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Abstract

Choice-Based Assortment and Price Optimization

by

Yanqiao Wang

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Zuo-Jun Max Shen, Chair

Online recommendation systems ask these questions everyday: How to describe cus-
tomers’ purchasing behavior? How to design a product assortment in order to maximize
their expected profit/revenue with given customers’ behavior? What is the optimal pricing
strategy for an assortment? Even further, how to jointly design optimal assortment and
pricing at the same time in an efficient way? The answers to these questions have a direct
influence to the profitability and feasibility of the recommendation systems.

My thesis handles assortment and price optimization problems with various applications
in online e-commerce and travel related recommendations, such as flight, rental car and
hotels. For example, for car rentals in Expedia, they would like to offer customers a recom-
mendation page of cars with different brands, prices, types, options, etc. What is a good
recommendation for the customers so that they would have a good shopping and traveling
experiences? First, it needs to be relevant to customers’ choice behavior that can be learned
from previous purchasing history or from marketing surveys; second, the recommendation
cannot be too specified, which means that those rental cars in the recommendation page
cannot be too similar in terms of their attributes; third, it cannot take too long to show the
recommendations to the customers - an efficient algorithm is required. In this thesis, we will
show our approach to assortment and price optimization problems.

The main contributions of my thesis is: 1) We formulate the assortment and price opti-
mization problems in a choice-based way, which provides a good balance between relevance
and variance of the products in an assortment; 2) We develop applicable recommendation
algorithms that run in polynomial time and can be dynamically adapted; 3) Compared to
the previous literature, our results are more advanced in terms of efficiency and applicabil-
ity. Specifically, this thesis is consist of three essays in choice-based assortment and price
optimization problems.

In the first essay, we study the joint constrained assortment and price optimization prob-
lem under the nested logit model with a no-purchase option in every choice stage. The
cardinality or space constraints are imposed separately on the assortment of products that
are offered in each nest. Specifically, cardinality constraint on a nest limits the total num-
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ber of products that can be offered in that nest, and space constraint on a nest limits the
total space consumption of products within that nest. The goal is to jointly determine the
optimal assortment with optimal prices to maximize the expected profit per customer under
cardinality or space constraints. By using our solution approach, this problem is simplified
to find the fixed point of a single-variable unimodal expected profit function, where efficient
searching algorithms can be applied. Furthermore, we provide a piecewise convex fixed point
representation to facilitate computing. The optimal solution under cardinality constraints
and a 2-approximate solution under space constraints can be obtained efficiently.

In the second essay, we study choice-based constrained assortment and price optimiza-
tion problems under the multilevel nested logit model with a no-purchase option in every
choice stage. For the constrained assortment optimization problem, each candidate product
is associated with a fixed profit. The goal is to identify the optimal assortment satisfying
cardinality or space constraints to maximize the expected profit per customer. Under car-
dinality constraints, there is a limitation imposed on nodes in the second lowest level. A
polynomial-time algorithm with computational complexity Opnmaxtm, kuq is provided to
locate the optimal assortment for the m-level nested logit model with n products, where k is
the maximum number of products within any node in level m´ 1. Under space constraints,
every product consumes a certain amount of space and candidate assortments must satisfy
the space limitation. However, the assortment optimization problem becomes NP-hard under
space constraints, thus we develop an algorithm to find a 2-approximate solution in Opmnkq
operations. For the price optimization problem, we aim to find the profit-maximizing prices
for all products. With product-differentiated price sensitivities, the expected profit function
is no longer concave even under the two-level nested logit model, but we are able to reduce
the multiproduct price optimization problem from a high dimensional optimization to the
maximization of a unimodal function in single-dimensional searching space, in which the
optimal prices can be found in a tractable manner.

In the third essay, we know that assortment and pricing decisions are of significant im-
portance to firms and have huge influences on profit. How to jointly optimize over both
assortment and prices draws increasing attention recently. However, in the most existing lit-
erature that considers joint optimization problem, they either impose strong restrictions on
the choice structure or have strong assumptions on the price sensitivity parameters. More-
over, currently there is no flexible and comprehensive way to deal with the joint effect of
assortment and pricing under multistage choice structure since the tangle between the as-
sortment and prices makes the joint optimization problem less tractable. In this paper, we
study the joint capacitated assortment and price optimization problem where the consumer
choosing behavior is governed by the multistage tree logit model. Under the cardinality con-
straints, we develop an efficient algorithm that runs in polynomial time to find the optimal
assortment with optimal prices. Under the space constraints, the assortment optimization
problem is NP-hard even under tree logit model with only two levels. We can obtain a
2-approximate solution within the same time scale compared to the joint optimization prob-
lem under cardinality constraints. For a tree logit model with N candidate products, both
algorithms run in OpGN logGq where G is the number of grid points for each node. The
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complexity can be further reduced to OpGN logKq under mild conditions, where K is the
maximum number of children nodes that a nonleaf node could have in the tree structure.
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Chapter 1

Introduction

In the first essay, the problem of choosing a set of products so as to maximize the expected
profit is referred to as the assortment optimization problem. The goal of price optimization
problem is to find the optimal pricing strategy to maximize the expected profit per customer.
The multinomial logit model and the nested logit model are often used to describe the
customer purchasing behavior. How to jointly optimize over both assortment and prices is of
significant importance to study. However, assortment decisions greatly influence the pricing
strategy and vice versa. We study the joint constrained assortment and price optimization
problem under the nested logit model, which includes two stages of customers’ choosing
process. In the first stage, the customer chooses either to leave without purchasing (the
no-purchase option) or to consider to buy within a nest of products that are grouped based
on their attribute similarities. If she chooses to consider buying from a nest of products,
then she can still either choose the no-purchase option within that nest or select an actual
product in the second stage. Moreover, each nest has a scale parameter that is less than one
to measure the similarity of products in that nest. For the joint optimization problem, we
find a bridge that connects the pricing problem with the assortment optimization problem
so as to resolve the tangle between assortment and pricing decisions. This bridge is a scalar
that is defined as the node-specific adjusted markup. Due to practical operational limitation,
we consider cardinality or space constraints on the assortment in each nest separately.

We first formulate the joint constrained optimization problem as a bilevel optimization
program with assortment optimization and price optimization as its outer and inner problem,
respectively. Then it can be simplified as an optimization over a single-variable unimodal
function by observing the connection between the inner and outer optimization problems.
Furthermore, the optimal solution has a piecewise convex fixed point representation. Our
solution approach is one step further than 1) joint assortment and price optimization problem
under the multinomial logit model that is studied in [48]; 2) price optimization problem under
the nested logit model [19]; 3) assortment optimization problem under the nested logit model
[18].

In the second essay, we consider the constrained assortment and price optimization prob-
lems under choice models, where we aim to offer products bundle with diversity to attract
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more customers and gain more profits. Preferences and choosing behaviors of customers can
be modeled by discrete choice models that play an important role in revenue management
and demand modeling. The multinomial logit model, developed by [34] according to random
utility maximization (RUM) theory, is extensively used to capture the customer choosing
behavior. More complicated choice processes have been modeled under the extensions of
the multinomial logit model, such as the nested logit model, the mixed logit model, etc. In
this essay, we consider the constrained assortment and price optimization problems under
the multilevel nested logit model that is able to capture the multidimensional similarities
of products. We assume that customers choose their desired attributes of the products se-
quentially based on an m-level tree structure, each level of which corresponds to a certain
attribute of the product. Thus products are grouped by pm ´ 1q-dimensional similarity in
the m-level nested logit model if we consider the root node is in level 0.

Regarding the constrained assortment optimization problem, we assume that the prices
of all products have already been exogenously given. The probability of choosing a product,
which is a function of assortment, can be computed within the multilevel nested logit model
framework. Our objective of the constrained assortment optimization problem is to find the
expected-profit-maximizing assortment which also satisfies cardinality or space constraints.
For cardinality constraints, there is a limitation of the number of products that can be offered
within the nodes in level m ´ 1 separately. Space constraints limit the available space for
displaying products in the m ´ 1 level separately, that can be the shelf space or volume
space limitation in a physical retail store. We also study the multistage price optimization
problem, where assortment and costs of products are fixed. However, instead of having a
fixed profit, which is price minus cost, the price vector becomes the decision variable. The
choice probability and profit of a product is determined by its own price, thus the price
optimization problem becomes a multidimensional optimization problem with respect to the
prices of all products.

In the third essay, a decision-making problem that firms always face is to choose a set of
products that satisfy either cardinality or space constraints with proper prices to offer to the
consumers in order to maximize their profit, which can be addressed as the joint capacitated
assortment and price optimization problem. For the capacitated assortment optimization
problem, the goal is to identify a set of products under certain constraints to offer to con-
sumers so as to maximize the expected profit when the prices of candidate products are
exogenously given. Price optimization refers to the problem of setting an expected-profit-
maximizing price for each product within a fixed assortment selection, where the attractive-
ness of a product is inversely proportional to its price. The assortment optimization applies
to the case where a firm cannot control the prices but is able to decide which products to
offer to the consumers, and the price optimization is vice versa. For firms that have the
ability to have control over both assortment and prices of products, joint optimization is
necessary and worth studying. This fact is intuitive, for example, if some products with
“good” quality or brand are added to a firm’s consideration set, the optimal assortment and
pricing strategy may change, since the demand for those products with even higher price
may increase because consumers may have an overall “good” impression on the newly offered
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assortment and can tolerate high prices of some products.
However, assortment decisions are very sensitive to price changes, and similarly, optimal

prices of products are also completely different given different offered assortment. On the
other hand, the mutual dependence of capacitated assortment and pricing decisions increases
the hardness of modeling and quantifying the joint effect of capacitated assortment and
pricing. Most existing approaches do not have a tractable solution to jointly optimizing
over capacitated assortment and prices, especially for the case where the consumers follow
a complex choice structure, such as the tree logit model with an arbitrary number of levels
and products.

To resolve the issues in modeling the joint effect and provide practical operations insights,
we study the joint capacitated assortment and price optimization problem under the tree
logit model [10]. Due to the practical display limitation, we consider both cardinality and
space constraints on the assortment decisions, which impose cardinality and space limitation
on nodes of the second lowest level in the tree structure, respectively. Under the tree logit
model, consumers follow an m-level tree structure. The choosing process can be considered
as a desired set reduction process, where the desired set is originally set to be the entire
choice set and being reduced as choosing process goes on until only one product or the no-
purchase option is left. For example, if a consumer wants to buy a history book on Amazon,
after she specifies that the category is history under the “shop by category” list, all the other
books that do not belong to this category will be eliminated from the desired set and not be
purchased by her, in which case, history can be viewed as the first desired attribute that she
wants from the book. Subsequently, the consumer further continues to choose the second
attribute and so forth until a book with m desired attributes or the no-purchase option has
been chosen in the end. Hence in this tree structure, the node in level l corresponds to
a subset of products that share l attributes in common, and all the leaf nodes that share
the same parent node stand for actual products having m common attributes. Specifically,
the no-purchase option is in the first level of the tree. The choice model with multistage
structure has practical motivation and usefulness; see recent studies in [30] and [22].

While retailers tend to set higher prices of products to gain more profit, consumers
typically would consider less to buy a product with high price. So the products with higher
price always have lower demand. Therefore, the joint effect of assortment and pricing can
be translated as the tradeoff between promoting the willingness to buy of consumers and
maximizing retailer’s profit. The tangle in the joint effect can be unraveled by our efficient
approach to the joint capacitated assortment and price optimization problem.
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Chapter 2

Joint Nested Logit Model

2.1 Literature Review

[26] show an extensive review of the assortment optimization and price optimization prob-
lems under various choice models. For the work that is related to this essay, [18] study
the constrained assortment optimization problem under the nested logit model and their
approach can be adapted to solve the joint assortment and price optimization problem if
feasible prices are restricted on finite grid points. Our model does not have this restriction
by defining the price of a product on Rě0. [11] study the assortment optimization prob-
lems under the nested logit model with no-purchase options in all nests. [16] consider the
constrained assortment optimization under the nested logit model with constraints across
nests. [29] find structural conditions of the optimal assortment under the nested logit model.
By assuming that the price-sensitivity parameters are identical within nests, [31] prove the
expected profit function is concave with respect to market share vector. [19] show the ex-
pected profit function is unimodal under mild assumption on dissimilarity parameter and
price-sensitivity parameters, whereas they relax the assumption in [31]. In this essay, we
also have the same assumption that is in [19].

[39] study the constrained assortment optimization problem under the multinomial logit
model. [47] considers the constrained assortment optimization problem under the general
attraction model. Under the mixed multinomial logit model, customers are segmented into
groups based on their social demographic information, [7], [41] and [23] study the assortment
optimization problem. [18] consider the constrained assortment optimization problem under
the nested logit model. [30] and [50] study the unconstrained and constrained assortment
optimization under the multilevel level nested logit model, respectively. However, most of
the research listed above only consider assortment optimization problems without the joint
effect of assortment and pricing decisions.

[15] find the multinomial logit profit function is concave with respect to the market share
vector. Under the nested logit model, [19] show the profit function is concave in terms of
the aggregate market share and unimodal of the adjusted nest-level markup. Under the
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multilevel nested logit model, [30] and [22] find an efficient approach to get the optimal
pricing strategy. [50] consider no-purchase options in every choice stage under the multilevel
nested logit model and study the price optimization problem.

For the literature considering the joint assortment and price optimization problem, [9]
[32] obtain the structural properties of the optimal solution. [48] considers the multinomial
logit model and proves that the joint optimization problem has a fixed point representation.
Furthermore, [49] considers the search cost in the joint optimization problem. [6] study the
joint problem in a game theory perspective. [27] consider the joint optimization problem
under the nested logit model and obtain a competitive equilibrium. Under the nested logit
model, [18] and [12] restrict prices on a grid of points. Our model does not have this
restriction, while both approaches have real applications in practice. Under the multilevel
nested logit model, [51] study the joint optimization problem, however, the authors only
allows one no-purchase option. [37] proposes a linear program formulation with price bounds.
[24] considers the nonparametric choice model for the joint assortment and price optimization
problem.

2.2 Main Results and Contributions

We summarize our main results and contributions as follows:
1. We study the joint constrained assortment and price optimization problem under the

nested logit model in this essay. We formulate the joint optimization problem as a bilevel
optimization program with the price optimization problem and the constrained assortment
optimization problem as its inner and outer problem, respectively. Focusing on the inner
price optimization problem with a fixed nonempty assortment, we introduce a scalar that
is referred to as the node-specific adjusted markup, which is proved to be a useful bridge
connecting the inner and outer problems jointly.

2. In our problem setting, the consumer choosing process can be described under the
nested logit model with m nests and N products, where nmax is the maximum number of
products within any nest. We impose the cardinality or space constraints separately on each
nest, which limits the number of products or space consumption of products within that
nest. We first decompose the joint constrained assortment and price optimization problem
into m bilevel joint subproblems, then we introduce an equivalent formulation of the joint
subproblem that is referred to as the assortment subproblem. The assortment subproblem
optimizes over a scalar instead of an assortment, and its objective function is convex, which
makes it tractable to solve.

3. The main result in this essay is that we prove the joint constrained assortment and
price optimization problem has a fixed point representation of a single-variable unimodal
profit function. We also prove that the size of a collection that includes an optimal assort-
ment under cardinality or space constraints is polynomially bounded by OpNq or OpnmaxNq,
respectively, thus a solution approach that is based on discretization can be applied to find
the joint optimal solution. Furthermore, we propose a piecewise convex fixed point represen-
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tation to further facilitate calculation. By applying our solution approach, the joint optimal
solution and a 2-approximate solution can be obtained in an efficient way.

4. To the best of our knowledge, we are the first to study the joint constrained assortment
and price optimization problem under the nested logit model where the utility of a product
is a function of the price of this product. [48] considers the joint optimization problem
under the cardinality constraints when the customer choosing behavior is governed by the
multinomial logit model, which is tractable based on its linearity nature. [18] study the
joint optimization problem the nested logit model where there exists nonlinearity in general.
However, the authors only restrict the possible prices on some prespecified values and do not
consider constrained assortment in their problem setting.

Organization

The organization of the essay is as follows. In Section 2.3, we present the modeling frame-
work and problem formulation of the joint constrained assortment and price optimization
problem under the nested logit model. Section 2.4 shows the joint optimization problem
under cardinality constraints is tractable and an optimal solution can be efficiently obtained
via a piecewise convex fixed point representation. In Section 2.5, we consider the joint opti-
mization problem under space constraints and show how to find a 2-approximate solution.
We illustrate our solution approach in Section 2.6 by showing a numerical example of the
joint optimization problem under cardinality constraints.

2.3 Modeling Framework

Suppose that the customer purchasing behavior can be described by the nested logit model
with m nests, the set of which is M “ t1, 2, ...,mu. For a nest i PM , there are ni products,
the set of which is denoted as Ni “ t1, 2, ..., niu. The total number of products is denoted
as N “

ř

iPM ni. For product j P Ni, it is represented as a 2-tuple xi, jy and its price is pij,
thus the price vector for nest i is Pi “ ppi1, pi2, ..., piniq. Price matrix P “ pP1,P2, ...,Pmq

contains all prices for all the products in the nested logit model. A customer first chooses
either to select a nest or to leave without purchasing anything; if she selects a nest of products
in the first stage, then she can still choose either to exit without buying or to select a product
in the second level. The no-purchase option in the first stage is denoted as a null tuple x0y,
and the no-purchase option within nest i is denoted as an order pair xi, 0y. For product xi, jy
with price pij, the preference weight that is assigned by the customer is

vijppijq “ exppαij ´ βijpijq,

where αij is the price-independent deterministic utility and βij is the price-sensitivity pa-
rameter. Note that both αij and βij are different across products. By convention, we treat
the preference weight of no-purchase options v0 and vi0 as nonnegative constants.
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The vector Si “ pSi1, Si2, ..., Siniq P t0, 1u
ni is used to denote the assortment of products

that are offered in nest i. The binary decision variable Sij equals to one if product xi, jy
is offered and zero otherwise. If we offer Si with price vector Pi for a nest i P M , the
probability of choosing product j out of Ni is

Qj|ipSi,Piq “
vijppijqSij

vi01pSi ‰ Hq `
ř

jPNi
vijppijqSij

,

where if Si ‰ H, the customer has a probability of vi0Sij{pvi0 `
ř

jPNi
vijppijqSijq to leave

without purchasing. Note that if Sij “ 0, then the price pij of product xi, jy becomes
irrelevant to our goal.

For nest i PM , the expected profit of assortment Si with price vector Pi is

RipSi,Piq “
ÿ

jPNi

Qj|ipSi,Piqppij ´ cijq

“

ř

jPNi
ppij ´ cijqvijppijqSij

vi01pSi ‰ Hq `
ř

jPNi
vijppijqSij

,

where cij is the cost of product xi, jy. We use VipSi,Piq “ pvi01pSi ‰ Hq`
ř

jPNi
vijppijqSijq

γi

to measure the attractiveness of Si, where γi P p0, 1s measures the dissimilarity of products
in nest i. The closer γi is to one, the less similarities between products within nest i are.

To guarantee the uniqueness of the optimal pricing strategy, we assume that
maxjPNi βij{minjPNi βij ă 1{p1 ´ γiq for i P M as in [19]. If we offer assortment matrix
S “ pS1, S2, ..., Smq over all nests, then the probability that a customer considers to buy a
product in assortment Si is

QipS,Pq “
VipSi,Piq

v0 `
ř

iPM VipSi,Piq
.

We remark that
ř

iPM QipS,Pq ă 1 and
ř

jPNi
Qj|ipSi,Piq ă 1 if vi0 ą 0. The total expected

profit for assortment S with prices P is written as

ΠpS,Pq “
ÿ

iPM

QipS,PqRipSi,Piq “

ř

iPM VipSi,PiqRipSi,Piq

v0 `
ř

iPM VipSi,Piq
.

The cardinality or space constraints are imposed on each of the nest separately. For the
cardinality constraints Ci, it restricts the number of products that are offered in nest i to not
exceeding Ci, thus the set of feasible assortments at nest i is denoted as =i “ tSi P t0, 1u

ni :
ř

jPNi
Sij ď Ciu. Similarly, space constraints Si limit the space consumption of assortment Si,

then the set of feasible assortments at nest i is =i “ tSi P t0, 1u
ni :

ř

jPNi
wijSij ď Siu where

wij ď Si is the space requirement of product xi, jy. Without loss of generality, we assume
that Ci ď ni and Si ď

ř

jPNi
wij since it becomes uncapacitated assortment optimization

otherwise. The feasible set of assortments over all nests is the cartesian product of =i
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over i P M , which is denoted as = “ =1 ˆ =2 ˆ ¨ ¨ ¨ ˆ =m. We aim to jointly determine the
expected-profit-maximizing assortment that satisfies the cardinality or space constraints and
the optimal price matrix to the following problem

max
SP=

max
PPRNě0

ΠpS,Pq. (2.1)

Throughout the essay, we use S˚ “ pS˚i : i P Mq and P˚
“ pP˚

i : i P Mq to denote the
joint optimal solution and let Z˚ “ ΠpS˚,P˚

q be the maximum expected profit that we
can obtain per consumer from the collection of feasible assortments =. We remark that if
S˚ij “ 0, then the price of product xi, jy becomes irrelevant, thus we set p˚ij “ 0 as well.
In the following sections, we show that problem (4.1) is tractable by building a bridge that
connects the inner pricing problem and the outer assortment optimization problem.

2.4 Joint Optimization Under Cardinality Constraints

We present our solution approach to problem (4.1) under the cardinality constraints. In
Section 2.4, we decompose problem (4.1) into joint subproblems. The union of the solutions
to the joint subproblems at all nests is an optimal solution to problem (4.1). In Section 2.4, we
show an equivalent formulation of the joint subproblem, which is referred to as the assortment
subproblem. Then we show the expected profit function can be transformed to a single-
variable unimodal function and there exists a piecewise convex fixed point representation of
problem (4.1) in Section 2.4.

Joint Subproblem

In this section, we consider problem (4.1) by decomposing it into joint subproblems at all
nests. The joint subproblem is a bilevel optimization problem with the price optimization and
assortment optimization problem as its inner and outer problem, respectively. By solving
the inner pricing problem, we present an equivalent formulation of the joint subproblem,
which is only related to assortment decision variables.

Before introducing the joint subproblem, we first show that RipS
˚
i ,P

˚
i q is at least as large

as Z˚ if S˚i is not empty as in the following claim.

Claim 1. If S˚i ‰ H, then we get RipS
˚
i ,P

˚
i q ě Z˚.

We defer the proof of this claim to Appendix A.2. The joint subproblem at nest i PM is
defined as follows

max
SiP=i

max
PiPR

ni
ě0

VipSi,PiqpRipSi,Piq ´ Z
˚
q. (2.2)

The following claim shows the relationship between the union of the solutions to joint sub-
problems at all nests and problem (4.1).
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Claim 2. For each i P M , let pŜi, P̂iq be optimal to the joint subproblem (2.2) at nest i,
then pŜ1, Ŝ2, ..., Ŝm; P̂1, P̂2, ..., P̂mq is an optimal solution to problem (4.1).

The proof of Claim 2 can be found in Appendix A.2. Joint subproblem (2.2) is a bilevel
optimization problem: the inner optimization problem is a pricing problem for a fixed as-
sortment; the outer optimization problem is a constrained assortment optimization problem
where prices have already been set “optimally” for each feasible assortment.

Next we focus on the inner pricing problem at nest i with a fixed nonempty assortment
Si, which is shown as follows

max
PipSiqPR

|Si|
ě0

VipSi,PipSiqqpRipSi,PipSiqq ´ Z
˚
q, (2.3)

where the dimension of price vector PipSiq is |Si| instead of ni since the prices of the products
that are not in assortment Si are irrelevant. Note that PipSiq is a function of assortment Si,
we use Pi to denote PipSiq later in this essay for notational purpose. With a slight abuse
of notation, Si is also used to denote the set of products in assortment Si. The next lemma
shows the conditions that should be satisfied by the price vector at optimality of problem
(2.3).

Lemma 1. The optimality condition of problem (2.3) with a given nonempty assortment Si
and a constant Z˚ is

θi “ γiZ
˚
` p1´ γiqRipSi, θiq (2.4)

where the node-specific adjusted markup θi “ pij ´ cij ´ 1{βij is invariant for all j P Si.

Proof. Proof : For notational brevity, let gi “ VipSi,PiqpRipSi,Piq ´ Z˚q, Vi “ VipSi,Piq,
Ri “ RipSi,Piq and Qpj|iq “ Qj|ipSi,Piq. The first derivative of the objective function gi
with respect to the price pij of product j P Si is

Bgi
Bpij

“
BVi
Bpij

pRi ´ Z
˚
q ` Vi

BRi

Bpij
,

where

BVi
Bpij

“ γipvi0 `
ÿ

jPSi

vijq
γi´1

p´βijvijq “ ´γiβijViQpj|iq,

BRi

Bpij
“ ´βijQpj|iqppij ´ cij ´

1

βij
´Riq.

After plugging terms, we obtain

Bgi
Bpij

“ ´βijViQpj|iqrγipRi ´ Z
˚
q ` pij ´ cij ´

1

βij
´Ris.
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Let Bgi{Bpij “ 0, it follows that

pij ´ cij ´
1

βij
“ γiZ

˚
` p1´ γiqRi,

where the right hand side of the above equation does not depend on j, thus pij ´ cij ´ 1{βij
is independent of j, which can be denoted as θi.

Lemma 1 shows that θi “ pij ´ cij ´ 1{βij is invariant within assortment Si at optimality
of problem (2.3), which in turn indicates that the price pij of product j P Si should be
set as θi ` cij ` 1{βij at optimality. Therefore, the price vector Pi can be rewritten as
Pi “ pθi ` cij ` 1{βij : j P Siq, which has a one-to-one increasing correspondence with θi.
Thus, it suffices to consider the node-specific adjusted markup θi that is a scalar instead of
the price vector Pi. Similar to the discussion before Lemma 1, note that θi is also a function
of assortment Si. Later in this essay, we focus on the scalar θi instead of the vector Pi,
thus we have RipSi,Piq “ RipSi, θiq, VipSi,Piq “ VipSi, θiq and Qj|ipSi,Piq “ Qj|ipSi, θiq at
optimality accordingly. Throughout, θ˚i is used to denote the scalar that corresponds to the
optimal price vector P˚

i .
Since Equation (2.4) is a necessary condition of the inner pricing problem for a given

nonempty assortment Si, if this Si is the optimal assortment S˚i to problem (4.1) and S˚i ‰
H, then S˚i and the corresponding θ˚i should also satisfy θ˚i “ γiZ

˚ ` p1 ´ γiqRipS
˚
i , θ

˚
i q.

Specifically, we set θ˚i “ Z˚ if S˚i is empty without loss of generality. According to Claim 1,
we have θ˚i is a scalar that is always greater than or equal to Z˚. By observing the relationship
between RipSi, θiq and θi, the optimality condition (2.4) can be further simplified in next
corollary.

Corollary 1. The optimality condition (2.4) of problem (2.3) can be rewritten as

Z˚ “ δipSi, θiqθi ´ ωipSi, θiq, (2.5)

where δipSi, θiq “ 1{γi ´ p1{γi ´ 1qτipSi, θiq, τipSi, θiq “
ř

jPSi
Qj|ipSi, θiq and ωipSi, θiq “

p1{γi ´ 1q
ř

jPSi
Qj|ipSi, θiq{βij.

Proof. Proof : For notational brevity, let Qpj|iq “ Qj|ipSi, θiq, τi “ τipSi, θiq and ωi “
ωipSi, θiq. By the definition of θi and Ri, we get

Ri “
ÿ

jPSi

Qpj|iqpθi `
1

βij
q “ τiθi `

γi
1´ γi

ωi,

where ωi “ p1{γi´1q
ř

jPSi
Qpj|iq{βij. Plug the above equation into Equation (2.4), we have

θi “ γiZ
˚
` p1´ γiqpτiθi `

γi
1´ γi

ωiq.

Equation (2.5) is obtained after collecting terms.
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For these newly introduced quantities, we observe that 0 ă τipSi, θiq ď 1 and 1 ď

δipSi, θiq ă 1{γi, where the inequalities are strict if vi0 ‰ 0 for a nonempty assortment Si.
Next lemma shows there exists a one-to-one increasing correspondence between Z˚ and θi
in Equation (2.5).

Lemma 2. Under the assumptions of price-sensitivity parameters, gpθiq “ δipSi, θiqθi ´
ωipSi, θiq is a strictly increasing function of θi.

Proof. Proof : Define uipSi, θiq “
ř

jPSi
βijQj|ipSi, θiq. Let gi “ gpθiq, Qpj|iq “ Qj|ipSi, θiq,

δi “ δipSi, θiq, τi “ τipSi, θiq, ui “ uipS,θiq and ωi “ ωipSi, θiq for notational purpose. The
first derivative of gi with respect to θi is

Bgi
Bθi

“ δi ` θi
Bδi
Bθi

´
Bωi
Bθi

,

where

Bδi
Bθi

“ ´p
1

γi
´ 1q

Bτi
Bθi

“ ´p
1

γi
´ 1q

ÿ

jPSi

BQpj|iq

Bθi

“ ´p
1

γi
´ 1q

ÿ

jPSi

Qpj|iqpui ´ βijq “ p
1

γi
´ 1qp1´ τiqui “ pδi ´ 1qui,

Bωi
Bθi

“ p
1

γi
´ 1q

ÿ

jPSi

1

βij

BQpj|iq

Bθi
“ p

1

γi
´ 1q

ÿ

jPSi

1

βij
Qpj|iqpui ´ βijq “ ωiui ´ p

1

γi
´ 1qτi,

thus we have

Bgi
Bθi

“
1

γi
´ ωiui ` θipδi ´ 1qui,

where δi ě 1, ωi ě 0 and ui ě 0. At optimality, we have θi ě 0 since Z˚ “ δiθi ´ ωi ě 0,
otherwise Z˚ ă 0 if θi ă 0. To prove Bgi{Bθi ą 0, we only need to show 1{γi ´ ωiui ą 0. We
have

γi
1´ γi

ωi “
ÿ

jPSi

Qpj|iq

βij
ď

ř

jPSi
Qpj|iq

minjPSi βij
ď

τi
minjPNi βij

ď
1

minjPNi βij

ui “
ÿ

jPSi

βijQpj|iq ď max
jPSi

βij
ÿ

jPSi

Qpj|iq ď max
jPNi

βijτi ď max
jPNi

βij.

Therefore, it follows that

1

γi
´ ωiui ě

1

γi
´

1´ γi
γi

maxjPNi βij
minjPNi βij

ą
1

γi
´

1´ γi
γi

1

1´ γi
“ 0,

where the last inequality is due to the parameter assumption that maxjPNi βij{minjPNi βij ă
1{p1´ γiq.
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Lemma 2 is insightful in a way that if the maximum profit Z˚, which is a constant, is
known, then θi can be uniquely determined for a given assortment Si. This implies that
the inner pricing problem can be treated as a constraint satisfying Equation (2.5). We are
ready to present an equivalent formulation of the joint subproblem at nest i P M in next
proposition.

Proposition 1. The bilevel joint subproblem (2.2) can be reformulated as an optimization
program with respect to the assortment variable, which is written as follows

max
SiP=i

1

1´ γi
VipSi, θiqpθi ´ Z

˚
q

s.t. Z˚ “ δipSi, θiqθi ´ ωipSi, θiq.

(2.6)

Proof. Proof : For notational brevity, we let Vi “ VipSi, θiq, ωi “ ωipSi, θiq, τi “ τipSi, θiq and
δi “ δipSi, θiq. Since there exists a one-to-one strictly increasing correspondence between Z˚

and θi for a give assortment Si at the optimality condition of the inner price optimization
problem, it implies that θi can be uniquely determined if both Z˚ and Si are given. Thus
problem (2.2) can be rewritten as

max
SiP=i

VipRi ´ Z
˚
q

s.t. Z˚ “ δiθi ´ ωi.

Next we show that the objective function can be reformulated as desired. At the optimality
condition of the inner pricing problem of the joint subproblem (2.2), we obtain

Ri “ τiθi `
γi

1´ γi
ωi,

Z˚ “ δiθi ´ ωi,

thus the objective function becomes

VipRi ´ Z
˚
q “ Vip´pδi ´ τiqθi `

1

1´ γi
ωiq

“
1

1´ γi
Virωi ´ p

1

γi
´ 1qp1´ τiqθis “

1

1´ γi
Virωi ´ pδi ´ 1qθis.

The desired result is established after collecting terms.

Compared to problem (2.2) that is a bilevel optimization problem, formulation (2.6) is
an optimization problem that is only related to the assortment decision variable Si, where
the inner pricing strategy is integrated in the constraints. Let Ŝi denote the optimal so-
lution to problem (2.6) with corresponding node-specific adjusted markup θ̂i that can be
determined through Z˚ “ δipŜi, θiqθi ´ ωipŜi, θiq. The objective function in formulation
(2.6) is VipSi, θiqpθi ´ Z˚q{p1 ´ γiq, which implies that the optimal objective value satisfies
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VipŜi, θ̂iqpθ̂i´Z
˚q{p1´γiq ě VipH, θiqpθi´Z

˚q{p1´γiq “ 0 since Ŝi is always at least as good
as the empty assortment H. Therefore, if the optimal solution Ŝi of nest i PM is nonempty,
then θ̂i should be greater than or equal to Z˚.

We remark that if the preference weight of the no-purchase option in nest i P M is
zero, i.e. vi0 “ 0, then Ŝi is always nonempty. It is because δipSi, θiq always equals to one
if vi0 “ 0, thus the objective function of problem (2.6) equals to VipSi, θiqωipSi, θiq{p1 ´
γiq. It is strictly positive for any feasible nonempty assortment Si, which is strictly larger
than VipH, θiqωipH, θiq{p1 ´ γiq “ 0, which is the objective value of an empty assortment.
Moreover, we have |Ŝi| “ Ci if vi0 “ 0, which will be shown in Section 2.4.

The optimal assortment S˚i and price θ˚i satisfy Z˚ “ δipS
˚
i , θ

˚
i qθ

˚
i ´ ωipS

˚
i , θ

˚
i q since

Equation (2.5) is a necessary condition. If both Z˚ and S˚i are known, then θ˚i can be uniquely
identified and problem (4.1) is solved. However, the concern is that it is not possible to get
Z˚ and S˚i before solving problem (4.1). Even if Z˚ is obtained in a magic way, problem
(2.6) is still intractable since the size of =i is

`

ni
Ci

˘

under the cardinality constraint Ci, which
is too large even for a small Ci. We propose a tractable approach in following sections to
eliminate these concerns.

Assortment Subproblem

In this section, we first show how to get a polynomial-size collection Ai Ď =i that includes
an optimal solution to problem (4.1) by introducing the basic joint subproblem and then
reformulate problem (2.6) as an optimization problem in terms of the scalar θi, which is
referred to as the assortment subproblem.

According to the discussion before Corollary 1, we have θ˚i “ γiZ
˚ ` p1 ´ γiqRipS

˚
i , θ

˚
i q

if S˚i ‰ H and θ˚i “ Z˚ if Si “ H. The basic joint subproblem at nest i P M is shown as
follows

max
SiP=i

max
PiPR

ni
ě0

VipSi,Piq
1{γipRipSi,Piq ´ θ

˚
i q. (2.7)

Similar to Claim 2, the following claim shows the the union of the optimal solution to problem
(2.7) is also optimal to problem (4.1).

Claim 3. For each i PM , let pS̃i, P̃iq be optimal to the basic joint subproblem (2.7) at nest
i, then pS̃1, S̃2, ..., S̃m; P̃1, P̃2, ..., P̃mq is an optimal solution to problem (4.1).

We defer the proof of this claim to Appendix A.2. According to Claim 3, the union
of the optimal solutions to the basic joint subproblem is also optimal to problem (4.1).
Furthermore, problem (2.7) is easier to solve than problem (2.2) in a way that the objective
function of problem (2.7) is linear in terms of Si. Even though θ˚i is unknown, it is possible
to come up with a collection of assortments that includes an optimal solution to problem
(4.1) by observing θ˚i is essentially a nonnegative scalar. Next we focus on problem (2.7) and
show its optimality condition in the following lemma.



CHAPTER 2. JOINT NESTED LOGIT MODEL 14

Lemma 3. The optimality condition of the inner pricing problem of basic joint subproblem
(2.7) for a given nonempty assortment Si and a nonnegative scalar θ˚i is

θi “ θ˚i ,

where θi “ pij ´ cij ´ 1{βij is invariant for all j P Si.

Proof. Let gi “ VipSi,Piq
1{γipRipSi,Piq ´ θ˚i q, Vi “ VipSi,Piq, Ri “ RipSi,Piq and Qpj|iq “

Qj|ipSi,Piq for notational purpose. We have

Bgi
Bpij

“
BV

1{γi
i

Bpij
pRi ´ θ

˚
i q ` V

1{γi
i

BRi

Bpij

“ ´βijvijpRi ´ θ
˚
i q ` V

1{γi
i r´βijQpj|iqppij ´ cij ´

1

βij
´Riqs

“ ´βijvijpRi ´ θ
˚
i ` pij ´ cij ´

1

βij
´Riq “ ´βijvijppij ´ cij ´

1

βij
´ θ˚i q.

Let Bgi{Bpij “ 0, we have θi “ pij ´ cij ´ 1{βij for all j P Si and θi “ θ˚i at optimality.

According to Lemma 3, the inner pricing problem of problem (2.7) is completely solved by
setting pij “ θ˚i ` cij`1{βij. Therefore, next proposition shows that the bilevel optimization
problem (2.7) can be further simplified and solved efficiently.

Proposition 2. The basic joint subproblem (2.7) at nest i PM with scalar θ˚i can be refor-
mulated as follows

max
SiP=i

ÿ

jPSi

vijpθ
˚
i ` cij ` 1{βijq

βij
´ vi01pSi ‰ Hqθ

˚
i . (2.8)

Furthermore, problem (2.8) can be solved within Opni log niq operations.

Proof. According to Lemma 3, problem (2.7) can be written as

max
SiP=i

VipSi, θ
˚
i q

1γipRipSi, θ
˚
i q ´ θ

˚
i q,

which can be reformulated as problem (2.8) by the definition of VipSi, θ
˚
i q and RipSi, θ

˚
i q. The

goal of problem (2.8) is to locate Ci products with largest ratio of preference weight to price
sensitivity parameter from Nj products within nest i PM and compare their summation with
vi0θ

˚
i , which only depends on the ordering of the ratio vijpθ

˚
i ` cij ` 1{βijq{βij. If the largest

summation is greater than vi0θ
˚
i , then the optimal solution to problem (2.8) is corresponding

Ci products, otherwise the optimal solution is an empty set. Hence the total number of
operations needed is OpNj logNjq (sorting) + OpCiq (printing the output) = Opni log niq.
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The intuition of solving problem (2.8) is to include as many “good” products as possible
to see whether the summation of the ratio

ř

jPSi
vijpθ

˚
i ` cij ` 1{βijq{βij is larger than vi0θ

˚
i

or not. If so, the optimal solution is nonempty with size Ci; otherwise it is empty. However,
if vi0 “ 0, the optimal solution is always nonempty and the size of it is Ci, which will be
shown in next lemma. By observing the fact that θ˚i is a unknown nonnegative scalar, we
let S̃ipθiq be an optimal solution to the following problem

max
SiP=i

ÿ

jPSi

vijpθi ` cij ` 1{βijq

βij
´ vi01pSi ‰ Hqθi, (2.9)

Define Ai “ tS̃ipθiq : θi P Rě0u, then we can see that Ai includes S̃ipθ
˚
i q and

pS̃1pθ
˚
1 q, S̃1pθ

˚
1 q, ..., S̃mpθ

˚
mq; θ

˚
1 , θ

˚
2 , ..., θ

˚
mq is an optimal solution to problem (4.1) according to

Claim 3. The next lemma shows the property of the size of S̃ipθiq.

Lemma 4. For the optimal solution S̃ipθiq to problem (4.9) with @θi P Rě0, we have either
|S̃ipθiq| “ Ci or |S̃ipθiq| “ 0. Moreover, |S̃ipθiq| always equals to Ci if vi0 “ 0.

Proof. Proof : We prove this lemma by contradiction, assume that S̃ipθiq is nonempty and
|S̃ipθiq| ă Ci. Then there exists a product j1 satisfying that j1 R S̃ipθiq but j1 P Ni since Ci ď

ni. Let S̃ 1ipθiq “ S̃ipθiqYj
1, then we have S̃ 1ipθiq is feasible since |S̃ 1ipθiq| ď Ci and S̃ 1ipθiq strictly

dominates S̃ipθiq since
ř

jPS̃ipθiq
vijpθi ` cij ` 1{βijq{βij´vi0θi ą

ř

jPS̃1ipθiq
vijpθi ` cij ` 1{βijq{βij´

vi0θi, which contradicts with the hypothesis that S̃ipθiq is the optimal solution to problem
(4.9) at θi and |S̃ipθiq| ă Ci. Thus when S̃ipθiq is nonempty, we have |S̃ipθiq| “ Ci; when
S̃ipθiq is empty, we have |S̃ipθiq| “ 0. Furthermore, if vi0 “ 0, then S̃ipθiq is always nonempty
since the objective value of an empty assortment is 0, which is strictly less than the objective
value of any nonempty feasible assortment.

Lemma 4 is insightful when Ci “ ni and vi0 “ 0, since the optimal assortment at nest i in
this case is straightforward: S˚i “ Ni. If it applies to all nests, the joint optimization problem
(4.1) is reduced to the pricing problem under the nested logit model with no-purchase options.

For problem (4.9) with θi P Rě0, the objective function of which is rewritten as
ř

jPSi
expphjpθiqq,

where linear function hjpθiq is defined as hjpθiq “ α̃ij´βijθi and α̃ij “ αij´βijcij´logpβijq´1
for all j P Si. We remark that only the ordering of these lines hjpθiq matters for a given
θi. [50] show problem (4.9) can be solved in Opn2

i q operations and the size of Ai is Opniq.
Furthermore, next lemma shows the discontinuous property of VipS̃ipθiq, θiq .

Lemma 5. At the changing point θ1i of S̃ipθiq, VipS̃ipθiq, θiq decreases discontinuously, both
ωipS̃ipθiq, θiq and δipS̃ipθiq, θiq increase discontinuously.

Proof. Proof : Let Si “ limεÑ0 S̃ipθ
1
i´ εq and Si “ limεÑ0 S̃ipθ

1
i` εq for a small ε ą 0. At any

changing point, one product with larger price-sensitivity parameter of current assortment
would be replaced by another product with smaller price-sensitivity parameter. Without loss
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of generality, assume that θ1i is the intersection point of lines hj1pθiq and hj2pθiq and product
j1 is replaced by product j2. We have Si “ pSiztj1uq Y tj2u for j1, j2 P Ni. Since product
j1 is replaced by product j2 at θ1i, we have hij1pθ

1
iq “ hij2pθ

1
iq and βij1 ą βij2 , which implies

that vij1pθ
1
i ` cij1 ` 1{βij1q{βij1 “ vij2pθ

1
i ` cij2 ` 1{βij2q{βij2 and vij1pθ

1
i ` cij1 ` 1{βij1q ą

vij2pθ
1
i ` cij2 ` 1{βij2q, thus VipSi, θ

1
iq ą VipSi, θ

1
iq. It also implies that

ωipSi, θ
1
iq “ p

1

γi
´ 1q

ÿ

jPSi

vijpθ
1
i ` cij ` 1{βijq

βij

1

VipSi, θ
1
iq

1{γi

ă p
1

γi
´ 1q

ÿ

jPSi

vijpθ
1
i ` cij ` 1{βijq

βij

1

VipSi, θ1iq
1{γi

“ ωipSi, θ
1
iq,

where the inequality holds because
ř

jPSi
vijpθ

1
i ` cij ` 1{βijq{βij “

ř

jPSi
vijpθ

1
i ` cij ` 1{βijq{βij.

Therefore, VipS̃ipθiq, θiq drops discontinuously at θ1i. For similar reasons, we have δipSi, θ
1
iq ă

δipSi, θ
1
iq since τipSi, θ

1
iq ą τipSi, θ

1
iq.

Since Ai “ tS̃ipθiq : θi P Rě0u includes an optimal solution at nest i PM to problem (4.1),
using Ai to replace =i in problem (2.6) would not affect the optimality. Furthermore,we have
one θi P Rě0 corresponds to one assortment S̃ipθiq in collection Ai, thus problem (2.6) can
be further reformulated as assortment subproblem in terms of optimizing over θi P Rě0 as
follows

max
θiPRě0

1

1´ γi
VipS̃ipθiq, θiqpθi ´ Z

˚
q

s.t. Z˚ “ δipS̃ipθiq, θiqθi ´ ωipS̃ipθiq, θiq.

(2.10)

For the constraints in problem (4.11), there may not exist a one-to-one correspondence
between Z˚ and θi according to Lemma 18, thus the feasible region of problem (4.11) is a set
of points satisfying the constraints, the size of which may be greater than one. Therefore,
we need to evaluate the objective function at those feasible points and select the point that
has the maximum objective value. This is different from what we have in Lemma 2 since
S̃ipθiq in the constraints of problem (4.11) is a function of θ rather than a fixed assortment
as in the constraints of problem (2.6).

Since Z˚ is a unknown nonnegative scalar, we let Fipzq be the optimal solution to the
following problem

max
θiPRě0

1

1´ γi
VipS̃ipθiq, θiqpθi ´ zq

s.t. z “ δipS̃ipθiq, θiqθi ´ ωipS̃ipθiq, θiq,

(2.11)

where z P Rě0. If we define Ŝipzq “ S̃ipFipzqq and Âi “ tŜipzq : z P Rě0u, it follows that

Âi includes ŜipZ
˚q that is an optimal solution to problem (2.6). According to Claim 2,

Ť

iPM ŜipZ
˚q is optimal to problem (4.1). If problem (2.11) can be easily solved for @z P Rě0,

then we claim that collection A “ t
Ť

iPM Ŝipzq : z P Rě0u includes an optimal solution to
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problem (4.1). We still have concerns about objective function in problem (2.11), if it does
not have nice properties, the size of A would be so large that S˚ and Z˚ are hard to be
obtained since z takes value in Rě0 in collection A.

Let lipθiq “ δipS̃ipθiq, θiqθi ´ ωipS̃ipθiq, θiq, then tl´1
i pzq : z P Rě0u is a set of points that

satisfy the constraints in problem (2.11). Without loss of generality, we let θ1
i , θ

2
i , ..., θ

K
i P

tl´1
i pzq : z P Rě0u and Ski “ S̃ipθ

k
i q for k “ 1, 2, ..., K. The objective function in problem

(2.11) for a fixed assortment Ski can be denoted as T ki pzq “ VipS
k
i , θ

k
i qpθ

k
i ´ zq{p1´ γiq where

θki is implicitly defined in z “ δipS
k
i , θ

k
i qθ

k
i ´ ωipS

k
i , θ

k
i q. Next proposition shows that T ki pzq

is a decreasing convex function of z.

Proposition 3. T ki pzq is a decreasing convex function of z with ´V k
i pS

k
i , θ

k
i q as its first

derivative. Moreover, if we have the assumption that VipS
k1
i , θ

k1
i q does not intersect with

VipS
k2
i , θ

k2
i q in z domain, then T k1i pzq and T k2i pzq intersect at most once, where k1, k2 P

t1, 2, ..., Ku.

Proof. Proof : For ease of presentation, we denote V k
i “ V k

i pS
k
i , θ

k
i q, T

k
i “ T ki pzq, ω

k
i “

ωipS
k
i , θ

k
i q, δ

k
i “ δipS

k
i , θ

k
i q and uki “ uipS

k
i , θ

k
i q “

ř

jPSi
βijQj|ipS

k
i , θ

k
i q. We have

BT ki
Bz

“
1

1´ γi
r
BV k

i

Bθki

Bθki
Bz
pθki ´ zq ` V

k
i p
Bθki
Bz

´ 1qs

“
1

1´ γi
rp´γiv

k
i u

k
i q
Bθki
Bz
pθki ´ δ

k
i θ

k
i ` ω

k
i q ` V

k
i p
Bθki
Bz

´ 1qs

“
γiV

k
i

1´ γi
r
1{γi ´ ω

k
i u

k
i ` pδ

k
i ´ 1quki θ

k
i

Bz{Bθki
´

1

γi
s “ ´V k

i ,

where the last equality is due to the fact that Bz{Bθki “ 1{γi ´ ωki u
k
i ` pδ

k
i ´ 1quki θ

k
i . The

second derivative is

B2T ki
Bz2

“ ´
BV k

i

Bθki

Bθki
Bz

“ γiV
k
i u

k
i ω

k
i p

1

γi
´ ωki u

k
i ` pδ

k
i ´ 1quki θ

k
i q
´1
ą 0,

where the last inequality is due to Lemma 2. Without loss of generality, assume that V k1
i ą

V k2
i in z domain, we get

BpT k1i ´ T k2i q

Bz
“ ´pV k1

i ´ V k2
i q ă 0,

which implies that T k1i and T k2i intersect at most once in z domain.

We have |Ai| decreasing convex curves, any two of which intersect at most once under
the assumption in Proposition 3. Similar to the approach of solving problem (4.9), only
the ordering of these convex curves matters to solving problem (2.11). In order to get
collection Âi, it suffices to calculate the pairwise intersection points of these curves and
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select the highest curve, since S̃ipFipzqq does not change when z takes value between two
consecutive intersection points. This calculation can be done very efficiently by binary
search or golden ratio search due to its convexity nature. We immediately have the following
corollary regarding the size of Âi.

Corollary 2. For any i PM , the size of Âi is less than or equal to the size of Ai under the
assumption in Proposition 3.

If the assumption in Proposition 3 is met in our problem setting, it is possible that
collection A is polynomially bounded. Fortunately, we mange to show |A | is OpNq by
proving the assumption in Proposition 3 is satisfied.

Theorem 1. The collection A “ t
Ť

iPM Ŝipzq : z P Rě0u includes an optimal solution to
problem (4.1). Furthermore, the size of A is bounded by OpNq.

Proof. Proof : First, we define a subset of pairwise intersection points of |Ãi| decreasing
convex curves in problem (2.11) as Ii “ tz0

i , z
1
i , ¨ ¨ ¨ , z

Ui´1
i , zUii u where z0

i “ ´8 and zUii “ 8,
such that Ŝipzq “ S̃ipFipzqq does not change when z P rzu´1

i , zui s for u “ 1, ¨ ¨ ¨ , Ui. We get
|A| “

ř

iPM Ui according to the definition of collection A.
Next, we prove the assumption in Proposition 3 is met. We define the set of changing

points of S̃ipθiq as Ci “ tθ0
i , θ

1
i , ¨ ¨ ¨ , θ

Di´1
i , θDii u where θ0

i “ ´8 and θDii “ 8, such that
S̃ipθiq does not change when θi P rθ

d´1
i , θdi s for d “ 1, ¨ ¨ ¨ , Di, where Di “ |Ai| according

to the definition of set Ai. We prove that for any two different assortments Sk1i , S
k2
i P

Ai, VipS
k1
i , θ

k1
i q does not intersect with VipS

k2
i , θ

k2
i q in z domain, where θkli satisfies z “

δipS
kl
i , θ

kl
i qθ

kl
i ´ωipS

kl
i , θ

kl
i q for l “ 1, 2. Without loss of generality, assume that Sk1i “ S̃ipθ

k1
i q

where θk1i P rθd1´1
i , θd1i s and Sk2i “ S̃k2i pθiq where θk2i P rθd2´1

i , θd2i s with d1 ă d2. In z
domain, VipS

kl
i , zq is defined on rδipS

kl
i , θ

dl´1
i qθdl´1

i ´ωipS
kl
i , θ

dl´1
i q, δipS

kl
i , θ

dl
i qθ

dl
i ´ωipS

kl
i , θ

dl
i qs

for l “ 1, 2. By Lemma 18, we have VipS
k1
i , θ

k1
i q ą VipS

k2
i , θ

k2
i q, thus VipS

k1
i , θ

k1
i q does not

intersect with VipS
k2
i , θ

k2
i q in z domain. By Proposition 3, T k1i pzq and T k2i pzq intersect at

most once, where k1, k2 P t1, 2, ..., Ku, which implies that Ui ď Di since the number changing
points of Ŝipzq from these Di decreasing convex curves is at most Di according to Corollary
2. As a result, we get |A| “

ř

iPM Ui ď
ř

iPM Di “
ř

iPM |Ai|. Since |Ai| is bounded by
Opniq, we have |A| is bounded by OpNq where N “

ř

iPM ni by definition.

Imaging Theorem 1 does not hold, then A “ A1ˆA2ˆ¨ ¨ ¨ˆAm and we have |A| “ Opnmmaxq

where nmax “ maxiPM ni. Then we need at least nmmax grid points of z to find the optimal
solution to problem (4.1), which is intractable. In other words, Ŝpzq is too sensitive to even
a small change in z which leads to the intractability without the support of Theorem 1.
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Fixed Point Representation

In this section, we first present a fixed point representation of problem (4.1). Second we show
the profit function is unimodal of z. Third, we prove Z˚ is the fixed point of a piecewise
convex function.

Define S̃pzq “
Ť

iPM Ŝipzq, the optimal profit Z˚ is the fixed point of the total expected
profit function ΠpS̃pzq, zq, which is defined as follows

ΠpS̃pzq, zq “

ř

iPM VipŜipzq,FipzqqRipŜipzq,Fipzqq

v0 `
ř

iPM VipŜipzq,Fipzqq
.

Next lemma shows the properties of function ΠpS̃pzq, zq.

Lemma 6. The expected profit function ΠpS̃pzq, zq is unimodal of z and Z˚ is the fixed point
of ΠpS̃pzq, zq.

Proof. Proof : For ease of reading, we let Π “ ΠpS̃pzq, zq, Fi “ Fipzq, Vi “ VipŜipzq,Fipzqq,
Ri “ RipŜipzq,Fipzqq, Qi “ QipŜipzq,Fipzqq, ωi “ ωipŜipzq,Fipzqq, τi “ τipŜipzq,Fipzqq,
δi “ δipŜipzq,Fipzqq and ui “ uipŜipzq,Fipzqq. We have

BΠ

BFi

“

BVi
BFiRi ` Vi

BRi
BFi ´ Π BVi

BFi
v0 `

ř

iPM Vi
“ γiQiuipΠ´ zq,

since BVi{BFi “ ´γiViui, Ri “ τiFi`γiωi{p1´γiq and BRi{BFi “ γirωiui´pδi´1quiFis{p1´
γiq. We also get Bz{BFi “ 1{γi ´ ωiui ` pδi ´ 1quiFi ą 0 from Lemma 2, it follows that

BΠ

Bz
“

ÿ

iPM

BΠ{BFi

Bz{BFi

“ pΠ´ zq
ÿ

iPM

γ2
iQiui

1´ γiωiui ` pδi ´ 1qγiuiFi

.

To prove the unimodality of Π, it suffices to show that for any discontinuous point z1 of Π, Π
increases discontinuously at z1 ď Z˚ and decreases discontinuously at z1 ą Z˚, since it implies
that Π increases when z ď Z˚ and decreases when z ą Z˚, which ensures unimodality of Π.
We obtain that VipSi, z

1qpRipSi, z
1q´z1q “ VipSi, z

1qpRipSi, z
1q´z1q where Si “ limεÑ0 Ŝipz

1´

εq and Si “ limεÑ0 Ŝipz
1` εq, since z1 is the intersection point of VipSi, z

1qpRipSi, z
1q´z1q and

VipSi, z
1qpRipSi, z

1q ´ z1q. For notational brevity, we denote V i “ VipSi, z
1q, Ri “ RipSi, z

1q,
V i “ VipSi, z

1q and Ri “ RipSi, z
1q. Let S “ limεÑ0 S̃pz

1 ´ εq and S “ limεÑ0 S̃pz
1 ` εq.

We obtain V iRi ´ V iRi “ pV i ´ V iqz, it follows that

ΠpS, z1q “

ř

j‰i VjRj ` V iRi

v0 `
ř

j‰i Vj ` V i

ă

ř

j‰i VjRj ` V iRi ´ pV iRi ´ V iRiq

v0 `
ř

j‰i Vj ` V i ´ pV i ´ V iq

“

ř

j‰i VjRj ` V iRi ´ pV i ´ V iqz
1

v0 `
ř

j‰i Vj ` V i ´ pV i ´ V iq
“ ΠpS, z1q,
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when z1 ď Z˚ because of the fact that 1) V i ą V i according to Lemma 18; 2) z1 ď ΠpS, z1q;
3) function hpxq “ A´xz1

B´x
is increasing for x ą 0 if z1 ă A{B. Similarly, we have ΠpS, z1q ą

ΠpS, z1q when z1 ą Z˚. Therefore, the unimodality of Π holds. Furthermore, Π reaches its
maximum when Π “ z.

We can use binary search for the unimodal profit function ΠpS̃pzq, zq to find the optimal
Z˚. If we define fpzq “

ř

iPM VipŜipzq,FipzqqrRipŜipzq,Fipzqq ´ zs, then the fixed point
representation ΠpS̃pzq, zq “ z can be rewritten as fpzq “ v0z, implying that Z˚ is the fixed
point of function fpzq{v0. Next proposition shows the piecewise convexity property of this
representation.

Proposition 4. fpzq is a decreasing piecewise convex function of z. Moreover, the first
derivative of fpzq is increasing and there exists a unique solution Z˚ that satisfies fpzq “ v0z.

Proof. Proof : Let set Ii “ tz0
i , z

1
i , ¨ ¨ ¨ , z

Ki´1
i , zKii u be the set of pairwise intersection points

in problem (2.11) where z0
i “ ´8 and zKii “ 8, such that Ŝipzq “ S̃ipFipzqq does not change

when z P rzk´1
i , zki s for k “ 1, ¨ ¨ ¨ , Ki. Let T ki pzq “ VipŜipzq,FipzqqrRipŜipzq,Fipzqq ´ zs for

z P rzk´1
i , zki s, then T ki pzq is a decreasing convex function according to Proposition 3, thus

Tipzq “ VipŜipzq,FipzqqrRipŜipzq,Fipzqq ´ zs for z P Rě0 is a piecewise decreasing convex
function in Rě0, where the first derivative BTipzq{Bz changes discontinuously at zki . To prove
the first derivative of fpzq is increasing, it suffices to show BTipzq{Bz increases discontinuously
at zki . Let Si “ limεÑ0 Ŝipz

k
i ´εq and Si “ limεÑ0 Ŝipz

k
i `εq, then we get VipSi, z

k
i q ą VipSi, z

k
i q

since VipSi, z
k
i q and VipSi, z

k
i q do not intersect in z domain, which is shown in the proof of

Theorem 1. It follows that

lim
zÑzki

´

BTipzq

Bz
´ lim

zÑzki
`

BTipzq

Bz
“ ´pVipSi, z

k
i q ´ VipSi, z

k
i qq ă 0,

which implies that BTipzq{Bz increases discontinuously at zki for k P t1, 2, ..., 3u. fpzq “
ř

iPM Tipzq is also piecewise convex since piecewise convexity is preserved under addition.
The fixed point of fpzq{v0 is unique since fpzq is a decreasing piecewise convex function.

This piecewise convexity property can further facilitate computing Z˚ [46]. To summa-
rize, we propose the assortment subproblem by solving the basic assortment subproblem and
replacing the feasible region of joint subproblem. Then we show there exists a piecewise
convex fixed point representation of problem (4.1) which can be solved efficiently.

2.5 Joint Optimization Under Space Constraints

In this section, we consider the joint constrained assortment and price optimization problem
(4.1) under space constraints. We show a 2-approximate solution can be found through
a piecewise convex fixed point representation. Let Zα “ ΠpSα,Pα

q be an α-approximate
solution to problem (4.1) where αZα ě Z˚. First, we show how to construct a collection =α
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that contains an α-approximate solution to problem (4.1). Then, we manage to obtain Aα Ď

=α that also includes an α-approximate solution to problem (4.1) with |Aα| “ OpnmaxNq.
Third, we show Zα is the fixed point of a piecewise convex function.

As in Section 2.4, θ˚i is still defined as θ˚i “ γiZ
˚ ` p1 ´ γiqRipS

˚
i , θ

˚
i q if S˚i ‰ H and

θ˚i “ Z˚ otherwise, then we have the following claim.

Claim 4. For all nest i P M , if pS̃αi , P̃
α

i q satisfies VipS̃
α
i , P̃

α

i q
1γipαRipS̃

α
i , P̃

α

i q ´ θ˚i q ě
VipS

˚
i ,P

˚
i q

1γipRipS
˚
i ,P

˚
i q ´ θ

˚
i q, then pS̃α1 , S̃

α
2 , ..., S̃

α
m; P̃

α

1 , P̃
α

2 , ..., P̃
α

mq is an α-approximate so-
lution.

The proof of this claim is omitted because it is similar to the proof of Claim 3. One
can check that Lemma 3 continues to holds under space constraints, thus we can focus on
maxSiP=i VipSi, θ

˚
i q

1γipRipSi, θ
˚
i q´ θ

˚
i q. For i PM , we let S̄ 1ipθiq be an α-approximate solution

to the following problem

max
SiP=i

ÿ

jPSi

vijpθi ` cij ` 1{βijq

βij
. (2.12)

Note the objective function in problem (2.12) is different from the one in problem (4.9) under
cardinality constraints. Moreover, [18] show problem (2.12) is NP-hard. Let S̃αi pθiq “ S̄ 1ipθiq
if
ř

jPS̄1ipθiq
vijpθi ` cij ` 1{βijq{βij ě vi0θi; otherwise S̃ipθiq “ H. Denote P̃

α

i “ θ˚i pS̃
α
i pθ

˚
i qq.

More precisely, P̃
α

i “ pp̃
α
ij : j P S̃αi pθ

˚
i qq where p̃αij “ θ˚i `cij`1{βij, then we have the following

lemma.

Lemma 7. pS̃α1 pθ
˚
i q, S̃

α
2 pθ

˚
i q, ..., S̃

α
mpθ

˚
i q; P̃

α

1 , P̃
α

2 , ..., P̃
α

mq is an α-approximate solution to prob-
lem (4.1).

Proof. Proof : For ease of reading, we denote V ˚i “ VipS
˚
i ,P

˚
i q, R

˚
i “ RipS

˚
i ,P

˚
i q, S̃

α
i “

S̃αi pθ
˚
i q, Ṽi “ VipS̃

α
i pθ

˚
i q, P̃

α

i q, R̃i “ RipS̃
α
i pθ

˚
i q, P̃

α

i q and vij “ vijpθ
˚
i ` cij ` 1{βijq. According

to Claim 4, it suffices to prove Ṽ
1{γi
i pαR̃i ´ θ

˚
i q ě pV

˚
i q

1{γipR˚i ´ θ
˚
i q. If S˚i ‰ H, then we get

Ṽ
1{γi
i pαR̃i ´ θ

˚
i q “ α

ÿ

jPS̃αi

vijpθ
˚
i `

1

βij
q ´

ÿ

jPS̃αi

vijθ
˚
i ´ vi01pS̃

α
i ‰ Hqθ

˚
i

ě α
ÿ

jPS̃αi

vij
βij
´ vi01pS̃

α
i ‰ Hqθ

˚
i ě α

ÿ

jPS̃αi

vij
βij
´ vi0θ

˚
i

ě
ÿ

jPS˚i

vij
βij
´ vi0θ

˚
i “

ÿ

jPS˚i

vij
βij
´ vi01pS

˚
i ‰ Hqθ

˚
i “ pV

˚
i q

1{γipR˚i ´ θ
˚
i q,

where the last inequality holds because S˚i is a feasible solution to problem (2.12) at θi “ θ˚i
and S̃αi pθ

˚
i q is an α-approximate solution. If S˚i “ H, then we obtain pV ˚i q

1{γipR˚i ´ θ
˚
i q “ 0.

This inequality also holds since Ṽ
1{γi
i pR̃i ´ θ

˚
i q ě 0, implying Ṽ

1{γi
i pαR̃i ´ θ

˚
i q ě 0.

For nest i P M , we define Aα
i “ tS̃

α
i pθiq : θi P Rě0u. Set α “ 2, the size of Aα

i is Opn2
i q

if we apply the algorithm that is described in Section 5.1 in [18] by defining linear functions
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hjpθiq “ exppα̃ij ´ βijθiq where α̃ij “ αij ´ βijcij ´ logpβijq ´ 1 for j P Ni. [18] show that
α “ 2 can be further refined to α “ 1{p1 ´ εq under certain assumptions of wij. By noting
that θ˚i is an unknown nonnegative scalar, =α can be constructed as the cartesian product
of all Aα

i for i PM . This finding is recorded in next proposition.

Proposition 5. Collection =α “ Aα
1 ˆAα

2 ˆ ...ˆAα
m contains an α-approximate solution.

Under space constraints, let pSα,Pα
q be optimal to the following problem

Zα
“ max

SP=α
max
PPRNě0

ΠpS,Pq. (2.13)

The joint subproblem under space constraints is formulated as follows

max
SiPAαi

max
PiPR

ni
ě0

VipSi,PiqpRipSi,Piq ´ Z
α
q. (2.14)

Similar to Claim 2, if we let pŜαi , P̂
α

i q be optimal to problem (2.14), then

pŜα1 , Ŝ
α
2 , ..., Ŝ

α
m; P̂

α

1 , P̂
α

2 , ..., P̂
α

mq is an optimal solution to problem (2.13), which is an α-
approximate solution to problem (4.1).

By following the exact same logic in Section 2.4, problem (2.14) can be reformulated as
follows

max
SiPAαi

1

1´ γi
VipSi, θiqpθi ´ Z

α
q

s.t. Zα
“ δipSi, θiqθi ´ ωipSi, θiq,

(2.15)

Since Aα
i is defined as Aα

i “ tS̃αi pθiq : θi P Rě0u, implying that for every θi P Rě0, there
is one corresponding assortment S̃αi pθiq P Aα

i , then problem (2.15) can be rewritten as the
following optimization problem in terms of decision variable θi P Rě0:

max
θiPRě0

1

1´ γi
VipS̃

α
i pθiq, θiqpθi ´ Z

α
q

s.t. Zα
“ δipS̃

α
i pθiq, θiqθi ´ ωipS̃

α
i pθiq, θiq,

(2.16)

which is referred to as the assortment subproblem under space constraints. Since Zα is an
unknown nonnegative scalar, we let Fα

i pzq be the optimal solution to the following problem

max
θiPRě0

1

1´ γi
VipS̃

α
i pθiq, θiqpθi ´ zq

s.t. z “ δipS̃
α
i pθiq, θiqθi ´ ωipS̃

α
i pθiq, θiq,

(2.17)

where z P Rě0. If we define Ŝαi pzq “ S̃αi pFα
i pzqq, then we have the following theorem.

Theorem 2. The collection Aα “ t
Ť

iPM Ŝαi pzq : z P Rě0u includes Sα, the size of which is
bounded by OpnmaxNq.
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The proof of Theorem 2 follows directly from the proof of Theorem 1, we have |A α| ď
ř

iPM |A
α
i | “

ř

iPM n2
i ď nmax

ř

iPM ni “ nmaxN . Our approach is based on discretization of
z to find the fixed point, Theorem 2 guarantees that the number of iterations is bounded.

Following the similar ideas in Section 2.4, we use the proposition below to end this section.

Proposition 6. Define S̃αpzq “
Ť

iPM Ŝαi pzq, then Zα is the fixed point of function ΠpS̃αpzq, zq
that is defined as

ΠpS̃αpzq, zq “

ř

iPM VipŜ
α
i pzq,Fα

i pzqqRipŜ
α
i pzq,Fα

i pzqq

v0 `
ř

iPM VipŜαi pzq,Fα
i pzqq

.

Furthermore, ΠpS̃αpzq, zq is a unimodal function of z. If we define fαpzq “
ř

iPM VipŜ
α
i pzq,Fα

i pzqqrRipŜ
α
i pzq,Fα

i pzqq ´ zs, then fαpzq is a piecewise convex function of z
and Zα is the unique fixed point of fαpzq{v0.

2.6 Numerical Illustration

In this section, we illustrate our solution approach to problem (4.1) under cardinality con-
straints on an example of the nested logit model with 2 nests and 6 products. The nested
structure is presented in Figure 4.1. Compared to the cardinality constraints, we can only
get a 2-approximate solution to problem (4.9), other than this, the solution approach under
space constraints is same as it is under cardinality constraints. Therefore, we can also use
this illustration to demonstrate space constraints cases with minor adjustments.

root

h0i 1 2

h1; 0i h1; 1i h1; 3i h1; 4i h2; 0i h2; 1i h2; 2ih1; 2i

Figure 2.1: Nested structure

In the nested logit model, nest 1 has 4 products that are indexed by x1, jy for j P t1, 2, 3, 4u
and nest 2 has two products x2, 1y and x2, 2y. There are three no-purchase options x0y, x1, 0y
and x2, 0y. Table 4.2 shows the input parameters of problem (4.1). Specifically, the preference
weight of x2, 0y is set to be zero.
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product x1, 1y x1, 2y x1, 3y x1, 4y x2, 1y x2, 2y nest γi vi0 Ci

αj 30 25 17.6 9.5 25 10 1 0.92 5 2
βj 6 3 1.2 0.5 3 2 2 0.85 0 2
cj 1 3.4 8 10 4 2 V0 5.5

Table 2.1: Parameters setup for the joint optimization problem under cardinality constraints

One can check that it satisfies our assumption on price sensitivity parameter βj. By

Lemma 4, we have Ŝ2pzq “ tx2, 1y, x2, 2yu for z P R, thus we focus on nest 1. Figure 4.2
visualizes the optimization procedure of obtaining the optimal solution to problem (2.11) at
nest 1.

h1(θ1)

h2(θ1)

h3(θ1)
h4(θ1)
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(a) Linear functions
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10

20

30

40
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(d) Objective function of problem (11) with respect to z

Figure 2.2: Solution approach visualization to problem (2.11) at nest 1

In Figure 4.2(a), there are 4 linear functions that are defined as hjpθ1q “ α̃1j ´ β1jθi
and α̃1j “ α1j ´ β1jc1j ´ logpβ1jq ´ 1 for j P t1, 2, 3, 4u. Since the cardinality C1 “ 2, then
we have S̃ 11pθ1q “ tx1, 1y, x1, 2yu when θ1 P r0, 3s; S̃

1
1pθ1q “ tx1, 2y, x1, 3yu when θ1 P p3, 3.4s;

S̃ 11pθ1q “ tx1, 3y, x1, 4yu when θ1 ą 3.4. In order to get the optimal solution S̃1pθ1q to problem
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(4.9), we need to compare
ř

jPS̃1pθ1q
v1jpθ1 ` c1j ` 1{β1jq{β1j with v10θ1, which is shown in

Figure 4.2(b): S̃1pθ1q “ tx1, 1y, x1, 2yu when θ1 P r0, 3s; S̃1pθ1q “ tx1, 2y, x1, 3yu when θ1 P

p3, 3.4s; S̃1pθ1q “ tx1, 3y, x1, 4yu when θ1 P p3.4, 3.82s and S̃1pθ1q “ H when θ1 ą 3.82.
Figure 4.2(c) visualizes the constraint in problem (2.11), from which we can see that for
certain ranges of z, there may not exist a one-to-one correspondence between z and θ1. It is
consistent with the discussion before problem (2.11). In Figure 4.2(d), the objective function
of problem (2.11) in terms of z is consist of three convex curves, by selecting the highest
curve, the optimal solution Ŝ1pzq “ tx1, 1y, x1, 2yu when z P r0, 2.98s; Ŝ1pzq “ tx1, 2y, x1, 3yu
when z P p2.98, 3.39s; Ŝ1pzq “ tx1, 3y, x1, 4yu when z P p3.39, 3.80s and Ŝ1pzq “ H when
z ą 3.80. Therefore, we obtain S̃pzq “ Ŝ1pzq

Ť

Ŝ2pzq “ tx1, 1y, x1, 2y, x2, 1y, x2, 2yu for
z P r0, 2.98s; S̃pzq “ Ŝ1pzq

Ť

Ŝ2pzq “ tx1, 2y, x1, 3y, x2, 1y, x2, 2yu for z P p2.98, 3.39s; S̃pzq “
Ŝ1pzq

Ť

Ŝ2pzq “ tx1, 3y, x1, 4y, x2, 1y, x2, 2yu for z P p3.39, 3.80s and S̃pzq “ Ŝ1pzq
Ť

Ŝ2pzq “
tx2, 1y, x2, 2yu for z ą 3.80. Note that |A | ď |A1| ` |A2| ď 6 where A “ tS̃pzq : z P Ru,
A1 “ tS̃1pzq : z P Ru and A2 “ tS̃2pzq : z P Ru, which supports Theorem 1.

Z* = (3.23, 3.23)

1

2

3

2.10 2.98 3.39 3.80
z

(e) Unimodality of profit function Π(S
~

(z), z)

v0z

10

20

30

40

50

2.98 3.23 3.39 3.80
z

(f) Piecewise convex fixed point representation

Figure 2.3: Unimodality and piecewise convexity

Figure 4.3 shows the unimodality of profit function ΠpS̃pzq, zq, which addresses Lemma
6; and the piecewise convexity that addresses Proposition 4. In Figure 4.3(e), the optimal Z˚

satisfies the fixed point representation ΠpS̃pzq, zq “ z, which is the intersection point of the
solid 45˝-line and the unimodal profit function ΠpS̃pzq, zq. We obtain Z˚ “ 3.23, implying
that the optimal expected profit that we can get from this nested logit model with parameters
in Table 4.2 is 3.23 and the optimal assortment is S̃p3.23q “ tx1, 2y, x1, 3y, x2, 1y, x2, 2yu. We
can see from Figure 4.3(e) that profit function ΠpS̃pzq, zq jumps discontinuously at 2.98 ă Z˚

and drops discontinuously at 3.39 ą Z˚, which is an example of Lemma 6. Figure 4.3 shows
the piecewise convex fixed point representation, line v0z intersect with fpzq at Z˚ “ 3.23.
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By looking up previously stored table, the optimal prices are p˚12 “ 6.99, p˚13 “ 12.09, p˚21 “

7.62, p˚22 “ 5.79.
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Chapter 3

Constrained Assortment and Price
Optimization

3.1 Literature Review

[26] provide us an extensive review of the assortment and price optimization problem under
different models and scenarios. In this subsection, we review the literature on the different
types of customer choice models.

If the customer choosing behavior is modeled under the multinomial logit model, then
[42] formulate the unconstrained assortment optimization problem with a newsboy model
considering its inventory cost. [44] point out that the optimal structure follows a simple form.
[28] generalize their work to the network revenue management problem by proposing a linear
program. [39] find the optimal solution in polynomial time under cardinality constraints
with the existence of a no-purchase option. Similarly, [47] considers a generalized attraction
model with the capacity constraints. [40] study the robust assortment optimization problem
by assuming some of the true parameters to be unknown. As an extension of the multinomial
logit model, the mixed multinomial logit model can be used to model more realistic choice
scenarios. [7] develop a column generation algorithm to efficiently find an acceptable solution
under the mixed multinomial logit model. [14] also present an approximation algorithm for
the assortment optimization problem with capacity constraints under the mixed multinomial
logit model.

[13] shows that the multinomial logit model suffers from independence of irrelevant al-
ternatives (IIA), red-bus, blue-bus paradox is one of the most famous examples to show that
the multinomial logit model is unrealistic in some cases ([34] and [5]). To resolve this limita-
tion, [4] first introduced the nested logit model. [35] shows that the nested logit model is a
member of generalized extreme value (GEV) models. For the unconstrained problems under
the nested logit model, or the two-level nested logit model, [27] analyze both centralized and
decentralized regimes. [11] propose a linear program to obtain the optimal assortment in
polynomial time. [29] develop a greedy algorithm to find an approximate solution. The con-
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strained assortment optimization problem becomes much harder to solve. [36] use an integer
programming to analyze the assortment optimization problem with cardinality constraints
under the latent class choice model. By assuming there is a fixed number of products, [38] de-
velops an approximation algorithm for the assortment optimization problem with cardinality
constraints under the two-level nested logit model. [18] study the assortment optimization
problem with both cardinality and space constraints under the two-level nested logit model.
The authors impose constraints on offered assortment in each of the nests separately, in this
case, the assortment optimization problem with cardinality constraints can be solved by a
linear program. However, this problem becomes NP-hard with space constraints. The au-
thors propose an approximation algorithm with the performance guarantee of 2. [16] study
the assortment optimization problem with cardinality and space constraints across nests un-
der the two-level nested logit model. [52] consider the joint optimization of the constrained
assortment and price optimization problem under the two-level nested logit model with a
no-purchase option in every choice stage.

The two-level nested logit model only allows us to analyze one-dimensional dissimilarity
between products. The multilevel nested logit model, including the two-level nested logit
model as its special case, can describe the customer choosing behavior with multiple stages,
which is closer to the real choice process. For applications of the multilevel nested logit model
with more than two levels, a four-level nested logit model is applied to predict the recreational
fishing demand [8]. [25] show applications of the multilevel nested logit model with an
arbitrary number of levels in the recommendation system. The assortment optimization
problem has also been studied under the multilevel nested logit model. [51] study the joint
optimization of the assortment and pricing problem, but the authors only consider one no-
purchase option in their model, where the customer can exit the system without buying
only at the beginning of her choosing process. [30] consider the assortment optimization
problem under the multilevel nested logit model with fixed number of products and develop
a polynomial time algorithm to identify the optimal assortment. However, they do not
consider cardinality or space constraints, and just study the case where there is only one
no-purchase option in the first level of the tree structure; this means the authors assume
that if a customer wants to leave without purchasing anything, she must make the exiting
decision right after entering the system, otherwise she should buy a product in the end.
This assumption is unrealistic for modeling the customer choosing behavior in real world
scenarios. Our approach relaxes this assumption by allowing the no-purchase option in
every stage of the customer choice process. This essay studies the constrained assortment
optimization problem with both cardinality and space constraints under the multilevel nested
logit model, where there is a no-purchase option in every nonleaf node. To the best of our
knowledge, we are the first to study the constrained assortment optimization problem under
the multilevel nested logit model. The algorithms that are used under the multinomial or
two-level nested logit model, such as the linear program in [18], cannot be generalized to
the multilevel nested logit model case. In Sections 16 and 13, we will develop an efficient
algorithm for the multilevel nested logit model, which is of comparable complexity to the
algorithms that solve the unconstrained assortment problem under the multilevel nested logit
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model.
For the price optimization problem under variants of the multinomial logit model, [20]

firstly show that the multinomial logit profit function is not jointly concave in prices even
when the price-sensitivity parameters are fixed to be identical. However, the profit function
under the multinomial logit model is concave in market share variables that have a one-to-
one mapping with the price variables ([43] and [15]). Under the multinomial logit model, [2]
show that there is a unique optimal price vector satisfying first order condition, the method
of which is also used by [21] and [1] to analyze the price optimization problem with respect
to the markup variables that is defined as price minus cost. [48] also uses the multinomial
logit model to study the pricing problem, which is generalized by [31] to the two-level nested
logit model, where price-sensitivity parameters are assumed to be identical within each nest
but different across nests. When the price-sensitivity parameters are different across all the
products, the profit function is no longer concave in the market share vector even under the
two-level nested logit model. [19] point out that the adjusted markup is constant within each
nest by checking the first order condition. Furthermore, the multiproduct profit function can
be reduced to a unimodal function via introducing the adjusted nest-level markup that has
a one-to-one correspondence with the price vector. However, all the above literature only
considers the price optimization problem under the one-level nested logit model (multinomial
logit model), or the two-level nested logit model. [30] study the pricing problem under the
multilevel nested logit model, but their iteration method can only find a local maximum
because the authors still consider the pricing problem with respect to price vector, even
though it has already been proved that the profit function is nonconcave under the two-level
nested logit model. [22] study the centralized pricing problem under a tree structure, but the
no-purchase option can only exist in the first level of their model and they do not consider the
unconstrained or constrained assortment optimization either. To the best of our knowledge,
we are the first to study the price optimization problem under the multilevel nested logit
model with a no-purchase option existing in every nonleaf node of the tree structure.

The remainder of this essay is organized as follows. In Section 3.3, we address the con-
strained assortment optimization problem. Then Section 3.4 presents the price optimization
problem with given assortment.

3.2 Main Results and Contributions

We summarize our main results and contributions as follows:
1. In this essay, we consider the constrained assortment and price optimization problems

under the m-level nested logit model with n products and we allow a no-purchase option
to appear in every period of customer choosing process. For the constrained assortment
optimization problem, we discuss two subproblems and propose a way to stitch the optimal
sub-assortments together to get the global optimal (an α-approximate) assortment under
the cardinality (space) constraints in polynomial time. For the price optimization problem,
we formulate it as a maximization of a unimodal profit function, thus it is tractable to find
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the optimal pricing strategy. To the best of our knowledge, there is no work on constrained
assortment optimization problem under the multilevel nested logit model in current litera-
ture. Moreover, there is no literature allowing the existence of a no-purchase option in every
node of the multilevel tree structure for both assortment and price optimization problems.

2. For the constrained assortment optimization problem, we use an m-level tree with n
products to describe the customer choice structure. The cardinality or space constraints are
imposed on the nonleaf nodes in the second lowest level separately. Our main result is that
the optimal assortment under the cardinality constraints can be obtained in Opnmaxtm, kuq
operations and a 2-approximate assortment under the space constraints can be obtained in
Opmnkq operations, where k is the maximum number of products within any node in level
m ´ 1. [30] study the unconstrained assortment optimization problem under an m-level
nested logit model and their algorithm runs in Opmn log nq time, but it is not possible to
implement their approach to deal with the constrained cases. It is interesting to find that
our algorithm for the constrained problem is even more efficient than the unconstrained
algorithm in [30] when k is relatively small. The reason why our constrained assortment
algorithm is faster is that the core step of the unconstrained assortment algorithm of [30] is
to compute the pairwise intersection points of lines, in which sorting algorithms are required.
However, we manage to avoid constantly using sorting algorithm by revealing the hidden
ordered properties of candidate sub-assortments.

3. In the multilevel nested logit model, every nonleaf node has a no-purchase option,
which allows customer to exit at any period of their choosing process. For both constrained
assortment and pricing optimization problems, it is a non-trivial extension of the case where
there is only one no-purchase option that is associated with root node in the multilevel nested
logit model. Particularly for the price optimization problem, the formulation of node-specific
adjusted markup is more generalized and cannot be obtained by the approach in [22] that
consider the pricing problem under multilevel choice structure with only one no-purchase
option. We are able to show that the objective function can be reduced to a unimodal
function by dimensional reduction of creating mapping between the node-specific adjusted
markups.

4. Many existing literature regarding the assortment and price optimization problems
under the multinomial logit model or the nested logit model turn out to be the special
case of ours. For the constrained assortment optimization problem, we generalize the works
of [39] (multinomial logit model) and [18] (two-level nested logit model) to the multilevel
nested logit model with cardinality and space constraints. For the unconstrained assortment
optimization problem in [30], it becomes a special case of the constrained problem when the
constraints are set to be large enough, i.e. larger than k. [52] consider the joint optimization
of assortment and price under the two-level nested logit model with no-purchase options.
However, their approach cannot be directly applied to the multilevel nested logit model
since the structure of the optimization model changes fundamentally when it comes to the
nested logit model with the number of levels that is larger than three. Compared to [30], our
approach is more general in three folds: first, consider both cardinality and space constraints;
second, allow a no-purchase option in every stage of the customer choosing process; third,
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the computational complexity Opnmaxtm, kuq under the cardinality constraints and the
complexity of Opmnkq under the space constraints are comparable to Opmn log nq, and even
more efficient for a small k. Besides the constrained assortment optimization problem, we
consider a price optimization problem under the multilevel nested logit model with product-
differentiated price sensitivities. We generalize [48] (multinomial logit model) and [19] (two-
level nested logit model) to the multilevel nested logit model. Furthermore, for the pricing
problem under the multistage choice model, we are also able to generalize [22] in terms of
letting a no-purchase option exist in every stage of the customer choosing process, which
we believe is the first in the literature. [51] study the joint optimization of assortment and
price problem under the multilevel nested logit model with only on no-purchase option that
is connected to the root node. However, their approach fails to work when the no-purchase
options are allowed to exist in every choosing stage.

In the following subsection, we address the literature based on the assortment and price
optimization perspectives.

3.3 Constrained Assortment Optimization

In this section, we present the constrained assortment optimization problem and our so-
lution approach. We first show the problem formulation, then discuss how to construct
candidate assortments containing the optimal or α-approximate solutions. Before showing
the algorithms for assortment optimization with cardinality or space constraints, we address
the properties of the optimal or an α-approximate assortment for an arbitrary intermediate
node.

Problem Formulation

We formulate the constrained assortment optimization problem under the multilevel nested
logit model in this subsection. We use the multilevel nested logit model with m levels that is
indexed by M “ t1, 2, ...,mu and n products to model a multistage decision-making process
of the customer. In this tree structure, each node represents a subset of the entire choice
space and each level stands for a choice criterion, or a specific attribute of products, such as
price, quality, category, etc. Specifically, the root node includes all the candidate products.
The node in level l p1 ď l ď m´1q represents the subset of products that satisfy all the first
l choice rules. The customer choosing behavior can be described under this tree structure:
start from the root node, then the customer has two options in general: either to choose
the no-purchase option in the first level to leave without purchasing; or to choose one child
node, which corresponds to a subset of products satisfying the first choice criterion, of the
root node to narrow down her choice space. If she does not choose the no-purchase option in
the first level, then she still has two possible choice alternatives: either to leave or to further
narrow down her choice space. This choice procedure is being conducted repeatedly until
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she chooses a no-purchase option or an actual product in level m that is the lowest level of
the tree structure.

Let V and E denote the set of nodes and edges in this tree structure, respectively. We use
an l-dimensional p1 ď l ď mq vector pi1, i2, ..., ilq to denote the node i in level l. Moreover,
the no-purchase option i0 in level l ` 1 p0 ď l ď m ´ 1q is denoted as pi1, i2, ..., il´1, il, 0q.
A subset of products that satisfy the first l attributes, denoted as Ni, is affiliated with this
node i. For example, buying clothes in a retail store can be formulated under a three-level
nested logit model, the attribute for the first level is category, price is for the second level,
actual clothes are in the third level. A node in the second level can correspond to a subset of
clothes that have the following attributes: T-shirt (category) and $100 - $200 (price). The
root node is in level 0, then the no-purchase option root0 in level 1 is a one-dimensional vector
p0q. Specifically, the set of products of root, which is the entire choice space, is denoted as
Nroot. The total number of products is n “ |Nroot|. The set of products for a leaf node is the
product itself. In this notation, we can see that an actual product (or a no-purchase option),
which is a leaf node in the lowest level, is labeled as an m-dimensional vector pi1, i2, ..., imq,
and specifically im “ 0 for the no-purchase option. For the nonleaf node i, we use an
pl ´ 1q-dimensional vector pi1, i2, ..., il´1q and an pl ` 1q-dimensional vector pi1, i2, ..., il, il`1q

to denote its parent and child node, respectively. We use iP to denote i’s parent node and
iC to denote the set of children nodes of node i. Then we have Ni “

Ť

jPiC
Nj. Particularly,

iC “ H if i is a leaf node or a no-purchase option; if i is root, then we define iP “ H.
We can imagine that an edge in set E connecting one nonleaf node and its child node as a
one-step choosing process: moving to its child node through this edge can be interpreted as
starting to consider an additional attribute of products or choosing to leave without buying.
Thus for a customer at a nonleaf node of this tree structure, she can either choose to leave
the system without further considering any more attributes of the product (the no-purchase
option), or to move to one of its children nodes.

A subset Si of Ni is used to represent the assortment of node i. Particularly, if i is a leaf
node, then Si is the product i itself or H; if node i is a no-purchase option at an arbitrary
level, then Si is an empty set. For a nonleaf node i, we define Si “

Ť

jPiC
Sj, then Sroot is

the assortment of the whole system.
Throughout the essay, the two types of constraints, cardinality and space constraints, are

defined on the nodes in level m´ 1 separately. For the ease of presentation, a node in level
m´1 is referred to as a basic node, the set of which is denoted as B. For any node i P V , we
use =i to represent the collection of feasible assortments satisfying certain constraints. For
all i P B, the cardinality constraints can be expressed as =i “ tSi : Si “

Ť

jPiC
Sj, |Si| ď Ciu,

where Ci is the maximum number of products for basic node i and |Si| represents the number
of products in Si; for the space constraints, =i “ tSi : Si “

Ť

jPiC
Sj,

ř

jPiC
wj ď Siu, where

Si is the maximum available space for basic node i and wj is the space consumption of
product j. To make sure that all the products are eligible to be offered, we assume that
wj ď Si for any leaf node j P iC . If node i is neither a basic node nor a leaf node, then the
feasible set =i is the cartesian product of its children nodes’ feasible sets =i “

Ś

jPiC
=j.
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The upside-down tree in Figure 4.1 is used as an example to better explain the notation
system and feasible sets for both constraints. We address the following nodes as repre-
sentatives for illustrating our vector representation: R0 “ p0q, A “ p1q, A0 “ p1, 0q, D “

p1, 2q, D0 “ p1, 2, 0q and I “ p1, 2, 1q. For the node A, we have AP “ R, AC “ tC,Du.
For cardinality constraints, if =C “ tSC :

Ť

jPiC
Sj, |SC | ď 1u “ tH, tGu, tHuu and =D “

tSD :
Ť

jPiD
Sj, |SD| ď 1u “ tH, tIu, tJuu, then the feasible set of node A with cardinality

constraints is =A “ =C

Ś

=D “ tH, tGu, tIu, tHu, tJu, tG, Iu, tG, Ju, tH, Iu, tH, Juu. One
feasible assortment of the node A is SA “ tH, Iu Ď =A. Similarly, for space constraints, if
wG “ wI “ 1, wh “ wJ “ 2, and CC “ CD “ 2, then the feasible set of node A with space
constraints is =1A “ tH, tGu, tIu, tHu, tJu, tG, Iuu. One feasible assortment of node A with
these space constraints is S 1A “ tHu Ď =1A.

Level 0

Level 1

Level 2

Level 3

R

R0 A B

A0 C D B0 E F

C0 G H D0 I J E0 K L F0 M N

Figure 3.1: Example for the multilevel nested logit model

The preference weight of a leaf node describes the attractiveness of the product that
is associated with this leaf node. The preference weight for a leaf node j is denoted as
Vjptjuq “ vj. Generally speaking, the preference weight Vi0 for the no-purchase option i0 is
greater than or equal to zero. Then for each nonleaf node i, its preference weight is calculated
recursively as

VipSiq “

˜

Vi01pSi ­“ Hq `
ÿ

jPiC

VjpSjq

¸γi

,

where Si is the assortment of node i. γi P p0, 1s, the dissimilarity parameter for node i, is
assumed to be a constant. For the root node, we set γroot “ 0 without loss of generality,
thus VrootpSrootq “ 1. The constraints on γi ensure that the multilevel nested logit model is
consistent with utility maximization theory [34]. Then for node i, the correlation between
the products’ utilities of its children nodes is a decreasing function of γi, the closer γi is
to one, the less positively correlated the utilities are. Moreover, if γi “ 1, then the nest
structure of node i degenerates: its children nodes directly connect to its parent node. If the
dissimilarity parameter γi exceeds one, this model can still be a random utility model under
some circumstances [33]. In this case, adding a product to assortment Si can increase the
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probability of choosing other products in Si. [11] relax the constraints on the dissimilarity
parameter under the two-level nested logit model, then the synergistic effect within the
assortments of children nodes can be modeled.

[30] assume that if a customer moves from the root node to a node that is not a no-
purchase option, then she must make a purchase before leaving. Inspired by [18], our model
formulation relaxes this strong assumption. The indicator function 1p¨q in VipSiq allows us to
model the scenario where even after reaching a specific node, the customer can still choose
to leave the system without going deeper into the tree structure and making a purchase
in the end. Our formulation is closer to reality because the customer will not notice node
i when Si is an empty set; otherwise when Si is not empty, the customer still has the
probability of Vi0{V pSiq

1{γi to leave without any purchasing. However, [18] consider this
assumption relaxation under the two-level nested logit model for the constrained assortment
optimization problem, which is generalized by our approach to the multilevel nested logit
model.

In the multilevel nested logit model framework, if we assume that Si is not empty and
node j is one of its children nodes, then the conditional probability of choosing assortment
Sj given Si is computed as

QpSj|Siq “
VjpSjq

Vi01pSi ­“ Hq `
ř

jPiC
VjpSjq

.

When Si is empty, it means that we do not offer any products of node i so the customer
simply will not consider purchasing anything in Si. Hence we define QpSj|Siq “ 0{0 “ 0 for
Si “ H, indicating the customer makes purchases in an empty assortment with probability
zero.

From here, we will present the formulation of the constrained assortment optimization
problem. Using similar notations as in [30], RipSiq denotes the profit of the assortment Si
for any node i P V . If i is a leaf node, then RipSiq “ 1pSi ‰ Hqri, where ri is the profit of
the actual product i, and RipHq “ 0 if i is a no-purchase option. It shows that if a customer
chooses a non-empty leaf node, or an actual product, then a profit will be obtained with
certain probability. Specifically, RipSiq “ 0 if node i is a no-purchase option or Si is empty.
If i is a nonleaf node, the expected profit is defined recursively as

RipSiq “
ÿ

jPiC

QpSj|Siq ˚RjpSjq

“

ř

jPiC
VjpSjqRjpSjq

Vi01pSi ­“ Hq `
ř

jPiC
VjpSjq

.

If Si “ H, then QpSj|Siq “ 0, so RipSiq “ 0. According to the above definition, the total
expected profit from a customer is RrootpSrootq. We use S˚root and Z˚ to denote the optimal
solution and the corresponding maximum profit, respectively. Let Sαroot and Zα denote an
α-approximate solution and its profit, where αZα “ αRrootpS

α
rootq ě Z˚ “ RrootpS

˚
rootq.
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Moreover, we formulate the α-approximate (α ě 1) assortment optimization problem as

Zα
“ max

SrootĎ=αroot
RrootpSrootq, (3.1)

where =α
root is a subset of =root and contains an α-approximate solution as its best assortment.

How to construct =α
root will be shown in Section 3.3. Throughout the essay, we use Sαi to

denote the optimal solution to problem (3.1) at node i P V . Specifically, we have S˚i “ S1
i

and =˚root “ =1
root. Problem (3.1) is highly nonlinear, the entire choice space is so large that

it is impossible to find the optimal solution without an efficient algorithm.

Basic α-approximate Assortment Subproblem

In this subsection, we decompose problem (3.1) into α-approximate assortment subproblems
that can be solved efficiently when the searching space has small size and propose an alterna-
tive formulation of the subproblem, which is referred to as basic α-approximate assortment
subproblem.

Let h be the parent node of i P V , we define

tαi “

"

`8 , if RipS
α
i q ă tαh

γit
α
h ` p1´ γiqRipS

α
i q , if RipS

α
i q ě tαh

(3.2)

We set tα
rootP

“ 0 by convention, then tαroot “ RrootpS
α
rootq. The scalar tαi can be computed from

top to bottom when all the Sαi are known. Define the α-approximate assortment subproblem
at an arbitrary nonleaf node i P hC with parameter α ě 1 as

max
SiĎ=αi

tVipSiq pRipSiq ´ t
α
hqu. (3.3)

Problem (3.3) at the root node is equivalent to (3.1) since tα
rootP

“ 0 and VrootpSrootq “ 1. If
=α
i , the collection of feasible α-approximate assortments, is a relatively small set, then the

subproblem (3.3) is easy to solve by checking all its subsets. In the following sections, we
aim to reduce the size of set =α

i .
We can see that Sαi is not empty if RipS

α
i q ě tαh . In other words, if we can find an

assortment Ŝi Ď =α
i such that RipŜiq ě tαh , then we know that it is worthwhile to offer a non-

empty assortment at node i. Otherwise, if RipS
α
i q ă tαh , then Sαi is an empty assortment.

Moreover, the scalar defined in (3.2) is `8 for all the descendants of node i. Then the
α-approximate assortments for all the descendants of node i are empty, which is consistent
with the fact that Si is empty since Si is defined recursively as Si “

Ť

jPiC
Sj. Problem

(3.3) can be solved if we know the value of all the scalars. However, knowing all these
scalars beforehand is not possible since it requires the optimal solution to problem (3.3),
but in an alternative way, we can get the candidate collection of assortments containing
an α-approximate solution by letting those scalars vary from ´8 to `8 because the true
value lies in R. Whereas it tremendously enlarges the searching space unless we can find the
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connection between solutions to the subproblems of the parent node and its children nodes.
In light of [30], we claim that for an arbitrary nonleaf node i, Sαi is optimal to problem (3.3)
and the union of all the optimal assortments to problem (3.3) at its children nodes is also the
optimal assortment to problem (3.3) at node i. For completeness, we provide the proof of
this claim in B.2 since we still need to check if this claim holds when there is a no-purchase
option in every choosing period.

The optimal solution to problem (3.3) at a nonleaf node i can be easily obtained if we
can solve the subproblems at all its children nodes j P iC ; otherwise the candidate collection
=α
i is the cartesian product of =α

j for all j P iC , which makes problem (3.3) intractable.
Thus we need to reduce =α

i to a collection with smaller size, denoted as A α
i Ď =α

i , and A α
i

also includes an α-approximate assortment. Furthermore, it is still uncertain that how to
get candidate collection for the basic nodes in the first place. We make an observation that
problem (3.3) at node i is highly nonlinear, thus we propose an alternative formulation of
problem (3.3), which is referred to as basic α-approximate assortment subproblem, as follows

max
SiĎ=αi

tVipSiq
1{γi pRipSiq ´ t

α
i qu. (3.4)

Lemma 8. The optimal solution to problem (3.4) is also optimal to problem (3.3).

Problem (3.4) is more tractable than problem (3.3), thus we turn our focus to problem
(3.4) in following subsections.

Candidate Assortment Construction

In this subsection, we first come up with a way to construct candidate collection of α-
approximate assortments for the basic nodes by utilizing the insights from Lemma 8. Then
we present how to construct A α

i that has a reasonable size.

Lemma 9. If we use S̃αi to denote the assortment satisfying VipS̃
α
i q

1{γi

´

αRipS̃
α
i q ´ t

˚
i

¯

ě

VipS
˚
i q

1{γi

´

RipS
˚
i q ´ t˚i

¯

at node i for all i P B with parameter α ě 1, then the assortment

Sαroot “
Ť

iPB S̃
α
i is an α-approximate solution.

By applying Lemma 9, we can get an α-approximate solution if all the scalars are known
for all basic nodes. Similarly, knowing all the scalars is impossible without already having
the optimal solution to (3.1). As we discussed in subsection 3.3, problem (3.1) cannot be
tractable unless the collection A α

i for a basic node i can be constructed to have a small
size. How to construct the polynomial-size collection with cardinality constraints and space
constraints for basic nodes will be shown in subsection 16 and subsection 13, respectively.
We use the following proposition to summarize the above findings and answer the question
that is asked at the end of Section 3.3 about how to build =α

root.
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Proposition 7. Assume the collection of assortments tA α
i : i P Bu contain an α-approximate

solution Sαi , then =α
root “

Ś

iPB A α
i and there exists an assortment Sαroot “

Ť

iPB S
α
i P =α

root

such that αRpSαrootq ě Z˚.

Even though the small-size candidate collection A α
i for a basic node i is known, we still

need an algorithm to get a small-size candidate collection for the upper level nodes, which
cannot be the cartesian product of A α

i . A crucial observation is that tαi remains to be a
constant once the entire searching space is fixed, thus an optimal solution to problem (3.4)
would be found if we try all possible values of tαi . Let S̃αi ptiq be optimal to the following
problem

max
SiĎ=αi

tVipSiq
1{γi pRipSiq ´ tiqu,

and let Ŝαj ptiq be optimal to the following problem

max
SjĎA α

j

tVjpSjq pRjpSjq ´ tiqu,

where A α
j includes Sαj and j P iC . The following claim shows some nice property and the

relationship between S̃αi ptiq and Ŝαj ptiq.

Claim 5. If Vip
Ť

jPiC
Ŝαj ptiqq

1{γipRip
Ť

jPiC
Ŝαj ptiqq ´ tiq is nonnegative, we have S̃αi ptiq “

Ť

jPiC
Ŝαj ptiq; otherwise S̃αi ptiq “ H. Furthermore, Ã α

i “ tS̃
α
i ptiq : ti P Ru includes Ŝαi pt

α
hq.

Proof. Proof: maxSiĎ=αi tVipSiq
1{γi pRipSiq ´ tiqu is equivalent to

max
SiĎ=αi

ÿ

jPiC

VjpSjqpRjpSj ´ tiqq ´ tiVi01pSi ­“ Hq

“
ÿ

jPiC

max
SjĎA α

j

VjpSjqpRjpSj ´ tiqq ´ tiVi01p
ď

jPiC

Sj ­“ Hq,

thus we have S̃αi ptiq “
Ť

jPiC
Ŝαj ptiq if Vip

Ť

jPiC
Ŝαj ptiqq

1{γipRip
Ť

jPiC
Ŝαj ptiqq ´ tiq ě 0 , other-

wise S̃αi ptiq “ H.
When t “ tαi , Ŝαj pt

α
i q is optimal to problem (3.3) at node j since A α

j also contains Sαj .

Then
Ť

jPiC
Ŝαj pt

α
i q is the optimal solution to (3.3) at node i because of Claim 9. Because

Ť

jPiC
Ŝαj pt

α
i q P Ã α

i , then Ã α
i includes the optimal solution Ŝαi pt

α
hq to problem (3.3) at node

i.

Next lemma shows some properties of VjpŜ
α
j ptiqq and RjpŜ

α
j ptiqq as a function of ti.

Lemma 10. 1. If VjpŜ
α
j ptiqqpRjpŜ

α
j ptiqq ´ tiq is a continuous function of ti in a certain

range for all j P iC, then VipS̃
α
i ptiqq

1{γipRipS̃
α
i ptiqq´ tiq is also a continuous function of

ti.

2. |Ã α
i | “

ř

jPiC
|A α

j |.
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3. If we have an assumption that VjpŜ
α
j ptiqq is a decreasing step function and RjpŜ

α
j ptiqq is

an increasing step function, then VipS̃
α
i ptiqq is a decreasing step function and RipS̃

α
i ptiqq

is an increasing step function, respectively.

Proof. Proof: Since VipS̃
α
i ptiqq

1{γipRipS̃
α
i ptiqq ´ tiq “

ř

jPiC
VjpŜ

α
j ptiqqpRjpŜ

α
j ptiqq ´ tiq ´

tiVi01pS̃
α
i ptiq ­“ Hq, then VipS̃

α
i ptiqq

1{γipRipS̃
α
i ptiqq ´ tiq is also a continuous function with

respect to ti in a certain range because VjpŜ
α
j ptiqqpRjpŜ

α
j ptiqq ´ tiq is continuous in terms of

ti within this range for all j P iC .
Assume that Ŝαj ptiq only changes at some points, the set of which is denoted as Fα

j “

tF 0
j , F

1
j , ..., F

|A α
j |

j u where F 0
j “ 0 and F

|A α
j |

j “ `8. Then S̃αi ptiq also only changes at the point

set Fα
i “

Ť

jPiC
Fα
j “ tF

0
i , F

1
i , ..., F

Di
i u with F 0

i “ 0 and FDi
i “ `8. We can see that |Ã α

i | “

Di “
ř

jPiC
|A α

j |. For the rest of this lemma, we only need to prove VipS̃
α
i ptiqq is decreasing

and RipS̃
α
i ptiqq is increasing discontinuously at any point t1i P Fα

i . Let Si “ limεÑ0 S̃
α
i pt

1
i´ εq

and Si “ limεÑ0 S̃
α
i pt

1
i ` εq. Since VipS̃

α
i pt

1
iqq “ pVi0 `

ř

jPiC
VjpŜ

α
j pt

1
iqqq

γi and VjpŜ
α
j pt

1
iqq

is decreasing discontinuously at t1i, then VipS̃
α
i pt

1
iqq is also decreasing discontinuously at t1i,

thus we have VipSiq ą VipSiq. Since VipS̃
α
i ptiqq

1{γipRipS̃
α
i ptiqq ´ tiq is a continuous function

ti, then VipS̃
α
i ptiqq

1{γipRipS̃
α
i ptiqq ´ tiq is continuous at t1i, we have VipSiq

1{γipRipSiq ´ t1iq “
VipSiq

1{γipRipSiq ´ t
1
iq. So that

RipSiq “

ˆ

VipSiq

VipSiq

˙1{γi

pRipSiq ´ t
1
iq ` t

1
i ă pRipSiq ´ t

1
iq ` t

1
i “ RipSiq,

where the inequality is due to the fact that VipSiq ą VipSiq. This lemma holds because of
the arbitrariness of t1i.

Even if we know Ã α
i “ tS̃αi ptiq : ti P Ru and the set of changing points Fα

i “

tF 0
i , F

1
i , ..., F

|Ã α
i |

i u, we are still not able to stitch them together as A α
h “ t

Ť

iPhC
S̃αi ptiq :

ti P Ru to get A α
h that includes Ŝαh pt

α
hP q, since S̃αi ptiq depends on ti that is different across

i P hC . However, if we can obtain A α
i “ tŜαi pthq : th P Ru where Ŝαi pthq is optimal to

max
SiĎ ĂA α

i
tVipSiq pRipSiq ´ thqu, then A α

h can be found as A α
h “ t

Ť

iPhC
Ŝαi pthq : th P Ru.

We aim to solve the following optimization problem

max
SiĎ ĂA α

i

tVipSiq pRipSiq ´ thqu.

Let Ŝαi pthq be optimal to the above problem. We make an observation that Ŝαi pthq does not

change in certain intervals where VipŜ
α
i pthqq

´

RipŜ
α
i pthqq ´ th

¯

is the highest among these

|Ã α
i | lines. Then our goal is reduced to find those intervals so that Ŝαi pthq does not change

when th takes value in each interval. Assume that set Ã α
i “ tS̃

α
i ptiq : ti P Ru is ordered such

that VipS̃
α
i ptiqq is a decreasing step function and RipS̃

α
i ptiqq is an increasing step function of
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Algorithm 1: statement for function AssortmentInitialization

Input: Ã α
i “ tS̃

α
i ptiq : ti P Ru and Fα

i “ tF
0
i , F

1
i , ..., F

|Ã α
i |

i u;
1 for g “ 1, ..., |Ã α

i | do

2 Sg “ limεÑ0 S̃
α
i pF

g
i ´ εq;

3 end

4 Let g Ð |Ã α
i | ´ 1 and E “ H;

5 while g ą 0 do
6 Gg Ð Intpg ` 1, gq;
7 l Ð 0;
8 while Gg´l ă 0 do

9 Fα
i Ð Fα

i ztF
g´l
i u;

10 l Ð l ` 1;
11 Gg´l Ð Intpg ` 1, g ´ lq;

12 end
13 E Ð tGg´lu Y E;
14 g Ð g ´ l;

15 end
16 Relabel Fα

i as tO0
i , O

1
i , ..., O

ni
i u;

17 for g “ 1, ..., ni do

18 Sg “ limεÑ0 S̃
α
i pO

g
i ´ εq;

19 end
Output: S “ tSg : g “ 1, 2, ..., niu and E “ tEg : g “ 1, 2, ..., niu.

ti, respectively. The following two algorithms shows that A α
h “ t

Ť

iPhC
Ŝαi pthq : th P Ru can

be obtained in a tractable way.
In both Algorithms 1 and 2, function Intpa, bq is to calculate the x-coordinate of the

intersection points of line VipSaqpRipSaq ´ thq and line VipSbqpRipSbq ´ thq as Intpa, bq “
pVipSaqRipSaq ´ VipSbqRipSbqq {pVipSaq ´ VipSbqq.

Function AssortmentInitialization that is defined in Algorithm 1 calculates the posi-
tive consecutive intersection points of lines: fpSi, thq “ VipSiq pRipSiq ´ thq for Si P Ã α

i “

tS̃αi ptiq : ti P Ru. By the ordering of S̃αi ptiq where ti P R and the third item in Lemma
10, we make a remark that if the x-coordinate of the intersection point of two consecutive
lines fpSn, thq and fpSn`1, thq is negative, then assortment Sn is dominated by Sn`1, which
means that fpSn`1, thq is always larger than fpSn, thq as long as th ě 0. So we can delete
assortment Sn, and calculate the intersection points of lines fpSn´1, thq and fpSn`1, thq, if
it is still negative, we compute the intersection points of lines fpSn´2, thq and fpSn`1, thq
and so forth until we get an positive intersection point and then record it in set E. We
remark that the elements in set E is constructed in an increasing order. After deleting the
dominated assortments, Algorithm 1 outputs the set of remaining candidate assortments



CHAPTER 3. CONSTRAINED ASSORTMENT AND PRICE OPTIMIZATION 40

S “ tSg : g “ 1, 2, ..., niu. The core step in Algorithm 1 is from line 5 to line 15, which
includes deleting dominated assortments and calculating positive intersection points. We
observe that the size of candidate assortments is reduced from |Ã α

i | to ni. We then use
the output of this function as an input to function AssortmentStitching that is stated in
Algorithm 2 to get set A α

i “ tŜ
α
i pthq : th P Ru.

Algorithm 2: statement for function AssortmentStitching

Input: S “ tSg : g “ 1, 2, ..., niu and E “ tEg : g “ 1, 2, ..., niu.
1 Let nÐ 1, E0 “ 0 and g Ð ni;
2 while g ą 0 do
3 Dn Ð Eg;
4 mÐ 1;
5 while Dn ă Eg´m do
6 mÐ m` 1
7 end
8 Dn Ð Intpg ` 1, g ´m` 1q;
9 g Ð g ´m;

10 nÐ n` 1;

11 end
12 Reverse the numerical array tD1, D2, ..., Dn´1u;
13 Let D0 Ð ´8 and Dn Ð `8;
14 for l “ 0, 2, ..., n´ 1 do

15 Ŝαi pthq “ limεÑ0 S̃
α
i pDl ` εq for th P rDl, Dl`1s;

16 end

Output: A α
i “ tŜ

α
i pthq : th P Ru and Dα

i “ tD0, D1, ..., Dnu.

In function AssortmentStitching, we have Eg “ IntpSg, Sg`1q. The idea of Algorithm 2 is
that if Eg ă Eg´1, then line Sg can be deleted since line fpSg, thq is always lower than line
fpSg`1, thq when th is nonnegative. It can be proved by using Lemma 10: since VipSg´1q ą

VipSgq ą VipSg`1q and RipSg´1q ă RipSgq ă RipSg`1q, we have fpSg, thq ă fpSg`1, thq for
th ě 0. Similar to Algorithm 1, it does not stop until Eg ě Eg´m where m ě 1 by deleting
assortments Sg, Sg´1, ..., Sg´m`1. Then we record the newly calculated intersection points
in an array tD1, D2, ..., Dn´1u and reverse it such that it has an increasing order. The
output of this algorithm is A α

i “ tŜ
α
i pthq : th P Ru with corresponding changing points set

Dα
i “ tD0, D1, ..., Dnu as desired.

The next proposition shows that A α
i “ tŜ

α
i pthq : th P Ru can be obtained in an efficient

way by applying function AssortmentInitialization and function AssortmentStitching.

Proposition 8. Let A α
i “ tŜ

α
i pthq : th P Ru where Ŝαi pthq is optimal to

max
SiĎ ĂA α

i
tVipSiq pRipSiq ´ thqu, then A α

i includes Ŝαi pt
α
hq. Furthermore, |A α

i | ď |Ã
α
i | and
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A α
i can be computed within Op|Ã α

i |q operations by functions AssortmentInitialization and
AssortmentStitching under the assumption in Lemma 10.

Proof. Proof: According to Claim 5, Ã α
i includes Ŝαi pt

α
hq, thus the feasible region of problem

maxSiĎ=αi tVipSiq pRipSiq ´ thqu can be reduced from =α
i to Ã α

i while preserving optimality.

When th “ tαh , Ŝαi pt
α
hq P A α

i , thus A α
i contains Ŝαi pt

α
hq.

We use Algorithm 1 and 2 to compute A α
i “ tŜ

α
i pthq : th P Ru from Ã α

i “ tS̃
α
i ptiq : ti P

Ru and Fα
i “ tF

0
i , F

1
i , ..., F

|Ã α
i |

i u. In Algorithm 1, lines 1-3 take Op|Ã α
i |q operations. Lines

5-15 take Op|Ã α
i | ´ 1q since it deletes at most |Ã α

i | ´ 2 assortments. Both line 16 and lines
17-19 take Opniq where ni ď |Ã α

i |. Thus the computational complexity of Algorithm 1 is
Op|Ã α

i |q `Op|Ã
α
i | ´ 1q `Opniq `Opniq “ Op|Ã α

i |q.
For Algorithm 2, lines 2-11 take Opniq operations since it deletes at most ni assortments.

Line 12 takes Op1q and lines 14-16 take Opnq where n ď ni. So the computational complexity
of Algorithm 2 is Opniq `Op1q `Opnq “ Opniq.

For the size of A α
i , we have |A α

i | “ n ď ni ď |Ã α
i |, and A α

i can be computed in
Op|Ã α

i |q `Opniq “ Op|Ã α
i |q via Algorithms 1 and 2.

By the Proposition 8, we immediately have the following two corollaries.

Corollary 3. If VipS̃
α
i ptiqq is a decreasing step function and RipS̃

α
i ptiqq is an increasing step

function, then VipŜ
α
i pthqq is a decreasing step function and RipŜ

α
i pthqq is an increasing step

function.

Corollary 4. Let S̃αh pthq “
Ť

iPhC
Ŝαi pthq and Ã α

h “ tS̃
α
h pthq : th P Ru where h is the parent

node of i, then Ã α
h can be computed in Op

ř

iPhc
|Ã α

i |q operations.

According to Corollary 3, Corollary 4 and the third item in Lemma 10, if we know Ã α
j

for all the basic nodej P B, a bottom-up method can be used repeatedly in a breath-first
manner to get Ã α

root, which can be further used to get A α
root via Algorithms 1 and 2, where

A α
root is the candidate collection including an α-approximate solution Sαroot for the root node.

After getting A α
root, check the expected profit of every candidate assortment in A α

root to select
the optimal assortment as Sαroot. The following theorem summarizes this finding.

Theorem 3. Under the assumption in Lemma 10, for all the nonleaf nodes i P V , we
can construct A α

i with size Op
ř

jPB |Ã
α
j |q in Op

ř

jPB |Ã
α
j |q operations. The size of the

candidate collection of assortments A α
root containing an α-approximate solution Sαroot satisfies

|A α
root| ď

ř

jPB |Ã
α
j |. Constructing A α

root requires Opm ¨
ř

jPB |Ã
α
j |q operations.

Proof. Proof: We claim that
ř

i:levelpiq“l |A
α
i | ď

ř

jPB |Ã
α
j | for l “ 0, 1, ...,m ´ 1. This can

be proved by induction on level l: 1) It is true for l “ m ´ 1; 2) Assume it is true for
l “ L where 1 ď m ´ 1:

ř

i:levelpiq“L |A
α
i | ď

ř

jPB |Ã
α
j |; 3) We have

ř

h:levelphq“L´1 |A
α
h | ď

ř

h:levelphq“L´1 |Ã
α
h | “

ř

h:levelphq“L´1

ř

iPhC
|A α

i | “
ř

i:levelpiq“L |Ã
α
i | ď

ř

jPB |Ã
α
j | because of

Proposition 8 and Corollary 4. Thus constructing A α
root via Algorithms 1 and 2 requires

řm´1
L“0

ř

i:levelpiq“L |Ã
α
i | ď

řm´1
L“0

ř

jPB |Ã
α
j | “ Opm ¨

ř

jPB |Ã
α
j |q operations.



CHAPTER 3. CONSTRAINED ASSORTMENT AND PRICE OPTIMIZATION 42

Theorem 3 tells us if Ã α
j has a polynomial size for all j P B, then constructing A α

root would
also require polynomial size of operations. Furthermore, it also implies that problem (3.1)
can be solved in polynomial time. In the following two subsections, we show how to construct
the polynomial-size Ã ˚

j under cardinality constraints and Ã α
j under space constraints for

all basic nodes j P B, respectively. We also show that the assumption in Lemma 10 can be
satisfied.

Cardinality Constraints

In this subsection, we introduce the Constrained Assortment Optimization Algorithm Under
Cardinality Constraints (CAOA-C) that solves problem (3.1) with α “ 1 under cardinality
constraints, which finds the optimal, or 1-approximate, assortment S˚root in Opnmaxtm, kuq
time, where m is the number of levels in the multilevel nested logit model, n is the number
of products and k is the maximum number of products of any basic nodes.

In order to obtain a candidate collection of assortments including the optimal solution
S˚j for a basic node j P B, we need to solve problem (3.4) with α “ 1 and tαi “ tj as follows

max
SjĎ=˚j

tVjpSjq
1{γjpRjpSjq ´ tjqu, (3.5)

where =˚j includes all the possible combination of feasible assortments that satisfy cardinality

constraints and the size of =˚j is
`

Nj
Cj

˘

. We aim for reducing =˚j to a polynomial-size collection

Ã ˚
j such that Ã ˚

j “ tS̃
˚
j ptjq : tj P Ru where S̃˚j ptjq represents the optimal solution to problem

(3.5).
We observe that problem (3.5) at basic node j is more general than the constrained

assortment optimization problem under the multinomial logit model [39]. The difference
is that we need to consider the no-purchase option when constructing Ã ˚

j . [38] study the
constrained assortment optimization problem under the multinomial logit model with space
constraints and shows it is NP-hard. With cardinality constraints, assortment optimization
problem under the multinomial logit model can be solved in polynomial time [39].

Problem (3.5) can be rewritten as

max
SjĎ=˚j

tVjpSjq
1{γjpRjpSjq ´ tjqu “ max

SjĎ=˚j
t
ÿ

kPSj

vkprk ´ tjq ´ Vj01pSj ­“ Hqtju.

It is a 0-1 knapsack problem with unit weight. If Sj is not empty, then the value of j for
knapsack problem is

ř

kPSj
vkprk ´ tiq ´ Vj0tj for a given tj. After sorting the products by

its valuein a decreasing order, the optimal solution S̃˚j ptjq includes the first Cj products. To
better illustrate the algorithm for this problem, inspired by [39], we define n linear functions
hkptjq “ vkprk ´ tjq for k P Sj. When tj takes values between two consecutive intersection
points of the n lines, the ordering does not change so the optimal solution S̃˚j ptjq would not
change either. We define h0ptjq “ Vj0tj, then if

ř

kPSj
hkptjq ă h0ptjq, we have Sj “ H.

We use Figure 4.2 as an example for three products with cardinality limitation of 2. In
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this case, there are 3 intersection points between the 3 linear functions and the real line
is divided into 4 intervals by these 3 points. Under the cardinality constraints pC “ 2q,
the candidate collection contains 3 different feasible assortments: tt1, 2u, t2, 3u, Hu, the
corresponding range of tj is shown in Table 3.1. Under mild conditions, [39] shows that

the size of Ã ˚
j “ tS̃˚j ptjq : tj P Ru is OpNjq if the cardinality capacity Cj is fixed and

constructing Ã ˚
j requires OpN2

j q operations, where the set of changing points is denoted as

F ˚
j “ tF

0
j , F

1
j , ..., F

|Ã ˚
j |

j u.

h1(t j)

h2(t j)

h3(t j)

h0(t j)

∑
i=1

3

h i(t j)

0

5

10

15

20

25

1.20 1.60 2.36

t j

Figure 3.2: Three products with cardinality constraint C= 2

tj p´8, 1.6q p1.6, 2.36q p2.36,`8q

S̃˚j ptjq t1, 2u t2, 3u H

Table 3.1: The optimal solution S̃˚j ptjq to problem (3.5)

By construction, VkpŜ
α
k ptjqq is a decreasing step function and RjpŜ

α
j ptjqq is an increasing

step function because a product k with larger slope vk and smaller profit rk would always
be replaced by a new product k1 with smaller slope vk1 and larger profit rk1 as tj increases.
It satisfies the assumption of the third item in Lemma 10, thus we have VjpS̃

α
j ptjqq is a

decreasing step function and RjpS̃
α
j ptjqq is an increasing step function. Therefore, we can use

Algorithms 1 and 2 in a bottom-up manner and they run in polynomial-time by Proposition
8.
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We are now ready to show the Constrained Assortment Optimization Algorithm Un-
der Cardinality Constraints (CAOA-C) as follows. First, we get Ã ˚

j and F ˚
j for all basic

nodes j P B; second, within each loop, we use Ã ˚
j and F ˚

j as the input of function As-
sortmentInitialization, then we feed the output of function AssortmentInitialization into
function AssortmentStitching to obtain A ˚

i “ tŜ˚i pthq : th P Ru and D˚
i ; third, we get

Ã ˚
h “ tS̃

˚
hpthq : th P Ru where S̃˚hpthq “

Ť

iPhc
Ŝ˚i pthq and F ˚

h “
Ť

iPhc
D˚
i for node h that

is the parent node of i. We call function AssortmentInitialization and AssortmentStitching
repeatedly in a bottom-up manner to get A ˚

root, then the optimal assortment can be obtained
as S˚root “ arg maxSrootĎA ˚

root
RrootpSrootq and the maximum profit is Z˚ “ RrootpS

˚
rootq.

Algorithm 3: Constrained Assortment Optimization Algorithm Under Cardinality
Constraints (CAOA-C)

Input: vk, rk for product k, and γi for nonleaf node i P V

1 Initialization Get Ã ˚
j “ tS̃

˚
j ptjq : tj P Ru and F ˚

j “ tF
0
j , F

1
j , ..., F

|Ã ˚
j |

j u for all
j P B;

2 for l “ m´ 1,m´ 2, ..., 1 do
3 for i P Levelplq do
4 if l ­“ m´ 1 then

5 Ã ˚
i “ tS̃

˚
i ptiq : ti P Ru where S̃˚i ptiq “

Ť

jPiC
Ŝ˚j ptiq;

6 F ˚
i “

Ť

jPic
D˚
j ;

7 end

8 S,E Ð AssortmentInitializationpÃ ˚
i ,F

˚
i q;

9 A ˚
i “ tŜ

˚
i pthq : th P Ru and D˚

i Ð AssortmentStitchingpS,Eq;

10 end

11 end

12 A ˚
root “ t

Ť

iProotC
Ŝ˚i ptrootq : troot P Ru;

13 S˚root “ arg maxSrootĎA ˚
root

RrootpSrootq and Z˚ “ RrootpS
˚
rootq;

Output: S˚root and Z˚.

We use the following theorem to end this subsection, which summarizes above findings
and shows that the assortment optimization problem under cardinality constraints can be
solved in polynomial time.

Theorem 4. The optimal assortment S˚root to problem (3.1) with α “ 1 under cardinality
constraints can be obtained within Opnmaxtm, kuq operations by Algorithm CAOA-C.

Proof. Proof: For the Algorithm CAOA-C, line 1 takes Op
ř

jPB N
2
j q to get Ã ˚

j with size

|Ã ˚
j | “ OpNjq for all j P B. According to Theorem 3, lines 2-11 take Opm ¨

ř

jPB |Ã
˚
j |q “

Opm ¨
ř

jPB Njq “ Opmnq. Lines 12-13 also take Opmnq operations. For the complexity of
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line 1, we have
ÿ

jPB

N2
j ď max

jPB
Nj ¨

ÿ

jPB

Nj “ k ¨
ÿ

jPB

Nj “ kn,

thus the complexity of line 1 isOpknq. Therefore, the total number of operations of Algorithm
CAOA-C is Opknq `Opmnq `Opmnq “ Opnmaxtm, kuq.

Space Constraints

Similar to Section 16, we show the Constrained Assortment Optimization Algorithm Under
Space Constraints (CAOA-S) that solves problem (3.1) under space constraints, which finds
an α-approximate assortment Sαroot in Opmnkq time, where m is the number of levels in the
multilevel nested logit model, n is the number of products and k is the maximum number of
products of any basic nodes.

Similar to the problem with cardinality constraints, we show how to find an α-approximate
collection Ã α

j for a basic node j P B with α “ 2. We consider the following problem

max
SjĎ=αj

tVjpSjq
1{γjpRjpSjq ´ tjqu, (3.6)

where we use =α
j to denote all the combinations of feasible assortments satisfying the

space constraints. Our goal is to reduce =α
j to a polynomial-size collection Ã α

j such that

Ã α
j “ tS̃αj ptjq : tj P Ru where S̃αj ptjq satisfies that VjpS̃

α
j ptjqq

1{γj

´

αRjpS̃
α
j ptjqq ´ tj

¯

ě

VjpS
˚
j q

1{γj

´

RjpS
˚
j q´ tj

¯

. If Ã α
i is known, then according to Lemma 9, Sαroot “

Ť

iPB S̃
α
i pt

˚
j q is

an α-approximate solution, thus =α
root “

Ś

jPB Ã α
j includes Sαroot when tj “ t˚j for all j P B.

By applying Algorithm 1 and 2 repeatedly from the bottom to top, we manage to find the
best assortment in =α

root, which is Sαroot. Next we show how to find corresponding Ã α
j .

Problem (3.6) can be re-derived as

max
SjĎ=αj

tVjpSjq
1{γjpRjpSjq ´ tjqu “ max

SjĎ=αj
t
ÿ

kPSj

vkprk ´ tjq ´ Vj01pSj ­“ Hqtju. (3.7)

Unfortunately, problem (3.7) at a basic node j is NP-hard with space constraints. Hence
we use a linear relaxation method to solve problem maxSjĎ=αj t

ř

kPSj
vkprk ´ tjqu. Let S 1jptjq

denote an α-approximate solution such that

α
ÿ

kPS1jptjq

vkprk ´ tjq ě
ÿ

kPS˚j

vkprk ´ tjq

where α “ 2. By applying the algorithm in [39] and the approach in [18], we are able to con-
struct the collection A 1

j “ tS
1
jptjq : tj P Ru with size OpN2

j q for fixed Sj in OpN2
j q operations.

Note that [18] also show that the performance of guarantee of 2 can be further refined to
α “ 1{p1´εq pε P r0, 1qq under certain assumptions of the data, which also applies to our case.
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We claim that S 1jptjq satisfies VjpS
1
jptjqq

1{γj
`

αRjpS
1
jptjqq ´ tj

˘

ě VjpS
˚
j q

1{γj

´

RjpS
˚
j q ´ tj

¯

if

S˚j ‰ H. Next we show how to prove this claim, we have

VjpS
1
jptjqq

1{γj
´

αRjpS
1
jptjqq ´ tj

¯

“ α
ÿ

kPS1jptjq

vkrk ´ Vj01pS
1
jptjq ­“ Hqtj ´

ÿ

kPS1jptjq

vktj

ě α
ÿ

kPS1jptjq

vkprk ´ tjq ´ Vj01pS
1
jptjq ­“ Hqtj ě α

ÿ

kPS1jptjq

vkprk ´ tjq ´ Vj0tj

ě
ÿ

kPS˚j

vkprk ´ tjq ´ Vj0tj “
ÿ

kPS˚j

vkprk ´ tjq ´ Vj01pS
˚
j ­“ Hqtj “ VjpS

˚
j q

1{γj
´

RjpS
˚
j q ´ tj

¯

,

which establishes the claim.
The difference between problem (3.7) and the problem that is considered in [18] is that

the objective function of problem (3.7) contains an additional term ´Vj01pSj ­“ Hqtj since
we allow the no-purchase options to exist in every choice stage. Thus we need to check if
VjpS

1
jptjqq

1{γjpαRjpS
1
jptjqq´ tjq ě 0. If so, then S̃αj ptjq “ S 1jptjq; otherwise S̃αj ptjq “ H. Then

S̃αj ptjq satisfies that VjpS
1
jptjqq

1{γjpαRjpS
1
jptjqq ´ tjq ě VjpS

˚
j q

1{γjpRjpS
˚
j q ´ tjq because this

inequality holds when S˚j ‰ H due to the above claim and it also holds when S˚j “ H since

VjpS
1
jptjqq

1{γjpαRjpS
1
jptjqq´ tjq ě 0 “ VjpS

˚
j q

1{γjpRjpS
˚
j q´ tjq. In this way we can obtain the

desired Ã α
j with corresponding set Fα

j of changing points for all j P B.
Similar to the problem under cardinality constraints, we introduce the Constrained As-

sortment Optimization Algorithm Under Space Constraints (CAOA-S) as follows and show
the complexity of CAOA-S in the next theorem.

Theorem 5. A 2-approximate assortment Sαroot under space constraints can be obtained
within Opmnkq operations by Algorithm CAOA-S.

Proof. Proof: For the Algorithm CAOA-S, line 1 takes Op
ř

jPB N
2
j q to get Ã α

j with size

|Ã α
j | “ OpN2

j q for all j P B. According to Theorem 3, lines 2-11 take Opm ¨
ř

jPB |Ã
˚
j |q “

Opm ¨
ř

jPB N
2
j q. Lines 12-13 also take Opm ¨

ř

jPB N
2
j q operations. Because we have

ÿ

jPB

N2
j ď max

jPB
Nj ¨

ÿ

jPB

Nj “ k ¨
ÿ

jPB

Nj “ kn,

thus the total number of operations of Algorithm CAOA-S is Opknq`Opmnkq`Opmnkq “
Opmnkq.

3.4 Price Optimization

In this section, we study the price optimization problem, the goal of which is to maximize
the expected profit per customer. The assortment Sroot is assumed to be fixed as Nroot,
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Algorithm 4: Constrained Assortment Optimization Algorithm Under Space Con-
straints (CAOA-S)

Input: vk, rk for product k, and γi for nonleaf node i P V

1 Initialization Get Ã α
j “ tS̃

α
j ptjq : tj P Ru and Fα

j “ tF
0
j , F

1
j , ..., F

|Ã α
j |

j u for all
j P B;

2 for l “ m´ 1,m´ 2, ..., 1 do
3 for i P Levelplq do
4 if l ­“ m´ 1 then

5 Ã α
i “ tS̃

α
i ptiq : ti P Ru where S̃αi ptiq “

Ť

jPiC
Ŝαj ptiq;

6 Fα
i “

Ť

jPic
Dα
j ;

7 end

8 S,E Ð AssortmentInitializationpÃ α
i ,F

α
i q;

9 A α
i “ tŜ

α
i pthq : th P Ru and Dα

i Ð AssortmentStitchingpS,Eq;

10 end

11 end

12 A α
root “ t

Ť

iProotC
Ŝαi ptrootq : troot P Ru;

13 Sαroot “ arg maxSrootĎA α
root

RrootpSrootq and Zα “ RrootpS
α
rootq;

Output: Sαroot and Zα.

thus the decision variables are prices of all the products, denoted as Proot “ pp1, p2, ..., pnq.
Proot P Rn

` is a n-dimensional vector where n, as defined in Section 4.3, is the total number
of products.

Problem Formulation

We use the same tree structure as in Section 4.3 to describe the customer choosing behavior.
The n products are leaf nodes in the m-level tree. For every node in this tree, there can exist
a no-purchase option associated with it. We assume that price of the no-purchase option is
0. For each node i P V , it is assigned a preference weight VipPiq by the customer. We define
VipPiq recursively as follows

VipPiq “

#

exppαi ´ βipiq , if i is a leaf node
´

Vi0 `
ř

jPiC
VjpPjq

¯γi
, o.w.

We can see that for a leaf node i, αi can be interpreted as the price-independent part of
the systematic utility of product i and βi ą 0 is the product-differentiated price sensitivity
parameter. We define two scalars for nonleaf node i P V :

Bi “

#

minjPiCtβju i is a basic node

minjPiCtBjγju o.w.
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and

Bi “

$

&

%

maxjPiCtβju i is a basic node

maxjPiCt
γ2jBj

1´p1´γjqBj{Bj
u o.w.

As in [22], we also make the following assumption on the price-sensitivity parameters and
dissimilarity parameters to guarantee that there is a unique optimal pricing solution.

Assumption 1. For any nonleaf and nonroot node i P V , we assume that

Bi

Bi

ă
1

1´ γi
.

We define the profit for node i P V as follows

RipPiq “

$

’

&

’

%

pi ´ ci , if i is a leaf node

ř

jPiC

VjpPjqRjpPjq{

˜

Vi0 `
ř

jPiC

VjpPjq

¸

, o.w.

Then the total expected profit can be expressed as RrootpProotq. Therefore the price opti-
mization problem can be formulated as

max
ProotPRn`

RrootpProotq. (3.8)

We generalize the results of [19] in the following three folds: 1) the two-level nested logit
model is generalized to the multilevel nested logit model; 2) the no-purchase option can exist
in every stage of the customer choice process; 3) the adjusted nest-level markup is shown to
be a special case of the node-specific adjusted markup which will be presented in the following
subsection.

Constant Node-specific Adjusted Markup

In this subsection, we analyze properties of the price vector Proot at the optimality condition
of problem (3.8). For the rest of this essay, we will use Qi to represent the choice probability
of product i. The markup for product i is defined as mi “ pi ´ ci. We use ηi,k to denote the
ancestor node of i in level k, where p0 ď k ď m´ 1q. With a slight abuse of notation, ηi,k is
also used to denote the collection of products that are associated with itself. The following
lemma shows the expression of the first derivative of objective function that is defined in
(3.8).
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Lemma 11. The first derivative of objective function RrootpProotq with respect to price pi
for any product i is

BRrootpProotq{Bpi

“ βiQi

˜

1

βi
´mi ` λ

m´1
i,1

ÿ

i1Pηi,0

mi1Qi1 `

m´2
ÿ

k“1

ÿ

i1Pηi,k
i1Rηi,k`1

mi1

ˆ k
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi1|ηi,tq

˙

`
ÿ

i1Pηi,m´1

mi1

ˆm´1
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi1|ηi,tq

˙

¸

,

where λsi,t “
śs

q“t γi,q.

Let the first derivative BRrootpProotq{Bpi “ 0, since Qi ­“ 0, after dividing βiQi and
collecting terms, we have

mi ´ 1{βi “ λm´1
i,1

ÿ

i1Pηi,0

mi1Qi1 `

m´2
ÿ

k“1

ÿ

i1Pηi,k
i1Rηi,k`1

mi1

˜

k
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi1|ηi,tq

¸

`
ÿ

i1Pηi,m´1

mi1

˜

m´1
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi1|ηi,tq

¸

. (3.9)

If we define the node-specific adjusted markup for product i P B as θi “ mi ´ 1{βi, then
Equation (3.9) implies that θi is identical for all i P ηi,m´1. We make an important obser-
vation that the dimension of problem (3.8) has been reduced from n to |B| because there
exists a one-to-one increasing mapping between the markup mi for product i P B and its
node-specific adjusted markup θi. The idea behind this lemma is quite insightful, since the
multidimensional price optimization problem can be reduced with regard to the number of
decision variables. Originally, the number of decision variables equals the number of products
in the assortment, by lemma 3, it can be reduced to the number of basic nodes.

The price for each product is a product-differentiated property, i.e. it is different across
products. However, at optimality we can get the node-specific adjusted markup θi, which
is invariant for the products in the basic nodes, via subtracting price by the product’s own
cost and the reciprocal of the price sensitivity parameter. We remark that at optimality,
the node-specific adjusted markup is different across the basic nodes. Then the question
is whether there still exists similar method so that the price optimization problem can be
further simplified in terms of the problem dimensions. Before positively answering it, we
first introduce the formal definition of node-specific adjusted markup, in which we use j to
denote one of the children nodes of i.

Definition 1. The node-specific adjusted markup for node i, the level of which is 0 ď l ď
m´ 1, is defined as

θi “ θjδjpθjq ´ ωjpθjq,
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where δjpθjq and ωjpθjq, the level of node j is 1 ď l ď m ´ 1, are recursively defined as
follows

δjpθjq “
1

γj
´ p

1

γj
´ 1qτjpθjq,

τjpθjq “
ÿ

kPjC

Qpθk|θjq

δkpθkq
τkpθkq,

ωjpθjq “ p
1

γj
´ 1q

ÿ

kPjC

Qpθk|θjq

1´ γk

ωkpθkq

δkpθkq
,

where for leaf node k, we define δkpθkq “ τkpθkq “ 1, ωkpθkq “ 1{βk and γk “ 0. For

notational brevity, we denote Qpθk|θjq “
Vkpθkq

Vi0`
ř

kPjC
Vkpθkq

.

For these quantities in the above definition, we have 0 ď τjpθjq ď 1 and 1 ď δjpθjq ď 1{γj.
The node-specific adjusted markup is defined recursively, next we show an example of how
to calculate it under the two-level nested logit model.

Example 1. For the two-level nested logit model, in level 0, it is the root node; in level 1,
there are |B| nests indexed by i; in level 2, there are products indexed by j. Then we have
θi “ pj ´ cj ´ 1{βj and

θroot “ θiδipθiq ´ ωipθiq

“ θi

„

1

γi
´ p

1

γi
´ 1qτipθiq



´ p
1

γi
´ 1q

ÿ

jPiC

Qpθj|θiq

1´ γj

ωjpθjq

δjpθjq

“ ppj ´ cj ´ 1{βjq

«

1

γi
´ p

1

γi
´ 1q

ÿ

jPiC

Qpθj|θiq

ff

´ p
1

γi
´ 1q

ÿ

jPiC

Qpθj|θiq

βj
.

Define the following function recursively for each nonleaf node i P V : uipθiq “
ř

jPiC
βjQpθj|θiq

if i is a basic node; otherwise
uipθiq “

ř

jPiC

γjuj
Bθi{Bθj

Qpθj|θiq. Next we assume that Bθi{Bθj is bounded.

Assumption 2. For any nonleaf node i P V and its child node j, we assume that

Bθi
Bθj

ď
1

γj
´
ωjpθjqujpθjq

δjpθjq
.

Under Assumption 3 and 2, θi is an increasing function of θj. We record this finding in
the following lemma.
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Lemma 12. Under Assumption 3 and 2, for any nonleaf node i P V , we have

BVipθiq

Bθi
“ ´γiVipθiquipθiq,

Bωipθiq

Bθi
ď ωipθiquipθiq ´ p

1

γi
´ 1qτi,

Bτi
Bθi

ď ´p1´ τiqui,

Bδi
Bθi

ě pδi ´ 1qui.

Furthermore, we have

ωiui ď
1

γi
and

Bθi
Bθj

ě 0.

The following proposition shows the properties of the node-specific adjusted markup.

Proposition 9. For any nonleaf node i in level 0 ď l ď m´1 and its arbitrary children nodes
j, j1 P iC, we have θi “ θjδjpθjq ´ ωjpθjq and θ1i “ θj1δj1pθj1q ´ ωj1pθj1q are equivalent under
the optimality condition of problem (3.8). Furthermore, there exists a one-to-one increasing
correspondence between the node-specific adjusted markup θi and θj under Assumption 3 and
2.

The technique that we use in the above proposition is: for the node-specific adjusted
markup θi, it can be obtained via subtracting θj by a value that only depends on Nj. By
repeatedly using Proposition 9 from bottom to top, the price optimization problem (3.8),
originally defined in the n-dimensional space, is reduced to a single-dimensional optimization
problem by maximizing Rpθrootq with respect to θroot. Furthermore, the following theorem
shows that Rpθrootq is a unimodal function.

Theorem 6. Rpθrootq is strictly unimodal in θroot. Moreover, we have Rpθ˚rootq “ θ˚root at
optimality.

We can use simple optimization algorithm, such as binary search, to find its optimal
solution θ˚root after having the correspondence of the node-specific adjusted markup between
intermediate nodes. From Proposition 9, we know that there exists a one-to-one correspon-
dence between θi, and θj for j P iC . Thus there also exists a one-to-one increasing mapping
between θ˚root and the optimal price p˚k of product k. We denote this increasing mapping
as fkpp

˚
kq “ θ˚root. So if we know the optimal solution θ˚root, then the optimal price of an

actual product i can be calculated as p˚k “ f´1
k pθ

˚
rootq. Therefore, the optimal price vector

for problem (3.8) is P˚
root “ F´1pθ˚rootq, where F “ pf´1

1 , f´1
2 , ..., f´1

n q.
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Numerical Example

Multiproduct price optimization problem (3.8) can be reduced to the maximization of a
unimodal function

max
θrootPR`

Rrootpθrootq. (3.10)

At optimality, although θ˚root has a one-to-one correspondence with p˚k: p
˚
k “ f´1

k pθ
˚
rootq, we

cannot simply obtain a closed-form expression of f´1 due to its nonlinearity nature. However,
starting from θroot, we can recursively get θi according to Definition 1, then pk can be found
due to this linear relationship: pk “ θj ` 1{βk ` ck where the basic node j is parent of k .
Therefore, Rpθrootq can be identified, implying we can use some simple algorithms, such as
golden section search and binary search, to locate the optimal solution θ˚root “ Rpθ˚rootq to
problem (3.10).

To better illustrate Theorem 6, we solve a small problem example with a three-level
nested logit model that is shown in Figure 4.2. We can see for each nonleaf node, there is
one no-purchase option associated with it, such as for node A, the no-purchase option is
denoted as A0. The parameters that are used in this numerical example are described in
Table 4.2, which satisfies our assumptions.

Product G H I J K1.8 * L M N

α 15 12 13 11 10 8 14 9
β 1.8 1.6 1.7 2 2.2 2.1 2.4 1.8

cost 0.9 0.8 0.7 0.85 0.55 0.4 0.9 0.5

No-purchase root0 A0 B0 C0 D0 E0 F0

V 0.15 0.12 0.1 0.05 0.07 0.06 0.04

nonleaf Nodes A B C D E F

γ 0.78 0.95 0.86 0.91 0.73 0.81

Table 3.2: Parameters setup for the price optimization problem

The computation results are shown in Figure 4.3. For plot paq, we can clearly see
that the objective function of problem (3.10) is unimodal with respect to θroot. More-
over, when Rpθrootq intersects with the 45˝-line fpθrootq “ θroot, Rpθrootq reaches its opti-
mal, i.e. Rpθ˚rootq “ θ˚root “ 5.80, as stated in Theorem 6. For plots pbq, pcq and pdq, we
recursively calculate the optimal node-specific adjusted markup θ˚A “ 5.917, θ˚B “ 5.668
and θ˚C “ 6.000, θ˚D “ 5.953, θ˚E “ 4.900, θ˚F “ 5.500 for basic nodes C,D,E and F ,
respectively. In the end, the optimal price of product k can be obtained by using this lin-
ear correspondence pk “ θj ` ck ` 1{βk where j is the parent node of k. For instance,
p˚H “ θ˚C ` cH ` 1{βH “ 6.000` 0.8` 1{1.6 “ 7.425.
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Figure 3.3: Pricing problem example under a three-level nested logit model
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Chapter 4

Under Tree Logit Model: Joint
Assortment and Price Optimization

4.1 Literature Review

We present the relevant literature based on assortment and/or pricing problems under vari-
ants of the multinomial and nested logit models. The assortment optimization problem is
referred to as the problem where firms cannot control prices of products but are able to
make assortment decisions to maximize their profit. The multinomial logit model is based
on random utility maximization theory [34] and is successful in describing consumer choosing
behavior among products with different attributes, such as price, brand and quality. Under
the multinomial logit model, [42] show the structure of optimal assortment while consider-
ing inventory cost. [44] consider a no-purchase option in the multinomial logit model and
show the optimal assortment policy is to include the set of products that are sorted by their
revenues. [39] develop efficient algorithms to both static and dynamic assortment optimiza-
tion problem. [47] consider capacity constraints on the offered assortment under the general
attraction model including the multinomial logit model as its special case. [7], [41] and [23]
study the assortment optimization problem assuming consumers choosing decisions follow
the mixed multinomial logit model, which is able to segment consumers into groups and
allows different choosing behavior in different groups. [17] consider the assortment problems
under generalizations of the multinomial logit model and provide insight on the network
revenue management problem.

The multinomial logit model suffers from the independence of irrelevant alternatives
(IIA); see examples in [34] and [5]. The nested logit model, which is first proposed by [4],
succeeds in avoiding IIA and draws attention in assortment optimization problems recently.
When consumers choose according to the nested logit model, [38] study the assortment op-
timization problem with capacity constraints across different nests and develop polynomial-
time approximation algorithm. [29] identify structural conditions for the optimal assortment
and show a heuristic algorithm to compute the optimal solution. [11] study variants of
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assortment optimization problems, including considering the existence of no-purchase op-
tions in all the nests and the case where dissimilarity parameter exceeding one. The linear
program formulated by them shows the ability to reduce the entire searching space to an
acceptable size. [16] use a dynamic programming approach to solve the capacitated assort-
ment optimization problems with cardinality and space constraints across nests. Although
the nested logit model avoids the IIA property of the multinomial logit model, it still has
IIA property within each nest. A tractable way is to generalize the two-level nested logit
model to multistage tree logit model to alleviate the IIA property to the minimum extent.
[30] and [50] study the unconstrained and constrained assortment optimization under the
multilevel tree logit model, respectively. However, their approach do not generalize to the
joint capacitated assortment and price optimization problem. Most of the research listed
above focus only on assortment decisions without considering pricing effects that influence
demand and profit.

For the case of price optimization problem involving choice models, a firm’s objective is
to come up with an optimal pricing strategy to maximize their profit with a fixed offered
assortment by assuming that consumers choose according to a certain choice model. Under
the multinomial logit model, [20] observe the fact that the profit function is not jointly
concave with respect to price vectors. [3] and [21] discover the equal profit margin property
of products at optimal prices. [43] and [15] both show that multinomial logit profit function
is concave in terms of market share vectors instead of prices and there is a one-to-one
relationship between the price and market share variable. This concavity property is further
generalized to the nested logit model by [31] under the assumption that the price-sensitivity
parameters are identical in each nest. [19] relax this assumption by adding mild restrictions
of the dissimilarity parameter and price-sensitivity parameters and show the optimal prices
can be obtained via maximizing a unimodal scalar function. Under the multilevel tree
logit model, [30] work on an iterative algorithm that converges to a stationary point. In
contrast, instead of working with price vectors, [22] assign an intermediate variable to each
node and show there is an efficient way of getting the optimal solution. [50] generalize [19]
by introducing multilevel adjusted markup and considering the no-purchase option to be
associated with every node in the tree structure.

Most of the above study ignores the joint effect of assortment and pricing. For the joint
assortment and price optimization problem, [9] study the mathematical properties of the
optimal structure. [32] study the joint assortment and price optimization problem as well
as considering inventory under a newsvendor model and derive the structural properties of
optimal assortment and price. [48] works on the multinomial logit model with a general
utility function and the offered assortments have cardinality constraints. He finds out that
the adjusted markups are invariant for different products and further shows that the joint
assortment and price optimization problem can be reduced to finding the fixed point of
a single-dimensional function. [49] considers the search cost in the joint assortment and
price optimization problem and shows that the optimal policy is to include the products
with largest systematic utility. However, they assume the price-sensitivity parameters for
products are all identical to one and this work is under the multinomial logit model. [6]
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address the joint assortment and price competition in a competitive setting and derive the
pure strategy equilibrium existence properties.

Under the nested logit model that alleviates the IIA property suffered by the multinomial
logit model, [27] consider the joint assortment and price optimization problem with a type
or brand primary choice model in both centralized and decentralized regime. They derive
the properties and competitive equilibrium of joint optimal solution. [18] construct dummy
products with different price levels and develop a linear program to find the joint optimal
solution under the nested logit model. They do not assume any parametric relationship
between the preference weight of products and its price, but their approach is not flexible
in two folds. Firstly, for the joint assortment optimization problem, their method cannot
consider constraints on the offered assortment; secondly, if the assortment is given and cannot
be changed by the firm, their approach fails to work. However, our approach resolves these
two limitations and generalize the nested logit model to the multilevel tree logit model.
As a variant of our problem setting, our method turns out to work well when there is
no parametric relationship between the preference weight and price of the product under
the tree logit model. [12] study pricing problem under the nested logit model with a quality
consistent constraint and it can be extended to joint assortment and pricing problem. Unlike
most of the pricing literature that assume price is continuous, both of [18] and [12] consider
the prices as discrete variables and do not have a parametric relationship with preference
weight. In practice, considering the pricing problem as discrete or continuous optimization
both have retail applications. [37] develop a linear program as approximation methods to
the joint assortment and price optimization with price bounds under the nested logit model.
[24] use a nonparametric choice modeling method to consider the joint assortment and price
optimization problem and develop an expectation maximization (EM) algorithm to fit the
model.

4.2 Main Results and Contributions

We summarize our main results and contributions as follows:
1. In this paper, we formulate the joint capacitated assortment and price optimization

problem as a bi-level program where the inner problem is continuous price optimization and
the outer problem is discrete optimization over assortment decisions. We show that the inner
price optimization problem has a fixed point representation by introducing a scalar named
as node-specific adjusted markup, which can be viewed as an important bridge connecting
capacitated assortment and price optimization jointly.

2. For the joint capacitated assortment and price optimization problem, the consumer
choice structure that we consider is a multilevel tree with N products. The cardinality or
space constraints are imposed on the nonleaf nodes separately in the second last level. Our
main result of this essay is that the joint optimal solution and a 2-approximate solution can
be obtained in OpGN logGq time for the problem with cardinality and space constraints,
respectively, where G is the number of grid points for each node in the tree structure.
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Furthermore, under mild conditions on selecting grid points, our joint optimization algorithm
can be further refined to run in OpGN logKq where K is the maximum number of children
nodes that a nonleaf node can have in the tree structure. It is more efficient since K is
always less than G in general. Surprisingly, the computational complexity is irrelevant of the
number of levels in our tree structure. [30] studies the uncapacitated assortment optimization
problem with fixed prices under d-level nested logit model, the algorithm of which runs in
OpdN logNq time that is sensitive to the number of levels d. It is noticeable to find that
our algorithm for joint optimization problem has the similar scale in terms of complexity
compared to the algorithm for uncapacitated assortment-only problem in [30]. We show
that the bi-level joint optimization problem can be decomposed to a single dimensional
optimization problem over a scalar, which is tractable by our efficient algorithm.

3. To the best of our knowledge, we are the first to study joint capacitated assortment
and price optimization problem under the multilevel tree logit model under both cardinality
and space constraints. Many existing literature regarding the joint optimization problem
under the multinomial logit model or the nested logit model turn out to be the special case
of ours. For the earlier works on the joint capacitated assortment and price optimization,
[48] shows that the joint optimization problem with cardinality constraints on assortments
can be solved by finding a fixed of a one dimensional objective function when the consumers
choose under the multinomial logit model. This problem is tractable based on the linearity
nature of assortment optimization under the multinomial logit model that is considered in
[39]. However, the nonlinearity arises when it comes to the nested logit model that has
two choice stages. [18] consider the nested logit model and focus the possible prices of
products only on a prespecified grid and do not assume any parametric relationship between
the preference weight and price of products, while recent pricing literature under multistage
choice structure does not work in this case; see [30] and [22]. Moreover, [18] do not consider
constraints on the offered assortment in the joint assortment and price optimization problem.

4. Our approach generalizes earlier works not only to the tree logit model with arbitrary
structure and an arbitrary number of products, but to the problem where there is a cardinal-
ity or space limitation on feasible assortments as well. The results in this essay is flexible and
one step forward compared to the earlier and recent literature, we provide a systematic and
complete solution to the following three problems: 1) Capacitated assortment optimization
with fixed prices; 2) Price optimization with fixed assortment; 3) Joint assortment and price
optimization problem under the multistage tree logit model, including the multinomial logit
model and the nested logit model as special cases.

Organization

The organization of the essay is as follows. In the next section, we present the tree logit
model and problem formulation of the joint capacitated assortment and price optimization.
Section 4.4 considers joint optimization problem under cardinality constraints. We intro-
duce the bi-level optimization program, solve the inner price optimization problem provided
the assortment is fixed and introduce an intermediate variable that connects to the outer
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assortment optimization problem. Then we show this problem can be solved by an efficient
algorithm. In Section 4.5, we study the joint optimization problem under space constraints
and show a 2-approximate solution can be found in a tractable way by proposing an efficient
algorithm. In Section 4.6, we illustrate our algorithm by testing a numerical example under
a three-level tree structure.

4.3 Model and Problem Formulation

In this section, we first introduce the tree logit model and assumptions on the model pa-
rameters, such as the dissimilarity parameters and price-sensitivity parameters. Then we
are ready to formulate the joint capacitated assortment and price optimization problem as a
bi-level optimization program with price optimization as the inner problem and assortment
optimization as the outer problem.

Tree Logit Model

We use an m-level tree structure, which is denoted as Tree “ pV,Eq with vertices V and
edges E, to describe the consumer choosing process under the tree logit model. In this
tree structure, K is the maximum number of children nodes that a nonleaf node can have.
Faced with various products, assume that a consumer has m specific requirements, such as
product category, brands and rating, for the desired product that she wants to buy, which can
be translated into the m-stage decision-making process described as follows. In the m-level
decision tree, the consumer starts from the root node in level 0, and chooses whether to leave
without purchasing any products, which corresponds to the no-purchase option in level 1, or
to select a subset of all the products that satisfy her first requirement. The above choosing
process can be viewed as moving from root to one of its children nodes. If we assume that
she does not choose the no-purchase option, then she is now in level 1 and about to select
another subset of products satisfying both of her first two requirements. As she is moving
deeper down in the tree, she narrows down her set of desired products until she reaches
a leaf node corresponding to an actual product that meets all her m requirements, which
completes the choosing process. Parentpiq and Childrenpiq are used to denote the parent
node and the set of children nodes of node i, respectively. Without loss of generality, we
define Parentprootq “ H and ChildrenpLq “ H if node L is a leaf node. For any node i P V
in level l, let N l

i be the subset of products satisfying the consumer’s first l requirements
of the products. For notational brevity, we omit the superscript l of N l

i throughout the
paper. From the above choosing process, we can see that Ni is consist of products or leaf
nodes sharing the same ancestor node i. Thus Ni can be defined recursively as follows,
Ni “ tiu if node i is a leaf node; and Ni “

Ť

jPChildrenpiqNj for nonleaf node i that is in level
0 ď l ď m´ 1. Using this notation, Nroot represents the set of all the candidate products to
be chosen from. Let N be the total number of candidate products, then the size of Nroot is
N ` 1 since Nroot is consist of N products and one no-purchase option.
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We proceed to introduce the assortment that is offered to the consumer. In practice, it
is always not optimal to offer all the product that a firm has to consumers because there
is a display space limitation or it is not better off offering less attractive products with
high prices. A decision that the firm always make is to choose a subset of products, or
an assortment that is denoted as Sroot, from Nroot in order to achieve its objective, such
as maximizing expected profit in our problem setting. Similarly, for any node i P V , the
assortment Si Ď Ni of node i is also defined recursively: if node i is a leaf node, Si “ tiu or
H, implying that we choose whether to include product i in the offered assortment or not;
on the other hand, if node i is a nonleaf node, then Si “

Ť

jPChildrenpiq Sj that is an assortment

of the subtree rooted at node i. We also assign a price vector PipSiq P R|Si| to node i P V ,
which includes the prices of products in assortment Si. For instance, if node i is a leaf node,
Pipiq “ ppiq when Si “ tiu and pi is the price of product i or Pipiq “ H when Si “ H; for
the root node, ProotpSrootq contains the prices of all the products in assortment Sroot. For
notational purpose, we use Pi instead of PipSiq throughout the paper.

As discussed in the above paragraph, the size of feasible assortment that a firm of-
fers cannot be too large due to the display space limitation. In this paper, we work with
cardinality/space constraints limiting the total number/space of products that are asso-
ciated with the nodes in level m ´ 1. For ease of presentation, we define those nodes
in level m ´ 1 as basic nodes, the set of which is denoted as B. Then for the basic
node j P B, the set of feasible assortments under cardinality constraints is defined as
=j “ tSj : Sj “

Ť

kPChildrenpjq Sk, |Sj| ď Cju where the prespecified Cj is a cardinality limi-
tation on assortment Sj, implying the maximum number of products that node j can have
should not exceed Cj. The set of feasible assortments under space constraints is accordingly
defined as =1j “ tSj : Sj “

Ť

kPChildrenpjq Sk,
ř

kPChildrenpjqwk ď Sju where the prespecified Sj
is a space limitation on assortment Sj and wk is the space consumption of product k. For
node i that is neither a leaf node nor a basic node, the feasible set of assortments is defined
recursively as =i “

Ś

jPChildrenpiq=j, where
Ś

stands for the Cartesian product. With this
notation, the feasible set of assortments for node i is the Cartesian product of all the feasible
sets of assortments for i’s children nodes that are indexed by j.

We use the upside-down tree in Figure 4.1 as an example to illustrate our notational
system. In the three-level tree structure, there are 11 leaf nodes including 10 products
tg, h, ..., pu in level 3 and a no-purchase option in level 1. For the node a, we have Parentpaq “
root, Childrenpaq “ tc, du, Na “ Nc

Ť

Nd “ tg, h, iu
Ť

tj, k, lu “ tg, h, i, j, k, lu. We also have
Ng “ tgu, Childrenpgq “ H and Parentprootq “ H. Let the cardinality constraints on basic
nodes c and d be =c “ tSc : Sc “

Ť

kPChildrenpcq Sk, |Sc| ď 1u “ tH, g, h, iu and =d “ tSd : Sd “
Ť

kPChildrenpdq Sk, |Sd| ď 1u “ tH, j, k, lu, respectively. Then the feasible set of assortments for

node a is =a “ =c

Ś

=d “ tH, tgu, thu, tiu, tju, tku, tlu, tg, ju, tg, ku, tg, lu, th, ju, th, ku, th, lu,
ti, ju, ti, ku, ti, luu and a feasible assortment for node a is Sa “ tg, ku Ď =a with price vector
Pa “ ppg, pkq. The size of =a is 15 that is very large for a system only has 10 products. If
we impose the same cardinality constraints on nodes e and f , a feasible assortment for node
root is Sroot “ tg, k, nu, in which Sa “ tg, ku, Sd “ tku, Se “ tnu, Sj “ H and Sn “ tnu.
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The price vector of Sroot is Proot “ ppg, pk, pnq. From this toy example, we can still get a
sense that the size of =root “ =a

Ś

=b is very large even under simple tree structure with
small number of products, thus selecting an optimal assortment is not a trivial task and
brute force clearly is not an option. Similarly, for space constraints, if we let wg “ wj “ 1,
wh “ wk “ 2, wi “ wl “ 3 and Sc “ Sd “ 2, then the feasible set of assortments for node a
is =1a “ tH, tgu, tju, thu, tku, tg, juu.

Level 0

Level 1

Level 2

Level 3

root

No purchase a b

c d e f

g i j l m n o ph k

Figure 4.1: The tree logit model with a 3-level tree structure

To measure the attractiveness of assortment Si with its corresponding price vector Pi, we
assign a preference weight VipSi,Piq for node i P V as a function of Si and Pi. Specifically,
if node i is a leaf node and is not a no-purchase option, its preference weight is defined as

VipSi,Piq “ exppαi ´ βipiq ˚ 1pSi ­“ Hq,

where αi is price-independent deterministic utility and βi is the price-sensitivity parameter
of product i. If the assortment Si for leaf node i is empty, the indicator function 1p¨q is
zero, yielding the preference weight VipH,Piq to be zero; if Si is not empty, then VipSi.Piq “

exppαi´βipiq would be strictly positive. Moreover, for the no-purchase option in level 1 as a
child node of the root node, let Vroot0 ą 0 be its preference weight. Then for a nonleaf node
i P V , its preference weight can be calculated recursively as

VipSi,Piq “

¨

˝

ÿ

jPChildrenpiq

VjpSj,Pjq

˛

‚

γi

,

where γi P p0, 1s is the dissimilarity parameter of nonleaf node i, Si is the assortment
associated with node i and Pi is its corresponding price vector. The preference weight
of root node does not influence the objective profit function, which will be shown later of
this section, so we set γroot “ 0 without loss of generality, which yields VrootpSrootq “ 1 for
arbitrary assortment Sroot.
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The restriction on γi guarantees that this tree logit model satisfies the random utility
maximization theory [34]. The dissimilarity parameter γi for node i measures the dissim-
ilarities between its children nodes. The larger γi is, the less similar the products of i’s
children nodes are, or the less positively related the random utilities of these products are.
Specifically, when γi equals to one, the tree structure is degenerated by removing node i and
connecting i’s children nodes and parent node directly. If the dissimilarity parameter exceeds
one, the two-level nested logit model is still consistent with the random utility maximization
theory under some conditions; see [33] and [45]. Recently, [11] and [19] study the assortment
optimization and price optimization problem under the two-level nested logit model with
dissimilarity parameter exceeding one, respectively. In this paper, we impose the restriction
that γi P p0, 1s for all i P V , since the assortment optimization problem becomes NP-hard
even for uncapaciated assortment with fixed prices under the two-level nested logit model.
As in [22], we also make the following assumption on the price-sensitivity parameters and
dissimilarity parameters to guarantee that there is a unique optimal pricing solution.

Assumption 3. For any nonleaf node i, define

Bi “

#

minjPChildrenpiqtβju i is a basic node

minjPChildrenpiqtBjγju o.w.

and

Bi “

$

&

%

maxjPChildrenpiqtβju i is a basic node

maxjPChildrenpiqt
γ2jBj

1´p1´γjqBj{Bj
u o.w.

We assume that

Bi

Bi

ă
1

1´ γi
.

Problem Formulation

The tree logit model is essentially a probability based choice model, with the notational
system ready, we show how the choice probabilities of products are calculated and how they
are related to the objective profit function as follows. If assortment Si of node i is not empty,
the conditional probability of choosing Sj where j P Childrenpiq can be formulated as

QpSj,Pj|Si,Piq “
VjpSj,Pjq

ř

jPChildrenpiq VjpSj,Pjq
.

If assortment Si is empty, then we define QpSj,Pj|Si,Piq “ 0{0 “ 0 as the probability of
choosing from an empty assortment is zero. We use RipSi,Piq to denote the profit for node
i P V with assortment Si and price vector Pi. Particularly, if node i is a leaf node but not
a no-purchase option, then RipSi,Piq “ ppi ´ ciq ˚ 1pSi ‰ Hq where ci is the cost of product
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i and the indicator function 1p¨q makes the profit to be zero if we do not offer product i in
assortment Si. For the no purchase, we define Rroot0pSroot0 , Proot0q “ 0 since we cannot get
any profit if the consumer decides not to purchase. If node i is a nonleaf node, then the
expected profit is defined recursively as follows

RipSi,Piq “
ÿ

jPChildrenpiq

QpSj,Pj|Si,Piq ˚RjpSj,Pjq

“

ř

jPChildrenpiq VjpSj,PjqRjpSj,Pjq
ř

jPChildrenpiq VjpSj,Pjq
.

Thus for assortment Sroot with price vector Proot, the objective profit that is generated from
this system is RrootpSroot,Prootq. Since the objective profit function RrootpSroot,Prootq does
not include the term Vroot, we can set γroot “ 0 to make Vroot “ 1 without changing the
objective.

The joint capaciated assortment and price optimization problem under the tree logit
model can be formulated as the following bi-level optimization program

Z˚ “ max
SrootĎ=root

max
ProotPR

|Sroot|
ě0

RrootpSroot,Prootq, (4.1)

where Z˚ denotes the maximum expected profit that we can obtain per consumer and =root

is the collection of feasible assortments that satisfy the constraints, which can be either
cardinality or space constraints. In this paper, we show that problem (4.1) is tractable by
building a bridge that connects the inner price optimization problem and the outer assort-
ment optimization problem.

4.4 Joint Optimization Under Cardinality Constraints

In this section, we consider the joint capacitated assortment and price optimization problem
under the cardinality constraints. Thus, we have =j “ tSj : Sj “

Ť

kPChildrenpjq Sk, |Sj| ď Cju

for @j P B throughout the section. First, we show the joint optimization problem can be
decomposed to solving joint subproblem that are define on the nonleaf node by assuming we
have already known both optimal assortment and optimal prices. Second, we solve the inner
pricing problem of the joint subproblem. The remaining joint subproblem with solved inner
pricing problem is referred to as assortment subproblem. Third, the assortment subproblem
can be we reformulated by optimizing over a scalar. Last, we propose a polynomial-time
approach to solve the joint optimization problem under cardinality constraints.

Problem Decomposition

We consider solving problem (4.1) by decomposing it into joint subproblem on every nonleaf
node, which is inspired by the algorithm of uncapacitated assortment optimization problems;
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see [30]. However, their approach can deal with the uncapacitated assortment optimization
only and cannot be generalized to solve joint optimization over both capacitated assortment
and prices. Let S˚i and P˚

i be the optimal assortment and the optimal price vector for node
i P V , respectively. Then define the scalar e˚i “ γie

˚
h ` p1 ´ γiqRipS

˚
i ,P

˚
i q where h is the

parent node of i, and let e˚Parentprootq “ 0 for the boundary condition. By noting that γroot “ 0,

we have e˚root “ RrootpS
˚
root,P

˚
rootq. If the optimal assortment S˚root and optimal prices P˚

root

are given, then RipS
˚
i ,P

˚
i q for i P V can be calculated, thus all the scalars e˚i can also be

obtained in a top-down manner. For each nonleaf node i, the joint subproblem is defined as
follows

max
SiĎ=i

max
PiPR

|Si|
ě0

VipSi,PiqpRipSi,Piq ´ e
˚
hq. (4.2)

Note that problem (4.2) at root node is identical to problem (4.1).
Compared to the assortment optimization problem, the joint optimization problem re-

quires making decisions of both assortment and prices. In the capacitated assortment opti-
mization problem under the two-level nested logit model [18] and uncapaciated assortment
optimization problem under the d-level nested logit model [30], the optimal assortment S˚i
of a nonleaf node i P V can be an empty set if R˚i pS

˚
i q is less than the scalar e˚h. However,

for the “joint” optimization problem, the optimal assortment S˚i can never be empty since
we have more control over both assortment and prices. The following lemma shows this
difference between joint and assortment-only optimization problem.

Lemma 13. (Joint Subproblem and Optimal Assortment) In the joint capacitated assort-
ment and price optimization problem, for a nonleaf node i P V and its parent node h, the
optimal assortment and price vector (S˚i , P˚

i ) and optimal solution pŜi, P̂iq to joint subprob-
lem at node i satisfy:

1. RipS
˚
i ,P

˚
i q ą e˚h ě 0;

2. S˚i is a nonempty set and P˚
i is a nonzero vector;

3. pS˚i ,P
˚
i q “ pŜi, P̂iq and

Ť

iPChildrenphqpŜi, P̂iq is optimal to joint subproblem at node h.

With a slight abuse of notation, we denote pŜh, P̂hq “
Ť

iPChildrenphqpŜi, P̂iq throughout

the essay for ease of presentation, where Ŝh “
Ť

iPChildrenphq Ŝi and P̂h “ pP̂i1 , P̂i2 , ..., P̂inq

where i1, i2, ..., in P Childrenphq. The proof of this lemma can be found in Online Appendix
C.2.

From Lemma 13, it immediately follows that for node i in level l, both e˚i and RipS
˚
i ,P

˚
i q

decrease as l becomes smaller, i.e. e˚i ą e˚Parentpiq andRipS
˚
i ,P

˚
i q ą RParentpiqpS

˚
Parentpiq,P

˚
Parentpiqq.

We make an observation that the joint subproblem at node i P V is highly nonlinear in Si
even if the optimal price vector P˚

i is given. Therefore, we propose an alternative formulation
of joint subproblem at node i P V , which is referred to as basic joint subproblem, as follows

max
SiĎ=i

max
PiPR

|Si|
ě0

VipSi,Piq
1{γipRipSi,Piq ´ e

˚
i q. (4.3)
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For root node specifically, we define VrootpRroot,Prootq
1{γroot “

ř

jPChildrenpiq VjpRj,Pjq, and the

optimal objective value for problem (4.3) at root node is zero since e˚root “ RrootpS
˚
root,P

˚
rootq.

Problem (4.3) at a basic node turns out to be tractable, which we would show later in this
section. The remaining question is what the relationship is between joint subproblem (4.2)
and basic joint subproblem (4.3). We want to show the optimal solution to problem (4.3)
is also optimal to problem (4.2), and the following example under the two-level nested logit
model can be used to illustrate the intuition.

Example 1. (Joint Optimization Under the two-level Nested Logit Model) Under the two-
level nested logit model, where the disjoint nests are indexed by j. The feasible set of assort-
ment for node j is denoted as =j. The joint subproblem (4.2) at root node is the global joint
optimization problem

θ˚root “ max
SrootĎ=root

max
ProotPR

|Sroot|
ě0

RrootpSroot,Prootq,

which, according to the definition of RrootpSroot,Prootq, can be rewritten as

v0θ
˚
root “ max

SrootĎ=root

max
ProotPR

|Sroot|
ě0

ÿ

jPChildreprootq

VjpSj,PjqpRjpSj,Pjq ´ θ
˚
rootq

Move v0θ
˚
root to the right hand side of the above equation, it becomes

0 “ max
SrootĎ=root

max
ProotPR

|Sroot|
ě0

VrootpRroot,Prootq
1{γrootpRrootpSroot,Prootq ´ θ

˚
rootq.

The right hand side of the above equation is the basic joint optimization problem (4.3) at
root node. Therefore, the optimal solution to problem (4.3) is also optimal to problem (4.2)
and they share the same optimal solution.

The following lemma follows the above discussion.

Lemma 14. For any nonleaf node i P V , the optimal solution to basic joint subproblem (4.3)
is also optimal to joint subproblem (4.2).

Even if e˚h is known, we still cannot solve joint subproblem (4.2) at basic node i due to
the nonlinearity of Si in the preference weight VipSi,Piq. However, by Lemma 14, we turn
to deal with a more tractable basic joint subproblem (4.3). That is to say, if e˚i is given
@i P B, then the optimal solution to problem (4.1) can be obtained by taking the union of
all the optimal solutions to problem (4.3) at node i by Lemma 14 and using the third item
of Lemma 13 repeatedly.
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Assortment Subproblem

In this subsection, we still assume the scalar e˚i is given for any nonleaf node i and focus on
building connections between the inner pricing and outer assortment optimization problem
of the joint subproblem (4.2). For a given assortment Si Ď =i, the inner pricing problem of
(4.2) at node i is

max
PiPR

|Si|
ě0

VipSi,PiqpRipSi,Piq ´ e
˚
hq. (4.4)

Problem (4.4) is a |Si|-dimensional continuous optimization problem. The objective function
is non-concave with respect to the price vector even under the 2-level tree logit model. We
introduce an intermediate variable for node i P V to reduce the dimension of this problem,
which is referred to as the node-specific adjusted markup and is defined as follows.

Definition 1. (Node-specific Adjusted Markup) For nonleaf node i P V , given assortment
Si, the node-specific adjusted markup for node i is defined as

θi “ θj ´ ωjpSj, θjq,

where j P Childrenpiq and ωjpSj, θjq is recursively defined as follows

ωjpSj, θjq “ p
1

γj
´ 1q

ÿ

kPChildrenpjq

QpSk, θk|Sj, θjq

1´ γk
ωkpSk, θkq.

For the boundary condition, if leaf node i is in level m, we set θi “ pi ´ ci, ωi “ 1{βi and
γi “ 0; for the root node, we define ωrootpSroot, θrootq “ θroot.

By applying the first order condition repeatedly, the dimension of problem (4.4) can be
reduced to one in the end. If the objective function has nice properties, then solving problem
(4.4) with respect to the node-specific adjusted markup is not as a hard task as solving it
with respect to the price vector, which in turn makes it possible to solve joint subproblem
(4.2). Assumption 3 about input parameters, which are price-sensitivity parameters and
dissimilarity parameters, is the sufficient condition that guarantees the uniqueness of the
optimal solution to problem (4.4). At optimality conditions, the following lemma shows that
the properties of node-specific adjusted markup.

Lemma 15. Given assortment Si for nonleaf node i P V in level d. Suppose node a,
which is in level l pd ă l ď m ´ 1q, is a descendant node of i, then for any nodes b, b1 P
Childrenpaq, we have that θa “ θb´ωbpSb, θbq and θ1a “ θb1 ´ωb1pSb1 , θb1q are equivalent under
the optimality condition of problem (4.4). Under Assumption 3, there exists a one-to-one
increasing correspondence between the node-specific adjusted markup θa and θb.

According to the above lemma, we know that there is a one-to-one correspondence be-
tween the node-specific adjusted markup of one node’s and its parent node’s. Moreover, for
product r in the lowest level m, its node-specific adjusted markup θr equals to pr ´ cr, so θr
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has a one-to-one correspondence with its price pr. Then we can conclude that for every node
i P V , there is a one-to-one correspondence between the node-specific adjusted markup θi
and its price vector Pi. Thus for a given θi, the prices of its descendant products’ can also be
uniquely determined. Therefore, the |Si|-dimensional price vector Pi in problem (4.4) can
be replaced by the scalar θi. As in the Definition 1, QpSk, θk|Sj, θjq can be used to represent
the conditional probability instead of QpSk,Pk|Sj,Pjq. We make a crucial observation that
the multidimensional inner pricing subproblem (4.4) given assortment Si can be rewritten
as an optimization problem with respect to a scalar, which is shown as follows

max
θiPR

VipSi, θiqpRipSi, θiq ´ e
˚
hq, (4.5)

This observation is recorded in the following proposition.

Proposition 10. The inner pricing subproblem (4.4) for a given assortment Si at a nonleaf
node i P V is equivalent to the optimization problem (4.5) with respect to the node-specific
adjusted markup θi that is a scalar.

We continue to study problem (4.5) and show the findings in the following lemma by
applying the first order condition.

Lemma 16. At the optimality condition of problem (4.5), θi should satisfy:

θi “ γie
˚
h ` p1´ γiqRipSi, θiq.

where θi is the node-specific adjusted markup for node i.

Lemma 16 is insightful in a way that problem (4.5) is solved by finding θi that satisfy the
optimality condition if Si and e˚h are known. However, solving problem (4.5) is still a non-
trivial task since there might be multiple θi satisfying the optimality condition. Fortunately,
problem (4.5) at root node can be solved uniquely and efficiently.

Corollary 5. If i is root node, then RipSi, θiq is strictly unimodal in θi and RipSi, θiq “ θi
at optimality for given Si.

In order to get the optimal solution to problem (4.5) at nodes besides the root in a
tractable way, we aim for studying the optimality condition again by finding out what the
scalar e˚i essentially is. We define the optimal node-specific adjusted markup θ˚i for node
i P V as the optimal solution to inner pricing subproblem (4.5) given optimal assortment
S˚i : θ˚i “ arg maxθiPR VipS

˚
i , θiqpRipS

˚
i , θiq ´ e

˚
hq.

Proposition 11. For any node i P V , the optimal node-specific adjusted markup θ˚i is
equivalent to the scalar e˚i .
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Start from the optimality condition as shown in Lemma 4, the next proposition shows
more of the structural relationship between θ˚h and the expected profit RipSi, θiq of node i
given assortment Si. This relationship can be viewed as the bridge that connects the inner
pricing subproblem and the outer assortment optimization subproblem. How to exploit this
property is crucial to solve the joint subproblem (4.2), which will be further discussed in this
section.

Proposition 12. RipSi, θiq and θ˚h should satisfy the following conditions at the optimality
of problem (4.5):

RipSi, θiq “ θ˚h `
1

1´ γi
ωipSi, θiq,

and
θ˚h “ θi ´ ωipSi, θiq.

Moreover, we have RipSi, θiq ą θ˚h.

The fact that RipSi, θiq ą θ˚h is also consistent with the first item in Lemma 13. The next
corollary eliminates the concerns of possibility that problem (4.5) has multiple solutions.

Corollary 6. For a given θ˚h and Si, optimal solution to problem (4.5) can be uniquely
determined by θ˚h “ θi ´ ωipSi, θiq.

We are ready to rewrite the bi-level joint subproblem (4.2) as an optimization program
with respect to assortment variable only since inner pricing subproblem is completely solved
by earlier discussion. We record this finding in the following theorem.

Theorem 7. (Assortment Subproblem) The equivalent formulation of joint subproblem (4.2)
is defined as follows:

max
SiĎ=i

VipSi, θiqωipSi, θiq

1´ γi
s.t. θ˚h “ θi ´ ωipSi, θiq,

(4.6)

which is referred to as assortment subproblem at node i.

Note that for the root node, ωrootpSroot, θrootq “ θroot “ RrootpSroot, θrootq at the optimality
condition of problem (4.6). In the assortment subproblem (4.6), θi is essentially a function
of Si for a given θ˚h since θi can be uniquely computed via the constraint in problem (4.6)
by Corollary 6. However, the scalar θ˚h, which is the optimal solution to the inner pricing
subproblem (4.5) at node h given the optimal assortment S˚h , cannot be identified before we
obtain θ˚root by solving RpS˚root, θrootq “ θroot; see [50] for numerical experiments.

Even if θ˚h is provided, obtaining an analytical solution to problem (4.6) seems not possible
due to the nonlinearity nature of the objective function. The optimal solution to problem
(4.3) is also optimal to (4.2), since problem (4.3) is “linear” in Si if a collection of candidate
assortments for node j P Childrenpiq is given, we show the basic joint subproblem (4.3) can
be reformulated as well in the next theorem.
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Theorem 8. (Basic Assortment Subproblem) The equivalent formulation of basic joint sub-
problem (4.3) is defined as follows:

max
SiĎ=i

ÿ

jPChildrenpiq

VjpSj, θjqωjpSj, θjq

1´ γj

s.t. θ˚i “ θj ´ ωjpSj, θjq,

(4.7)

which is referred to as basic assortment subproblem at nonleaf node i.

As the discussion at the end of section 4.4, problem (4.7) at basic nodes is of special
interest to study, which can be solved in an efficient approach by the following corollary.

Corollary 7. For basic node j P B, problem (4.7) at j can be simplified as

max
SjĎ=j

ÿ

kPChildrenpjq

VkpSk, θ
˚
j ` ck ` 1{βkq

βk
, (4.8)

where Sj “
Ť

kPChildrenpjq Sk and Sk P Ak “ ttku,Hu that is the candidate collection of

assortments for leaf node k P Childrenpjq. Problem (4.8) can be solved within OpNj logNjq

operations.

By corollary 7, the next corollary shows that the union of the optimal assortments to
problem (4.8) at all the basic nodes is the global optimal assortment to problem (4.1), which
can be proved by applying Lemma 13 repeatedly.

Corollary 8. For all the basic node j P B, let Ŝj be optimal to problem (4.8), then assort-

ment Ŝroot “
Ť

jPB Ŝj is the optimal assortment to problem (4.1).

Equivalent Formulation of Assortment Subproblem

However, θ˚j for j P B in problem (4.8) remains unknown. Even if there is a limited number
of optimal solution to problem (4.8) for θ˚j P R, we still need to deal with problem (4.6) at
upper-level nodes, which is intractable since it is nonlinear with respect to the assortment
variable and the feasible searching space grows exponentially as number of products increases.
In this subsection, for basic nodes, we first prove that a candidate collection of assortments
that include the global optimal assortment to problem (4.1) has reasonable size and can be
obtained efficiently. Second, we can get a feasible collection Ai including the global optimal
assortment S˚i for upper-level node i in a bottom-up manner. Then we show that Ai has the
size of OpNq by reformulating problem (4.6) in terms of optimizing over a scalar θi rather
than the assortment variable Si.

For any basic node j P B, we need to know θ˚j in order to solve the basic assortment
subproblem, which in turn requires knowing S˚j . However, knowing S˚j is impossible unless
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we could solve problem (4.1). We remark that the scalar θ˚j in problem (4.8) can also be

negative; see [19]. For any θj P R, let S̃jpθjq be the optimal solution to the following problem

max
SjĎ=j

ÿ

kPChildrenpjq

VkpSk, θj ` cj ` 1{βkq

βk
, (4.9)

Define Aj “ tS̃jpθjq : θj P Ru, then we claim that Aj includes the global optimal assortment
S˚j , since S˚j “ S̃jpθ

˚
j q according to Corollary 7 and Theorem 8. The next lemma shows that

at optimality, the cardinality constraint in problem (4.9) is binding.

Lemma 17. For the optimal solution S̃jpθjq to problem (4.9) with @θj P R, we have |S̃jpθjq| “
Cj.

Lemma 17 is useful when the cardinality limitation is larger than the number of products
that a basic node has, since the optimal assortment of this basic node in this case is straight-
forward: include them all. If it applies to all the basic nodes, the joint optimal assortment
is S˚root “ Nroot, and optimal prices can be found via RrootpNroot, θ

˚
rootq “ θ˚root.

Next we solve problem (4.9) for θj P R, the objective function of which is rewritten as
ř

kPChildrenpjq exppα̃k´βkθjq where α̃k “ αk´βkck´ logpβkq´1 since VkpSk, θj` ck`1{βkq “

exppαk ´ βk ˚ pθj ` ck ` 1{βkqq according to Definition 1. If we define fkpθjq “ expphkpθjqq
where hkpθjq “ α̃k ´ βkθj, then there is at most one intersection point of any two functions
in tfkpθjq : k P Childrenpjqu. Furthermore, the intersection point, if any, of two functions
fk1pθjq and fk2pθjq is same as the intersection point of the two linear functions hk1pθjq and
hk2pθjq, the x-coordinate of which can be calculated as

Ipk1, k2q “
α̃k1 ´ α̃k2
βk1 ´ βk2

.

Problem (4.9) is essentially a 0-1 knapsack problem with unit weight, the optimal solution
is to select top Cj products that are ordered by fkpθjq for k P Childrenpjq with a given
θj. The important observations are: 1) the ordering of fkpθjq is identical to the ordering
of hkpθjq; 2) the ordering does not change when θj takes values between two consecutive
intersection points. For example, the basic node j has three products, indexed by k “ 1, 2, 3,
with cardinality limitation of two. Figure 4.2 shows how to solve problem (4.9) at node j,
there are three lines: hkpθjq “ α̃k´βkθj for k “ 1, 2, 3, which are intersected at 3 points and
the real line is divided into 4 intervals. For the different ranges of θj, the optimal assortment
S̃jpθjq to problem (4.9) is shown in Table 4.1.

For θj P R, the size of candidate collection Aj including optimal assortments to problem
(4.8) at basic node j P B is bounded by OpN2

j q since there are at most
`

Nj
2

˘

“ OpN2
j q

intersection points of these lines. As in the above example, S̃jpθjq does not change at
intersection points a and c, and only changes at intersection point b with one product being
replaced by a new product. Thus the set of intersection points can be further refined to a
set of changing points where S̃jpθjq actually changes. Moreover, the set of changing points
has size OpNjq when the cardinality limitation Cj is prespecified [39].
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θj

h1(θj)

h2(θj)

h3(θj)

a b c

Figure 4.2: An illustration of solving problem (4.9) at basic node j

θj (´8, a) (a, b) pb, cq pc,`8q

Ŝjpθjq t1, 2u t1, 2u t2, 3u t2, 3u

Table 4.1: Optimal assortment Ŝjpθjq to problem (4.9) for different ranges of θj

Lemma 18. For basic node j P B, the preference weight VjpS̃jpθjq, θjq as a function of θj
drops discontinuously at the changing point θ1j.

By the above discussion, the size of Aj “ tS̃jpθjq : θj P Ru is OpNjq. Denote i as the
parent node of basic j, then Ai “

Ś

jPChildrenpiqAj includes an optimal assortment to joint

subproblem (4.2) at node i by Lemma 13. The size of Ai is Op
ś

jPChildrenpiqNjq, which is

roughly OpKKq since K is the largest number of children nodes that a nonleaf node can have
in the tree structure. Even if we have reduced the feasible searching space of the assortment
subproblem (4.6) at node i from =i to Ai, it is still intractable with a large K. To tackle this
intractability, we next consider problem (4.6) at basic node j with smaller searching space.
Then we stitch Aj for @j P Childrenpiq together in a systematic way to get Ai, the size of
which is at most Op

ř

jPChildrenpiq |Aj|q.
Since Aj includes the global optimal assortment S˚j , we can use Aj to replace =j in

problem (4.6) at node j without affecting the optimality. For θi P R, we let Ŝjpθiq be an
optimal solution to the following problem

max
SjĎAj

VjpSj, θjqωjpSj, θjq

1´ γj

s.t. θi “ θj ´ ωjpSj, θjq.

(4.10)
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Then the set Ai “ t
Ť

jPChildrenpiq Ŝjpθiq : θi P Ru includes a global optimal assortment

S˚i , since S˚i “
Ť

jPChildrenpiq Ŝjpθ
˚
i q by lemma 13 and

Ť

jPChildrenpiq Ŝjpθ
˚
i q P Ai. Recall that

Aj “ tS̃jpθjq : θj P Ru where S̃jpθjq is the optimal solution to problem (4.9), thus we can
reformulate problem (4.10) in terms of optimizing over the scalar θj P R as follows

max
θjPR

VjpS̃jpθjq, θjqωjpS̃jpθjq, θjq

1´ γj

s.t. θi “ θj ´ ωjpS̃jpθjq, θjq.

(4.11)

The above finding is recorded in the next proposition.

Proposition 13. Problem (4.11) and (4.10) are equivalent formulation at basic node j.

For the constraint in problem (4.11), if there exists a one-to-one relationship between
θi and θj, the feasible region of decision variable θj is a singleton for a given θi, then this
problem is trivially solved by finding the matching θj. For θi “ θj´ωjpS̃j, θjq, the one-to-one
correspondence exists for a specific assortment S̃j by lemma 15. However, for the constraint
θi “ θj ´ ωjpS̃jpθjq, θjq, one θi may correspond to multiple θj’s since S̃pθjq is also a function
of θj. In the following lemma, we summarize our observations.

Lemma 19. Let S̃jpθjq be the optimal solution to problem (4.9) at basic node j for θj P R,
then θi “ θj´ωjpS̃jpθjq, θjq is discontinuous with respect to θj. Moreover, there exists θi ă θi
such that one θi correspond to at least two θj’s when θi P rθi, θis.

From the above lemma, there is no one-to-one correspondence for some range of θi, but
for some other ranges of θi, the one-to-one correspondence do exist. We define Fjpθiq to be

the optimal solution to problem (4.11) at basic node j P B, then we have Ŝjpθiq “ S̃jpFjpθiqq
by proposition 13. Thus Ai “ t

Ť

jPChildrenpiq S̃jpFjpθiqq : θi P Ru includes S˚i by the argument

discussed after introducing problem (4.10). For notational consistency, we define S̃ipθiq “
Ť

jPChildrenpiq S̃jpFjpθiqq. The above results only hold for basic node j, the next proposition
shows that these findings can be generalized to any nonleaf node i in the tree structure.

Proposition 14. For any nonleaf node i P V , let h and j represent its parent and children
node, respectively. We define Fipθhq as the optimal solution to the following problem

max
θiPR

VipS̃ipθiq, θiqωipS̃ipθiq, θiq

1´ γi

s.t. θh “ θi ´ ωipS̃ipθiq, θiq,

(4.12)

where S̃ipθiq is recursively defined as follows

S̃ipθiq “
ď

jPChildrenpiq

S̃jpFjpθiqq.

Then Ah “ t
Ť

iPChildrenphq S̃ipFipθhqq : θh P Ru includes the optimal assortment S˚h at node h.
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Ah is created by stitching together S̃ipFipθhqq through the scalar θh, but we still have
concerns about the size of Ah since θh takes value in R. The next lemma shows that problem
(4.12) has nice properties, which helps us to prove that Ah has polynomial size of N and
can be obtained efficiently.

Lemma 20. Denote the objective function in problem (4.12) as TipS̃ipθiq, θhq for a given θh,
where θi is implicitly defined in θh “ θi ´ ωipS̃ipθiq, θiq, then

1. The first derivative of TipS̃ipθiq, θhq with respect to θh is

BTipS̃ipθiq, θhq

Bθh
“ ´VipS̃ipθiq, θiq;

2. The objective function TipS̃ipθiq, θhq of problem (4.12) is a convex function in terms of θh.

3. For two different assortments S1, S2 P Ai, if VipS1, θipS1, θhqq and VipS2, θipS2, θhqqq do not
intersect, then TipS1, θhq and TipS2, θhq intersect at most once in θh domain.

The objective function of problem (4.12) is a strictly decreasing convex function in terms
of θh. Hence only the ordering of these convex curve matters, which is similar to the way
that we used to study problem (4.9). For example, both θi1 and θi2 satisfy the constraint
in problem (4.12) for a given θh. Let Si1 “ S̃ipθi1q and Si2 “ S̃ipθi2q, the intersection points
of TipSi1 , θhq and TipSi2 , θhq are easy to be identified by binary search due to the convexity
nature of the objective function. When θh takes value between these intersection points,
assortment S̃ipFipθhqq does not change. The next proposition shows that the size of Ah is
bounded and the size of tS̃ipθiq : θi P Ru equals to the size of tS̃ipFipθhqq : θh P Ru since
TipSi1 , θhq and TipSi2 , θhq intersect at most once.

Proposition 15. For nonleaf node i P V and its parent node h “ Parentpiq, let Ai “

tS̃ipθiq : θi P Ru, then Ah “ t
Ť

iPChildrenphq S̃ipFipθhqq : θh P Ru includes S˚h and we have

|Ah| ď
ř

iPChildrenphq |Ai|. Furthermore, the size of |Ai| is OpNq.

The above proposition ensures that the size of Ai grows linearly as node i moves from
bottom to top and it is bounded by OpNq. Otherwise, imagine that the above proposition
does not hold, then Ai is the Cartesian product of Aj for all j P Childrenpiq, and the size of
Ai grows exponentially in a bottom-up manner. Our joint optimization algorithm to problem
(4.1) with cardinality constraints that is about to be discussed in the next subsection is based
on the discretization of the node-specific adjusted markup θi, thus we need at least |Ai| grid
points to represent S̃ipθiq P Ai. If Ai includes too many different assortments, it makes S̃ipθiq
very sensitive to the change of θi, thus even more grid points are required, which in turn
leads to the intractability of problem (4.1).

Joint Optimization Algorithm

We present the algorithm JCAPO-C to sovle the joint capacitated assortment and price
optimization problem (4.1) under cardinality constraints. In earlier subsections, we show
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that problem (4.1) is reduced to the optimization problem (4.12) with respect to the node-
specific adjusted markup θi at any nonleaf node i P V . We discretize θi to a set of grid
points Gi “ to1

i , ..., o
g
i , ..., o

G
i u with size G; see [37] for selection of grid points. For grid

point ogi P Gi, we get S̃ipo
g
i q by stitching together the assortments of its children nodes:

S̃ipo
g
i q “

Ť

jPChildrenpiq S̃jpFjpo
g
i qq, then we move up to upper-level nodes until we reach the

root node by proposition 14, and obtain θ˚root by a fix point representation. Therefore, the
global optimal price vector P˚

root to problem (4.1) is uniquely defined due to the one-to-one
correspondence between P˚

root and θ˚root by Lemma 15 and the global optimal assortment
S˚root is S̃rootpθ

˚
rootq.

We define a mapping as λ : ogi Ñ og
1

h such that og
1

h P Gh is the grid point that is closest
to ogi ´ ωpS̃ipo

g
i q, o

g
i q where h “ Parentpiq. Algorithm JCAPO-C, which is presented in

Algorithm 5 as follows, solves problem (4.1) under cardinality constraints in a bottom-up
manner, which starts from basic nodes and then moves to its parent node until the root
node. It has three parts corresponding to i) problem (4.9) at basic nodes, ii) problem (4.12)
at upper-level nodes and iii) solving the fixed point representation at root node, respectively.

In this algorithm, Fipo
g1

h q is initialized to ´M and then updated to the optimal so-
lution to problem (4.12). For each update, it compares the objective function with θi
taking value at current Fipo

g1

h q and new coming point ogi , which takes Op1q since it only
includes one comparison. Line 10 and line 22 essentially deals with problem (4.12) at
basic node j and nonbasic node i, respectively, where the constraints in problem (4.12)
are automatically satisfied due to the mapping λ. We make an observation that line 10
and line 22 run in Op1q since it only takes a single numerical comparison. In line 17,
VipS̃ipo

g
i q, o

g
i q “ p

ř

jPChilrenpiq VjpS̃jpFjpo
g
i qq,Fjpo

g
i qqq

γi and it can be calculated in Op1q by

looking up the previously stored preference weight of its children node j, and ωipS̃ipo
g
i q, o

g
i q

can be computed in Op1q as well. The next theorem states that the joint capacitated as-
sortment and price optimization problem (4.1) under cardinality constraints can be solved
in OpGN logGq.

Theorem 9. The computational complexity of Algorithm JCAPO-C is OpGN logGq, where
G is the number of grid points for each node in the tree structure and N is the total number
of candidate products. Furthermore, if the spacings of grid points are identical, it can be
further reduced to OpGN logKq where K is the maximum children nodes that a nonleaf node
can have in the tree logit model.

We remark that the computational complexity is irrelevant of the number of levels m
and the total number of grid points is bounded by OpGNq since the total number of nodes
is less than twice the number of leaf nodes in a tree.
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4.5 Joint Optimization Under Space Constraints

In this section, we consider the joint capacitated assortment and price optimization problem
(4.1) under space constraints. We develop an algorithm that runs in OpGN logGq to obtain
a 2-approximate solution. Similarly, this algorithm that is referred to as JCAOP-S is more
efficient with same performance guarantee under mild adjustments. Under space constraints,
the feasible assortment is =j “ tSj : Sj “

Ť

kPChildrenpjq Sk,
ř

kPChildrenpjqwk ď Sju for @j P B.

Let Sαroot “ pSαi : i P V q denote the α-approximate assortment throughout this section.
First, the joint optimization problem under space constraints can also be decomposed into
assortment subproblem on a subset of feasible assortments =α

i Ď =i for all nonleaf node i P V ,
where we assume =α

i that includes Sαi is known. Second, we show =α
i can be constructed

and we reduce the size of =α
i to a new set A α

i that still contains Sαi at node i. Third, we
propose a polynomial-time algorithm to get a 2-approximate solution of the joint capacitated
assortment and price optimization problem (4.1) under the space constraints.

Problem Decomposition

For problem (4.1) under space constraints, =root “
Ś

jPB =j denotes set of all possible as-
sortments that satisfy the space constraints. However, the assortment optimization problem
under space constraints is NP-hard, even for the two-level tree logit model with fixed prices.
Thus we aim to find an α-approximate solution to problem (4.1) under space constraints.
Assume =α

root that is a subset of =root is given and it includes an α-approximate assortment
Sαroot. Let pSαroot,P

α
rootq be the optimal solution to the following problem

Zα
“ max

SrootĎ=αroot
max

ProotPR
|Sroot|
ě0

RrootpSroot,Prootq, (4.13)

where Zα “ RrootpS
α
root,P

α
rootq is the maximum profit that can be obtained from =α

root.
pSαroot,P

α
rootq is an α-approximate solution to problem (4.1) under space constraints, thus

αZα ě Z˚ “ RrootpS
˚
root,P

˚
rootq where pS˚root,P

˚
rootq is the optimal solution to problem (4.1)

under space constraints. For notational consistency, pSαi ,P
α
i q denotes the optimal assortment

and price vector to problem (4.13) at nonleaf node i P V . When α “ 1, pSαi ,P
α
i q is the

optimal solution, thus denote S˚i “ S1
i and P˚

i “ P1
i . Similar to the problem with cardinality

constraints in Section 4.4, we define the scalar eαi “ γie
α
h ` p1 ´ γiqRipS

α
i ,P

α
i q, which can

also be calculated in a top-down manner. And for each nonleaf node i P V , we introduce the
α-joint subproblem as follows

max
SiĎ=αi

max
PiPR

|Si|
ě0

VipSi,PiqpRipSi,Piq ´ e
α
hq, (4.14)

where =α
i is known since =α

root is provided. If we define the α-optimal node-specific adjusted
markup θαi as the optimal solution to maxθiPR VipS

α
i , θiqpRipS

α
i , θiq ´ e

α
hq, one can check that

θαi equals to eαi and satisfies Definition 1 with assortment Sαi by using similar techniques as
in Section 4.4. In this notation, we let θ˚i “ θ1

i .
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We claim that problem (4.14) has the following equivalent formulations, which is referred
to as the α-assortment subproblem

max
SiĎ=αi

VipSi, θiqωipSi, θiq

1´ γi

s.t. θαh “ θi ´ ωipSi, θiq,

(4.15)

and the optimal solution to the following problem, which is referred to as the basic α-
assortment subproblem

max
SiĎ=αi

ÿ

jPChildrenpiq

VjpSj, θjqωjpSj, θjq

1´ γj

s.t. θαi “ θj ´ ωjpSj, θjq,

(4.16)

is also optimal to problem (4.15). Proof of this claim follows directly from the results in
Section 4.4 by changing our notation from tS˚i , θ

˚
i ,=iu to tSαi , θ

α
i ,=α

i u. Similar to the third
item in Lemma 13, the following lemma also holds.

Lemma 21. Let Ŝi be an optimal solution to α-assortment subproblem at nonleaf node i P V ,
then

Ť

iPChildrenphq Ŝi is also optimal to the α-assortment subproblem at i’s parent node h.

By applying the above lemma repeatedly, we have that Sαroot “
Ť

jPB S
α
j is the optimal

assortment to problem (4.13) where Sαj is the optimal solution to problem (4.15) at basic node
j P B. Moreover, θαroot is the solution to this fixed point representation: RpSαroot, θrootq “ θroot,
which satisfies αRpSαroot, θ

α
rootq ě Z˚.

Candidate Assortment Construction

Although the joint optimization problem under space constraints can be decomposed to
problem (4.15), we still have concerns since it requires to know =α

i and θαh . θαh can be
computed in a top-down manner if we know Sαroot since θαh equals to eαh . In this subsection,
we first show that Sαroot can be obtained if θ˚i is known for @i P V . Then we construct =α

i that
includes Sαi and show how =α

i can be simplified to A α
i , the size of which is bounded by OpNq.

We use these results in the next subsection to develop an algorithm running in polynomial
time to solve problem (4.1) under space constraints with a performance guarantee. The
following lemma shows that an α-approximate assortment Sαroot can be obtained provided
that θ˚i is given.

Lemma 22. Let Ŝαj be an α-approximate solution to problem (4.8) at basic node j P B

under space constraints with parameter α ě 1. Then assortment Sαroot “
Ť

jPB Ŝ
α
j is an

α-approximate assortment.

Once Ŝαroot is known, we compute θαh in a top-down manner. The next lemma clears the
concern that we have at the beginning of this subsection by showing that =α

root can also be
built.
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Lemma 23. Define A α
j “ tS̃

α
j pθjq : θj P Ru, where S̃αj pθjq is an α-approximate solution to

problem (4.9) at basic node j P B under space constraints, then =α
root “

Ś

jPB A α
j includes

Sαroot.

Proof of the above lemma is straight forward: since Sαj “ S̃αj pθ
˚
j q, then A α

j contains Sαj .

Thus =α
root “

Ś

jPB A α
j contains Sαroot “

Ť

jPB Ŝ
α
j . By applying the approach in [18], we are

able to locate a 2-approximate solution to problem problem (4.9) under space constraints
by finding the intersection points of these lines: thkpθjq : k P Childrenpjqu where hkpθjq “
α̃1k ´ βkθj “ αk ´ βkck ´ logpβkq ´ 1. Similar to the joint optimization problem under
cardinality constraints, we define the mapping Fα

i pθhq as

Fα
i pθhq “ arg max

θiPR
t
VipS̃

α
i pθiq, θiqωipS̃

α
i pθiq, θiq

1´ γi
: θh “ θi ´ ωipS̃

α
i pθiq, θiqu,

where S̃αi pθiq is recursively defined as follows

S̃αi pθiq “
ď

jPChildrenpiq

S̃αj pFα
j pθiqq.

Fα
i pθhq is essentially the optimal solution to problem (4.16) for a given θαh “ θh. Note that

Fα
i pθ

α
h q “ θαi . The next proposition shows that =α

root can be reduced to A α
root with size OpNq.

Proposition 16. Let i be any nonleaf node, assume A α
i “ tS̃αi pθiq : θi P Ru includes Sαi .

Then there exists a collection of candidate assortments A α
h “ t

Ť

iPChildrenphq S̃
α
i pFα

i pθhqq :

θh P Ru that includes Sαh where h is i’s parent node. We also have |A α
h | ď

ř

iPChildrenphq |A
α
i |

and |A α
i | has size OpNq.

Joint Optimization Algorithm

We present the algorithm JCAPO-S of the joint capacitated assortment and price optimiza-
tion problem (4.1) under space constraints in this subsection. Similar to Section 4.4, we
build a set of grid points Gi “ to1

i , ..., o
g
i , ..., o

G
i u for each nonleaf node i P V , the size of

which is G. For each ogi P Gi, S̃
α
i po

g
i q can be obtained by S̃αi po

g
i q “

Ť

jPChildrenpiq S̃
α
j pFα

j po
g
i qq.

The collection A α
i “ tS̃

α
i po

g
i q : ogi P Giu includes an α-approximate assortment Sαi at node i.

After getting oαroot by solving a fixed point representation, we are able to obtain pSαroot,P
α
rootq

that is an α-approximate solution to problem (4.1) under space constraints.
The algorithm in Appendix C.3 is referred to as Algorithm JCAPO-C, which solves

problem (4.1) under space constraints with a performance of guarantee of two. In this

algorithm, the mapping λ is defined as λ : ogi Ñ og
1

h such that og
1

h P Gh is the grid point that
is closest to ogi ´ ωpS̃αi po

g
i q, o

g
i q by assuming that S̃αi pθiq is known for θi P Gi and let node h

be the parent node of i.
For the problem in line 4, we can get a 2-approximate solution in polynomial time [18].

Furthermore, 2-approximate solution to problem (4.1) with space constraints is obtained in
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OpGN logGq time by applying Algorithm JCAPO-S, the findings of which is summarized in
the following theorem.

Theorem 10. A 2-approximate solution to problem (4.1) under space constraints can be
found through Algorithm JCAPO-S, the complexity of which is OpGN logGq. Furthermore,
its complexity can be reduced to OpGN logKq.

4.6 Algorithm Illustration

In this section, we illustrate the joint optimization algorithm JCAOP-C on an instance of
a three-level tree logit model, the structure of which is shown in Figure 4.1. The major
difference between algorithm JCAOP-C and JCAOP-S is the optimization problem at basic
nodes, but the rest part of two algorithms share the same idea. Hence this illustration can
also be adapted to demonstrating JCAOP-S with minor adjustments.

A set of ten products tg, h, ..., pu and a no-purchase option are considered in our setting.
The remaining nodes in the tree structure are all nonleaf nodes, the set of which is denoted
as ta, b, ..., f, rootu. The following Table 4.2 shows the model parameters. The preference
weight of no-purchase option is set to be 10, price-independent deterministic utility αk, price-
sensitivity parameter βk and cost ck are provided for each leaf node k, and dissimilarity
parameter γi is given for each nonleaf node i. The bottom part of this table shows the
cardinality constraint Cj on basic node j.

By Lemma 17, we have S˚c “ tm,nu and S˚d “ to, pu, then S˚b “ tm,n, o, pu. Thus we
focus on the left portion of the tree. For basic node c and by line 4 in algorithm JCAOP-
C, one can verify that S̃cpocq “ tg, hu for grid point oc P r0, 3.02s and S̃cpocq “ tg, iu
for oc P r3.02, 10s. Note that set Ac “ ttg, hu, th, iuu includes S˚c . Then we plot θa “
oc ´ ωcpS̃cpocq, ocq as a function of oc as shown in Figure 4.3(a), where ωcpS̃cpocq, ocq jumps
discontinuously at oc “ 3.02. One can see that a single θa corresponds to two grid points oc’s
when θa P r2.05, 2.21s, which is an example of Lemma 19. We then consider line 22 in algo-
rithm JCAOP-C, and the visualization of solving this optimization problem is demonstrated
in Figure 4.3(b), where the two convex decreasing curves corresponding to assortments tg, hu
and th, iu intersect only once at oa “ 2.14. Thus S̃cpFcpoaqq “ tg, hu for oa P r´0.73, 2.14s
and S̃cpFcpoaqq “ th, iu for oa P r2.14, 9.02s.

Similarly, we go through the above process for another basic node d. Then we obtain
S̃apoaq by stitching together S̃cpFcpoaqq and S̃dpFdpoaqq via the grid point oa. For instance,
if oa P r´0.73, 1.77s, then S̃apoaq “ S̃cpFcpoaqq

Ť

S̃dpFdpoaqq “ tg, hu
Ť

tj, ku “ tg, h, j, ku;
if oa P r1.77, 2.14s, S̃cpFcpoaqq is still tg, hu and S̃dpFdpoaqq becomes tk, lu, thus S̃apoaq “
S̃cpFcpoaqq

Ť

S̃dpFdpoaqq “ th, iu
Ť

tj, ku “ tg, h, k, lu; if oa P r2.14, 8.91s, then S̃apoaq “
th, i, k, lu. Note that the collection Aa “ tS̃apoaq : oa P Gau “ ttg, h, j, ku, tg, h, k, lu, th, i, k, luu
includes the global optimal assortment S˚a to problem (4.1) with cardinality constraints. We
also have that |Aa| is less than the sum of |Ac| and |Ad|, which addresses Proposition 15.
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Figure 4.3: Computation in Table 4.3

The construction of S̃apoaq is shown in Table 4.3 with corresponding optimization process
that is shown in the above Figure 4.3.

Next we build S̃rootporootq from Aa “ ttg, h, j, ku, tg, h, k, lu, th, i, k, luu and Ab “ S˚b “
tm,n, o, pu. The construction of S̃rootporootq is given in Table 4.4, which shares a simi-
lar process as in Table 4.3 and Figure 4.3. For example, the bottom part of Table 4.4
shows that S̃rootporootq “ tg, h, j, k,m, n, o, pu for all the grid points in interval r1.43, 1.75s,
and if oroot takes value in r1.75, 8.50s, S̃rootporootq changes to set th, i, k, l,m, n, o, pu. The
set Aroot “ ttg, h, j, k,m, n, o, pu, tg, h, k, l,m, n, o, pu, th, i, k, l,m, n, o, puu includes S˚root, the
size of which is only three and it is less than the total number of products.

Then we solve for optimal o˚root via the fixed point representation: RrootpS̃rootporootq, orootq “

oroot, which can be visualized in Figure 4.4. The solid curve in Figure 4.4 is the plot
of the profit function with respect to oroot and the solid 450 -line intersects with it at
oroot “ 3.22. The objective function contains three segments with three corresponding dif-
ferent assortments and three different intervals of oroot. For oroot P r´1.01, 1.43s, we have
S̃rootporootq “ tg, h, j, k,m, n, o, pu and the maximum of the objective function is 2.16. Since
there is no solution of the fixed point representation, we move to the second interval. If
oroot P r1.43, 1.75s, then S̃rootporootq “ tg, h, j, k,m, n, o, pu with 2.47 as its maximum of the
objective function. There is still no solution to the fixed point representation, thus we con-
sider oroot P r1.75, 8.50s. In this interval, S̃rootporootq “ th, i, k, l,m, n, o, pu and the maximum
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objective value is 3.22 that also satisfies RrootpS̃rootpo
˚
rootq, o

˚
rootq “ o˚root “ 3.22. Thus the

optimal assortment S˚root is th, i, k, l,m, n, o, pu, optimal node-specific adjusted markup at
the root node is θ˚root “ 3.22 and the maximum profit is also 3.22. By looking up previous
stored table, the optimal price vector for these ten products is P˚

root “ pp˚g , p
˚
h, ..., p

˚
pq “

p0, 6.14, 6.11, 0, 6.03, 6.22, 4.73, 4.47, 4.55, 4.50q. Therefore, the joint optimal assortment and
price vector to problem (4.1) under cardinality constraints is pS˚root,P

˚
rootq.
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Figure 4.4: Objective function
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Algorithm 5: Joint Capacitated Assortment and Price Optimization Under Car-
dinality Constraints (JCAPO-C)

Input: αi, βi, γi, Gi for i P V , =j for j P B.
1 Initialization: Set Fjpo

g
i q “ ´M for g “ 1, 2, ..., G and j P Childrenpiq;

2 for j P B do
3 for g Ð 1, 2, ..., G do

4 get S̃jpo
g
j q “ arg maxSjĎ=j

ř

kPChildrenpjq VkpSk, o
g
j ` ck ` 1{βkq{βk ;

5 calculate VjpS̃jpo
g
j q, o

g
j q and ωjpS̃jpo

g
j q, o

g
j q;

6 find g1 such that og
1

i “ λpogj q;

7 if Fjpo
g1

i q “ ´M then

8 Fjpo
g1

i q Ð ogj ;

9 else

10 Fjpo
g1

i q Ð arg max
θjPtFjpog

1

i q,o
g
j u
VjpS̃jpθjq, θjqωjpS̃jpθjq, θjq{p1´ γjq;

11 end

12 end

13 end
14 for i in level m´ 2,m´ 3, ..., 1 do
15 for g Ð 1, 2, ..., G do

16 get S̃ipo
g
i q “

Ť

jPChildrenpiq S̃jpFjpo
g
i qq ;

17 calculate VipS̃ipo
g
i q, o

g
i q and ωipS̃ipo

g
i q, o

g
i q;

18 find g1 such that og
1

h “ λpogi q ;

19 if Fipo
g1

h q “ ´M then

20 Fipo
g1

h q Ð ogi ;

21 else

22 Fipo
g1

h q Ð arg max
θiPtFipog

1

h q,o
g
i u
VipS̃ipθiq, θiqωipS̃ipθiq, θiq{p1´ γiq;

23 end

24 end

25 end
26 for g Ð 1, 2, ..., G do

27 get S̃rootpo
g
rootq “

Ť

iPChildrenprootq S̃ipFipo
g
rootqq ;

28 calculate RrootpS̃rootpo
g
rootq, o

g
rootq;

29 end

30 Solve for o˚root in oroot “ RrootpS̃rootporootq, orootq, then get S˚root “ S̃rootpo
˚
rootq and

P ˚root “ Prootpo
˚
rootq ;

Output: S˚root, P
˚
root.
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product g h i j k l m n o p

αk 15 13 12 11 10 8 14 9 7 6
βk 1.8 1.3 1.2 1.4 1.1 0.8 2.4 1.8 1.9 1.3
ck 0.9 0.8 0.7 0.85 0.55 0.4 0.9 0.5 0.6 0.3

nonleaf nodes a b c d e f root

γi 0.83 0.95 0.45 0.52 0.73 0.81 0

VNo-purchase 10

basic nodes c d e f

Cj 2 2 2 2

Table 4.2: Parameters setup for the joint optimization problem under cardinality constraints

S̃cpocq tg, hu th, iu S̃dpodq tj, ku tk, lu

oc [0, 3.02] [3.02,10] od [0, 2.62] [2.62, 10]

oc ´ ωcpS̃cpocq, ocq [-0.73, 2.21] [2.05, 9.02] od ´ ωdpS̃dpodq, odq [-0.73, 1.85] [1.69, 8.91]

oa [-0.73, 2.14] [2.14, 9.02] oa [-0.73, 1.77] [1.77, 8.91]

S̃apoaq tg, h, j, ku tg, h, k, lu th, i, k, lu

oa [-0.73, 1.77] [1.77, 2.13] [2.13, 8.91]

Table 4.3: Construction of S̃apoaq

S̃apoaq tg, h, j, ku tg, h, k, lu th, i, k, lu S̃bpobq tm,n, o, pu

oa [-0.73, 1.77] [1.77, 2.13] [2.13, 8.91] ob R
oa ´ ωapS̃apoaq, oaq [-1.01, 1.46] [1.43, 1.79] [1.75, 8.50] ob ´ ωbpS̃bpobq, obq R

oroot [-1.01, 1.43] [1.43, 1.75] [1.75, 8.50] oroot R

S̃rootporootq tg, h, j, k,m, n, o, pu tg, h, k, l,m, n, o, pu th, i, k, l,m, n, o, pu

oroot [-1.01, 1.43] [1.43, 1.75] [1.75, 8.50]

Table 4.4: Construction of S̃rootporootq
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Chapter 5

Conclusion

The first essay considers the joint constrained assortment and price optimization problem
under the nested logit model. Under the cardinality (or space) constraints, the optimal (or a
2-approximate) solution can be identified by finding the fixed point of a unimodal function.
Moreover, it can be further formulated as a piecewise convex fixed point representation. For
the future research directions, one can consider the joint constrained optimization problem
under the multilevel nested logit model with a no-purahse option in every choice stage by
generalizing the results in [50] and [22]. The joint problem with the dissimilarity parameter
exceeding one is also of interest to study.

In the second essay, we study the choice-based constrained assortment and price op-
timization problems under the multilevel nested logit model. Furthermore, we allow the
no-purchase option in every nonleaf node within the tree structure. For the constrained
assortment optimization problem, the optimal and a 2-approximate solutions can be located
in polynomial time under cardinality and space constraints, respectively. Specifically, the
computational time is Opnmaxtm, kuq under the cardinality constraints and Opmnkq under
the space constraints, where m is number of levels in the multilevel nested logit model, n
is the number of products and k is the maximum number of products of any basic nodes.
For the price optimization problem, we reduce the nonconcave multiproduct price optimiza-
tion problem to the maximization of a unimodal function, where the optimal price vector
can be identified in a tractable manner. Regarding the extensions of our research, both
the constrained assortment and price optimization problems with dissimilarity parameter
exceeding one, are of interest for further study. One can also consider generalizing our price
optimization results to multistage nested attraction models. [51] consider the joint optimiza-
tion of assortment and price problem under the multilevel nested logit model with only one
no-purchase option. It is interesting to study the joint optimization problem with multiple
no-purchase options in the system by applying the results in this essay.

In the third essay, we consider joint capacitated assortment and price optimization prob-
lems under the tree logit model. With our efficient algorithm, we obtain the optimal solution
under cardinality constraints and an approximate solution with performance guarantee un-
der space constraints in polynomial time OpGN logGq, where G is the number of grid points
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for each node in the tree structure and N is the total number of candidate products. With
mild conditions, it can be further reduced to OpGN logKq where K is the maximum children
nodes that a nonleaf node can have in the tree logit model. We formulate the joint optimiza-
tion problem as a bi-level optimization program with pricing and assortment optimization
problem as its inner and outer problem, respectively. Then by solving the inner pricing
problem with fixed assortment, we succeed in building a bridge connecting to the outer as-
sortment optimization problem. Finally, the bi-level optimization program is reduced to an
optimization problem with respect to a scalar that is the node-specific adjusted markup and
the feasible collection of assortments that include optimal solution can be constructed in a
systematic way with a bounded size.

Our joint capaciated optimization algorithm and the uncapaciated assortment algorithm
in [30] have the similar scale of complexity. The reason why the joint algorithm shares
the similar complexity with the algorithm of the reduced assortment problem is that the
core step in the uncapacitated assortment algorithm of [30] involves constantly computing
the pairwise intersection points of lines, which requires sorting, however, the core part our
algorithm is looking up a list of grid points that have already been sorted. One can also
apply our algorithm with fixed prices to solve the uncapaciated assortment optimization as
in [30] with better performance in terms of complexity.

Our study on the joint optimization problem includes all the results in earlier literatures
that are based on the multinomial logit model, nest logit model and d-level nested logit
model as its special cases. It also puts an end to the study on assortment/pricing/joint
problems under the above three models. With minor adjustments, our approach can be
adapted to solve the following three problem variants under multilevel tree logit model: 1)
Assortment optimization with fixed prices; 2) Price optimization with fixed assortments;
3) Nonparametric joint assortment and price optimization with no functional assumption
between preference weight and price variable. As for the extensions of our research, the joint
optimization problem with dissimilarity parameter exceeding one is interesting to study.
One can also consider generalizing joint optimization algorithm to the multistage nested
attraction model where every node has a no-purchase option.
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Appendix A

Appendix to Chapter 1

A.1 Notation

For ease of reading, we summarize our notation as follows:

m The number of nests.

M := t1, 2, ...,mu.

ni The number of products in nest i.

Ni := t1, 2, ..., niu.

N The total number of products.

Pi := ppi1, pi2, ..., piniq.

vijppijq The preference weight of product xi, jy.

αij The price-independent deterministic utility.

βij The price-sensitivity parameter.

Si The space limitation on node i.

B The set of basic nodes.

αi The price-independent deterministic utility of product i.

βi The price-sensitivity parameter of product i.

Si := pSi1, Si2, ..., Siniq P t0, 1u
ni .

Ci The cardinality constraint on nest i.
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Si The space constraint on nest i.

Z˚ The optimal expected profit under cardinality/space constraints.

Zα := ΠpSα,Pα
q and αZα ě Z˚.

θi The node-specific adjusted markup for node i.

S̃ipθiq := The optimal solution to problem (4.9).

Ai := tS̃ipθiq : θi P Rě0u.

Fipzq The optimal solution to problem (2.11).

Ŝipzq := S̃ipFipzqq.

A.2 Technical Proof of Claims

Proof of Claim 1

Proof. We prove this claim by contradiction. Assume that S˚i ‰ H and RipS
˚
i ,P

˚
i q ă Z˚,

then we construct a new assortment Ŝ “ S˚ztS˚i u and price matrix P̂ “

pP̂1, ..., P̂i´1,~0, P̂i`1, ..., P̂mq. If RipS
˚
i ,P

˚
i q ă Z˚, then the following inequality holds

ΠpŜ, P̂q “

ř

iPM VipS
˚
i ,P

˚
i qRipS

˚
i ,P

˚
i q ´ VipS

˚
i ,P

˚
i qRipS

˚
i ,P

˚
i q

v0 `
ř

iPM VipS˚i ,P
˚
i q ´ VipS

˚
i ,P

˚
i q

ą

ř

iPM VipS
˚
i ,P

˚
i qRipS

˚
i ,P

˚
i q

v0 `
ř

iPM VipS˚i ,P
˚
i q

“ ΠpS˚,P˚
q,

which contradicts with the fact that pS˚,P˚
q is the optimal solution to problem (4.1).

Proof of Claim 2

Proof. By using the notation that is defined in Section 2.3, we have

Z˚ “

ř

iPM VipS
˚
i ,P

˚
i qRipS

˚
i ,P

˚
i q

v0 `
ř

iPM VipS˚i ,P
˚
i q

,

which implies that v0Z
˚ “

ř

iPM VipS
˚
i ,P

˚
i qrRipS

˚
i ,P

˚
i q´Z

˚s. Since pŜi, P̂iq is optimal to the

joint subproblem at nest i, we have VipŜi, P̂iqpRipŜi, P̂iq ´ Z˚q ě VipS
˚
i ,P

˚
i qpRipS

˚
i ,P

˚
i q ´

Z˚q. Therefore, we have v0Z
˚ ď

ř

iPM VipŜi, P̂iqpRipŜi, P̂iq ´ Z˚q. It follows that Z˚ ď

ΠpŜ1, Ŝ2, ..., Ŝm; P̂1, P̂2, ..., P̂mq. On the other hand, pŜ1, Ŝ2, ..., Ŝm; P̂1, P̂2, ..., P̂mq is a feasi-
ble solution to problem (4.1) since Si P =i and Pi ě 0, thus we get Z˚ ě
ΠpŜ1, Ŝ2, ..., Ŝm; P̂1, P̂2, ..., P̂mq. Therefore, we have Z˚ “ ΠpŜ1, Ŝ2, ..., Ŝm; P̂1, P̂2, ..., P̂mq, it
follows that pŜ1, Ŝ2, ..., Ŝm; P̂1, P̂2, ..., P̂mq is an optimal solution to problem (4.1).
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Proof of Claim 3

Proof. The proof technique follows partially from Lemma 3 in [18], the difference from which
is that we consider the joint optimization problem. For completeness purpose, we show the
proof as follows.

We first prove ΠpS̃1, S̃2, ..., S̃m; P̃1, P̃2, ..., P̃mq ě Z˚, then show
ΠpS̃1, S̃2, ..., S̃m; P̃1, P̃2, ..., P̃mq ď Z˚, which implies that ΠpS̃1, S̃2, ..., S̃m; P̃1, P̃2, ..., P̃mq “

Z˚. It indicates that
pS̃1, S̃2, ..., S̃m; P̃1, P̃2, ..., P̃mq is an optimal solution to problem (4.1).

In order to show ΠpS̃1, S̃2, ..., S̃m; P̃1, P̃2, ..., P̃mq ě Z˚, we only need to show that
VipS̃i, P̃iqpRipS̃i, P̃iq ´ Z˚q ě VipS

˚
i ,P

˚
i qpRipS

˚
i ,P

˚
i q ´ Z˚q due to the proof of Claim 2.

Next we show this inequality is true. First, if S˚i is empty, then θ˚i “ Z˚ and we have
VipS̃i, P̃iq

1{γipRipS̃i, P̃iq ´ Z˚q ě VipH, P̃iq
1{γipRipH, P̃iq ´ Z˚q “ 0. It implies that either

VipS̃i, P̃iq “ 0 or VipS̃i, P̃iq ą 0 and RipS̃i, P̃iq ´ Z˚ ě 0, which indicates that the target
inequality holds. Second, if S˚i is nonempty, then θ˚i “ γiZ

˚ ` p1 ´ γiqRipS
˚
i , θ

˚
i q. We have

VipS̃i, P̃iq
1{γipRipS̃i, P̃iq ´ γiZ

˚ ´ p1 ´ γiqRipS
˚
i , θ

˚
i qq ě VipS

˚
i ,P

˚
i q

1{γipRipS
˚
i ,P

˚
i q ´ θ˚i q since

pS˚i ,P
˚
i q is a feasible solution to problem (2.7). We obtain

RipS̃i, P̃iq ´ Z
˚
ě

ˆ

VipS
˚
i ,P

˚
i q

VipS̃i, P̃iq

˙1{γi

pRipS
˚
i ,P

˚
i q ´ θ

˚
i q ` p1´ γiqpRipS

˚
i ,P

˚
i q ´ Z

˚
q

ě rγi

ˆ

VipS
˚
i ,P

˚
i q

VipS̃i, P̃iq

˙1{γi

` p1´ γiqspRipS
˚
i ,P

˚
i q ´ Z

˚
q

ě
VipS

˚
i ,P

˚
i q

VipS̃i, P̃iq
pRipS

˚
i ,P

˚
i q ´ Z

˚
q,

where the last inequality holds because of the subgradient inequality and RipS
˚
i ,P

˚
i q ě Z˚

due to Claim 1.
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Appendix to Chapter 2

B.1 Notation

For ease of reading, we summarize our notation as follows:
m The number of levels in the tree structure.
n The number of products.
k The maximum number of products of within a basic node.
Ni The set of products that are associated with node i.
Si The assortment of node i.
Pi The price vector of assortment Si.
=i The set of feasible assortments that satisfies cardinality/space constraints.
Ci The cardinality limitation on node i.
Si The space limitation on node i.
B The set of basic nodes.
αi The price-independent deterministic utility of product i.
βi The price-sensitivity parameter of product i.
γi The dissimilarity parameter for nonleaf node i.

=α
root The collection of feasible candidate assortments that includes Sαroot.
Z˚ The optimal expected profit under cardinality/space constraints.
Zα := maxSrootĎ=αroot RrootpSrootq, and αZα ě Z˚.
θi The node-specific adjusted markup for node i.

S̃αi ptiq := arg maxSiĎA α
i
tVipSiq

1{γi pRipSiq ´ tiqu.

Ã α
i := tS̃αi ptiq : ti P Ru.

Ŝαi pthq := arg max
SiĎ ĂA α

i
tVipSiq pRipSiq ´ thqu.

A α
h := t

Ť

iPhC
Ŝαi pthq : th P Ru.
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B.2 Technical Proofs

PROOF OF LEMMA 8

Proof. Let S̃i be optimal to problem (3.4) at node i, then we have

VipS̃iq
1{γi

´

RipS̃iq ´ t
α
i

¯

ě VipS
α
i q

1{γi pRipS
α
i q ´ t

α
i q .

Because of Claim 6, we have

VipS̃iq
´

RipS̃iq ´ t
α
h

¯

ě VipS
α
i q

´

RipS
α
i q ´ t

α
h

¯

“ max
SiĎ=αi

tVipSiq pRipSiq ´ t
α
hqu,

where the last equality is due to Claim 8. Therefore, S̃i is also optimal to problem (3.3),
which completes the proof.

PROOF OF LEMMA 9

Proof. The proof of this lemma is fairly straightforward. Let h “ iP in level m ´ 2 denote
the parent node of i, then according to Claim 11, since assortment S̃αi for the basic node i

satisfies VipS̃
α
i q

1{γi

´

αRipS̃
α
i q ´ t

˚
i

¯

ě VipS
˚
i q

1{γi

´

RipS
˚
i q´t

˚
i

¯

, then according to Claim 10, we

have VipS̃
α
i q

´

αRipS̃
α
i q ´ t

˚
h

¯

ě VipS
˚
i q

´

RipS
˚
i q´ t

˚
h

¯

“ maxSiĎ=˚i tVipSiqpRipSiq´ t
˚
hqu, where

the last equality is due to Claim 8 by letting α “ 1. If we define S̃αh “
Ť

iPh S̃
α
i , then for any

node h in level m´ 2, we have VhpS̃
α
h q

´

αRhpS̃
α
h q ´ t

˚
hP

¯

ě maxShĎ=˚htVhpShqpRhpShq ´ t
˚
hP qu

according to Claim 11. Take the union of α-approximate assortments of lower level nodes
repeatedly, until we have S̃αroot “

Ť

iPB S̃
α
i , then due to Claim 11, S̃αroot satisfies αRrootpS̃

α
rootq ě

maxSrootĎ=˚root RrootpSrootq “ Z˚. Thus Sαroot “ S̃αroot “
Ť

iPB S̃
α
i is an α-approximate solution,

establishing this lemma.

PROOF OF PROPOSITION 9

Proof. For notational brevity, we omit the assortment S, let δj “ δjpθjq, ωj “ ωjpθjq for all
j P V . We first prove θi and θ1i are equivalent. We denote the actual product in the lowest
level m as g. Without loss of generality, when node i is in level l (0 ď l ď m´ 2), we assume
that node i and j P Childrenpiq are ancestors of g, and when node i is in level m ´ 1, node
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j is the sibling node of g. From Lemma 11, we have

BRrootpProotq{Bpg

“ βgQg

˜

1

βg
´mg ` λ

m´1
g,1

ÿ

g1Pηg,0

mg1Qg1 `

m´2
ÿ

k“1

ÿ

g1Pηg,k
g1Rηg,k`1

mg1

ˆ k
ÿ

t“1

pλm´1
g,t`1 ´ λ

m´1
g,t qQpg

1
|ηg,tq

˙

`
ÿ

g1Pηg,m´1

mg1

ˆm´1
ÿ

t“1

pλm´1
g,t`1 ´ λ

m´1
g,t qQpg

1
|ηg,tq

˙

¸

,

We let the first derivative BRrootpProotq{Bpg “ 0, since Qg ‰ 0, after dividing βgQg and
collecting terms, we have

1{βg ´mg ` λ
m´1
g,1

ÿ

g1Pηg,0

mg1Qg1 `

m´2
ÿ

k“1

ÿ

g1Pηg,k
g1Rηg,k`1

mg1

˜

k
ÿ

t“1

pλm´1
g,t`1 ´ λ

m´1
g,t qQpg

1
|ηg,tq

¸

`
ÿ

g1Pηg,m´1

mg1

˜

m´1
ÿ

t“1

pλm´1
g,t`1 ´ λ

m´1
g,t qQpg

1
|ηg,tq

¸

“ 0. (B.1)

Assume node i is in level l (0 ď l ď m ´ 1), then according to (C.17) and the definition of
node-specific adjusted markup, we have

θi “ θjδj ´ ωj

“ λlg,1
ÿ

g1Pηg,0

mg1Qg1 `

m´2
ÿ

k“1

ÿ

g1Pηg,k
g1Rηg,k`1

mg1

˜

l
ÿ

t“1

pλlg,t`1 ´ λ
l
g,tqQpg

1
|ηg,tq

¸

`
ÿ

g1Pηg,m´1

mg1

˜

l
ÿ

t“1

pλlg,t`1 ´ λ
l
g,tqQpg

1
|ηg,tq

¸

. (B.2)

From the RHS of (C.19), we can see that θi is independent of ηg,s where 0 ď s ď l. Thus for
another child node j1 of node i, θ1i “ mj1 ´ ωj1 also equals to the RHS of (C.19). Therefore,
θi “ θ1i for any node i in level 0, 1, ...,m´ 1.

From Lemma 12, we obtain

Bθi
Bθj

“

"

1 j is a leaf node
1
γj
´ ωjuj o.w.

ą 0

Therefore, there exists a one-to-one increasing correspondence between the node-specific
adjusted markup θi and θj, where j P Childrenpiq.
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Proof. According to Lemma 11, the first derivative of the objective function RrootpSroot, Prootq

with respect to price pg for any product g is

BRrootpProotq{Bpg

“ βgQg

˜

1

βg
´mg ` λ

m´1
g,1

ÿ

g1Pηg,0

mg1Qg1 `

m´2
ÿ

k“1

ÿ

g1Pηg,k
g1Rηg,k`1

mg1

ˆ k
ÿ

t“1

pλm´1
g,t`1 ´ λ

m´1
g,t qQpg

1
|ηg,tq

˙

`
ÿ

g1Pηg,m´1

mg1

ˆm´1
ÿ

t“1

pλm´1
g,t`1 ´ λ

m´1
g,t qQpg

1
|ηg,tq

˙

¸

.

Use the notation for the node-specific adjusted markup in Definition 1 and according to
Proposition 9, we have

BRrootpProotq{Bpg “ λm´1
g,1 βgQg

ÿ

g1Pηg,0

mg1Qg1 ` βgQgp´λ
m´1
g,1 θg,0q

“ λm´1
g,1 βgQgRpθrootq ` βgQgp´λ

m´1
g,1 θrootq “ λm´1

g,1 βgQg pRpθrootq ´ θrootq .

For product g in the lowest level m, we use Anpg, lq to denote the g’s ancestor node in level
l. Then we obtain

BRrootpθrootq

Bθroot

“
ÿ

gPηg,0

BRrootpSroot, Prootq

Bpg

ˆ

BθAnpg,m´1q

Bpg

˙´1 ˆ
BθAnpg,m´2q

BθAnpg,m´1q

˙´1

¨ ¨ ¨

ˆ

BθAnpg,0q

BθAnpg,1q

˙´1 ˆ
Bθroot

BθAnpg,0q

˙´1

“ pRpθrootq ´ θrootq
ÿ

gPηg,0

λm´1
g,1 βgQg

ˆ

BθAnpg,m´1q

Bpg

˙´1 ˆ
BθAnpg,m´2q

BθAnpg,m´1q

˙´1

¨ ¨ ¨

ˆ

BθAnpg,0q

BθAnpg,1q

˙´1

.

According to Proposition 9, we know
ˆ

BθAnpg,m´1q

Bpg

˙´1 ˆ
BθAnpg,m´2q

BθAnpg,m´1q

˙´1

¨ ¨ ¨

ˆ

BθAnpg,0q

BθAnpg,1q

˙´1

ą 0.

Therefore we can see that Rrootpθrootq is strictly unimodal with respect to θroot accord-
ing to Lemma 2 in [19]. Moreover, let θ˚root denote the solution to Rpθrootq “ θroot, then
BRrootpθ

˚
rootq{Bθ

˚
root “ 0. Thus according to the unimodality of Rpθrootq, we have Rpθ˚rootq “

θ˚root at optimality.

PROOF OF CLAIM 6

Claim 6. For an arbitrary nonleaf node i P V , assume RipS
α
i q ě tαh with parameter α ě 1.

If there exists an assortment Ŝi Ď =α
i such that

VipŜiq
1{γi

´

RipŜiq ´ t
α
i

¯

ě VipS
α
i q

1{γi
´

RipS
α
i q ´ t

α
i

¯

, (B.3)
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then we have
VipŜiq

´

RipŜiq ´ t
α
h

¯

ě VipS
α
i q

´

RipS
α
i q ´ t

α
h

¯

. (B.4)

If the inequality in (B.3) is strict for some j P iC, so is the inequality in (B.4).

Proof. When Ŝi “ H, according to the above inequality, we have RipS
α
i q ´ t

α
i ď 0, implying

RipS
α
i q “ tαi “ tαh . So (B.4) holds for Ŝi “ H (Both of the LHS and RHS are zero). When

Ŝi ­“ H, then VipŜiq ­“ 0 so we can divide the above inequality by VipŜiq
1{γi . Because

RipS
α
i q ě tαh , then according to (3.2), tαi “ γit

α
h ` p1´ γiqRipS

α
i q. Thus we have

RipŜiq ´ t
α
h ě

«

VipS
α
i q

VipŜiq

ff1{γi

pRipS
α
i q ´ t

α
i q ` t

α
i ´ t

α
h

“

¨

˝γi

«

VipS
α
i q

VipŜiq

ff1{γi

` 1´ γi

˛

‚pRipS
α
i q ´ t

α
hq ě

VipS
α
i q

VipŜiq
pRipS

α
i q ´ t

α
hq

For the last inequality, let’s consider a convex function fpxq “ x1{γi , according to its Taylor
expansion at x “ 1, we have fpxq “ x1{γi ě 1 ` px ´ 1q{γi ñ γix

1{γi ` 1 ´ γi ě x. Let
x “ VipS

α
i q{VipŜiq, establishing the inequality, thus VipŜiqpRipŜiq´t

α
hq ě VipS

α
i qpRipS

α
i q´t

α
hq.

It is also easy to check if the inequality in (B.3) is strict for some j P iC , then the inequality
in (B.4) is also strict.

PROOF OF CLAIM 7

Claim 7. For an arbitrary nonleaf node i P V , assume RipS
α
i q ě tαh with parameter α ě 1.

If for all j P iC, there exists an assortment Ŝj Ď =α
j such that

VjpŜjq
´

RjpŜjq ´ t
α
i

¯

ě VjpS
α
j q

´

RjpS
α
j q ´ t

α
i

¯

. (B.5)

Define h “ iP and let Ŝi “
Ť

jPiC
Ŝj, then we have

VipŜiq
´

RipŜiq ´ t
α
h

¯

ě VipS
α
i q

´

RipS
α
i q ´ t

α
h

¯

. (B.6)

If the inequality in (B.5) is strict for some j P iC, so is the inequality in (B.6).

Proof. The logic of proving this lemma, the following proposition and theorem is similar to
[30], for completeness, we provide the entire proof as follows. We first claim Sαi ­“ H. It is
true when i “ root, then for all i P V zroot, the scalar defined in (3.2) is either a positive value
or `8, thus RipS

α
i q ě tαi ě tαh ą 0, which implies Sαi ­“ H, establishing the claim. So we have

Vi01pŜi ­“ Hq ď Vi0 “ Vi01pS
α
i ­“ Hq. Since VjpŜjq

´

RjpŜjq ´ tαi

¯

ě VjpS
α
j q

´

RjpS
α
j q ´ tαi

¯

,
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then

VipŜiq
1{γipRipŜiq ´ t

α
i q “

ÿ

jPiC

VjpŜjqpRjpŜjq ´ t
α
i q ´ Vi01pŜi ­“ Hqt

α
i

ě
ÿ

jPiC

VjpS
α
j qpRjpS

α
j q ´ t

α
i q ´ Vi01pS

α
i ­“ Hqt

α
i “ VipS

α
i q

1{γipRipS
α
i q ´ t

α
i q

This claim holds because of Claim 6.

PROOF OF CLAIM 8

Claim 8. Let Sα “ tSαi , @i P V u be optimal to problem (3.1). Then for all i P V , Sαi is an
optimal solution to problem (3.3) at node i.

Proof. Prove by induction on levels. It is true for root, then we assume that it is true for
any node i in level l: VipS

α
i qpRipS

α
i q ´ t

α
hq “ maxSiĎ=αi tVipSiqpRipSiq ´ t

α
hqu.

Suppose on the contrary that there exists node k P iC in level l`1 such that VkpS
α
k qpRkpS

α
k q´

tαi q ă maxSkĎ=αk tVkpSkqpRkpSkq´t
α
i qu. For each j P iC , define Ŝj “ arg maxSjĎ=αj tVjpSjqpRjpSjq´

tαi qu. First, consider the case when RipS
α
i q ě tαh . We have Sαj Ď =α

j for all j P iC , then by

construction: VjpŜjq
´

RjpŜjq ´ tαi

¯

ě VjpS
α
j q

´

RjpS
α
j q ´ tαi

¯

, which is strict if j “ k. Let

Ŝi “
Ť

jPiC
Ŝj, then according to Claim 7, we have VipŜiq

´

RipŜiq´t
α
h

¯

ą VipS
α
i q

´

RipS
α
i q´t

α
h

¯

.

It contradicts the induction hypothesis: VipS
α
i qpRipS

α
i q´t

α
hq “ maxSiĎ=αi tVipSiqpRipSiq´t

α
hqu.

Then let’s consider RipS
α
i q ă tαh . Since Si “ H is a feasible solution to the local

problem and its objective value is 0. Thus maxSiĎ=αi tVipSiqpRipSiq ´ tαhqu ě 0. Because
node i is in level l, according to the induction hypothesis, we have VipS

α
i qpRipS

α
i q ´ tαhq “

maxSiĎ=αi tVipSiqpRipSiq´t
α
hqu ě 0. However, we knowRipS

α
i q ă tαh , thus we have VipS

α
i qpRipS

α
i q´

tαhq ď 0, so VipS
α
i q “ 0, which implies Sαi “ H. Since RipS

α
i q ă tαh , then according to Equa-

tion (3.2), tαi “ `8. Thus we have 0 “ maxSkĎ=αk tVkpSkqpRkpSkq ´ tαi qu. According to
our assumption, VkpS

α
k qpRkpS

α
k q ´ t

˚
i q ă maxSkĎ=αk tVkpSkqpRkpSkq ´ t

α
i qu “ 0, which implies

Sαk ­“ H. However, since k P iC , so Sαi Ě Sαk , which contradicts with Sαi “ H.

PROOF OF CLAIM 9

Claim 9. For any nonleaf node i, if Ŝj is the optimal solution to problem (3.3) at node j

for all j P iC, then Ŝi “
Ť

jPiC
Ŝj is an optimal solution to problem (3.3) at node i.

Proof. For any j P iC , since Ŝj is optimal to local problem at node j, then we have

VjpŜjqpRjpŜjq ´ t
α
i q ě VjpS

α
j qpRjpS

α
j q ´ t

α
i q.

When RipS
α
i q ě tαh , let Ŝi “

Ť

jPiC
Ŝj, then according to Claim 7: VipŜiqpRipŜiq ´ tαhq ě

VipS
α
i qpRipS

α
i q ´ t

α
hq “ maxSiĎ=αi tVipSiqpRipSiq ´ t

α
hqu. The last equality holds due to Claim

8. Therefore, Ŝi is the local optimal solution at node i when RipS
α
i q ě tαh .
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Then for RipS
α
i q ă tαh , we have tαi “ `8 according to Equation (3.2). Thus for all j P iC ,

H “ Ŝj “ arg maxSjĎ=αj tVjpS
α
j qpRjpS

α
j q ´ tαi qu. Then Ŝi “

Ť

jPiC
Ŝj “ H. As discussed in

the proof of Claim 8, we can see that Sαi “ H, which is the optimal solution to the local
problem at node i. Therefore this lemma still holds when RipS

α
i q ă tαh .

PROOF OF CLAIM 10

Claim 10. For all i P V , let S˚i be the optimal assortment at node i. For parameter α ě 1,

if assortment rSi satisfies

ViprSiq
1{γi

´

αRiprSiq ´ t
˚
i

¯

ě VipS
˚
i q

1{γi
´

RipS
˚
i q ´ t

˚
i

¯

. (B.7)

Define h “ iP , then we have

ViprSiq
´

αRiprSiq ´ t
˚
h

¯

ě VipS
˚
i q

´

RipS
˚
i q ´ t

˚
h

¯

. (B.8)

Proof. First considerRipS
˚
i q ě t˚h. Due to the inequality (B.7), we can get ViprSiq

1{γipαRiprSiq´
t˚i q ě VipS

˚
i q

1{γipRipS
˚
i q ´ t˚i q. Since RipS

˚
i q ě t˚h, according to Equation (3.2), we have

t˚i “ γit
˚
h ` p1´ γiqRipS

˚
i q. After plugging t˚i in the above inequality, we have

ViprSiq
1{γipαRiprSiq ´ γit

˚
h ´ p1´ γiqRipS

˚
i qq ě VipS

˚
i q

1{γipRipS
˚
i q ´ γit

˚
h ´ p1´ γiqRipS

˚
i qq

ñ ViprSiq
1{γipαRiprSiq ´ t

˚
hq ě pγiVipS

˚
i q

1{γi ` p1´ γiqViprSiq
1{γiqpRipS

˚
i q ´ t

˚
hq (B.9)

Multiply inequality (B.9) by ViprSiq
1´1{γi , we get

ViprSiqpαRiprSiq ´ t
˚
hq (B.10)

ě ViprSiq
1´1{γipγiVipS

˚
i q

1{γi ` p1´ γiqViprSiq
1{γiqpRipS

˚
i q ´ t

˚
hq (B.11)

Since γi P p0, 1s, due to the concavity of xγi , we have xγi ď rxγi ` γirx
γi´1px ´ rxq “

rxγi´1pγix` p1´ γiqrxq. Let x “ VipS
˚
i q

1{γi and rx “ ViprSiq
1{γi , then we get

ViprSiq
1´1{γipγiVipS

˚
i q

1{γi ` p1´ γiqViprSiq
1{γiq ě VipS

˚
i q. (B.12)

Since RipS
˚
i q ą t˚h, multiply inequality (B.12) by RipS

˚
i q ´ t

˚
h, we have

ViprSiq
1´1{γipγiVipS

˚
i q

1{γi ` p1´ γiqV prSiq
1{γiqpRipS

˚
i q ´ t

˚
hq (B.13)

ě VipS
˚
i qpRipS

˚
i q ´ t

˚
hq (B.14)

Thus due to inequality (B.10) and inequality (B.13), we obtain ViprSiqpαRiprSiq ´ t˚hq ě
VipSiqpRipS

˚
i q´t

˚
hq. Therefore, this theorem holds when RipS

˚
i q ě t˚h. Now, let’s see RipS

˚
i q ă

t˚h. According to previous discussion, we know S˚i “ H and t˚i “ `8. Thus we have

ViprSiq
1{γipαRiprSiq ´ t˚i q ě VipS

˚
i q

1{γipRipS
˚
i q ´ t˚i q “ 0. Since t˚i “ `8, then rSi “ H.

Therefore, inequality (B.8) still holds.
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PROOF OF CLAIM 11

Claim 11. For an arbitrary nonleaf node i and parameter α ě 1, we assume that for all
j P iC, there exists an assortment Ŝj Ď =j such that

VjpŜjq
´

αRjpŜjq ´ t
˚
i

¯

ě max
SjĎ=˚j

tVjpSjq pRjpSjq ´ t
˚
i qu. (B.15)

Define h “ iP and let Ŝi “
Ť

jPiC
Ŝj, then we have

VipŜiq
´

αRipŜiq ´ t
˚
h

¯

ě max
SiĎ=˚i

tVipSiq pRipSiq ´ t
˚
hqu. (B.16)

Proof. According to Claim 8, S˚j “ arg maxSjĎ=˚j tVjpSjqpRjpSjq ´ t
˚
i qu and S˚i “

arg maxSiĎ=˚i tVipSiqpRipSiq ´ t
˚
hqu. First when RipS

˚
i q ě t˚h, then we have S˚i ­“ H according

to proof in Claim 7. Thus 1pŜi ­“ Hq ď Vi0 “ Vi01pS
˚
i ­“ Hq. Since VjpŜjq

´

αRjpŜjq ´ t
˚
i

¯

ě

maxSjĎ=˚j tVjpSjqpRjpSjq ´ t
˚
i qu “ VjpS

˚
j q

´

RjpS
˚
j q ´ t

˚
i

¯

, then we have

VipŜiq
1{γipαRipŜiq ´ t

˚
i q “

ÿ

jPiC

VjpŜjqpαRjpŜjq ´ t
˚
i q ´ Vi01pŜi ­“ Hqt

˚
i

ě
ÿ

jPiC

VjpS
˚
j qpRjpS

˚
j q ´ t

˚
i q ´ Vi01pS

˚
i ­“ Hqt

˚
i

“ VipS
˚
i q

1{γipRipS
˚
i q ´ t

˚
i q

(B.16) holds for Ŝi “ H. When Ŝi ­“ H, because RipS
˚
i q ě t˚h, then we know t˚i “

γit
˚
h ` p1´ γiqRipS

˚
i q due to (3.2). Thus we have

αRipŜiq ´ t
˚
h ě

«

VipS
˚
i q

VipŜiq

ff1{γi

pRipS
˚
i q ´ t

˚
i q ` t

˚
i ´ t

˚
h

“

¨

˝γi

«

VipS
˚
i q

VipŜiq

ff1{γi

` 1´ γi

˛

‚pRipS
˚
i q ´ t

˚
hq ě

VipS
˚
i q

VipŜiq
pRipS

˚
i q ´ t

˚
hq

The above inequality is equivalent to VipŜiqpαRipŜiq ´ t
˚
hq ě VipS

˚
i qpRipS

˚
i q ´ t

˚
hq “

maxSiĎ=˚i tVipSiqpRipSiq ´ t
˚
hqu. This claim is true when RipS

˚
i q ě t˚h.

Second, when RipS
˚
i q ă t˚h, S

˚
i “ H according to the proof in Claim 8. Because RipS

˚
i q ă

t˚h, then according to Equation (3.2), t˚i “ `8. Thus S˚j “ H and Ŝj can only be empty to

satisfy (B.15), which implies Ŝi “
Ť

jPiC
Ŝj “ H that satisfies (B.16). So it still holds when

RipS
˚
i q ă t˚h.
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PROOF OF LEMMA 11

Proof. We define the markup for product i as mi “ pi ´ ci. The first-order condition of the
objective function RrootpProotq with respect to price pi of product i is

BRrootpProotq

Bpi
“ Qi `mi

BQi

Bpi
`

m´1
ÿ

k“0

ÿ

i1Pηi,k
i1Rηi,k`1

mi1
BQi1

Bpi
, (B.17)

where we use Qi to denote the choice probability of product i. We will derive BQi{Bpi and
BQi1{Bpi in the remaining part of this proof, respectively. For all i1 P ηi,k and i1 R ηi,k`1

p0 ď k ď m´ 1q, BQi1{Bpi can be calculated as

BQi1

Bpi
“
Bp
śm´1

t“0 Qpηi1,t`1|ηi1,tqq

Bpi
“

m´1
ÿ

t“0

BQpηi1,t`1|ηi1,tq

Bpi
˚

Qi1

Qpηi1,t`1|ηi1,tq

“

k
ÿ

t“0

BQpηi1,t`1|ηi1,tq

Bpi
˚

Qi1

Qpηi1,t`1|ηi1,tq
(B.18)

“
BQpηi1,k`1|ηi,kq

Bpi
˚

Qi1

Qpηi1,k`1|ηi,kq
`

k´1
ÿ

t“0

BQpηi,t`1|ηi,tq

Bpi
˚

Qi1

Qpηi,t`1|ηi,tq
. (B.19)

Equation (C.5) is due to the fact that BQpηi1,t`1|ηi1,tq{Bpi “ 0, when k ` 1 ď t ď m ´ 1.
Equation (C.6) is established because Qpηi1,t`1|ηi1,tq “ Qpηi,t`1|ηi,tq p0 ď t ď k ´ 1q when
i1 P ηi,k and i1 R ηi,k`1. Especially, for t “ k, we have Qpηi1,k`1|ηi1,kq “ Qpηi1,k`1|ηi,kq. Thus,
in order to compute BQi1{Bpi, we should first derive BQpηi1,k`1|ηi,kq{Bpi where i1 P ηi,k and
i1 R ηi,k`1 p0 ď k ď m ´ 1q. Then calculate BQpηi,t`1|ηi,tq{Bpi for 0 ď t ď k ´ 1. For
BQpηi1,k`1|ηi,kq{Bpi, we have

Qpηi1,k`1|ηi,kq “
Vηi1,k`1

Vηi,k0 `
ř

jPChildrenpηi,kq
Vj
, (B.20)

where Vηi,k0 represents the no-purchase option of node ηi,k. For notational simplicity, we
omit the price vector in the expression of preference weight. We can also see that Vηi1,k`1

does not contain the term pi, but Vηi,k`1
P Childrenpηi,kq does. In order to obtain the partial

derivative of (C.7) with respect to pi, we need to derive BVηi,k`1
{Bpi

BVηi,k`1

Bpi
“ γi,k`1

¨

˝Vηi,k`10 `
ÿ

jPChildrenpηi,k`1q

Vj

˛

‚

γi,k`1´1

BVηi,k`2

Bpi

It is an iterative form, we can finally get

BVηi,k`1

Bpi
“ ´βiVi ˚

m´1
ź

q“k`1

γi,q

¨

˝Vηi,q0 `
ÿ

jPChildrenpηi,qq

Vj

˛

‚

γi,q´1

. (B.21)
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For notational simplicity, we denote λsi,t “
śs

q“t γi,q. Based on Equations (C.7) and (C.8),
we have

BQpηi1,k`1|ηi,kq

Bpi
“ βiλ

m´1
i,k`1 ˚

Vηi1,k`1

Vηi,k0 `
ř

jPChildrenpηi,kq
Vj
˚

m´1
ź

q“k`1

Qpηi,q|ηi,q´1q ˚Qpi|ηi,m´1q

“ βiλ
m´1
i,k`1 ˚Qpηi1,k`1|ηi,kq ˚Qpi|ηi,kq

.

(B.22)

For BQpηi,t`1|ηi,tq{Bpi, since Qpηi,t`1|ηi,tq “ Vηi,t`1
{

´

Vηi,t0 `
ř

jPChildrenpηi,tq
Vj

¯

, then

BQpηi,t`1|ηi,tq

Bpi
“ p1´

Vηi,t`1

Vηi,t0 `
ř

jPChildrenpηi,tq
Vj
q ˚

1

Vηi,t0 `
ř

jPChildrenpηi,tq
Vj
˚
BVηi,t`1

Bpi

“ ´βiλ
m´1
i,t`1 ˚ p1´Qpηi,t`1|ηi,tqq ˚Qpi|ηi,tq. (B.23)

After plugging Equations (C.9) and (C.10) into Equation (C.6), we have

BQi1

Bpi
“
BQpηi1,k`1|ηi,kq

Bpi
˚

Qi1

Qpηi1,k`1|ηi,kq
`

k´1
ÿ

t“0

BQpηi,t`1|ηi,tq

Bpi
˚

Qi1

Qpηi,t`1|ηi,tq

“ βi

˜

k
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi|ηi,tqQi1 ` λ

m´1
i,1 QiQi1

¸

“ βiQi

˜

k
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi1|ηi,tq ` λ

m´1
i,1 Qi1

¸

. (B.24)

The last equality is due to the fact that Qi “ Qpi|ηi,tqQpηi,tq and Qi1 “ Qpi1|ηi,tqQpηi,tq, then
Qpi|ηtqQi1 “ Qpi1|ηtqQi. Also note when k “ 0, BQi1{Bpi “ βiλ

m´1
i,1 QiQi1 . In a similar way,

for BQi{Bpi, we have

BQi

Bpi
“

m´1
ÿ

t“0

BQpηi,t`1|ηi,tq

Bpi
˚

Qi

Qpηi,t`1|ηi,tq
“ βiQi

˜

m´1
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi|ηi,tq ` λ

m´1
i,1 Qi ´ 1

¸

.

(B.25)

Then plug Equations (C.11) and (C.12) into Equation (C.4), we obtain

BRrootpProotq{Bpi “ Qi `miβiQi

˜

m´1
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi|ηi,tq ` λ

m´1
i,1 Qi ´ 1

¸

`
ÿ

i1Pηi,0
i1Rηi,1

mi1βiλ
m´1
i,1 QiQi1 `

m´2
ÿ

k“1

ÿ

i1Pηi,k
i1Rηi,k`1

mi1βiQi

˜

k
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi1|ηtq ` λ

m´1
i,1 Qi1

¸

`
ÿ

i1Pηi,m´1

i1‰i

mi1βiQi

˜

m´1
ÿ

t“1

pλm´1
i,t`1 ´ λ

m´1
i,t qQpi1|ηtq ` λ

m´1
i,1 Qi1

¸
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This lemma is established after collecting terms.

PROOF OF LEMMA 12

Proof. We prove this lemma by mathematical induction on the level in which node i lies.
For notational brevity, we denote Vi “ Vipθiq, ωi “ ωipθiq, τi “ τipθiq, δi “ δipθiq, ui “ uipθiq
and Qpj|iq “ Qpθj|θiq. First, consider the case when i is a basic node, we have

BVi
Bθi

“
BrpVi0 `

ř

jPiC
Vjq

γis

Bθi
“ γipVi0 `

ÿ

jPiC

Vjq
γi´1

ÿ

jPiC

BVj
Bθi

“ γiVi
1

Vi0 `
ř

jPiC
Vj

ÿ

jPiC

BVj
Bθj

Bθj
Bθi

“ γiVi
1

Vi0 `
ř

jPiC
Vj

ÿ

jPiC

p´βjVjq “ ´γiVi
ÿ

jPiC

βjQpj|iq “ ´γiViui,

Bωi
Bθi

“ p
1

γi
´ 1q

ÿ

jPiC

BQpj|iq

Bθi

1

βj

“ p
1

γi
´ 1q

ÿ

jPiC

r
BVj
Bθi
pVi0 `

ÿ

jPiC

Vjq ´ Vj
ÿ

jPiC

BVj
Bθi
s

1

pVi0 `
ř

jPiC
Vjq2

1

βj

“ p
1

γi
´ 1q

ÿ

jPiC

r´βjQpj|iq ´Qpj|iq
ÿ

jPiC

p´βjQpj|iqqs
Bθi
Bθj

1

βj

“ p
1

γi
´ 1q

ÿ

jPiC

r´Qpj|iq `
Qpj|iq

βj

ÿ

jPiC

pβjQpj|iqqs “ ωiui ´ p
1

γi
´ 1qτi,

Bτi
Bθi

“
ÿ

jPiC

BQpj|iq

Bθi
“

ÿ

jPiC

r´βjQpj|iq `Qpj|iq
ÿ

jPiC

βjQpj|iqs “ ´ui ` τiui “ ´p1´ τiqui,

Bδi
Bθi

“ ´p
1

γi
´ 1q

Bτi
Bθi

“ p
1

γi
´ 1qp1´ τiqui “ pδi ´ 1qui.

And

0 ď ωi “ p
1

γi
´ 1q

ÿ

jPiC

Qpj|iq

βj
ď p

1

γi
´ 1q

1

minjPiCtβju

ÿ

jPiC

Qpj|iq “ p
1

γi
´ 1q

1

Bi

ÿ

jPiC

Qpj|iq

ď p
1

γi
´ 1q

1

Bi

,

0 ď ui “
ÿ

jPiC

βjQpj|iq ď max
jPiC

tβju
ÿ

jPiC

Qpj|iq ď Bi

ÿ

jPiC

Qpj|iq ď Bi.

Under Assumption 3, we have

ωiui ď p
1

γi
´ 1q

Bi

Bi

ď
1

γi
Bθi
Bθj

“ 1 ě 0,
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where second equation is because θi “ θj ´ 1{βj. In general, Bθi
Bθj

“ δj ` θj
Bδj
Bθj
´

Bωj
Bθj

ě

1
γj
´ p 1

γj
´ 1qτj ` θj

Bδj
Bθj
´ pωiui ´ p

1
γi
´ 1qτiq ě

1
γj
´ ωjuj. Thus this lemma holds for basic

nodes. Suppose it is also true for nonleaf node j in level l (1 ď l ď m ´ 1), then for it’s
parent node i, we have

BVi
Bθi

“
BrpVi0 `

ř

jPiC
Vjq

γis

Bθi
“ γiVi

1

Vi0 `
ř

jPiC
Vj

ÿ

jPiC

BVj
Bθj

Bθj
Bθi

“ γiVi
1

Vi0 `
ř

jPiC
Vj

ÿ

jPiC

p´γjVjujq
Bθj
Bθi

“ ´γiVi
ÿ

jPiC

γjuj
Bθi{Bθj

Qpθj|θiq “ ´γiViui,

Bωi
Bθi

“ p
1

γi
´ 1q

ÿ

jPiC

1

1´ γj
rA´Bs ,

where

A “

BVj
Bθj
ωj `

Bωj
Bθj
Vj

pVi0 `
ř

jPiC
Vjqδj

Bθj
Bθi

ď
´γjVjujωj ` pωjuj ´ p

1
γj
´ 1qτjqVj

pVi0 `
ř

jPiC
Vjqδj

Bθj
Bθi

“
p1´ γjqVjujωj ´

1
γj
τjVjp1´ γjq

pVi0 `
ř

jPiC
Vjqδj

Bθj
Bθi

“
p1´ γjqQpj|iqpωjuj ´

τj
γj
q

δj

Bθj
Bθi

,

and

B “
pVjωjqrδj

ř

jPiC

BVj
Bθj

Bθj
Bθi
` pVi0 `

ř

jPiC
Vjq

Bδj
Bθj

Bθj
Bθi
s

pVi0 `
ř

jPiC
Vjq2δ2

j

“
pVjωjqrδj

ř

jPiC
p´γjVjujq

Bθj
Bθi
` pVi0 `

ř

jPiC
Vjq

Bδj
Bθj

Bθj
Bθi
s

pVi0 `
ř

jPiC
Vjq2δ2

j

“ ´
Vjωj

pVi0 `
ř

jPiC
Vjqδj

ÿ

jPiC

γjQpj|iquj
Bθi{Bθj

`
Vjωj

Bδj
Bθj

Bθi{BθjpVi0 `
ř

jPiC
Vjqδ2

j

“ ´
Qpj|iqωj

δj
ui `

Qpj|iqωj
Bδj
Bθj

Bθi{Bθjδ2
j

“ ´
Qpj|iq

δj

˜

ωjui ´
ωj
Bδj
Bθj

Bθi{Bθjδj

¸

,
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Thus we have

Bωi
Bθi

“ p
1

γi
´ 1q

ÿ

jPiC

1

1´ γj
rA´Bs

ď p
1

γi
´ 1q

ÿ

jPiC

1

1´ γj

«

p1´ γjqQpj|iqpωjuj ´
τj
γj
q

δj

Bθj
Bθi

`
Qpj|iq

δj

˜

ωjui ´
ωj
Bδj
Bθj

Bθi{Bθjδj

¸ff

“

«

p
1

γi
´ 1q

ÿ

jPiC

1

1´ γj

Qpj|iq

δj
ωj

ff

ui

` p
1

γi
´ 1q

ÿ

jPiC

Qpj|iq

δj

«

pωjuj ´
τj
γj
q

Bθi{Bθj
´

ωj
Bδj
Bθj

Bθi{Bθjδjp1´ γjq

ff

“ ωiui ´ p
1

γi
´ 1q

ÿ

jPiC

Qpj|iq

δj

«

ωj
Bδj
Bθj

Bθi{Bθjδjp1´ γjq
´
pωjuj ´

τj
γj
qδjp1´ γjq

Bθi{Bθjδjp1´ γjq

ff

ď ωiui ´ p
1

γi
´ 1q

ÿ

jPiC

Qpj|iq

δj
τj

1
γj
´

ωjuj
δj

Bθi{Bθj
ď ωiui ´ p

1

γi
´ 1q

ÿ

jPiC

Qpj|iq

δj
τj

“ ωiui ´ p
1

γi
´ 1qτi,

where the last inequality is due to Assumption 2 and the fact that

1

γj
´
ωjuj
δj

ě
1

γj
´

1
γj

1
“ 0.
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We also have

Bτi
Bθi

“
ÿ

jPiC

BpVjτjq

Bθi
pVi0 `

ř

jPiC
Vjqδj ´ pVjτjq

BpVi0`
ř

jPiC
Vjqδj

Bθi

pVi0 `
ř

jPiC
Vjq2δ2

j

“
ÿ

jPiC

BVj
Bθj
τj ` Vj

Bτj
Bθj

pVi0 `
ř

jPiC
Vjqδj

Bθj
Bθi

´
ÿ

jPiC

Vjτj

”

δj
ř

jPiC

BVj
Bθj

Bθj
Bθi
` pVi0 `

ř

jPiC
Vjq

Bδj
Bθj

Bθj
Bθi

ı

pVi0 `
ř

jPiC
Vjq2δ2

j

ď
ÿ

jPiC

BVj
Bθj
τj ` Vj

Bτj
Bθj

pVi0 `
ř

jPiC
Vjqδj

Bθj
Bθi

´
ÿ

jPiC

Vjτj

”

δj
ř

jPiC

BVj
Bθj

Bθj
Bθi

ı

pVi0 `
ř

jPiC
Vjq2δ2

j

ď
ÿ

jPiC

´γjVjujτj ´ Vjp1´ τjquj
pVi0 `

ř

jPiC
Vjqδj

Bθj
Bθi

´
ÿ

jPiC

Vjτj

”

δj
ř

jPiC
p´γjVjujq

ı

pVi0 `
ř

jPiC
Vjq2δ2

j Bθi{Bθj

“
ÿ

jPiC

´γjVjujτj ´ Vjp1´ τjquj
pVi0 `

ř

jPiC
Vjqδj

Bθj
Bθi

´
ÿ

jPiC

Vjτj

”

δj
ř

jPiC
p´γjVjujq

ı

pVi0 `
ř

jPiC
Vjq2δ2

j Bθi{Bθj

“ ´
ÿ

jPiC

γjQpj|iqujp
1
γj
´ p 1

γj
´ 1qτjq

Bθi{Bθjδj
`

ÿ

jPiC

Qpj|iq

δj
τj

ÿ

jPiC

γjQpj|iquj
Bθi{Bθj

“ ´ui ` τiui

“ ´p1´ τiqui.

Thus we have

Bδi
Bθi

“ ´p
1

γi
´ 1q

Bτi
Bθi

ě p
1

γi
´ 1qp1´ τiqui “ pδi ´ 1qui.

And

0 ď ωi “ p
1

γi
´ 1q

ÿ

jPiC

Qpj|iq

1´ γj

ωj
δj
ď p

1

γi
´ 1q

ÿ

jPiC

Qpj|iq

1´ γj

p 1
γj
´ 1q 1

Bj

1

ď p
1

γi
´ 1q

1

minjPiCtγjBju

ÿ

jPiC

Qpj|iq

ď p
1

γi
´ 1q

1

minjPiCtγjBju
“ď p

1

γi
´ 1qBi,

0 ď ui “
ÿ

jPiC

γjuj
Bθi{Bθj

Qpj|iq ď
ÿ

jPiC

γjuj
1
γj
´ ωjuj

Qpj|iq ď
ÿ

jPiC

γjBj

1
γj
´ p 1

γj
´ 1q

Bj
Bj

Qpj|iq

ď max
jPiC

t
γ2
jBj

1´ p1´ γjqBj{Bj

u
ÿ

jPiC

Qpj|iq ď Bi

ÿ

jPiC

Qpj|iq ď Bi.
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Under Assumption 3 and 2, we have

ωiui ď p
1

γj
´ 1q

Bi

Bi

ď
1

γi
Bθi
Bθj

“ δj ` θj
Bδj
Bθj

´
Bωj
Bθj

ě
1

γj
´ p

1

γj
´ 1qτj ` θj

Bδj
Bθj

´ pωjuj ´ p
1

γj
´ 1qτjq ě

1

γj
´ ωjuj ě 0,

By the principle of mathematical induction, this lemma holds for all nonleaf node i P V .
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Appendix C

Appendix to Chapter 3

C.1 Notation

For ease of reading, we summarize our notation as follows:
m The number of levels in the tree structure.
N The number of products.
G The number of grid points for each node in the tree structure.
K The maximum number of children nodes that a node can have in the tree structure.
Ni The set of products that are associated with node i.
Si The assortment of node i.
Pi The price vector of assortment Si.
=i The set of feasible assortments that satisfies cardinality/space constraints.
Ci The cardinality limitation on node i.
Si The space limitation on node i.
B The set of basic nodes.
αi The price-independent deterministic utility of product i.
βi The price-sensitivity parameter of product i.
γi The dissimilarity parameter for nonleaf node i.

VipSi,Piq The preference weight for assortment Si with price vector Pi.
RipSi,Piq The expected profit for assortment Si with price vector Pi.

Z˚ The maximum expected profit under cardinality/space constraints.
θi The node-specific adjusted markup for node i.

Ai The collection of assortments that include S˚i .
Fipθhq The optimal solution to problem (4.12).

S̃jpθjq The optimal solution to problem (4.9).

S̃ipθiq :=
Ť

jPChildrenpiq S̃jpFjpθiqq.

pSαroot,P
α
rootq α-approximate solution to problem (4.1) under space constraints.
A α
i The collection of assortments that include Sαi .
Zα := RrootpS

α
root,P

α
rootq.
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C.2 Technical Proofs

Proof of Lemma 13

We use the following two claims to prove lemma 13.

Claim 12. For an arbitrary nonleaf node i P V and its parent node h, assume RipS
˚
i ,P

˚
i q ą

e˚h. If there exists an assortment Ŝi Ď =i and a price vector P̂i such that

VipŜi, P̂iq
1{γi

´

RipŜi, P̂iq ´ e
˚
i

¯

ě VipS
˚
i ,P

˚
i q

1{γi pRipS
˚
i ,P

˚
i q ´ e

˚
i q . (C.1)

Then we have

VipŜi, P̂iq

´

RipŜi, P̂iq ´ e
˚
h

¯

ě VipS
˚
i ,P

˚
i q pRipS

˚
i ,P

˚
i q ´ e

˚
hq . (C.2)

If the inequality in (C.1) is strict, then the inequality in (C.2) is strict as well.

Proof. This claim is a special case of the lemma 1 in [50], which uses the subgradient
inequality in [18], we provide the proof for completeness. For notational brevity, we let
V̂i “ VipŜi, P̂iq, V

˚
i “ VipS

˚
i ,P

˚
i q, R̂i “ RipŜi, P̂iq and R˚i “ RipS

˚
i ,P

˚
i q throughout the

proof. After dividing both sides of inequality (C.1) by V̂
1{γi
i and subtracting both sides by

e˚h, we obtain

R̂i ´ e
˚
h ě

ˆ

V ˚i

V̂i

˙1{γi

pR˚i ´ e
˚
i q ` e

˚
i ´ e

˚
h (C.3)

“ γi

ˆ

V ˚i

V̂i

˙1{γi

pR˚i ´ e
˚
hq ` p1´ γiqpR

˚
i ´ e

˚
hq “

˜

γi

ˆ

V ˚i

V̂i

˙1{γi

` p1´ γiq

¸

pR˚i ´ e
˚
hq,

where we get the first equality from the definition of e˚i as e˚i “ γie
˚
h ` p1 ´ γiqR

˚
i and the

second equality is obtained after collecting terms. Consider function fpxq “ x1{γi , which is
convex since 0 ă γi ď 1, we have x1{γi ě 1`px´1q{γi due to its convexity. After rearranging
the terms, we obtain γix

1{γi ` 1´ γi ě x. Set x “ V ˚i {V̂i, we have

γi

ˆ

V ˚i

V̂i

˙1{γi

` p1´ γiq ě
V ˚i

V̂i
.

Since R˚i ě e˚h according to our assumption in this claim, multiply R˚i ´ e
˚
h on both sides of

the inequality above, we get

˜

γi

ˆ

V ˚i

V̂i

˙1{γi

` p1´ γiq

¸

pR˚i ´ e
˚
hq ě

V ˚i

V̂i
pR˚i ´ e

˚
hq.
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From the inequality above and (C.3), we get that

R̂i ´ e
˚
h ě

V ˚i

V̂i
pR˚i ´ e

˚
hq,

implying that V̂ipR̂i ´ e˚hq ě V ˚i pR
˚
i ´ e˚hq. If the inequality in (C.1) is strict, then the

inequality in (C.3) is also strict, thus the inequality in (C.2) becomes strict as well.

Claim 13. For an arbitrary nonleaf node i P V and its parent node h, assume RipS
˚
i ,P

˚
i q ą

e˚h. If for all j P Childrenpiq, there exists an assortment Ŝj Ď =j and a price vector P̂j such
that

VjpŜj, P̂jq

´

RjpŜj, P̂jq ´ e
˚
i

¯

ě VjpS
˚
j ,P

˚
j q
`

RjpS
˚
j ,P

˚
j q ´ e

˚
i

˘

.

Let pŜi, P̂iq “
Ť

jPChildrenpiqpŜj, P̂jq, then we have

VipŜi, P̂iq

´

RipŜi, P̂iq ´ e
˚
h

¯

ě VipS
˚
i ,P

˚
i q pRipS

˚
i ,P

˚
i q ´ e

˚
hq .

Proof. This claim follows directly from Claim 12. For notational brevity, we let V̂i “
VipŜi, P̂iq, V

˚
i “ VipS

˚
i ,P

˚
i q, R̂i “ RipŜi, P̂iq and R˚i “ RipS

˚
i ,P

˚
i q. Because the first in-

equality of this claim holds for all j P Childrenpiq, we get

V̂
1{γi
i pR̂i ´ e

˚
i q “

ÿ

jPChildrenpiq

V̂jpR̂j ´ e
˚
i q ě

ÿ

jPChildrenpiq

V ˚j pR
˚
j ´ e

˚
i q “ pV

˚
i q

1{γipR˚i ´ e
˚
i q.

The second inequality holds because of Claim 12.

Proof. Proof of Lemma 13: We prove this lemma by induction on levels. It is true for root
node: 1) RrootpS

˚
root,P

˚
rootq ą e˚Parentprootq “ 0; 2) S˚root is a nonempty set and P˚

root is a nonzero

vector, otherwise RrootpS
˚
root,P

˚
rootq would be zero; 3) Because joint subproblem (4.2) at root

node is equivalent to the global optimization problem (4.1), pS˚i ,P
˚
i q is identical to pŜi, P̂iq

as well. Then we assume that the three items in this lemma are true for any nonleaf node i
in level l p1 ď l ď m´ 1q.

First, we prove the third item in this lemma. Suppose on the contrary that there exists
node k P Childrenpiq in level l`1 such that VkpS

˚
k ,P

˚
kqpRkpS

˚
k ,P

˚
kq´e

˚
i q ă maxSkĎ=k maxPk

tVkpSk,PkqpRkpSk,Pkq´e
˚
i qu. For each j P Childrenpiq, define pŜj, P̂jq “ arg maxSjĎ=j maxPj

VjpSj,Pjq pRjpSj,Pjq ´ e
˚
i q. Then by construction: VjpŜj, P̂jq

´

RjpŜj, P̂jq ´ e
˚
i

¯

ě

VjpS
˚
j ,P

˚
j q
`

RjpS
˚
j ,P

˚
j q ´ e

˚
i

˘

, the inequality in which is strict if j “ k. Moreover, we have

RipS
˚
i ,P

˚
i q ě e˚h according to the induction hypothesis. Let pŜi, P̂iq “

Ť

jPChildrenpiqpŜj, P̂jq,

then according to Claim 13, we have VipŜi, P̂iq

´

RipŜi, P̂iq ´ e
˚
h

¯

ą VipS
˚
i ,P

˚
i q pRipS

˚
i ,P

˚
i q ´ e

˚
hq.

It contradicts the induction hypothesis that VipS
˚
i ,P

˚
i qpRipS

˚
i ,P

˚
i q ´ e

˚
hq “

maxSiĎ=i maxPitVipSi,PiqpRipSi,Piq ´ e
˚
hqu. Thus the first part of item 3 is true. Then the

second part is also true by Claim 13.
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Second, we prove the first two items in this lemma. For node j P Childrenpiq, from
the third item in this lemma, we know that pS˚j ,P

˚
j q is the optimal solution to the joint

subproblem at node j. Suppose on the contrary that RjpS
˚
j ,P

˚
j q ď e˚i , then we obtain

maxSjĎ=j maxPjtVjpSj,PjqpRjpSj,Pjq ´ e˚i qu “ VjpS
˚
j ,P

˚
j qpRjpS

˚
j ,P

˚
j q ´ e˚i q ď 0. We con-

struct another nonempty assortment S̃j with price vector P̃j for node j such that for any
product k P S̃j, we set the price pk “ e˚i ` ε where ε is strictly larger than zero. By construc-
tion, we have VjpS̃j, P̃jqpRjpS̃j, P̃jq ´ e

˚
i q “ ε ˚ VjpS̃j, P̃jq ą 0 ě VjpS

˚
j ,P

˚
j qpRjpS

˚
j ,P

˚
j q ´ e

˚
i q,

which contradicts that pS˚j ,P
˚
j q is the optimal solution to the joint subproblem at node j.

By the definition of e˚i and the induction hypothesis, we get that e˚j ě 0. Thus the first
item in this lemma is true. The second item also holds, otherwise RjpS

˚
j ,P

˚
j q would be zero,

which contradicts with the first item in this lemma.

Proof of Lemma 14

Proof. Denote pS̃i, P̃iq as the optimal solution to problem (4.3), then we have

VipS̃i, P̃iq
1{γi

´

RipS̃i, P̃iq ´ e
˚
i

¯

ě VipS
˚
i ,P

˚
i q

1{γi pRipS
˚
i ,P

˚
i q ´ e

˚
i q .

Because of Claim 12, we have

VipS̃i, P̃iq

´

RipS̃i, P̃iq ´ e
˚
h

¯

ě VipS
˚
i ,P

˚
i q pRipS

˚
i ,P

˚
i q ´ e

˚
hq

“ max
SiĎ=i

max
Pi

VipSi,PiqpRipSi,Piq ´ e
˚
hq,

where the last equality is due to Lemma 13. Therefore, pS̃i, P̃iq is also optimal to problem
(4.2), which completes the proof.

Proof of Lemma 15

Claim 14 and claim 15 are used to prove lemma 15 and lemma 16.

Claim 14. For nonleaf node i in level d p0 ď d ď m ´ 1q and a given assortment Si. The
first derivative of RipSi,Piq and VipSi,Piq with respect to price pr of any product r in the
lowest level m is

BRipSi,Piq

Bpr
“ βrQpr|iq

˜

1

βr
´mr ` λ

m´1
r,d`1

ÿ

r1Pηr,d

mr1Qpr
1
|iq

`

m´2
ÿ

k“d`1

ÿ

r1Pηr,k
r1Rηr,k`1

mr1

ˆ k
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr1|ηr,tq

˙

`
ÿ

r1Pηr,m´1

mr1

ˆ m´1
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr1|ηr,tq

˙

¸

,
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and

BVipSi,Piq

Bpr
“ ´βrQpr|iqλ

m´1
d VipSi,Piq,

where the notations are defined as follows

λsr,t “

#

śs
q“t γr,q t ď s

1 t ą s

Qpr|ηr,lq “ Qpr|ηr,l`1q
Vηr,l`1

ř

jPChildrenpηr,lq
Vj
,

mr “ pr ´ cr.

We use the following notations throughout the Appendix C.2. ηr,t is defined as the
product r’s ancestor node in level t. For simplicity, ηr,t is also used to represent the set of
products that are associated with it. Qpr|iq is the choosing probability of product r given
node i and the markup for product r is denoted as mr “ pr ´ ci. γr,q is the dissimilarity
parameter of the r’s ancestor in level q.

Proof. The markup for product r in level m is defined as mr “ pr ´ ci, then we have
RipSi,Piq “

ř

rPηr,d
mr ˚ Qpr|iq where ηr,d “ Si that is the assortments of node i according

to the definition. Thus the first derivative of RipSi,Piq with respect to price pr of product
r is

BRipSi,Piq

Bpr
“ Qpr|iq `mr

BQpr|iq

Bpr
`

m´1
ÿ

k“d

ÿ

r1Pηr,k
r1Rηr,k`1

mr1
BQpr1|iq

Bpr
. (C.4)

We will derive BQpr|iq{Bpr and BQpr1|iq{Bpr in the remaining part of this proof, respectively.
For all r1 P ηr,k and r1 R ηr,k`1 pd ď k ď m´ 1q, BQpr1|iq{Bpr can be calculated as

BQpr1|iq

Bpr
“
Bp
śm´1

t“d Qpηr1,t`1|ηr1,tqq

Bpr
“

m´1
ÿ

t“d

BQpηr1,t`1|ηr1,tq

Bpr
˚

Qpr1|iq

Qpηr1,t`1|ηr1,tq

“

k
ÿ

t“d

BQpηr1,t`1|ηr1,tq

Bpr
˚

Qpr1|iq

Qpηr1,t`1|ηr1,tq
(C.5)

“
BQpηr1,k`1|ηr,kq

Bpr
˚

Qpr1|iq

Qpηr1,k`1|ηr,kq
`

k´1
ÿ

t“d

BQpηr,t`1|ηr,tq

Bpr
˚

Qpr1|iq

Qpηr,t`1|ηr,tq
. (C.6)

Equation (C.5) is due to the fact that BQpηr1,t`1|ηr1,tq{Bpr “ 0 when k ` 1 ď t ď m ´ 1.
Equation (C.6) is established because Qpηr1,t`1|ηr1,tq “ Qpηr,t`1|ηr,tq pd ď t ď k ´ 1q when
r1 P ηr,k and r1 R ηr,k`1. Especially, for t “ k, we have: Qpηr1,k`1|ηr1,kq “ Qpηr1,k`1|ηr,kq.
Thus, in order to compute BQpr1|iq{Bpr, we should firstly derive BQpηr1,k`1|ηr,kq{Bpr where



APPENDIX C. APPENDIX TO CHAPTER 3 112

r1 P ηr,k and r1 R ηr,k`1 pd ď k ď m ´ 1q. Then secondly calculate BQpηr,t`1|ηr,tq{Bpr for
d ď t ď k ´ 1. For BQpηr1,k`1|ηr,kq{Bpr, we have

Qpηr1,k`1|ηr,kq “
Vηr1,k`1

ř

jPChildrenpηr,kq
Vj
. (C.7)

For notational simplicity, we omit the assortment and price vector in the expression of
preference weight. We can also see that Vηr1,k`1

does not contain the term pr, but Vηr,k`1
P

Childrenpηr,kq does. In order to obtain the partial derivative of Qpηr1,k`1|ηr,kq that is defined
in (C.7) with respect to pr, we need

BVηr,k`1

Bpr
“ γr,k`1

¨

˝

ÿ

jPChildrenpηr,k`1q

Vj

˛

‚

γr,k`1´1

BVηr,k`2

Bpr
.

It is an iterative form, we can finally get

BVηr,k`1

Bpr
“ ´βrVi ˚

m´1
ź

q“k`1

γr,q

¨

˝

ÿ

jPChildrenpηr,qq

Vj

˛

‚

γr,q´1

. (C.8)

For notational simplicity, we denote λsr,t “
śs

q“t γr,q. Therefore, we obtain

BVi
Bpr

“ ´βrQpr|iqλ
m´1
d Vi,

thus the second part of this claim holds. Based on Equations (C.7) and (C.8), we have

BQpηr1,k`1|ηr,kq

Bpr
“ βrλ

m´1
r,k`1 ˚

Vηr1,k`1
ř

jPChildrenpηr,kq
Vj
˚

m´1
ź

q“k`1

Qpηr,q|ηr,q´1q ˚Qpr|ηr,m´1q

“ βrλ
m´1
r,k`1 ˚Qpηr1,k`1|ηr,kq ˚Qpr|ηr,kq,

(C.9)

where Qpr|ηr,kq “ Qpr|ηr,k`1q ˚ Vηr,k`1
{
ř

jPChildrenpηr,kq
Vj. For BQpηr,t`1|ηr,tq{Bpr, since

Qpηr,t`1|ηr,tq “ Vηr,t`1{
ř

jPChildrenpηr,tq
Vj, then

BQpηr,t`1|ηr,tq

Bpr
“ p1´

Vηr,t`1
ř

jPChildrenpηr,tq
Vj
q ˚

1
ř

jPChildrenpηr,tq
Vj
˚
BVηr,t`1

Bpr

“ ´βrλ
m´1
r,t`1 ˚ p1´Qpηr,t`1|ηr,tqq ˚Qpr|ηr,tq. (C.10)
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After plugging Equations (C.9) and (C.10) into Equation (C.6), we have

BQpr1|iq

Bpr
“
BQpηr1,k`1|ηr,kq

Bpr
˚

Qpr1|iq

Qpηr1,k`1|ηr,kq
`

k´1
ÿ

t“d

BQpηr,t`1|ηr,tq

Bpr
˚

Qpr1|iq

Qpηr,t`1|ηr,tq

“ βr

˜

k
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr|ηr,tqQpr

1
|iq ` λm´1

r,d`1Qpr|iqQpr
1
|iq

¸

“ βrQpr|iq

˜

k
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr1|ηr,tq ` λ

m´1
r,d`1Qpr

1
|iq

¸

.

(C.11)

The last equality is due to the fact thatQpr|iq “ Qpr|ηr,tqQpηr,tq andQpr1|iq “ Qpr1|ηr,tqQpηr,tq,
thenQpr|ηtqQpr

1|iq “ Qpr1|ηtqQr. Also note when k “ d, BQpr1|iq{Bpr “ βrλ
m´1
r,d`1Qpr|iqQpr

1|iq.
In a similar way, for BQpr|iq{Bpr, we have

BQpr|iq

Bpr
“

m´1
ÿ

t“d

BQpηr,t`1|ηr,tq

Bpr
˚

Qpr|iq

Qpηr,t`1|ηr,tq

“ βrQpr|iq

˜

m´1
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr|ηr,tq ` λ

m´1
r,d`1Qpr|iq ´ 1

¸

.

(C.12)

Then plug Equations (C.11) and (C.12) into Equation (C.4), we obtain

BRipSi,Piq{Bpr “ Qpr|iq `mrβrQpr|iq

˜

m´1
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr|ηr,tq ` λ

m´1
r,d`1Qpr|iq ´ 1

¸

`
ÿ

r1Pηr,d
r1Rηr,d`1

mr1βrλ
m´1
r,d`1Qpr|iqQpr

1
|iq

`

m´2
ÿ

k“d`1

ÿ

r1Pηr,k
r1Rηr,k`1

mr1βrQpr|iq

˜

k
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr1|ηtq ` λ

m´1
r,d`1Qpr

1
|iq

¸

`
ÿ

r1Pηr,m´1

r1‰r

mr1βrQpr|iq

˜

m´1
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr1|ηtq ` λ

m´1
r,d`1Qpr

1
|iq

¸

.

This first part of this claim is established after collecting terms.

Claim 15. For any nonleaf node i P V and an assortment Si, we have

BVipSi, θiq

Bθi
“ ´γiVipSi, θiquipSi, θiq, (C.13)



APPENDIX C. APPENDIX TO CHAPTER 3 114

and
BωipSi, θiq

Bθi
“ ωipSi, θiquipSi, θiq ´ p

1

γi
´ 1q, (C.14)

where

uipSi, θiq “

#
ř

jPChildrenpiq βjQpSj, θj|Si, θiq i is a basic node
ř

jPChildrenpiq

γ2j ujpSjq

1´γjωjpSj ,θjqujpSjq
QpSj, θj|Si, θiq o.w.

Proof. For notational brevity, let ωi “ ωipSi, θiq, ui “ uipSi, θiq, Vi “ VipSi, θiq and Qpj|iq “
QpSj, θj|Si, θiq. We prove this claim by induction on depth of the node i. Firstly, if node i
is a basic node, then Vi “ p

ř

jPChildrenpiq Vjq
γi where Vj “ exppαj ´ βjpjq. Thus we have

BVi
Bθi

“ γip
ÿ

jPChildrenpiq

Vjq
γi´1

ÿ

jPChildrenpiq

BVj
Bpj

Bpj
Bθi

“ ´γiVi
ÿ

jPChildrenpiq

βjQpj|iq

“ ´γiViui,

where the second equality is due to Qpj|iq “ Vj{
ř

jPChildrenpiq Vj and θi “ pj ´ cj ´ 1{βj, and

the last equality is because of the definition of ui for the basic node i. So Equation (C.14)
holds if i is a basic node.

Recall that ωi “ p 1
γi
´ 1q

ř

jPChildrenpiq
Qpj|iq
βj

“ p 1
γi
´ 1q

ř

jPChildrenpiq
Vj

βj
ř

jPChildrenpiq Vj
from

Definition 1, then we also have

Bωi
Bθi

“ p
1

γi
´ 1q

ÿ

jPChildrenpiq

BVj
Bθi

ř

jPChildrenpiq Vj ´ Vj
ř

jPChildrenpiq
BVj
Bθi

p
ř

jPChildrenpiq Vjq
2βj

“ p
1

γi
´ 1q

ÿ

jPChildrenpiq

1

βj

»

–

BVj
Bpj

Bpj
Bθi

ř

jPChildrenpiq Vj
´Qpj|iq

ÿ

jPChildrenpiq

BVj
Bpj

Bpj
Bθi

fi

fl

“ p
1

γi
´ 1q

ÿ

jPChildrenpiq

1

βj

»

–´βjQpj|iq ´Qpj|iq
ÿ

jPChildrenpiq

p´βjQpj|iqq

fi

fl

“ ωiui ´ p
1

γi
´ 1q.

So Equation (C.14) holds for the basic node i.
Then assume Equations (C.13) and (C.14) are true for node j P Childrenpiq, where node

i is neither a basic node nor a leaf node

BVj
Bθj

“ ´γjVjuj, (C.15)

Bωj
Bθj

“ ωjuj ´ p
1

γj
´ 1q. (C.16)
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Since θi “ θj ´ ωj, then

Bθj
Bθi

“ p1´
Bωj
Bθj
q
´1
“ p

1

γj
´ ωjujq

´1.

We get

BVi
Bθi

“ γip
ÿ

jPChildrenpiq

Vjq
γi´1

ÿ

jPChildrenpiq

BVj
Bθi

“ γip
ÿ

jPChildrenpiq

Vjq
γi´1

ÿ

jPChildrenpiq

BVj
Bθj

Bθj
Bθi

“ γip
ÿ

jPChildrenpiq

Vjq
γip

ÿ

jPChildrenpiq

Vjq
´1

ÿ

jPChildrenpiq

p´γjVjujqp
1

γj
´ ωjujq

´1

“ ´γiVi
ÿ

jPChildrenpiq

γ2
juj

1´ γjωjuj
Qpj|iq

“ ´γiViui,

where the third equality is due to Equations (C.15) and (C.16) and the last equality is
because of the definition of ui. So Equation (C.13) is true for node i.

According to Definition 1, we have

ωi “ p
1

γi
´ 1q

ÿ

jPChildrenpiq

Qpj|iq

1´ γj
ωj “ p

1

γi
´ 1q

ÿ

jPChildrenpiq

Vjωj
p1´ γjq

ř

jPChildrenpiq Vj
,
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thus we can also obtain

Bωi
Bθi

“ p
1

γi
´ 1q

ÿ

jPChildrenpiq

1

1´ γj

BpVjωjq

Bθi

ř

jPChildrenpiq Vj ´ pVjωjq
ř

jPChildrenpiq
BVj
Bθi

p
ř

jPChildrenpiq Vjq
2

“ p
1

γi
´ 1q

ÿ

jPChildrenpiq

1

1´ γj

« BVj
Bθj

Bθj
Bθi
ωj ` Vj

Bωj
Bθj

Bθj
Bθi

ř

jPChildrenpiq Vj
´
pVjωjq

ř

jPChildrenpiq
BVj
Bθj

Bθj
Bθi

p
ř

jPChildrenpiq Vjq
2

ff

“ p
1

γi
´ 1q

ÿ

jPChildrenpiq

1

1´ γj

«

p´γjVjujqp
1
γj
´ ωjujq

´1ωj ` Vjpωjuj ´ p
1
γj
´ 1qqp 1

γj
´ ωjujq

´1

ř

jPChildrenpiq Vj

´
pVjωjq

ř

jPChildrenpiqp´γjVjujqp
1
γj
´ ωjujq

´1

p
ř

jPChildrenpiq Vjq
2

ff

“ p
1

γi
´ 1q

ÿ

jPChildrenpiq

1

1´ γj

«

γjωjujVjp1´ γjq ´ Vjp1´ γjq

p1´ γjωjujq
ř

jPChildrenpiq Vj

ff

` p
1

γi
´ 1q

ÿ

jPChildrenpiq

ωj
1´ γj

Qpj|iq ˚
ÿ

jPChildrenpiq

γjuj
1´ γjωjuj

Qpj|iq

“ p
1

γi
´ 1q

ÿ

jPChildrenpiq

p´Qpj|iqq ` ωiui

“ ωiui ´ p
1

γi
´ 1q.

So Equation (C.14) also holds for node i. Therefore Equations (C.13) and (C.14) are true
for all nonleaf node i according to the principle of mathematical induction.

Proof. Proof of Lemma 15: For notational brevity, let ωa “ ωapSa, θaq, ωb “ ωbpSb, θbq, and
gi “ gipPiq “ VipSi,PiqpRipSi,Piq ´ e˚hq, Vi “ VipSi,Piq, Ri “ RipSi,Piq for all i P V in
this proof. We first prove θi and θ1i are equivalent. We denote the actual product in the
lowest level m as r. Without loss of generality, 0 ď d ď m ´ 2, we assume that node i and
j P Childrenpiq are ancestor nodes of r, and when node d “ m ´ 1, node j is the sibling
node of r. The first derivative of the objective function gi “ VipRi ´ e

˚
hq in the inner pricing

subproblem with respect to price pr of product r is

Bgi
Bpr

“
BVi
Bpr
pRi ´ e

˚
hq ` Vi

BRi

Bpr
.
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Due to Claim 14, the above equation can be rewritten as

Bgi
Bpr

“ ´βrQpr|iqλ
m´1
d VipRi ´ e

˚
hq ` ViβrQpr|iq

˜

1

βr
´mr ` λ

m´1
r,d`1

ÿ

r1Pηr,d

mr1Qpr
1
|iq

`

m´2
ÿ

k“d`1

ÿ

r1Pηr,k
r1Rηr,k`1

mr1

ˆ k
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr1|ηr,tq

˙

`
ÿ

r1Pηr,m´1

mr1

ˆ m´1
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr1|ηr,tq

˙

¸

.

We let the first derivative Bgi{Bpr “ 0, since both Qpr|iq and Vi are not zero, after dividing
βrQpr|iqVi on both sides of the above equation and collecting terms, we have

´ λm´1
d pRi ´ e

˚
hq `

˜

1

βr
´mr ` λ

m´1
r,d`1

ÿ

r1Pηr,d

mr1Qpr
1
|iq (C.17)

`

m´2
ÿ

k“d`1

ÿ

r1Pηr,k
r1Rηr,k`1

mr1

ˆ k
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr1|ηr,tq

˙

`
ÿ

r1Pηr,m´1

mr1

ˆ m´1
ÿ

t“d`1

pλm´1
r,t`1 ´ λ

m´1
r,t qQpr1|ηr,tq

˙

¸

“ 0. (C.18)

We know nonleaf node a is in level l (d ď l ď m´ 1) and its children nodes are indexed by
b. Then according to (C.17) and the definition of node-specific adjusted markup, we have

θa “ θb ´ ωb

“ λlr,d`1

ÿ

r1Pηr,d

mr1Qpr
1
|iq `

m´2
ÿ

k“d`1

ÿ

r1Pηr,k
r1Rηr,k`1

mr1

˜

l
ÿ

t“d`1

pλlr,t`1 ´ λ
l
r,tqQpr

1
|ηr,tq

¸

`
ÿ

r1Pηr,m´1

mr1

˜

l
ÿ

t“d`1

pλlr,t`1 ´ λ
l
r,tqQpr

1
|ηr,tq

¸

` λm´1
d pRi ´ e

˚
hq (C.19)

From the RHS of (C.19), we can see that θa is independent of ηr,s where d ď s ď l. Thus for
another child node b1 of node a, θ1a “ mb1 ´ ωb1 also equals to the RHS of (C.19). Therefore,
θa “ θ1a for any node a in level d, d` 1, ...,m´ 1.

Since θa “ θb ´ ωb, In order to prove that there exists a one-to-one increasing correspon-
dence between the node-specific adjusted markup θa and θb where b P Childrenpaq, we need
to prove

Bθa
Bθb

“ 1´
Bωb
Bθb

“ 1´ pωbub ´ p
1

γb
´ 1qq “

1

γb
´ ωbub ą 0,
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where the second equality is due to Claim 15.
Next, we prove by induction on level in which node a is that 0 ă ua ď Bi and

0 ă ωa ď
1´γa
γa

1
Ba

. If node a is in level m ´ 1, then 0 ă ua “
ř

bPChildrenpaq βbQpb|aq ď

maxbPChildrenpaqtβbu “ Ba. And 0 ă ωa “ p
1
γa
´ 1q

ř

bPChildrenpaq
Qpb|aq
βb

ď
1´γa
γa

1
Ba

. Thus it is

true for the basic node a, then assume this holds for nonleaf and non-basic node b

0 ă ub ď Bb,

0 ă ωb ď
1´ γb
γb

1

Bb

.

So we have

0 ă ωbub ď
1´ γb
γb

Bb

Bb

.

Thus we get

ua “
ÿ

bPChildrenpaq

γ2
bub

1´ γbωbub
Qpb|aq ą

ÿ

bPChildrenpaq

γ2
bubQpb|aq ą 0,

and

ua “
ÿ

bPChildrenpaq

γ2
bub

1´ γbωbub
Qpb|aq ď

ÿ

bPChildrenpaq

γ2
bub

1´ γb
1´γb
γb

Bb
Bb

Qpb|aq

ď max
bPChildrenpaq

t
γ2
bBb

1´ γb
1´γb
γb

Bb
Bb

u ď Ba.

So for ua, we have 0 ă ua ď Ba. And for ωa, we have

0 ă ωa “ p
1

γa
´ 1q

ÿ

bPChildrenpaq

Qpb|aq

1´ γb
ωb ď p

1

γa
´ 1q

ÿ

bPChildrenpaq

Qpb|aq

1´ γb

1´ γb
γb

1

Bb

ď p
1

γa
´ 1q

1

minbPChildrenpaqtBbγbu
“

1´ γa
γa

1

Ba

.

By the principle of mathematical induction, for any nonleaf node a, we have

0 ă ωaua ď
1´ γa
γa

Ba

Ba

ă
1

γa
,

thus we obtain
Bθa
Bθb

“

"

1 b is a leaf node
1
γb
´ ωbub ą 0 o.w.

(C.20)

Therefore, there exists a one-to-one increasing correspondence between the node-specific
adjusted markup θa and θb, where b P Childrenpaq.
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Proof of Lemma 16

Proof. For notational brevity, let and gi “ gipθiq, Vi “ VipSi, θiq, Ri “ RipSi, θiq in this proof.
We denote the actual product in the lowest level m as r, thus θr “ pr ´ cr ´ 1{βr.

Due to Claim 14, we have

BVi
Bθr

“ ´βrQpr|iqλ
m´1
d Vi,

then by applying Lemma 15 repeatedly and use the notation for the node-specific adjusted
markup in Definition 1, we have

BRi

Bθr
“ λm´1

r,d`1βrQpr|iq pRi ´ θiq .

Therefore, we get

Bgi
Bθr

“
BVi
Bθr
pRi ´ e

˚
hq ` Vi

BRi

Bθr
“ ´βrQpr|iqλ

m´1
d VipRi ´ e

˚
hq ` Viλ

m´1
r,d`1βrQpr|iq pRi ´ θiq

“ Viλ
m´1
r,d`1βrQpr|iq

´

p1´ γiqRi ` γie
˚
h ´ θi

¯

,

where we use the fact that λm´1
r,d “ λm´1

r,d`1 ˚ γi to get the last equality.
For the first order condition, let Bgi{Bθr “ 0, we can obtain

θi “ γie
˚
h ` p1´ γiqRipSi, θiq,

which completes the proof.

Proof of Corollary 5

Proof. For notational brevity, let Ri “ RipSi, θiq. If i is root node, then we have

BRi

Bθr
“ λm´1

r,d`1βrQpr|iq pRi ´ θiq ,

Where product r in the lowest level m. We use Anpr, lq to denote the r’s ancestor node in
level l pd ď l ď m1q, then we obtain

BRi

Bθi
“

ÿ

rPηr,d

BRi

Bθr

ˆ

BθAnpr,m´1q

Bθr

˙´1 ˆ
BθAnpr,m´2q

BθAnpr,m´1q

˙´1

¨ ¨ ¨

ˆ

BθAnpr,d`1q

BθAnpr,d`2q

˙´1 ˆ
Bθi

BθAnpr,d`1q

˙´1

“ pRi ´ θiq
ÿ

rPηr,d

λm´1
r,d`1βrQpr|iq

ˆ

BθAnpr,m´1q

Bθr

˙´1 ˆ
BθAnpr,m´2q

BθAnpr,m´1q

˙´1

¨ ¨ ¨

ˆ

Bθi
BθAnpr,d`1q

˙´1

.
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According to Lemma 15, we know

ˆ

BθAnpr,m´1q

Bθr

˙´1 ˆ
BθAnpr,m´2q

BθAnpr,m´1q

˙´1

¨ ¨ ¨

ˆ

Bθi
BθAnpr,d`1q

˙´1

ą 0.

Therefore Ri is strictly unimodal with respect to θi according to Lemma 2 in [19]. According
to the unimodality of Ri, we have Ri “ θi at optimality.

Proof of Proposition 11

Proof. For root node, given optimal assortment S˚root, the optimal price vector P ˚root can be
uniquely computed after getting θ˚root by RrootpS

˚
root, θrootq “ θroot. Since there is a one-to-

one correspondence between the node-specific adjusted markups, θ˚i can also be uniquely
identified once θ˚root is given. Thus we have RipS

˚
i ,P

˚
i q “ RipS

˚
i , θ

˚
i q. From Lemma 16, we

know θ˚i “ γie
˚
h ` p1´ γiqRipS

˚
i , θ

˚
i q “ γie

˚
h ` p1´ γiqRipS

˚
i ,P

˚
i q “ e˚i , where is last equality

is according to the definition of e˚i .

Proof of Proposition 12

We use lemma 24 to prove proposition 12.

Lemma 24. For an assortment Si of non-root node i in level d pd ­“ 0q, we have

RipSi, θiq “ θi `
γi

1´ γi
ωipSi, θiq

Proof. We let Ri “ RipSi, θiq, ωi “ ωipSi, θiq and Qpj|iq “ QpSj, θi|Si, θiq for notational
brevity. This lemma can be proved by induction on level d. If node i is in level d “ m ´ 1,
we can obtain

Ri “
ÿ

jPChildrenpiq

Qpj|iqRj “
ÿ

jPChildrenpiq

Qpj|iqppj ´ cjq “
ÿ

jPChildrenpiq

Qpj|iqpθi `
1

βj
q

“ θi `
ÿ

jPChildrenpiq

Qpj|iq

βj
(C.21)

“ θi `
γi

1´ γi
ωi, (C.22)

where Equation (C.21) is due to the fact that there is no no-purchase option in the lowest
level m, then

ř

jPChildrenpiqQpj|iq “ 1, and Equation (C.22) is because of Definition 1. Thus

this claim holds for level m´1. Assume that this claim also holds for level l p2 ď l ď m´1q
that node j P Childrenpiq is in, then we have that Rj “ θj ` rγj{p1´ γjqsωj. When it comes
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to level l ´ 1, we get

Ri “
ÿ

jPChildrenpiq

Qpj|iqRj “
ÿ

jPChildrenpiq

Qpj|iqpθj `
γj

1´ γj
ωjq (C.23)

“
ÿ

jPChildrenpiq

Qpj|iqpθi ` ωj `
γj

1´ γj
ωjq (C.24)

“ θi `
ÿ

jPChildrenpiq

Qpj|iq

1´ γj
ωj “ θi `

γi
1´ γi

ωi, (C.25)

where Equation (C.23) is due to induction hypothesis, Equation (C.24) is because of the
definition of θi and similarly Equation (C.25) is due to

ř

jPChildrenpiqQpj|iq “ 1. Note that
ř

jPChildrenpiqQpj|iq ă 1 only if i is root node. So it holds for all the non-root nodes, estab-
lishing the lemma.

Proof. Proof of Proposition 12: Throughout the proof, we let Ri “ RipSi, θiq, ωi “ ωipSi, θiq
and Qpj|iq “ QpSj, θi|Si, θiq for notational brevity. First, if i is the root node, we have γi “ 0
and θ˚h “ 0, thus both equations hold according to Corollary 5 and Definition 1. Second, we
consider the case when i is not the root node. By Lemma 16 and Lemma 24, we have

θ˚h “
θi ´ p1´ γiqRi

γi
“
θi ´ p1´ γiqpθi `

γi
1´γi

ωiq

γi
“ θi ´ ωi,

thus the second equation is true.
Thus after plugging the second equation into the equation in Lemma 24, we obtain

Ri “ θi `
γi

1´ γi
ωi “ θ˚h ` ωi `

γi
1´ γi

ωi “ θ˚h `
1

1´ γi
ωi,

which establishes the first equation. We also have Ri ą θ˚h because ωi ą 0 for nonempty
assortment Si.

Proof of Corollary 6

Proof. From the first equation in Proposition 12, we get

Bθ˚h
Bθi

“ 1´
BωipSi, θiq

Bθi
“ 1´

„

ωipSi, θiquipSi, θiq ´ p
1

γi
´ 1q



“
1

γi
´ ωipSi, θiquipSi, θiq ą 0,

where the second equality is due to Claim 15 and the last inequality holds according to similar
induction proof of Lemma 15. Thus there exists a one-to-one increasing correspondence
between θ˚h and θi, then given a θ˚h and a fixed assortment Si, corresponding θi that is
optimal to problem (4.5) can be uniquely identified.
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Proof of Theorem 8

Proof. Similar to assortment subproblem, we can rewrite basic joint subproblem as

max
SiĎ=i

max
θiPR

VipSi, θiq
1{γipRipSi, θiq ´ θ

˚
i q. (C.26)

Given an assortment Si, let g1ipθiq “ VipSi, θiq
1{γipRipSi, θiq ´ θ˚i q. For ease of presentation,

we let g1i “ g1ipθiq, Vi “ VipSi, θiq and Ri “ RipSi, θiq. r represents the descendant of node i
in the lowest level m and Anpr, lq denotes r’s ancestor node in level l pd ď l ď m1q. As proof
of Lemma 4, we have

BVi
Bθr

“ ´βrQpr|iqλ
m´1
d Vi,

BRi

Bθr
“ λm´1

r,d`1βrQpr|iq pRi ´ θiq .

Thus we obtain

Bg1i
Bθr

“
1

γi
V

1{γi´1
i

BVi
Bθr
pRi ´ θ

˚
i q ` V

1{γi
i

BRi

Bθr

“ ´V
1{γi
i pθi ´ θ

˚
i q ˚ βrQpr|iqλ

m´1
r,d`1.

So the first derivative with respect to θi is

Bg1i
Bθi

“
ÿ

rPηr,d

Bg1i
Bθr

ˆ

BθAnpr,m´1q

Bθr

˙´1 ˆ
BθAnpr,m´2q

BθAnpr,m´1q

˙´1

¨ ¨ ¨

ˆ

BθAnpr,d`1q

BθAnpr,d`2q

˙´1 ˆ
Bθi

BθAnpr,d`1q

˙´1

“ ´V
1{γi
i pθi ´ θ

˚
i q

ÿ

rPηr,d

βrQpr|iqλ
m´1
r,d`1

ˆ

BθAnpr,m´1q

Bθr

˙´1 ˆ
BθAnpr,m´2q

BθAnpr,m´1q

˙´1

¨ ¨ ¨

ˆ

Bθi
BθAnpr,d`1q

˙´1

.

According to Lemma 15, we know
ˆ

BθAnpr,m´1q

Bθr

˙´1 ˆ
BθAnpr,m´2q

BθAnpr,m´1q

˙´1

¨ ¨ ¨

ˆ

Bθi
BθAnpr,d`1q

˙´1

ą 0.

We get θi “ θ˚i by the first order condition. Thus problem (C.26) can be rewritten as

max
SiĎ=i

VipSi, θ
˚
i q

1{γipRipSi, θ
˚
i q ´ θ

˚
i q. (C.27)

By Lemma 24, we have

RipSi, θ
˚
i q “ θ˚i `

γi
1´ γi

ωipSi, θ
˚
i q.

Plug the above equation into problem (C.27), we obtain

max
SiĎ=i

VipSi, θ
˚
i q

1{γi
γi

1´ γi
ωipSi, θ

˚
i q,

which can be further simplified as problem (4.7) according to the definition of ωipSi, θ
˚
i q in

Definition 1.
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Proof of Corollary 7

Proof. By Theorem 8 and Definition 1, problem (4.7) can be written as

max
SjĎ=j

ÿ

kPChildrenpjq

VkpSk, θkq

βk

s.t. θ˚j “ θk ´ ck ´
1

βk
,

which can be further simplified as

max
SjĎ=j

ÿ

kPChildrenpjq

VkpSk, θ
˚
j ` ck ` 1{βkq

βk
.

The above problem is essentially finding Cj leaf nodes with largest ratio of preference weight
to price sensitivity parameter from Nj leaf nodes, which only depends on the ordering of
the ratio VkpSk, θ

˚
j ` ck ` 1{βkq{βk. The total number of operations in need is OpNj logNjq

(sorting) + OpCjq (printing the output of first Cj leaf nodes) = OpNj logNjq.

Proof of Corollary 8

Proof. Throughout the proof, we let V̂j “ VjpŜj, θ
˚
j q, V

˚
j “ VjpS

˚
j , θ

˚
j q, R̂j “ RjpŜj, θ

˚
j q and

R˚j “ RjpS
˚
j , θ

˚
j q for ease of presentation. We index the parent node of the basic node j by

i. Since Ŝj is the optimal solution to problem (4.8) at the basic node j P B, according to
Lemma 14, it satisfies

V̂jpR̂j ´ θ
˚
i q “ V ˚j pR

˚
j ´ θ

˚
i q.

Let Ŝi “
Ť

jPChildrenpiq Ŝj, due to Lemma 13, we obtain

V̂ipR̂i ´ θ
˚
Parentpiqq “ V ˚i pR

˚
i ´ θ

˚
Parentpiqq.

Repeat this process based on Lemma 13 until we get Ŝroot “
Ť

kPChildrenprootq Ŝk “
Ť

jPB Ŝj,
then we have

V̂rootpR̂root ´ θ
˚
Parentprootqq “ V ˚rootpR

˚
root ´ θ

˚
Parentprootqq.

According to the definition, we have V̂root “ V ˚root “ 1 and θ˚Parentprootq “ θ˚Parentprootq “ 0,

implying R̂root “ R˚root.

Proof of Lemma 17

Proof. Prove this lemma by contradiction, assume that S̃jpθjq is the optimal solution to
problem (4.9) at θj and |S̃jpθjq| ă Cj. Since |S̃jpθjq| ă Cj, there must exist a product
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k1 satisfying that k1 R S̃jpθjq but k1 P Childrenpjq. Let S̃ 1jpθjq “ S̃jpθjq Y k1, then we

have that S̃ 1jpθjq is feasible since |S̃ 1jpθjq| ď Cj and S̃ 1jpθjq strictly dominates S̃jpθjq since
ř

kPS̃1jpθq
VkpSk, θj ` 1{βkq{βk ą

ř

kPS̃jpθq
VkpSk, θj ` 1{βkq{βk, which contradicts with the hy-

pothesis that S̃jpθjq is the optimal solution to problem (4.9) at θj and |S̃jpθjq| ă Cj.

Proof of Lemma 18

Proof. Let θ1j P Cj, Sj “ limεÑ0 S̃jpθ
1
j ´ εq and Sj “ limεÑ0 S̃jpθ

1
j ` εq for a small ε ą 0.

[39] show that at changing point, one product would be replaced by another product. With-
out loss of generality, assume that θ1j “ Ipk1, k2q and Sj “ pSjztk1uq Y tk2u for k1, k2 P

Childrenpjq. Since product k1 is replaced by product k2 at θ1j, we have hk1pθ
1
jq “ hk2pθ

1
jq

and βk1 ą βk2 , which implies that Vk1pSk1 , θ
1
j ` ck1 ` βk1q{βk1 “ Vk2pSk2 , θ

1
j ` ck2 ` βk2q{βk2 .

Thus we have Vk1pSk1 , θ
1
j ` ck1 ` βk1q ą Vk2pSk2 , θ

1
j ` ck2 ` βk2q, so VjpSj, θ

1
jq ą VjpSj, θ

1
jq.

Thus the preference weight VjpS̃jpθjq, θjq of basic node j drops discontinuously at the chang-
ing point θ1j.

Proof of Lemma 19

Proof. According to Lemma 15, we know that there is an increasing one-to-one correspon-
dence between θj and θi if S̃jpθjq does not change, thus we only need to show θi is discontin-
uous in θj at the changing point, where S̃jpθjq changes to a different assortment. Without
loss of generality, assume θ1j P Cj is the changing point, and let Sj “ limεÑ0 S̃jpθ

1
j ´ εq and

Sj “ limεÑ0 S̃jpθ
1
j ` εq. By Lemma 18, we have that VjpSj, θ

1
jq ą VjpSj, θ

1
jq, implying that

ωjpSj, θ
1
jq “ p

1

γj
´ 1q

ÿ

kPChildrenpjq

VkpSk, θ
1
j ` βkq

βk

1

VjpSj, θ
1
jq

1{γj

ă p
1

γj
´ 1q

ÿ

kPChildrenpjq

VkpSk, θ
1
j ` βkq

βk

1

VjpSj, θ1jq
1{γj

“ ωjpSj, θ
1
jq,

where the inequality holds due to the fact that
ř

kPChildrenpjq VkpSk, θ
1
j ` βkq{βk “

ř

kPChildrenpjq VkpSk, θ
1
j ` βkq{βk. Thus the function θi “ θj ´ ωjpS̃jpθjq, θjq drops discon-

tinuously at θ1j since θ1j ´ ωjpSj, θ
1
jq ą θ1j ´ ωjpSj, θ

1
jq. Moreover, let θi “ θ1j ´ ωjpSj, θ

1
jq

and θi “ θ1j ´ ωjpSj, θ
1
jq, then when θi P rθi, θis, it corresponds to two different θj’s, which

completes the lemma.

Proof of Proposition 14

Proof. We prove this proposition by induction. It’s true for basic nodes. Assume that Ai “

t
Ť

jPChildrenpiq S̃jpFjpθiqq : θi P Ru includes an optimal solution to assortment subproblem
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(4.6) at node i. To construct a candidate collection of assortments Ah including an optimal
assortment at node h. Consider the assortment subproblem (4.6) at node i, let Ŝipθhq be an
optimal solution to the following problem

max
SiĎAi

VipSi, θiqωipSi, θiq

1´ γi
s.t. θh “ θi ´ ωipSi, θiq,

(C.28)

where we optimize over Ai instead of =i in problem (4.6) since Ai includes an optimal as-
sortment by the induction hypothesis. Then the above problem is equivalent to the following
optimization problem since Ai “ tS̃ipθiq : θi P Ru.

max
θiPR

VipS̃ipθiq, θiqωipS̃ipθiq, θiq

1´ γi

s.t. θh “ θi ´ ωipS̃ipθiq, θiq.

Since Fipθhq is optimal to the above problem, then S̃ipFipθhqq is the optimal solution to prob-
lem (C.28), thus

Ť

iPChildrenphq S̃ipFipθ
˚
hqq is the optimal solution to assortment problem (4.6)

at node h by Lemma 13. From the definition of Ah, we have that
Ť

iPChildrenphq S̃ipFipθ
˚
hqq P

Ah.

Proof of Lemma 20

Proof. For ease of presentation, we denote Vi “ VipS̃ipθiq, θiq, ωi “ ωipS̃ipθiq, θiq and Ti “
TipS̃ipθiq, θhq. We have

BTi
Bθh

“
1

1´ γi

ˆ

BVi
Bθh

ωi ` Vi
Bωi
Bθh

˙

“
1

1´ γi

ˆ

BVi
Bθi

ωi ` Vi
Bωi
Bθi

˙

Bθi
Bθh

.

If i is a leaf node, then

BTi
Bθh

“
1

1´ γi

ˆ

BVi
Bpi

ωi ` Vi
Bωi
Bpi

˙

Bpi
Bθh

“

ˆ

´βjVj
1

βj
` 0

˙

˚ 1 “ ´Vj,

where the second equality is due to the fact that γi “ 0 for all leaf node i from Definition 1.
If i is nonleaf node, then according to Claim 15 and Equation (C.20), we can get

BTi
Bθh

“
1

1´ γi

ˆ

BVi
Bθi

ωi ` Vi
Bωi
Bθi

˙

Bθi
Bθh

“
1

1´ γi

ˆ

´γiViuiωi ` Vi

ˆ

ωiui ´ p
1

γi
´ 1q

˙˙

p
1

γi
´ ωiuiq

´1

“ ´Vi.
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Thus item 1 of this lemma holds. Furthermore, the second derivative of Ti with respect to
θh is

B2Ti
Bθ2

h

“ ´
BVi
Bθh

“ ´
BVi
Bθi

Bθi
Bθh

“ γiViuiωip
1

γi
´ ωiuiq

´1
ą 0,

according to Lemma 15. So item 2 of this lemma is true. To prove the third item of this
lemma, without loss of generality, we assume that V pS1, θipS1, θhqq ą V pS2, θipS2, θhqqq, then
we have

BpT pS1, θhq ´ T pS2, θhqq

Bθh
“ ´

`

VipS1, θipS1, θhqq ą VipS2, θipS2, θhqqq
˘

ă 0,

which implies that T pS1, θhq and T pS2, θhq intersect at most once in θh domain.

Proof of Proposition 15

Proof. First, we define set of changing points for nonleaf node i P V as Ci “

tθ0
i , θ

1
i , ¨ ¨ ¨ , θ

Di´1
i , θDii u where θ0

i “ ´8 and θDii “ 8, such that S̃ipθiq does not change when
θi P rθ

d´1
i , θdi s for d “ 1, ¨ ¨ ¨ , Di, and define set of intersection points for nonleaf node i P V

as T i
h “ tθi,0h , θ

i,1
h , ¨ ¨ ¨ , θ

i,Ui´1
h , θi,Uih u where θi,0h “ ´8 and θi,Uih “ 8, such that S̃ipFipθhqq

does not change when θh P rθ
i,u´1
h , θi,uh s for u “ 1, ¨ ¨ ¨ , Ui. Then the set of changing points

for node h is Ch “
Ť

iPChildrenphqT
i
h according to the above definitions. After relabeling,

denote the points in Ch as tθ0
h, θ

1
h, ¨ ¨ ¨ , θ

Dh´1
h , θDhh u where θ0

h “ ´8 and θDhh “ 8, we have
Dh ď

ř

iPChildrenphq Ui according to the definition of Ch and T i
h .

Next, we prove that for any two different S1, S2 P Ai, V pS1, θipS1, θhqq and V pS2, θipS2, θhqqq
do not intersect in θh domain. Without loss of generality, assume that S1pθiq “ S̃ipθiq where
θi P rθ

d1´1
i , θd1i s and S2pθiq “ S̃ipθiq where θi P rθ

d2´1
i , θd2i s for d1 ă d2. We denote S1 “ S1pθiq

and S2 “ S1pθiq for notational purpose. We claim that VipS̃ipθiq, θiq drops discontinuously
at any changing point θ1i P Ci which can be proved by induction on level of node i’s since it
is true for basic nodes by Lemma 18. Thus VipS1, θiq ą VipS2, θiq in θi domain.

We also have that
ř

jPChildrenpiq VjpS̃jpFjpθiqq,FjpθiqqωjpS̃jpFjpθiqq,Fjpθiqq is a continuous

function of θi because the optimal objective value VjpS̃jpFjpθiqq,FjpθiqqωjpS̃jpFjpθiqq,Fjpθiqq
is continuous at intersection point θj,ui P T j

i for u “ 1, ..., Uj. Thus ωipS̃ipθiq, θiq “ p1{γi ´
1q{VipS̃ipθiq, θiq

1{γi ˚
ř

jPChildrenpiq VjpS̃jpFjpθiqq,FjpθiqqωjpS̃jpFjpθiqq,Fjpθiqq{p1´γjq increases

discontinuously at any changing point θ1i P Ci, so we have θipS1, θhq “ θh`ωipS1, θipS1, θhqq ă
θh ` ωipS2, θipS2, θhqq “ θipS2, θhq.

Therefore, we have that VipS1, θipS1, θhqq ą VipS2, θipS1, θhqq ą VipS2, θipS2, θhqq, where
the first inequality is due to the argument at the end of second paragraph of this proof by
setting θi “ θipS1, θhq and the last inequality holds since VipS2, θiq is a decreasing function
of θi. Then by the third item in Lemma 20, the objective function of problem (4.12) for any
two candidate assortments in Ai intersects at most once by the arbitrariness of S1 and S2.
Thus the size of T i

h is at most Di, implying that Ui ď Di.
As a result, we get |Ah| “ Dh ď

ř

iPChildrenphq Ui ď
ř

iPChildrenphqDi “
ř

iPChildrenphq |Ai|.
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Moreover, |Aroot| ď
ř

hPChildrenprootq |Ah| ď
ř

hPChildrenprootq

ř

iPChildrenphq |Ai| ď ¨ ¨ ¨ ď
ř

jPB |Aj|, where B is the set of basic nodes. Since |Aj| has size OpNjq, let M ą 0 such
that |Aj| ďMNj for any j P B. Thus we have |Aroot| ď

ř

hPChildrenprootq |Ah| ď
ř

jPB |Aj| ď

M
ř

jPB Nj “ MN , implying that |Aroot| has size OpNq. Since |Aroot| ě |Ai| for any i P V ,
thus |Ai| is of size OpNq.

Proof of Theorem 9

Proof. Due to Corollary 7, line 4 takes OpNj logNjq for basic node j. Then for all basic
nodes and G grid points, the running time is OpGN logKq where K denotes the maximum
products that a basic node can have in the tree logit model, since G

ř

jPB Nj logNj ď

G
ř

jPB Nj logK “ GN logK. Line 5 takes Op1q, line 6 takes OplogGq by applying binary
search and lines 7-11 run in Op1q since line 22 involves one numerical comparison, thus lines
2-13 take OpGN logK `G|B| `G|B| logG`G|B|q “ OpGN logGq since G is larger than
K in general.

Similarly, both line 16 and line 17 take Op1q. Line 18 also runs in OplogGq by using binary
search and lines 19-23 take Op1q as well. Since the number of nodes in levelm´2,m´1, ..., 0 is
less than twice the number of leaf nodesN , lines 14-25 takesOpGN`GN`GN logG`GNq “
OpGN logGq.

For the final part of this algorithm, lines 26-28 take OpGq and line 30 runs in OpGq
as well by looking up previous stored table. Hence, the overall complexity of Algorithm
JCAPO-C is OpGN logG`GN logG`Gq “ OpGN logGq. Moreover, if the spacings of grid
points are identical, line 6 and line 18 take Op1q by rounding up to the nearest grid points.
Therefore, this algorithm would take OpGN logK`GN`Gq “ OpGN logKq, which is more
efficient.

Proof of Lemma 22

We first propose two claims to facilitate proving this lemma.

Claim 16. For an arbitrary nonleaf node i P V and its parent node h, assume RipS
˚
i ,P

˚
i q ą

e˚h. If there exists an assortment Ŝi Ď =i, a price vector P̂i and parameter α ě 1 such that

αVipŜi, P̂iq
1{γi

´

RipŜi, P̂iq ´ e
˚
i

¯

ě VipS
˚
i ,P

˚
i q

1{γi pRipS
˚
i ,P

˚
i q ´ e

˚
i q . (C.29)

Then we have

αVipŜi, P̂iq

´

RipŜi, P̂iq ´ e
˚
h

¯

ě VipS
˚
i ,P

˚
i q pRipS

˚
i ,P

˚
i q ´ e

˚
hq . (C.30)

If the inequality in (C.29) is strict for some j P Childrenpiq, then the inequality in (C.30) is
strict as well.
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Claim 17. For an arbitrary nonleaf node i P V and its parent node h, assume RipS
˚
i ,P

˚
i q ą

e˚h. If for all j P Childrenpiq and a parameter α ě 1, there exists an assortment Ŝj Ď =j and

a price vector P̂j such that

αVjpŜj, P̂jq

´

RjpŜj, P̂jq ´ e
˚
i

¯

ě VjpS
˚
j ,P

˚
j q
`

RjpS
˚
j ,P

˚
j q ´ e

˚
i

˘

.

Let pŜi, P̂iq “
Ť

jPChildrenpiqpŜj, P̂jq, then we have

αVipŜi, P̂iq

´

RipŜi, P̂iq ´ e
˚
h

¯

ě VipS
˚
i ,P

˚
i q pRipS

˚
i ,P

˚
i q ´ e

˚
hq .

Proof of Claim 16 and 17 follows directly from the proof of Claim 12 and 13, respectively.

Proof. Proof of Lemma 22: Since Ŝαj is an α-approximate solution to problem (4.8) at

basic node j. Then the price vector P̂
α

j can be uniquely determined by θ˚j and Ŝαj via

θ˚j “ pk ´ ck ´ 1{βk where k P Ŝαj . Problem (4.8) and problem (4.3) at node j under

space constraints are equivalent formulations, thus pŜαj , P̂
α

j q satisfies (C.29). According to

Claim 16, pŜαj , P̂
α

j q is also an α-approximate solution to problem (4.2) at node j under
space constraints since it satisfies (C.30). By repeatedly applying Claim 17, pSαroot,P

α
rootq “

Ť

jPBpŜ
α
j ,P

α
j q is an α-approximate solution to problem (4.1) with space constraints. Thus

assortment Sαroot “
Ť

jPB Ŝ
α
j is an α-approximate assortment.

C.3 Algorithm JCAOP-S
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Algorithm 6: Joint Capacitated Assortment and Price Optimization Under Space
Constraints (JCAPO-S)

Input: αi, βi, γi, Gi for i P V , =j for j P B.
1 Initialization: Set Fα

j po
g
i q “ ´M for g “ 1, 2, ..., G and j P Childrenpiq;

2 for j P B do
3 for g Ð 1, 2, ..., G do

4 get S̃αj po
g
j q as an α-approximate solution to

maxSjĎ=j
ř

kPChildrenpjq VkpSk, o
g
j ` ck ` 1{βkq{βk ;

5 calculate VjpS̃
α
j po

g
j q, o

g
j q and ωjpS̃

α
j po

g
j q, o

g
j q;

6 find g1 such that og
1

i “ λpogj q;

7 if Fα
j po

g1

i q “ ´M then

8 Fα
j po

g1

i q Ð ogj ;

9 else

10 Fα
j po

g1

i q Ð arg max
θjPtFαj po

g1

i q,o
g
j u
VjpS̃

α
j pθjq, θjqωjpS̃

α
j pθjq, θjq{p1´ γjq;

11 end

12 end

13 end
14 for i in level m´ 2,m´ 3, ..., 1 do
15 for g Ð 1, 2, ..., G do

16 get S̃αi po
g
i q “

Ť

jPChildrenpiq S̃
α
j pFα

j po
g
i qq ;

17 calculate VipS̃
α
i po

g
i q, o

g
i q and ωipS̃

α
i po

g
i q, o

g
i q;

18 find g1 such that og
1

h “ λpogi q ;

19 if Fα
i po

g1

h q “ ´M then

20 Fα
i po

g1

h q Ð ogi ;

21 else

22 Fα
i po

g1

h q Ð arg max
θiPtFαi po

g1

h q,o
g
i u
VipS̃

α
i pθiq, θiqωipS̃

α
i pθiq, θiq{p1´ γiq;

23 end

24 end

25 end
26 for g Ð 1, 2, ..., G do

27 get S̃αrootpo
g
rootq “

Ť

iPChildrenprootq S̃
α
i pFα

i po
g
rootqq ;

28 calculate RrootpS̃
α
rootpo

g
rootq, o

g
rootq;

29 end

30 Solve for oαroot in oroot “ RrootpS̃
α
rootporootq, orootq, then get Sαroot “ S̃αrootpo

α
rootq and

Pα
root “ Prootpo

α
rootq ;

Output: Sαroot, P
α
root.




