w;(S;,0;). By the definition of §; and R;, we get

. 1 Vi
R’i: QjZ 914—— =Ti91-+—wi,
X Qe+ 5 o

where w; = (1/7;—1) > ;cq, @(47)/Bij- Plug the above equation into Equation (2.4), we have

Vi

O; = 2%+ (1 —v)(rb; + 1 w;)-

%

Equation (2.5) is obtained after collecting terms. O
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For these newly introduced quantities, we observe that 0 < 7;(S;,6;) < 1 and 1 <
0i(S;,0;) < 1/~;, where the inequalities are strict if v,y # 0 for a nonempty assortment S;.
Next lemma shows there exists a one-to-one increasing correspondence between Z* and 6;
in Equation (2.5).

Lemma 2. Under the assumptions of price-sensitivity parameters, g(6;) = 0;(S;, 6;)0; —
wi(S;,0;) is a strictly increasing function of 6;.

Proof. Proof: Define u;(S;,60;) = ZjeSi Bi;Q;1i(Si,0;). Let g = g(6;), Q(jl1) = Q;:(Si, 0:),
8 = 0i(5:,0:), i = 1(Si,0i), wi = w;(S6;) and w; = w;(S;,0;) for notational purpose. The
first derivative of g; with respect to 0; is

a6~ TG ~ aa,

where

0 _ L opom 1 3 0QUj?)

b w00 v A o6,
1
=—( ——1 ZQ.7| —Bij) = (= =D = n)us = (6; — us,
jeS; Vi
=(=-1) = Bij) = wiv; — (= — )7,
00; Vi j;:i Bij 59i Vi JEZS 513 ! i
thus we have

where 0; > 1, w; = 0 and u; > 0. At optimality, we have §; > 0 since Z* = §,;0; — w; = 0,
otherwise Z* < 0 if 6; < 0. To prove dg;/00; > 0, we only need to show 1/v; — w;u; > 0. We
have

_ZQ < gesQ(ng T < 1
1 - % jes; Bij minjeg, 5 mingey, 5; — minjen, By
;} B;QUjli) < max B Z QUjli) < max f;7; < max B
J

Therefore, it follows that

Vi Vi vi  Minjen, Bij Vi w 1—m

where the last inequality is due to the parameter assumption that max;ey, 8;;/ minjen, 8i; <
/(1= ). O
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Lemma 2 is insightful in a way that if the maximum profit Z*, which is a constant, is
known, then 6#; can be uniquely determined for a given assortment S;. This implies that
the inner pricing problem can be treated as a constraint satisfying Equation (2.5). We are
ready to present an equivalent formulation of the joint subproblem at nest i € M in next
proposition.

Proposition 1. The bilevel joint subproblem (2.2) can be reformulated as an optimization
program with respect to the assortment variable, which is written as follows

max V; 5“6’1 Hz—Z*
Sied; 1 — 1y ( A ) (2.6)

Proof. Proof: For notational brevity, we let V; = V;(S;,60;), w; = w;(S;,0;), 7 = 7:(S;, 0;) and
d; = 8;(S;,0;). Since there exists a one-to-one strictly increasing correspondence between Z*
and 6; for a give assortment S; at the optimality condition of the inner price optimization
problem, it implies that 6; can be uniquely determined if both Z* and S; are given. Thus
problem (2.2) can be rewritten as

max Vi(R; — Z%)

S ey

Next we show that the objective function can be reformulated as desired. At the optimality
condition of the inner pricing problem of the joint subproblem (2.2), we obtain

N
1 —")/,L 19

7 = 6i0; — wi,

Ri = Tiei +

thus the objective function becomes

1
1 1 1
= ‘/z W; — ——1 1_Ti 02 =
L= [ (% ) )% L=

The desired result is established after collecting terms. O]

Compared to problem (2.2) that is a bilevel optimization problem, formulation (2.6) is
an optimization problem that is only related to the assortment decision variable S;, where
the inner pricing strategy is integrated in the constraints. Let S; denote the optimal so-
lution to problem (2.6) with corresponding node-specific adjusted markup 0; that can be
determined through Z* = (51-(5’2-,@)92- — wi(ﬁi,ﬁi). The objective function in formulation
(2.6) is V;i(S;,0;)(0; — Z*)/(1 — ;), which implies that the optimal objective value satisfies
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Vi(S;5,0)(0; — Z*) /(1 =) = Vi(, 0:)(0; — Z*) /(1 —~;) = 0 since S; is always at least as good
as the empty assortment (. Therefore, if the optimal solution S; of nest i € M is nonempty,
then 6; should be greater than or equal to Z*.

We remark that if the preference weight of the no-purchase option in nest ¢ € M is
zero, i.e. vy = 0, then S; is always nonempty. It is because 0;(S;,6;) always equals to one
if v;p = 0, thus the objective function of problem (2.6) equals to V;(S;, 6;)w;(S;,0;)/(1 —
vi). It is strictly positive for any feasible nonempty assortment S;, which is strictly larger
than V;(, 0;)w;(J,0;)/(1 — ;) = 0, which is the objective value of an empty assortment.
Moreover, we have ]SZ\ = C; if v,y = 0, which will be shown in Section 2.4.

The optimal assortment S} and price 6 satisfy Z* = 6;(SF,0F)0F — w;(SF, 0F) since
Equation (2.5) is a necessary condition. If both Z* and S} are known, then 6} can be uniquely
identified and problem (4.1) is solved. However, the concern is that it is not possible to get
Z* and S} before solving problem (4.1). Even if Z* is obtained in a magic way, problem
(2.6) is still intractable since the size of J; is (g) under the cardinality constraint C;, which
is too large even for a small C;. We propose a tractable approach in following sections to
eliminate these concerns.

Assortment Subproblem

In this section, we first show how to get a polynomial-size collection A; < J; that includes
an optimal solution to problem (4.1) by introducing the basic joint subproblem and then
reformulate problem (2.6) as an optimization problem in terms of the scalar 6;, which is
referred to as the assortment subproblem.

According to the discussion before Corollary 1, we have 6f = v, Z* + (1 — ;) R; (S}, 67)

it S} # & and 07 = Z* it S; = J. The basic joint subproblem at nest ¢ € M is shown as
follows

max max %(S“ Pz)l/% (RZ(SZ, Pz) - 9:) (27)

Si€3i PyeRY

Similar to Claim 2, the following claim shows the the union of the optimal solution to problem
(2.7) is also optimal to problem (4.1).

Claim 3. For each i€ M, let (2, P;) be optimal to the basic joint subproblem (2.7) at nest
i, then (S1, 52, ..., Sm; P1,Pa, ..., Pp) is an optimal solution to problem (4.1).

We defer the proof of this claim to Appendix A.2. According to Claim 3, the union
of the optimal solutions to the basic joint subproblem is also optimal to problem (4.1).
Furthermore, problem (2.7) is easier to solve than problem (2.2) in a way that the objective
function of problem (2.7) is linear in terms of S;. Even though 67 is unknown, it is possible
to come up with a collection of assortments that includes an optimal solution to problem
(4.1) by observing 6} is essentially a nonnegative scalar. Next we focus on problem (2.7) and
show its optimality condition in the following lemma.
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Lemma 3. The optimality condition of the inner pricing problem of basic joint subproblem
(2.7) for a given nonempty assortment S; and a nonnegative scalar 65 is

0; =07,
where 0; = p;j — ¢;; — 1/B;; is invariant for all j € S;.

Q;1i(S;i, P;) for notational purpose. We have

, 1/7i 4
0gi _ v (R; — 0F) + ‘/;1/%@
Opij Opij Opij
. . 1
= _Bijvij (Rz — 9:‘) + ‘/21/%[_62]@(‘”2)(]91] — CGij — ﬁ_ B RZ)]
ij
. 1 1 .
= —Bivij (R — 07 + pij — cij — o — Ri) = —Bijvij(pij — cij — - — 05).
Bij Bij

Let 0g;/0p;; = 0, we have 6; = p;; — ¢;; — 1/8;; for all j € S; and 6; = 6 at optimality.
O

According to Lemma 3, the inner pricing problem of problem (2.7) is completely solved by
setting p;; = 0 +¢;; +1/8;;. Therefore, next proposition shows that the bilevel optimization
problem (2.7) can be further simplified and solved efficiently.

Proposition 2. The basic joint subproblem (2.7) at nest i € M with scalar 0} can be refor-
mulated as follows

A vij(Qi + Cij + 1/ﬁl]) o 'Ui()]-(Si £ @)02* (28)

S-S .
[ASAS Y jes; 52]

Furthermore, problem (2.8) can be solved within O(n;logn;) operations.

Proof. According to Lemma 3, problem (2.7) can be written as

max V;(S;, 05)1 (R (S;, 0F) — 0F),

SiE%fL‘

which can be reformulated as problem (2.8) by the definition of V;(.S;, ) and R;(.S;, 0). The
goal of problem (2.8) is to locate C; products with largest ratio of preference weight to price
sensitivity parameter from N; products within nest 7 € M and compare their summation with
v;00F, which only depends on the ordering of the ratio v;; (6} + ¢;; + 1/55)/ 5. 1f the largest
summation is greater than v;o0, then the optimal solution to problem (2.8) is corresponding
C; products, otherwise the optimal solution is an empty set. Hence the total number of
operations needed is O(N; log N;) (sorting) + O(C;) (printing the output) = O(n;logn;).
O
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The intuition of solving problem (2.8) is to include as many “good” products as possible
to see whether the summation of the ratio ZjeSi v;;(0F + cij + 1/B:5)/Bi; is larger than v;o0
or not. If so, the optimal solution is nonempty with size C;; otherwise it is empty. However,
if v;p = 0, the optimal solution is always nonempty and the size of it is C;, which will be
shown in next lemma. By observing the fact that 6 is a unknown nonnegative scalar, we

let S;(0;) be an optimal solution to the following problem

Vii 91 + ¢ + 1 i7
max i i+ 1/By) — v;01(S; # &)0;, (2.9)
JES; J

Define A; = {5'1-(92-)~: 0; € R>o}, then we can see that A; includes 51(91*) and
(S1(07), S1(07), -, Sm(05,); 07,05, ..., 0,) is an optimal solution to problem (4.1) according to
Claim 3. The next lemma shows the property of the size of S;(6;).

Lemma 4. For the optimal solution gz(HJ) to problem (4.9) with Y0, € R, we have either
1S;(8;)| = C; or|S;(6;)| = 0. Moreover, |S;(6;)| always equals to C; if vy = 0.

Proof. Proof: We prove this lemma by contradiction, assume that 51(6@) is nonempty and
|§ (0:)] < C;. Then there exists a product j satisfying that j' ¢ Si(6;) but j' € N; since C; <

. Let S/(Q ) = S;(6;)uj’, then we have S/(6;) is feasible since |S/(6;)| < C; and S/(6;) strictly
domlnates S;(6;) since Z;es UU(Q + ¢ij + 1/Bi;)/Bij—vioti > ZJGS, vij(ﬁi + cij + 1/8:5)/Bij—
vio#;, which contradicts with the hypothesis that S; (0;) is the optlmal solution to problem
(4.9) at ¢; and 1S:(6;)| < C;. Thus when S;(6;) is nonempty, we have |S;(6;)] = C;; when
S;(6;) is empty, we have |S;(6;)| = 0. Furthermore, if v;o = 0, then S;(6;) is always nonempty
since the objective value of an empty assortment is 0, which is strictly less than the objective

value of any nonempty feasible assortment.
]

Lemma 4 is insightful when C; = n; and v;g = 0, since the optimal assortment at nest ¢ in
this case is straightforward: S} = N,. If it applies to all nests, the joint optimization problem
(4.1) is reduced to the pricing problem under the nested logit model with no-purchase options.

For problem (4.9) with 6; € R, the objective function of which is rewritten as > ;. exp(h;(6;)),
where linear function h;(6;) is defined as h;(6;) = &;;—05;;0; and &;; = o — Bijci;—log(Bi;) —1
for all j € S;. We remark that only the ordering of these lines h;(6;) matters for a given
6;. [50] show problem (4.9) can be solved in O(n?) operations and the size of A; is O(n;).
Furthermore, next lemma shows the discontinuous property of V;(S;(6;),6;) .

Lemma 5. At the changing point 0; of Si(6,), Vi(5:(6;),6;) decreases discontinuously, both
w;i(S:(0:),0;) and 6;(S;(0;),0;) increase discontinuously.

Proof. Proof: Let S; = lim._ S;(6, — €) and S; = lim_ S;(6} + €) for a small € > 0. At any
changing point, one product with larger price-sensitivity parameter of current assortment
would be replaced by another product with smaller price-sensitivity parameter. Without loss
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of generality, assume that ¢; is the intersection point of lines h;, (6;) and h;,(6;) and product
41 is replaced by product j. We have S; = (S,\{s1}) U {j2} for ji,j2 € N;. Since product
J1 is replaced by product ja at 6, we have h;j, (0)) = hi;,(6;) and B, > fij,, which implies
that vij, (07 + cij, + 1/8ij1)/Bijy = iz (05 + Cijy +1/B8i3)/ Bige and 03y (07 + ¢ijy + 1/8i5,) >
Vij, (00 + cijy + 1/Bi5,), thus Vi(S;, 07) > Vi(S;,0:). It also implies that

Y

S0 =(=-1Y vg(Oi + iy +1/By) 1

Wi (—7,7 i

Vi jes, Bij Vi(S;, 07) i
1 0;;(0F + i + 1/545) 1 —
<(—-—1 AN *J Y — = W Szuei ;
<%‘ ) ]é. Bij Vi(S;, 00) Y ( )

where the inequality holds because 3 ;g vi;(0; + cij + 1/85)/Bij = X5, vij(0; + cij + 1/8i5)/ Bij-
Therefore, Vi(S:(6,),6:) drops discontinuously at ;. For similar reasons, we have 6;(S;, 6;) <
0;(S;,0%) since 7;(S;,05) > 7;(S;,0)).

O

Since A; = {S;(6;) : 0; € R=o} includes an optimal solution at nest ¢ € M to problem (4.1),
using A; to replace S; in problem (2.6) would not affect the optimality. Furthermore,we have
one 6; € Rxq corresponds to one assortment S;(6;) in collection A;, thus problem (2.6) can
be further reformulated as assortment subproblem in terms of optimizing over #; € R~ as
follows

*

f.eR>y 1 f%V"(SZ(Q’)’@(QZ Z) (2.10)
For the constraints in problem (4.11), there may not exist a one-to-one correspondence
between Z* and 6; according to Lemma 18, thus the feasible region of problem (4.11) is a set
of points satisfying the constraints, the size of which may be greater than one. Therefore,
we need to evaluate the objective function at those feasible points and select the point that
has the maximum objective value. This is different from what we have in Lemma 2 since
S;(6;) in the constraints of problem (4.11) is a function of @ rather than a fixed assortment
as in the constraints of problem (2.6).

Since Z* is a unknown nonnegative scalar, we let F;(z) be the optimal solution to the
following problem

max ‘/zgz 01 781 QZ—Z
0:eR>0 1 — 1y (5:(62), 8:)( ) (2.11)

where z € Rsg. If we define S;(z) = Si(Fi(2)) and 7, = {S;(2) : z € Rsg}, it follows that
; includes Si(Z*) that is an optimal solution to problem (2.6). According to Claim 2,
U ear Si(Z*) is optimal to problem (4.1). If problem (2.11) can be easily solved for Vz € Ry,

then we claim that collection A = {|J..,, Si(?) : z € Rso} includes an optimal solution to
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problem (4.1). We still have concerns about objective function in problem (2.11), if it does
not have nice properties, the size of A would be so large that S* and Z* are hard to be
obtained since z takes value in Rq in collection .A.

Let 1;(0;) = 0;(S:(6:),6:)6; — w;(S:(6:),6;), then {I7(2) : z € Rsp} is a set of points that
satisfy the constraints in problem (2.11). Without loss of generality, we let 6},60%,...,0F €

{I74(2) : z € Rsg} and SF = S;(6%) for k = 1,2,..., K. The objective function in problem
(2.11) for a fixed assortment S¥ can be denoted as TF(z) = V;(SF, 0%)(6F — 2) /(1 — +;) where

0% is implicitly defined in z = §;(S¥, 0F)0%F — w;(SF,0F). Next proposition shows that TF(z)

17 17
is a decreasing convex function of z.

Proposition 3. TF(z) is a decreasing convex function of z with —VF(SF, 0F) as its first

derivative. Moreover, if we have the assumption that V;(SF*,05') does not intersect with
Vi(SF,0%) in z domain, then TF(2) and T!(z) intersect at most once, where ki, ky €
{1,2,.., K}.

Proof. Proof: For ease of presentation, we denote V¥ = VF(SF 0F) TF = TF(2), wF =

17 (3

wi(SF,07), 6F = 6:(SF, 0F) and uf = w; (S}, 07) = X.cq, BijQj1(SF, 07). We have

7971 7771

oTk 1 oVF ook o0k
T % [ ‘9.14: o k A
0z 1—%[(9(‘);c 82(1 Z>+V’(8z )
_ 1 N L k k, 00;
—1_%[< %Uz'uz')az(ei 6i0i+wi)+v;<az 1]
R [1/%' — whul + (68 — 1)uror B i] _ oy
1y 02/00F P

where the last equality is due to the fact that dz/00F = 1/v; — wFu¥f + (68 — 1)ur6%. The
second derivative is

O*TF vk o6% 1
v T i kakk__ k, k 5(6_1 1;39[6—1 0
072 895 0z TV it (% withi & ( @ )uz z) > U,

where the last inequality is due to Lemma 2. Without loss of generality, assume that V;kl >

V" in z domain, we get

AT —T)

0z = _<Vz‘kl - Vsz) < 07

which implies that T} and T} intersect at most once in z domain.
O

We have |A;| decreasing convex curves, any two of which intersect at most once under
the assumption in Proposition 3. Similar to the approach of solving problem (4.9), only
the ordering of these convex curves matters to solving problem (2.11). In order to get
collection fii, it suffices to calculate the pairwise intersection points of these curves and
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select the highest curve, since S;(F;(z)) does not change when z takes value between two
consecutive intersection points. This calculation can be done very efficiently by binary
search or golden ratio search due to its convexity nature. We immediately have the following
corollary regarding the size of ..

Corollary 2. For any i e M, the size OfoZ 1s less than or equal to the size of <7, under the
assumption in Proposition 3.

If the assumption in Proposition 3 is met in our problem setting, it is possible that
collection o7 is polynomially bounded. Fortunately, we mange to show |<7| is O(N) by
proving the assumption in Proposition 3 is satisfied.

Theorem 1. The collection A = {{U,cp, Si(z) 1 z € Rsg} includes an optimal solution to
problem (4.1). Furthermore, the size of A is bounded by O(N).

Proof. Proof: First, we define a subset of pairwise intersection points of |<QZ‘ decreasing

. 1 ) )
convex curves in problem (2.11) as Z; = {20, 2}, .-+, 2V71 2V} where 20 = —c0 and 2! = oo,

such that S;(z) = S;(F;(z)) does not change when z € [z*7, 2%] for u = 1,--- ,U;. We get

)

| Al = >..cas Ui according to the definition of collection A.
Next, we prove the assumption in Proposition 3 is met. We define the set of changing
points of S;(6;) as C; = {62,0},---,07"", 67"} where 60 = —co and 6" = o0, such that

Si(6;) does not change when 6; € [077',0¢] for d = 1,---, D;, where D; = |A;| according
to the definition of set A;. We prove that for any two different assortments Sf%S? €

Ai, Vi(SF 651) does not intersect with V;(S*,6%) in z domain, where 0 satisfies z =

5;(SF 0ok — w; (S 6 for | = 1, 2. Without loss of generality, assume that Sk — G (M
where 0¥ e [#97! 9%] and S = SF(6;) where 0 e [6727! %] with d; < dp. In z
domain, V;(S, z) is defined on [6;( S, 651941 — (S5, 1), 6,(SM, 09)0% —w; (SF, 6]

for I = 1,2. By Lemma 18, we have V;(SM, M) > V;(S¥,0%), thus V;(SM,0) does not

intersect with V;(S¥2,6™) in 2 domain. By Proposition 3, T/*'(z) and T/?(z) intersect at
most once, where ki, ko € {1,2, ..., K}, which implies that U; < D; since the number changing
points of 5}(2) from these D; decreasing convex curves is at most D; according to Corollary
2. Asa vesult, we get |A] = Yoy, Ui < Doy Dy = Doyl Al. Since [ 4] is bounded by
O(n;), we have |A| is bounded by O(N) where N = ».._,, n; by definition.

O

Imaging Theorem 1 does not hold, then A = A; x Ay x- - -x A, and we have |A| = O(n]",.)
where np.x = max;eps n;. Then we need at least nj, . grid poiqts of z to find the optimal
solution to problem (4.1), which is intractable. In other words, S(z) is too sensitive to even

a small change in z which leads to the intractability without the support of Theorem 1.
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Fixed Point Representation

In this section, we first present a fixed point representation of problem (4.1). Second we show
the profit function is unimodal of z. Third, we prove Z* is the fixed point of a piecewise
convex function.

Define S(z) = Usiens S, (2), the optimal profit Z* is the fixed point of the total expected
profit function II(S(z ) z), which is defined as follows

~

[(3(2), 2) = st Vi), Fil2) Ri(5i2), Fil2)
’ v+ N, VilSi(z), Fiz)

Next lemma shows the properties of function I1(S(z), 2).

Lemma 6. The expected profit function H(S’(z), z) is unimodal of z and Z* is the fixed point
of II(S(z), 2).

Proof. Proof: For ease of reading, we let II = 1(5(2), 2 z), Fi = Fi(2), Vi = VZ(S (z),E(z))
Ri = RAZ(SZ(Z) E<Z))7 Ql = Ql(ﬁl(z)7ﬁ<z))7 Wi = wz(sz Z)?E(Z )7 T = 1(5
0; = 0;(S;(2), Fi(2)) and w; = u;(S;(2), Fi(z)). We have

o1l 3V1R+V‘m’ H‘m

_ i 3F; _
o7 A SR = 7,Q;u; (Il — z),

since 0V;/0F; = —v;Viui, Ri = 7.F; + viwi /(1 —;) and OR;/0F; = ~yi|wiu; — (6; — 1)u; Fi] /(1 —
7). We also get 0z/0F; = 1/v; — wiu; + (6; — 1w, F; > 0 from Lemma 2, it follows that

2
X S — M- Y e
0z ~ 0z/0F; 1= ywiug + (0; — D)yus F;
To prove the unimodality of II, it suffices to show that for any discontinuous point 2z’ of II, I
increases discontinuously at 2z’ < Z* and decreases discontinuously at z’ > Z*, since it implies
that II increases when z < Z* and decreases when z > Z* which ensures ummodahty of II.
We obtain that V;(S;, 2/)(R;(S;, 2') —2') = Vi(S;, 2')(R; (Sl, Z)—2') where S, = lim,_ 5;(2' —
€) and S; = lim_,o S;(2' +¢€), since 2’ is the intersection point of V;(S;, 2/)(R;(S;, 2') — ') and
Vi(Ss, 2)(Ri(S;,2') — 2'). For notational brevity, we denote V; = Vi(S;,2'), R; = Ri(8;,7),
Vi=Vi(S;,2') and R; = R;i(S;, 7). Let S = lim_q S(z —€) and S = lim,_, g(z’ + €).
We obtain V,R, — V;R; = (V, — V;)z, it follows that

iR)
)

=23

<
vo + D3 Vi Y, v0+2j#\/}+v (
ViR; + VR, — V, -V, _
_ Zg;«éz J ( A _)Z _ H(S,Z/),
vo + 25 VitV — (V= V)

(S, 2) =

V
-V,

7
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when 2’ < Z* because of the fact that 1) V, > V; according to Lemma 18; 2) 2’ < I1(S, 2/);
3) function h(x) = A__le is increasing for x > 0 if 2/ < A/B. Similarly, we have II(S, 2’) >

B
I1(S, 2') when z' > Z*. Therefore, the unimodality of II holds. Furthermore, II reaches its
maximum when Il = z. O

We can use binary search for the unimodal profit function II(S(2), z) to find the optimal
Z*. If we define f(z) = ZleMV;(S’Z(z),E(z))[Rl(S’l(z),E(z)) — z], then the fixed point
representation I1(S(z), z) = z can be rewritten as f(z) = voz, implying that Z* is the fixed
point of function f(z)/vy. Next proposition shows the piecewise convexity property of this
representation.

Proposition 4. f(z) is a decreasing piecewise convex function of z. Moreover, the first
derivative of f(z) is increasing and there exists a unique solution Z* that satisfies f(z) = vpz.

Proof. Proof: Let set T; = {20, 2}, -+ 257! 2K} be the set of pairwise intersection points

in problem (2.11) where 20 = —o0 and 2*' = o0, such that Si(z) = Sl(]-](Az)) does not change
when z € [2F71 2F] for k = 1,--- | K;. Let TF(2) = Vi(Si(2), Fi(2))[Ri(Si(2), Fi(2)) — 2] for

K3
z € [2F71 2F], then TF(z) is a decreasing convex function according to Proposition 3, thus

A

Ti(z) = Vi(Si(2), Fi(2))[Ri(Si(2), Fi(2)) — 2] for z € Rsy is a piecewise decreasing convex
function in R, where the first derivative 0T;(z)/0z changes discontinuously at zF. To prove
the first derivative of f(z) is increasing, it suffices to show 07;(z)/0z increases discontinuously
at 2F. Let S; = lim_ S;(zF—€) and S; = lim_,o S;(zF +¢€), then we get V;(S,, 2¥) > Vi(S;, 2F)

il 19~
since V;(S;, 2F) and V;(S;, 2¥) do not intersect in z domain, which is shown in the proof of

=17 "1

Theorem 1. It follows that
oT;(z)

i LG = —(Vi(Si, #) = Vi(S:, 25)) < 0,

My~
z—2k T 0z z—>z£€+ 0z

which implies that 0T;(z)/0z increases discontinuously at zF for k € {1,2,...,3}. f(2) =
Dienr Li(2) is also piecewise convex since piecewise convexity is preserved under addition.
The fixed point of f(z)/vg is unique since f(z) is a decreasing piecewise convex function. [J

This piecewise convexity property can further facilitate computing Z* [46]. To summa-
rize, we propose the assortment subproblem by solving the basic assortment subproblem and
replacing the feasible region of joint subproblem. Then we show there exists a piecewise
convex fixed point representation of problem (4.1) which can be solved efficiently.

2.5 Joint Optimization Under Space Constraints

In this section, we consider the joint constrained assortment and price optimization problem
(4.1) under space constraints. We show a 2-approximate solution can be found through
a piecewise convex fixed point representation. Let Z* = II(S*, P%) be an a-approximate
solution to problem (4.1) where aZ® > Z*. First, we show how to construct a collection J*
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that contains an a-approximate solution to problem (4.1). Then, we manage to obtain A% <
3 that also includes an a-approximate solution to problem (4.1) with | A% = O(nmaxN).
Third, we show Z¢ is the fixed point of a piecewise convex function.

As in Section 2.4, 0F is still defined as 0 = v, Z2* + (1 — ;) R;(SF,0F) if SF # & and
0F = Z* otherwise, then we have the following claim.

Claim 4. For all nest i € M, if (S, f’ ) satzsﬁes \~/( P?)I'Yi(aRi(Sf‘,f’?) -0 =

Vi(SE, PH)Yi(R,(S*, PF) — 0%), then (52,5¢,...,5%: P, P,,...,P, ) is an a-approzimate so-
lution.

The proof of this claim is omitted because it is similar to the proof of Claim 3. One
can check that Lemma 3 continues to holds under space constraints, thus we can focus on
maxg,es, Vi(Si, 0F)1 (Ri(S;, 0F) — 0F). For i e M, we let S/(6;) be an a-approximate solution
to the following problem

vij(0i + cij + 1/55)

max . (2.12)
SZE\S-L' jGSi 5”

Note the objective function in problem (2.12) is different from the one in problem (4.9) under
cardinality constraints. Moreover, [18] show problem (2.12) is NP-hard. Let SO‘(H ) = Si(0;)
if 3 jeg 0, vis(0i + cij + 1/853)/Bij = viobi; otherwise Si(0;) = &. Denote P = 0*(5%(6¥)).
More premsely, P, — (P = j € S%(6*)) where p P = 0 +ci;+1/Bi5, then we have the following
lemma.

~ ~

Lemma 7. (S¥(0F),58(6%), ..., S2(6%); P}, P;, ..., P, ) is an a-approzimate solution to prob-
lem (4.1).

Proof. Proof: For ease of reading, we denote V* = Vi(S}, P;), Rf = R;(S},P}), S
Se(0F), Vi = Vi(Se(07),Py), Ri = Ri(52(07),P;) and vy = vy5(07 + cij + 1/8;). According
to Claim 4, it suffices to prove \N/Z-l/%(afii —0%) = (V)Y (R — 7). If S¥ # F, then we get

f/il/%(OzR 0F) = « Z v;; (07 + Z ;07 — vio1( S #* )07
jeSO‘ ESO‘
>« Z % —v1(S* # )67 Z Ui — vt
jeSa gl jeS‘f‘ Y
0wl = Y T gl (S # @) = (V) (RE - 6),
]eS* 6” jes¥ BZJ

where the last inequality holds because S is a feasible solution to problem (2.12) at 0; = 0
and S¢(6F) is an a-approximate solution. If S} = ¢, then we obtain (V;*)Y(R¥ — 6¥) = 0.
This inequality also holds since V7 (R; — 6%) > 0, implying V;"" (aR; — 6%) > 0. O

For nest i € M, we define AY = {S%(6;) : 6; € R=g}. Set a = 2, the size of A is O(n?)
if we apply the algorithm that is described in Section 5.1 in [18] by defining linear functions



CHAPTER 2. JOINT NESTED LOGIT MODEL 22

h;(0;) = exp(&,;; — Bi;0;) where &;; = ay; — Bijei; — log(Bi;) — 1 for j € N;. [18] show that
a = 2 can be further refined to @ = 1/(1 — €) under certain assumptions of w;;. By noting
that 67 is an unknown nonnegative scalar, 3 can be constructed as the cartesian product
of all A for i € M. This finding is recorded in next proposition.

Proposition 5. Collection 3* = Ay x A§ x ... x A% contains an a-approzimate solution.

Under space constraints, let (S P®) be optimal to the following problem

Z“ = max max II(S,P). (2.13)

Se3* PeRY,
The joint subproblem under space constraints is formulated as follows

mnax max ‘/;(SZ, Pz)(Rl<Sl, Pz) — Za). (214)
S;€AS P;eR%Y
Similar to Claim 2, if we let (5%, P;) be optimal to problem (2.14), then
(52, 8¢5, P] Py, ..,P, ) is an optimal solution to problem (2.13), which is an a-
approximate solution to problem (4.1).
By following the exact same logic in Section 2.4, problem (2.14) can be reformulated as

follows

max
SiEA?

s.t. Z% = 51(527 91)91 — wi(SZ-, 97,),
Since A{ is defined as A$ = {Sza(@z) : 0; € Ry}, implying that for every 6; € R, there

is one corresponding assortment S’f (0;) € A2, then problem (2.15) can be rewritten as the
following optimization problem in terms of decision variable 0; € R-q:

1 (0%
=, VB 6)(6: = 27 (2.15)

1 ~
max V; Sza Hz 701' 91 —zZ°
0,eRz0 1 — Yi ( ( ) )( ) (216)

st. Z%=0,(5%(0;),0:)0; — wi(S%(6,),6,),

(2

which is referred to as the assortment subproblem under space constraints. Since Z% is an
unknown nonnegative scalar, we let F%(z) be the optimal solution to the following problem

1 _
max Vi(S57(0:),0:)(0; — =
V(569006 — 2 o1

s.t. z = 51(5?(91), 91)91 — WZ(SZOC(QZ), 91),

where z € Rsg. If we define S%(z) = S%(F2(z)), then we have the following theorem.

Theorem 2. The collection A* = {{J,.yy S%(2) 1 2 € Rso} includes S®, the size of which is
bounded by O(nmaxN).
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The proof of Theorem 2 follows directly from the proof of Theorem 1, we have |&7¢| <
Dvieas [ = a1 < Numax D iens i = NmaxV. Our approach is based on discretization of
z to find the fixed point, Theorem 2 guarantees that the number of iterations is bounded.

Following the similar ideas in Section 2.4, we use the proposition below to end this section.

Proposition 6. Define S*(2) = |,y S¢(2), then Z* is the fived point of function T1(S%(z), z)
that is defined as

(3 (2), 2) = Siear V(ST (), FE()R(S? (2), 2 (2))
| Vo + e VilSP(2), F2()

Furthermore, T1(5%(z), 2) is a unimodal function of z. If we define f*(z) =
S Vi(S2(2), FR(2)[Ri(S(2), F&(2)) — 2], then f(2) is a piecewise convex function of z
and Z% is the unique fized point of f*(z)/vq.

2.6 Numerical Illustration

In this section, we illustrate our solution approach to problem (4.1) under cardinality con-
straints on an example of the nested logit model with 2 nests and 6 products. The nested
structure is presented in Figure 4.1. Compared to the cardinality constraints, we can only
get a 2-approximate solution to problem (4.9), other than this, the solution approach under
space constraints is same as it is under cardinality constraints. Therefore, we can also use
this illustration to demonstrate space constraints cases with minor adjustments.

Figure 2.1: Nested structure

In the nested logit model, nest 1 has 4 products that are indexed by (1, j) for j € {1, 2, 3,4}
and nest 2 has two products (2, 1) and (2,2). There are three no-purchase options (0), (1,0)
and (2,0). Table 4.2 shows the input parameters of problem (4.1). Specifically, the preference
weight of (2,0) is set to be zero.
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product | (1,1) <1,2) <(1,3) (1,4) <(2,1) <(2,2) || nest v v C;

a; 30 25 176 95 25 10 1 092 5 2
B; 6 3 12 05 3 2 2 08 0 2
¢ 1 34 8 10 4 2 |[ Vo 55

Table 2.1: Parameters setup for the joint optimization problem under cardinality constraints

Ome can check that it satisfies our assumption on price sensitivity parameter ;. By
Lemma 4, we have Sy(2) = {(2,1),(2,2)} for z € R, thus we focus on nest 1. Figure 4.2
visualizes the optimization procedure of obtaining the optimal solution to problem (2.11) at
nest 1.

(a) Linear functions (©) z = 8:(S1(81), 61)85 — ©:(S1(81), 81)

01
(b) Optimal solution S,(8,) to problem (9) (d) Objective function of problem (11) with respect to z
T \naiesies o N
200 : : : 301
20+
100
V1004 101 :
0 3.00 3.'4% 3.82 4.40 2.98 3.39
] z

Figure 2.2: Solution approach visualization to problem (2.11) at nest 1

In Figure 4.2(a), there are 4 linear functions that are defined as h;(61) = du; — B1,0;
and &y; = aq; — Bijcr; — log(B;) — 1 for j € {1,2,3,4}. Since the cardinality C; = 2, then
we have S (6;) = {(1,1),{1,2)} when 0, € [0,3]; S;(61) = {{1,2),{1,3)} when 6, € (3,3.4];
S1(6y) = {(1,3),{1,4)} when 6; > 3.4. In order to get the optimal solution S () to problem
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(4.9), we need to compare Zjeél(el) v1;(61 + c1j + 1/515)/B1; with vigfy, which is shown in
Figure 4.2(b): S;(61) = {(1,1),{1,2)} when 6; € [0,3]; S1(f1) = {(1,2),{1,3)} when 6, €
(3,3.4]; S1(61) = {1,3),(1,4)} when 6; € (3.4,3.82] and S,(6,) = & when 6, > 3.82.
Figure 4.2(c) visualizes the constraint in problem (2.11), from which we can see that for
certain ranges of z, there may not exist a one-to-one correspondence between z and 6;. It is
consistent with the discussion before problem (2.11). In Figure 4.2(d), the objective function
of problem (2.11) in terms of z is consist of three convex curves, by selecting the highest
curve, the optimal solution Sy (z) = {(1,1),(1,2)} when z € [0,2.98]; S1(z) = {(1,2),{1,3)}
when z € (2.98,3.39]; S1(z) = {(1,3),(1,4)} when z € (3.39,3.80] and S;(z) = & when
z > 3.80. Therefore, we obtain S(z) = S;(2)|JS2(z) = {(1,1),(1,2),(2,1),(2,2)} for
2 e [0,2.98]; S(z) = Sy(2) U Sa(2) = {{1,2),(1,3),(2,1),(2,2)} for z € (2.98,3.39]; S(z) =
S1(2) U Sa(2) = {(1,3),{1,4),(2,1),(2,2)} for z € (3.39,3.80] and S(z) = S1(2) | Sa(z) =
{(2,1),(2,2)} for z > 3.80. Note that || < || + |#| < 6 where & = {S(z) : z € R},
oty = {S1(2) : z€ R} and 2% = {S5(2) : z € R}, which supports Theorem 1.

(e) Unimodality of profit function H(§(z), z) (f) Piecewise convex fixed point representation
50
Z* = (3.23, 3.23)
3 i S 40 7
301
2 .
201
17 : : . 101
2.10 298 339 3.80 298 323 3.39 3.80
z z

Figure 2.3: Unimodality and piecewise convexity

Figure 4.3 shows the unimodality of profit function II(S(z), z), which addresses Lemma
6; and the piecewise convexity that addresses Proposition 4. In Figure 4.3(e), the optimal Z*
satisfies the fixed point representation I1(S(z), z) = z, which is the intersection point of the
solid 45°-line and the unimodal profit function TI(S(z), z). We obtain Z* = 3.23, implying
that the optimal expected profit that we can get from this nested logit model with parameters
in Table 4.2 is 3.23 and the optimal assortment is S(3.23) = {(1,2),(1,3),(2,1),(2,2)}. We
can see from Figure 4.3(e) that profit function IT(S(z), z) jumps discontinuously at 2.98 < Z*
and drops discontinuously at 3.39 > Z*, which is an example of Lemma 6. Figure 4.3 shows

the piecewise convex fixed point representation, line vyz intersect with f(z) at Z* = 3.23.
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By looking up previously stored table, the optimal prices are pj, = 6.99, pi; = 12.09, p3, =
7.62, pi, = 5.79.
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Chapter 3

Constrained Assortment and Price
Optimization

3.1 Literature Review

[26] provide us an extensive review of the assortment and price optimization problem under
different models and scenarios. In this subsection, we review the literature on the different
types of customer choice models.

If the customer choosing behavior is modeled under the multinomial logit model, then
[42] formulate the unconstrained assortment optimization problem with a newsboy model
considering its inventory cost. [44] point out that the optimal structure follows a simple form.
[28] generalize their work to the network revenue management problem by proposing a linear
program. [39] find the optimal solution in polynomial time under cardinality constraints
with the existence of a no-purchase option. Similarly, [47] considers a generalized attraction
model with the capacity constraints. [40] study the robust assortment optimization problem
by assuming some of the true parameters to be unknown. As an extension of the multinomial
logit model, the mixed multinomial logit model can be used to model more realistic choice
scenarios. [7] develop a column generation algorithm to efficiently find an acceptable solution
under the mixed multinomial logit model. [14] also present an approximation algorithm for
the assortment optimization problem with capacity constraints under the mixed multinomial
logit model.

[13] shows that the multinomial logit model suffers from independence of irrelevant al-
ternatives (IIA), red-bus, blue-bus paradox is one of the most famous examples to show that
the multinomial logit model is unrealistic in some cases ([34] and [5]). To resolve this limita-
tion, [4] first introduced the nested logit model. [35] shows that the nested logit model is a
member of generalized extreme value (GEV) models. For the unconstrained problems under
the nested logit model, or the two-level nested logit model, [27] analyze both centralized and
decentralized regimes. [11] propose a linear program to obtain the optimal assortment in
polynomial time. [29] develop a greedy algorithm to find an approximate solution. The con-



CHAPTER 3. CONSTRAINED ASSORTMENT AND PRICE OPTIMIZATION 28

strained assortment optimization problem becomes much harder to solve. [36] use an integer
programming to analyze the assortment optimization problem with cardinality constraints
under the latent class choice model. By assuming there is a fixed number of products, [38] de-
velops an approximation algorithm for the assortment optimization problem with cardinality
constraints under the two-level nested logit model. [18] study the assortment optimization
problem with both cardinality and space constraints under the two-level nested logit model.
The authors impose constraints on offered assortment in each of the nests separately, in this
case, the assortment optimization problem with cardinality constraints can be solved by a
linear program. However, this problem becomes NP-hard with space constraints. The au-
thors propose an approximation algorithm with the performance guarantee of 2. [16] study
the assortment optimization problem with cardinality and space constraints across nests un-
der the two-level nested logit model. [52] consider the joint optimization of the constrained
assortment and price optimization problem under the two-level nested logit model with a
no-purchase option in every choice stage.

The two-level nested logit model only allows us to analyze one-dimensional dissimilarity
between products. The multilevel nested logit model, including the two-level nested logit
model as its special case, can describe the customer choosing behavior with multiple stages,
which is closer to the real choice process. For applications of the multilevel nested logit model
with more than two levels, a four-level nested logit model is applied to predict the recreational
fishing demand [8]. [25] show applications of the multilevel nested logit model with an
arbitrary number of levels in the recommendation system. The assortment optimization
problem has also been studied under the multilevel nested logit model. [51] study the joint
optimization of the assortment and pricing problem, but the authors only consider one no-
purchase option in their model, where the customer can exit the system without buying
only at the beginning of her choosing process. [30] consider the assortment optimization
problem under the multilevel nested logit model with fixed number of products and develop
a polynomial time algorithm to identify the optimal assortment. However, they do not
consider cardinality or space constraints, and just study the case where there is only one
no-purchase option in the first level of the tree structure; this means the authors assume
that if a customer wants to leave without purchasing anything, she must make the exiting
decision right after entering the system, otherwise she should buy a product in the end.
This assumption is unrealistic for modeling the customer choosing behavior in real world
scenarios. Our approach relaxes this assumption by allowing the no-purchase option in
every stage of the customer choice process. This essay studies the constrained assortment
optimization problem with both cardinality and space constraints under the multilevel nested
logit model, where there is a no-purchase option in every nonleaf node. To the best of our
knowledge, we are the first to study the constrained assortment optimization problem under
the multilevel nested logit model. The algorithms that are used under the multinomial or
two-level nested logit model, such as the linear program in [18], cannot be generalized to
the multilevel nested logit model case. In Sections 16 and 13, we will develop an efficient
algorithm for the multilevel nested logit model, which is of comparable complexity to the
algorithms that solve the unconstrained assortment problem under the multilevel nested logit
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model.

For the price optimization problem under variants of the multinomial logit model, [20]
firstly show that the multinomial logit profit function is not jointly concave in prices even
when the price-sensitivity parameters are fixed to be identical. However, the profit function
under the multinomial logit model is concave in market share variables that have a one-to-
one mapping with the price variables ([43] and [15]). Under the multinomial logit model, [2]
show that there is a unique optimal price vector satisfying first order condition, the method
of which is also used by [21] and [1] to analyze the price optimization problem with respect
to the markup variables that is defined as price minus cost. [48] also uses the multinomial
logit model to study the pricing problem, which is generalized by [31] to the two-level nested
logit model, where price-sensitivity parameters are assumed to be identical within each nest
but different across nests. When the price-sensitivity parameters are different across all the
products, the profit function is no longer concave in the market share vector even under the
two-level nested logit model. [19] point out that the adjusted markup is constant within each
nest by checking the first order condition. Furthermore, the multiproduct profit function can
be reduced to a unimodal function via introducing the adjusted nest-level markup that has
a one-to-one correspondence with the price vector. However, all the above literature only
considers the price optimization problem under the one-level nested logit model (multinomial
logit model), or the two-level nested logit model. [30] study the pricing problem under the
multilevel nested logit model, but their iteration method can only find a local maximum
because the authors still consider the pricing problem with respect to price vector, even
though it has already been proved that the profit function is nonconcave under the two-level
nested logit model. [22] study the centralized pricing problem under a tree structure, but the
no-purchase option can only exist in the first level of their model and they do not consider the
unconstrained or constrained assortment optimization either. To the best of our knowledge,
we are the first to study the price optimization problem under the multilevel nested logit
model with a no-purchase option existing in every nonleaf node of the tree structure.

The remainder of this essay is organized as follows. In Section 3.3, we address the con-
strained assortment optimization problem. Then Section 3.4 presents the price optimization
problem with given assortment.

3.2 Main Results and Contributions

We summarize our main results and contributions as follows:

1. In this essay, we consider the constrained assortment and price optimization problems
under the m-level nested logit model with n products and we allow a no-purchase option
to appear in every period of customer choosing process. For the constrained assortment
optimization problem, we discuss two subproblems and propose a way to stitch the optimal
sub-assortments together to get the global optimal (an a-approximate) assortment under
the cardinality (space) constraints in polynomial time. For the price optimization problem,
we formulate it as a maximization of a unimodal profit function, thus it is tractable to find
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the optimal pricing strategy. To the best of our knowledge, there is no work on constrained
assortment optimization problem under the multilevel nested logit model in current litera-
ture. Moreover, there is no literature allowing the existence of a no-purchase option in every
node of the multilevel tree structure for both assortment and price optimization problems.

2. For the constrained assortment optimization problem, we use an m-level tree with n
products to describe the customer choice structure. The cardinality or space constraints are
imposed on the nonleaf nodes in the second lowest level separately. Our main result is that
the optimal assortment under the cardinality constraints can be obtained in O(n max{m, k})
operations and a 2-approximate assortment under the space constraints can be obtained in
O(mnk) operations, where k is the maximum number of products within any node in level
m — 1. [30] study the unconstrained assortment optimization problem under an m-level
nested logit model and their algorithm runs in O(mnlogn) time, but it is not possible to
implement their approach to deal with the constrained cases. It is interesting to find that
our algorithm for the constrained problem is even more efficient than the unconstrained
algorithm in [30] when k is relatively small. The reason why our constrained assortment
algorithm is faster is that the core step of the unconstrained assortment algorithm of [30] is
to compute the pairwise intersection points of lines, in which sorting algorithms are required.
However, we manage to avoid constantly using sorting algorithm by revealing the hidden
ordered properties of candidate sub-assortments.

3. In the multilevel nested logit model, every nonleaf node has a no-purchase option,
which allows customer to exit at any period of their choosing process. For both constrained
assortment and pricing optimization problems, it is a non-trivial extension of the case where
there is only one no-purchase option that is associated with root node in the multilevel nested
logit model. Particularly for the price optimization problem, the formulation of node-specific
adjusted markup is more generalized and cannot be obtained by the approach in [22] that
consider the pricing problem under multilevel choice structure with only one no-purchase
option. We are able to show that the objective function can be reduced to a unimodal
function by dimensional reduction of creating mapping between the node-specific adjusted
markups.

4. Many existing literature regarding the assortment and price optimization problems
under the multinomial logit model or the nested logit model turn out to be the special
case of ours. For the constrained assortment optimization problem, we generalize the works
of [39] (multinomial logit model) and [18] (two-level nested logit model) to the multilevel
nested logit model with cardinality and space constraints. For the unconstrained assortment
optimization problem in [30], it becomes a special case of the constrained problem when the
constraints are set to be large enough, i.e. larger than k. [52] consider the joint optimization
of assortment and price under the two-level nested logit model with no-purchase options.
However, their approach cannot be directly applied to the multilevel nested logit model
since the structure of the optimization model changes fundamentally when it comes to the
nested logit model with the number of levels that is larger than three. Compared to [30], our
approach is more general in three folds: first, consider both cardinality and space constraints;
second, allow a no-purchase option in every stage of the customer choosing process; third,



CHAPTER 3. CONSTRAINED ASSORTMENT AND PRICE OPTIMIZATION 31

the computational complexity O(nmax{m,k}) under the cardinality constraints and the
complexity of O(mnk) under the space constraints are comparable to O(mnlogn), and even
more efficient for a small k. Besides the constrained assortment optimization problem, we
consider a price optimization problem under the multilevel nested logit model with product-
differentiated price sensitivities. We generalize [48] (multinomial logit model) and [19] (two-
level nested logit model) to the multilevel nested logit model. Furthermore, for the pricing
problem under the multistage choice model, we are also able to generalize [22] in terms of
letting a no-purchase option exist in every stage of the customer choosing process, which
we believe is the first in the literature. [51] study the joint optimization of assortment and
price problem under the multilevel nested logit model with only on no-purchase option that
is connected to the root node. However, their approach fails to work when the no-purchase
options are allowed to exist in every choosing stage.

In the following subsection, we address the literature based on the assortment and price
optimization perspectives.

3.3 Constrained Assortment Optimization

In this section, we present the constrained assortment optimization problem and our so-
lution approach. We first show the problem formulation, then discuss how to construct
candidate assortments containing the optimal or a-approximate solutions. Before showing
the algorithms for assortment optimization with cardinality or space constraints, we address
the properties of the optimal or an a-approximate assortment for an arbitrary intermediate
node.

Problem Formulation

We formulate the constrained assortment optimization problem under the multilevel nested
logit model in this subsection. We use the multilevel nested logit model with m levels that is
indexed by M = {1,2,...,m} and n products to model a multistage decision-making process
of the customer. In this tree structure, each node represents a subset of the entire choice
space and each level stands for a choice criterion, or a specific attribute of products, such as
price, quality, category, etc. Specifically, the root node includes all the candidate products.
The node in level [ (1 <1 < m —1) represents the subset of products that satisfy all the first
[ choice rules. The customer choosing behavior can be described under this tree structure:
start from the root node, then the customer has two options in general: either to choose
the no-purchase option in the first level to leave without purchasing; or to choose one child
node, which corresponds to a subset of products satisfying the first choice criterion, of the
root node to narrow down her choice space. If she does not choose the no-purchase option in
the first level, then she still has two possible choice alternatives: either to leave or to further
narrow down her choice space. This choice procedure is being conducted repeatedly until
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she chooses a no-purchase option or an actual product in level m that is the lowest level of
the tree structure.

Let V and E denote the set of nodes and edges in this tree structure, respectively. We use
an [-dimensional (1 <[ < m) vector (i1, i, ...,4;) to denote the node ¢ in level I. Moreover,
the no-purchase option iy in level [ + 1 (0 < I < m — 1) is denoted as (i1, g, ..., 4—1, %, 0).
A subset of products that satisfy the first [ attributes, denoted as N;, is affiliated with this
node ¢. For example, buying clothes in a retail store can be formulated under a three-level
nested logit model, the attribute for the first level is category, price is for the second level,
actual clothes are in the third level. A node in the second level can correspond to a subset of
clothes that have the following attributes: T-shirt (category) and $100 - $200 (price). The
root node is in level 0, then the no-purchase option rootg in level 1 is a one-dimensional vector
(0). Specifically, the set of products of root, which is the entire choice space, is denoted as
Nioot- The total number of products is n = |Nyget|. The set of products for a leaf node is the
product itself. In this notation, we can see that an actual product (or a no-purchase option),
which is a leaf node in the lowest level, is labeled as an m-dimensional vector (iy, s, ..., i),
and specifically i,, = 0 for the no-purchase option. For the nonleaf node i, we use an
(I — 1)-dimensional vector (i1, 72, ...,4;—1) and an (I + 1)-dimensional vector (i1, i, ..., j,941)
to denote its parent and child node, respectively. We use i”’ to denote i’s parent node and
ic to denote the set of children nodes of node i. Then we have N; = | J ici. IV Particularly,
ic = ¢ if i is a leaf node or a no-purchase option; if 4 is root, then we define i = .
We can imagine that an edge in set E connecting one nonleaf node and its child node as a
one-step choosing process: moving to its child node through this edge can be interpreted as
starting to consider an additional attribute of products or choosing to leave without buying.
Thus for a customer at a nonleaf node of this tree structure, she can either choose to leave
the system without further considering any more attributes of the product (the no-purchase
option), or to move to one of its children nodes.

A subset S; of N; is used to represent the assortment of node ¢. Particularly, if ¢ is a leaf
node, then S; is the product i itself or ¢F; if node i is a no-purchase option at an arbitrary
level, then S; is an empty set. For a nonleaf node 4, we define S; = J S;, then Syoet is
the assortment of the whole system.

Throughout the essay, the two types of constraints, cardinality and space constraints, are
defined on the nodes in level m — 1 separately. For the ease of presentation, a node in level
m — 1 is referred to as a basic node, the set of which is denoted as %. For any node i € V', we
use ; to represent the collection of feasible assortments satisfying certain constraints. For
all i € A, the cardinality constraints can be expressed as §; = {5, : S; = Ujeic S, |Si| < Cjl,
where C; is the maximum number of products for basic node i and |S;| represents the number
of products in S;; for the space constraints, 3; = {S; : S; = Ujeic Sj?Zjeic w; < S;}, where
S; is the maximum available space for basic node 7 and w; is the space consumption of
product j. To make sure that all the products are eligible to be offered, we assume that
w; < S; for any leaf node j € ic. If node 7 is neither a basic node nor a leaf node, then the
feasible set ; is the cartesian product of its children nodes’ feasible sets &; = X S,

JjE€ic

J€ic
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The upside-down tree in Figure 4.1 is used as an example to better explain the notation
system and feasible sets for both constraints. We address the following nodes as repre-
sentatives for illustrating our vector representation: Ry = (0),A = (1), 4y = (1,0),D =
(1,2),Dy = (1,2,0) and I = (1,2,1). For the node A, we have A” = R, Ac = {C, D}.
For cardinality constraints, if Sc = {Sc : U;e,, Six [Sc] < 1} = {&,{G}, {H}} and Sp =
{Sp : Ujei, S 1Spl < 1} = {, {1}, {J}}, then the feasible set of node A with cardinality
constraints is Sy = S¢ X Sp = {I, {G}, {1}, {H} {J} G, I}, {G, J},{H, I}, {H,J}}. One
feasible assortment of the node A is Sy = {H, I} < 4. Similarly, for space constraints, if
wg = wr = 1, w, = wy = 2, and Cc = Cp = 2, then the feasible set of node A with space
constraints is Sy = {J,{G},{I}, {H},{J},{G, I}}. One feasible assortment of node A with
these space constraints is Sy = {H} < /.

Level 0 @
Level 1 @ e e
Level 2 @ @ @ @ @ G

b3 @) (@ @ L O O & © © &) @ @
Figure 3.1: Example for the multilevel nested logit model

The preference weight of a leaf node describes the attractiveness of the product that
is associated with this leaf node. The preference weight for a leaf node j is denoted as
Vi({7}) = v;. Generally speaking, the preference weight Vjy for the no-purchase option i is
greater than or equal to zero. Then for each nonleaf node 7, its preference weight is calculated
recursively as

i
Vi(S;) = (‘/201(51' + )+ Z Vj(Sj)) :
Jeic
where S; is the assortment of node i. 7; € (0,1], the dissimilarity parameter for node i, is
assumed to be a constant. For the root node, we set v00s = 0 without loss of generality,
thus Vieot(Sreot) = 1. The constraints on ; ensure that the multilevel nested logit model is
consistent with utility maximization theory [34]. Then for node 4, the correlation between
the products’ utilities of its children nodes is a decreasing function of ~;, the closer ~; is
to one, the less positively correlated the utilities are. Moreover, if 7; = 1, then the nest
structure of node 7 degenerates: its children nodes directly connect to its parent node. If the
dissimilarity parameter 7; exceeds one, this model can still be a random utility model under
some circumstances [33]. In this case, adding a product to assortment S; can increase the
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probability of choosing other products in S;. [11] relax the constraints on the dissimilarity
parameter under the two-level nested logit model, then the synergistic effect within the
assortments of children nodes can be modeled.

[30] assume that if a customer moves from the root node to a node that is not a no-
purchase option, then she must make a purchase before leaving. Inspired by [18], our model
formulation relaxes this strong assumption. The indicator function 1(-) in V;(.S;) allows us to
model the scenario where even after reaching a specific node, the customer can still choose
to leave the system without going deeper into the tree structure and making a purchase
in the end. Our formulation is closer to reality because the customer will not notice node
1 when S; is an empty set; otherwise when S; is not empty, the customer still has the
probability of Vjo/V(S;)*7 to leave without any purchasing. However, [18] consider this
assumption relaxation under the two-level nested logit model for the constrained assortment
optimization problem, which is generalized by our approach to the multilevel nested logit
model.

In the multilevel nested logit model framework, if we assume that S; is not empty and
node 7 is one of its children nodes, then the conditional probability of choosing assortment
S; given S; is computed as

V;(S;)
Viol(Si + &) + Xjei. Vi(Si)

Q(Sj1S:) =

When S; is empty, it means that we do not offer any products of node ¢ so the customer
simply will not consider purchasing anything in S;. Hence we define Q(5;]5;) = 0/0 = 0 for
S; = J, indicating the customer makes purchases in an empty assortment with probability
Zero.

From here, we will present the formulation of the constrained assortment optimization
problem. Using similar notations as in [30], R;(S;) denotes the profit of the assortment S;
for any node i € V. If i is a leaf node, then R;(S;) = 1(S; # &)r;, where r; is the profit of
the actual product i, and R;() = 0 if i is a no-purchase option. It shows that if a customer
chooses a non-empty leaf node, or an actual product, then a profit will be obtained with
certain probability. Specifically, R;(S;) = 0 if node ¢ is a no-purchase option or S; is empty.
If 7 is a nonleaf node, the expected profit is defined recursively as

Ri(Si) = Z Q(5;15:) = R;(5;)

_ Djeic Vi(Si)R;(S;)
Viol(Si + &) + Xjei. Vi(S5)

If S; = &, then Q(5;|S;) = 0, so R;(S;) = 0. According to the above definition, the total
expected profit from a customer is Ryoot(Sroot). We use S . and Z* to denote the optimal
solution and the corresponding maximum profit, respectively. Let S . and Z® denote an
a-approximate solution and its profit, where aZ® = Ry o0t(S%o) = Z% = Rioot(Skot)-
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Moreover, we formulate the a-approximate (o > 1) assortment optimization problem as

Z% = max Rr00t<Sr00t>7 (31)

Sroot g‘Yroot

where Q¢ is a subset of 00t and contains an a-approximate solution as its best assortment.
How to construct 3¢, will be shown in Section 3.3. Throughout the essay, we use S;* to
denote the optlmal solution to problem (3.1) at node i € V. Specifically, we have S} = S}
and S5, oot~ Problem (3.1) is highly nonlinear, the entire choice space is so large that

it is impossible to find the optimal solution without an efficient algorithm.

:\S‘

Basic a-approximate Assortment Subproblem

In this subsection, we decompose problem (3.1) into a-approximate assortment subproblems
that can be solved efficiently when the searching space has small size and propose an alterna-
tive formulation of the subproblem, which is referred to as basic a-approximate assortment
subproblem.

Let h be the parent node of ¢ € V', we define

o _ +00 , 1f R;(S) < 9 (3.2)

' Yith + (L —w)Ri(SF) , if Ri(S7) = 1 '
We set t¢ . » = 0 by convention, then £, = Rioot(Stoe;). The scalar t§ can be computed from
top to bottorn when all the S are known. Define the a-approximate assortment subproblem
at an arbitrary nonleaf node ¢ € he with parameter a > 1 as

S@Caf {Vi(Si) (Ri(Si) — t3)}- (3.3)
Problem (3.3) at the root node is equivalent to (3.1) since t¢ » = 0 and Vigot(Sroot) = 1. If
3¢, the collection of feasible a-approximate assortments, is a relatively small set, then the
subproblem (3.3) is easy to solve by checking all its subsets. In the following sections, we
aim to reduce the size of set 3¢
We can see that S¢ is not empty 1f R;(S¢) = t. In other words, if we can find an
assortment S; < S such that R;(S;) > i, then we know that it is worthwhile to offer a non-
empty assortment at node 1. Otherwise, if R;(S¢) < tf, then S is an empty assortment.
Moreover, the scalar defined in (3.2) is +oo for all the descendants of node i. Then the
a-approximate assortments for all the descendants of node ¢ are empty, which is consistent
with the fact that S; is empty since S; is defined recursively as S; = Ujeic S;. Problem
(3.3) can be solved if we know the value of all the scalars. However, knowing all these
scalars beforehand is not possible since it requires the optimal solution to problem (3.3),
but in an alternative way, we can get the candidate collection of assortments containing
an a-approximate solution by letting those scalars vary from —oo to +00 because the true
value lies in R. Whereas it tremendously enlarges the searching space unless we can find the
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connection between solutions to the subproblems of the parent node and its children nodes.
In light of [30], we claim that for an arbitrary nonleaf node i, S is optimal to problem (3.3)
and the union of all the optimal assortments to problem (3.3) at its children nodes is also the
optimal assortment to problem (3.3) at node i. For completeness, we provide the proof of
this claim in B.2 since we still need to check if this claim holds when there is a no-purchase
option in every choosing period.

The optimal solution to problem (3.3) at a nonleaf node i can be easily obtained if we
can solve the subproblems at all its children nodes j € i¢; otherwise the candidate collection
3¢ is the cartesian product of J% for all j € i, which makes problem (3.3) intractable.
Thus we need to reduce ¢ to a collection with smaller size, denoted as 7 < ¢, and 2/
also includes an a-approximate assortment. Furthermore, it is still uncertain that how to
get candidate collection for the basic nodes in the first place. We make an observation that
problem (3.3) at node i is highly nonlinear, thus we propose an alternative formulation of
problem (3.3), which is referred to as basic a-approximate assortment subproblem, as follows

max {V;(S)"" (Ri(Si) — )} (3-4)

Siggi

Lemma 8. The optimal solution to problem (3.4) is also optimal to problem (3.3).

Problem (3.4) is more tractable than problem (3.3), thus we turn our focus to problem
(3.4) in following subsections.

Candidate Assortment Construction

In this subsection, we first come up with a way to construct candidate collection of a-
approximate assortments for the basic nodes by utilizing the insights from Lemma 8. Then
we present how to construct &7 that has a reasonable size.

Lemma 9. If we use S* to denote the assortment satisfying V;(S&)V <04Ri(§f‘) — t;") >
Vi(SF) i (Rl(SZ*) - tj‘) at node i for all i € B with parameter o > 1, then the assortment
SOé

ot = Uieg S5 is an a-approxzimate solution.

By applying Lemma 9, we can get an a-approximate solution if all the scalars are known
for all basic nodes. Similarly, knowing all the scalars is impossible without already having
the optimal solution to (3.1). As we discussed in subsection 3.3, problem (3.1) cannot be
tractable unless the collection .&Z® for a basic node i can be constructed to have a small
size. How to construct the polynomial-size collection with cardinality constraints and space
constraints for basic nodes will be shown in subsection 16 and subsection 13, respectively.
We use the following proposition to summarize the above findings and answer the question
that is asked at the end of Section 3.3 about how to build 3¢

root "
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Proposition 7. Assume the collection of assortments {<Z,* : i € B} contain an a-approrimate

solution S, then I& . = X,..p @ and there exists an assortment Sg = | e S5 € Stoot

such that aR(SO‘ )= Z*.

root

Even though the small-size candidate collection o7 for a basic node i is known, we still
need an algorithm to get a small-size candidate collection for the upper level nodes, which
cannot be the cartesian product of oZ*. A crucial observation is that ¢ remains to be a
constant once the entire searching space is fixed, thus an optimal solution to problem (3.4)
would be found if we try all possible values of t. Let S®(¢;) be optimal to the following
problem

max {V;(5;)"" (Ri(S;) — t:)},

and let S’Jo‘(tz) be optimal to the following problem

Jnax {V5(55) (8;(S)) — 1)},
where &/ includes S§ and j € ic. The following claim shows some nice property and the
relationship between S (¢;) and S’]“(tz)

ClaimA 5. 1f VilU,eie gf(tz‘))l/%(Ri(Ujeic gf(tz)) — ;) is nonnegative, we have S®(t;) =
Ujeie. S5 (ti); otherwise S§(t;) = &. Furthermore, A = {S%(t;) : t; € R} includes S*(13).

Proof. Proof: maxg,cge{V;(S:)"" (Ri(S;) — t;)} is equivalent to

max Vi(Sj)(R;(S; —t;)) — t:iVio1(S; + &)

S; S

! jeic
= 2 mas Vi(S)(Ry(S; ~ 1) —tVaol(|J 85 + @),
j€ic J J€1C

thus we have S*(t;) = Ujeic gja(t,) if VilUjeie Sja( NV (R (Ujeic Sja( i) —ti) =0, other-
wise S(ti) = .

When ¢ = ¢, S§(t') is optimal to problem (3.3) at node j since @/ also contains S¥'.
Then | J,

cic gjo‘(t?) is the optimal solution to (3.3) at node i because of Claim 9. Because
Ujeic gf(tf‘) € &*, then &/ includes the optimal solution S®(2) to problem (3.3) at node
1. [l

Next lemma shows some properties of V}(Sja(tz)) and RJ(SJC“(tl)) as a function of ;.

Lemma 10. 1. If Vj(gjo‘(tl))( i ( jo‘( )) —t;) is a continuous function of t; in a certain

range for all j € ic, then V;(S®(t;))V % (R;(S(t;)) — ;) is also a continuous function of
t;.

2. |2 = Yjeic 195

jEic
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P (i) is

j
an increasing step function, then Vi(S®(t;)) is a decreasing step function and Ry(S®(t;))
is an increasing step function, respectively.

Proof. Proof: Since V(2 (6))" " (Ri(S2(1)) — t) = Shoa, Vi(S2 () (Ry(S3(8) — ) —

t:Viol(S2(t;) + &), then Vi(S*(t:)Y (R (gf“( ti)) — t;) is also a continuous function with

respect to ¢; in a certain range because V;( Ja( DR (S” (t;)) — t;) is continuous in terms of
t; within this range for all j € i¢.

Assume that g]o‘(tl) only changes at some points, the set of which is denoted as F{* =
s 7P N

{F}),F}, ..., F]| ? ‘} where F}’ = 0 and FJ‘ "l = 4 o0. Then S(t;) also only changes at the point

set F = Ui, 75 = {FVS FLS s FP with FO = 0 and F” = +00. We can see that | /% =

Di = ici, |95|. For the rest of this lemma, we only need to prove Vi(54(t;)) is decreasing

3. If we have an assumption that V}(S’f(tz)) is a decreasing step function and R; (

and R;(S*(t;)) is increasing discontinuously at any point ¢; € F. Let S; = lim g Se (ti—e)
and S; = lim,oS%(t, + €). Since Vi(S2() = (Vio + dezc J(So‘(t')))% and V(Sj‘)‘(t;))
is decreasing discontinuously at /, then V;(S5¢(#)) is also decreasing discontinuously at ¢/,
thus we have Vi(S;) > V;(S;). Since V;(S&(t;))" % (R;(S(t;)) — t;) is a continuous function
ti, then Vi(S2(t:))"(Ri(S&(t;)) — t;) is continuous at ], we have Vi(S,)"(R;(S,) — t;) =
Vi(S)Y7(R;(S;) — ;). So that

RiS) = (T21) (RS~ )+t < (R(S) - t) 41, = RS,

where the inequality is due to the fact that V;(S;) > V;(S;). This lemma holds because of
the arbitrariness of ¢.. O

Even if we know A = {S%(t;) : t; € R} and the set of changing points 9"" =

)

{FP F! . F| “I} we are still not able to stitch them together as A = {Ulehc (t;) -

t; € R} to get .« that includes S¢(t a.), since S¢(t;) depends on t; that is different across

i € he. However, if we can obtain &% = {S%(t,) : t, € R} where S{f(th) is optimal to

maxsigf{?{vi(Si) (Ri(Si) — tn)}, then @ can be found as ) = {{ ;e S7*(tn) : tn € R},
We aim to solve the following optimization problem

max {V;(5;) (Ri(Si) — tn)}-

Sig-!?fia
Let S%(t,) be optimal to the above problem. We make an observation that S®(t,) does not

change in certain intervals where V;(52(t;)) (RZ(S'f“(th)) - th> is the highest among these

|@{;a| lines. Then our goal is reduced to find those intervals so that Sa(th) does not change
when #,, takes value in each interval. Assume that set &/ = {S(t;) : t; € R} is ordered such
that V;(S%(;)) is a decreasing step function and R;(S® (t )) is an increasing step function of
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Algorithm 1: statement for function AssortmentlInitialization

Input: &/ = {S%(t;) : t; e R} and .F& = {F°, F}, ... /"1y,
1 for g =1,..., |47 do
‘ S, = lim o SE(F? — ¢);
end
Let g — || — 1 and F = ;
while g > 0 do
Gy < Int(g + 1, 9);
[ < 0;
while G,_; < 0 do
T fz‘a\{ﬂg_lﬁ
l—1+1;
Gy« Int(g+ 1,9 —1);
end
E—{G,.;} UE;
g<—g—1
end
Relabel Z as {O?,0}, ...,0"};
forg=1,....,n; do
‘ S, = lim_,o SF(O? — ¢);
end
Output: S={S,:9g=1,2,...n;} and E = {E,:9g=1,2,...,n;}.

© W N o ks WoN

e e e
B W N = O

e e e e
© w N O W

t;, respectively. The following two algorithms shows that @ = {{J;cs,. S%(ty) : t, € R} can
be obtained in a tractable way.

In both Algorithms 1 and 2, function Int(a,b) is to calculate the x-coordinate of the
intersection points of line V;(S,)(R;(S,) — tn) and line V;(Sy)(R;(Sy) — tn) as Int(a,b) =
(Vi(Sa)Ri(Sa) — Vi(Sh) Ri(Sh)) /(Vi(Sa) — Vi(Sh))-

Function AssortmentlInitialization that is defined in Algorithm 1 calculates the posi-
tive consecutive intersection points of lines: f(S;,t,) = Vi(S;) (Ri(S;) — t),) for S; € o =
{S(t;) : t; € R}. By the ordering of S®(t;) where t; € R and the third item in Lemma
10, we make a remark that if the x-coordinate of the intersection point of two consecutive
lines f(Sy,tn) and f(S,41,tn) is negative, then assortment S, is dominated by S,,1, which
means that f(S,.1,ts) is always larger than f(S,,t,) as long as ¢, = 0. So we can delete
assortment S, and calculate the intersection points of lines f(S,_1,t,) and f(Sni1,t), if
it is still negative, we compute the intersection points of lines f(S,_o,t,) and f(S,i1,tn)
and so forth until we get an positive intersection point and then record it in set E. We
remark that the elements in set F is constructed in an increasing order. After deleting the
dominated assortments, Algorithm 1 outputs the set of remaining candidate assortments
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S ={S :9=1,2,..n}. The core step in Algorithm 1 is from line 5 to line 15, which
includes deleting dominated assortments and calculating positive intersection points. We
observe that the size of candidate assortments is reduced from |<Z®| to n;. We then use

the output of this function as an input to function AssortmentStitching that is stated in
Algorithm 2 to get set o7 = {S&(t5) : tn € R}.

Algorithm 2: statement for function AssortmentStitching
Input: S={S,:9g=1,2,...,n;} and E={E,:g=1,2,...,n;}.

1 Let n<— 1, By =0 and g « n;;
2 while ¢ > 0 do

3 D, «— Eg;

4 m <« 1;

5 while D,, < E,_,, do

6 ‘ m<«—m+1

7 end

8 D, «—Int(g+1,9g—m+ 1);
9 g<—g—m;

10 n<—n+1;

11 end

12 Reverse the numerical array {D1, Do, ..., D;,_1};

Y
w

Let Dy < —o0 and D,, « 400;

14 for [ =0,2,....n—1do
15 ‘ S&(ty) = lime_,o S*(D; + €) for ty, € [Dy, Diy1];
16 end

A

Output: &7 = {S*(t,) : t, € R} and 92 = {Dy, D1, ..., D,,}.

In function AssortmentStitching, we have E, = Int(Sy, Sy4+1). The idea of Algorithm 2 is
that if £, < E,_;, then line S, can be deleted since line f(S,%;) is always lower than line
f(Sg+41,tn) when t, is nonnegative. It can be proved by using Lemma 10: since V;(S,-1) >
‘/Z(Sg) > %(Sg+1) and Ri(ngl) < RZ<Sg) < Ri<Sg+1), we have f(Sg,th) < f(Sg+1,th) for
t, = 0. Similar to Algorithm 1, it does not stop until £, > E,_,, where m > 1 by deleting
assortments Sy, Sg_1, ..., Sg—m+1. Then we record the newly calculated intersection points
in an array {Di, Ds,...,D, 1} and reverse it such that it has an increasing order. The
output of this algorithm is /® = {S*(t),) : t, € R} with corresponding changing points set
2% = {Dy, D1, ..., D,,} as desired.

The next proposition shows that «7* = {S®(t;) : t, € R} can be obtained in an efficient
way by applying function Assortmentlnitialization and function AssortmentStitching.

Proposition 8. Let &/ = {S%(t},) : t, € R} where Sf‘(th) is optimal to )
maxg 2 {Vi(Si) (Ri(Si) — ta)}, then % includes S (tf)). Furthermore, || < || and
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A can be computed within O(|</®|) operations by functions AssortmentInitialization and
AssortmentStitching under the assumption in Lemma 10.

Proof. Proof: According to Claim 5, &/ includes S(t2), thus the feasible region of problem
maxg,cgo {Vi(Si) (Ri(S;) —tr)} can be reduced from 3§ to g%;a while preserving optimality.
When t), = t2, S®(t%) € &/, thus /* contains S&(£3).

We use Algorithm 1 and 2 to compute &7 = {S(t},) : t, € R} from &/® = {S(t;) : t; €
R} and 2 = {F?, F}, ..., Fi“%al}. In Algorithm 1, lines 1-3 take O(|.<7®|) operations. Lines
5-15 take O(|.| — 1) since it deletes at most || — 2 assortments. Both line 16 and lines
17-19 take O(n;) where n; < |;ZZ°‘| Thus the computational complexity of Algorithm 1 is
O(|<72) + O(|/2] — 1) + O(ms) + O(my) = O(| 7).

For Algorithm 2, lines 2-11 take O(n;) operations since it deletes at most n; assortments.
Line 12 takes O(1) and lines 14-16 take O(n) where n < n;. So the computational complexity
of Algorithm 2 is O(n;) + O(1) + O(n) = O(n,).

For the size of &%, we have [&/*] = n < n; < 7|, and Z® can be computed in

O(|72]) + O(n;) = O(|Z*]) via Algorithms 1 and 2. O
By the Proposition 8, we immediately have the following two corollaries.

Corollary 3. If V;A(gf(tz)) is a decreasing step function and R; (S’f(tz)) is an increasing step
function, then V;(S%(ts)) is a decreasing step function and R;(S&(tn)) is an increasing step
function.

Corollary 4. Let S¢(t,) = Uiene So(ty) and 7 = {8%(ty) : t, € R} where h is the parent
node of i, then </ can be computed in OQicn. /() operations.

According to Corollary 3, Corollary 4 and the third item in Lemma 10, if we know 42%0‘
for all the basic nodej € A, a bottom-up method can be used repeatedly in a breath-first
manner to get &%, which can be further used to get %, via Algorithms 1 and 2, where
<& is the candidate collection including an a-approximate solution S¢ , for the root node.

check the expected profit of every candidate assortment in @72 . to select

After getting .o7%
The following theorem summarizes this finding.

root’

the optimal assortment as Sg ;.

Theorem 3. Under the assumption in Lemma 10, for all the nonleaf nodes 1 € V, we
can construct & with size O(X ey |Z|) in O(X ey |2|) operations. The size of the
candidate collection of assortments /o, containing an a-approzimate solution S& ., satisfies

| Doot] < ez |/¢|. Constructing 2, requires O(m - PP |Z|) operations.

(¢]

Proof. Proof: We claim that >3, = [9°] < Xje || for I = 0,1,...,m — 1. This can
be proved by induction on level I: 1) It is true for [ = m — 1; 2) Assume it is true for
[ = L where 1 <m — 1: Zz‘:level(i)=L || < Zje%’ |f527}a|3 3) We have Zh:level(h)=L—1 || <

Zh:level(h):Lfl ‘Jyha‘ = Zh:level(h):Lfl Ziehc |£{ia’ = Zi:level(i):L ’%a‘ < Zje._% ‘JZ{]'OL’ because of

Proposition 8 and Corollary 4. Thus constructing ¢, via Algorithms 1 and 2 requires

1 ~ -1 = .
Zn:o Zi:level(i):L 7| < T:o Zje,%’ |~nya| =O(m - Zjegfé |'Q{]Oé|) operations. L
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Theorem 3 tells us if 427;-0‘ has a polynomial size for all j € &, then constructing .7 . would
also require polynomial size of operations. Furthermore, it also implies that problem (3.1)
can be solved in polynomial time. In the following two subsections, we show how to construct
the polynomial-size ,527 * under cardinality constraints and ;zf * under space constraints for
all basic nodes j € 4, respectlvely We also show that the assumptlon in Lemma 10 can be
satisfied.

Cardinality Constraints

In this subsection, we introduce the Constrained Assortment Optimization Algorithm Under
Cardinality Constraints (CAOA-C) that solves problem (3.1) with & = 1 under cardinality
constraints, which finds the optimal, or 1-approximate, assortment S¥ , in O(nmax{m, k})
time, where m is the number of levels in the multilevel nested logit model, n is the number
of products and k is the maximum number of products of any basic nodes.

In order to obtain a candidate collection of assortments including the optimal solution
S¥ for a basic node j € %, we need to solve problem (3.4) with o = 1 and t{* = ¢; as follows

s V() (Ry(55) = 1) (35)

where 37 includes all the possible combination of feasible assortments that satisfy cardinality

(C]f ) We aim for reducing 37 to a polynomial-size collection

,52% such that ,Qf * = {S “(t;) : t; € R} where S *(t;) represents the optimal solution to problem
(3.5).

We observe that problem (3.5) at basic node j is more general than the constrained
assortment optimization problem under the multinomial logit model [39]. The difference
is that we need to consider the no-purchase option when constructing 7. [38] study the
constrained assortment optimization problem under the multinomial logit model with space
constraints and shows it is NP-hard. With cardinality constraints, assortment optimization
problem under the multinomial logit model can be solved in polynomial time [39].

Problem (3.5) can be rewritten as

mas (V5(5,)"% (Ry(S3) — 1)} = ma {3 vl — 1) = Viol(S; + @)1},

S; C“] SJQC‘J kes;

Constralnts and the size of & \s is (

It is a 0-1 knapsack problem with unit weight. If S; is not empty, then the value of j for
knapsack problem is >} o vi(ri — 1;) — Vjot; for a given ¢;. After sorting the products by

its valuein a decreasing order, the optimal solution S *(t;) includes the first C; products. To
better illustrate the algorithm for this problem, mSplred by [39], we define n hnear functions
hi(t;) = ve(ry —t;) for k € S;. When ¢; takes values between two consecutive intersection
points of the n lines, the ordering does not change so the optimal solution S M (t;) would not
change either. We define ho(t;) = Vjot;, then if 3 o hi(t;) < ho(t;), we have S; = .
We use Figure 4.2 as an example for three products with cardinality limitation of 2. In
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this case, there are 3 intersection points between the 3 linear functions and the real line
is divided into 4 intervals by these 3 points. Under the cardinality constraints (C = 2),
the candidate collection contains 3 different feasible assortments: {{1,2}, {2,3}, &}, the
corresponding range of ¢; is shown in Table 3.1. Under mild conditions, [39] shows that
the size of szfj*N = {Sj(t;) : t; € R} is O(N;) if the cardinality capacity C; is fixed and
constructing &/ requires O(Nj?) operations, where the set of changing points is denoted as
_ (0 pl ||
Fr={F},F;, ..., F; 7}

25
20
15

10

SRR Eb

1.20 1.6 2.36

Figure 3.2: Three products with cardinality constraint C= 2

t; (—o0,1.6) (1.6, 2.36) (2.36, +0)

Sx(t;) {1,2} {2,3} %]

Table 3.1: The optimal solution S‘;“ (t;) to problem (3.5)

By construction, V;(S2(t;)) is a decreasing step function and Rj(gf(tj)) is an increasing
step function because a product k with larger slope vy and smaller profit r; would always
be replaced by a new product k' with smaller slope vy and larger profit ry as t; increases.
It satisfies the assumption of the third item in Lemma 10, thus we have V;(S§(t;)) is a

decreasing step function and R;(S%(t;)) is an increasing step function. Therefore, we can use
Algorithms 1 and 2 in a bottom-up manner and they run in polynomial-time by Proposition
8.
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We are now ready to show the Constrained Assortment Optimization Algorithm Un-
der Cardinality Constraints (CAOA-C) as follows. First, we get &7 and .7} for all basic

nodes j € #; second, within each loop, we use 42%;* and Z as the input of function As-
sortmentInitialization, then we feed the output of function Assortmentlnitialization into
function AssortmentStitching to obtain &7* = {S*(t;) : t, € R} and 2*; third, we get
i = {S*(ty) : t, € R} where S¥(t),) = Uien. S¥(t,) and F = Uien. Z; for node h that
is the parent node of 7. We call function AssortmentInitialization and AssortmentStitching
repeatedly in a bottom-up manner to get 7 . then the optimal assortment can be obtained

root’
as Sy = argmaxg ot Froot(Sroot) and the maximum profit is Z* = Ryoot (Spoer)-

Algorithm 3: Constrained Assortment Optimization Algorithm Under Cardinality
Constraints (CAOA-C)
Input: v, r; for product k, and ~; for nonleaf node i € V i
1 Initialization Get sz;* = {gj(tj) :t; € R} and .7 = {F), F}, ...,F]!'Q{j |} for all
j €&

2forl=m—-1,m-—2,...,1do

3 for i € Level(l) do

4 if [ = m — 1 then

5 it = {S(t:;) : t; € R} where SF(t;) = e, S2(t:);

6 Tl = Ujez’c ‘@;;

7 end

8 S, E — AssortmentInitialization(a7*, Z*):;

9 A* = {S*(ty) : t, € R} and 2% — AssortmentStitching(S, E);
10 end

11 end

12 '%Zot = {Uierootc S: (troot) : tTOOt € R}a

% _ * % .
13 Sy = argmaxg o Rioot (Sroot) and Z* = R0t (S% o1 );

Output: S, and Z*.

ro

We use the following theorem to end this subsection, which summarizes above findings
and shows that the assortment optimization problem under cardinality constraints can be
solved in polynomial time.

* ot 10 problem (3.1) with o = 1 under cardinality
constraints can be obtained within O(nmax{m,k}) operations by Algorithm CAOA-C.

Theorem 4. The optimal assortment S*

Proof. Proof: For the Algorithm CAOA-C, line 1 takes O(} ., N;) to get Qf;* with size
]427;*| = O(IV;) for all j € . According to Theorem 3, lines 2-11 take O(m - 3, 4 |$M;*D =
O(m - e Nj) = O(mn). Lines 12-13 also take O(mn) operations. For the complexity of
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line 1, we have

E N < max N - N;=kFk- g N; = kn
JER _—
je# je#B jeB

thus the complexity of line 1 is O(kn). Therefore, the total number of operations of Algorithm
CAOA-C is O(kn) + O(mn) + O(mn) = O(nmax{m, k}). O

Space Constraints

Similar to Section 16, we show the Constrained Assortment Optimization Algorithm Under
Space Constraints (CAOA-S) that solves problem (3.1) under space constraints, which finds
an a-approximate assortment S . in O(mnk) time, where m is the number of levels in the
multilevel nested logit model, n is the number of products and k is the maximum number of
products of any basic nodes.

Similar to the problem with cardinality constraints, we show how to find an a-approximate
collection Azf;a for a basic node j € # with a = 2. We consider the following problem

s (V3(5,)' ™ (Ry(5) ~ 1)} (3.6)

where we use 37 to denote all the combinations of feasible assortments satisfying the

Oa

space constraints. Our goal is to reduce I¢ to a polynomial-size collection JZ/ “ such that

= {S’j‘l(tj) : t; € R} where gf(t]) satlsﬁes that V(So‘( )Y (aRl(SC‘“( ) _tj> >
V(S’-“)VW <R~(S’~") —t~>. If &7 is known, then according to Lemma 9, S%, = ;s S2( (t7) is

an a-approximate solution, thus I, = X .4 % includes Sy, when ¢; = ¢% for all j € .
By applying Algorlthm 1 and 2 repeatedly from the bottom to top, we manage to find the
best assortment in 7, which is S5 ;. Next we show how to find corresponding 7.

Problem (3.6) can be re-derived as

i (V5(5)V (R, (8)) ~ 1)) = o (D)l —1) = Viol(S; + @)0} (37

SC
]_9 keS;

Unfortunately, problem (3.7) at a basic node j is NP-hard with space constraints. Hence
we use a linear relaxation method to solve problem maxs,cqe {2 e, vr(re — £;)}. Let Si(t))
denote an a-approximate solution such that

a Z Uk k—t ka(rk—t]‘)

keS)(t;) keS

where a = 2. By applying the algorithm in [39] and the approach in [18], we are able to con-
struct the collection <7} = {S}(t;) : t; € R} with size O(N?) for fixed S; in O(N7) operations.
Note that [18] also show that the performance of guarantee of 2 can be further refined to
a=1/(1—¢) (e € [0,1)) under certain assumptions of the data, which also applies to our case.
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We claim that S)(t;) satisfies V;(S(t;))" (aR;(S4(t;)) —t;) = V;(SH)Vw (Rj(S;-") - tj> if
S¥ # . Next we show how to prove this claim, we have

V3(S)(t)) (aRj<s;-<tj>> ~t)=a D) wne— Viel(S)(t)) -
keS&(t]-) keS(t;)
>« Z vg(r — Vijol(S}(t;) + >« Z vg(r ) — Viot;
keS(¢;) keS(t;)
> 3 okl — 1) = Viots = 3, vilre — £5) = Viol(S] + @)t = V()Y (Rs(87) — 1)
keS* k;eS;."

which establishes the claim.

The difference between problem (3.7) and the problem that is considered in [18] is that
the objective function of problem (3.7) contains an additional term —V;o1(S; + &¥)t; since
we allow the no-purchase options to exist in every choice stage. Thus we need to check if
Vi(S5(t;)) Y (R, (S(t5)) —t5) = 0. If so, then go‘(t ) = Sj(t;); otherwise Sa( ;) = &. Then
S(t;) satisfies that V;(S}(t;))Y (aR;(Si(t;)) — t;) = V(S;‘)I/VJ(R (S%) — t;) because this
inequality holds when S¥ # ¢ due to the above claim and it also holds when S¥ = ¢J since
V;(S(t ))1/73(04R (S5(t )) t;) =0 =V;(SH)Y% (R;(SF) —t;). In this way we can obtain the
desired Jafja with corresponding set #¢* of changing points for all j € Z.

Similar to the problem under cardinality constraints, we introduce the Constrained As-
sortment Optimization Algorithm Under Space Constraints (CAOA-S) as follows and show
the complexity of CAOA-S in the next theorem.

Theorem 5. A 2-approzimate assortment S . under space constraints can be obtained

within O(mnk) operations by Algorithm CAOA-S.

Proof. Proof: For the Algorithm CAOA-S, line 1 takes O(3;., N7) to get 42%}0‘ with size
|427;a| = O(N7) for all j € . According to Theorem 3, lines 2-11 take O(m - 3., |4z%;*|) =
O(m - 3.5 N7). Lines 12-13 also take O(m - 3, , N7) operations. Because we have

Y N? <maxN;- Y N;=k- > N; =kn,

Jje# ,
JjER JER JER

thus the total number of operations of Algorithm CAOA-S is O(kn) + O(mnk) + O(mnk) =
O(mnk). O

3.4 Price Optimization

In this section, we study the price optimization problem, the goal of which is to maximize
the expected profit per customer. The assortment S,,.; is assumed to be fixed as Nyoot,
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Algorithm 4: Constrained Assortment Optimization Algorithm Under Space Con-
straints (CAOA-S)
Input: v, r; for product k, and ~; for nonleaf node 1 € V i
t Initialization Gt Ao = {So(t;) : t; e R} and F2 = {FO, FY, . F/™"} for all
JEZ]

2 fori=m—-1,m-—2,....,1do
3 for i € Level(l) do
4 if ] +# m — 1 then
5 A = {S(t;) : t; € R} where S*(t;) = Ujeic gj‘(tz),
6 ﬁia:UjeiC@ja;
7 end

8 S, E «— AssortmentInitialization (&, .Z2);
9 A = {S%(ty) : t, € R} and 2* — AssortmentStitching(S, E):;
10 end

11 end

12 ’!yrgot = {Uierootc gg(troo'ﬁ) : troot € R}?

13 S, = argmaxg g Rioot (Sroot) and Z% = Rioot (S 0);

Output: S and Z¢.

thus the decision variables are prices of all the products, denoted as Proor = (p1, 02, -y Dn)-
P.oot € R} is a n-dimensional vector where n, as defined in Section 4.3, is the total number
of products.

Problem Formulation

We use the same tree structure as in Section 4.3 to describe the customer choosing behavior.
The n products are leaf nodes in the m-level tree. For every node in this tree, there can exist
a no-purchase option associated with it. We assume that price of the no-purchase option is
0. For each node i € V| it is assigned a preference weight V;(P;) by the customer. We define
Vi(P;) recursively as follows

exp(a; — Bipi) , if 7 is a leaf node
V;(Pl) - <‘/10 + Zjez’c ‘/J'(Pj)>'yZ , O.W.

We can see that for a leaf node i, a; can be interpreted as the price-independent part of
the systematic utility of product ¢ and 3; > 0 is the product-differentiated price sensitivity
parameter. We define two scalars for nonleaf node 7 € V:

B { minje; . {5;} i is a basic node

Minje; {B;7;} 0.W.
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and
maxXje;i.{;} i is a basic node
bim maXje {—W?Ej 5 0.W
1€t t1—(1—;)B;/B; e

As in [22], we also make the following assumption on the price-sensitivity parameters and
dissimilarity parameters to guarantee that there is a unique optimal pricing solution.

Assumption 1. For any nonleaf and nonroot node i € V', we assume that

1

< .
=

I

We define the profit for node i € V' as follows

Di — Ci , if 7 is a leaf node
R,(P;) =
(B9 ZWW%@W@MZW@O,W-
JEic jeic

Then the total expected profit can be expressed as Rioot(Proot). Therefore the price opti-
mization problem can be formulated as

max Rroot (Proot) . (38)

Proot€R™

We generalize the results of [19] in the following three folds: 1) the two-level nested logit
model is generalized to the multilevel nested logit model; 2) the no-purchase option can exist
in every stage of the customer choice process; 3) the adjusted nest-level markup is shown to
be a special case of the node-specific adjusted markup which will be presented in the following
subsection.

Constant Node-specific Adjusted Markup

In this subsection, we analyze properties of the price vector P, at the optimality condition
of problem (3.8). For the rest of this essay, we will use @Q); to represent the choice probability
of product 7. The markup for product ¢ is defined as m; = p; — ¢;. We use n;;, to denote the
ancestor node of 7 in level k, where (0 < k < m —1). With a slight abuse of notation, 7, j, is
also used to denote the collection of products that are associated with itself. The following
lemma shows the expression of the first derivative of objective function that is defined in
(3.8).
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Lemma 11. The first derivative of objective function Ryioot(Proot) with respect to price p;
for any product v s

a]%root(-Proot)/api
1 . m—2 k . . .
= [iQi (E —m; + A Z my Qi + 2 Z my (Z (M1 — A I)Q(Z/’ﬁz‘,t))
! V'E€Ni,0 k=1 ien; t=1
'EN k1
m—1
+ > my (Z (N1 — Aﬁ_l)Q(i/|ﬁi,t)>),
€N m—1 t=1

s  __ S .
where A, = ]_[q:t Yig-

Let the first derivative 0Ryoot(Proot)/0p; = 0, since @; + 0, after dividing £;Q; and
collecting terms, we have

m—2 k
mi— 1B =X D meQu+ > > my (Z (Agf;;ll—wl)@u’lm,t))
k=1 t=1

i'EMi 0 i'Enik
V¢ k1
m—1
+ Z mys <Z ()‘Zi‘;ll - A?}_l)Q(i’\ni’t)) (3.9)
V€ni,m—1 t=1

If we define the node-specific adjusted markup for product ¢ € & as 0; = m; — 1/5;, then
Equation (3.9) implies that 6; is identical for all i € 7; ,,—1. We make an important obser-
vation that the dimension of problem (3.8) has been reduced from n to |%| because there
exists a one-to-one increasing mapping between the markup m; for product i € £ and its
node-specific adjusted markup 6;. The idea behind this lemma is quite insightful, since the
multidimensional price optimization problem can be reduced with regard to the number of
decision variables. Originally, the number of decision variables equals the number of products
in the assortment, by lemma 3, it can be reduced to the number of basic nodes.

The price for each product is a product-differentiated property, i.e. it is different across
products. However, at optimality we can get the node-specific adjusted markup 6;, which
is invariant for the products in the basic nodes, via subtracting price by the product’s own
cost and the reciprocal of the price sensitivity parameter. We remark that at optimality,
the node-specific adjusted markup is different across the basic nodes. Then the question
is whether there still exists similar method so that the price optimization problem can be
further simplified in terms of the problem dimensions. Before positively answering it, we
first introduce the formal definition of node-specific adjusted markup, in which we use j to
denote one of the children nodes of .

Definition 1. The node-specific adjusted markup for node i, the level of which is 0 < | <
m — 1, is defined as
0; = 0;0;(6;) — w;(0;),
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where §;(0;) and w;(0;), the level of node j is 1 < 1 < m — 1, are recursively defined as
follows

1 1
d;(0;) = 7_] - (7) —1)7;(0;),
Q 9k|9
0 (L1 Q60) w(6)
w]( k; — Y 5k )

where for leaf node k, we define §x(0x) = T(Ox) = 1, wip(Ox) = 1/Br and v, = 0. For
Vi (Ok)

notational brevity, we denote Q(0y|6;) = Vio+Zej, Ve (Or)”
[ €jic

For these quantities in the above definition, we have 0 < 7;(6;) < 1 and 1 < §;(0;) < 1/7;.
The node-specific adjusted markup is defined recursively, next we show an example of how
to calculate it under the two-level nested logit model.

Example 1. For the two-level nested logit model, in level 0, it is the root node; in level 1,
there are | 2| nests indexed by i; in level 2, there are products indexed by j. Then we have

Qi =pj —C — 1/63 and
Gmot = 95(6) — w,(@,)
—Hl——(l—l)n(@] EQQW w; (6;)

Yi Yi L= 53 ])

= () 1/@)[—,———1 ZQew]_l_ ZQW.

i ' jeic i j€ic

Define the following function recursively for each nonleaf nodei € Vi u;(60;) = 3., . 8;Q(0;16;)

if 7 is a basic node; otherwise

ui(0:) = e ang% Q(6;]0;). Next we assume that 06;/06; is bounded.

Assumption 2. For any nonleaf node i € V and its child node j, we assume that

6i 1 w;(0;)u;(6;)

08; v 6;(6;)

Under Assumption 3 and 2, ¢; is an increasing function of 6;. We record this finding in
the following lemma.
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Lemma 12. Under Assumption 3 and 2, for any nonleaf node i € V', we have

ava;éi@z) = 3 Vi(6:)u(6)),

&gé@@) < wi(0;)u(6;) — (% — 7,
2;2 < —(1-7)u,
2 6=

Furthermore, we have

w;u; < — and 0, > 0.
Yi 69]

The following proposition shows the properties of the node-specific adjusted markup.

Proposition 9. For any nonleaf node i in level 0 < | < m—1 and its arbitrary children nodes
J.7 € ic, we have 0; = 0;0;(6;) —w;(0;) and 0, = 0,0;,(0;) — w;/(0;) are equivalent under
the optimality condition of problem (3.8). Furthermore, there exists a one-to-one increasing
correspondence between the node-specific adjusted markup 0; and 0; under Assumption 3 and
2.

The technique that we use in the above proposition is: for the node-specific adjusted
markup 0;, it can be obtained via subtracting ¢; by a value that only depends on N;. By
repeatedly using Proposition 9 from bottom to top, the price optimization problem (3.8),
originally defined in the n-dimensional space, is reduced to a single-dimensional optimization
problem by maximizing R(6;00t) With respect to €r0r. Furthermore, the following theorem
shows that R(f;0) is @ unimodal function.

Theorem 6. R(0.o0t) is strictly unimodal in Oyor. Moreover, we have R(0% ) = 0% . at
optimality.

We can use simple optimization algorithm, such as binary search, to find its optimal
solution 0} . after having the correspondence of the node-specific adjusted markup between
intermediate nodes. From Proposition 9, we know that there exists a one-to-one correspon-
dence between 6; and 0; for j € ic. Thus there also exists a one-to-one increasing mapping
between 6} . and the optimal price p; of product k. We denote this increasing mapping
as fr(py) = 0%... So if we know the optimal solution €% ., then the optimal price of an
actual product ¢ can be calculated as p; = f. Y(0% ..). Therefore, the optimal price vector

for problem (3.8) is P* . = F~1(0% ), where F = (f;*, fo ' s f71).
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Numerical Example

Multiproduct price optimization problem (3.8) can be reduced to the maximization of a
unimodal function
max Rroot(eroot). (310)

Groot ER+

At optimality, although 67 , has a one-to-one correspondence with pi: pi = f (0% ,,), we
cannot simply obtain a closed-form expression of f~! due to its nonlinearity nature. However,
starting from 6., we can recursively get 6; according to Definition 1, then p; can be found
due to this linear relationship: py = 0; + 1/B, + ¢ where the basic node j is parent of & .
Therefore, R(6r001) can be identified, implying we can use some simple algorithms, such as
golden section search and binary search, to locate the optimal solution 6% . = R(0% ) to
problem (3.10).

To better illustrate Theorem 6, we solve a small problem example with a three-level
nested logit model that is shown in Figure 4.2. We can see for each nonleaf node, there is
one no-purchase option associated with it, such as for node A, the no-purchase option is
denoted as Ag. The parameters that are used in this numerical example are described in
Table 4.2, which satisfies our assumptions.

Product G H I J K18* L M N
a 15 12 13 11 10 8 14 9

15} 1.8 1.6 1.7 2 2.2 21 24 18
cost 0.9 0.8 0.7 0.8 0.55 04 09 0.5

No-purchase | rootqg Ay By Cy Dy Ey Ey

V 0.15 0.12 0.1 0.05 0.07 0.06 0.04

nonleaf Nodes A B C D FE F
¥ 078 095 0.8 091 0.73 0.81

Table 3.2: Parameters setup for the price optimization problem

The computation results are shown in Figure 4.3. For plot (a), we can clearly see
that the objective function of problem (3.10) is unimodal with respect to 6o0r. More-
over, when R(0,,0) intersects with the 45°-line f(6ro0t) = Oroot; R(Groot) reaches its opti-
mal, i.e. R(6%.) = 0%, = 5.80, as stated in Theorem 6. For plots (b),(c) and (d), we
recursively calculate the optimal node-specific adjusted markup 6% = 5.917, 05 = 5.668
and 6 = 6.000, 07, = 5.953, 03 = 4.900, 0% = 5.500 for basic nodes C, D, E and F|,
respectively. In the end, the optimal price of product k£ can be obtained by using this lin-
ear correspondence p, = 0; + ¢, + 1/5; where j is the parent node of k. For instance,
Py =05 +cg +1/Bg =6.000 + 0.8+ 1/1.6 = 7.425.
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(a) Unimodality of R(6,001) (b) Correspondence Bewteen 6,4o; and 6,, 6
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Figure 3.3: Pricing problem example under a three-level nested logit model
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Chapter 4

Under Tree Logit Model: Joint
Assortment and Price Optimization

4.1 Literature Review

We present the relevant literature based on assortment and/or pricing problems under vari-
ants of the multinomial and nested logit models. The assortment optimization problem is
referred to as the problem where firms cannot control prices of products but are able to
make assortment decisions to maximize their profit. The multinomial logit model is based
on random utility maximization theory [34] and is successful in describing consumer choosing
behavior among products with different attributes, such as price, brand and quality. Under
the multinomial logit model, [42] show the structure of optimal assortment while consider-
ing inventory cost. [44] consider a no-purchase option in the multinomial logit model and
show the optimal assortment policy is to include the set of products that are sorted by their
revenues. [39] develop efficient algorithms to both static and dynamic assortment optimiza-
tion problem. [47] consider capacity constraints on the offered assortment under the general
attraction model including the multinomial logit model as its special case. [7], [41] and [23]
study the assortment optimization problem assuming consumers choosing decisions follow
the mixed multinomial logit model, which is able to segment consumers into groups and
allows different choosing behavior in different groups. [17] consider the assortment problems
under generalizations of the multinomial logit model and provide insight on the network
revenue management problem.

The multinomial logit model suffers from the independence of irrelevant alternatives
(ITA); see examples in [34] and [5]. The nested logit model, which is first proposed by [4],
succeeds in avoiding ITA and draws attention in assortment optimization problems recently.
When consumers choose according to the nested logit model, [38] study the assortment op-
timization problem with capacity constraints across different nests and develop polynomial-
time approximation algorithm. [29] identify structural conditions for the optimal assortment
and show a heuristic algorithm to compute the optimal solution. [11] study variants of
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assortment optimization problems, including considering the existence of no-purchase op-
tions in all the nests and the case where dissimilarity parameter exceeding one. The linear
program formulated by them shows the ability to reduce the entire searching space to an
acceptable size. [16] use a dynamic programming approach to solve the capacitated assort-
ment optimization problems with cardinality and space constraints across nests. Although
the nested logit model avoids the ITA property of the multinomial logit model, it still has
ITA property within each nest. A tractable way is to generalize the two-level nested logit
model to multistage tree logit model to alleviate the ITA property to the minimum extent.
[30] and [50] study the unconstrained and constrained assortment optimization under the
multilevel tree logit model, respectively. However, their approach do not generalize to the
joint capacitated assortment and price optimization problem. Most of the research listed
above focus only on assortment decisions without considering pricing effects that influence
demand and profit.

For the case of price optimization problem involving choice models, a firm’s objective is
to come up with an optimal pricing strategy to maximize their profit with a fixed offered
assortment by assuming that consumers choose according to a certain choice model. Under
the multinomial logit model, [20] observe the fact that the profit function is not jointly
concave with respect to price vectors. [3] and [21] discover the equal profit margin property
of products at optimal prices. [43] and [15] both show that multinomial logit profit function
is concave in terms of market share vectors instead of prices and there is a one-to-one
relationship between the price and market share variable. This concavity property is further
generalized to the nested logit model by [31] under the assumption that the price-sensitivity
parameters are identical in each nest. [19] relax this assumption by adding mild restrictions
of the dissimilarity parameter and price-sensitivity parameters and show the optimal prices
can be obtained via maximizing a unimodal scalar function. Under the multilevel tree
logit model, [30] work on an iterative algorithm that converges to a stationary point. In
contrast, instead of working with price vectors, [22] assign an intermediate variable to each
node and show there is an efficient way of getting the optimal solution. [50] generalize [19]
by introducing multilevel adjusted markup and considering the no-purchase option to be
associated with every node in the tree structure.

Most of the above study ignores the joint effect of assortment and pricing. For the joint
assortment and price optimization problem, [9] study the mathematical properties of the
optimal structure. [32] study the joint assortment and price optimization problem as well
as considering inventory under a newsvendor model and derive the structural properties of
optimal assortment and price. [48] works on the multinomial logit model with a general
utility function and the offered assortments have cardinality constraints. He finds out that
the adjusted markups are invariant for different products and further shows that the joint
assortment and price optimization problem can be reduced to finding the fixed point of
a single-dimensional function. [49] considers the search cost in the joint assortment and
price optimization problem and shows that the optimal policy is to include the products
with largest systematic utility. However, they assume the price-sensitivity parameters for
products are all identical to one and this work is under the multinomial logit model. [6]
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address the joint assortment and price competition in a competitive setting and derive the
pure strategy equilibrium existence properties.

Under the nested logit model that alleviates the IIA property suffered by the multinomial
logit model, [27] consider the joint assortment and price optimization problem with a type
or brand primary choice model in both centralized and decentralized regime. They derive
the properties and competitive equilibrium of joint optimal solution. [18] construct dummy
products with different price levels and develop a linear program to find the joint optimal
solution under the nested logit model. They do not assume any parametric relationship
between the preference weight of products and its price, but their approach is not flexible
in two folds. Firstly, for the joint assortment optimization problem, their method cannot
consider constraints on the offered assortment; secondly, if the assortment is given and cannot
be changed by the firm, their approach fails to work. However, our approach resolves these
two limitations and generalize the nested logit model to the multilevel tree logit model.
As a variant of our problem setting, our method turns out to work well when there is
no parametric relationship between the preference weight and price of the product under
the tree logit model. [12] study pricing problem under the nested logit model with a quality
consistent constraint and it can be extended to joint assortment and pricing problem. Unlike
most of the pricing literature that assume price is continuous, both of [18] and [12] consider
the prices as discrete variables and do not have a parametric relationship with preference
weight. In practice, considering the pricing problem as discrete or continuous optimization
both have retail applications. [37] develop a linear program as approximation methods to
the joint assortment and price optimization with price bounds under the nested logit model.
[24] use a nonparametric choice modeling method to consider the joint assortment and price
optimization problem and develop an expectation maximization (EM) algorithm to fit the
model.

4.2 Main Results and Contributions

We summarize our main results and contributions as follows:

1. In this paper, we formulate the joint capacitated assortment and price optimization
problem as a bi-level program where the inner problem is continuous price optimization and
the outer problem is discrete optimization over assortment decisions. We show that the inner
price optimization problem has a fixed point representation by introducing a scalar named
as node-specific adjusted markup, which can be viewed as an important bridge connecting
capacitated assortment and price optimization jointly.

2. For the joint capacitated assortment and price optimization problem, the consumer
choice structure that we consider is a multilevel tree with N products. The cardinality or
space constraints are imposed on the nonleaf nodes separately in the second last level. Our
main result of this essay is that the joint optimal solution and a 2-approximate solution can
be obtained in O(GN log G) time for the problem with cardinality and space constraints,
respectively, where G is the number of grid points for each node in the tree structure.
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Furthermore, under mild conditions on selecting grid points, our joint optimization algorithm
can be further refined to run in O(GN log K') where K is the maximum number of children
nodes that a nonleaf node can have in the tree structure. It is more efficient since K is
always less than G in general. Surprisingly, the computational complexity is irrelevant of the
number of levels in our tree structure. [30] studies the uncapacitated assortment optimization
problem with fixed prices under d-level nested logit model, the algorithm of which runs in
O(dN log N) time that is sensitive to the number of levels d. It is noticeable to find that
our algorithm for joint optimization problem has the similar scale in terms of complexity
compared to the algorithm for uncapacitated assortment-only problem in [30]. We show
that the bi-level joint optimization problem can be decomposed to a single dimensional
optimization problem over a scalar, which is tractable by our efficient algorithm.

3. To the best of our knowledge, we are the first to study joint capacitated assortment
and price optimization problem under the multilevel tree logit model under both cardinality
and space constraints. Many existing literature regarding the joint optimization problem
under the multinomial logit model or the nested logit model turn out to be the special case
of ours. For the earlier works on the joint capacitated assortment and price optimization,
[48] shows that the joint optimization problem with cardinality constraints on assortments
can be solved by finding a fixed of a one dimensional objective function when the consumers
choose under the multinomial logit model. This problem is tractable based on the linearity
nature of assortment optimization under the multinomial logit model that is considered in
[39]. However, the nonlinearity arises when it comes to the nested logit model that has
two choice stages. [18] consider the nested logit model and focus the possible prices of
products only on a prespecified grid and do not assume any parametric relationship between
the preference weight and price of products, while recent pricing literature under multistage
choice structure does not work in this case; see [30] and [22]. Moreover, [18] do not consider
constraints on the offered assortment in the joint assortment and price optimization problem.

4. Our approach generalizes earlier works not only to the tree logit model with arbitrary
structure and an arbitrary number of products, but to the problem where there is a cardinal-
ity or space limitation on feasible assortments as well. The results in this essay is flexible and
one step forward compared to the earlier and recent literature, we provide a systematic and
complete solution to the following three problems: 1) Capacitated assortment optimization
with fixed prices; 2) Price optimization with fixed assortment; 3) Joint assortment and price
optimization problem under the multistage tree logit model, including the multinomial logit
model and the nested logit model as special cases.

Organization

The organization of the essay is as follows. In the next section, we present the tree logit
model and problem formulation of the joint capacitated assortment and price optimization.
Section 4.4 considers joint optimization problem under cardinality constraints. We intro-
duce the bi-level optimization program, solve the inner price optimization problem provided
the assortment is fixed and introduce an intermediate variable that connects to the outer



CHAPTER 4. UNDER TREE LOGIT MODEL: JOINT ASSORTMENT AND PRICE
OPTIMIZATION 58

assortment optimization problem. Then we show this problem can be solved by an efficient
algorithm. In Section 4.5, we study the joint optimization problem under space constraints
and show a 2-approximate solution can be found in a tractable way by proposing an efficient
algorithm. In Section 4.6, we illustrate our algorithm by testing a numerical example under
a three-level tree structure.

4.3 Model and Problem Formulation

In this section, we first introduce the tree logit model and assumptions on the model pa-
rameters, such as the dissimilarity parameters and price-sensitivity parameters. Then we
are ready to formulate the joint capacitated assortment and price optimization problem as a
bi-level optimization program with price optimization as the inner problem and assortment
optimization as the outer problem.

Tree Logit Model

We use an m-level tree structure, which is denoted as Tree = (V, E) with vertices V' and
edges FE, to describe the consumer choosing process under the tree logit model. In this
tree structure, K is the maximum number of children nodes that a nonleaf node can have.
Faced with various products, assume that a consumer has m specific requirements, such as
product category, brands and rating, for the desired product that she wants to buy, which can
be translated into the m-stage decision-making process described as follows. In the m-level
decision tree, the consumer starts from the root node in level 0, and chooses whether to leave
without purchasing any products, which corresponds to the no-purchase option in level 1, or
to select a subset of all the products that satisfy her first requirement. The above choosing
process can be viewed as moving from root to one of its children nodes. If we assume that
she does not choose the no-purchase option, then she is now in level 1 and about to select
another subset of products satisfying both of her first two requirements. As she is moving
deeper down in the tree, she narrows down her set of desired products until she reaches
a leaf node corresponding to an actual product that meets all her m requirements, which
completes the choosing process. Parent(i) and Children(i) are used to denote the parent
node and the set of children nodes of node i, respectively. Without loss of generality, we
define Parent(root) = ¢ and Children(£) = ¢F if node L is a leaf node. For any node i € V'
in level [, let N! be the subset of products satisfying the consumer’s first [ requirements
of the products. For notational brevity, we omit the superscript [ of N! throughout the
paper. From the above choosing process, we can see that N; is consist of products or leaf
nodes sharing the same ancestor node ¢. Thus N; can be defined recursively as follows,
N; = {i} if node i is a leaf node; and N; = Ujecmldren(i) N; for nonleaf node ¢ that is in level
0 <! < m — 1. Using this notation, N,,, represents the set of all the candidate products to
be chosen from. Let N be the total number of candidate products, then the size of N,y is
N + 1 since N, is consist of IV products and one no-purchase option.
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We proceed to introduce the assortment that is offered to the consumer. In practice, it
is always not optimal to offer all the product that a firm has to consumers because there
is a display space limitation or it is not better off offering less attractive products with
high prices. A decision that the firm always make is to choose a subset of products, or
an assortment that is denoted as Sioot, from Nyt in order to achieve its objective, such
as maximizing expected profit in our problem setting. Similarly, for any node i € V, the
assortment S; € NV; of node i is also defined recursively: if node i is a leaf node, S; = {i} or
&, implying that we choose whether to include product i in the offered assortment or not;
on the other hand, if node 7 is a nonleaf node, then S; = | J iChildren(i) S; that is an assortment

of the subtree rooted at node i. We also assign a price vector P;(S;) € RI%! to node i € V,
which includes the prices of products in assortment .S;. For instance, if node 7 is a leaf node,
P;(i) = (p;) when S; = {i} and p; is the price of product i or P;(i) = & when S; = J; for
the root node, Proot(Sioot) contains the prices of all the products in assortment Sy, For
notational purpose, we use P; instead of P;(.S;) throughout the paper.

As discussed in the above paragraph, the size of feasible assortment that a firm of-
fers cannot be too large due to the display space limitation. In this paper, we work with
cardinality /space constraints limiting the total number/space of products that are asso-
ciated with the nodes in level m — 1. For ease of presentation, we define those nodes
in level m — 1 as basic nodes, the set of which is denoted as %. Then for the basic
node j € %, the set of feasible assortments under cardinality constraints is defined as
S5 = {55 + 5j = Uhecnilaren(j) S+ [95] < C;} where the prespecified C; is a cardinality limi-
tation on assortment S;, implying the maximum number of products that node j can have
should not exceed C;. The set of feasible assortments under space constraints is accordingly
defined as S} = {S; : S; = Upccnildren(j) Sk 2ikechildren(j) Wk < S;} where the prespecified S;
is a space limitation on assortment S; and wy is the space consumption of product k. For
node i that is neither a leaf node nor a basic node, the feasible set of assortments is defined
recursively as &; = X jeChildren(i) 3, where X stands for the Cartesian product. With this
notation, the feasible set of assortments for node ¢ is the Cartesian product of all the feasible
sets of assortments for ¢’s children nodes that are indexed by j.

We use the upside-down tree in Figure 4.1 as an example to illustrate our notational
system. In the three-level tree structure, there are 11 leaf nodes including 10 products
{g,h,...,p} in level 3 and a no-purchase option in level 1. For the node a, we have Parent(a) =
root, Children(a) = {c,d}, N, = N.\J Ny = {g, h,i} {7, k,1} = {9, h,4,7,k,1}. We also have
N, = {g}, Children(g) = & and Parent(root) = ¢J. Let the cardinality constraints on basic
nodes cand d be S = {Sc 1 Se = Urecniaren(e) k- |9l < 1} = {, g, h, i} and Sq = {S4: Sq =
Ukecnitdren(ay Sk 1S4 < 1} = {, j, k, 1}, respectively. Then the feasible set of assortments for
node a is §, = S X Sg = {@7 {g}’ {h}7 {Z}’ {]}7 {k}v {l}7 {g,j}, {9, k}v {ga l}7 {hvj}v {h7 k}v {h> l}7
{i, 7}, {3, k}, {1,1}} and a feasible assortment for node a is S, = {g, k} < I, with price vector
P, = (pg,pr). The size of I, is 15 that is very large for a system only has 10 products. If
we impose the same cardinality constraints on nodes e and f, a feasible assortment for node
root is Syoot = {g,k,n}, in which S, = {g,k}, Sq = {k}, Se = {n}, S; = & and S,, = {n}.
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The price vector of Syoot 18 Proot = (Pg, Pk, Prn). From this toy example, we can still get a
sense that the size of S0t = o X Sy is very large even under simple tree structure with
small number of products, thus selecting an optimal assortment is not a trivial task and
brute force clearly is not an option. Similarly, for space constraints, if we let w, = w; = 1,
wp, =w, =2, w; =w;, =3 and S, = S; = 2, then the feasible set of assortments for node a

18 %Zz = {@a {9}7 {j}7 {h}v {k}’ {g,]}}

Level 0

Level 1

Level 2

Level 3

Figure 4.1: The tree logit model with a 3-level tree structure

To measure the attractiveness of assortment S; with its corresponding price vector P;, we
assign a preference weight V;(S;, P;) for node i € V' as a function of S; and P;. Specifically,
if node 7 is a leaf node and is not a no-purchase option, its preference weight is defined as

V;(Sszi) = exp(@i - 51'1?1) * 1<Si + @),

where «; is price-independent deterministic utility and (; is the price-sensitivity parameter
of product i. If the assortment S; for leaf node ¢ is empty, the indicator function 1(-) is
zero, yielding the preference weight V;(J, P;) to be zero; if S; is not empty, then V;(S;.P;) =
exp(a; — Bip;) would be strictly positive. Moreover, for the no-purchase option in level 1 as a
child node of the root node, let Viyot, > 0 be its preference weight. Then for a nonleaf node
1 € V, its preference weight can be calculated recursively as

Vi

Vi(Si, P;) = > VisuPy |
j€Children(4)

where 7; € (0,1] is the dissimilarity parameter of nonleaf node i, S; is the assortment
associated with node 7 and P; is its corresponding price vector. The preference weight
of root node does not influence the objective profit function, which will be shown later of
this section, so we set Vo0t = 0 without loss of generality, which yields Voot (Sroot) = 1 for
arbitrary assortment Spoot.
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The restriction on v; guarantees that this tree logit model satisfies the random utility
maximization theory [34]. The dissimilarity parameter 7; for node ¢ measures the dissim-
ilarities between its children nodes. The larger ~; is, the less similar the products of i’s
children nodes are, or the less positively related the random utilities of these products are.
Specifically, when ~; equals to one, the tree structure is degenerated by removing node ¢ and
connecting ¢’s children nodes and parent node directly. If the dissimilarity parameter exceeds
one, the two-level nested logit model is still consistent with the random utility maximization
theory under some conditions; see [33] and [45]. Recently, [11] and [19] study the assortment
optimization and price optimization problem under the two-level nested logit model with
dissimilarity parameter exceeding one, respectively. In this paper, we impose the restriction
that +; € (0,1] for all i € V| since the assortment optimization problem becomes NP-hard
even for uncapaciated assortment with fixed prices under the two-level nested logit model.
As in [22], we also make the following assumption on the price-sensitivity parameters and
dissimilarity parameters to guarantee that there is a unique optimal pricing solution.

Assumption 3. For any nonleaf node v, define

B Minjechildren(i) {35 } 1 1s a basic node
= minjeChildren(i) {Eerj } o.w.
and
o MAaXjeChildren(i){ 55 } ¢ is a basic node
Bi = v2B;
maneChildren(i){ 1,(17%)]@/2]- } 0.W.
We assume that
B; 1
B; 1- %"

Problem Formulation

The tree logit model is essentially a probability based choice model, with the notational
system ready, we show how the choice probabilities of products are calculated and how they
are related to the objective profit function as follows. If assortment S; of node 7 is not empty,
the conditional probability of choosing S; where j € Children(7) can be formulated as

V(S Py
Z jeChildren(q) VJ (Sm Pj)

If assortment S; is empty, then we define Q(S;,P;|S;,P;) = 0/0 = 0 as the probability of
choosing from an empty assortment is zero. We use R;(.S;, P;) to denote the profit for node
1 € V with assortment S; and price vector P;. Particularly, if node ¢ is a leaf node but not
a no-purchase option, then R;(S;, P;) = (p; — ¢;) = 1(S; # &) where ¢; is the cost of product

Q(S;,P;15:, P;) =
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i and the indicator function 1(-) makes the profit to be zero if we do not offer product i in
assortment S;. For the no purchase, we define Ryoot, (Srooty, Frooty) = 0 since we cannot get
any profit if the consumer decides not to purchase. If node ¢ is a nonleaf node, then the
expected profit is defined recursively as follows

Ri(Si,Pi) = Y, Q(S;,Pi[Si,Py) = R;(S;, P))
j€Children(4)
2 jcchildren(i) Vi (55, Pj) (S5, Pj)
ZjeChildren(i) V} (Sj’ PJ)

Thus for assortment S With price vector P, the objective profit that is generated from
this system is Ryoot(Sroot, Proot)- Since the objective profit function Ryoot(Sioots Proot) does
not include the term Voo, we can set Yoot = 0 to make Vipoy = 1 without changing the
objective.

The joint capaciated assortment and price optimization problem under the tree logit
model can be formulated as the following bi-level optimization program

7% = max max Rroot (Sroot ) Proot) ) (4 1)

Sroot & [Sroot
root =~>3root ProotERgéoo

where Z* denotes the maximum expected profit that we can obtain per consumer and o0t
is the collection of feasible assortments that satisfy the constraints, which can be either
cardinality or space constraints. In this paper, we show that problem (4.1) is tractable by
building a bridge that connects the inner price optimization problem and the outer assort-
ment optimization problem.

4.4 Joint Optimization Under Cardinality Constraints

In this section, we consider the joint capacitated assortment and price optimization problem
under the cardinality constraints. Thus, we have S; = {S; : Sj = Ujccnitaren() Sk 1951 < Cj}
for Vj € & throughout the section. First, we show the joint optimization problem can be
decomposed to solving joint subproblem that are define on the nonleaf node by assuming we
have already known both optimal assortment and optimal prices. Second, we solve the inner
pricing problem of the joint subproblem. The remaining joint subproblem with solved inner
pricing problem is referred to as assortment subproblem. Third, the assortment subproblem
can be we reformulated by optimizing over a scalar. Last, we propose a polynomial-time
approach to solve the joint optimization problem under cardinality constraints.

Problem Decomposition

We consider solving problem (4.1) by decomposing it into joint subproblem on every nonleaf
node, which is inspired by the algorithm of uncapacitated assortment optimization problems;
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see [30]. However, their approach can deal with the uncapacitated assortment optimization
only and cannot be generalized to solve joint optimization over both capacitated assortment
and prices. Let S and P} be the optimal assortment and the optimal price vector for node
i € V, respectively. Then define the scalar ef = viey + (1 — ;) R; (S}, P;) where h is the
parent node of ¢, and let el*;arent(mot) = 0 for the boundary condition. By noting that v, = 0,
we have e€X = Rioot(S% ¢, Pioo). If the optimal assortment S¥* . and optimal prices P},
are given, then R;(S¥ P) for i € V can be calculated, thus all the scalars e can also be
obtained in a top-down manner. For each nonleaf node 7, the joint subproblem is defined as
follows

max max V;(S;, P;)(R;(S;,P;) —e}). (4.2)
Si9i pcplS)]
Note that problem (4.2) at root node is identical to problem (4.1).

Compared to the assortment optimization problem, the joint optimization problem re-
quires making decisions of both assortment and prices. In the capacitated assortment opti-
mization problem under the two-level nested logit model [18] and uncapaciated assortment
optimization problem under the d-level nested logit model [30], the optimal assortment S}
of a nonleaf node i € V' can be an empty set if R¥(SF) is less than the scalar e}. However,
for the “joint” optimization problem, the optimal assortment S} can never be empty since
we have more control over both assortment and prices. The following lemma shows this
difference between joint and assortment-only optimization problem.

Lemma 13. (Joint Subproblem and Optimal Assortment) In the joint capacitated assort-
ment and price optimization problem, for a nonleaf node i € V' and its parent node h, the
optimal assortment and price vector (S¥, P ) and optimal solution (S'l, ﬁz) to joint subprob-
lem at node 1 satisfy:

1. Ri(SF,Pf)>er=0;

2. S¥ is a nonempty set and P is a nonzero vector;

3. (S¥,P¥) = (S, P;) and UieChﬂdren(h)(S’i,f’i) is optimal to joint subproblem at node h.

With a slight abuse of notation, we denote (Sy, Pj) = UieChildren(h)(Si?P’i) throughout

the essay for ease of presentation, where S, = UieChﬂdren(h) S; and Pj, = (Pil,l?’iQ, ,lszn)
where iy, i, ..., i, € Children(h). The proof of this lemma can be found in Online Appendix
C.2.

From Lemma 13, it immediately follows that for node ¢ in level [, both e and R;(S}, P})
decrease as [ becomes smaller, i.e. €] > €p, ;) and Bi(S7, PY) > Rparent(s) (Sparent(iy: P Parent(i))-
We make an observation that the joint subproblem at node ¢ € V' is highly nonlinear in .5;
even if the optimal price vector P} is given. Therefore, we propose an alternative formulation

of joint subproblem at node ¢ € V', which is referred to as basic joint subproblem, as follows

max 1max V;(S“ Pz)l/% (RZ(SZ, PZ) - 67) (43)

Siggi PiERLSg‘



CHAPTER 4. UNDER TREE LOGIT MODEL: JOINT ASSORTMENT AND PRICE
OPTIMIZATION 64

) Vi(R;,P;), and the
optimal objective value for problem (4.3) at root node is zero since e}, = Rioot(Sihos P

i

For root node specifically, we define Voot ( Rroot, Proot) /00t = 3 jeChildren

root? root)'
Problem (4.3) at a basic node turns out to be tractable, which we would show later in this
section. The remaining question is what the relationship is between joint subproblem (4.2)
and basic joint subproblem (4.3). We want to show the optimal solution to problem (4.3)
is also optimal to problem (4.2), and the following example under the two-level nested logit
model can be used to illustrate the intuition.

Example 1. (Joint Optimization Under the two-level Nested Logit Model) Under the two-
level nested logit model, where the disjoint nests are indexed by j. The feasible set of assort-
ment for node j is denoted as ;. The joint subproblem (4.2) at root node is the global joint
optimization problem

0*

root max max Rroot (Sroota Proot)a

Srootgsroot ProotERgéoOt‘
which, according to the definition of Rioot(Sroots Proot), can be rewritten as

* f— . . . . . . J— *
voeroot g mcaf ma‘{g | 2 V; (SJ ) P] ) (R] (SJ ) P]) eroot)
TOOL=Iroot ProgreR 2% j€Childre(root)

Move vo0} , to the right hand side of the above equation, it becomes

0 = max max V;oot (Rroot ) Proot ) l/nerOt (Rroot (Sroot ) Proot) - e;koot) .

Sroot S5 [Sroot|
root =>root ProotERZSOOt

The right hand side of the above equation is the basic joint optimization problem (4.3) at
root node. Therefore, the optimal solution to problem (4.3) is also optimal to problem (4.2)
and they share the same optimal solution.

The following lemma follows the above discussion.

Lemma 14. For any nonleaf node i € V', the optimal solution to basic joint subproblem (4.3)
is also optimal to joint subproblem (4.2).

Even if e} is known, we still cannot solve joint subproblem (4.2) at basic node i due to
the nonlinearity of S; in the preference weight V;(S;, P;). However, by Lemma 14, we turn
to deal with a more tractable basic joint subproblem (4.3). That is to say, if e is given
Vi € A, then the optimal solution to problem (4.1) can be obtained by taking the union of
all the optimal solutions to problem (4.3) at node i by Lemma 14 and using the third item
of Lemma 13 repeatedly.
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Assortment Subproblem

In this subsection, we still assume the scalar e} is given for any nonleaf node ¢ and focus on
building connections between the inner pricing and outer assortment optimization problem
of the joint subproblem (4.2). For a given assortment S; € ;, the inner pricing problem of
(4.2) at node i is

max V;(S;, Py)(R;(S;, P;) —e}). (4.4)

PR/

Problem (4.4) is a |S;|-dimensional continuous optimization problem. The objective function
is non-concave with respect to the price vector even under the 2-level tree logit model. We
introduce an intermediate variable for node 7 € V' to reduce the dimension of this problem,
which is referred to as the node-specific adjusted markup and is defined as follows.

Definition 1. (Node-specific Adjusted Markup) For nonleaf node i € V', given assortment
S;, the node-specific adjusted markup for node i is defined as

0; = 0; — w;(S5;,6;),
where j € Children(:) and w;(S;,0;) is recursively defined as follows

1 Sy, 0415, 0;
wi(S;,0;) =(—-1) > A kl’k‘%] )

4 Wi (Sk s Gk) .
R keChildren(y)

For the boundary condition, if leaf node i is in level m, we set 0; = p; — ¢;, w; = 1/5; and
Vi = 07‘ fOT the root n0d67 we deﬁne wroot(sroota eroot) = Oroot -

By applying the first order condition repeatedly, the dimension of problem (4.4) can be
reduced to one in the end. If the objective function has nice properties, then solving problem
(4.4) with respect to the node-specific adjusted markup is not as a hard task as solving it
with respect to the price vector, which in turn makes it possible to solve joint subproblem
(4.2). Assumption 3 about input parameters, which are price-sensitivity parameters and
dissimilarity parameters, is the sufficient condition that guarantees the uniqueness of the
optimal solution to problem (4.4). At optimality conditions, the following lemma shows that
the properties of node-specific adjusted markup.

Lemma 15. Giwen assortment S; for nonleaf node i € V in level d. Suppose node a,
which is in level | (d <1 < m — 1), is a descendant node of i, then for any nodes b,V €
Children(a), we have that 0, = 0, — wy(Sh, Oy) and 0!, = Oy — wy (S, Oy) are equivalent under
the optimality condition of problem (4.4). Under Assumption 3, there exists a one-to-one
increasing correspondence between the node-specific adjusted markup 6, and 0y,.

According to the above lemma, we know that there is a one-to-one correspondence be-
tween the node-specific adjusted markup of one node’s and its parent node’s. Moreover, for
product r in the lowest level m, its node-specific adjusted markup 6, equals to p, — ¢,, so 6,
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has a one-to-one correspondence with its price p,. Then we can conclude that for every node
1 € V, there is a one-to-one correspondence between the node-specific adjusted markup 6;
and its price vector P;. Thus for a given #;, the prices of its descendant products’ can also be
uniquely determined. Therefore, the |S;|-dimensional price vector P; in problem (4.4) can
be replaced by the scalar 6;. As in the Definition 1, Q(Sy, 0x|S;,8;) can be used to represent
the conditional probability instead of Q(Sk, Px|S;, P;). We make a crucial observation that
the multidimensional inner pricing subproblem (4.4) given assortment S; can be rewritten
as an optimization problem with respect to a scalar, which is shown as follows

max Vi(:S;, 0;) (Ri(5:, 0:) — 3,), (4.5)

This observation is recorded in the following proposition.

Proposition 10. The inner pricing subproblem (4.4) for a given assortment S; at a nonleaf
node i € V' is equivalent to the optimization problem (4.5) with respect to the node-specific
adjusted markup 0; that is a scalar.

We continue to study problem (4.5) and show the findings in the following lemma by
applying the first order condition.

Lemma 16. At the optimality condition of problem (4.5), 6; should satisfy:
0; = ey + (1 — %) Ri(Si, 6;).
where 6; is the node-specific adjusted markup for node 1.

Lemma 16 is insightful in a way that problem (4.5) is solved by finding 6; that satisfy the
optimality condition if S; and e} are known. However, solving problem (4.5) is still a non-
trivial task since there might be multiple 6; satisfying the optimality condition. Fortunately,
problem (4.5) at root node can be solved uniquely and efficiently.

Corollary 5. Ifi is root node, then R;(S;,0;) is strictly unimodal in 0; and R;(S;,0;) = 6;
at optimality for given S;.

In order to get the optimal solution to problem (4.5) at nodes besides the root in a
tractable way, we aim for studying the optimality condition again by finding out what the
scalar e essentially is. We define the optimal node-specific adjusted markup 07 for node
i € V as the optimal solution to inner pricing subproblem (4.5) given optimal assortment

Sz* 01* = argmaxy cg V;(Sz*a 91)(RZ(S;<’ 01) - 672)

Proposition 11. For any node v € V, the optimal node-specific adjusted markup 0} is
equivalent to the scalar e} .
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Start from the optimality condition as shown in Lemma 4, the next proposition shows
more of the structural relationship between 65 and the expected profit R;(.S;,6;) of node i
given assortment .S;. This relationship can be viewed as the bridge that connects the inner
pricing subproblem and the outer assortment optimization subproblem. How to exploit this
property is crucial to solve the joint subproblem (4.2), which will be further discussed in this
section.

Proposition 12. R;(S;,0;) and 0; should satisfy the following conditions at the optimality
of problem (4.5):
1
RZ<SZ, 01) = 9; + TWZ(SZ, 92),
and
0; = 91 — wi(Si, 91)
Moreover, we have R;(S;,0;) > 0.

The fact that R;(S;,0;) > 05 is also consistent with the first item in Lemma 13. The next
corollary eliminates the concerns of possibility that problem (4.5) has multiple solutions.

Corollary 6. For a given 05 and S;, optimal solution to problem (4.5) can be uniquely
determined by 05 = 0; — w;(S;, 0;).

We are ready to rewrite the bi-level joint subproblem (4.2) as an optimization program
with respect to assortment variable only since inner pricing subproblem is completely solved
by earlier discussion. We record this finding in the following theorem.

Theorem 7. (Assortment Subproblem) The equivalent formulation of joint subproblem (4.2)
1s defined as follows:
‘/;(Si: Qi)wi(sz', 0;)
SiES 11— (46)
s.t. 6; = HZ - wi(Si,Gi),

which is referred to as assortment subproblem at node .

Note that for the root node, wWroot (Sroots Froot) = Broot = Rroot (Sroot, Proot) at the optimality
condition of problem (4.6). In the assortment subproblem (4.6), 6; is essentially a function
of S; for a given 6} since 6; can be uniquely computed via the constraint in problem (4.6)
by Corollary 6. However, the scalar 6}, which is the optimal solution to the inner pricing
subproblem (4.5) at node h given the optimal assortment S}, cannot be identified before we
obtain 6% . by solving R(S¥ ., 0root) = broot; see [50] for numerical experiments.

Even if 6 is provided, obtaining an analytical solution to problem (4.6) seems not possible
due to the nonlinearity nature of the objective function. The optimal solution to problem
(4.3) is also optimal to (4.2), since problem (4.3) is “linear” in S; if a collection of candidate
assortments for node j € Children(i) is given, we show the basic joint subproblem (4.3) can
be reformulated as well in the next theorem.
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Theorem 8. (Basic Assortment Subproblem) The equivalent formulation of basic joint sub-
problem (4.3) is defined as follows:

3 Vi(S;, 0;)w;(S;, 05)
jeChildren(i) 1= (4.7)
s.t. 07 =0; —w;(S;,6)),

max
Sy

which 1s referred to as basic assortment subproblem at nonleaf node 1.

As the discussion at the end of section 4.4, problem (4.7) at basic nodes is of special
interest to study, which can be solved in an efficient approach by the following corollary.

Corollary 7. For basic node j € B, problem (4.7) at j can be simplified as

max 3
S;C3;

9= keChildren(j)

Vi(Sk, 05 + e + 1/B)
Br ’

(4.8)

where Sj = Upecnildren(jy Sk and Sk € @ = {{k}, J} that is the candidate collection of
assortments for leaf node k € Children(j). Problem (4.8) can be solved within O(N,log N;)
operations.

By corollary 7, the next corollary shows that the union of the optimal assortments to
problem (4.8) at all the basic nodes is the global optimal assortment to problem (4.1), which
can be proved by applying Lemma 13 repeatedly.

Corollary 8. For all the basic node j € A, let S’j be optimal to problem (4.8), then assort-
ment Sroot = Uje%, S; is the optimal assortment to problem (4.1).

Equivalent Formulation of Assortment Subproblem

However, 07 for j € % in problem (4.8) remains unknown. Even if there is a limited number
of optimal solution to problem (4.8) for 5 € R, we still need to deal with problem (4.6) at
upper-level nodes, which is intractable since it is nonlinear with respect to the assortment
variable and the feasible searching space grows exponentially as number of products increases.
In this subsection, for basic nodes, we first prove that a candidate collection of assortments
that include the global optimal assortment to problem (4.1) has reasonable size and can be
obtained efficiently. Second, we can get a feasible collection 7 including the global optimal
assortment S} for upper-level node 7 in a bottom-up manner. Then we show that <7 has the
size of O(N) by reformulating problem (4.6) in terms of optimizing over a scalar 6; rather
than the assortment variable S;.

For any basic node j € %, we need to know 67 in order to solve the basic assortment
subproblem, which in turn requires knowing S7. However, knowing 57 is impossible unless
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we could solve problem (4.1). We remark that the scalar 07 in problem (4.8) can also be
negative; see [19]. For any 6; € R, let S;(6;) be the optimal solution to the following problem

max Z Vk(Sk,QJ +cj+ 1/51€)

)
i= keChildren(y) Bk

(4.9)

Define «7; = {S’L(Gj) : 0, € R}, then we claim that .27; includes the global optimal assortment
S%, since S¥ = S;(07) according to Corollary 7 and Theorem 8. The next lemma shows that
at optimality, the cardinality constraint in problem (4.9) is binding,.

Lemma 17. For the optimal solution S;(6;) to problem (4.9) with V6, € R, we have |S;(6;)| =
C;.

Lemma 17 is useful when the cardinality limitation is larger than the number of products
that a basic node has, since the optimal assortment of this basic node in this case is straight-
forward: include them all. If it applies to all the basic nodes, the joint optimal assortment

*

Caw . ) . Tk
is S¥% i = Nioot, and optimal prices can be found via Ryoot(Nroots 02 0c) = 0% .-

Next we solve problem (4.9) for 6; € R, the objective function of which is rewritten as
ZkeChildren(j) exp(ay — Bif;) where &y = oy — Srcr, — log(Bk) — 1 since Vi (Sk, 0; +cx +1/8x) =
exp(ar — B * (0 + ¢ + 1/5k)) according to Definition 1. If we define f(6;) = exp(hx(6;))
where hy(6;) = &y, — Bib;, then there is at most one intersection point of any two functions
in {fx(¢,) : k € Children(j)}. Furthermore, the intersection point, if any, of two functions
[, (6;) and fi,(6;) is same as the intersection point of the two linear functions hy, (6;) and
hi,(8;), the x-coordinate of which can be calculated as

&kl — Oka

I, o) B — Brs
Problem (4.9) is essentially a 0-1 knapsack problem with unit weight, the optimal solution
is to select top C; products that are ordered by fi(6;) for k € Children(j) with a given
6;. The important observations are: 1) the ordering of fi(6;) is identical to the ordering
of hi(6;); 2) the ordering does not change when 6; takes values between two consecutive
intersection points. For example, the basic node j has three products, indexed by £ = 1,2, 3,
with cardinality limitation of two. Figure 4.2 shows how to solve problem (4.9) at node j,
there are three lines: hy(6;) = &, — fib; for k = 1,2, 3, which are intersected at 3 points and
the real line is divided into 4 intervals. For the different ranges of 0;, the optimal assortment

S;(6;) to problem (4.9) is shown in Table 4.1.

For §; € R, the size of candidate collection .¢7; including optimal assortments to problem

(4.8) at basic node j € £ is bounded by O(N?) since there are at most (%) = O(N?)

intersection points of these lines. As in the above example, S;(6;) does not change at
intersection points a and ¢, and only changes at intersection point b with one product being
replaced by a new product. Thus the set of intersection points can be further refined to a
set of changing points where §j(9]-) actually changes. Moreover, the set of changing points
has size O(N;) when the cardinality limitation C; is prespecified [39].
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Figure 4.2: An illustration of solving problem (4.9) at basic node j

9, (—00,a) (a,b) (b, ) (¢, +00)

§j<0j) {172} {172} {2v3} {273}

Table 4.1: Optimal assortment S;(6;) to problem (4.9) for different ranges of 6,

Lemma 18. For basic node j € B, the preference weight Vj(é’j(ej),ﬁj) as a function of 6,
drops discontinuously at the changing point 0.

By the above discussion, the size of <7 = {S;(6;) : 6, € R} is O(N;). Denote i as the
parent node of basic j, then @7 = X jeChildren(i) <7; includes an optimal assortment to joint
subproblem (4.2) at node i by Lemma 13. The size of & is O(] [jccniiaren(iy Vj): which is
roughly O(K*¥) since K is the largest number of children nodes that a nonleaf node can have
in the tree structure. Even if we have reduced the feasible searching space of the assortment
subproblem (4.6) at node i from ; to .7, it is still intractable with a large K. To tackle this
intractability, we next consider problem (4.6) at basic node j with smaller searching space.
Then we stitch 7 for Vj e Children(i) together in a systematic way to get <7, the size of
which is at most O(ZjeChildren(i) |51).

Since «7; includes the global optimal assortment S¥, we can use 7 to replace 3j in
problem (4.6) at node j without affecting the optimality. For 0; € R, we let gj(@-) be an
optimal solution to the following problem

e V3% 05)w; (S, 65)
s.t. 91 = 9]' — Wj(Sj,ej).
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Then the set o = {U;ccnitdren(i S;(6;) : 6; € R} includes a global optimal assortment
S, since S = Ujecnitdren() S;(6*) by lemma 13 and Ujeccnitdren(s S;(6%) € <. Recall that

oty = {5;(0;) : 0; € R} where S;(6;) is the optimal solution to problem (4.9), thus we can
reformulate problem (4.10) in terms of optimizing over the scalar 6; € R as follows

max V;i(S;(0;), 05)w;(S;(05),05)
e - (4.11)
s.t. 91 = Hj — wj(Sj(Gj), QJ)

The above finding is recorded in the next proposition.
Proposition 13. Problem (4.11) and (4.10) are equivalent formulation at basic node j.

For the constraint in problem (4.11), if there exists a one-to-one relationship between
0; and 0;, the feasible region of decision variable 0; is a singleton for a given 6;, then this
problem is trivially solved by finding the matching ;. For 6; = 6; —wj(gj, 6;), the one-to-one
correspondence exists for a specific assortment S’j by lemma 15. However, for the constraint
0; = 0, —w;(S;(6;),0;), one §; may correspond to multiple 6,’s since S(6;) is also a function
of ;. In the following lemma, we summarize our observations.

Lemma 19. Let Sj(ﬁj) be the optimal solution to problem (4.9) at basic node j for 0; € R,
then 0; = 0;—w;(5;(0;),0;) is discontinuous with respect to ;. Moreover, there exists §; < 0;
such that one 8; correspond to at least two 0;’s when 6; € [0;,0;].

From the above lemma, there is no one-to-one correspondence for some range of 6;, but
for some other ranges of §;, the one-to-one correspondence do exist. We define F;(6;) to be
the optimal solution to problem (4.11) at basic node j € %, then we have S;(6;) = S;(F;(6:))
by proposition 13. Thus % = {{U,ccnildren(s S;(F;(6,)) : 6; € R} includes S¥ by the argument
discussed after introducing problem (4.10). For notational consistency, we define S;(6;) =
Ujccnitdrenciy S;(F;(6;)). The above results only hold for basic node j, the next proposition
shows that these findings can be generalized to any nonleaf node ¢ in the tree structure.

Proposition 14. For any nonleaf node i € V', let h and j represent its parent and children
node, respectively. We define F;(0y) as the optimal solution to the following problem

max W(Si(ei), ei)wi(Si(ei)a 91)
0,cR 1— (4.12)
st O = 0; — w;(Si(6:),6,),

where S;(6;) is recursively defined as follows

Si(6;) = U Si(F;(6:)).

j€Children(z)

Then = {Uiccnildren(n) Si(Fi(61)) : 0y, € R} includes the optimal assortment S at node h.
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), is created by stitching together S’l(}](é’h)) through the scalar 8, but we still have
concerns about the size of 7, since ), takes value in R. The next lemma shows that problem
(4.12) has nice properties, which helps us to prove that <7, has polynomial size of N and
can be obtained efficiently.

Lemma 20. Denote the objective function in problem (4.12) as Ti(S5(6;), 0n) for a given 6,
where 0; is implicitly defined in 0y, = 0; — w;(5;(0;),0;), then
1. The first derivative of TZ(S’Z(@), 0r) with respect to 0y, is

OT;(Si(6:), On)

o0,
2. The objective function T;(S;(6;),05) of problem (4.12) is a convex function in terms of 6.
3. For two different assortments Sy, Sy € o, if V;(S1,0;(51,01)) and V;(Ss, 0;(S2,64))) do not

intersect, then T;(S1,0r) and T;(Ss,0) intersect at most once in 0, domain.

= _‘/2(52(91), 02');

The objective function of problem (4.12) is a strictly decreasing convex function in terms
of . Hence only the ordering of these convex curve matters, which is similar to the way
that we used to study problem (4.9). For example, both 0;, and 6;, satisfy the constraint
in problem (4.12) for a given 6),. Let S;, = Si(6;,) and S;, = S;(6;,), the intersection points
of T;(S;,,0r) and T;(S;,,0,) are easy to be identified by binary search due to the convexity
nature of the objective function. When ) takes value between these intersection points,
assortment S;(F;(,)) does not change. The next proposition shows that the size of o7, is
bounded and the size of {S;(6;) : 6; € R} equals to the size of {S;(F;(6)) : 6, € R} since
T:(Si,, 0r) and T;(S;,, 0) intersect at most once.

Proposition 15. For nonleaf node i € V' and its parent node h = Parent(i), let o =
{Si(0:) : 0; € R}, then o = {Uiconiaren(n) Si(Fi(0h)) : 0n € R} includes Sy and we have
|Dh| < Yiccnitaren(n) [l - Furthermore, the size of || is O(N).

The above proposition ensures that the size of 7 grows linearly as node ¢ moves from
bottom to top and it is bounded by O(N). Otherwise, imagine that the above proposition
does not hold, then .27 is the Cartesian product of <7 for all j € Children(7), and the size of
7, grows exponentially in a bottom-up manner. Our joint optimization algorithm to problem
(4.1) with cardinality constraints that is about to be discussed in the next subsection is based
on the discretization of the node-specific adjusted markup 6;, thus we need at least |.<7| grid
points to represent 5”2(01) € ;. If o7, includes too many different assortments, it makes 5’1(92)
very sensitive to the change of #;, thus even more grid points are required, which in turn
leads to the intractability of problem (4.1).

Joint Optimization Algorithm

We present the algorithm JCAPO-C to sovle the joint capacitated assortment and price
optimization problem (4.1) under cardinality constraints. In earlier subsections, we show
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that problem (4.1) is reduced to the optimization problem (4.12) with respect to the node-
specific adjusted markup 6; at any nonleaf node i € V. We discretize 6; to a set of grid
points G; = {0}, ...,0¢,...,05} with size G; see [37] for selection of grid points. For grid
point of € G;, we get Si(of ) by stitching together the assortments of its children nodes:
Si(of) = Usccnildren(s S;(F;(07)), then we move up to upper-level nodes until we reach the
root node by proposition 14, and obtain 6% . by a fix point representation. Therefore, the
global optimal price vector P}, to problem (4.1) is uniquely defined due to the one-to-one
correspondence between P . and 6% . by Lemma 15 and the global optimal assortment

Slikoot is STOOt(e;koot)'

We define a mapping as A : of — oil such that 0‘;’; € Gy, is the grid point that is closest
to of — w(S;(0f),0!) where h = Parent(i). Algorithm JCAPO-C, which is presented in
Algorithm 5 as follows, solves problem (4.1) under cardinality constraints in a bottom-up
manner, which starts from basic nodes and then moves to its parent node until the root
node. It has three parts corresponding to i) problem (4.9) at basic nodes, ii) problem (4.12)
at upper-level nodes and iii) solving the fixed point representation at root node, respectively.

In this algorithm, .7-"1-(0%/) is initialized to —M and then updated to the optimal so-
lution to problem (4.12). For each update, it compares the objective function with 6;
taking value at current ]-"i(ofl,) and new coming point of, which takes O(1) since it only
includes one comparison. Line 10 and line 22 essentially deals with problem (4.12) at
basic node j and nonbasic node i, respectively, where the constraints in problem (4.12)
are automatically satisfied due to the mapping A\. We make an observation that line 10
and line 22 run in O(1) since it only takes a single numerical comparison. In line 17,
Vi(S:(09),09) = (X cumenty Vi(Si(F3 (0)), (o)) and it can be caleulated in O(1) by
looking up the previously stored preference weight of its children node j, and w;(S;(0f), oY)
can be computed in O(1) as well. The next theorem states that the joint capacitated as-
sortment and price optimization problem (4.1) under cardinality constraints can be solved

in O(GN log G).

Theorem 9. The computational complexity of Algorithm JCAPO-C is O(GN log G), where
G 1is the number of grid points for each node in the tree structure and N s the total number
of candidate products. Furthermore, if the spacings of grid points are identical, it can be
further reduced to O(GN log K) where K is the mazimum children nodes that a nonleaf node
can have in the tree logit model.

We remark that the computational complexity is irrelevant of the number of levels m
and the total number of grid points is bounded by O(GN) since the total number of nodes
is less than twice the number of leaf nodes in a tree.
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4.5 Joint Optimization Under Space Constraints

In this section, we consider the joint capacitated assortment and price optimization problem
(4.1) under space constraints. We develop an algorithm that runs in O(GN log G) to obtain
a 2-approximate solution. Similarly, this algorithm that is referred to as JCAOP-S is more
efficient with same performance guarantee under mild adjustments. Under space constraints,
the feasible assortment is S = {5 1 Sj = Uyecnitaren(j) Sk» 2okeCnildren() Wk < S;} for Vj € 4.
Let S&., = (S® : i € V) denote the a-approximate assortment throughout this section.
First, the joint optimization problem under space constraints can also be decomposed into
assortment subproblem on a subset of feasible assortments 3 < S for all nonleaf node i € V,
where we assume 3¢ that includes S§* is known. Second, we show I can be constructed
and we reduce the size of I to a new set @Z* that still contains S at node 7. Third, we
propose a polynomial-time algorithm to get a 2-approximate solution of the joint capacitated
assortment and price optimization problem (4.1) under the space constraints.

Problem Decomposition

For problem (4.1) under space constraints, Syoor = X e 3, denotes set of all possible as-
sortments that satisfy the space constraints. However, the assortment optimization problem
under space constraints is NP-hard, even for the two-level tree logit model with fixed prices.
Thus we aim to find an a-approximate solution to problem (4.1) under space constraints.
Assume I . that is a subset of & is given and it includes an a-approximate assortment

root
S o Let (S%.., Pooi) be the optimal solution to the following problem

root? root

7% = max max Rroot(5r00t7 Proot)a (413)

o
Sroot g\flroot Proot ERLS(SOOt |

where Z% = Rioot(S% o, Poooe) 18 the maximum profit that can be obtained from 3¢ ,.
(S% ., P ) is an a-approximate solution to problem (4.1) under space constraints, thus
aZ® = Z* = Ryoot(SE o, Proot) Where (S% ., Py ) is the optimal solution to problem (4.1)
under space constraints. For notational consistency, (S, P{) denotes the optimal assortment
and price vector to problem (4.13) at nonleaf node i € V. When a = 1, (S, Py) is the
optimal solution, thus denote S} = S} and P} = P;. Similar to the problem with cardinality
constraints in Section 4.4, we define the scalar e = veff + (1 — ;) R;(S#, Py'), which can
also be calculated in a top-down manner. And for each nonleaf node i € V', we introduce the
a-joint subproblem as follows

max Imax V;(S,L, P’L)(RZ<S’L7 Pz) — 6}05), (414)

;ST S;
SisSY perlSi!

o ot 1s provided. If we define the a-optimal node-specific adjusted
markup 6% as the optimal solution to maxg,er V;(S{, ;) (R; (S5, 0;) — e5), one can check that
0% equals to e and satisfies Definition 1 with assortment S by using similar techniques as
in Section 4.4. In this notation, we let 0 = 6.

where 3¢ is known since 3¢
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We claim that problem (4.14) has the following equivalent formulations, which is referred
to as the a-assortment subproblem

Vz’(Sz', Qi)wi(Si, 9i)
max
S g 1— (4.15)
s.t. 0}? = 01 - w,(SZ, 91),

and the optimal solution to the following problem, which is referred to as the basic a-
assortment subproblem

max 3 Vi(S;,05)w; (S;,0;)
ST jeChildren() L= (4.16)
st 07 = 0; —w;(55,0)),

is also optimal to problem (4.15). Proof of this claim follows directly from the results in
Section 4.4 by changing our notation from {S¥, 67, <;} to {S%, 6%, 3¢}, Similar to the third

YA A R A

item in Lemma 13, the following lemma also holds.

Lemma 21. Let S; be an optimal solution to a-assortment subproblem at nonleaf nodei €V,

~

then UieChﬂdren(h) S; is also optimal to the a-assortment subproblem at i’s parent node h.

By applying the above lemma repeatedly, we have that S% . = [ e 5 18 the optimal
assortment to problem (4.13) where Sf' is the optimal solution to problem (4.15) at basic node
j € B. Moreover, 02 . is the solution to this fixed point representation: R(S2 ., 0root) = Oroot,
which satisfies aR(S% ., 0%..) = Z*.

root’ Yroot

Candidate Assortment Construction

Although the joint optimization problem under space constraints can be decomposed to
problem (4.15), we still have concerns since it requires to know ¢ and 6. 6% can be
computed in a top-down manner if we know Sg , since 0 equals to ej. In this subsection,
we first show that Sy, can be obtained if 6} is known for Vi € V. Then we construct 3§ that
includes S¢ and show how 3¢ can be simplified to 2, the size of which is bounded by O(V).
We use these results in the next subsection to develop an algorithm running in polynomial
time to solve problem (4.1) under space constraints with a performance guarantee. The
following lemma shows that an a-approximate assortment S, can be obtained provided
that 0 is given.

Lemma 22. Let 5’;‘ be an a-approximate solution to problem (4.8) at basic node j € B

~

under space constraints with parameter o = 1. Then assortment Sg , = Uje% S¢ is an
a-approrimate assortment.

Once 5%, is known, we compute 07 in a top-down manner. The next lemma clears the
concern that we have at the beginning of this subsection by showing that I¢ . can also be

built.

(67
roo
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Lemma 23. Define &/ = {SJO‘(QJ) : 0; € R}, where 5*]04(9]) is an a-approzimate solution to
problem (4.9) at basic node j € B under space constraints, then S5, = X ., 7 includes
SCM

root *

Proof of the above lemma is straight forward: since S% = gf‘(@;‘), then &7 contains S%'.
Thus e = X jey & contains Sy = iy S’j‘)‘ By applying the approach in [18], we are
able to locate a 2-approximate solution to problem problem (4.9) under space constraints
by finding the intersection points of these lines: {hy(#;) : k € Children(j)} where hy(6;) =
&y — Beb; = o — Brex — log(Bg) — 1. Similar to the joint optimization problem under
cardinality constraints, we define the mapping F(6,,) as
Vi(S¢(0:), 0)wn (S5 (6:), 6 ;

F(0),) = arg max{ (57(0:) 1 Jwi(57(6:), 0:) 10 = 0; —w;i(S5(6:),0:)},
0;eR —

where S(6;) is recursively defined as follows

j€Children(z)

F(0y) is essentially the optimal solution to problem (4.16) for a given 6% = 6),. Note that

)

F(0%) = 0. The next proposition shows that % . can be reduced to <72, with size O(N).

K3 roo roo

Proposition 16. Let i be any nonleaf node, assume o/ = {5%(6;) : 6; € R} includes S§.
Then there exists a collection of candidate assortments ;" = {U;ccniiaren(ny S5 (F5 (01))
Oy € R} that includes Sy where h is i’s parent node. We also have || < ¥iccparentn) |9°]

and || has size O(N).

Joint Optimization Algorithm

We present the algorithm JCAPO-S of the joint capacitated assortment and price optimiza-
tion problem (4.1) under space constraints in this subsection. Similar to Section 4.4, we
build a set of grid points G; = {0}, ...,07,...,0%} for each nonleaf node i € V, the size of

which is G. For each of € G;, Sf‘(of) can be obtained by gf‘(of’) = UjGChﬂdren(i) 5’;‘(]:]0‘(05’))
The collection &7 = {S*(0?) : 0! € G;} includes an a-approximate assortment S at node i.
After getting o2 . by solving a fixed point representation, we are able to obtain (S% ., Pr.:)
that is an a-approximate solution to problem (4.1) under space constraints.

The algorithm in Appendix C.3 is referred to as Algorithm JCAPO-C, which solves
problem (4.1) under space constraints with a performance of guarantee of two. In this
algorithm, the mapping A is defined as A : o] — O‘ZI such that Oi’ € (G, is the grid point that
is closest to 0/ — w(S*(0?),0?) by assuming that S®(6;) is known for 6; € G; and let node h
be the parent node of 7.

For the problem in line 4, we can get a 2-approximate solution in polynomial time [18].

Furthermore, 2-approximate solution to problem (4.1) with space constraints is obtained in
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O(GN log GG) time by applying Algorithm JCAPO-S, the findings of which is summarized in
the following theorem.

Theorem 10. A 2-approximate solution to problem (4.1) under space constraints can be
found through Algorithm JCAPO-S, the complexity of which is O(GN log G). Furthermore,
its complexity can be reduced to O(GN log K).

4.6 Algorithm Illustration

In this section, we illustrate the joint optimization algorithm JCAOP-C on an instance of
a three-level tree logit model, the structure of which is shown in Figure 4.1. The major
difference between algorithm JCAOP-C and JCAOP-S is the optimization problem at basic
nodes, but the rest part of two algorithms share the same idea. Hence this illustration can
also be adapted to demonstrating JCAOP-S with minor adjustments.

A set of ten products {g, h, ..., p} and a no-purchase option are considered in our setting.
The remaining nodes in the tree structure are all nonleaf nodes, the set of which is denoted
as {a,b, ..., f,root}. The following Table 4.2 shows the model parameters. The preference
weight of no-purchase option is set to be 10, price-independent deterministic utility oy, price-
sensitivity parameter [ and cost ¢ are provided for each leaf node k, and dissimilarity
parameter 7; is given for each nonleaf node i. The bottom part of this table shows the
cardinality constraint C; on basic node j.

By Lemma 17, we have S¥ = {m,n} and S} = {o,p}, then S} = {m,n,o0,p}. Thus we
focus on the left portion of the tree. For basic node ¢ and by line 4 in algorithm JCAOP-
C, one can verify that S.(o.) = {g,h} for grid point o, € [0,3.02] and S.(0.) = {g,i}
for o. € [3.02,10]. Note that set <. = {{g,h},{h,i}} includes S*. Then we plot 0, =
0e — we(S.(0.), 0.) as a function of o, as shown in Figure 4.3(a), where we(Se(0,.), 0.) jumps
discontinuously at o, = 3.02. One can see that a single 6, corresponds to two grid points o.’s
when 6, € [2.05,2.21], which is an example of Lemma 19. We then consider line 22 in algo-
rithm JCAOP-C, and the visualization of solving this optimization problem is demonstrated
in Figure 4.3(b), where the two convex decreasing curves corresponding to assortments {g, h}
and {h,4} intersect only once at o, = 2.14. Thus S,.(F.(0,)) = {g,h} for o, € [-0.73,2.14]
and S.(F.(0,)) = {h,i} for o, € [2.14,9.02].

Similarly, we go through the above process for another basic node d. Then we obtain
Sa(04) by stitching together S.(F,(04)) and Sg(Fy(0q)) via the grid point o,. For instance,
if 0, € [—0.73,1.77], then S,(0,) = Su(Fu(04)) U Sa(Faloa)) = {g,h} {4, k} = {g,h, 4, k};
if 0, € [1.77,2.14], S.(F.(04)) is still {g,h} and Sy(Fy(0,)) becomes {k,1}, thus S,(0,) =
gc(fc<0a)) Ugd(fd(0a>> = {h,Z} U{]7 k} = {gv h, kvl}; if o, € [2‘1478'91]7 then ga(oa) =
{h,i,k,1}. Note that the collection .27, = {S,(04) : 0a € Ga} = {{g, h, 7, k},{g, h, k, 1}, {h,i, k,1}}
includes the global optimal assortment S* to problem (4.1) with cardinality constraints. We
also have that |.o7,| is less than the sum of || and |27, which addresses Proposition 15.
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Figure 4.3: Computation in Table 4.3

The construction of ga(oa) is shown in Table 4.3 with corresponding optimization process
that is shown in the above Figure 4.3.

Next we build Sioot (0r00t) from 7, = {{g, h, .k}, {g, h, k,1},{h,i,k,1}} and <7 = Sy =
{m,n,o,p}. The construction of S’mot(omot) is given in Table 4.4, which shares a simi-
lar process as in Table 4.3 and Figure 4.3. For example, the bottom part of Table 4.4
shows that Sroot(oroot) ={g,h,j,k,m,n,o,p} for all the grid points in interval [1.43,1.75],
and if 0,00 takes value in [1.75,8.50], groot(oroot) changes to set {h,i,k,l,m,n,o,p}. The
set Hroot = {{9, N, J, k,m,n,0,p},{g, h,k,l,m,n,o,p},{h,i, k,1,m,n,o,p}} includes S¥ ,, the
size of which is only three and it is less than the total number of products.

Then we solve for optimal o}, via the fixed point representation: Rmot(groot(omot), Oroot) =
Oroot; Which can be visualized in Figure 4.4. The solid curve in Figure 4.4 is the plot
of the profit function with respect to 0,,,t and the solid 450 -line intersects with it at
Oroot = 3.22. The objective function contains three segments with three corresponding dif-
ferent assortments and three different intervals of o000t For op00r € [—1.01,1.43], we have
Sroot (0s00t) = {7, . j, k,m,n, 0, p} and the maximum of the objective function is 2.16. Since
there is no solution of the fixed point representation, we move to the second interval. If
Oroot € [1.43,1.75], then Sroot(oroot) = {g,h,j,k,m,n,o,p} with 2.47 as its maximum of the
objective function. There is still no solution to the fixed point representation, thus we con-
sider oyo0r € [1.75,8.50]. In this interval, gmot(omot) = {h,i,k,l,m,n,o,p} and the maximum
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objective value is 3.22 that also satisfies Ryoot (Sroot (02501)s 0for) = 0% = 3.22. Thus the
optimal assortment S¥ . is {h,i, k,l,m,n,o,p}, optimal node-specific adjusted markup at

the root node is 67 , = 3.22 and the maximum profit is also 3.22. By looking up previous
stored table, the optimal price vector for these ten products is Py = (p}, 0}, .-, p5) =

(0,6.14,6.11,0,6.03,6.22,4.73,4.47,4.55,4.50). Therefore, the joint optimal assortment and
price vector to problem (4.1) under cardinality constraints is (S% ., Pr ..)-

Maximum profit is achieved at 050t = 3.22

3.2

N
©

»
kS

RTOO((SFOOI(OTOOt)’ ol’OO!)

2.0

1.00 1.43 1.75 2.50 3.22 3.50 4.50
Oroot

Figure 4.4: Objective function
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Algorithm 5: Joint Capacitated Assortment and Price Optimization Under Car-
dinality Constraints (JCAPO-C)

Input: «o;, 5;,7:,G; forie V, §; for j € A.

1 Initialization: Set F;(of) = —M for g = 1,2, ...,G and j € Children(i);
2 for j € # do

3 for g — 1,2,....G do

4 get §j(0§) = arg Maxg cq; Xrechildren(j) Yok 0F + x + 1/Bk)/Br
5 calculate Vj(gj(og), 07) and wj(gj(og), 07);

6 find ¢’ such that of = A(09);

7 if 7;(o?) = —M then

s | Filof) < of;

9 else

10 ‘ Filof) < argmax, o o ooy Vi(S3(07), 07)w3 (5(65), 03)/ (1 = 75);
11 end

12 end
13 end

14 for ¢ in level m —2,m — 3,...;1 do
15 for g — 1,2,...,G do

16 get Si(o]) = U]eChlldren () ( (~ 0})) ;

17 calculate V;(S;(0?), 0f) and w;(S;(07), 0?);

18 find ¢’ such that 0*;’; = \0?) ;

19 if ]—"i(o,gl/) = —M then

20 ‘ ]—"i(o*zl) — o

21 else

22 | Fio]) < argmax, 0 Vi(Si60), 0)wi(Si(6), 6)/(1 = %)
23 end

24 end

25 end

26 for g — 1,2,....G do
27 get Sroot( root) = UzeChlldren (root) S (‘F( root)) 3

S g g
28 calculate Rioot(Sroot (050t )5 0fot);
29 end
« . & * _Q *
30 Solve for 0¥ . N 0100t = Rroot (Sroot (Oroot)s Oroot ), then get S* = S (0% ) and
* _ * .
Proot - PrOOt(Oroot) )
*
OUtPUt Sroot’ root
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product g h 7 ¥ k [ m n o D
Qg 15 13 12 11 10 8 14 9 7 6
Bk 1.8 13 12 14 11 08 24 1.8 19 1.3
Ch 09 08 07 08 055 04 09 05 06 0.3

nonleaf nodes | «a b c d e f root
Vi 0.83 095 045 052 0.73 081 0

vNo—purchase 10

basic nodes c d e f
C, 2 2 2

81

Table 4.2: Parameters setup for the joint optimization problem under cardinality constraints

Se(oc) {g,h} {h,i} Sa(04) {7, k} {k, [}
Oc 0, 3.02] (3.02,10] 0d 0, 2.62] [2.62, 10]
0c — we(Se(00),00) | [0.73, 2.21]  [2.05, 9.02] || 04 — wa(Sa(04),04) [-0.73, 1.85] [1.69, 8.91]
Oq [-0.73, 2.14] [2.14, 9.02] 0q [-0.73, 1.77] [1.77, 8.91]
Sal0a) | {905k} {g, bk 1} {hii k1)
Oq -0.73, 1.77) [1.77,2.13] [2.13, 8.91]
Table 4.3: Construction of S,(0,)
ga(oll) {ga hajak} {g7h7 k7l} {h,Z,/{?,l} S?12(01)) {m7n707p}
Oq [-0.73, 1.77] [1.77,2.13] [2.13, 8.91] Op R
0q — Wa(S4(0a),04) | [F1.01, 1.46] [1.43, 1.79] [1.75, 8.50] || 0p — ws(Ss(0p), 0p) R
Oroot [-1.01, 1.43] [1.43, 1.75] [1.75, 8.50] Oroot R
Sroot(oroot) {gvhijkamvna O7p} {ga hakalvmanaoap} {hvivkal7mana 07]7}
Oroot [-1.01, 1.43] [1.43, 1.75] [1.75, 8.50]

Table 4.4: Construction of S’root(omot)
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Chapter 5

Conclusion

The first essay considers the joint constrained assortment and price optimization problem
under the nested logit model. Under the cardinality (or space) constraints, the optimal (or a
2-approximate) solution can be identified by finding the fixed point of a unimodal function.
Moreover, it can be further formulated as a piecewise convex fixed point representation. For
the future research directions, one can consider the joint constrained optimization problem
under the multilevel nested logit model with a no-purahse option in every choice stage by
generalizing the results in [50] and [22]. The joint problem with the dissimilarity parameter
exceeding one is also of interest to study.

In the second essay, we study the choice-based constrained assortment and price op-
timization problems under the multilevel nested logit model. Furthermore, we allow the
no-purchase option in every nonleaf node within the tree structure. For the constrained
assortment optimization problem, the optimal and a 2-approximate solutions can be located
in polynomial time under cardinality and space constraints, respectively. Specifically, the
computational time is O(n max{m, k}) under the cardinality constraints and O(mnk) under
the space constraints, where m is number of levels in the multilevel nested logit model, n
is the number of products and k is the maximum number of products of any basic nodes.
For the price optimization problem, we reduce the nonconcave multiproduct price optimiza-
tion problem to the maximization of a unimodal function, where the optimal price vector
can be identified in a tractable manner. Regarding the extensions of our research, both
the constrained assortment and price optimization problems with dissimilarity parameter
exceeding one, are of interest for further study. One can also consider generalizing our price
optimization results to multistage nested attraction models. [51] consider the joint optimiza-
tion of assortment and price problem under the multilevel nested logit model with only one
no-purchase option. It is interesting to study the joint optimization problem with multiple
no-purchase options in the system by applying the results in this essay.

In the third essay, we consider joint capacitated assortment and price optimization prob-
lems under the tree logit model. With our efficient algorithm, we obtain the optimal solution
under cardinality constraints and an approximate solution with performance guarantee un-
der space constraints in polynomial time O(G N log ), where G is the number of grid points
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for each node in the tree structure and N is the total number of candidate products. With
mild conditions, it can be further reduced to O(GN log K') where K is the maximum children
nodes that a nonleaf node can have in the tree logit model. We formulate the joint optimiza-
tion problem as a bi-level optimization program with pricing and assortment optimization
problem as its inner and outer problem, respectively. Then by solving the inner pricing
problem with fixed assortment, we succeed in building a bridge connecting to the outer as-
sortment optimization problem. Finally, the bi-level optimization program is reduced to an
optimization problem with respect to a scalar that is the node-specific adjusted markup and
the feasible collection of assortments that include optimal solution can be constructed in a
systematic way with a bounded size.

Our joint capaciated optimization algorithm and the uncapaciated assortment algorithm
in [30] have the similar scale of complexity. The reason why the joint algorithm shares
the similar complexity with the algorithm of the reduced assortment problem is that the
core step in the uncapacitated assortment algorithm of [30] involves constantly computing
the pairwise intersection points of lines, which requires sorting, however, the core part our
algorithm is looking up a list of grid points that have already been sorted. One can also
apply our algorithm with fixed prices to solve the uncapaciated assortment optimization as
in [30] with better performance in terms of complexity.

Our study on the joint optimization problem includes all the results in earlier literatures
that are based on the multinomial logit model, nest logit model and d-level nested logit
model as its special cases. It also puts an end to the study on assortment/pricing/joint
problems under the above three models. With minor adjustments, our approach can be
adapted to solve the following three problem variants under multilevel tree logit model: 1)
Assortment optimization with fixed prices; 2) Price optimization with fixed assortments;
3) Nonparametric joint assortment and price optimization with no functional assumption
between preference weight and price variable. As for the extensions of our research, the joint
optimization problem with dissimilarity parameter exceeding one is interesting to study.
One can also consider generalizing joint optimization algorithm to the multistage nested
attraction model where every node has a no-purchase option.
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Appendix A

Appendix to Chapter 1

A.1 Notation

For ease of reading, we summarize our notation as follows:

m

M

The number of nests.

={1,2,...,m}.

; The number of products in nest 7.

={1,2,...,n;}.

N The total number of products.

i = (i1, Pis o Diny )

The preference weight of product (i, 5).

. The price-independent deterministic utility.
. The price-sensitivity parameter.

; The space limitation on node 3.

The set of basic nodes.

; The price-independent deterministic utility of product .

; The price-sensitivity parameter of product i.

= (Sﬂ, Sig, . Sznl) € {0, 1}n1

; The cardinality constraint on nest 7.
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S; The space constraint on nest 7.
Z* The optimal expected profit under cardinality/space constraints.
Z* = 11(S*,P?) and aZ* = Z*.
0; The node-specific adjusted markup for node .
S;(6;) := The optimal solution to problem (4.9).
o, = {5;(6;) : 6; € Rsp}.
Fi(z

Si=

) The optimal solution to problem (2.11).
) =

Si(Fi(2)).

A.2 Technical Proof of Claims

Proof of Claim 1

Proof. We prove this claim by contradiction. Assume that S} # ¢ and R;(S},P}) < Z%,
then we construct a new assortment S = §*\{S*} and price matrix P =
(Pl,... P, 1,0,Piy1, ..., P m). If R;(SF, PF) < Z*, then the following inequality holds

Duien Vi(SE, PY)Ri(SF, PY) — Vi(S], P Ri(S], PY)
vo + 2ienr Vi(SE, PT) — Vi(SF, PY)
ZzeM V;(S* P*)Rz(SZ*,P::) _
vo + Dienr Vi(SF, PY)

which contradicts with the fact that (S*, P*) is the optimal solution to problem (4.1). [

(S, P) =

II(S*, P¥),

Proof of Claim 2
Proof. By using the notation that is defined in Section 2.3, we have

AR
Vo + ey VilSEPY)

which implies that voZ* = >.._,, Vi(SF, P7)[Ri(SF, P*) Z*]. Since (S;, P;) is optimal to the
joint subproblem at nest i, we have V(gz,ls ) (R (SZ,P ) — Z%) = Vi(SHPH (R (SF,P}) —
Z*). Therefore, we have UOZ ZZEMV(S“P )(R; (SI,P) Z*). It follows that Z* <
(Sl, SQ, oS Py Pg, s P). On the other hand, (Sl, Sy, ... Sm, Pl, P2, P m) is a feasi-
ble solution to problem (4.1) since S; € §; and P; > 0, thus we get Z*
11(Sy, S, ..., Sm,Pl,PQ,...,P ). Therefore, we have Z* = T1(S}, Ss, ..., Sm,Pl,Pz,...,P ), it
follows that (Sl, Soy e, S Py, P, Pm) is an optimal solution to problem (4.1). ]
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Proof of Claim 3

Proof. The proof technique follows partially from Lemma 3 in [18], the difference from which
is that we consider the joint optimization problem. For completeness purpose, we show the
proof as follows.

We first prove I1(Sy, Ss, ..., S, Pq, P, ,f’m) > Z*, then show
I1(S1, Sy, ..., Sm: P1, Py, ..., P,,) < Z*, which implies that I1(Sy, Sy, ..., Sy Py, Py, ..., Ppy) =
Z*. It indicates that
(51, Syt S PP, lsm) is an optimal solution to problem (4.1).

In order to show H(Sl,gg,...,gm;pl,f)g,...,f)m) > Z* we only need to show that
Vi(Si, P)(Ri(S;, Py) — Z*) = Vi(S*,P¥)(Ri(S*,P¥) — Z*) due to the proof of Claim 2.
Next we show this inequality is true. First, if S} is empty, then 6 = Z* and we have
Vi(Si, P)Y 7 (Ry(S5, Py) — Z*%) = Vi(, P)V(Ry(B,P;) — Z*) = 0. It implies that either
Vz(gz,f’z) =0 or VZ(SZ,PZ) > 0 and RZ(S’Z,P,) — Z* > 0, which indicates that the target
inequality holds. Second, if SF is nonempty, then 0 = v,Z* + (1 — ;) R;(SF, 0F). We have

1771

Vi(Si, POV (Ry(S5,Py) — i Z* — (1 — ) Ri(S*,0%)) = Vi(S*, P¥)V(R;(S*, PF) — 6%) since

1771

(S#,P7) is a feasible solution to problem (2.7). We obtain

Vi(S7, PY)

1/7;
m’pi)) (RS, P2) — 6) + (1 — 3)(Ri(SE, PY) — 2%)

Ri(S,P;) —Z* = <

WS*,P*))””

> (202 (1= a)](Ri(SE P — Z*
b (p) 0=l (s: P - 2
> VLD (st p1) - 27,

T V(S Py)

where the last inequality holds because of the subgradient inequality and R;(SF, P}) > Z*
due to Claim 1. O
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Appendix to Chapter 2

B.1 Notation

For ease of reading, we summarize our notation as follows:

RKeQRPn=035 3

The number of levels in the tree structure.

The number of products.

The maximum number of products of within a basic node.
The set of products that are associated with node 1.

The assortment of node 1.

The price vector of assortment .S;.

The set of feasible assortments that satisfies cardinality/space constraints.

The cardinality limitation on node 1.

The space limitation on node 1.

The set of basic nodes.

The price-independent deterministic utility of product s.

The price-sensitivity parameter of product i.

The dissimilarity parameter for nonleaf node 1.

The collection of feasible candidate assortments that includes S§ ;.
The optimal expected profit under cardinality /space constraints.
I= Maxg,,,cs2  Froot (Sroot), and aZ® > Z*.

The node-specific adjusted markup for node 1.

= arg maxg,c e {Vi(9:) "7 (Ri(S;) — 1)}

= {Sf“(tl) :t; € R},

= arg maxsi;@{vi(si) (R;:(S;) —tn)}-

= {Uiene 5(th) : th € R},
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B.2 Technical Proofs

PROOF OF LEMMA 8

Proof. Let S; be optimal to problem (3.4) at node 7, then we have
Vi) (Ru(S) — 1) = Vi(Se) (Ri(SE) = 8)
Because of Claim 6, we have

ViS)(Ri(S) — 1) = VS (Ru(S?) — 1) = max (Vi(S)) (Ri(S0) — 1)},

where the last equality is due to Claim 8. Therefore, S; is also optimal to problem (3.3),
which completes the proof. O]

PROOF OF LEMMA 9

Proof. The proof of this lemma is fairly straightforward. Let h = ¥ _in level m — 2 denote
the parent node of 7, then according to Claim 11, since assortment S{* for the basic node ¢

satisfies V;(S)/ <04Ri(gf‘) — t;") > Vi(SF)V/ <Ri(S;‘)—t;"), then according to Claim 10, we
have Vi(32) (aRi(S2) — 17) = Vi(S?) (RilS7) — 1) = maxs,cop {Vi(S)(Ri(S0) — £5)}, where
the last equality is due to Claim 8 by letting v = 1. If we define S& = U S then for any

iceh ~1
node A in level m — 2, we have V; (3¢ )(aRh(Sa)—thp> maxs, cas {Va(Sh) (Rn(Sh) — t55)}
according to Claim 11. Take the union of a-approximate assortments of lower level nodes
repeatedly, until we have S¢ . = | J,_, S%, then due to Claim 11, S, satisfies aRyoot (S%;) =
IIla}(Srootgg;k

root
- Rroot (Sroot) = Z*. Thus Sa S Uics S is an a-approximate solution,
establishing this lemma. O]

root root

PROOF OF PROPOSITION 9

Proof. For notational brevity, we omit the assortment S, let §; = 0,(6;), w; = w;(6;) for all
j € V. We first prove 6; and 6. are equivalent. We denote the actual product in the lowest
level m as g. Without loss of generality, when node i is in level [ (0 < | < m —2), we assume
that node ¢ and j € Children(i) are ancestors of g, and when node i is in level m — 1, node
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7 is the sibling node of g. From Lemma 11, we have

aRroot (Proot>/apg
m—2 k
ﬁgQg(ﬁ S meQe 3 N (Y05 -0 )
9 g'€ng.0 k=1 g'eng =1
g #ng, k11
m—1
+ Z mg’(z A?t+11 )\Z?tl)Q(g’ng,t)>
g'ENgm—1 t=1

We let the first derivative 0Ryoot(Proot)/0py = 0, since @, # 0, after dividing 5,Q, and
collecting terms, we have

m—2 k
/By —mg + A0t Y mgQy+ Y Y my (Z Al — Ag,:l)cg(g'mg,t))

g'engo k=1 g’er]g’k t=1
9'#Ng.k+1
-
+ )] mg,<2 A = Amhe (g’ng,t)> = 0. (B.1)
g/eng,m—l t=1

Assume node i is in level [ (0 <1 < m — 1), then according to (C.17) and the definition of
node-specific adjusted markup, we have

Gi = 9]'5]‘ — w]
m—2 l
=M1 D, mgQy + )] (Z (M1 = M) QU m)
g'€ng,o k=1 g'eng i t=1
g'Eng kr1
l
+ Z mg (Z )‘lgt+1 )Q(g' |779t)> (B.2)
9'€ng,m—1 t=1

From the RHS of (C.19), we can see that §; is independent of 7, ; where 0 < s < I. Thus for
another child node j" of node i, 6, = m; — w; also equals to the RHS of (C.19). Therefore,
0; = 0. for any node 7 in level 0,1,...,m — 1.

From Lemma 12, we obtain

0; (1 j is a leaf node
0, N % — Wil 0.W.

Therefore, there exists a one-to-one increasing correspondence between the node-specific
adjusted markup 60; and 6;, where j € Children(i). O
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Proof. According to Lemma 11, the first derivative of the objective function Ryoot(Sroots Proot)
with respect to price p, for any product g is

a}%root(]-)root)/apg
1 . m—2 k . .
= ByQy (ﬂ_ —mg + Agh ! Z my Qg + Z 2 mgy <Z ()‘g,tJrll — A 1)@(9/’779,t))
g 9'6779,0 k=1 gleng,k t=1
g'#ng,k+1
m—1
+ 2 mg’(z (Mgt — A;'TFI)Q(Q’ng,t)».
9'€Ng,m—1 t=1

Use the notation for the node-specific adjusted markup in Definition 1 and according to
Proposition 9, we have

aR1“00‘5(131“00t>/apg = AgfflﬁgQg Z mg’Qg’ + BgQg(_Agffleg,U>

9'6779,0
= )\Z,Ll_lﬁgQgR(eroot) + ﬁgQg(_)‘g?l_leroot) = )\Z’Ll_lﬁgQg (R(eroot) — 9mot) .

For product g in the lowest level m, we use An(g,[) to denote the ¢g’s ancestor node in level
[. Then we obtain

aRroot (eroot )
aeroot

_ Z aRroot(Sroota Proot) <09An(g,m—1) ) - (aeAn(g,m—Q) ) - o <89An(g,0) ) - ( aeroot )1
Opy Opy 00 An(gm—1) 00 an(g,1) 00 an(g,0)

g€Ng,0

00 n{g,m— - o0 n(g,m— ! 00 n -1
= (R<9root) - eroot) Z )\g?flﬁgQg (M) (M) . ( A (970)) )

9ENg,0 CPg aeAn(gvm—l) aQAn(g,l)

According to Proposition 9, we know

<80An(g7m—1) ) - (aeAn(g,m—Q) ) - (aeAn(g,O) ) -
o | =—= > 0.
apg aeAn(g,m—l) aeAn(g,l)
Therefore we can see that Ryoot(froot) is strictly unimodal with respect to 6,504 accord-
ing to Lemma 2 in [19]. Moreover, let 6%  denote the solution to R(fro0t) = Groot, then

root

ORyoot (0% ) /00% . = 0. Thus according to the unimodality of R(000t), we have R(6% ;) =

root
0% .« at optimality. O

PROOF OF CLAIM 6

Claim 6. For an arbitrary nonleaf node i € V, assume R;(Sf*) > tj, with parameter a > 1.

If there exists an assortment S; < ¢ such that

VSV (Ri(8) — ) = Vs (Rulse) — 1)), (B.3)
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then we have

~

VS0 (Ri(S0) — ) = vilse) (Ri(s) — 15). (B.4)
If the inequality in (B.3) is strict for some j € ic, so is the inequality in (B.4).

Proof. When S, =g , according to the above inequality, we have R;(S%) —t¢ < 0, implying
R;(Sf) = t& = t;. So (B.4) holds for S; = & (Both of the LHS and RHS are zero). When

S; + &, then Vi(S;) + 0 so we can divide the above inequality by V;(S;)". Because
R;(S¢) = %, then according to (3.2), t& = ;t¥ + (1 — ;) Ri(S¢). Thus we have

1/vi
: Vi(se)
Ri(8) o= | Vi Ri(S) — 19) 4 1 — g2
)=t | T s -+ -
visey ] Vi(5e)
= — +1 =y | (Ri(S?) — ) = = (Ry(S) — t5)
Vi(S:) Vi(S:)

For the last inequality, let’s consider a convex function f(x) = 2%, according to its Taylor
expansion at x = 1, we have f(z) = 2% > 1 4+ (z — 1)/y; = 2% +1 -5 > x. Let
x = Vi(5%)/Vi(S;), establishing the inequality, thus V;(S;)(R;(S;)—t2) = Vi(S®)(R;(S*) —t).
It is also easy to check if the inequality in (B.3) is strict for some j € i¢, then the inequality
in (B.4) is also strict. O

PROOF OF CLAIM 7

Claim 7. For an arbitrary nonleaf node i € V, assume R;(Sf*) > tj, with parameter o > 1.

If for all j € ic, there exists an assortment S; © Y such that

V() (Ry(S5) — 1) = V(s (Rs(s) — 1), (B.5)

A

Define h = i¥ and let S; = .., S;, then we have

JE€ic
ViS) (Ri(S) — 1) = Vilse) (R(s?) — 17). (B.6)
If the inequality in (B.5) is strict for some j € ic, so is the inequality in (B.6).

Proof. The logic of proving this lemma, the following proposition and theorem is similar to
[30], for completeness, we provide the entire proof as follows. We first claim S* + ¢F. It is
true when ¢ = root, then for all i € V\root, the scalar defined in (3.2) is either a positive value
or +00, thus R;(S§) = t& > ¢ > 0, which implies S{* + ¥, establishing the claim. So we have

Vil (S + @) < Vio = Vaol(S¢ + @), Since V;(5))(Ry(S)) — 1) = V3(S9) (Ri(S5) — 12),
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then
Vi(S) Y (Ri(S5) = 18) = D Vi(S))(Ry(S) — ) = Viol(S: + @)t
jeio
> 3 Vi(STIR(S]) — 1) = Vol (S + @) = Vi(S7)" ™ (Ri(S7) — 1)
jeio
This claim holds because of Claim 6. [l

PROOF OF CLAIM 8

Claim 8. Let S® = {S?, Vi e V} be optimal to problem (3.1). Then for all i€V, S is an
optimal solution to problem (3.3) at node i.

Proof. Prove by induction on levels. It is true for root, then we assume that it is true for
any node i in level I: Vi(S{*)(Ri(Sf") — tf;) = maxg,cqe{Vi(S;) (R:(S:) — t5)}-
Suppose on the contrary that there exists node k € i¢ in level [+1 such that Vi (Sg)(Rk(S§)—
t§') < maxg, cgo { Vi (Sk) (Rr(Sk)—1t7)}. Foreach j € ic, define S; = arg maxsjgg?{vj(Sj)(Rj(Sj)—
t¢)}. First, consider the case when R;(Sf*) > t7. We have S§ < 3¢ for all j € i¢, then by
construction: %(@)(RJ(S’]) - tf) > %(Sf)(R](Sf‘) - tf‘), which is strict if j = k. Let
S; = Ujeic S;, then according to Claim 7, we have V;(S;) <RZ(S’Z)—t%) > Vi(S9) (Ri(Sia)—t?;)
It contradicts the induction hypothesis: V;(S{*)(R;(S{*)—t5) = maxg,cge {V;i(S:) (Ri(Si)—17)}.
Then let’s consider R;(S%) < t§. Since S; = J is a feasible solution to the local
problem and its objective value is 0. Thus maxg,cge{V;(S;)(Ri(S;) — t7;)} = 0. Because
node ¢ is in level [, according to the induction hypothesis, we have V;(S{)(R;(S§) — t§) =
maxg,cge{ Vi(S:) (Ri(S:)—t7)} = 0. However, we know R;(Sf*) < t7, thus we have V;(Sf*) (R;(S7)—
%) <0, so V;(S¢) = 0, which implies S = ¢F. Since R;(S¢) < t&, then according to Equa-
tion (3.2), t§ = +oo. Thus we have 0 = maxg,cge{Vi(Sk)(Rx(Sk) — 1)}, According to
our assumption, Vi(SP)(Re(Sy) — t7) < maxg,cae {Vi(Sk) (R (Sk) — t7)} = 0, which implies
Sy + . However, since k € i¢, so S 2 S, which contradicts with S = (. O

PROOF OF CLAIM 9

Claim 9. For any nonleaf node i, if S*j is the optimal solution to problem (8.3) at node j
for all j € ic, then S; =

icic Oj s an optimal solution to problem (5.3) at node i.

Proof. For any j € 1i¢, since S'j is optimal to local problem at node j, then we have
Vi(55)(R;(55) = 17) = V;3(57) (R;(57) — 1), ) )

When R;(Sf) = 1y, let S; = ;.. Sj, then according to Claim 7: V;i(S;)(Ri(S;) — t7) =
Vi(SP)(Ri(S7) — t7) = maxg,cqe{Vi(S:) (Ri(S;) — t7)}. The last equality holds due to Claim
8. Therefore, S; is the local optimal solution at node i when R;(S%) = t5.
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Then for R;(S{) < t&, we have t¢ = 400 according to Equation (3.2). Thus for all j € i¢,
g=2_5 = argmaxsjgg?{‘/}(S;‘)(Rj(Sf) —t®)}. Then S; = Ujeic S; = &. As discussed in
the proof of Claim 8, we can see that S{* = ¢, which is the optimal solution to the local
problem at node 7. Therefore this lemma still holds when R;(S$) < . O

PROOF OF CLAIM 10

Claim 10. For allt eV, let S} be the optimal assortment at node ©. For parameter o > 1,
if assortment S; satisfies

VSV (aRi(8) — 1) = Vi) (Ri(S7) ~ £). (B.7)
Define h = i, then we have
Vi3 (aRi(S) — t5) = Vi) (Rols?) — ). (B5)
Proof. First consider R;(S}) = t;. Due to the inequality (B.7), we can get V(S VWi (R, (S )—

t5) = Vi(SHY(Ry(S¥) — t¥). Since R;(S¥) > tf, according to Equation (3.2), we have
tF =ity + (1 — ) Ri(SF). After plugging ¢} in the above inequality, we have

V(B A8 2 (1= W (ST) > ViSRS ~ 0t~ (=20 R(ST)
= Vi(S)V(aRi(S) = 1) = (3Vi(S7)Y7 + (1= 7) Vi(S) ) (Ri(SF) — ) (B.9)
Multiply inequality (B.9) by V(§ V=1 we get
Vz(gz)(aRz(gz) — ) (B.10)
> Vi(S)' (ViS4 (1= 3 Vi(S) ) (Ri(ST) — t) (B.11)

Since v; € (0,1], due to the concavity of z7%, we have 27 < ¥V + 32 Yz — T) =
i (v + (1 —)T). Let o = Vi(S¥)Y% and 7 = V;(S;)"%, then we get

Vi(S)' R (VS (1= ) V() ) = V(7). (B.12)

i
Since R;(SF) > t;, multiply inequality (B.12) by R;(S}) — t7, we have

Vi(S)' (VS (L= )V (S) ) (Ri(ST) — ) (B.13)
> Vi(ST)(Ri(S) — t}) (B.14)

Thus due to inequality (B.10) and inequality (B.13), we obtam Vi(S) (Ri(S;) — t) =
Vi(S:)(R;(S})—t7). Therefore, this theorem holds when R;(S}) > t;. Now, let’s see R;(S}) <
tf. According to previous discussion, we know S} = (J and t;“ = +400. Thus we have
Vi(S)YV % (aRi(S;) — %) = Vi(SH)Y¥(Ry(SF) — t¥) = 0. Since t* = +oo, then S; = .
Therefore, inequality (B.8) still holds. O
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PROOF OF CLAIM 11

Claim 11. For an arbitrary nonleaf node i and parameter o = 1, we assume that for all
J € ic, there exists an assortment S; = S such that

V(5 (aRy(8) — 1) = max {Vi(S)) (Ry(S;) — )} (B.15)
Define h = it and let S; = U]Ez , then we have
Vi(S) (aRxsy-) — 1) = max {Vi(S) (Ri(S) — t})}. (B.16)

Proof. According to Claim 8, S} = arg maxg, Cg*{V( )(R;(S;) —tF)} and SF =
arg maxg, g {Vi(5:) (Ri(Si) — th)} First when R (S¥) = t}, then we have S} + ¢J according
to proof in Claim 7. Thus 1(S; + &) < Vio = Vie1(S* + &). Since V;(S; )(aR (S;) — tf) >

m%@WWMMﬁW-H@W%®Mme

Vi(S) Y (aRy (S = Y (8 Sj) —t7) = Viol(S; + D)ty
J€ic

> ) Vi(SH(R;(S]) = t7) = Vil (S} + @)t
J€ic

= Vi(SH) M (Ri(S¥) — 1)

(B.16) holds for S, = &. When S; + J, because R;(S}) > t;, then we know tf =
vitk + (1 — ) R;(SF) due to (3.2). Thus we have

1/
- Vi(S5)
(5i) — V.5 (Bi(Sf) = t7) h
visn ] Vi(S)
= || S| L [(BSH) — 1) = S (R(ST) —
L s Y | (Ri(ST) — 1) VZ-(SZ-)( (S7) = t5)

The above inequality is equivalent to V;(S;)(aR;(S;) — t5) = V(S*)(Ri(Sf) —t5) =
maxg,cqgx{ V() (Ri(S;) — t5)}. This claim is true when R;(S}) > .

Second when R;(SF) < t, Sf = & according to the proof in Claim 8. Because R;(S}) <
ty, then according to Equation (3.2), tf = +c0. Thus SF = & and Sj can only be empty to
satisfy (B.15), which implies S; = Ujeic S; = & that satisfies (B.16). So it still holds when
R;(S}) < t;. O
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PROOF OF LEMMA 11

Proof. We define the markup for product ¢ as m; = p; — ¢;. The first-order condition of the
objective function Ryt (Proot) With respect to price p; of product i is

aRroot( root) Ql a@l
—_— = +my + my s B.17
Opi - @ Opi ,;) Z opi ( )
i'en; i
i ¢771 k+1

where we use @; to denote the choice probability of product i. We will derive 0Q);/dp; and
dQy/dp; in the remaining part of this proof, respectively. For all ¢ € n;, and 7' ¢ 7 x11
(0<k<m-—1), 0Qy/0p; can be calculated as

0Qy AT IQ(W t+1[77,1)) _ m2—1 0Qi v+1|m1.4) * Q@

0}% (71% =0 (3pz Q(ni’,tJrl ‘ni’,t)
k
OQ(Mir 1+1|mi ) Qi
- e B.18
;) Opi Q(m’ t+1‘77i’t) ( )

_ aQ(m',kHW,k) . Qv " Z 5@ 77@ t+1|77m) . Qi

= . B.19
Opi Qi k+11nik) P Opi Q(Nip+1(mit) ( )

Equation (C.5) is due to the fact that 0Q(ni¢41|nse)/0p; = 0, when k +1 <t < m — 1.
Equation (C.6) is established because Q(nit+1|mvt) = Q(Migt1|mie) (0 < t < k — 1) when
i' € iy and 7' ¢ 1 p11. Especially, for t = k, we have Q0 g11|n0 k) = Q(Ui/,k+1|77i,k)- Thus,
in order to compute 0Q;/0p;, we should first derive 0Q (N k+1|1i%)/0p; where i € 1, and
i" ¢ Migs1 (0 < B < m—1). Then calculate 0Q(n;s41|n:t)/0p; for 0 < t < k — 1. For
0Q(Mir k+1|mix)/Opi, we have

v

M k+1 (B.20)
V;h,ko + Zje(}hildren(m,k) Vi

Q(nz”,k-H ’nzk> =

where V;, o represents the no-purchase option of node 7;;. For notational simplicity, we
omit the price vector in the expression of preference weight. We can also see that Vn,k+ )
does not contain the term p;, but V;, , . € Children(n; ) does. In order to obtain the partial

derivative of (C.7) with respect to p;, we need to derive oV, , ., /0p;

5 Vi k11
% = Yige+1 | Vipiya0 T - Z Vj (7Vgg+z
jeChildren(n; j11)
It is an iterative form, we can finally get
Yig—1
Yoo f (v S ow) e

g=k+1 jEChildren(n; q)
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For notational simplicity, we denote A, = [[,_,7i4 Based on Equations (C.7) and (C.8),
we have

OQ(Nir kx1|Mi k) —1 Vau kt1 g .
: — = Bilg ¥ - * Q(Mig|Mig-1) * Q(E|Mim—1)
apl o V;%',ko + ZjeChildren(m,k) J ql;[kl B .
= 51')\?7;9111 * QM kr1|Mike) * QUM k)
(B.22)
For aQ(ni,t-i-l‘ni,t)/aph since Q(ni,t+l‘ni,t) = ‘/;77, t+1/ ( 1:,t0 + deChzldren(m t) ‘/J)’ then
ﬁQ(nz’,t-&-lMiﬂf) — (1 ‘/771 t+1 ) 1 * a‘/;]i,t+l

( _
api V;h 0 T ZjeChzldren(m t) V ‘/772 0 F Z]eChzldren(m t) V} api
= =B = (1= Qi |nie)) = QUilmie)- (B.23)
After plugging Equations (C.9) and (C.10) into Equation (C.6), we have

Qi _ aQ(nz”,k-&-l’ni,k) . Qv n Z 6@ 77@ t+1’771t) . Qi
Opi Opi Qi k+1|mi k) =0 opi Q(ie+1|mi)

k
(Z (A1 = AT DR Qi + A?ﬁ”@@y) . (B.24)

k
= ﬁz@z (Z /\n.t,_ll /\?35_1>Q( ’772 t) + /\ Qz)
t=1
The last equality is due to the fact that Q; = Q(i|7:+)Q(n:+) and Qi = Q(¥'|7;1)Q(n;t), then

Qi) Qy = Q(i'|n:)Q;. Also note when k = 0, 0Qy/dp; = BMZTIQ@-QZ-/. In a similar way,
for 0Q);/0p;, we have

0Q; _ ' QUi |n: i O et me o "
Q — Z Q(T] ,t+1‘77,t) % Q _ BzQz (Z )\Z’tJrll o )\iit 1)Q(Z|77i7t) + )\Ll lQi . 1)

G op; Q(Mi1]miz)
(B.25)

Then plug Equations (C.11) and (C.12) into Equation (C.4), we obtain

m—1
aRroot(]:_)root)/ap’i = Qz + mlﬁl@l ( (A:,r:f;ll - )\Zf;il)@(z’nz,t) + )\21171@1' - 1)

t=1

E

m—2
+ Z mi/f@i)\?jl_lQiQi' + Z Z my 3;Q; (Z ()\Tt:_ll — )\th_l)Q(Z/mt) + )\211_1@1">

i'€nio k=1 i'en, s t=1
i'¢ni1 'EN k1

m—1

i/eni,m—l t=1
o' #i
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This lemma is established after collecting terms. O]

PROOF OF LEMMA 12

Proof. We prove this lemma by mathematical induction on the level in which node ¢ lies.
For notational brevity, we denote V; = V;(6;), w; = w;(0;), 7 = 7:(60;), 0; = 6;(0;), u; = u;(6;)
and Q(j]i) = Q(6,]6;). First, consider the case when i is a basic node, we have

v o[ (Vio + Zjez‘c Vi)l B 1 v 1 oV; 00;
20, 20, = 7i(Vio + Z V) Z W Vs v SV o ﬁ 5
1 o .
= %Vlmgi( BiV;) = —%V%];ic 3;Q(ji) = —viVius,
Owi 1~ 0Q(jli) 1
7, 5, 1);0 aei B;
1 1 1
=(——1 V;) =
<% )]glc 0 ' ];* jEZ ’0 + Zjeic V})Q 5j
= (- 1) D600 - Ul X (ARG 5 5
L ’ ’ a2 1056, 5,
1 17 1
- - D el + L0 3 50010 - v - (- 1
Jj€iC J jeic 7
oT; 662 ]| . . .
0 =D, = M-8R + QUili) Y BiQUIN = —u; + T = —(1 — 73w,
v jeic jeic jeic
09; 1 oT; 1
agz = _(%_1>(3(91 = (%_1)(1_7—1) % (5 _1)
And
QJ
0< < (= _
S ]EZZC BJ ’Yi Hllnjezc {BJ} ]§C Q j| —z J§c Q J’
1 1
< (— — 1)B
Zﬁj (1) < max{B;} 3} QUli) < Bi 35 QUili) < B

Under Assumption 3, we have
1 B;

i < (——1)=> < —
wiu; < ( ) B,

Vi
00;
=1=0,
00,
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where second equation is because 0; = 6; — 1/8;. In general, 69’ = 0; + 0]67 — g% >

’Yij - (% — 1)1 + Hj:% — (wyu; — (% - 1r) = % — wjuj. Thus this lemma holds for basic

nodes. Suppose it is also true for nonleaf node j in level [ (1 <[ < m — 1), then for it’s
parent node i, we have

oV, _ @[(V;O + Zjeic V;)%] _ NV 1 %&Qj
06; 06, Vi + Zjeic V; £406; 06,
1 it
="Vi (= Viu) =2 = —uVi Y| =52-Q(0;0;) = —viViws,
Vio + Zjeic Vi JEZ; 7 Z 20,/00,

Y a8l

00; Vi Sl
where
Vi + awav —y;Viujw; + (wju; — (= — 1))V,
. a0; Wi T (79<%JJJ iU — 5 i)Vi 00;
( io + Zjeic J)(SJ 00; (ViO + Zjeic Vj)5j 00;
=) Vo = V(=) ap, (1= ) QU (wyu; — 3) a9,
(Vio + 2jeic. Vi)3; 00; 0; 00;’
and

(Vi) [0 Tyesoe B 5+ Vio + Tyeso, Vi) 2 2]
(‘/;04‘23‘@0 j)25g2‘
- (Viop)ds i (—13Viw) 35+ (Vo + B, Vi) 5 5]
(Vio + Xje V)62
Vi QUi Vivias,
(Vio + Xjeic V3)0; 52 00,/06; 00;/00;(Vio + Xci.. V5) 07

00
_ QUliky, , QU QU (i
5 ' 00,/00,67 5 7 06,/00,0; )
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Thus we have

ow; 1 1
(- Y 4 B)

Vi jeic = Vi
N T . 96,
_ (l Yy 1| A=)l (wius — 37 a6, QU (i,
h Yi icio 1-— i 5]' 691 (Sj I 697,/69]5]
1 1 Q]
= (_ - 1) i
[ i J;;J L= 9 !
pdoyypeun e wm
Yi jeic (Sj 891/(9@ 8(91/(39](5](]. — ’7])
065 T
T EUD Vi L PRSI /By VI
i &L 6 | 00:/00;0;(1 =) 06:/00;6;(1 — ;)
1 Wjuj ..
1 QU 5 ~ 75 1 Qi)
< Wil — (— — 1) T2 2 < Wity — (- — 1) T
Yi Jé (Sj J 891/6@ Yi ]é' 5]' J
= wiu; — (— — 1)7,
-1

where the last inequality is due to Assumption 2 and the fact that

1 WjU; 1 Z

ooy 1
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We also have

oy O(Vio+2 e~ Vi)d;
oT; Z (69 L(Vio + Ljeic V)i = Vim) ——=g

i (Vio + 2jes. V3)?05
0T v; 00, 25, 00,
Z ae Tt Vﬂae a0; Vit [53' ZJEZC 20, 36, T (Vio + Zjeic Vj)%m]
]ezc Vio + Z]ez )5J aez jeio ( i0 T Zjeic ‘/;)25]2
T 6\/'] 69]
Z aVJ 26,7 T Vj 293 o8; ViT; [6j Dljeic @5_@]
= ]E’LC 7’0 + ZJElC J)5 69 j€ic (‘/10 + Zjeic V])Q(S‘?
Z ’)/]‘/J’LLJT] Vi(l = 7)u; 06; Vit [5'Zjeic<_7jv'uj)]
jeic 20 + Z]ezc j)éj 89z jeic ( i0 + Z]ez )2(52&91/89
- 2 %VJUJT] Vi(1 — 1)u; 0, B ViT; [51' Zjeic(_%vjuj)]
oo Vio + Z]em V;)d; 00; jeio (Vio + Zjeic ‘/})25]2-591'/393‘
%Qﬂ Jus (5, _(;j QJI VQJ| %QUl)uy; _
Jeic JE€ic ]El
Thus we have
0o 1 0T, 1
= (=)= (=11 -7 §—1
S~~~ D5 = (- D= = (6~ Dy,
And
1 Q '|z'> Quli) & ~ %
0<wi=(——1)2 J Z I % —
i je B % Jezc —
1
<(—-1) Q(j7)
Vi Minje;c, {’YJ_J} ch
1 1 1
( Vi minje; {758} ( Vi )
5 5 ) 7;B; o
<y = S e B < _
s 70,708, @V < LT T, QU 2T e )&Q(ﬂ@)
J€ic JEiC V5 JE€IC v %5 B,

<?é?§{1_( 575 } 2, QUI <Bi ) QUl) < B

]Elo jEiC
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Under Assumption 3 and 2, we have

<<1 1)Bi 1

wiy < (— —1)=— < —

Yo Bi v

00; 00; Ow; _ 1 1 00 1 1

— =0 +0;=2>——L>——(— -1+ 0, — (wu; — (— - 1)1;) = — —wju; =0,
aej J ]aej 86] ’Yj (7] )J ]aej ( 277 (7] )]) '7j V)

By the principle of mathematical induction, this lemma holds for all nonleaf node 1 € V.. [
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Appendix C

Appendix to Chapter 3

C.1 Notation

For ease of reading, we summarize our notation as follows:

WeoeTunzxq=:3

o2
Fi(6h)
S;(6;)
Si(6;)

(Sroot7 Proot)

e%oz

AL

The number of levels in the tree structure.

The number of products.

The number of grid points for each node in the tree structure.

The maximum number of children nodes that a node can have in the tree structure.
The set of products that are associated with node .

The assortment of node 1.

The price vector of assortment .S;.

The set of feasible assortments that satisfies cardinality/space constraints.
The cardinality limitation on node 1.

The space limitation on node 1.

The set of basic nodes.

The price-independent deterministic utility of product 1.

The price-sensitivity parameter of product 7.

The dissimilarity parameter for nonleaf node 1.

The preference weight for assortment S; with price vector P;.

The expected profit for assortment S; with price vector P;.

The maximum expected profit under cardinality /space constraints.
The node-specific adjusted markup for node .

The collection of assortments that include S;.

The optimal solution to problem (4.12).

The optimal solution to problem (4.9).

= UjeChildren(i) Sj (‘T.:Y (91))

a-approximate solution to problem (4.1) under space constraints.
The collection of assortments that include SY*.

= Rioot (5%, P

root’ root) .
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C.2 Technical Proofs

Proof of Lemma 13

We use the following two claims to prove lemma 13.

Claim 12. For an arbitrary nonleaf node i € V' and its parent node h, assume R;(SF, P}) >
ep. If there exists an assortment S; € 3; and a price vector P; such that

Vi(Si, Po)e (Ri(Si, P) = e ) = Vi(SEPH)Y™ (Ri(S7,PY) — ). (C.1)

Vi(Si, P) (Ri(Si, P) = ek ) = Vi(SE,PY) (Ri( S5, PT) — ). (C.2)
If the inequality in (C.1) is strict, then the inequality in (C.2) is strict as well.

Proof. This claim is a special case of the lemma 1 in [50], which uses the subgradient
inequality in [18], we provide the proof for completeness. For notational brevity, we let
Vi = Vi(Si,Py), V¥ = Vi(S¥,P?), Ry = Ry(S;,P;) and R* = R;(S¥,P¥) throughout the
proof. After dividing both sides of inequality (C.1) by ‘A/Z-l/ 7 and subtracting both sides by
e}, we obtain

. Vo /i
Ri—ez>(f> (Rf —e)+e —ej (C.3)
V* 1/ V* 1/
() e ammm - - (4 (5 - -,

where we get the first equality from the definition of e} as ef = yef + (1 — ;)R and the
second equality is obtained after collecting terms. Consider function f(z) = 2'/, which is
convex since 0 < 7; < 1, we have /% > 14 (2 —1)/7; due to its convexity. After rearranging
the terms, we obtain ;%% +1 —~; > z. Set = V;*/‘A/“ we have

V* 1/%‘ v*
i | = +(1—7)=>—4—.
w(E) -z

% %

Since R} > e} according to our assumption in this claim, multiply R} — e} on both sides of
the inequality above, we get

V* 1/%‘ V*
i | = + (1 =) | (R =€) = (R — €).
<7<V> ( v))( D )

i %
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From the inequality above and (C.3), we get that

R Vi

R; — ey = = (R} —e}),
implying that V;(R; — ef) = V*(R¥ — ef). If the inequality in (C.1) is strict, then the
inequality in (C.3) is also strict, thus the inequality in (C.2) becomes strict as well. O

Claim 13. For an arbitrary nonleaf node i € V' and its parent node h, assume Ri(S;"Z P) >
ey. If for all j € Children(i), there exists an assortment S; < ; and a price vector P; such
that

ViS5 Py) (155 Py) = ) = V(S5 ) (Ry(S},P)) — ef).

Let (S'Z, 151) = UjeChﬂdren(i)(Sjv Pj), then we have
VilSi ) (RS Py) =€) = Vi(SE,PY) (Ri(S7,PY) =€)

Proof. This claim follows directly from Claim 12. For notational brevity, we let Vi =
Vi(Si, Py), Vi* = Vi(SH,PI), R, = R;i(5;,P;) and R = R;(S},P}). Because the first in-
equality of this claim holds for all j € Children(i), we get

Vl/%(éi . 6:‘) _ Z ‘A/](f:{j o e;k) > Z Vj*(R"f _ 6?) = (V;*)l/%(R;k _ ef").

% ] i
j€Children(7) j€Children(4)
The second inequality holds because of Claim 12. O

Proof. Proof of Lemma 13: We prove this lemma by induction on levels. It is true for root
node: 1) Rroot (oot Proot) > €barent(root) = 05 2) Stoor 18 @ nonempty set and Py, is a nonzero
vector, otherwise Ryoot (S5 ¢y Proot) Would be zero; 3) Because joint subproblem (4.2) at root
node is equivalent to the global optimization problem (4.1), (S*, P) is identical to (S;, P;)
as well. Then we assume that the three items in this lemma are true for any nonleaf node @
inlevel | (1<l<m—1).

First, we prove the third item in this lemma. Suppose on the contrary that there exists
node k € Children(¢) in level [ + 1 such that Vi (S¢, Pr) (R (S;, Py) —ef) < maxg,cg, maxp,

{Vi(Sk, Pi) (Ri(Sk, Pr)—e*)}. For each j € Children(i), define (S}, P;) = arg maxg cq, Maxp,
Vi(S;,P;) (R;(S;,P;) — e). Then by construction: V;(S;, P;) (Rj(é’j, P,) — e%") >

V; (S5, PY) (Rj(S]’-“, P’) — e;“), the inequality in which is strict if j = k. Moreover, we have
Ri(S},P7) = e}, according to the induction hypothesis. Let (S;, P;) = U, coniaren(i) (55> P,
then according to Claim 13, we have V;(S;, P;) (Ri(gi, P;) — eZ) > Vi(SE,PY) (Ri(SF,PY) —e).
It contradicts the induction hypothesis that V;(SF, P;)(R;(S, P;) —e}) =

maxg,cs, maxp, {V;(S;, P;)(R;(S;,P;) — e})}. Thus the first part of item 3 is true. Then the
second part is also true by Claim 13.
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Second, we prove the first two items in this lemma. For node j € Children(i), from
the third item in this lemma, we know that (S¥,P7) is the optimal solution to the joint
subproblem at node j. Suppose on the contrary that R;(SF,P7) < ef, then we obtain
maxg,cg; maxp, {V;(S;, P;)(R;(S;, P;) —ef)} = V;(S5, Pj)(R;(SF,P}) —ef) < 0. We con-
struct another nonempty assortment Sj with price vector f’J for node j such that for any
product k € S'j, we set the price p, = e} + € where € is strictly larger than zero. By construc-
tion, we have V;(S,, P)(R,(S,. By) — ¢f) = ex Vy(S,, By) > 0> V, (53, P (R,(S7. P}) — eb).
which contradicts that (S}, P7) is the optimal solution to the joint subproblem at node j.
By the definition of ef and the induction hypothesis, we get that ej > 0. Thus the first
item in this lemma is true. The second item also holds, otherwise R;(S s P;") would be zero,
which contradicts with the first item in this lemma. ]

Proof of Lemma 14
Proof. Denote (52, f’l) as the optimal solution to problem (4.3), then we have
Vi(S: P (iS5, Py) — €7 ) = Vi(ST, PV (Ri(S7,PY) =€)
Because of Claim 12, we have
Vi(SiB) (Ri(S:B)) — ) = Vi(SE,PY) (Bi(S5, PY) — ef)
= max rr%)aXVi(Si, P))(Ri(S;,P;) —e),

Sy i

where the last equality is due to Lemma 13. Therefore, (5'1-, f’z) is also optimal to problem
(4.2), which completes the proof. O

Proof of Lemma 15
Claim 14 and claim 15 are used to prove lemma 15 and lemma 16.

Claim 14. For nonleaf node i in level d (0 < d < m — 1) and a given assortment S;. The
first derivative of R;(S;,P;) and V;(S;, P;) with respect to price p, of any product r in the
lowest level m 1s

= 8,Q(r|i) (i —me + A YT meQ(r)d)

/BT T/enr,d

m—2 k
5 (o)
k=d+1 Tleﬁr,k t=d+1
N kg1

m—1
PG> <AZ%+%—A:?H>@<r’\m,t>)),

T’Enr’mfl =d+1

OR;(S;, P;)
Pr
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and
# —(3’7"(;?(7 |Z)/\d IW(Sﬁ i)’

where the notations are defined as follows

s HZ:t ra t<s
>\7‘,t =

1 t>s
V.

Q(T‘nr,ﬂ = Q(T|7]r,l+1>2 Triti )

jeChildren(n, ;) ‘/]

My = Pr — Cp.

We use the following notations throughout the Appendix C.2. 7., is defined as the
product r’s ancestor node in level ¢. For simplicity, 7, is also used to represent the set of
products that are associated with it. Q(r|é) is the choosing probability of product r given
node ¢ and the markup for product r is denoted as m, = p, — ¢;. Y4 is the dissimilarity
parameter of the r’s ancestor in level q.

Proof. The markup for product r in level m is defined as m, = p, — ¢;, then we have
Ri(Si,Pi) = >.,c, ,mw * Q(r[i) where 5,4 = S; that is the assortments of node i according
to the definition. Thus the first derivative of R;(.S;, P;) with respect to price p, of product
r is

(S P,
L) _ Gy o, LS 5 (©4)
T k=d r'e
7"¢77:7k-]:—1

We will derive 0Q(r|i)/0p, and 0Q(r'|i)/0p, in the remaining part of this proof, respectively.
For all 7" € n,, and 1" & 1, k11 (d <k <m—1), dQ(r'|i)/0p, can be calculated as

Q) _ AT Qiasilied) _ ¥ 2Quealies) Q)

opy op; — op, Q441100 1)
_ i aQ(nT’,t+1|77T/7t) N Q(T/|Z) (CS)
_ apr Q(Ur’,t-l—l |77r’,t)

0@(”r’,k+1|nr,k) " Q(T,|2) + kil aQ(nr,t+1|nr,t) N Q(T’/’Z) . (C6)
apr Q(n'f‘/,k‘Jrl ‘nr,k) t—d apr Q(nr,tJrl |77r,t)

Equation (C.5) is due to the fact that 0Q(ny+1|mv+)/0pr = 0 when k+1 <t < m — 1.
Equation (C.6) is established because Q (1 4+1|mt) = Q(Mris1|nre) (d <t < k — 1) when
r' e N,k and 7’/ ¢ Mrk+1- ESpeCiaHya for t = ka we have: Q(nr/,k+1’nr’,k) = Q(nr’,k—&-l’nr,k)'
Thus, in order to compute 0Q(r'|i)/dp,, we should firstly derive 0Q (9 k41|nrk)/0p, Where
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"€ nep and 7 ¢ e (d < k< m —1). Then secondly calculate 0Q(ny¢+1|nrt)/Opy for
d<t<k—1. For 0Q(ny k+1|mx)/0pr, we have

V'77",k+1
Qi alen) = . )

jeChildren(n,. &) ‘/J

For notational simplicity, we omit the assortment and price vector in the expression of
preference weight. We can also see that V;,, ~ does not contain the term p,, but V,, ., €

Children(7,. ;) does. In order to obtain the partial derivative of Q (7, k+1|7,x) that is defined
in (C.7) with respect to p,, we need

] Vrk+1—1 p
v V,
g’k“ = Vrk+1 Z Vj %
Pr jeChildren(n, x41) br
It is an iterative form, we can finally get
. ’Yr,q_l
a‘/nr,k-%-l i C
S gy [T X W) (©8)
Dr a=k+1 jeChildren(nyq)

For notational simplicity, we denote A7, = H;Zt Vr.q- Therefore, we obtain

oV;
Opr

= =B, Qi) A7 Vi,
thus the second part of this claim holds. Based on Equations (C.7) and (C.8), we have

aQ (nr’,k-‘rl ‘ nr,k)
Opr

V ) m—1
= Br)\m_l Tl - * 1_[ Q(nr,qmnq—l) * Q(T|77r,m—1)

rk+1 * Z V C 9
jeChildren(n) V9 gkt (C.9)

= ﬁr)\::t];_ll * Q(Tlr’,k+1’nr,k) * Q(ﬂnr,k)?

where Q(r|nr,k) = Q(r|nr,k+1> * %r,k-%—l/ZjGChildren(nnk) ‘/J For aQ(nr,t-&-IMT,t)/apra since
QM t41|nr2) = Vnr,m/ZjeChﬂdren(m,t) Vj, then

aQ(nT,t+1’n7’,t) _ (1 o ‘/;7T,t+1 ) " 1 N aV’]'r,zH»l
opr

ZjeChildren(nnt) ‘/J ZjeChildren(nT,t) V; apT
= =B A (1= QU net)) = Q) (C.10)
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After plugging Equations (C.9) and (C.10) into Equation (C.6), we have

QW) _ QU kilms)  QUIA) +I§5Q(m¢+1\m¢)* Qi)
apr apr Q (nr/,k-i-l ‘nr,k) t=d apr Q(nr,t-i-l ‘nr,t)

=5 ( Y A = AR ne ) Q1) + AT QI Qi )) (C.11)

t=d+1

k
= B3:Q(rli) ( D W = AR ) + A?ﬂ@(f’ll’)) :

t=d+1

The last equality is due to the fact that Q(r|i) = Q(r|n.+)Q(n,¢) and Q(r']7) = ( "172)Q(Mrt),

then Q(r|n,)Q(r']i) = Q(r'|n:)Q,. Also note when k = d, 0Q(r'|i)/dp, = B A"} L Qr[)Q(r']).
In a similar way, for 0Q(r|i)/0dp,, we have

mz nrt-‘rl nrt " Q(T|Z)

_ Q(nr,t+1 |777',t>
(C.12)

m—1
= B3:Q(r|i) ( D T = AHQ(rImee) + A Qi) — 1) :

t=d+1

Then plug Equations (C.11) and (C.12) into Equation (C.4), we obtain

m—1
ORi(Si,P;)/0py = Q(r]i) + my3,Q(rli) ( > I = N mre) + ATk QUrli) - 1)

t=d+1

+ ) meBAL QM) i)
Tenrd
7“'¢77rd+1

v mesan (2 O~ XYW + AT Q0 m)

k=d+1 r'en, t=d+1
TN k1
m—1
+ > meBQr]) ( D IR = AR ) + /\Zﬁ{le(T/!i))-
€N m—1 t=d+1
r'#r
This first part of this claim is established after collecting terms. m

Claim 15. For any nonleaf node i € V and an assortment S;, we have

00, = —%V%(Sz» Qi)ui(Si, 9@')7 (C'13)
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and owi(Ss, 6) 1
wilvi, U;
= wi(S: 0 (S 0:) — (— — 1 .14
691 wz(Szaez)uZ(Suel) (% )7 (C )
where
2jeChildren(iy BiQ(55, 05155, 0;) i is a basic node
uz(Suel): 'V?‘uj(sj) S. 0.5 0
ZjeChildren(i) 1—’ijJj(Sj,9j)u]‘(Sj)Q( s j| gl Z) oW

Proof. For notational brevity, let w; = w;(S;,0;), u; = w;(S;, 0;), Vi = V;i(S;,6;) and Q(j]i) =
Q(S;,0;15:,0;). We prove this claim by induction on depth of the node 7. Firstly, if node i
is a basic node, then Vi = (3 ccpiarensy V5)"" where V; = exp(a; — B;p;). Thus we have

R D I O L N
00; j€Children (i) jeChildren(s) op; 06;

=—wVi D> BQG)

j€Children(i)

= —Viw,
where the second equality is due to Q(jli) = V;j/>liconiaren(sy Vi @0d 0 = pj — ¢; — 1/5;, and
the last equality is because of the definition of w; for the basic node i. So Equation (C.14)
holds if 4 is a basic node.
Quli
Recall that w; = (% - 1) ZjeChildren(i) (g]j‘) = (% —1) ZjeChildren(i) B3
Definition 1, then we also have

Vi
jeChildren(4) ‘/J

from

av; av;
ow; _ (i _1) Z 26, 24jeChildren(i) Vi=V; ZjeChildrcn(i) 0,
00; Vi jeChildren(i) (ZJ‘GChildren(i) Vi)?B
1 1 R oV, 0
ap; 00; . : 0D
=(=-1 > = 5 = 7~ QUlD > 6_] 697
i jeChildren(i) "7 | jeChildren(i) *J j€Children(4) pj 0%
1 1 . . "
=(=-1 > = [-BQUIN-QUI Y (=50l
Vi jeChildren(i) 7 | jeChildren(4)
1
= W;U; — (— — 1)

Yi

So Equation (C.14) holds for the basic node i.
Then assume Equations (C.13) and (C.14) are true for node j € Children(z), where node
¢ is neither a basic node nor a leaf node

oV,
Wiy — (L 1), (C.16)

57;‘_ Vi
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Since 0; = 0; — wj, then

5(9]- . (%Jj -1 1 _1
We get
oV; %
LA \vi—1 J
a6, ~ 1 o VTt o6,
j€Children(z) j€Children(z)
oV; 00;
=w( 2 VT X
jeChildren(i) jeChildren(i) 00; 00;
_ _ 1 _
ok G SRR ) L G D /) B S GO TR G
jeChildren(s) jeChildren(s) jeChildren(s) Vi

2, .
— v Y Y )

jeChildren(4) 1= wju;
where the third equality is due to Equations (C.15) and (C.16) and the last equality is

because of the definition of u;. So Equation (C.13) is true for node i.
According to Definition 1, we have

w=-n N P,y Y b

i jeChildren(s) 1= Vi jeChildren(:) (1 =) ZJ’eChﬂdmn(i) Vj
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thus we can also obtain

1

o(V;wj) oV
5%‘ B 1 1 ajgi] ZjeChildren(i) ‘/3 - (‘/jwj) ZjeChiIdren(i) 0_GZ
=(--1 Z 2
00; i jeChildren() 1= (ZjeChildren(i) V)
oV; 00, Owj 00 oV, 00,
_ (l —) Z 1 a0, o0, + Vizg, @, B (Vjw;) 2jechitareni 30, 6,
Vi jeChildren(4) i ZjeChildren(i) ‘/3 (ZjeChildren(i) ‘/J>2
_( 1 Doy 1 [ (=uViu) (5 — wiug) ™ tws + Vilwsuy — (52 = 1)(5 — wjug)~
i - 1= 2 jeChildren(s) Vi
j€Children(i) jeChildren (i)
(Viw;) Zjecmldren(i)(_%‘/juj)(% — wjuy)
(ZjGChildren(i) ‘/3)2

Ywiu Vil — ;) = Vi(1 =)

e

Yi jeChildren(s) - i (1 - ijjuj) Zje(]hildren(i) V}

1 W . ViU y
+H(=-1) > Qi) « ) T, QU

i jeChildren(i) J jeChildren() = 1<

1 .
= (-1 D (-QUI) +wu

Vi jeChildren(3)

1

= wju; — (— —1).

7

So Equation (C.14) also holds for node i. Therefore Equations (C.13) and (C.14) are true
for all nonleaf node 7 according to the principle of mathematical induction. O

Proof. Proof of Lemma 15: For notational brevity, let w, = w,(Sa,0,), wp = wp(Sh, O), and

this proof. We first prove #; and 6, are equivalent. We denote the actual product in the

lowest level m as r. Without loss of generality, 0 < d < m — 2, we assume that node ¢ and

j € Children(i) are ancestor nodes of r, and when node d = m — 1, node j is the sibling

node of r. The first derivative of the objective function ¢; = V;(R; — €};) in the inner pricing

subproblem with respect to price p, of product r is
g 0V;

= SR ef) + Vi
i PR 2

R,
opr
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Due to Claim 14, the above equation can be rewritten as

0g;
opy

m—2 k
—1 -1
£ Y8 (X o ewne)
k=d+1 r'en, t=d+1
7"/¢777",k'+1

b3 w3 (Ai?;ﬁ—A::@*)@(wm,t)))-

' ENrm—1 t=d+1

= —B,Q(r[))A7"Vi(Ri — €}) + ViB,Q(rli) (i —m + AT D meQr i)

/BT r/enr,d

We let the first derivative dg;/dp, = 0, since both Q(r|i) and V; are not zero, after dividing
B-Q(r]i)V; on both sides of the above equation and collecting terms, we have

1
— NPT (R —ef) + <5_‘mrﬂi7;fl 2, meQ(rli) (C-17)
r T/enr,d
m—2 k
£ 3N (X o)
k=d+1 Tlenr',k t=d+1
T/¢777‘,k:+1
m—1
¢ % (3] o aeering) ) <o c9
r'ENrm—1 t=d+1

We know nonleaf node «a is in level [ (d <1< m — 1) and its children nodes are indexed by
b. Then according to (C.17) and the definition of node-specific adjusted markup, we have

9a=9b—wb

m—2 l
= )‘i,d-s-l Z mQ(r']i) + Z Z ULy ( 2 ()‘i,t+1 - )‘lr,t)Q(T/MT,t))

r'€ny.q k=d+1 r'en, t=d+1
Tl¢77r,k+1
l
£ Y m ( 3 <Ai,t+1—Ai,t>@<r'|m,t>> NP ) (C.19)
' ENrm—1 t=d+1

From the RHS of (C.19), we can see that 6, is independent of 7, s where d < s < [. Thus for
another child node V' of node a, ¢/, = my — wy also equals to the RHS of (C.19). Therefore,
6, = 0., for any node a in level d,d + 1,...,m — 1.

Since 0, = 0, — wy, In order to prove that there exists a one-to-one increasing correspon-
dence between the node-specific adjusted markup 6, and 6, where b € Children(a), we need
to prove

69a &Ub 1 1
=1l——=1—(wup—(——1)) = — —wpup > 0,
00, 00, (ot <% ) W
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where the second equality is due to Claim 15. o
Next, we prove by induction on level in which node a is that 0 < u, < B; and
0 < w, < %BL If node a is in level m — 1, then 0 < u, = ZbeChildren(a) BrQ(bla) <

v - b —~a o
MaXpeChildren(a){ o} = Ba- And 0 < w, = (% — 1) 2peChildren(a) Q(Bb‘a) < —1%7 B%l' Thus it is
true for the basic node a, then assume this holds for nonleaf and non-basic node b

O<ub<§b,

1-— 1
0< Wy < Bl —_—.
Ww B
So we have
1—-vw8B
0< Wy < B —b
MW By
Thus we get
713 Up 2
Ug = ) mQ(b’a) > > %wQ(bla) >0,
beChildren(a) bbb beChildren(a)
and
71? Up 71? Up
ta = Z 1 — ypwpu Q(bla) < Z 1- By Q(bla)
beChildren(a) oty beChildren(a) + ~ 75, B,
' -
< e T ) < P
beChildren(a _ — Db
S ( ) 1 ")/b % Bb

So for u,, we have 0 < u, < B,. And for w,, we have

1 Q(bla 1 Qbla) 1 —~, 1

0<wa:(__1) Z (_| )ng(_—]_) Z 1(_|)—7§
Va beChildren(a) o Ya beChildren(a) Y Yo Dy

1 1 11—, 1

< (——1)— _ 1"

Ya mlnbeChildren(a) {Eb/Yb} Ya Ea

By the principle of mathematical induction, for any nonleaf node a, we have

11—, B, 1
0 < Wty < —_< —,
,YQ Ea ’7a
thus we obtain 0 ; leaf nod
1 is a leaf node
@ _ C.20
00, { % — wptp > 0 0.W. ( )

Therefore, there exists a one-to-one increasing correspondence between the node-specific
adjusted markup 6, and 6,, where b € Children(a). O
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Proof of Lemma 16

Proof. For notational brevity, let and ¢g; = ¢;(6;), Vi = Vi(S;,0;), R; = R;(S;,0;) in this proof.
We denote the actual product in the lowest level m as r, thus 6, = p, — ¢, — 1/0,.
Due to Claim 14, we have

8V
00,

—B:Qrli)A7 'V,

then by applying Lemma 15 repeatedly and use the notation for the node-specific adjusted
markup in Definition 1, we have

OR;

a_er_m 18 Q(r|i) (Ri — 0;)

Therefore, we get

0gi . V; * OR;
a@r = a_er(RZ — 6h> + ‘/;6_67,

= ~BQUINT ViR, — €f) + VXA BQUr) (R — )
VN BQUri) (1= ) Re + et — 6)

where we use the fact that A} ! = A\ +11 *7; to get the last equality.
For the first order condition, let é‘gZ /06, = 0, we can obtain

0; = viey, + (1 — i) Ri(Si, 6;),

which completes the proof. n

Proof of Corollary 5
Proof. For notational brevity, let R; = R;(S;,6;). If i is root node, then we have

aR

Where product r in the lowest level m. We use An(r,[) to denote the r’s ancestor node in
level | (d <1 < my), then we obtain

aRZ — 2 8RZ (aeAn(r,ml) > - (aeAn(T‘,mZ) ) - o (aeAn(r,d+1) > - ( 8@ ) -1
802 aer agr aeAn(r,m—l) a‘gAn(T,d+2) aQAn(r,d—l-l)

Tenr,(i
0 Y et g, Qe (Pamemn ) (Briemen (b )
L£ d+1 T 897, aeAn(r,m—l) aeAn(r,d+1) '

TE€MNr,d
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According to Lemma 15, we know

(aeAn(r,m—l) ) - (aeAn(r,m—2) ) - ( 691 ) - ~0

aer aeAn(r,mfl) aeAn(r,dJrl) ‘
Therefore R; is strictly unimodal with respect to 6; according to Lemma 2 in [19]. According
to the unimodality of R;, we have R; = 6; at optimality. ]

Proof of Proposition 11

Proof. For root node, given optimal assortment S ., the optimal price vector P¥ . can be
uniquely computed after getting 6% . by Rioot(S: i, Oroot) = Oroot- Since there is a one-to-
one correspondence between the node-specific adjusted markups, 6 can also be uniquely
identified once €%  is given. Thus we have R;(S,P}) = R;(SF,07). From Lemma 16, we

know 6F = yier + (1 — ) Ri(S}, 0F) = viey + (1 — ) Ri(S}, P}) = ef, where is last equality

17
is according to the definition of €. O

Proof of Proposition 12

We use lemma 24 to prove proposition 12.

Lemma 24. For an assortment S; of non-root node i in level d (d + 0), we have

Rz(Sla 91) - 91 + 1 B %WZ(SM 91)
Proof. We let R; = R;(5;,0;), wi = wi(S;,60;) and Q(j|i) = Q(S;,0:]5;,6;) for notational
brevity. This lemma can be proved by induction on level d. If node 7 is in level d = m — 1,
we can obtain

Ri= >, QUINR;= >, QUINw—c)= >, QUl®G:+ i)

jeChildren(7) jeChildren(s) j€Children(s) Bj
—6+ ) QUL (C.21)
copmien(i) D
j€Children(4)
i
=0, + —w;, C.22

where Equation (C.21) is due to the fact that there is no no-purchase option in the lowest
level m, then X cpngreny @(]4) = 1, and Equation (C.22) is because of Definition 1. Thus
this claim holds for level m — 1. Assume that this claim also holds for level I (2 <1< m—1)
that node j € Children(:) is in, then we have that R; = 0; + [v;/(1 —7;)]w;. When it comes
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to level [ — 1, we get

o] . . fy
Ri= ), QUIDER = > QUG+ —w) (C.23)
jeChildren(s) jeChildren (i) RE
- Yi
= D QUG +w + ) (C.24)
jeChildren(i) -
=6+ )] Q(ﬂz)%‘ = 0+ —w, (C.25)
j€Children(i)

where Equation (C.23) is due to induction hypothesis, Equation (C.24) is because of the
definition of ¢; and similarly Equation (C.25) is due to >copiareniy @(J]i) = 1. Note that
2 jechitdren(iy @(J]¢) < 1 only if i is root node. So it holds for all the non-root nodes, estab-
lishing the lemma. O]

Proof. Proof of Proposition 12: Throughout the proof, we let R; = R;(S;,0;), w; = w;(S;, 0;)
and Q(jli) = Q(S},6;|S;,0;) for notational brevity. First, if 7 is the root node, we have v; = 0
and 05 = 0, thus both equations hold according to Corollary 5 and Definition 1. Second, we
consider the case when ¢ is not the root node. By Lemma 16 and Lemma 24, we have

gr = i~ (1—v)Ri 0= (A =7)0 + Z5w) 0 — w
h — Vi - ; — Us 79

thus the second equation is true.
Thus after plugging the second equation into the equation in Lemma 24, we obtain

RZ:92+LW1:62+&)Z+LUJ£=92+

W,
I —; I — I =

which establishes the first equation. We also have R; > 60} because w; > 0 for nonempty
assortment S;. O

Proof of Corollary 6

Proof. From the first equation in Proposition 12, we get

20, 6—01 =1 wi(Si, 03)ui(Si, 0;) (% | = % w;(Si, 0i)ui(S;, 0;) > 0,

where the second equality is due to Claim 15 and the last inequality holds according to similar
induction proof of Lemma 15. Thus there exists a one-to-one increasing correspondence
between 6; and 6;, then given a 0} and a fixed assortment .S;, corresponding 6; that is
optimal to problem (4.5) can be uniquely identified. O
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Proof of Theorem 8
Proof. Similar to assortment subproblem, we can rewrite basic joint subproblem as

max max V;(S;, 0;)7 (R;(S;, 6;) — 07). (C.26)
S,CS; f;eR
Given an assortment S;, let ¢/(6;) = Vi(S;i, 0:)Y (Ri(S;, 0;) — 0F). For ease of presentation,
we let g = gl(0;), Vi = Vi(S;,0;) and R; = R;(S;,0;). r represents the descendant of node i
in the lowest level m and An(r,[) denotes r’s ancestor node in level [ (d <1 < my). As proof
of Lemma 4, we have

0‘/1 _ N ym—1
OR; e .
T AL B:Q(ri) (Ry — 6;).
Thus we obtain
% — lvl/%_I%(Rl _ 67) + ‘/Zl/%%

00, vt 06, 00,
= V(6 - 02) * B,Q(r[i) N

rd+1°

So the first derivative with respect to 6; is
og; 5 g, (aeAn(r,m_1)>‘1 ( aeAw,m_Q))‘l N (aeAn(r,dH))‘l ( 26; )‘1
o0, & 0.\ 0o, Bntrm ) Bnnrar2)  \Onngrarn
1y * cvmet [ OOAn(rm—1 ' (00an rm—2 - 06; -1
— =V (0 - Hi)rezn;,d BrQrl A (#) <m) (m) :
According to Lemma 15, we know
<59An(r,m1))_l (aeAn(r,m2)>_1 - < 00; )_1 oo
00, 00 an(r,m—1) 00 An(rd+1)
We get 6; = 6 by the first order condition. Thus problem (C.26) can be rewritten as
max V(S 0)" (R (S, 0F) — 07). (C.27)

By Lemma 24, we have

=g (S, 0
Ri(5:,05) = 07 + 7 —wi(5:,00).

Plug the above equation into problem (C.27), we obtain
max V;(S;, 9:)1/%%%(5“ 0r),

SicS; — ")/Z

which can be further simplified as problem (4.7) according to the definition of w;(S;,6) in
Definition 1. O
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Proof of Corollary 7
Proof. By Theorem 8 and Definition 1, problem (4.7) can be written as

Vk Skaek
3 (Sk, Ok)

max
S35 , Br
keChildren(y)
1
s.t. 03* = Qk —Cr — —,
B

which can be further simplified as

Vi(Sk, 0F + cx + 1/5)
max .

I="7 LeChildren(j) Br

The above problem is essentially finding C; leaf nodes with largest ratio of preference weight
to price sensitivity parameter from N; leaf nodes, which only depends on the ordering of
the ratio Vi (Sk, 07 +c + 1/5k)/ Bk The total number of operations in need is O(N; log N;)
(sorting) + O(C;) (printing the output of first C; leaf nodes) = O(N; log NN;). O

Proof of Corollary 8
Proof. Throughout the proof, we let V; = V;(S;, 6%), Vi = Vi(S5,05), R; = R;(S;,6%) and

3 Y5 VRN 3075
R} = R; (SJ* , 9;“) for ease of presentation. We index the parent node of the basm node j by
1. Since S is the optimal solution to problem (4.8) at the basic node j € %, according to
Lemma 14, it satisfies

Vi(R; = 07) =V} (R} — 07).
Let S; = Usccnitdren(s S due to Lemma 13, we obtain

~

V(R e;arent ) = ‘/z* (R* elf’arent )
Repeat this process based on Lemma 13 until we get groot = UkeChildren(root) S’k =U e S'j,
then we have

¥ * * * *
‘/1‘00t<RT00t eParent root) ) ‘/root(Rroot - eParent root))

= 1 and 63

Parent(root)

0*

Parent(root)

=0,
O

According to the definition, we have Voo = Vi

root

implying ]A%root = R*

root*

Proof of Lemma 17

Proof. Prove this lemma by contradiction, assume that gj(é?j) is the optimal solution to
problem (4.9) at 6; and [S;(6;)] < C,. Since |S;(0;)] < C;, there must exist a product
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k' satisfying that &' ¢ S;(6;) but & € Children(j). Let SJ’(HJ) = S5;(0;) U K, then we
have that S7(0;) is feasible since [S}(6;)| < C; and S%(0;) strictly dominates S;(6;) since
Zkeé}(@) Vi(Sk, 05 + 1/Bk)/Br > Zkeéj(e) Vi(Sk,0; + 1/B%)/Br, which contradicts with the hy-
pothesis that S;(6;) is the optimal solution to problem (4.9) at 6, and |S;(6;)| < C;. O

Proof of Lemma 18

Proof. Let 0 € 6;, S; = lim. g 5’3-(9; —¢) and S; = lim_g Sjw;. + ¢€) for a small € > 0.
[39] show that at changing point, one product would be replaced by another product. With-
out loss of generality, assume that ¢ = I(ki, k) and S; = (S;\{k1}) U {ka} for ki, ks €
Children(j). Since product k; is replaced by product ky at ¢, we have hy, (6;) = hy,(0)
and S, > B,, which implies that Vi, (Sk,, 0 + ¢k, + Br,)/Br1 = Vi (Skys 05 + Chy + Bry)/Brs-
Thus we have Vi, (Sk,, 05 + cry + Bry) > Viy(Skyr 05 + cry + Bry), s0 Vi(S,,07) > V;(S;,05).
Thus the preference weight V;(5;(6;), 6;) of basic node j drops discontinuously at the chang-
ing point 6. 0

Proof of Lemma 19

Proof. According to Lemma 15, we know that there is an increasing one-to-one correspon-
dence between 60; and 0; if Sj(Hj) does not change, thus we only need to show 6; is discontin-
uous in ¢, at the changing point, where S'j (6;) changes to a different assortment. Without
loss of generality, assume 0} € €} is the changing point, and let S; = lim. Sj(eg —¢€) and
S, = lim g 5}(03 + €). By Lemma 18, we have that V;(S;, 6}) > V;(S;,6}), implying that

VeS8 +8) 1

(S, 0) = (=1 Y

i keChildren(j) Br Vi(S;, 05) s
1 Vi (S, 0 + 1 _
i keChildren(j) k (55, 05)

where the inequality holds due to the fact that >3 cpiaren(yy Ve(Sk: 05 + Br)/Br =

2 keChildren() Vi(Sk, 05 + Br)/Br- Thus the function 6; = 6; — w;(S;(8,),6;) drops discon-
tinuously at 0’ since 0 — w;(S;,05) > 0 — c_uj(gjﬁ;). Moreover, let 0; = 6 — w;(S;,0")
and 0; = 07 — w;(S;,0}), then when 0; € [0,,0;], it corresponds to two different 6;’s, which

_]7 J
completes the lemma. O

Proof of Proposition 14

Proof. We prove this proposition by induction. It’s true for basic nodes. Assume that o =
{Ujjecnitdren(s) S3(F5(6:)) : 0; € R} includes an optimal solution to assortment subproblem
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(4.6) at node 7. To construct a candidate collection of assortments <, including an optimal
assortment at node h. Consider the assortment subproblem (4.6) at node i, let S;(6,) be an
optimal solution to the following problem

VQ(Si, 61')0‘-)1'(51'7 91’)
max
St 1— (C.28)
s.t. Hh = HZ - wi(Si, 91),

where we optimize over o7 instead of J; in problem (4.6) since <7 includes an optimal as-
sortment by the induction hypothesis. Then the above problem is equivalent to the following
optimization problem since o7 = {S;(0;) : 6; € R}.

ey Vi5i0:), 0i)wi(5i(8:), 03)
0,eR 1 — ’}/Z

Since F;(0) is optimal to the above problem, then Si(F;(6y)) is the optimal solution to prob-
lem (C.28), thus (Uccpidren(ny Si(Fi(65)) is the optimal solution to assortment problem (4.6)

at node h by Lemma 13. From the definition of <7, we have that (,ccpiiaren(ny Si(Fi(05)) €
. O

Proof of Lemma 20

Proof. For ease of presentation, we denote V; = V;(Si(@),@i), w; = w;i(Si(0;),60;) and T; =

T:(S:(0;),0r). We have

0T, _ 1 (Vi w1 (Vi w96,
86,1_1—%- ‘ _1—’%‘ ‘ 80h

26, " %0, 20, 5,

If 7 is a leaf node, then
oT; 1 ov; ow; \ Op; 1
— L, f = [—BVi=—+0])+1=-V,
o0, 1—n <8piw 8pi> o0y, ( & i ) ’

where the second equality is due to the fact that 7; = 0 for all leaf node ¢ from Definition 1.
If 7 is nonleaf node, then according to Claim 15 and Equation (C.20), we can get

oT; 1 ov; ow;\ 06;

00, 1—n (a_ezwz " VZ@_@) oo,
S Vi Vi ! 1 ! -1
T 1= <—%‘ Uiw; + Vi <%‘Uz‘ - (—Z - ))) (% — Wilt;)

= V.
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Thus item 1 of this lemma holds. Furthermore, the second derivative of T; with respect to
Qh is
0*T; oV; oV; 00; v ( )
=2 - T ap T ap = ViVilkiWil — — Willy
00> ~ 00, 00,00, i
according to Lemma 15. So item 2 of this lemma is true. To prove the third item of this
lemma, without loss of generality, we assume that V' (.S, 0;(S1,6,)) > V(Ss,0;(52,05))), then

we have

1

> 0,

O(T'(S1,0n) — T(S2,01))
00,

= —(Vi(S1,0:(S1,01)) > Vi(S2,60:(52,604)))) <0,

which implies that 7'(Sy,60;,) and T'(Ss,0y,) intersect at most once in ), domain. O

Proof of Proposition 15

Proof. First, we define set of changing points for nonleaf node i € V as €; =

(69,61, 0P 0P} where 60 = —co and P = oo, such that S;(6;) does not change when
0; € [0071,09 for d = 1,--- , D;, and define set of intersection points for nonleaf node i € V
as F = {620,007, ,0;‘;(]1'_1,‘92’&} where 0" = —oo and 02V = oo, such that S;(F;(6s))
does not change when ), € [0:*"' 62"] for u = 1,--- ,U;. Then the set of changing points
for node h is 6, = UieChﬂdren(h) ;¢ according to the above definitions. After relabeling,
denote the points in %, as {69,6} - ,9,?’171,9,?*”} where 69 = —o0 and th = o0, we have
Dy, < ZieChﬂdren(h) U; according to the definition of 4, and 7'

Next, we prove that for any two different Sy, Sy € o7, V (S1,0;(S1,6,)) and V(Ss, 0;(52,61)))
do not intersect in 6}, domain. Without loss of generality, assume that S;(6;) = S;(6;) where
0; € [617,6%] and So(6;) = Si(6;) where 6; € [67271,6%] for dy < dy. We denote Sy = Sy(6;)
and Sy = 51(6;) for notational purpose. We claim that Vi(&(ei), 0;) drops discontinuously
at any changing point 6, € €; which can be proved by induction on level of node i’s since it
is true for basic nodes by Lemma 18. Thus V;(Si,6;) > V;(Ss,6;) in 0; domain.

We also have that 3 ot Vi (5575 (00)): F5(8:))s (S5(F5(65)). F5(6:) is a continuous
function of 6; because the optimal objective value V;(S;(F;(6:)), F;(0:))w; (S (F;(6:)), Fi(6:))
is continuous at intersection point Qf” e 7 foru = 1, .., Uj. Thus wi(S:(6:),0;) = (1) —
D)/VASH00),007% + X ccnrenty Vi (555 00)), F3(8:))5 (S5(F(61)), F5(60))/ (1) imcreases
discontinuously at any changing point 8, € %;, so we have 0;(S1,6,) = 0, +w;(S1,0:(S1,0r)) <
On + w;i(Sz,0;(52,01)) = 6;(5,0).

Therefore, we have that V;(S1,60;(S1,0)) > Vi(Ss,0:(S1,60r)) > Vi(S2,0:(Ss,0r)), where
the first inequality is due to the argument at the end of second paragraph of this proof by
setting 0; = 0;(S1,0;) and the last inequality holds since V;(Ss, 6;) is a decreasing function
of 6;. Then by the third item in Lemma 20, the objective function of problem (4.12) for any
two candidate assortments in .7 intersects at most once by the arbitrariness of S; and Ss.
Thus the size of ;! is at most D;, implying that U; < D;.

As a result, we get || = Dy, < ZieChildren(h) Ui < ZieChﬂdren(h) D; = Zz’eChildren(h) | ).
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Moreover, | oot < ZheChildren(root) EARS ZheChildren(root) ZieChildren(h) || < <
Yjes ||, where Z is the set of basic nodes. Since |7 has size O(N;), let M > 0 such
that ’%‘ < MN] for any j € #. Thus we have ’%OOJ < ZheChildren(root) "Q{h’ < Zje@ “;y]| <
MY, Nj = MN, implying that || has size O(N). Since |#oot| = || for any i € V,
thus |.2%| is of size O(N). O

Proof of Theorem 9

Proof. Due to Corollary 7, line 4 takes O(N;log N;) for basic node j. Then for all basic
nodes and G grid points, the running time is O(GN log K) where K denotes the maximum
products that a basic node can have in the tree logit model, since GZ].E% NjlogN; <
GZ].EL@ Njlog K = GNlog K. Line 5 takes O(1), line 6 takes O(log ) by applying binary
search and lines 7-11 run in O(1) since line 22 involves one numerical comparison, thus lines
2-13 take O(GN log K + G| %8| + G|B|log G + G|A|) = O(GN log G) since G is larger than
K in general.

Similarly, both line 16 and line 17 take O(1). Line 18 also runs in O(log G) by using binary
search and lines 19-23 take O(1) as well. Since the number of nodes in level m—2, m—1, ..., 0 is
less than twice the number of leaf nodes N, lines 14-25 takes O(GN+GN+GN log G+GN) =
O(GN log G).

For the final part of this algorithm, lines 26-28 take O(G) and line 30 runs in O(G)
as well by looking up previous stored table. Hence, the overall complexity of Algorithm
JCAPO-Cis O(GN logG+GN log G+ G) = O(GN log G). Moreover, if the spacings of grid
points are identical, line 6 and line 18 take O(1) by rounding up to the nearest grid points.
Therefore, this algorithm would take O(GN log K+ GN +G) = O(GN log K'), which is more
efficient. O

Proof of Lemma 22

We first propose two claims to facilitate proving this lemma.

Claim 16. For an arbitrary nonleaf node i € V' and its parent node h, assume R, (SF,P}) >
ep. If there exists an assortment S; < 3y, a price vector P; and parameter o« > 1 such that

aVi(Si, Po) (Ri(Si, Pi) = e ) = Vi(SEPH)Y™ (Ri(S5,PY) — ). (C.29)
Then we have
aVi(Si, P) (Ri(Si, Pi) — i) = Vi(SE,PY) (Ri(S7,PY) — ef). (C.30)

If the inequality in (C.29) is strict for some j € Children(i), then the inequality in (C.30) is
strict as well.
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Claim 17. For an arbitrary nonleaf node i € V' and its parent node h, assume R;(S¥,P}) >
ex. If for all j € Children(i) and a parameter o = 1, there exists an assortment SJ c Sy and

a price vector P; such that

A

aVi(S5.Py) (Ri(S5.Py) = ) = Vil P)) (Ry(S].P)) — ef).
Let (S;,P;) = Ujccnildren(i (S;,P;), then we have
Ri(S5, ) — k) = Vi1, PY) (Ri(S7,PF) — 7).

Proof of Claim 16 and 17 follows directly from the proof of Claim 12 and 13, respectively.

Proof. Proof of Lemma 22: Since gja is an a-approximate solution to problem (4.8) at
basic node j. Then the price vector P? can be uniquely determined by 67 and gf via
0% = pr — ¢ — 1/Bx where k € S¢. Problem (4.8) and problem (4.3) at node j under
space constraints are equivalent formulations, thus (S’Ja, f’?) satisfies (C.29). According to
Claim 16, (Sj‘,Pj) is also an a-approximate solution to problem (4.2) at node j under
space constraints since it satisfies (C.30). By repeatedly applying Claim 17, (S% ., P ) =

root? root
Ujes j(SO‘ P¢) is an a-approximate solution to problem (4.1) with space constraints. Thus

assortment S¢

— AOt ] 3
= U jes Sj 18 an o-approximate assortment. [l

C.3 Algorithm JCAOP-S
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Algorithm 6: Joint Capacitated Assortment and Price Optimization Under Space
Constraints (JCAPO-S)
Input: Oéi,Bi,’)/i, Gz for i e V, %j for j € A.
1 Initialization: Set F3'(of) = —M for g = 1,2,...,G and j € Children(i);
2 for j € # do

3 for g — 1,2,...,G do
4 get S’J‘»‘(og ) as an a-approximate solution to
MAXs;c3; X opechildren() Vi (ks 0F + e +1/8k) /B

5 calculate V(Sa( ), ?) and w](Sa( %), 07);

6 find g" such that of = A(0);

7 if ]-"Jq(ofl) = —M then

s | Bl < o

9 else

10 ‘ Fi(of) < arg MaX, oty oy ViS5 (03): 03)wi (55(05), 05)/(1 = 73);
11 end

12 end
13 end

14 for i in level m —2,m —3,...,1 do

15 forg<—~1,2,...,G do

16 get Sa( ) = U]eChlldren (%) Sa(foc( )) )

17 calculate V;(S%(o ) 9) and w;(52(07), 0%);
18 find ¢’ such that oh = \0}) ;

19 if .Ea(o*zl) = —M then

20 | Fe(of) < of;

21 else

22 | Frof) < argmax, ) 0 ViSE(6), 6)wn(S2(6:), 6)/(1 )
23 end

24 end

25 end

26 for g —1,2,....G do

27 get Sroot( root) :~ UieChildren(root S (‘/__;a( root)) ;
28 calculate Rioot(S% o (0%0t)s 050t );

29 end

30 Solve for 0%, in 000t = Rroot (S0t (Oroot ), Oroot ), then get S& . = Sﬁ)ot( o op) and

Pr%ot = PrOOt(Ol?éoot> )
Output: S ., P

root? root






