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ABSTRACT OF THE DISSERTATION

Prediction of Isoform Functions and Interactions with ncRNAs via Deep Learning

by

Dipan Lal Shaw

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2020

Dr. Tao Jiang, Chairperson

Alternative splicing generates multiple isoforms from a single gene. This process

increases the diversity of gene functions as well as interactions with non-coding RNAs.

Although gene functions and interactions have been studied extensively, little is known

about isoform functions and their interactions with non-coding RNAs. In this thesis, we

first study the isoform function prediction problem. We propose a novel deep learning

method, DeepIsoFun, that combines multiple instance learning with domain adaptation.

The latter technique helps to transfer the knowledge of gene functions to the prediction of

isoform functions and provides additional labeled training data. Our model is trained on a

deep neural network architecture so that it can adapt to different expression distributions

associated with different gene ontology terms. Next, we approach the problem of predicting

interactions between long non-coding RNAs (lncRNAs) and protein isoforms. We propose

a novel method, DeepLPI, that combines heterogeneous data using a hybrid framework by

integrating a deep neural network and a conditional random field. To overcome the lack of

known interactions between lncRNAs and protein isoforms, we adopt a multiple instance
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learning approach again. Finally, we propose a new deep learning method, RESmim, to

predict interactions between microRNAs and isoforms. It adapts our previous framework

but uses a residual neural network to explore various levels of the feature space. We test

our methods on different organisms including human, mouse, arabidopsis, and fruit-fly.

They perform significantly better than the existing methods in both cross-validation and

de novo prediction experiments. The experimental results demonstrate that our methods

are effective in identifying the diverse functions and interactions of isoforms.
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Chapter 1

Introduction

The central dogma of molecular biology states the flow of genetic information from

genes to proteins via transcription and translation. Between transcription and translation,

there is a mechanism called alternative splicing. Due to alternative splicing, multiple iso-

forms are generated from a single gene. This process increases the diversity of isoform

functions as well as interactions with non-coding RNAs. Studies in (5; 6) reveal that more

than 95% of human multi-exon genes undergo alternative splicing. Though the changes in

the sequences of the isoforms of the same gene are very small, they may have a systematic

impact on cell functions and interactions (7). Although gene functions and interactions

have been studied extensively, little is known about isoform functions and their interac-

tions with non-coding RNAs. It has been widely reported that isoforms from the same gene

sometimes have distinct or even opposite functions (8; 9; 10). The expression of different iso-

forms may lead to different diseases including, cardiovascular diseases, neuro-degenerative

diseases, immune and infectious diseases, metabolic conditions, etc (11). Understanding

isoform functions and interactions can help to diagnosis this diseases.
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1.1 Isoform function prediction

The experimental determination of isoform functions is expensive and time con-

suming. Hence, many computational methods were developed to speed up and guide

the process. However, most of these methods predict isoform functions at the gene level

(12; 13; 14; 15; 16) and do not consider the fact that isoforms are the actual function car-

riers. In particular, the UniProt Gene Ontology (GO) database has been widely used as

a standard reference for gene function annotation (17; 18). It is organized as a directed

acyclic graph (DAG) where the nodes represent functional terms (referred to as GO terms)

and edges indicate how a term is subdivided into more detailed functional concepts. The

DAG is comprised of three main branches, i.e., Biological Process (BP), Molecular Function

(MF) and Cellular Component (CC) (17), representing three distinct classes of functional

concepts. The functions of a gene are then represented by mapping the gene to all relevant

terms in GO. In contrast, very little systematic study has been done about the specific

functions of isoforms and there is no central database that provides annotated isoform

functions.

In chapter 2, we propose a novel deep learning method, DeepIsoFun, that combines

multiple instance learning with domain adaptation. The latter technique helps to transfer

the knowledge of gene functions to the prediction of isoform functions and provides addi-

tional labeled training data. Our model is trained on a deep neural network architecture so

that it can adapt to different expression distributions associated with different gene ontology

terms. We evaluated the performance of DeepIsoFun on three expression datasets of human

and mouse collected from SRA studies at different times. On each dataset, DeepIsoFun per-
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formed significantly better than the existing methods. In terms of area under the receiver

operating characteristics curve (or AUC), our method acquired at least 26% improvement

and in terms of area under the precision-recall curve (or AUPRC), it acquired at least 10%

improvement over the state-of-the-art methods. In addition, we also study the divergence

of the functions predicted by our method for isoforms from the same gene and the overall

correlation between expression similarity and the similarity of predicted functions.

1.2 Interactions between lncRNAs and protein isoforms

Long non-coding RNAs (lncRNAs) regulate diverse biological processes via their

interactions with proteins. The experimental methods to identify these interactions are

expensive and time-consuming, and many computational methods have been proposed to

predict the interactions. Most of these computational methods are based on the known

lncRNA-protein interactions to predict new interactions by using the information of se-

quences, secondary structures and expression profiles of lncRNAs and proteins (19; 20; 21;

22). Cross-validations showed these methods achieved good prediction performance. How-

ever, they neglected the fact that different isoforms of the same gene may interact differently

with the same lncRNAs. There is still much room to improve the prediction performance.

In chapter 3, we propose a novel method, DeepLPI, to predict the interactions

between lncRNAs and protein isoforms. Our method uses sequence and structure data to

extract intrinsic features like functional motifs, and expression data to extract topological

features of co-expression relationships. To combine these different data, we adopt a hybrid

framework by integrating a deep neural network (DNN) and a conditional random field
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(CRF) (23). To overcome the lack of known interactions between lncRNAs and protein

isoforms, we apply a multiple instance learning (MIL) approach (24; 25; 26). Our method

iteratively trains DNN and CRF to predict interactions between lncRNAs and protein

isoforms as well as the interactions between lncRNAs and proteins. DeepLPI improves

the prediction performance by 4.9% in terms of AUC and 8.8% in terms of AUPRC over

the state-of-the-art method. To proof the efficiency of our model, we conduct analyses on

the effects of model components, the impact of structural components using the saliency

map, the divergence of interactions and the impact of large interaction datasets. Finally,

we validate our method using a series of tests including, the correlation similarity test, the

performance on mouse interactions given that the lncRNAs are conserved, and sample case

studies on recently discovered lncRNA-protein interactions.

1.3 Interactions between miRNAs and isoforms

Micro RNAs (miRNAs) are small RNA transcripts of 22 nucleotides that regulate

biological processes by binding to the isoforms or messenger RNAs (mRNAs) (27). They

bind to complementary sequences in isoform to create cleavages or translational repression

sites. As a result, the target isoforms are prevented from producing functional peptides and

proteins (28).

The mechanism of miRNA-isoform interactions can be divided into two groups,

canonical interactions and non-canonical interactions (29; 30). In canonical interactions the

seed sequence of a miRNA, which is defined as the first 2-8 nucleotides starting at the 5′

end and counting toward the 3′ end, bind to the complementary sequence of the isoforms.
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In non-canonical interactions miRNAs can bind outside the seed sequence (29; 30).

Finding miRNA-isoform interactions using experimental methods is expensive and

time-consuming. Hence, we need to rely on computational methods to find the interactions

on a large scale. In literature, a variety of miRNA target prediction tools are proposed, but

their performance is far from being desirable primarily due to the lack of labeled training

data. Also, most of the tools are based on assumption that the seed sequence of a miRNA is

the only imporatant feature as this interact directly with isoform. These tools perform very

well to find canonical interactions, but shows worst performance in finding non-canonical

interaction. However, more recent studies have indicated that we should consider the entire

sequence of miRNAs and isoforms to find interactions between them (30; 31).

In chapter 4, we present RESmim, a novel miRNA-isoform interaction prediction

tool that works with full genomic sequence, structure and expression data of miRNAs and

isoforms. To handle longer sequence of isoforms we used residual neural network, that

can capture long range dependencies in a sequence. RESmim goes through two stages.

In the first stage, we trained a deep neural network (DNN) that used multimodal deep

learning (MDL) (23) technique to extracts features from sequence and structure data of

miRNAs and isoforms. The MDL fused these extracted features and measures the initial

interaction scores between miRNAs and isoforms. In the second stage, two conditional

random field (CRF) are designed to exploit the co-expression relationship between miRNAs

and co-expression relationship between isoforms. The two CRFs are assigned final prediction

scores of interactions between miRNAs and isoforms based on initial interaction scores while

trying to keep highly co-expressed miRNAs and highly co-expressed isoforms attaining the
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same labels. To overcome the lack of interaction training labels of miRNAs and isoforms, we

proposed an iterative semi-supervised training algorithm based on multiple instance learning

(MIL) framework similar to (25; 26). In MIL, initially, we assign positive interaction labels

for all miRNA and isoform pairs, given that the miRNA interact with that isoform and assign

negative interaction labels for all other miRNA and isoform pairs those do not interact with

each other. In each iteration, the DNN and CRFs upgrade the initial interaction scores and

assign the same labels to co-expressed miRNAs and co-expressed isoforms until it reaches

saturation. Under this environment, isoforms of the same protein can interact differently

with the same miRNA. But since we are integrating more labeled data in terms of the

miRNAs and isoforms interactions, it leads to better prediction results.

1.4 Publications

This dissertation contains material that has appeared in two publications. The

DeepIsoFun (32) paper (Chapter 2) is published in the Bioinformatics journal (2019). The

DeepLPI (33) paper (Chapter 3) is published in the BMC Bioinformatics journal (2020).

The details of these publications are:

• D. Shaw, H. Chen, and T. Jiang. DeepIsoFun: a deep domain adaptation approach

to predict isoform functions. Bioinformatics 35(15), pp. 2535-2644, 2019.

• D. Shaw, H. Chen, X. Minzhu, and T. Jiang. DeepLPI: a multimodal deep learning

method for predicting the interactions between lncRNAs and protein isoforms. BMC

Bioinformatics, 2020, accepted.
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Chapter 2

DeepIsoFun: A deep domain

adaptation approach to predict

isoform functions

2.1 Introduction

In eukaryotes, the mechanism of alternative splicing produces multiple isoforms

from the same gene. Studies in (5; 6) reveal that more than 95% of human multi-exon

genes undergo alternative splicing. Though the changes in the sequences of the isoforms

of the same gene are very small, they may have a systematic impact on cell functions and

regulation (7). It has been widely reported that isoforms from the same gene sometimes

have distinct or even opposite functions (8; 9; 10). For example, among the two isoforms,

l-KlCpo and s-KlCpo, of gene KlHEM13 that use different transcription start sites, only

s-KlCpo is involved in the growth of K. lactis ∆hem13 mutants (34). There is also evidence
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that alternative splicing plays an important role in the evolutionary process (35). For

example, the absence of exon 9 in one of the isoforms of gene PTBP1 expressed in the

brains of mammals amplifies the evolutionary difference between mammals and the other

vertebrates (35). Many studies have found that alternative splicing is critical in human

health and diseases. For example, to escape from cell death in tumorigenesis, gene BCL2L1

produces two isoforms with opposite functions, where BCL-XS is pro-apoptosis but BCL-

XL is anti-apoptosis (36). Similarly, gene CASP3 has two isoforms, with CASP3-L being

pro-apoptosis and CASP3-S anti-apoptosis (37). An isoform of gene TNR6 that skips exon

6 may initiate cell death (38). Among the two isoforms of gene PKM, PKM1 and PKM2

that skip exons 9 and 10 respectively, only PKM2 is widely expressed in cancer cells (39).

Besides these examples, the results in (8; 9; 40; 41) offer more interesting stories of isoforms

with dissimilar functions and hence motivate the study of specific functions of isoforms.

There is rich literature concerning the prediction of gene functions (12; 13; 14; 15;

16). In particular, the UniProt Gene Ontology (GO) database has been widely used as

a standard reference for gene function annotation (17; 18). It is organized as a directed

acyclic graph (DAG) where the nodes represent functional terms (referred to as GO terms)

and edges indicate how a term is subdivided into more detailed functional concepts. The

DAG is comprised of three main branches, i.e., Biological Process (BP), Molecular Function

(MF) and Cellular Component (CC) (17), representing three distinct classes of functional

concepts. The functions of a gene are then represented by mapping the gene to all relevant

terms in GO. In contrast, very little systematic study has been done about the specific

functions of isoforms and there is no central database that provides annotated isoform
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functions. Recently, several machine learning approaches were proposed to predict isoform

functions from GO and RNA-Seq expression data (3; 4; 42; 43; 44). In other words, these

methods attempt to distribute the annotated functions of a gene to its isoforms based on

their expression profiles. Since labeled training data were generally unavailable, (3) (see also

(44)), (4) and (43) solved the problem by using a semi-supervised learning technique called

multiple instance learning (MIL). However, the experimental performance of their methods

was quite poor. For example, on their respective datasets, the best areas under the receiver

operating characteristics curve (or AUCs) achieved by the methods were only 0.681, 0.671

and 0.677, respectively. We believe that a primary cause of the poor performance was due

to the lack of labeled training data.

In this chapter, we propose a novel method, DeepIsoFun, for predicting isoform

functions from GO and RNA-Seq expression data. It directly addresses the challenge from

the lack of labeled training data by combining MIL with the domain adaptation (DA)

technique. The two techniques are somewhat complementary to each other since while

MIL takes advantage of the gene-isoform relationship, DA helps to transfer the existing

knowledge of gene functions to the prediction of isoform functions. More precisely, we

consider each gene as a bag and each isoform as an instance in the context of MIL where

the labels (i.e., functions) of the instances in each bag are given as a set (45). The goal

of MIL is to assign the labels (i.e., functions) of each bag (i.e., gene) to its instances (i.e.,

isoforms) with the constraint that each label is assigned to at least one instance in the bag

and no instance is assigned a label that does not belong to its bag (46; 47). To apply the

DA technique, we take advantage of the fact that genes actually have expression data and
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thus can be considered as instances in another domain (i.e., the gene domain). In other

words, a gene can be regarded as both an instance in the gene domain as well as a bag

in the isoform domain. Since gene functions are known in GO, the DA technique can be

used to transfer knowledge (i.e., the relationship between expression and function) from the

gene domain (called the source domain) into the isoform domain (called the target domain)

(48; 49; 50; 51). Hence, the gene domain helps provide the much needed labeled training

data.

The model of DeepIsoFun consists of three classifiers. The first attempts to cor-

rectly label the functions of each gene. The second attempts to correctly label the functions

of each isoform (via bags). The third tries to make sure that instances from the source and

target domains are indistinguishable so knowledge can be transferred. To implement the

model, we use a neural network (NN) auto-encoder to extract features from expression data

that are both domain-invariant and discriminative for functional prediction, inspired by the

work in (52; 48). The three classifiers are also implemented as parallel NNs and connected

to the auto-encoder NN to form a deep feed-forward network. The NNs involve mostly

standard hidden layers and loss functions and can be trained for each GO term sequentially

using a standard back-propagation algorithm based on stochastic gradient descent, but we

also incorporated the gradient reversal layer to facilitate the DA method as introduced in

(48) and take advantage of the hierarchical structure of GO in training. In particular, we

traverse GO starting at the leaf nodes and make sure that the model is trained for all child

nodes before it is trained for a parent node so the training for the parent node can benefit

from earlier trainings. This also helps maintain the prediction consistency throughout GO.

10



To evaluate the performance of DeepIsoFun, we use three RNA-Seq expression

datasets of human and mouse collected from the NCBI Reference Sequence Archive (SRA)

at different times. The first is a new (also the largest) dataset that we extracted from the

SRA recently. The other two were studied in (3; 4). To measure the prediction accuracy, we

use both AUC and area under the precision recall curve (AUPRC) against specific baselines

(measured at the gene level, as done in (3; 4; 43)). Our experimental results consist of two

parts. In the first part, we analyze various properties of DeepIsoFun such as the effect of

domain adaptation on its performance, impact of the frequency of a GO term in genes on its

performance, difference in performance across the three main branches of GO, divergence

of the functions predicted for the isoforms of a gene, and correlation between the similarity

of expression profiles and the similarity of predicted functions. In the second part, we

compare the performance of DeepIsoFun with the methods introduced in (3; 4; 43; 44), mi-

SVM, iMILP and WLRM, based on support vector machines (SVMs), label propagation and

weighted logistic regression, respectively. On our new dataset, DeepIsoFun outperformed

these mi-SVM, iMILP and WLRM methods by 31%, 64% and 23% (against baseline 0.5)

in AUC, respectively. In terms of AUPRC, DeepIsoFun outperformed them by 59%, 11%

and 63%, respectively, against baseline 0.1. Similar improvements on the other two datasets

were also observed. We believe that besides the deep learning framework, the DA technique

also played an important role in these significant improvements.

The rest of the chapter is organized as follows. In the Method section, we describe

the proposed method and its NN implementation in more detail. The section of Experi-

mental evaluation shows how to determine the key parameters in the NN, the construction
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of experimental datasets and all computational results on these datasets. Some possible

future work is briefly outlined in the Discussion section.

Figure 2.1: A schematic illustration of how the training for child nodes may help the training
for parent nodes. The GO terms are sorted in topological order and the NN model is trained
for each GO term separately in the reverse order. At a parent node p, the predicated class
labels of each isoform for its children are simply added to the initial isoform class labels
during its training process.

2.2 Method

In this section, we detail our proposed method, DeepIsoFun, for predicting isoform

functions from GO and RNA-Seq data. As outlined above, our learning framework consists

of two domains, the gene domain (denoted as yd = 0) and the isoform domain (denoted as

yd = 1), where yd represents a domain class label. In the isoform domain, the isoforms of

each gene form a bag in the context of MIL. The gene domain will be considered as the

source domain and the isoform domain as the target domain in the context of DA. Suppose

that there are n genes and m isoforms. Hence, the isoforms are divided into n bags in the

isoform domain. Suppose that the expression profiles consists of r experiments.
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Figure 2.2: The proposed NN architecture. It includes an auto-encoder (gray), a gene
class label predictor (orange), an isoform class label predictor (yellow), and a domain label
predictor (blue). These four modules jointly form a feed-forward NN, where the auto-
encoder consists of two hidden layers and other three components consist of one hidden
layer each. The NN is trained using a standard cross-validation so that the auto-encoder
extracts features from the input expression profiles to minimize the loss in gene class
label prediction loss, minimize the loss in bag class label prediction and maximize the
loss in domain classification so that knowledge can be transferred from the gene domain
to the isoform domain. In the figure, the rectangle boxes represent the input data and
extracted features. Particularly, xs is the input gene expression data, xt is the input
isoform expression data, x′s the encoded gene feature data, and x′t the encoded isoform
feature data. Each variable y′s, y

′
t and y′d represents a predicted gene class label vector, a

predicted isoform class label vector and a predicted domain class label vector, respectively.
The notation ys represents the true gene class label vector that is used to calculate Ls, i.e.,
gene class label loss. The notation XT represents the membership of isoforms in the bags
and YT = ys is the true bag class label vector that is used to calculate Lt, i.e., bag class
label loss via a multiple instance loss procedure. The notation yd is the true domain class
label vector that is used for calculating Ld, i.e., domain class label loss. Forward arrows
represent forward propagation and backward arrows show how losses are backpropagated
to allow for the adjustment of the weights wf , ws, wt, and wd used in the auto-encoder, gene
class label predictor, isoform class label predictor, and domain label predictor, respectively.
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Given a GO term, the data in the gene (or source) domain is denoted as a pair

(xs, ys), where xs is an n × r feature matrix representing the expression profiles of all n

genes over the r experiments and ys is an n-dimensional binary vector (called gene class

labels) indicating whether each gene has the functional term or not. Similarly, the data in

the isoform (or target) domain is denoted as a pair (xt, yt), where xt is an m × r feature

matrix representing the expression profile of all isoforms and yt is an m-dimensional binary

vector (called isoform class labels) indicating whether each isoform has the functional term

or not. The data for each bag of the isoform domain is also denoted as a pair (XT , YT ),

where XT is a binary matrix representing the membership of isoforms in each bag (or gene)

and YT is an n-dimensional binary vector (called bag class labels) indicating whether the

isoforms in each bag collectively have the functional term or not. Observe that YT = ys.

As mentioned above, our method combines the MIL and DA techniques and uses

three classifiers to classify isoforms with respect to each GO term. It is implemented on

a deep NN architecture with four modules: an auto-encoder, a gene function predictor in

the gene domain, an isoform function predictor in the isoform domain, and a domain label

predictor, as illustrated in Figure 2.2. The input gene and isoform expression features (xs

and xt) are mapped by the auto-encoder to obtain an encoded feature matrix xf . We denote

the training weights used in this mapping as wf .

Our goal for the auto-encoder is to generate new feature vectors that will reduce

the loss of predicted gene class label, reduce the loss of predicted bag class label and at

the same time, increase the loss of predicted domain class label. This will hopefully force

the auto-encoder to generate domain-invariant features and hence realize the transfer of
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knowledge from the gene domain into the isoform domain. The new (encoded) feature

vectors in the matrix xf are then partitioned into encoded gene feature vectors x′s and

encoded isoform feature vectors x′t. Each former vector is mapped by the gene class label

predictor to predict a label y′s in the gene domain and we denote the weights in this mapping

as ws. Each latter vector is mapped by the isoform class label predictor to predict a label

y′t in the target domain and we denote the weights in this mapping as wt. See Figure 2.2

for the detailed NN architecture.

We train the NN by following a five-fold cross-validation procedure in the isoform

domain and use the annotated GO terms of genes to evaluate its performance, similar to

(3; 4; 44). The data is partitioned by genes instead of isoforms to avoid potential data leak,

as done in (44). Note that since isoforms from homologous genes of the human genome

(i.e., paralogs) do not generally share similar expression profiles (4), it is unlikely for them

to cause data leak in expression-based prediction of isoforms as demonstrated in (3). All

data from the gene domain is always applied to enable DA, but the single-isoform genes

in the isoform domain are left out of training to avoid overfitting. Before the training is

started, the variable yt[i] for isoform i is initialized as follows:

y0t [i] =


1, if xt ∈ XT [i, j] = 1 ∧ YT [j] = 1)

0, if xt ∈ XT [i, j] = 1 ∧ YT [j] = 0)

(2.1)

The model is then trained for each GO term separately. To take advantage of the hierarchical

structure of GO, we traverse GO starting from the leaf nodes and train the model on a parent

node only after all its children have been considered. This allows the training for a parent

node to benefit from the knowledge learned from its children, as sketched schematically in
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Figure 2.1.

The weights wf , wd, ws, wt are determined during training to minimize the follow-

ing objective function:

L(wf , ws, wt, wd) =
∑

i=1,...,n,yd[i]=0

Lis(wf , ws)

+λ1
∑

i=1,...,m,yd[i]=1

Lit(wf , wt)− λ2
∑

i=1,...,n+m

Lid(wf , wd)

(2.2)

where Lis denotes the loss in gene class label prediction at the ith gene, Lit the loss in

bag class label prediction at the ith bag and Lid the loss in domain class label prediction

at the ith gene or isoform (see Figure 2.2). More precisely, for a fixed gene (or bag or

isoform/gene) i, these loss functions are:

Lis(wf , ws) = −{ys[i] log y′s[i] + (1− ys[i]) log(1− y′s[i])}

Lit(wf , wt) = −{YT [i] log Y ′T [i] + (1− YT [i]) log(1− Y ′T [i])}

Lid(wf , wd) = −{yd[i] log y′d[i] + (1− yd[i]) log(1− y′d[i])}

(2.3)

We now show how the loss function Lt[i] is derived. Given the predicted class

labels of the isoforms in bag i, we can estimate the class label of the bag using the method

proposed in (53) for dealing with multiple instance loss as shown in equation 2.4. Clearly, if

at least one instance of the bag is positive, the bag will be predicted as positive; otherwise,

it will be considered as negative.

Y ′T [i] = 1−
∏

j∈bag i

(1− y′t[j]) (2.4)

y′t[j] =
1

1 + e−wt·x′t[j]
(2.5)
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x′t[j] =
1

1 + e−wf (t)·xt[j]
(2.6)

Here, i denotes a bag and j an isoform. The predicted isoform class label y′t[j] for iso-

form j is calculated by the sigmoid function in equation 2.5. The encoded feature vector

of isoform j, x′t[j], is calculated by another sigmoid function given in equation 2.6. The

weights wf (t) represent the part of wf derived from the isoform data. The other part of

wf , denoted as wf (s), represents the weights derived from the gene data. Similar sigmoid

functions are used to derive the values of y′s and y′d used in equation 2.3.

As mentioned above, we would like to seek the values of wf , ws, wt, wd to achieve

a saddle point of equation 2.2 such that

ŵf , ŵs, ŵt = arg minwf ,ws,wtL(wf , ws, wt, ŵd)

ŵd = arg maxwd
L(ŵf , ŵs, ŵt, wd)

(2.7)

At the saddle point, the weights wd of the domain label predictor maximize the loss

in domain classification while the weights ws and wt of the class label predictors minimize

the loss in functional prediction in both domains. The feature mapping weights wf help

minimize the class label prediction loss while maximizing the domain classification loss.

A saddle point of equation 2.7 can be found as a stationary point by using the following

stochastic updates as suggested in (48):
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wf ← wf − α(
∂Ls

∂wf (s)
+ λ1

∂Lt
∂wf (t)

− λ2
∂Ld
∂wf

)

ws ← ws − α(
∂Ls
∂ws

)

wt ← wt − α(
∂Lt
∂wt

)

wd ← wd − α(
∂Ld
∂wd

)

where the parameters λ1 and λ2 control the relative contributions of the predictors

during learning and α denotes the learning rate in this process.

2.3 Experimental evaluation

In this section, we describe in detail how to choose the key parameters in the NN

model, how the test data is collected, and how the computational experiments are performed

as well as what are their results.

2.3.1 The deep NN parameters

DeepIsoFun has been implemented in Caffe (54). In our NN architecture, the

auto-encoder consists of two fully-connected layers to extract common features of the gene

and isoform domains. The first fully-connected layer consists of 600 neurons and the second

fully-connected layer consists of 200 neurons. The number of hidden layers and size of

each layer (i.e., number of neurons in the layer) were optimized by a standard grid search

method (55; 56). The gene class label predictor and isoform class label predictor modules

are both output layers, and hence have only a single output neuron each. The domain

label predictor module uses a fully connected layer with 300 neurons and an output layer
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with a domain output neuron. We used a standard stochastic gradient descent optimization

method to minimize the training error as represented by the loss function given in equation

2.2 that involves two parameters λ1 and λ2. Both parameters were tuned experimentally by

following suggestions in the literature (56; 57). In particular, the parameter λ2 weighting

the contribution from domain label prediction was set by using the following formula:

λ2 =
2

1 + e−10p
− 1

By adjusting p ∈ [0, 1], we gradually tuned λ2 so that noise from the domain label predictor

is minimized at early training stages. The isoform domain data was partitioned in the

five-fold cross-validation procedure to produce the training and test data. The batch size

used in stochastic training of the NN model was 200. In other words, 200 source samples

(genes) and 200 target samples (isoforms) are merged to create a batch. At the initial

training stage, the leaning rate was set as α = 0.001. As training progresses, we update the

learning rate by using the standard step decay procedure (58) implemented in Caffe. We

also checked if the learning was diverging (e.g., very large loss values were observed), and

dropped the initial learning rate by a factor 10 until convergence has been achieved.

2.3.2 Collection of datasets

Manually reviewed mRNA isoform sequences and gene sequences of human were

collected from the NCBI RefSeq (59). To collect the expression profiles of these isoforms,

we took an initial set of 4643 RNA-Seq experiments from the NCBI SRA database (60),

and selected datasets with 50 million to 100 million reads. These experiments represented

different physiological and cell conditions but were not involved in population studies. Such
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Figure 2.3: The distribution of isoforms over genes. Out of the 19532 genes in RefSeq, 9039
have only one isoform (called single isoform genes or SIGs) and 10313 have more than one
isoform (called multiple isoform genes or MIGs).

20



a diverse set of expression data may reflect many complex characteristics of the isoforms.

The tool Kallisto (2) with Sleuth (61) was used to generate isoform expression data measured

in TPMs (Transcripts Per Million). The expression level of a gene in a dataset was estimated

by summing up the expression levels of all its isoforms. Experiments with the pseudo-

alignment ratio less than 0.7 were discarded to ensure data quality. We also filtered out

poorly covered genes and their corresponding isoforms in these experiments. Finally, the

expression data of 19532 genes and 47393 isoforms from 1735 RNA-Seq experiments formed

our first dataset (simply called Dataset#1). Out of these genes, 9039 have only one isoform

and are called single-isoform genes (SIGs) and 10313 have more than one isoform and are

called multiple-isoform genes (MIGs). The distribution of isoforms over genes is shown in

Figure 2.3. UniProt genes were mapped to RefSeq genes by using the UniProt ID mapping

file. The UniProt GO database was used to annotate the functions of each RefSeq gene,

where GO functions inferred from electronic annotation (IEA) evidence code were discarded

as done in (4). In other words, only manually curated functions were used for the final

annotation. The number of genes associated with a GO term is referred to as the GO term

size. Intuitively, GO terms with small sizes are computationally difficult to learn since its

data is highly skewed (i.e., mostly negative). In particular, it was assumed in (3) that a GO

term with size less than 5 might be very specific to certain genes and thus not very useful

in the cross-validation training procedure. We hence did not consider such infrequent GO

terms in our experiments. The basic version of GO was used to generate the parent-child

relationship between GO terms (17). Out of all 44612 GO terms, 14563 appear in human

annotations. After the above filtration, 4272 GO terms were kept for our experimental
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evaluation work. In addition to Dataset#1, we also used the datasets with their respective

GO annotations introduced in (3) and (4) (called Dataset#2 and Dataset#3, resp.) to

ensure our comparison results are unbiased, where Dataset#2 was generated from 116 SRA

mouse studies consisting of 365 experiments and Dataset#3 was generated from 29 SRA

human studies consisting of 455 experiments with the requirement that each study had

more than 6 experiments.

2.3.3 Experimental results

Since isoform functions are generally unavailable, we evaluated the performance of

DeepIsoFun using gene level functional annotations by considering SIGs and MIGs either

together or separately, as done similarly in (3; 4). Because each SIG contains only one

isoform, its functional annotation can be used to directly validate the predicted functions

of the involved isoform. For a MIG, we can only check if the set of the predicted functions

of its isoforms is consistent with its annotated GO terms (3). We also estimated the func-

tional divergence achieved by the isoforms of the same gene by calculating the semantic

dissimilarity for each of the three main branches of GO (i.e., CC, BP and MF). The tool

GOssTo (62) was used to perform this estimation because it was able to take into account

the hierarchical structure of GO. Moreover, we analyzed how the DA technique really helped

the performance of our method, how the size of a GO term impacted the performance and

the correlation between expression similarity and predicted function similarity for isoforms.

Finally, we compared our method with the methods in (3; 4; 43; 44) in terms of AUC and

AUPRC against specific baselines by focusing on a small set of GO terms (i.e., GO Slim

with 117 terms) that have been widely used in the literature (17). Here, a baseline rep-
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resents the performance of a random (untrained) classifier (63). While the baseline in an

AUC estimation is always 0.5 (64; 65), the baseline in an AUPRC estimation depends on

data imbalance and equals the proportion of positive instances (63). The latter measure

is known to be more suitable for imbalanced data. Note that for highly imbalanced data

(like ours), AUPRC values are often quite low (66; 63). However, we may still use them

to compare the relative performance of different methods on various datasets, taking into

account actual baselines.

Performance on the three main branches of GO

Since the three main branches carry very different meanings in gene functions and

are often treated separately in the literature, we compared the performance of DeepIsoFun

on them. Out of the 4272 GO terms, 699 belong to CC, 2178 BP and 1395 MF. The dis-

tributions of GO term sizes on the three branches are similar. The average AUC values on

BP, CC and MF are 0.735, 0.728 and 0.722, respectively, (see Figure 2a) and the average

AUPRC values are 0.301, 0.279 and 0.294, respectively, (see Figure 2b). This robust per-

formance of DeepIsoFun on the three main branches of GO shows that the terms on the

branches probably follow similar distributions (as already observed on the distributions of

their sizes).

Impact of the size of a GO term on performance

Some GO terms are very specific to certain genes while the others are more gen-

eral. To test how the size (or popularity) of a GO term would impact the performance of

23



MF CC BP

0
.5

0
.6

0
.7

0
.8

0
.9

GO branch

A
U

C

MF= 0.722

CC= 0.728

BP= 0.735

(a)

MF CC BP

0
.0

0
.2

0
.4

0
.6

GO branch

A
U

P
R

C

MF= 0.294

CC= 0.279

BP= 0.301

(b)

Figure 2.4: Comparison of performance on the three main branches of GO. (a) The average
AUC values on the three branches. (b) The average AUPRC values on the three branches.
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Figure 2.5: Correlation between expression similarity and functional similarity with respect
to different GO term sizes. The GO terms were again divided into four groups based on sizes.
For each group, all genes that have been annotated with at least one term in the group were
collected. For these genes, we generated two matrices to represent their (pairwise) similarity
in terms of expression profiles or GO functions. Then, using a standard tool (cor.test) in
the R Stats package, we estimated the Pearson correlation between these two similarity
matrices. Clearly, the stronger the correlation, the more likely we are able to predict GO
functions based on expression. As shown in the histogram, the correlation decreases as the
GO term size increases although the correlation is weak in all groups. This trend might
indicate that there is more annotation noise in GO terms with larger sizes, which in turn
might help explain why the performance of DeepIsoDun decreases with respect to GO terms
with larger sizes.

DeepIsoFun, we divided the GO terms into four groups based on size. The four groups con-

sist of GO terms of sizes in ranges [5-10], [11-20], [21-50], and [51-1000], respectively. The

performance of DeepIsoFun on these groups is given in Figure 3a. DeepIsoFun performed

better on GO terms with smaller sizes in general. This pattern seems to contradict intuition,

but it is consistent with the findings in (4) and can perhaps be explained by the large the

amount of (annotation) noise in large size GO terms. To confirm this, we further analyzed

the correlation between expression similarity and functional similarity with respect to GO
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terms in each of the four groups. The results in Figure 2.5 suggest that the correlation

decreases as the GO term size increases. The weak correlations shown in the figure also

partially explain why the AUC and AUPRC values obtained in Figure 2 are not very high.

Performance on MIGs vs SIGs

In the previous section, we considered the performance of DeepIsoFun on all genes,

including both SIGs and MIGs. Since our ultimate goal is to dissect functions of different

functions of the same gene, we would like to compare the performance on MIGs with

that on SIGs in this subsection. As shown in Figure 3b, the performance increases as

term size decreases. Moreover, the performance on MIGs achieved in these groups are

consistently better than the performance on SIGs. More precisely, the performance on

MIGs was 14%, 23%, 27%, and 19% better (against the baseline 0.5) than that on SIGs in

the four groups, respectively. Hence, DeepIsoFun was more effective in predicting functions

for genes with multiple isoforms than genes with a single isoform, probably because of the

functional diversity usually acquired by the former. Another plausible cause is that, since

most (95%) human genes are expected to be MIGs, many SIGs could represent poorly

annotated genes that have large numbers of undiscovered isoforms. Therefore, we also

analyzed the performance of DeepIsoFun on MIGs with a certain number of isoforms. As

shown in Figure 2.7, the AUC performance of DeepIsoFun increases (slightly) as more

isoforms are found in a MIG.
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Figure 2.6: Comparison of AUCs achieved in four groups of GO terms from CC with different
sizes. The four groups contain terms with sizes in ranges [5-10], [11-20], [21-75], and [76-
1000], respectively. (a) The average AUC values achieved by the terms in the four groups
are 0.767, 0.734, 0.718, and 0.705, respectively. The plot shows that generally as the size
of a GO term increases, its achieved AUC actually decreases. (b) DeepIsoFun consistently
performed better on MIGs over SIGs. The average AUC values on MIGs achieved in the
four groups are 0.79, 0.748, 0.745, and 0.709, respectively. the average AUC values on SIGs
achieved by in four groups are 0.755, 0.702, 0.693, and 0.675, respectively.
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Figure 2.7: Performance of DeepIsoFun on MIGs with different numbers of isoforms. We
divided MIGs into five groups: MIGs with 2 isoforms, 3 isoforms, 4 isoforms, 5 isoforms,
or more than 5 isoforms. The average AUC performace of DeepIsoFun is shown in the
histogram. It increases slightly as the number of isoforms per gene increases.
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Figure 2.8: Functional dissimilarity distributions on the three main branches of GO.

Dissimilarity among the predicted functions of isoforms

Since our ultimate goal is to dissect the functions of isoforms, we estimate the

functional divergence of the isoforms of the same gene. For each GO term, the gene-wise

method simGIC of GOssTo (62; 67) was used to calculate the semantic similarity score
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in the range of [0,1] for each gene based on the predicted functions of its isoforms. The

dissimilarity score was simply defined as one minus the similarity score (4). Again, the three

main branches of GO (i.e., CC, BP and MF) were considered separately. Out of the 10313

MIGs, 4310 genes appear in CC, 5224 appear in BP and 3217 appear in MF (a gene may

contain functions from multiple branches). For each branch, the functional divergence of a

gene is calculated as the average dissimilarity scores over all terms on the branch. Figure

2.8 shows the distribution of functional dissimilarity scores among the isoforms of each

gene. As observed in the literature (4; 68), many genes exhibited low average dissimilarity

scores. More precisely, about 24% (1033) of the genes that appear in CC showed average

dissimilarity scores less than 0.1. For BP and MF, this percentage rose to 46% (2405 genes)

and 39% (1280 genes). On the other hand, about 7%, 3% and 4% of the genes have average

dissimilarity scores greater than 0.3 on the three branches, respectively. These results are

consistent with the fact that the isoforms of the same genes have very similar sequences,

which lead them to perform mostly similar functions, but some isoforms may still have very

different functions due to large changes in promoters and/or composition of coding exons.

Effectiveness of domain adaptation

A main novelty in DeepIsoFun is the use of DA (domain adaptation) to create

labeled training data and transfer knowledge from the gene domain to the isoform domain.

To test the effectiveness of DA in the experiments, we compared DeepIsoFun with a version

without DA where the third part of the objective function in equation 2.2 is disabled.

Compared with the average AUC of 0.695 achieved by the restricted DeepIsoFun without

DA, DeepIsoFun with DA performed 18% better against the baseline 0.5 as shown in Figure
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2.9. We then further compared the two versions on the four GO term groups based on

term sizes and found that the DA technique always made a significant difference. More

specifically, it helped DeepIsoFun to achieve 19%, 19%, 17%, and 20% better AUC (against

the baseline 0.5) in the four groups, respectively.
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Figure 2.9: Comparison of AUCs achieved in the four groups of GO terms by DeepIsoFun
with and without the DA technique. The average AUC value achieved by DeepIsoFun with
DA in all four groups is 0.730 and the corresponding AUC achieved by DeepIsoFun without
DA is 0.695. The benefit of DA is also clearly shown in the comparison over individual
groups.
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(a)Without DA

(b)With DA

Figure 2.10: Effectiveness of DA in mixing the two domains. Red dots represent samples
from the source domain after feature extraction and blue dots represent samples from the
target domain. The tool t-SNE (1) was used to perform dimensionality reduction and
visualization. The DA technique clearly makes the two distributions harder to distinguish.
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We also tested if the DA technique was actually able to mix the two domains (so

knowledge can be transferred). The plots in Figure 2.10 made by using t-SNE (1) show

clearly that the extracted features from the two domains became indistinguishable with the

help of DA. This makes it possible to transfer knowledge (i.e., the relationship between

expression profiles and functions) from the gene domain to the isoform domain and is a key

to the improved performance of DeepIsoFun.

Correlation between expression similarity and the similarity of predicted func-

tions

Given the difficulty in testing the performance of DeepIsoFun directly due to the

lack of isoform function benchmark, we tested how the predicted isoform functions are cor-

related with their expression profiles. After all, this was the original hypothesis behind the

design of DeepIsoFun. We performed a hierarchical clustering of the isoforms based on the

expression data and Euclidean distance by using a standard tool (hclust) in the R Stats

package. Eight clusters were defined from the clustering tree using the same tool. Then,

the average distance between the expression profiles of the isoforms within each cluster was

calculated and normalized to the range of [0,1]. The same thing was done to estimate the

average distance between the predicted GO terms of the isoforms within each cluster. The

distributions of the average distances over the clusters are shown in Figure 2.11. Clearly,

isoforms with similar expression profiles resulted in similar predicted functions.
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Figure 2.11: Comparison between the distribution of expression similarity and the distribu-
tion of similarity concerning predicted functions. The plot shows a clear positive correlation
between the two distributions.

Comparison with the existing methods

We compared the performance of DeepIsoFun with three existing methods, itera-

tive Multiple Instance Label Propagation (iMILP) (4), Multiple Instance SVM (mi-SVM)

(3; 44) and the Weighted Logistic Regression Method (WLRM) (43). Here, iMILP is the

iterative version of MILP where a feature selection wrapper method is run over MILP to

achieve better performance (4). For completeness, we will also included MILP in the com-
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parison. Note that WLRM was compared in (43) with two recent methods for solving MIL,

namely miFV (69) and miVLAD (70), and found to perform better in the prediction of

isoform functions. In addition to Dataset#1 analyzed above, we also considered the two

expression datasets introduced in (3; 4), Dataset#2 and Dataset#3, respectively. Since

mi-SVM and WLRM follow a 2-class classification framework but MILP/iMILP adapt a

3-class classification framework, different benchmarks were used to create functional labels

for training and testing in (3; 4; 43; 44). In a 2-class classification framework, an isoform

is classified as either positive or negative with respect to each GO term, while in a 3-class

classification framework, an isoform is classified as either positive, negative or unknown.

Hence, we present the comparison between DeepIsoFun and MILP/iMILP in Table 2.1 and

the comparison among DeepIsoFun, mi-SVM and WLRM in Table 2.2. Note that the values

in the two tables are not directly comparable. On all three datasets, DeepIsoFun performed

significantly better than the other methods. The average AUC values achieved by Deep-

IsoFun on all three datasets are 0.742, 0.734 and 0.720 with respect to the first benchmark

(Table 2.1), and 0.735, 0.729 and 0.704 with respect to the second benchmark (Table 2.1).

The corresponding values of AUPRC are 0.368 (baseline 0.1), 0.270 (baseline 0.08) and 0.331

(baseline 0.11) with respect to the first benchmark, and 0.292 (baseline 0.1), 0.246 (baseline

0.08) and 0.234 (baseline 0.11) with respect to the second benchmark. Note that although

the AUPRC values are lower, they still represent quite decent performance when compared

to the baseline values. The best performance achieved on Dataset#1 is perhaps due to the

quality of data (since it was collected most recently and processed with updated tools) and

its diversity across different tissue conditions. On this dataset, compared to iMILP, MILP,

35



mi-SVM and WLRM, the AUC of DeepIsoFun increased 64%, 102%, 31%, and 23% against

the baseline 0.5, respectively. Similarly, on Dataset#2 (or Dataset#3), the improvements

are 73%, 216%, 37%, and 45% (or 26%, 450%, 43%, and 24%) against the baseline, re-

spectively. Since our labeled data was imbalanced, we also compared the performance in

AUPRC and observed similar improvements. On Dataset#1 (Dataset#2 and Dataset#3),

DeepIsoFun performed 59% (29% and 41%, resp.) better than mi-SVM in AUPRC against

respective baselines, 11% (23% and 10%, resp.) better than iMILP, 57% (32% and 20%,

resp.) better than MILP, and 63% (62% and 85%, resp.) better than WLRM. We think

that these significant improvements in performance over the existing methods on several

human and mouse datasets demonstrate the success of the DA technique as well as the

power of deep learning.

Table 2.1: Comparison between DeepIsoFun and MILP/iMILP on different expression
datasets in terms of AUC and AUPRC values. Dataset#1 was generated from 1735 RNA-
Seq experiments by using Kallisto (2). Dataset#2 and Dataset#3 were obtained from (3)
and (4), respectively. The benchmark positive and negative instances of each GO term
used in testing were defined by following the procedure in (4). The unlabeled instances
were ignored in testing. Both Dataset#1 and Dataset#2 were divided based on read length
to create different “study groups”. There are 24, 24 and 29 study groups in Dataset#1,
Dataset#2 and Dataset#3, respectively. On the average, each study group consists of 71, 16
and 17 SRA experiments in Dataset#1, Dataset#2 and Dataset#3, respectively. As done
in (4), a selection algorithm was employed by iMILP to choose a subset of study groups on
each dataset optimize its performance.

AUC AUPRC

Dataset

Method
DeepIsoFun MILP iMILP DeepIsoFun MILP iMILP

Dataset#1 0.742 0.620 0.648 0.368 0.271 0.342

Dataset#2 0.734 0.574 0.635 0.270 0.224 0.235

Dataset#3 0.720 0.540 0.674 0.331 0.294 0.311
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Table 2.2: Comparison among DeepIsoFun, mi-SVM and WLRM on different expression
datasets in terms of AUC and AUPRC values. The benchmark positive and negative in-
stances of each GO term used in testing were defined by following the procedure in (3).

AUC AUPRC

Dataset

Method
DeepIsoFun mi-SVM WLRM DeepIsoFun mi-SVM WLRM

Dataset#1 0.735 0.679 0.691 0.292 0.221 0.218

Dataset#2 0.729 0.667 0.658 0.246 0.209 0.182

Dataset#3 0.704 0.643 0.664 0.234 0.198 0.177

Table 2.3: Average computation time (in minute) per GO term. DeepIsoFun takes 12.09
minutes to process one GO term on Dataset1 on the average (on a standard compute server
node), which is 1.42 times faster than mi-SVM, 0.37 times faster than MILP, 2.49 times
faster than iMILP, and 0.21 times faster than WLRM.

DeepIsoFun mi-SVM MILP iMILP WLRM

Time 12.09 29.26 16.48 42.17 14.59

Some comparisons of the methods in terms of divergence of predicted isoform

functions and time efficiency are given in Figure 2.12 and Table 2.3 . We also compared

the performance of the methods on two additional datasets concerning Arabidopsis thaliana

and Drosophila melanogaster (i.e., fruit fly) and summarize the comparison results in Table

2.4 and Table 2.5. As the tables show, DeepIsoFun consistently performed better than

the other methods in both AUC and AUPRC. The performance of the methods on all five

datasets with respect to different GO term sizes is given in Tables S4 and S5.
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Figure 2.12: Functional dissimilarity distributions on the three main branches of GO
achieved by DeepIsoFun, mi-SVM, MILP, and WLRM. The average dissimilarity scores
achieved by DeepIsoFun, mi-SVM, MILP, and WLRM are respectively 0.162, 0.322, 0.197
and 0.204. Interestingly, the first three methods all reported the highest divergence on the
branch CC.

Validation of some predicted isoform functions

As mentioned before, there has been little systematic study on isoform functions

in the literature, and not many specific experimentally-verified functions of isoforms have

been reported. Some of the reported functions concern differential regulatory behaviors of
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Table 2.4: To check if DeepIsoFun consistently outperforms the other methods on data from
more organisms, we tested them on two more expression datasets concerning Arabidopsis
thaliana and Drosophila melanogaster (i.e., fruit fly), respectively named as Dataset#4
and Dataset#5. The data generation procedure is similar as described in Section 3.2.
Dataset#4 contains the expression profiles of 24315 genes and 31811 isoforms derived from
13 SRA arabidopsis studies consisting of 101 experiments and Dataset#5 contains the
expression profiles of 13022 genes and 28419 isoforms derived from from 11 SRA fruit fly
studies consisting of 128 experiments, with the requirement that each study contains at
least 6 experiments. The transcript annotations for these two organism were collected
from TAIR (https://www.arabidopsis.org/) and FlyBase (http://flybase.org/). The results
in the table show that DeepIsoFun consistently performs better than MILP and iMILP.
Specifically, in terms of AUC, DeepIsoFun is 97.2% and 58.1% better than MILP and iMILP
on Dataset#4 (45.6% and 29.4% better on Dataset#5), respectively, against the baseline
0.5. In terms of AUPRC, DeepIsoFun performs 38.7% and 15.2% better than MILP and
iMILP on Dataset#4 (33.6% and 16.1% better on Dataset#5), respectively, against the
baseline 0.1.

AUC AUPRC

Dataset

Method
DeepIsoFun MILP iMILP DeepIsoFun MILP iMILP

Dataset#4 0.674 0.588 0.610 0.229 0.193 0.212

Dataset#5 0.698 0.636 0.653 0.259 0.219 0.237

Table 2.5: Comparison of DeepIsoFun, mi-SVM and WLRM on Dataset#4 and Dataset#5.
Again, DeepIsoFun consistently outperforms the other two methods. In terms of AUC,
DeepIsoFun is 30.6% and 22.7% better than mi-SVM and WLRM, respectively, on
Dataset#4 (12.2% and 15.7% better on Dataset#5). In terms of AUPRC, DeepIsoFun
is 31.1% and 40.6% better than mi-SVM and WLRM, respectively, on Dataset#4 (25.9%
and 18.1% better on Dataset#5).

AUC AUPRC

Dataset

Method
DeepIsoFun mi-SVM WLRM DeepIsoFun mi-SVM WLRM

Dataset#4 0.662 0.624 0.632 0.197 0.174 0.169

Dataset#5 0.684 0.664 0.659 0.231 0.204 0.211

isoforms in important processes such as the ‘regulation of apoptosis process’ (GO:0042981).

Apoptosis refers to programmed cell death. This GO term has two children with opposite

functions, i.e., the ‘positive regulation of apoptosis process’ or pro-apoptosis (GO:0043065)
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Table 2.6: Performance of DeepIsoFun in predicting the apoptosis regulatory, pro-apoptosis
and anti-apoptosis functions. The 18 genes that have multiple isoforms and are annotated
with both pro-apoptosis and anti-apoptosis functions are listed in the first two columns.
Here, the ID of a gene is extracted from the NCBI database. The numbers of isoforms of
the genes are shown in the third column. DeepIsoFun was trained on Dataset#1 using a
standard five-fold cross validation procedure with GO Slim as the benchmark. The pre-
diction results concerning the three functions are shown in the next three columns, where
an “Y” means that the concerned function is predicted for at least one of the isoforms of
the concerned gene. The last column shows for each gene, if some isoforms of the gene are
predicted to be pro-apoptosis but not anti-apoptosis while some other isoforms of the gene
are predicted to be anti-apoptosis but not pro-apoptosis.

Gene name Gene ID
Isoform
count

Regulation of
apoptosis

Pro-
apoptosis

Anti-
apoptosis

Differentiated

FAS 355 4 Y Y Y Y

BARD1 580 5 Y Y Y N

BMP4 652 9 Y Y Y Y

DDX3X 1654 3 Y N N N

DNAJA1 3301 2 Y Y N N

IL6 3569 2 Y Y Y N

MAPK8 5599 17 Y Y Y Y

PSEN2 5664 2 N N N N

RPS27A 6233 3 Y N Y Y

SNCA 6622 4 Y Y N N

YP53 7157 15 Y Y Y Y

YEAF6 7189 2 Y Y Y N

UBA52 7311 8 Y Y Y N

UBB 7314 6 Y Y Y Y

HMGA2 8091 5 Y N Y N

SQSYM1 8878 3 Y N Y N

ZNF268 10795 9 Y Y Y Y

YNFAIP8 25816 6 Y Y Y Y
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Table 2.7: Performance of iMILP in predicting the apoptosis regulatory, pro-apoptosis and
anti-apoptosis functions. Here, iMILP was trained on Dataset#1 using a standard five-fold
cross validation procedure with GO Slim as the benchmark.

Gene name Gene ID
Isoform
count

Regulation of
apoptosis

Pro-
apoptosis

Anti-
apoptosis

Differentiated

FAS 355 4 N N N N

BARD1 580 5 Y Y N N

BMP4 652 9 Y Y Y N

DDX3X 1654 3 Y N Y N

DNAJA1 3301 2 N N N N

IL6 3569 2 Y N Y N

MAPK8 5599 17 Y Y Y N

PSEN2 5664 2 Y Y N N

RPS27A 6233 3 Y Y Y Y

SNCA 6622 4 Y Y N N

YP53 7157 15 Y Y Y Y

YEAF6 7189 2 N N N N

UBA52 7311 8 Y N Y N

UBB 7314 6 Y Y Y Y

HMGA2 8091 5 Y N Y N

SQSYM1 8878 3 N N N N

ZNF268 10795 9 Y Y Y Y

YNFAIP8 25816 6 Y Y Y Y
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Table 2.8: Performance of mi-SVM in predicting the apoptosis regulatory, pro-apoptosis
and anti-apoptosis functions. Here, mi-SVM was trained on Dataset#1 using a standard
five-fold cross validation procedure with GO Slim as the benchmark.

Gene name Gene ID
Isoform
count

Regulation of
apoptosis

Pro-
apoptosis

Anti-
apoptosis

Differentiated

FAS 355 4 Y N Y N

BARD1 580 5 Y Y Y Y

BMP4 652 9 Y Y Y N

DDX3X 1654 3 Y N Y N

DNAJA1 3301 2 N N N N

IL6 3569 2 Y Y N N

MAPK8 5599 17 Y Y Y Y

PSEN2 5664 2 N N N N

RPS27A 6233 3 Y Y Y Y

SNCA 6622 4 Y Y N N

YP53 7157 15 Y Y Y Y

YEAF6 7189 2 N N N N

UBA52 7311 8 Y Y Y N

UBB 7314 6 Y Y Y N

HMGA2 8091 5 Y Y N N

SQSYM1 8878 3 Y N Y N

ZNF268 10795 9 Y Y Y N

YNFAIP8 25816 6 Y Y N N
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Table 2.9: Performance of WLRM in predicting the apoptosis regulatory, pro-apoptosis and
anti-apoptosis functions. Here, WLRM was trained on Dataset#1 using a standard five-fold
cross validation procedure with GO Slim as the benchmark.

Gene name Gene ID
Isoform
count

Regulation of
apoptosis

Pro-
apoptosis

Anti-
apoptosis

Differentiated

FAS 355 4 Y Y Y N

BARD1 580 5 Y Y Y N

BMP4 652 9 Y Y Y Y

DDX3X 1654 3 N N N N

DNAJA1 3301 2 Y Y N N

IL6 3569 2 Y N Y N

MAPK8 5599 17 Y Y Y N

PSEN2 5664 2 N N N N

RPS27A 6233 3 N N N N

SNCA 6622 4 Y Y Y N

YP53 7157 15 Y Y Y Y

YEAF6 7189 2 N N N N

UBA52 7311 8 Y Y Y N

UBB 7314 6 Y N Y Y

HMGA2 8091 5 Y Y Y N

SQSYM1 8878 3 Y Y Y N

ZNF268 10795 9 Y N Y N

YNFAIP8 25816 6 Y Y Y N
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and the ‘negative regulation of apoptosis process’ or anti-apoptosis (GO:0043066). For MIGs

with both pro-apoptosis and anti-apoptosis functions, it would be interesting to know if it

has some isoforms that are pro-apoptosis but not anti-apoptosis and some other isoforms

that are anti-apoptosis but not pro-apoptosis. In other words, we would like to know if

the pro- and anti-apoptosis functions of the gene are differentiated among its isoforms. To

investigate such MIGs, we searched for all genes that have multiple isoforms and are an-

notated with both pro-apoptosis and anti-apoptosis functions. Totally, 18 such genes were

found (see Table 2.6 S6 in the Supplementary Materials ). The number of isoforms in each

of these genes ranges from 2 to 17. Tables 2.6, 2.7, 2.8, 2.9 show the performance of Deep-

IsoFun, iMILP, mi-SVM, and WLRM, respectively, in predicting the apoptosis regulatory,

pro-apoptosis and anti-apoptosis functions, measured at the gene level. DeepIsoFun was

able to predict the apoptosis regulatory function for the isoforms of 17 out of the 18 genes

(94.4% recall), the pro-apoptosis function for the isoforms of 13 genes (72.2% recall) and

the anti-apoptosis function for the isoforms of 14 genes (77.7% recall). In contrast, iMILP

achieved recalls 77.7%, 55.6% and 61.1%, mi-SVM achieved recalls 83.3%, 66.7% and 61.1%

and WLRM achieved recalls 77.7%, 61.1% and 72.2% in predicting the three functions, re-

spectively. Futhermore, the tables show that DeepIsoFun was able to differentiate the pro-

and anti-apoptosis functions among isoforms for 8 of the 18 genes while iMILP, mi-SVM

and WLRM were only able to do it for 5, 4 and 3 genes, respectively. Although we do not

know exactly how many of these genes have differentiated pro- and anti-apoptosis functions

among their isoforms, it is perhaps reasonable to conjecture that most of these genes do

possess this property.
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2.4 Discussion

Although DeepIsoFun achieved significant improvement over the existing meth-

ods in isoform function prediction, its performance as measured by AUC and AUPRC in

our experiments still remained less than desirable. The prediction of isoform functions is

challenging not only because of the lack of labeled training data (i.e., specific functions are

known for very few isoforms) and noisy GO annotation, but also because the data is very

imbalanced. That is, most GO terms are only associated with a small number of genes

and hence the negative examples are far more than the positive examples. This makes the

situation especially bad when the performance is measured in AUPRC since the number of

false positive examples tends to be high and thus the precision tends to be low. We dealt

with the problem by leaving out infrequent GO terms that are associated with fewer than

five genes, although such terms often represent specific functions and could be biologically

the most relevant. On the other hand, most functions of genes are yet to be discovered.

Hence, three-class classification was proposed in (4) as a way to address the data imbalance

issue. However, such an approach often leads to conservative predictions and may fail to

predict many isoform specific functions. We plan to study machine learning (including un-

supervised learning) techniques that can help produce meaningful predictions for infrequent

GO terms.

Another challenge we faced was the heterogeneity of the expression data. While

a large dataset covering many tissues and conditions (such as Dataset#1) provides rich in-

formation about isoform functions, it also contains a lot of noise that makes the extraction

of informative features difficult. (4) solved this problem by using an elaborate search pro-
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cedure to identify the best subset of RNA-Seq experiments in the input data. However, the

search consumes a lot of time, especially when the number of input RNA-Seq experiments

is large. We plan to apply DeepIsoFun to tissue-specific data to see how its performance

will be affected as well as if some tissue-specific isoform functions can be discovered.
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Chapter 3

DeepLPI: a multimodal deep

learning method for predicting the

interactions between lncRNAs and

protein isoforms

3.1 Introduction

Long non-coding RNAs (lncRNAs) are RNA transcripts of more than 200 nu-

cleotides that are not translated to proteins. Previous research (71; 72) has demonstrated

that lncRNAs participate energetically in almost the whole process of cells. However, the

functions of most lncRNAs are unknown. To understand the function of an lncRNA, it is

necessary to identify what other biological molecules it is able to interact with, especially
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proteins (73; 74). By interacting with proteins, lncRNAs could regulate the expression of

genes, influence nuclear architecture and modulate the activity of proteins (75). There-

fore, identifying lncRNA-protein interactions is an important approach to understand the

potential functions of lncRNAs.

Current methods to identify lncRNA-protein interactions are based on biological

experiments and computational models. With the rapid development of molecular biology

techniques, large-scale experimental approaches such as PAR-CLIP (76), RNAcompete (77),

HITS-CLIP (78), and RIP-Chip (79) have been developed to detect RNA-protein binding

and have been used to find lncRNA-protein interactions. However, these experimental ap-

proaches are expensive and time-consuming (73). Based on the known lncRNA-protein

interactions, many computational methods have been introduced for mining novel lncRNA-

protein interactions. According to Zhang et al. (73), the computational methods could

be grouped into two broad categories, machine learning-based methods and network-based

methods. The machine learning-based methods build binary classifiers to predict lncRNA-

protein pairs as interactive or non-interactive. These methods trained their classifiers using

sequence, structure and physicochemical features of lncRNAs and proteins. For example,

RPISeq (80) utilized the sequence information of RNAs and proteins to train a random for-

est classifier and a support vector machine classifier. Bellucci et al. trained catRAPID (81)

using the physicochemical properties and secondary structure propensities of 592 protein-

RNA pairs to predict novel RNA-protein interactions. Wang et al. (82) built a protein-RNA

interaction prediction model using the naive Bayes classifier based only on sequence infor-

mation. LncPro (83) used Fisher’s linear discriminant approach to compute a matrix based

48



on lncRNA and protein sequence information, and used the matrix to score the interactions

between an lncRNA-protein pair. Based on the sequence and secondary structural infor-

mation of RNAs and proteins, RPI-Pred (84) trained a support vector machine. RpiCOOL

(85) trained a random forest classifier using sequence motifs and repeat patterns. LPI-

BLS (86) used sequence information of known lncRNA-protein pairs to learn multiple BLS

(broad learning system) classifiers and integrated the classifiers with a logistical regression

model. Recently, IPMiner (19), RPI-SAN (20), RPITER (21) and lncADeep (22) employed

deep learning techniques to build lncRNA-protein interaction prediction models based on

sequence and/or structural information.

Note that, there are several recently developed methods for predicting general

ncRNA-protein interactions based on machine learning (87; 88; 89; 90), but they do not

consider lncRNAs specifically and are hence less relevant to our work.

The network-based methods integrate heterozygous information associated with

lncRNAs and proteins into a network (73) and utilize the topological relationship of lncR-

NAs and proteins to predict lncRNA-protein interactions. Li et al. proposed LPIHN (91)

that integrated an lncRNA-lncRNA similarity network, an lncRNA-protein interaction net-

work and a protein-protein interaction (PPI) network into a heterogeneous network, and

used a random walk with restart technique on the heterogeneous network to infer lncRNA-

protein interactions. Ge et al. developed a different network approach LPBNI (92) using

an lncRNA-protein bipartite network inference method. Based on a heterogenous network

similar to LPIHN, Xiao et al. proposed PLPIHS (93) using HeteSim scores (94) to infer

lncRNA-protein interactions, and Hu et al. introduced an eigenvalue transformation-based
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semi-supervised link prediction method LPI-ETSLP (95). Zhang et al. designed a linear

neighborhood propagation method LPLNP (96). Zhao et al. utilized both random walk

and neighborhood regularized logistic matrix factorization and proposed IRWNRLPI (97).

Deng et al. proposed PLIPCOM (98), which combined diffusion and HeteSim features of

heterogeneous lncRNA-protein networks and applied a gradient tree boosting algorithm to

predict interactions. More recently, (99) combined multiple similarities and multiple fea-

tures related to lncRNAs and proteins into a feature projection ensemble learning frame.

Zhao et al. proposed a semi-supervised learning method LPI-BNPRA (100). Shen et al.

proposed LPI-KTASLP (101), which used multivariate information about lncRNAs and

proteins to conduct a semi-supervised link prediction. Xie et al. (102) constructed a net-

work integrating the information about lncRNA expressions, protein-protein interactions

and known lncRNA-protein interactions, and adopted a bipartite network recommendation

method to predict lncRNA-protein interactions.

Though a lot of computational methods for predicting lncRNA-protein interactions

have been introduced, many challenges still remain. First, in the above studies, the machine-

learning based methods only focused on the intrinsic features of lncRNAs and proteins

and the network based methods mostly focused on the topological features of associated

biological networks of lncRNAs and proteins (73). An integration of all these features might

lead to a better prediction. Second, all methods proposed above neglected the fact that

a gene may encode multiple protein isoforms and different isoforms of the same gene may

interact differently with the same lncRNA, which could inevitably impact their prediction

performance.
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In this chapter, we attempt to address these issues and propose a novel method,

named DeepLPI (multimodal Deep learning method for predicting LncRNA-Protein Isoform

interactions). DeepLPI uses sequence, structure and expression data of lncRNAs and pro-

tein isoforms. Instead of using the canonical proteins of each gene, DeepLPI considers all

protein isoforms, which could help to detect lncRNA-protein interactions more accurately.

DeepLPI extracts intrinsic features such as functional motifs from the sequence and struc-

ture data, and obtains network topological features from the expression data. Note that,

DeepLPI uses mRNA expression data to extract network topological features instead of PPI

data as done in the existing methods because most of the available PPI data do not provide

the details about isoforms. Moreover, it is possible to build an isoform-isoform interaction

network based on mRNA expression data (103).

DeepLPI consists of two parts. In the first part, we train a deep neural network

(DNN) that uses the multimodal deep learning (MDL) (23) technique to extract features

from the sequence and structure data of lncRNAs and protein isoforms. The MDL fuses

these extracted features and measures the initial interaction scores between lncRNAs and

protein isoforms. In the second part, a conditional random field (CRF) is designed to

exploit the co-expression relationship among lncRNAs and the co-expression relationship

among protein isoforms. The CRF assigns final interaction scores between lncRNAs and

protein isoforms based on initial interaction scores while trying to keep highly co-expressed

lncRNAs and highly co-expressed protein isoforms attaining similar interaction patterns.

To overcome the lack of interaction training labels for lncRNAs and protein isoforms, we

propose an iterative semi-supervised training algorithm based on the multiple instance
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learning (MIL) framework similar to (24; 25; 26). In MIL, for each positive lncRNA and

protein interaction pair (r, p), we initially assign positive interaction labels to all pairs (r, i)

for each isoform i of p and negative interaction labels to all other pairs of lncRNAs and

protein isoforms. In each iteration, the DNN and CRF update the initial interaction scores

using co-expressed lncRNAs and co-expressed isoforms until convergence is reached. In this

setting, the isoforms of the a protein/gene can interact differently with the same lncRNA.

This flexibility and the integration of both intrinsic and network topological features may

potentially lead to a better prediction.

To evaluate the performance of DeepLPI, we first measure its prediction perfor-

mance using protein (i.e., gene) level interactions with lncRNAs provided in the NPInter

v3.0 database. We make sure at least a half of our negative interaction examples contain

lncRNAs and proteins that are present in the positive interactions (but do not interact with

each other). The rest of the negative interactions contain lncRNAs or proteins that are not

present in the positive interactions. This helps overcome the overfitting issue. DeepLPI

achieved an average AUC (area under receiver operating characteristic curve) of 0.866 and

AUPRC (area under the precision-recall curve) of 0.703 on the human interaction dataset.

We also compare our method with both machine-learning based methods and network based

methods for predicting lncRNA-protein interactions surveyed above on the same dataset.

Based on availability and ease of use, 11 methods were chosen for the comparison. The ex-

perimental results demonstrate that our method significantly outperformed the others. We

further evaluate the effect of various components of our model (i.e., the so-called ablation

study), which essentially indicates the effectiveness of each source of data (isoforms, struc-
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tures, sequences, and expressions) incorporated and how these data are effectively captured

by their corresponding components of the model. We also analyze the divergence of isoform

interactions, i.e., how isoforms from the same protein may interact differently with lncR-

NAs. Finally, we validate our method via a series of tests including the correlation similarity

test, prediction of mouse lncRNA-protein interactions using the model trained on human

data (since lncRNAs are conserved), and case studies of recently discovered lncRNA-protein

interactions in the literature.

3.2 Methods

3.2.1 Datasets

The ground truth interactions between lncRNAs and proteins were downloaded

from the NPInter v3.0 database (104). This is the most enriched database that integrates

experimentally verified functional interactions. We kept only the interacting pairs labeled

with ‘Homo sapiens’. Though the data of NPInter has kept on growing, the number of

involved lncRNAs and proteins is still very small at present. In the current version, there

are 10031 interactions between 1817 lncRNAs and 151 proteins. These interactions are

considered as positive interactions. To train a neural network model, we also need to sample

negative interactions that represent pairs of lncRNAs and proteins that do not interact with

each other. As the population of negative interactions count is large, complete random

sampling of it may contain few lncRNAs and proteins that present in positive interactions,

which might lead to overfitting (105). To reduce overfitting, we make sure that at least a

half of the negative lncRNA-protein interaction pairs contain lncRNAs and proteins that
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appear in positive interaction pairs (but do not interact with each other). The rest of the

negative interaction pairs consist of randomly chosen lncRNAs and proteins that do not

appear in positive interaction pairs.

The lncRNA sequences and the protein isoform sequences of human genome were

downloaded from GENCODE (106) and ENSEMBL (107), respectively. The sequences

were then used to predict their secondary structures. To predict the secondary structure

of an lncRNA, we used RNAShapes (108). The output of RNAShapes was converted to a

structure sequence using the EDeN tool (http://github.com/fabriziocosta/EDeN) as in (109). An

lncRNA structure typically consists of six structural components: stem (S), multiloop (M),

hairpin loop (H), internal loop (I), dangling end (T), and dangling start (F). To predict the

secondary structure from a protein isoform sequence, we used SPIDER2 (110). SPIDER2

uses a deep neural network to predict a 3-state protein secondary structure whose structural

components consist of helix (H), strand (E) and coil (C).

The third type of data that we collected are mRNA and lncRNA expression data.

The mRNA expression data are obtained from the literature (32), and the lncRNA expres-

sion data were downloaded from the Co-LncRNA database (111). The mRNA and lncRNA

expression data are based on high-throughput human RNA sequencing experiments of 334

studies (1,735 samples) and 241 studies (6,560 samples), respectively. We used the expres-

sion data to build co-expression networks. To ensure network quality, we only considered

RNA sequencing studies with at least ten samples. Finally, 42 mRNA sequencing stud-

ies and 54 lncRNA sequencing studies were kept with a total of 1134 samples and 1429

samples, respectively. Note that an mRNA transcript uniquely corresponds to a protein

54



isoform. In the following, an isoform means either an mRNA transcript or protein isoform.

Since different databases use different identifier naming conventions to record protein iso-

forms, mRNA and lncRNA, ID conversion tools from (112; 113; 111) were used to identify

the same moleculars from different data sources and perform the mapping between protein

isoforms and mRNAs. Finally, we filtered the data and kept the isoforms and lncRNAs that

appear in both the sequence data and the expression data.

Data representation.

An lncRNA is a character sequence composed of 4 unique ribose nucleotides: cyto-

sine (C), adenine (A), guanine (G), and uracil (U). A protein isoform is a sequence consisting

of 20 unique amino acid codes. We generate hexamers and trimers from an lncRNA sequence

and a protein isoform sequence, respectively. An lncRNA of length n is represented as n−5

consecutive hexamers of ribose nucleotides, and a protein isoform of length n is represented

as n − 2 consecutive trimers of amino acids. A hexamer of nucleotides is encoded as an

integer from 0 to 46 − 1, and a trimer of amino acids is encoded as an integer from 0 to

203− 1. As in (114), to help our deep learning model to learn the intrinsic properties of the

sequences efficiently, the integer encoding sequences of lncRNAs and proteins are further

encoded using a standard dense embedding technique (115). A dense embedding maps an

integer index of the vocabulary to a dense vector of floats, which is achieved by an em-

bedding layer of our deep learning network using the training data. The embedding layer

aims to obtain meaningful dense vectors, which could be utilized to calculate correlations

between sequences and are used as the input features of lncRNA and protein isoforms. We

used a 64-dimensional dense vector to encode a hexamer of nucleotides (or a trimer of amino
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acids).

Different from the sequence data, the structure of an lncRNA or a protein is often

not unique, since multiple structures could be predicted for a single sequence by RNAShapes

and SPIDER2. To keep more predicted structural information of an lncRNA of length n,

a 6 × n matrix as shown in Figure 3.1 is used to encode multiple predicted structures,

where the six rows represent six different structural component types and the value at the

ith row and jth column is the sum of probabilities of the predicted structures with the

jth nucleotide of the lncRNA being of the ith structural component type. Similar to the

lncRNA structure representation, a 3×n probability matrix as shown in Figure 3.2 is used

to represent multiple predicted structures of SPIDER2 for a protein with n amino acids.

Figure 3.1: The representation of multiple predicted structures of an lncRNA. Four pre-
dicted structures are merged into a single matrix based on their probabilities.

56



Figure 3.2: The representation of multiple predicted structures of a protein. SPIDER2 pre-
dicts the probability of each candidate structure, which is summed into a matrix according
to structural component types and amino acid positions.

3.2.2 Model architecture and training

DeepLPI predicts the interactions between lncRNAs and protein isoforms by inte-

grating the information of sequence, structure and expression data into a unified predictive

model. It consists of two learning submodels. The first is a multimodal deep learning neural

network (MDLNN) model and the second a conditional random field (CRF) model. The

MDLNN model extracts and fuses the (intrinsic) features from the sequence and structure

data of lncRNAs and protein isoforms, and calculates the initial scores of the interactions

between lncRNAs and protein isoforms. The CRF model makes a final prediction based

on both the initial interaction scores and the expression data of mRNAs (corresponding to

protein isoforms) and lncRNAs. To overcome the lack of ground truth interactions between

lncRNAs and proteins, we develop a semi-supervised algorithm following (24; 25; 26) to train

the MDLNN and CRF models together iteratively. Figure 4.1 shows a schematic illustration

of DeepLPI. More details of the method are described in the following subsections.
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Extracting sequence and structure features using multimodal deep learning neu-

ral network.

To learn intrinsic features related to lncRNA-protein isoform interactions from

the sequence and structure data, we construct a multimodal deep learning neural network

(MDLNN). We use convolutional layers to extract local features and long short-term mem-

ory layer (LSTM) layers to extract short-range and long-range dependencies. At first,

MDLNN uses a standard dense embedding technique (115) to map the sequences of lncR-

NAs and protein isoforms into a 64-dimensional vector space, which is implemented by

using embedding layers (denoted as embed(·)) of Keras (116). After a training process,

the embedding layers are able to learn appropriate mappings such that the mapped dense

vectors could capture similarities between the sequences. Then, the dense vector matrices

representing the sequences and the matrices encoding the predicted structures of lncRNAs

and protein isoforms pass through one-dimensional convolutional layers with 4 convolutional

filters (denoted as conv(·)) to obtain the local features of the sequence and structure data.

After that, max pooling (denoted as pool(·)) layers are used to downsample the output of

the convolutional layers to reduce the learning time of the subsequent layers. Based on

downsampled features, LSTM layers (denoted as lstm(·)) are used to learn the features that

represent the short-range and long-range intrinsic properties of the sequences and structures

as in (117; 118). These features extracted from lncRNA sequences, lncRNA structures, pro-

tein isoform sequences and structures are merged together as the input of an LSTM layer

followed by a dense layer. The LSTM layer and dense layer (denoted as dense(·)) are in-

tended to learn the interaction patterns between lncRNAs and protein isoforms. Finally,
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Figure 3.3: A flowchart of DeepLPI. It begins with a multimodal deep learning neural net-
work (MDLNN) that uses embedding layers, convolutional layers, LSTM layers and other
layers of Keras to extract features from the sequence and structure data of lncRNAs and pro-
tein isoforms, and calculate initial interaction scores. Weighted correlation network analysis
(WGCNA) is used to construct co-expression networks from expression data of lncRNAs
and protein isoforms. Based on the pairwise potentials and unary potentials inferred from
the co-expression relationship and the initial interaction scores, respectively, a conditional
random field (CRF) optimization is used to predict the interactions between lncRNAs and
protein isoforms. The whole model is trained using an iterative semi-supervised learning
algorithm based on multiple instance learning (MIL).

the output of the dense layer is fed into a logistic regression layer (denoted as logit(·))

to compute an initial interaction score. Given an lncRNA sequence ls, a protein isoform

sequence ps, and the predicted structures lt and pt of the lncRNA sequence and protein

59



isoform sequence, respectively, the initial interaction score (IIS) is calculated as follows:

IIS(ls, ps, lt, pt) =

logit(dense(lstm(merge(fl(fls(ls), flt(lt)), fp(fps(ps), fpt(pt))))))

fp(fps(ps), fpt(pt)) = lstm(merge(fps(ps), fpt(pt)))

fl(fls(ls), flt(lt)) = lstm(merge(fls(ls), flt(lt)))

fls(ls) = pool(conv(embed(ls)))

fps(ps) = pool(conv((ps)))

flt(lt) = pool(conv(embed(lt)))

fpt(pt) = pool(conv((pt)))

(3.1)

Incorporating co-expression relationships using a CRF.

Based on the experimental evidence that we have found in the literature, co-

expressed isoforms and co-expressed lncRNAs often exhibit similar interactions (119). To

incorporate the co-expression relationships between the isoforms and between the lncRNAs,

we use a weighted correlation network analysis (WGCNA) method (120) to construct a co-

expression network for the isoforms and one for the lncRNAs separately. In the lncRNA (or

protein isoform) co-expression network, the vertices are the lncRNAs (or isoforms, respec-

tively). The edge between vertices i and j has weight wij = sβij , where sij is the absolute

value of the Pearson correlation coefficient (PCC) between the expression profiles of the

corresponding lncRNAs (or isoforms) and β is the soft thresholding parameter (β = 6 in

our experiments as suggested by (121) for unsiged networks). Based on the pairwise poten-
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tials inferred from the co-expression relationships and the unary potentials inferred from the

initial interaction scores output by the MDLNN, DeepLPI next uses a conditional random

field (CRF) optimization to predict the interactions between lncRNAs and protein isoforms.

Note that our CRF optiimzation framework is very similar to the framework introduced in

(24) for inferring isoform functions. Since many details are different, we will still include a

full description of it below for completeness.

For the ith lncRNA-protein isoform pair, denote the lncRNA sequence as lsi , the

protein isoform sequence as psi , the lncRNA structure as lti , the protein isoform structure

as pti , the lncRNA expression profile as lei , the protein isoform expression profile as pei ,

and the binary label indicating whether there is an interaction between the lncRNA and

the protein isoform as yi. The CRF optimization model aims to obtain the labels y for each

lncRNA-protein isoform pair by minimizing the Gibbs energy function below:

E(y|ls, ps, lt, pt, le, pe) = θ1
∑
i

ψu(yi|lsi , psi , lti , pti)+

θ2
∑
i<j

ψip(yi, yj |pei , pej ) + θ3
∑
i<j

ψlp(yi, yj |lei , lej )

(3.2)

Here, the Gibbs energy is a weighted summation of unary potentials ψu, isoform pairwise

potentials ψip and lncRNA pairwise potentials ψlp. The unary potentials ψu are calcu-

lated from the the initial interaction scores as ψu(0|lsi , psi , lti , pti) = IIS(ls, ps, lt, pt) and

ψu(1|lsi , psi , lti , pti) = 1 − IIS(ls, ps, lt, pt). For the ith and jth lncRNA-protein isoform

pairs, their pairwise potential is defined as follows:

ψip(yi, yj |pei , pej ) = µp(yi, yj)
∑
q

wq(pei , pej )

ψlp(yi, yj |lei , lej ) = µp(yi, yj)
∑
r

wr(lei , lej )

(3.3)

where wq(pei , pej ) is the weight of the edge between isoforms i and j in the q-th

isoform co-expression network and wr(pei , pej ) is the weight of the edge between lncRNAs i
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and j in the r-th lncRNA co-expression network. µp(yi, yj) is a label compatibility function

whose value is 1 if yi 6= yj or 0 otherwise. It is used to penalize highly co-expressed isoforms

and highly co-expressed lncRNAs assigned with different interaction labels. The weights

θ1, θ2 and θ3 are used to control the relative importance of ψu, ψip and ψlp in the Gibbs

energy. They will be discussed in the next subsection.

By searching for an assignment ŷ of labels minimizing the Gibbs energy

E(ŷ|ls, ps, lt, pt, le, pe), we attempt to find appropriate labels for lncRNA-protein isoform

pairs with low unary energies such that highly co-expressed isoforms would have the same

interaction patterns with highly co-expressed lncRNAs. Since computing an exact solution

to the Gibbs energy minimization problem is challenging, we apply an efficient approxima-

tion algorithm called the mean-field approximation as in (122) to obtain an approximate

solution, sketched below.

It is easy to see that minimizing the Gibbs energy is equal to maximizing the

following probability:

P (y|ls, ps, lt, pt, le, pe) =
1

Z
exp(−E(y|ls, ps, lt, pt, le, pe)) (3.4)

where Z =
∑

y exp(−E(y|ls, ps, lt, pt, le, pe)) is a normalization constant. LetQ(y|ls, ps, lt, pt, le, pe)

be the product of independent marginal probabilities, i.e.,

Q(y|ls, ps, lt, pt, le, pe) =
∏
i

Qi(yi|lsi , psi , lti , pti , lei , pei) (3.5)

Instead of computing the exact distribution of P (y|ls, ps, lt, pt, le, pe), we useQ(y|ls, ps, lt, pt, le, pe)

with the minimum KL-divergence D(Q||P ) to approximate P , and adopt the following it-
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erative update equation to obtain a Q with the minimum KL-divergence:

Qi(yi|lsi , psi , lti , pti , lei , pei) =

1

Zi
exp{−θ1ψu(yi|lsi , psi , lti , pti)

− θ2
∑
i 6=j

∑
q

wq(pei , pej )Qj(1− yi|lsj , psj , ltj , ptj , lej , pej )

− θ3
∑
i 6=j

∑
r

wr(lei , lej )Qj(1− yi|lsj , psj , ltj , ptj , lej , pej )}

(3.6)

Here, we initialize Qi with the unary potential and update it iteratively according to Equa-

tion 3.6 until convergence, when the final output of our model is obtained.

Training the model with the MIL framework.

Because the ground truth lncRNA-protein isoform interactions are generally un-

available, conventional supervised training algorithms cannot be directly applied to our

model. Similar to (24) again, here we adopt a semi-supervised training algorithm under the

MIL framework as in (25; 26). In this MIL framework, for each lncRNA, a protein/gene

is treated as a bag, the isoforms of a protein/gene are treated as the instances in the bag,

and only the ground truth of the bag (i.e., the true lncRNA-protein interaction label) is

assumed. We further require that a positive bag should contain at least one positive in-

stance and a negative bag should contain no positive instances. DeepLPI first initializes all

instances of positive bags with positive labels, and the other instances with negative labels.

Then, the model parameters are optimized with the initial labels in the following standard

supervised learning manner.

Given a batch of training instances (ls, ps, lt, pt, le, pe, ŷ), the loss functions in terms

of the MDLNN parameters w and in terms of the CRF parameters θ are defined as the
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following negative log likelihoods, respectively.

`MDLNN(w : ls,ps, lt, pt, ŷ) = −
∑
i

(ŷi log(IIS(lsi , psi , lti , pti))

+(1− ŷi) log(1− IIS(lsi , psi , lti , pti)))

(3.7)

`CRF(θ : ls, ps, lt, pt, le, pe, ŷ) =

− logP (ŷ|ls, ps, lt, pt, le, pe) +
∑
i

θi
2

2σ2

(3.8)

In Equation 3.8, the parameter σ is used to regularize the importance of the co-expression

networks in the model optimization and set as 0.1 in our following experiments. We use the

Nadam optimization algorithm to update the MDLNN parameters w so `MDLNN could be

minimized. To minimize `CRF, we use the L-BFGS-B algorithm as in (24) to update CRF

parameters θ.

We perform inference for every instance in the positive bags after each update

of the parameters of the model, using the model with the updated parameters. Here, the

label of an instance is updated according to the inference: ŷi = argmaxyiPi(yi). We also

adopt the following constraint: for each positive bag, if all its instances are assigned with

negative labels, we force the instance with the largest positive prediction score Pi(1) in the

bag as positive. The steps of updating parameters and labels are repeated alternately until

convergence.

3.3 Results and validation

In this section, we first compare the performance of DeepLPI with some state-

of-the-art methods and analyze the effectiveness of our method in terms of each type of

data we used and each component of the model. Next, we validate the prediction results
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of DeepLPI using correlation analyses, a mouse dataset as well as some newly discovered

human lncRNA-protein interactions in the literature.

3.3.1 Prediction of lncRNA-protein interactions

We first compare the performance of DeepLPI with both of machine-learning based

methods and network based methods. Then, we evaluate the effectiveness of each component

of our model (i.e., the ablation study). We also study the divergence of lncRNAs interacting

with different isoforms of the same protein/gene, and compare the structural components

of lncRNAs and protein isoforms in both interactive and non-interactive pairs. Finally, we

test DeepLPI on some smaller and older lncRNA-protein interaction datasets and observe

how its performance could be impacted by the size of training data.

Prediction performance comparison between DeepLPI and the existing meth-

ods.

Since there is no benchmark data for lncRNA-protein isoform interactions, we

could only evaluate the performance of DeepLPI based on the benchmark data of (human)

lncRNA-protein interactions downloaded from the NPInter v3.0 (104) database. We com-

pare DeepLPI with some state-of-the-art methods including machine-learning based and

network based methods.

The popular machine-learning based methods are catRAPID (81), RPISeq (80),

lncPro (83), RPI-Pred (84), rpiCOOL (85), IPMiner (19), RPI-SAN (20), lncADeep (22),

RPITER (21) and LPI-BLS (86). Among these methods, some (lncPro and rpiCOOL)
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Table 3.1: Comparison of prediction performance on lncRNA-protein interactions on the
NPInter v3.0 human dataset.

Broad category Methods AUC AUPRC

Machine-learning based methods RPISeq (RF) 0.708 0.486
RPISeq (SVM) 0.701 0.473
lncPro 0.723 0.588
rpiCOOL 0.721 0.503
IPMiner 0.714 0.569
lncADeep 0.825 0.646
RPITER 0.827 0.664
LPI-BLS 0.782 0.575
DeepLPI 0.866 0.703

Network based methods LPIHN 0.776 0.421
LPBNI 0.786 0.559
PLPIHS 0.672 0.483
LPLNP 0.801 0.566
PLIPCOM 0.821 0.609
SFPEL-LPI 0.823 0.599

provide stand-alone programs, some (catRAPID, RPISeq and RPI-Pred) provide web-based

services, some (IPMiner, lncADeep, RPITER and LPI-BLS) are re-trainable with available

source codes, while the others are unavailable. Predicting lncRNA-protein interactions on

a large scale using web-based services of catRAPID and RPI-Pred is time-consuming and

often fails in the case of long input sequences. The publicly available network based methods

are LPIHN (91), LPBNI (92), PLPIHS (123), LPLNP (96), PLIPCOM (98), and SFPEL-

LPI (99). Therefore, we compare our method with seven machine-learning based methods

lncPro, rpiCOOL, IPMiner, lncADeep, RPITER, LPI-BLS and RPISeq, and six network

based methods LPIHN, LPBNI, PLPIHS, LPLNP, PLIPCOM, and SFPEL-LPI. Default

parameters of these methods are used as recommended by their authors.

Table 4.1 shows the average test results in 10 runs of five-fold cross validations

on the NPInter v3.0 human dataset. The AUC values of RPISeq (RF), RPISeq (SVM),
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lncPro, rpiCOOL, IPMiner, lncADeep, RPITER, LPI-BLS and DeepLPI are 0.708, 0.701,

0.723, 0.721, 0.714, 0.825, 0.827, 0.782 and 0.866, respectively, and their AUPRC values

are 0.486, 0.473, 0.588, 0.503, 0.569, 0.646, 0.664, 0.575 and 0.685, respectively. DeepLPI

outperformed these machine-learning based methods by 22.3%, 23.5%, 19.7%, 20.1%, 21.2%,

4.9%, 4.7%, and 10.7% in terms of AUC and by 44.6%, 48.6%, 19.6%, 39.8%, 23.6%, 8.8%,

5.9%, and 22.2% in terms of AUPRC, respectively. The AUC values of LPIHN, LPBNI,

PLPIHS, LPLNP, PLIPCOM and SFPEL-LPI are 0.776, 0.786, 0.672, 0.801, 0.821 and

0.823, respectively, and the AUPRC values are 0.421, 0.559, 0.483, 0.566, 0.609 and 0.599,

respectively. DeepLPI also outperformed these network based methods by 11.6%, 10.2%,

28.9%, 8.1%, 5.5% and 5.2% in terms of AUC and 67.0%, 25.8%, 45.5%, 24.2%, 15.4% and

17.4% in terms of AUPRC scores, respectively. Since these results show that DeepLPI,

lncADeep and RPITER performed better than the others, we will only compare these three

methods in the following experiments.

To test if our sampling method for generating negative interactions is helpful in

reducing overfitting, we repeat the above experiment with all negative interactions sam-

pled randomly and compare DeepLPI with two of the best-performing existing methods,

lncADeep and RPITER. The AUC values of DeepLPI, lncADeep and RPITER are 0.923,

0.905 and 0.894, respectively, and their AUPRC values are 0.776, 0.753 and 0.747, respec-

tively. While all AUC and AUPRC values of the three methods have increased significantly,

DeepLPI consistently performs better than the other two.

We also evaluate the performance of the methods using the leave-one-out cross-

validation (LOOCV) experiment, although it is computationally more expensive. In this
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experiment, the AUC values of DeepLPI, lncADeep and RPITER are 0.855, 0.801 and 0.811,

respectively, and their AUPRC values are 0.694, 0.638 and 0.649, respectively. Compared

to those in the five-fold cross-validation experiment, the AUC and AUPRC values of all

methods decreased a little, which might be due to variance in the data as discussed in

(124).

In order to test if homologous protein sequences might have an impact on the

performance of DeepLPI and potentially cause data leak and/or model overfitting, we search

for homologous proteins in our benchmark dataset based on EggNog (125). It turns out that

only 5% of the proteins are homologous (to other sequences). We repeat the above five-fold

cross-validation experiment for DeepLPI by keeping all interactions involving homologous

proteins in the same fold. The AUC and AUPRC values decrease only slightly from 0.866

to 0.861 and from 0.703 to 0.699. This suggests that data leak or model overfitting were

unlikely or very limited in our experiment.

Analyzing the effects of model components.

In order to assess the contribution of the biological features considered in our

model as well as its major computational components, we conduct an ablation study by

removing various features/components from the model and evaluate how such a change

would affect the performance of the model. More specifically, we test how the model is

affected when the MIL learning with protein isoforms is replaced by conventional learning

with proteins, when the CRF component along with the expression data are removed, and

when the sequence or structure data are removed.
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Figure 3.4: The effect on performance of removing various components from the model. The
average AUC and AUPRC values of DeepLPI, DeepLPI without structure data, DeepLPI
without CRF, DeepLPI without using MIL/isoforms, and DeepLPI without sequence data
are shown in the figure.

Figure 4.4 shows that the average AUC of DeepLPI dropped 1.4%, 2.0%, 3.3%,

and 5.5% without the structure data, without the CRF component for incorporating ex-

pression data, without the MIL learning framework for incorporating isoforms, and without

the sequence data, respectively. Without these components or data, the performance in

term of AUPRC shows a similar declining trend with the percentage decreases being 1.6%,

6.0%, 6.3% and 11.6%, respectively. In particular, when we consider proteins instead of

protein isoforms in the model, its AUC dropped from 0.866 to 0.842, which demonstrates

the significance of using isoform data. The results also suggest that the CRF component

was effective in improving the prediction performance via the integration of expression data.

Among all types of input data, the sequences are clearly the most important for the model.
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Although the usage of structure data did not boost the performance of the model signifi-

cantly, it allows us to observe interesting enrichment of structural components in interactive

lncRNAs, as discussed in the next subsection.

Structural components at important positions in interactive and non-interactive

pairs.

It would be interesting to study how the structural components of lncRNAs and

protein isoforms are distributed in interactive pairs, especially around their interacting sites,

and what structural components may contribute more to the interactions than the others.

For each lncRNA-protein isoform pair, we use saliency maps (126) to compute importance

weights at each position in both sequences. These weights indicate how a position might

impact the prediction outcome by our model (i.e., interactive or non-interactive). The

lncRNA and protein structural components at heavily weighted (i.e., important) positions

of interactive and non-interactive pairs are profiled and shown in Figure (a). For each

structural component, the average occurrence frequency across all instances is calculated.

We can see that at important lncRNA positions, hairpin loops (H) occur much more often in

interactive pairs than in non-interactive pairs. The same appears to be true for inner loops

(I). On the other hand, stems (S) occur much often at the important lncRNA positions of

interactive pairs than at the important lncRNA positions of non-interactive pairs. These

suggest that open/unpaired lncRNA positions perhaps play more important roles in their

interactions with proteins, and is consistent with several studies in the literature (127; 74).

Similar to lncRNA structural components, we also profile protein isoform struc-

tural components in Figure (b). However, we are unable to observe a significant difference
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between the distributions of the structural components at important protein isoform po-

sitions of interactive and non-interactive pairs. We suspect that a more detailed protein

structure representation might help reveal some difference, but was unable to pursue it

given the time complexity involved in obtaining such representations with high quality.

Divergence of lncRNAs interacting with the isoforms of the same protein.

Our ultimate goal is to find lncRNA interactions at the isoform level. Hence, it

would be useful to analyze how lncRNAs interact divergently with the isoforms of the same

protein. We first estimate the similarity of predicted lncRNA interactions for each pair

of isoforms in terms of the semantic similarity score using GOssTo (128). As in (24; 32),

the semantic dissimilarity score between two isoforms is then defined as one minus their

similarity score. We consider only proteins with multiple isoforms (MIPs) and collected all

interactions between lncRNAs and the isoforms of the MIPs as predicted by DeepLPI trained

on the the NPInter v3.0 dataset. For each MIP, the interaction divergence of its isoforms

was calculated by averaging the semantic dissimilarity scores of all pairs of its isoforms.

Among these MIPs, 71.6% (1,548 out of 2,163) were estimated to have divergent isoform

interactions (i.e., with semantic dissimilarity scores greater than 0). The dissimilarity score

distributions for MIPs that have divergent isoform interactions are shown in Figure 3.6

where the mean score value is 0.302.
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Figure 3.5: (a) Distribution of lncRNA structural components. (b) Distribution of protein
structural components.
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Figure 3.6: Distributions of semantic dissimilarity scores of MIPs. For each MIP, the
semantic dissimilarity score indicates the divergence of the lncRNAs interacting with its
different isoforms. The score range of [0, 1] is equally divided into 15 bins. For each bin,
we count how many MIPs have semantic dissimilarity scores in this range.

Table 3.2: Performance of DeepLPI, lncADeep and RPITER when datasets from RPI369,
RPI1807, RPI2241, and NPInter v2.0 are used for training and the NPInter v3.0 dataset is
used for testing. Here, #int represents the number of positive lncRNA-protein interactions
contained in a training dataset. As the training data increases, the performance DeepLPI,
lncADeep and RPITER improves as expected, but the rate of improvement for DeepLPI is
higher than the other methods.

Train
Test

NPInter v3.0

Name #int DeepLPI lncADeep RPITER
AUC AUPRC AUC AUPRC AUC AUPRC

RPI369 369 0.563 0.202 0.549 0.195 0.551 0.197

RPI1807 1807 0.597 0.271 0.574 0.260 0.580 0.263

RPI2241 2241 0.626 0.328 0.597 0.302 0.609 0.321

NPInter v2.0 6204 0.733 0.513 0.681 0.461 0.693 0.474

The impact of training data size.

We have collected several (older and smaller) ncRNA-protein interaction datasets

including RPI369, RPI1807, RPI2241, and NPInter v2.0. We would like to test how the
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DeepLPI, lncADeep and RPITER methods perform when these different datasets are used

for training and the comparatively newer dataset NPInter v3.0 is used for testing. Since

the datasets overlap with each other quite a bit, we make sure that the test interactions do

not contain any of the training interactions to prevent a possible data leak. The prediction

results are shown in Table 3.2. The results suggests that the sample size of the training data

has a significant effect on the prediction performance of DeepLPI, lncADeep and RPITER.

When more training samples are available, these models achieve a better prediction per-

formance, as expected. However, the rate of improvement with respect to the number of

interactions is much higher for DeepLPI than for the other two methods.

3.3.2 Validation of predicted lncRNA-protein isoform interactions

To validate the prediction lncRNA-protein isoform interaction results of DeepLPI,

we analyze the correlations between isoform sequence similarity, lncRNA sequence similarity,

as well as their structure similarity and expression similarity. Moreover, we evaluate the

prediction performance of DeepLPI (trained on the NPInter v3.0 human interaction data)

using a mouse lncRNA-protein interaction dataset and some new human lncRNA-protein

interactions from the recent literature that were not included in the NPInter v3.0 database

as the test data.

Correlation analyses.

Our basic assumption is that similar lncRNAs tend to interact with similar protein

isoforms. To check if our predicted interactions accord to the assumption, we conducted a

series analyses of correlation between the similarity of lncRNAs and the similarity of their
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interactive protein isoforms.

From the lncRNA-protein isoform interactions predicted by DeepLPI, we grouped

1,534 involved lncRNAs into 50 clusters according to a hierarchical clustering based on a

generalized Levenshtein (edit) distance. For each group, we calculated a (sequence, structure

or expression) similarity score for each pair of lncRNAs in the group and the average score

of the group. We also calculated a similarity score for each pair of protein isoforms that

have interaction with the lncRNAs in the group and the average score of all such pairs of

protein isoforms. The similarity score between two lncRNA (or protein isoform) sequences

is defined as the global alignment score normalized by the alignment length. All similarity

scores were normalized to the range of [0, 1]. At last, Pearson’s correlation coefficient (PCC)

was used to measure the pairwise correlation between lncRNA sequence similarity and

protein isoform sequence similarity (Fig. (a)). Similarly, we calculated the PCC between

lncRNA expression similarity and protein isoform expression similarity (Fig. (b)), and the

PCC between lncRNA structure similarity and protein isoform structure similarity (Fig.

(c)). The PCC between lncRNAs sequence similarity and lncRNA expression similarity

(Fig. (d)) and the PCC between protein isoform sequence similarity and isoform expression

similarity (Fig. (e)) are also included as a useful reference.

Clearly, positive correlations are found in all above analyzes. The strong correla-

tions in Fig. (a) - Fig. (c) conform that similar lncRNAs tend to interact with similar pro-

tein isoforms. An interesting observation is that our correlation analysis results are highly

consistent with the experimental results in subsection 4.3.1. For example, the strongest

correlation between the sequence similarities of lncRNAs and protein isoforms is consistent
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with the most significant drop in the prediction performance when the sequence data was

removed. The moderate correlation coefficients in Fig. (d) and Fig. (e) suggest that the

sequence and expression data contain complementary features and thus might explain why

their combination helped improve the performance of our model.

Table 3.3: Prediction of interactions involving mouse lncRNA Gas5.

lncRNA Protein Machine-learning based methods Network based methods
lncPro IPMiner lncADeep rpiCool RPITER LPI-BLS DeepLPI LPIHN LPBNI LPLNP PLIPCOM SFPEL-LPI

Gas5 Q92900 o o o x o x o o o o o o
Gas5 Q92833 o o o x o x o o o o o o
Gas5 Q8BIF2 x x o x o x o x x x x o
Gas5 Q16630 x x x x x x o x x x x o
Gas5 Q9NR56 x x x x x x x x x x x o
Gas5 Q8R003 o x o x o o o x x x o x
Gas5 P38432 x x o x o o o x o o o x
Gas5 P84103 x o o x o o o x o o o x
Gas5 Q08170 x x o x o o o o x x o x
Gas5 Q15910 x o o x o o o x x x x x
Gas5 H0YB86 x o x o x o o o o o x o
Gas5 P35637 x x x o o x o x o x o o
Gas5 Q921F2 x x o o x x o x x o x o

Recall .231 .385 .692 .231 .615 .462 .923 .385 .462 .462 .538 .615

Note: The predicted and unpredicted interactions are represented as circles and crosses in the table.

Performance on an independent interaction dataset of mouse.

To further validate the effectiveness of DeepLPI in lncRNA-protein interaction

prediction, we test DeepLPI and the other existing methods on a dataset independent from

the training data. More specifically, we trained all models with the human lncRNA-protein

interactions from the NPinter v3.0 database and tested the models on 3580 mouse lncRNA-

protein interactions in the same database. Although there is a high genetic similarity

between mouse and human (and hence the conservation of lncRNAs), the performance of

all models dropped. The AUC of DeepLPI decreased from 0.866 (human) to 0.753 (mouse),

but it was still the best since the highest AUC of the other models on the mouse test data
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was 0.68. An obvious reason for the performance drops might be because lncRNAs do not

show the same pattern of evolutionary conservation as protein-coding genes (129).

To further investigate the prediction performance of DeepLPI on interactions be-

tween proteins and lncRNAs conserved between human and mouse such as Gas5, Rmst,

Neat1 and Meg3 (129; 130), we selected 39 interactions involving conserved lncRNAs from

the 3580 mouse interactions. Of the 39 interactions, 89.7% have been correctly predicted by

DeepLPI. In particular, since Gas5 is an extensively studied mouse lncRNA that plays an

important role in modulating self-renewal (131), we show the interaction prediction results

concerning mouse Gas5 in Table 3.3. The table demonstrates again that DeepLPI achieved

the highest prediction accuracy.

Table 3.4: The source of 12 recently reported lncRNA-protein interactions in the literature.

lncRNA Protein Reference

PANDAR PTBP1 Found in paper (132)

lnc-SH2D7.1 FBXL22 Found in paper (133)

lnc-SH2D7.1 LPIN2 Found in paper (133)

lnc-DCAF811.1 PEBP1 Found in paper (133)

lnc-DCAF811.1 DNAJB12 Found in paper (133)

lnc-NIT1 POR Found in paper (133)

AC011498.1 CEBPA Found in paper (134)

CRNED CEBPA Found in paper (134)

LINC00504 CEBPA Found in paper (134)

AC011498.1 NPM1 Found in paper (134)

LL22NC03-N64E9.1 KLF2 Found in paper (135)

LL22NC03-N64E9.1 EZH2 Found in paper (135)

A case study on new interactions.

We further validate our model using some new lncRNA-protein interactions from

the recent literature that were not included in the NPinter v3.0 database. After a careful
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Table 3.5: Prediction results concerning 12 new lncRNA-protein interactions from recent
literature.

lncRNA Protein Machine-learning based methods Network based methods
lncPro IPMiner lncADeep rpiCool RPITER LPI-BLS DeepLPI LPIHN LPBNI LPLNP PLIPCOM SFPEL-LPI

PANDAR PTBP1 x o o o o o o x x x x x
lnc-SH2D7.1 FBXL22 x o x x o x o o x x x x
lnc-SH2D7.1 LPIN2 o x o o x o o o o o o o
lnc-DCAF811.1 PEBP1 o x x x o o o o o o o o
lnc-DCAF811.1 DNAJB12 o x x x o x o x o o x o
lnc-NIT1 POR o x o x x x o x o x x o
AC011498.1 CEBPA x x x x o x x x x x x x
CRNED CEBPA x o o x x o x x x x x x
LINC00504 CEBPA x o o o o o o x x x x o
AC011498.1 NPM1 x x o o x x o x x x o x
LL22NC03-N64E9.1 KLF2 x x x x o x x x x o o x
LL22NC03-N64E9.1 EZH2 x o o x o o o x o x o o

Recall .333 .417 .583 .333 .666 .500 .750 .250 .417 .333 .417 .500

Note: The predicted and unpredicted interactions are represented as circles and crosses in the table.

literature search, we found 12 new lncRNA-protein interactions (132; 133; 134; 135). The

details of these interactions are provided in Table 3.4. The prediction results concerning

these new lncRNA-protein interactions by the methods are illustrated in Table 3.5. The

results show that DeepLPI was able to find out novel interactions often missed by the other

methods.
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Figure 3.7: Correlation analysis.(a) Correlation between lncRNA sequence and protein
isoform sequence similarities. (b) Correlation between lncRNA expression and protein iso-
form expression similarities (c) Correlation between lncRNAs structure and protein isoform
structure similarities. (d) Correlation between lncRNAs sequence and lncRNAs expres-
sion similarities. (e) Correlation between protein isoforms sequence and protein isoforms
expression similarities.
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3.4 Discussion

The knowledge of interactions between lncRNAs and protein isoforms could help

understand the functions of lncRNAs. In this chapter, we proposed a machine-learning

based method, DeepLPI, to predict interactions between lncRNAs and protein isoforms.

DeepLPI uses a multimodal deep learning neural network to extract intrinsic features from

the sequence and structure data of lncRNAs and protein isoforms and a conditional ran-

dom field to extract network topological features from their expression data. We designed

a multiple instance learning iterative algorithm to train the prediction model using an

availablelncRNA-protein interaction dataset, and performed extensive experiments to show

that DeepLPI achieves a significantly better accuracy in predicting lncRNA-protein inter-

actions compared with the state-of-the-art methods. The multimodal learning feature of

DeepLPI allows it to integrate more types of data besides sequences, structures and ex-

pression profiles. With minor modifications, DeepLPI could be adapted to predict miRNA-

protein interactions, as well as more complex interactions such as lncRNA-miRNA-protein

interactions.

Our divergence analysis shows that many isoforms of the same gene interact with

different lncRNAs. Hence, it would be of practical importance to study the interactions

between lncRNAs and protein isoforms (as opposed to proteins or genes). However, as far

as we know, DeepLPI is the first attempt to predict lncRNA-protein isoform interactions,

and its performance is still far from being desirable. It might be possible to improve the

performance of DeepLPI by using better (e.g., tissue-specific) expression data, more detailed

protein secondary structure representations and high quality isoform-isoform interaction
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network data. We plan to investigate these directions in the near future.

3.5 Availability of data and materials

DeepLPI is implemented in Python and freely available to the public on

https://github.com/dls03/DeepLPI
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Chapter 4

RESmim: A deep learning method

for predicting the interactions

between miRNAs and isoforms

4.1 Introduction

Micro RNAs (miRNAs) are small RNA transcripts of 22 nucleotides that regulate

biological processes by binding to the isoforms or messenger RNAs (mRNAs) (27). They

bind to complementary sequences in isoform to create cleavages or translational repression

sites. As a result, the target isoforms are prevented from producing functional peptides and

proteins (28).

The mechanism of miRNA-isoform interactions can be divided into two groups,

canonical interactions and non-canonical interactions (29; 30). In canonical interactions the
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seed sequence of a miRNA, which is defined as the first 2-8 nucleotides starting at the 5′

end and counting toward the 3′ end, bind to the complementary sequence of the isoforms.

In non-canonical interactions miRNAs can bind outside the seed sequence (29; 30).

Finding miRNA-isoform interactions using experimental methods is expensive and

time-consuming. Hence, we need to rely on computational methods to find the interactions

on a large scale. In literature, a variety of miRNA target prediction tools are proposed, but

their performance is far from being desirable primarily due to the lack of labeled training

data. Also, most of the tools are based on assumption that the seed sequence of a miRNA is

the only imporatant feature as this interact directly with isoform. These tools perform very

well to find canonical interactions, but shows worst performance in finding non-canonical

interaction. However, more recent studies have indicated that we should consider the entire

sequence of miRNAs and isoforms to find interactions between them (30; 31).

In literature, the computational methods can be grouped into two broad cate-

gories, rule-based methods and machine-learning based methods (136; 137). The rule-based

methods derives the classifier based on important observations from biological experiments,

such as thermodynamic stability of the miRNA-isoform duplex, evolutionary conservation

etc. TargetScan (138), miRanda (139), PITA (140), etc are popular rule-based methods.

The machine-learning based methods build a binary classifier between known interaction

of miRNA-isoform pairs named as positive interactions and non-interaction pairs named as

negative interactions. These methods rely on the sequence, structure and physicochemical

properties of miRNAs and isoforms. The machine-learning based methods include Mir-

Target (141), PicTar (142), miTarget (143), etc. However, both of the rule-based and the
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machine-learning based methods liaise heavily on hand-crafted features. Such hand-crafted

features are time-consuming to generate and often incomplete.

Recent progress in processing power and rise of deep-learning methods shows us

how we can dispatch hand-crafted features and harness multi-dimensional features from

the raw data directly (144). In recent years, deep-learning based tools are proposed to

the miRNAs-isoforms intearctions prediction problem and beat the performance of existing

tools. MiRTDL (145) used convolutional neural networks to analyze matrices of miRNA

seed. DeepTarget (146), relied on recurrent neural networks to process miRNAs and trun-

cated segments of isoforms. DeepMirTar (147) and miRAW (137) only rely on 3′UTR

segments of isoforms.

Many challenges remain to be solved in this area. First, in the above studies, only

partial sequence of miRNAs or isoforms has been considered. Second, each method has cer-

tain limitations on how they integrated sequence, structure or expression data. Unorganized

integration of these data sometimes leads to the wrong prediction, which impact the perfor-

mance. Another problem in the machine-learning based methods is that the same amount of

negative interactions (non-interactive miRNA-isoform pair) as positive interactions (inter-

active miRNA-isoform pair) are sampled out from the pairs of miRNAs and isoforms. Since

the number of negative interaction pool is very high, the sampling of negative interactions

needs to be specific. Otherwise, the method can leads to the over-fitting issue, where it

cannot predict new interactions accurately. Last but not least, all the methods suffer from

a lack of ground truth interactions between miRNAs and isoforms which cause the inverse

impact on performance.
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In this chapter, we present RESmim, a novel miRNA-isoform interaction prediction

tool that works with full genomic sequence, structure and expression data of miRNAs and

isoforms. To handle longer sequence of isoforms we used residual neural network, that

can capture long range dependencies in a sequence. RESmim goes through two stages.

In the first stage, we trained a deep neural network (DNN) that used multimodal deep

learning (MDL) (23) technique to extracts features from sequence and structure data of

miRNAs and isoforms. The MDL fused these extracted features and measures the initial

interaction scores between miRNAs and isoforms. In the second stage, two conditional

random field (CRF) are designed to exploit the co-expression relationship between miRNAs

and co-expression relationship between isoforms. The two CRFs are assigned final prediction

scores of interactions between miRNAs and isoforms based on initial interaction scores while

trying to keep highly co-expressed miRNAs and highly co-expressed isoforms attaining the

same labels. To overcome the lack of interaction training labels of miRNAs and isoforms, we

proposed an iterative semi-supervised training algorithm based on multiple instance learning

(MIL) framework similar to (25; 26). In MIL, initially, we assign positive interaction labels

for all miRNA and isoform pairs, given that the miRNA interact with that isoform and assign

negative interaction labels for all other miRNA and isoform pairs those do not interact with

each other. In each iteration, the DNN and CRFs upgrade the initial interaction scores and

assign the same labels to co-expressed miRNAs and co-expressed isoforms until it reaches

saturation. Under this environment, isoforms of the same protein can interact differently

with the same miRNA. But since we are integrating more labeled data in terms of the

miRNAs and isoforms interactions, it leads to better prediction results.
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To evaluate the performance of RESmim, we first measure its prediction perfor-

mance using gene level interactions with miRNAs. We make sure that negative interactions

contain miRNAs and isoforms that also present in positive interactions. This helps us to

overcome the outfitting issues. RESmim achieves an average AUC of 0.831 and AUPRC

of 0.795 on the Human interaction dataset. Based on the availability of implementation

and convenience, we compare our method with deep-learning based methods . In total, 4

methods are chosen for comparison. The results demonstrate that our method outperforms

the others. We further analyze the effect of the model component, which demonstrates

the effectiveness of each data source (structure, sequence, and expression) we used. We

analyze the structural component to show how the model captures important features. We

also demonstrate the divergence of isoform interactions which shows how isoforms from the

same gene interact differently with miRNAs. Finally, we validate our method using a test

case analysis on experimentally discovered miRNA-isoform interactions.

4.2 Materials and Methods

4.2.1 Datasets

A key factor for successful application of any machine-learning classification tech-

nique is access to a sufficiently variable and representative dataset that will generalize

a trained model to new and unseen data. For the miRNA-isoform interaction prediction

problem, this requires a comprehensive dataset of verified positive and negative interactions

that encompass both canonical and non-canonical examples. While there are multiple data

repositories providing information regarding experimentally validated positive interactions,
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there are significantly fewer experimentally verified negative interactions.

The ground truth interactions between miRNAs and genes were downloaded from

the Diana TarBase (148) and MirTarBase (149). Diana TarBase database contains experi-

mentally verified 121,090 positive and 2,940 negative interactions. MirTarBase contains only

experimentally verified 479,340 positive interactions. Following (137), we merged these two

database. While merging we only consider human genome and remove inconsistent entries.

This produced a final dataset of 380,512 positive and 796 negative interactions between

2,591 miRNAs and 15,046 genes. To train a neural network model, we also need to find

more negative interactions. As the population of negative interactions count is large, com-

plete random sampling of it may contain few miRNAs and genes that present in positive

interactions, which might lead to overfitting (105). To reduce overfitting, we make sure

that at least a half of the negative miRNA-gene interaction pairs contain miRNAs and

genes that appear in positive interaction pairs (but do not interact with each other). The

rest of the negative interaction pairs consist of randomly chosen miRNAs and genes that

do not appear in positive interaction pairs.

The miRNA sequences and the mRNA isoform sequences of human genome were

downloaded from GENCODE (106) and ENSEMBL (107), respectively. The sequences

were then used to predict their secondary structures. To predict the secondary structure of

miRNA and isoform, we used RNAShapes (108). The output of RNAShapes was converted

to a structure sequence using the EDeN tool ( http://github.com/fabriziocosta/EDeN) as in (109).

The miRNA and mRNA isoform structure typically consists of six structural components:

stem (S), multiloop (M), hairpin loop (H), internal loop (I), dangling end (T), and dangling
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start (F).

The third type of data that we collected are miRNA and isoform expression data.

The miRNA expression data are obtained from the dbDEMC (150), and the isoform ex-

pression data were downloaded from the literature (32). The miRNA and isoform expres-

sion data are based on high-throughput human RNA sequencing experiments. We used

the expression data to build co-expression networks. Since different databases use dif-

ferent identifier naming conventions to record miRNA and isoform, ID conversion tools

from (112; 113; 111) were used to identify the same moleculars from different data sources

and perform the mapping between isoforms. Finally, we filtered the data and kept the

miRNAs and isoform that appear in both the sequence data and the expression data.

4.2.2 Methods

RESmim predicts the interactions between miRNAs and isoforms by integrating

the information of sequence, structure and expression data into a unified predictive model.

It consists of two learning submodels. The first is a multimodal deep learning neural network

(MDLNN) model and the second a conditional random field (CRF) model. The MDLNN

model extracts and fuses the (intrinsic) features from the sequence and structure data of

miRNAs and isoforms, and calculates the initial scores of the interactions between miRNAs

and isoforms. The CRF model makes a final prediction based on both the initial interaction

scores and the expression data of isoforms and miRNAs. To overcome the lack of ground

truth interactions between miRNAs and isoforms, we develop a semi-supervised algorithm

following (24; 25; 26) to train the MDLNN and CRF models together iteratively. Figure

4.1 shows a schematic illustration of RESmim. More details of the method are described in
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the following subsections.

Exploring sequence and structure features using multimodal deep learning neu-

ral network.

To learn intrinsic features related to miRNA-isoform interactions from the sequence

and structure data, we construct a multimodal deep learning neural network (MDLNN). At

first, MDLNN uses a standard dense embedding technique (115) to map the sequences of

miRNAs and isoforms into a 64-dimensional vector space, which is implemented by using

embedding layers of Keras (116). After a training process, the embedding layers are able to

learn appropriate mappings such that the mapped dense vectors could capture similarities

between the sequences.

Because of the longer length isoform sequence compare to miRNA, we used dif-

ferent convolution layers structure to processes these sequence. Particularly, we use con-

volutional layers with residual blocks (ConvolutionRB) to extract long-range dependencies

in isoforms. Details of the convolutional layers with residual blocks are depicted in Figure

4.2 and Figure 4.3. Compare to that, for miRNAs we used only 2 convolutional filters to

obtain the local features of the sequence and structure data.

After that, max pooling (denoted as pool(·)) layers are used to downsample the

output of the convolutional layers to reduce the learning time of the subsequent layers.

These features extracted from miRNA sequences, miRNA structures, isoform se-

quences and isoform structures are merged together as the input of a convolutional layer
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Figure 4.1: A flowchart of RESmim. It begins with a multimodal deep learning neural net-
work (MDLNN) that uses embedding layers, convolutional layers, convolutional layers with
residual blocks and other layers of Keras to extract features from the sequence and structure
data of miRNAs and isoforms, and calculate initial interaction scores. Weighted correlation
network analysis (WGCNA) is used to construct co-expression networks from expression
data of miRNAs and isoforms. Based on the pairwise potentials and unary potentials in-
ferred from the co-expression relationship and the initial interaction scores, respectively,
a conditional random field (CRF) optimization is used to predict the interactions between
miRNAs and isoforms. The whole model is trained using an iterative semi-supervised learn-
ing algorithm based on multiple instance learning (MIL).

followed by a dense layer. The convolutional layer and dense layer are intended to learn

the interaction patterns between miRNAs and isoforms. Finally, the output of the dense

layer is fed into a logistic regression layer to compute an initial interaction score. Given a

miRNA sequence ls, an isoform sequence ps, and the predicted structures lt and pt of the
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Figure 4.2: A flowchart of the convolutional layers with residual blocks, which consist of 4
stacked residual blocks connecting the input layer to the final convolution layer also known
as penultimate layer. These residual blocks are stacked in a way that the output of previous
residual block is connected to the input of the next residual block. Further, the output of
every second residual block is added to the input of the penultimate layer.

miRNA sequence and isoform sequence, respectively, the initial interaction score (IIS) is

calculated following (24).

To capture the co-expression relationships between the isoforms and between the

miRNAs, we use a weighted correlation network analysis (WGCNA) (120) to construct a

co-expression network. Further we followed (24) to incorporate a conditional random field

(CRF) optimization to predict the interactions between miRNAs and isoforms.

Due to the lack of ground truth miRNA-isoform interactions, conventional su-
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Figure 4.3: A flowchart of the residual block, which consists of batch normalization layers,
rectified linear units (ReLU), and convolutional layer.

pervised training algorithms cannot be directly applied to our model. Hence, we adopt a

semi-supervised training algorithm under the MIL framework as in (25; 26). In the MIL

framework, for each miRNA, a gene is treated as a bag, the isoforms of a gene are treated as

the instances in the bag, and only the ground truth of the bag (i.e., the true miRNA-gene

interaction label) is assumed. We further require that a positive bag should contain at least

one positive instance and a negative bag should contain no positive instances. RESmim first

initializes all instances of positive bags with positive labels, and the other instances with

negative labels. Then, the model parameters are optimized with the initial labels in the

following standard supervised learning manner. We use the Nadam optimization algorithm

to update the MDLNN parameters. We use the L-BFGS-B algorithm as in (24) to up-

date CRF parameters. The parameter update step and the label update step are repeated
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alternately until convergence.

4.3 Results and Validation

In this section, we first compare the performance of RESmim with some state-

of-the-art methods and analyze the effectiveness of our method in terms of each type of

data we used and each component of the model. Next, we validate the prediction results of

RESmim using experimentally verified test case analyses.

4.3.1 Prediction of miRNA-isoform interactions

We compare the performance of RESmim with machine-learning based methods.

Then, we evaluate the effectiveness of each component of our model (i.e., the ablation

study). We also study the divergence of miRNAs interacting with different isoforms of the

same protein/gene, and compare the structural components of miRNAs and isoforms in

both interactive and non-interactive pairs.

Prediction performance comparison between RESmim and the existing meth-

ods.

Since there is no benchmark data for miRNA-isoform interactions, we could only

evaluate the performance of RESmim based on the benchmark data of (human) miRNA-

gene interactions. We compare RESmim with state-of-the-art machine-learning based based

methods, e.g., deepTarget (146), MiRTDL (145), DeepMirTar (147), miRAW (137). Ta-

ble 4.1 shows the average test results in 10 runs of five-fold cross validations on human

interaction dataset. The AUC values of deepTarget, MiRTDL, DeepMirTar, miRAW, and
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Table 4.1: Comparison of prediction performance of RESmim.

All interactions Canonical interactions Non-canonical interactions

Methods AUC AUPRC AUC AUPRC AUC AUPRC

deepTarget 0.774 0.721 0.801 0.746 0.707 0.657

MiRTDL 0.802 0.755 0.834 0.786 0.721 0.677

DeepMirTar 0.814 0.761 0.824 0.779 0.791 0.742

miRAW 0.823 0.787 0.827 0.792 0.816 0.769

RESmim 0.831 0.795 0.831 0.787 0.835 0.816

RESmim are 0.774, 0.802, 0.814, 0.823 and 0.831, respectively, and their AUPRC values are

0.721, 0.755, 0.761, 0.787 and 0.795, respectively. RESmim outperformed these machine-

learning based methods by 7.4%, 3.6%, 2.1%, and 0.9% in terms of AUC and by 1.03%,

0.5%, 0.4%, and 0.1% in terms of AUPRC, respectively.

We further analyse the performance of these methods on canonical and non-

canonical interactions. In contrast to all other methods RESmim performs better in non-

canonical interactions compare to canonical interactions (see Table 4.1).

Analyzing the effects of model components.

To evaluate the contribution of the key components and biological features used in

our model, we perform an ablation study by removing various components/features from the

model and measure how the performance of the model would be affected. More specifically,

we test how the model is affected when the MIL learning with isoforms is replaced by

conventional learning with proteins, when the CRF component along with the expression

data are removed, and when the sequence or structure data are removed.

Figure 4.4 shows that the average AUC of RESmim dropped 2.7%, 1.8%, 1.6%,
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Figure 4.4: The effect on performance of removing various components from the model.
The average AUC and AUPRC values of RESmim, RESmim without residual neural net-
work, RESmim without structure data, RESmim without CRF, RESmim without using
MIL/isoforms, and RESmim without sequence data are shown in the figure.

6.7%, and 7.5% without the residual neural network, without the structure data, without

the CRF component for incorporating expression data, without the MIL learning framework

for incorporating isoforms, and without the sequence data, respectively. Without these com-

ponents or data, the performance in term of AUPRC shows a similar declining trend with

the percentage decreases being 3.8%, 4.3%, 3.1%, 8.6% and 8.3%, respectively. The results

suggest that the expression data and the sequences data are most effective in improving the

prediction performance of the model. Although the usage of structure data did not boost

the performance of the model significantly, it allows us to observe interesting enrichment of

structural components in interactive miRNAs, as discussed in the next subsection.
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Structural components at important positions in interactive and non-interactive

pairs.

It would be interesting to study how the structural components of miRNAs and

isoforms are distributed in interactive pairs, especially around their interacting sites, and

what structural components may contribute more to the interactions than the others. For

each miRNA-isoform pair, we use saliency maps (126) to compute importance weights at

each position in both sequences. These weights indicate how a position might impact the

prediction outcome by our model (i.e., interactive or non-interactive). The miRNA and

isoform structural components at heavily weighted (i.e., important) positions of interactive

and non-interactive pairs are profiled and shown in Figure 4.5. For each structural compo-

nent, the average occurrence frequency across all instances is calculated. We can see that

at important miRNA and isoform positions, hairpin loops (H) and internal loops (I) occur

much more often in interactive pairs than in non-interactive pairs. The ratio of dangling

start (F) positions between miRNA and isoform is much higher in the positive interactions

compare to the negative interactions. On the other hand, stems (S) occur much often

at the non-interactive pairs than the interactive pairs. These suggest that open/unpaired

miRNA and isoform positions perhaps play more important roles in their interactions with

interactions, and is consistent with several studies in the literature (151; 127; 74).

Divergence of miRNAs interacting with the isoforms of the same gene.

Our ultimate goal is to find miRNA interactions at the isoform level. Hence, it

would be useful to analyze how miRNAs interact divergently with the isoforms of the same
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Figure 4.5: Distribution of miRNA and isoform structural components.

gene. We estimated the similarity of predicted miRNA interactions for each pair of isoforms

in terms of the semantic similarity score using GOssTo (128). The semantic dissimilarity

score of two isoforms is then defined as one minus their similarity score. We considered

only multiple isoforms genes (MIGs) and collected all interactions between miRNAs and

the isoforms of the MIGs as predicted by RESmim. For each MIG, the interaction divergence

of its isoforms was calculated by averaging the semantic dissimilarity scores of all pairs of

its isoforms. The dissimilarity score distributions for MIPs that have divergent isoform

interactions are shown in Figure 4.6 where the mean score value is 0.256.
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Figure 4.6: Distributions of semantic dissimilarity scores of MIGs. For each MIG, the
semantic dissimilarity score indicates the divergence of the miRNAs interacting with its
different isoforms. The score range of [0, 1] is equally divided into 20 bins. For each bin,
we count how many MIGs have semantic dissimilarity scores in this range.

Case study on interactions.

As mentioned before, there has been little systematic study on miRNAs-isoforms

interactions in the literature, and not many specific experimentally-verified functions of

isoforms have been reported. After a careful literature search, we found 5 MIGs consist of

18 isoforms, where the isoforms of a gene interact differently with a miRNA. Details of the

prediction result given in Table 4.2.
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Table 4.2: Comparison of prediction performance of RESmim.

miRNAs Genes Isoforms Varified Interaction RESmim Prediction

hsa-mir-128b ARPP-21
NM 016300 1 1
NM 001025069 0 0

hsa-mir-361 CHM
NM 000390 1 1
NM 001037312 0 0

hsa-mir-615 HOXC4
NM 014620 1 1
NM 004503 0 0

hsa-mir-628 CCPG1

NM 020739 1 1
NM 001033559 0 1
NM 001033560 0 0
NM 130810 0 0

hsa-mir-661 PLEC1

NM 000445 1 1
NM 201378 1 0
NM 201379 1 1
NM 201380 1 1
NM 201381 0 1
NM 201382 0 1
NM 201383 0 1
NM 201384 0 0

4.4 Discussion

Finding the interactions between miRNAs and isoforms should be the ultimate

goal in the process of understand how miRNAs works. In this project, we propose a

machine-learning based method, RESmim, to predict the interactions between miRNAs

and isoforms. The idea here to integrate multimodal data, that not only used intrinsic

features from sequence and structure information but also used the topological features

from expression data. Eventually, RESmim beats all the existing methods in terms of per-

formance comparison. Analysis and validation results also show different aspects of these

findings.

However, the performance of RESmim could be further improved in several aspects.

First, the structure data derived for miRNA and isoform is used a prediction tool. Real
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structure data is much more complicated and time-consuming to generate. In the future, if

we can develop a method that gives a better-predicted structure data, RESmim model can

perform better. Second, we cannot directly use the PPI network at isoform level since the

databases for this purpose is still under development. We believe, PPI network at isoform

level certaintly boost the performance of our model.

The modality learning feature gives the model a scalable property which we belive

can be used to integrate different source of data other than sequence and structure. Fur-

thermore we believe that, our model could be used to identify more complex interaction,

e.g., lncRNA-miRNA-protein interaction.
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Chapter 5

Conclusions

Modern sequencing techniques has led to an unrivaled explosion in the amount of

genomic data. These data create new opportunities in the field of bioinformatics. At the

same time, due to the significant improvement of computational power deep learning has

become one of the most successful machine learning algorithms in recent years. Biological

data analysis with deep learning is the key to solve many hard computational problem in

the field of bioinformatics.

In this dissertation, we addressed three problems that are related to isoforms. We

used deep learning techniques to process isoform level genomic information, e.g., sequences,

structures, expression data. Our proposed tools used multiple instance learning to handle

to scarcity of labeled training data. In particular, the first method, DeepIsoFun, predict

the isoform functions. It combines multiple instance learning with domain adaptation.

The latter technique helps to transfer the knowledge of gene functions to the prediction

of isoform functions and provides additional labeled training data. In our second study,
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we propose DeepLPI, which predict the interactions between long non-coding RNAs and

protein isoforms. It combines heterogeneous data using a hybrid framework by integrating

a deep neural network and a conditional random field. Finally, we proposed RESmim, to

predict interactions between microRNAs and isoforms using a residual deep neural network.
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gene function using hierarchical multi-label decision tree ensembles,” BMC bioinfor-
matics, vol. 11, no. 1, p. 2, 2010.

[15] A. Vinayagam, R. König, J. Moormann, F. Schubert, R. Eils, K.-H. Glatting, and
S. Suhai, “Applying support vector machines for gene ontology based gene function
prediction,” BMC bioinformatics, vol. 5, no. 1, p. 116, 2004.

[16] J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, and Y. Zhang, “The i-tasser suite: protein
structure and function prediction,” Nature methods, vol. 12, no. 1, pp. 7–8, 2015.

[17] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, et al., “Gene ontology: tool for the
unification of biology,” Nature genetics, vol. 25, no. 1, pp. 25–29, 2000.

[18] D. Barrell, E. Dimmer, R. P. Huntley, D. Binns, C. O’donovan, and R. Apweiler, “The
goa database in 2009—an integrated gene ontology annotation resource,” Nucleic
acids research, vol. 37, no. suppl 1, pp. D396–D403, 2008.

[19] X. Pan, Y.-X. Fan, J. Yan, and H.-B. Shen, “Ipminer: hidden ncrna-protein interac-
tion sequential pattern mining with stacked autoencoder for accurate computational
prediction,” Bmc Genomics, vol. 17, no. 1, p. 582, 2016.

[20] H.-C. Yi, Z.-H. You, D.-S. Huang, X. Li, T.-H. Jiang, and L.-P. Li, “A deep learn-
ing framework for robust and accurate prediction of ncrna-protein interactions using
evolutionary information,” Molecular Therapy-Nucleic Acids, vol. 11, pp. 337–344,
2018.

[21] C. Peng, S. Han, H. Zhang, and Y. Li, “Rpiter: A hierarchical deep learning framework
for ncrna–protein interaction prediction,” International journal of molecular sciences,
vol. 20, no. 5, p. 1070, 2019.

[22] C. Yang, L. Yang, M. Zhou, H. Xie, C. Zhang, M. D. Wang, and H. Zhu, “Lncadeep:
an ab initio lncrna identification and functional annotation tool based on deep learn-
ing,” Bioinformatics, vol. 34, no. 22, pp. 3825–3834, 2018.

104



[23] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal deep
learning,” in Proceedings of the 28th international conference on machine learning
(ICML-11), pp. 689–696, 2011.

[24] H. Chen, D. Shaw, J. Zeng, D. Bu, and T. Jiang, “Diffuse: predicting isoform functions
from sequences and expression profiles via deep learning,” Bioinformatics, vol. 35,
no. 14, pp. i284–i294, 2019.

[25] S. Andrews, T. Hofmann, and I. Tsochantaridis, “Multiple instance learning with
generalized support vector machines,” in AAAI/IAAI, pp. 943–944, 2002.

[26] X. Wang, Y. Yan, P. Tang, X. Bai, and W. Liu, “Revisiting multiple instance neural
networks,” Pattern Recognition, vol. 74, pp. 15–24, 2018.

[27] D. P. Bartel, “Micrornas: genomics, biogenesis, mechanism, and function,” cell,
vol. 116, no. 2, pp. 281–297, 2004.

[28] M. Thomas, J. Lieberman, and A. Lal, “Desperately seeking microrna targets,” Nature
structural & molecular biology, vol. 17, no. 10, p. 1169, 2010.

[29] H. Seok, J. Ham, E.-S. Jang, and S. W. Chi, “Microrna target recognition: insights
from transcriptome-wide non-canonical interactions,” Molecules and cells, vol. 39,
no. 5, p. 375, 2016.

[30] C. J. Stavast and S. J. Erkeland, “The non-canonical aspects of micrornas: Many
roads to gene regulation,” Cells, vol. 8, no. 11, p. 1465, 2019.

[31] N. Cloonan, “Re-thinking mirna-mrna interactions: Intertwining issues confound tar-
get discovery,” Bioessays, vol. 37, no. 4, pp. 379–388, 2015.

[32] D. Shaw, H. Chen, and T. Jiang, “Deepisofun: a deep domain adaptation approach
to predict isoform functions,” Bioinformatics, 2018.

[33] D. Shaw, H. Chen, X. Minzhu, and T. Jiang, “Deeplpi: a multimodal deep learning
method for predicting the interactions between lncrnas and protein isoforms,” BMC
Bioinformatics, 2020.
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