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1. INTRODUCTION

We develop a method for estimating oligopoly strategies subject to restrictions implied
by a game-theoretic model. Using this method, we estimate the pricing strategies of American
and United Airlines.

Unlike most previous empirical applications, we do not assume that firms use a single
pure strategy nor do we make the sort of ad hoc assumptions used in conjectural variations
modelst Our method allows firms to use either pure or mixed strategies consistent with game
theory.

First, we approximate a firm’s continuous action space (such as price, quantity, or
advertising) with a discrete grid. Then, we estimate the vector of probabilities — the mixed or
pure strategies — that a firm chooses an action within each possible interval in the grid. We use
these estimated strategies to calculate the Lerner index of market structure.

The main advantage of our method is that it can flexibly estimate firms’ strategies subject
to restrictions implied by game theory. The restrictions we impose are consistent with a variety
of assumptions regarding the information that firms have when making their decisions. Firms
may use different pure or mixed strategies in each state of nature. Firms may have private or
common knowledge about the state of nature, which is unobserved by the econometrician. For
example, a firm may observe a random variable that affects its marginal profit and know the
distribution (but not the realization) of the random variable that affects its rival’'s marginal profit.

Each firm may choose a pure strategy in every state of nature and regard its rival's action as a

! Breshnahan (1989) and Perloff (1992) survey conjectural
variations and other structural and reduced-form "new empirical
industrial organization" studies.



random variable. Alternatively, there may be no exogenous randomness, but the firm uses a
mixed strategy. To the econometrician, who does not observe the firm’s information or state of

nature, the distribution of actions looks like the outcome of a mixed strategy in either case. The

econometrician is not able to determine the true information structure of the game. Nevertheless,
the equilibrium conditions for a variety of games have the same form, and by imposing these

conditions we can estimate strategies that are consistent with theory.

There have been few previous studies that estimated strategies based on a game-theoretic
model. All of the studies of which we are aware (Bjorn and Vuong 1985, Bresnahan and Reiss
1991, and Kooreman 1994) involve discrete games. For example, Kooreman estimates mixed
strategies in a game involving spouses’ joint labor market participation decisions using a maxi-
mum likelihood (ML) technique. Our approach differs from his in three important ways. First,
Kooreman assumes that there is no exogenous uncertainty. Second, he allows each agent a
choice of only two possible actions. Third, because he uses a ML approach, Kooreman assumes
a specific error distribution and likelihood function. Despite the limited number of actions, his
ML estimation problem is complex.

Our problem requires that we include a large number of possible actions so as to analyze
oligopoly behavior and allow for mixed strategies. To do so using a ML approach would be ex-
tremely difficult. Instead, we use a generalized-maximum-entropy (GME) estimator. An impor-
tant advantage of our GME estimator is its computational simplicity. With it, we can estimate
a model with a large number of possible actions while imposing inequality and equality
restrictions implied by the equilibrium conditions of the game. In addition to this practical

advantage, the GME estimator does not require strong, arbitrary distributional assumptions, unlike



ML estimators. However, a special case of the GME estimator is identical to an ML estimator.
In the next section, we present a game-theoretic model of firms’ behavior. In the third
section, we describe a GME approach to estimating this game. The fourth section contains esti-
mates of the strategies of United and American Airlines, and sampling experiments that illustrate
the small sample properties of our GME estimator. In the final section, we discuss our results

and possible extensions.

2. OLIGOPOLY GAME

Our objective is to determine the strategies of oligopolistic firms using time-series data
on prices, quantities, and, when available, variables that condition the cost or demand relations.
We assume that two firmg, and j, play a static game in each period of the sample. (The
generalization to several firms is straightforward.)

Firm i (and possibly Firnj), but not the econometrician, observes the random variable
g'(t) in periodt. For notational simplicity, we suppress the time variabl@he set oK possible
realizations, §,, €,, ..., &}, is the same every period and for both firms. This assumption does
not lead to a loss of generality because the distribution may be different for the two firms. The
firms, but not the econometrician, know the distributionsepf We consider three possible
stochastic structures: (1) Firms face no exogenous randomiess) (2) g, is private informa-
tion for Firmi; (3) g, is common-knowledge for the firms. Because the econometrician does not
observeg,, even if the firms use a pure strategy in each period, it appears to the econometrician

that they are using a mixed strategy whenever their actions vary over time.



2.1 Strategies

The set ofn possible actions for either firm isx{, x,, ..., x,}. The assumption that the
action space is the same for both firms entails no loss of generality because the profit functions
can be specified so that certain actions are never chosen. The notatirans that Firmi
chooses actiox, We now describe the problem where the random state of nature is private
information and then discuss alternative assumptions of a single state of nature or common
information.

In determining its own strategy, Firinforms a prior,B.,, about the probability that Firm
j will pick action x. wheni observess). If the firms’ private information is correlated, it is
reasonable for Firm to base its beliefs aboyts actions ong,. If the private information is
uncorrelated, Firm form priors that are independent ef. We do not, however, assume
independence. In stake Firmi’s strategy isa, = (ay,, Oy, ..., a,), Wherea,, is the probability
that Firmi chooses actior.. If Firm i uses a pure strategy,. is one for a particulas and zero
otherwise.

The profit of Firmi is 1t = (X, X, €}), wherer indexes the strategies of Firjrands
indexes the actions of Firm In statek, Firm i choosesn, to maximize expected profits,,
B. T, Where the expectation is taken over the rival’s actions.Yilfis Firm i’'s maximum
expected profits whegj, occurs, therLl, = 5, B, 1. - Y, is Firmi’s expected loss of using action
x.in k. BecauseY; is the maximum possible expected profit, the expected loss wheni Eises

actions must be nonpositive,

(2.1) L, <0.



For a, to be optimal, the product of the expected loss and the corresponding probability must

equal zero:

(2.2) Lol = 0.

Equation 2.2 says that there is a positive probability that Rinwill use actions only if the
expected profits when actiamnis used are equal to the maximum expected profit.
This problem may have more than one pure or mixed strategy. Our estimation method

selects a particular pure or mixed strategy consistent with these restrictions and the data.

2.2 Econometric Implications

Our objective is to estimate the firms’ strategies subject to the constraints implied by
optimization, Equations 2.1 and 2.2. We cannot use these constraints directly, however, because
they involve the unobserved random variabéés By taking expectations, we eliminate these
unobserved variables and obtain usable restrictions.

Using the expectations operatoy, Be defineB. =E, B,, Y =E Y, a.=E, al, M. = E,
Ty and E L, = L. If we define®l, = L., - (BT, - Y) and take expectations, thep &, = 5,
cov(@,, ) = 6. Thus,L.=E, L, =5 Bir,- Y + 6. Taking expectations with respect ko

of Equation 2.1, we obtain

(2:3) Y B - Y +6,<0.

Taking expectations with respect kaof Equation 2.2, we find that

(2.4) B, - v -8 =0,
Lr 0



whered, = 8la’ + cov@,,, o). We can estimate the observable (unconditional) strategy vectors
a', i =1, 2, subject to the conditions implied by Firs optimization problem, Equations 2.3
and 2.4.

For the general case of private information, we cannot determine the siginaof ..
However, if Firmi does not condition its beliefs about Firjis actions on its own private
information (as would be reasonable if the private information is uncorrelated), Bhes
constant ovek. Here,0. = 0 andd, = cov(@,, a.) = cov(., a.) = 0. This last relation holds
with strict inequality if and only if the number of states in which it is optimal for Firto use
actionx., with positive probability, is greater than 1 (so that> 0) and less thak (so thatl.
< 0). If firms have no exogenous uncertainty but use mixed strategiespthed. = 0. Thus,
private, uncorrelated information impli€; = 0 andd. > 0, whereas the absence of exogenous
uncertainty implie, = 0 andd, = 0.

If the information that is unobserved by the econometrician is common knowledge to the
firms, Firm i’s beliefs and actions may be conditioned on the random varigblbat Firm
faces. If sof|, is replaced byd,, ., andal, is replaced byal, ., but restrictions 2.1 and 2.2 are
otherwise unchanged. Taking expectations d&vandm, we obtain restrictions of the same form
as Equations 2.2 and 2.3. Again, in general we cannot @igmd d..

We have assumed that the econometrician observes the actions that firms choose, but not

the information they use to condition these actias, This assumption simplifies the estimation



problem, because it means that the strategiesare numbers.

We view 2.3 and 2.4 as stochastic restrictions that hold approximately due to an additive
error in each equation. We already have additive parameiees(15), so we are able to esti-
mate the sum of those parameters and any additive error, but we cannot identify the two
components. Thus, for notational simplicity, we call the sum of the systematic and random
component$®. andd, (rather than add new random variables). We also include an additive error,

W O [-1, 1], associated witlnl. That is, we replace 2.4 with

(2.5) B - YHal <) -8 =0,
uf 0

We have an analogous set of restrictions for Fjrm

The Nash assumption is that agents’ beliefs about their rival’'s actions are correct so that
26) B = ol
fori #j. We henceforth maintain the Nash assumption.

If we tried to estimate this model — Equations 2.3, 2.5 and 2.6 — using traditional
techniques, we would run into several problems. First, with conventional sampling theory

estimation techniques, we would have to specify arbitrarily an error distribution. Second,

2 If the firms’ strategies are conditioned on a variable 4
that the econometrician observes, the econometrician may need to
estimate functions a'( ¢) rather than numbers, ~a'. Suppose, however,
that Firm i’s profits can be written as f '({) gy, where f ' is a
positive function. For example, Firm i chooses price  p', and faces
demand D(p', p')f'(C). Given this multiplicative form, f "( ¢) merely
rescales the restricions 2.3 and 2.4 [we can divide each .
restriction by f "(¢)], and the equilibrium strategies, o, are
independent of (. Throughout the rest of this paper, we assume
that any variables such as ¢ enter the profit functions multipli-

catively so that restrictions 2.3 and 2.4 are correct. We will
discuss the more general problem in a future paper.
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imposing the various equality and inequality restrictions from our game-theoretic model would
be very difficult if not impossible with standard techniques. Third, as the problem is ill posed
in small samples (there are more parameters than observations), we would have to impose
additional assumptions to make the problem well posed. To avoid these and other estimation and

inference problems, we propose an alternative approach.

3. GENERALIZED-MAXIMUM-ENTROPY ESTIMATION APPROACH

We use generalized maximum entropy (GME) to estimate the firms’ strategies. In this
section, we start by briefly describing the traditional maximum entropy (ME) estimation proce-
dure. Then, we present the GME formulation as a method of recovering information from the
data consistent with our game. This GME method is closely related to the GME multinomial
choice approach in Golan, Judge, and Perloff (1996). Unlike ML estimators, the GME approach
does not require explicit distributional assumptions, performs well with small samples, and can

incorporate inequality restrictions.

3.1 Background: Classical Maximum Entropy Formulation
The traditional entropy formulation is described in Shannon (1948), Jaynes (1957a;
1957b), Kullback (1959), Levine (1980), Jaynes (1984), Shore and Johnson (1980), Skilling
(1989), Csiszar (1991), and Golan, Judge, and Miller (1996). In this approach, Shannon’s (1948)
entropy is used to measure the uncertainty (state of knowledge) we have about the occurrence
of a collection of events. Lettingbe a random variable with possible outcomgs = 1, 2, ...,

n, with probabilities o, such thatZ, a, = 1, Shannon (1948) defined thentropy of the



distributiona = (a4, a,, ...,qa,)’, as

(31) H = _E as ln as’

where 0 In 0= 0. The functionH, which Shannon interprets as a measure of the uncertainty in
the mind of someone about to receive a message, reaches a maximunawhen = ... = a,

= 1h. To recover the unknown probabiliti@g Jaynes (1957a; 1957b) proposed maximizing
entropy, subject to available data consistency relations, such as moments from the observed data,
and adding up constraints.

To use this approach for our game problem, we need to incorporate the data from our
sample. Len. be the number of timex, is observed, out of total observations. The observed
frequency in the sample i® = n/T. [We henceforth suppress the firm superscript for notational
simplicity whenever possible.] For each firm, the observed frequency equals the true strategy

probability, a,, plus an error term:

. _ N
(32) n =?S =Gs+es,

where the noise terrg, [J [-1, 1].

The traditional ME approach setsia Equation (3.2) equal to zero,

(3.3) nS =a

and maximizes the Shannon measure (3.1) subject to Equation 3.3. The solution to this problem
is trivial in the sense that the constraint 3.3 completely determines the parameter estimate. This

ME estimator is identical to the ML estimator, when tkie have a multinomial distribution.



3.2 The Basic Generalized Maximum Entropy Formulation

The GME formulation, which uses restriction 3.2, is a more general version of the ME
formulation, which uses restriction 3.3. We obtain the basic GME estimator by maximizing the
sum of the entropy corresponding to the strategy probabilidieand the entropy from the noise,
e, in consistency condition 3.2 subject to that data consistency condition.

In general, the GME objective is a dual-criterion function that depends on a weighted sum
of the entropy from both the unknown and unobservablende = (e, e, ...,€)’. By varying
the weights, we can put more weight on estimation (accuracy af ttaefficients) or prediction
(assignment of observations to a category). The ME estimator is a special case of the GME, in
which no weight is placed on the noise component, so that the estimation objective is maximized
(thus maximizing the likelihood function). As a practical matter, our GME objective weights the
a ande entropies equally because we lack any theory that suggests other weights.

The arguments of the entropy measures must be probabilities. The elementgsref
probabilities, but the elements efrange over the interval [-1, 1]. To determine the entropy of
€, we reparameterize its elements using probabilities. We start by choosing a set of discrete
points, called the support spacez= [v,, V,, ..., Vy] of dimensionM > 2, that are at uniform
intervals, symmetric around zero, and span the interval [-1, 1]. Each error @dias corre-
sponding unknown weights & [w;, W, ..., Wy,|' that have the properties of probabilities<0

w,, < 1andx, w,,=1. We reparameterize each error element as

sm —

m~'sm-*

e, =2 Vv, W
m

For example, ifM = 3, thenv = (-1, 0, 1)’, and there exist®;, w,, andw, such that each noise

10



component can be written &= w,(-1) + w,(1). Given this reparameterization, we can rewrite

the GME consistency conditions, Equation 3.2, as

(3.4) n«=a-+e=a + Wy,

where rows of the matrixW is the vector of probabilitiesv, andyv, the support space, is the
same for alls.

No subjective information on the distribution of probabilities is assumed. It is sufficient
to have two pointsNl = 2) in the support of/, which converts the errors from [-1, 1] into [0, 1]
space. This estimation process recovdrs 1 moments of the distribution of unknown errors,
so a largerM permits the estimation of more moments. Monte-Carlo experiments show a
substantial decrease in the mean-square-error (MSE) of estimatesMviremeases from 2 to
3. Further increases iM provides smaller incremental improvement. The estimates hardly
change ifM is increased beyond 7 (Golan, Judge, Perloff, 1996; Golan, Judge, Miller, 1996).

If we assume that the actions,and the errorsg, are independent and defime= vec(V),
the GME problem for each firm is
(3.5) max H(a,w) = -a'Ina -w' Inw,

aw

subject to the GME consistency conditions, Equation 3.4, and the normalization constraints

(3.6a,b) Ta=1 1w =1

fors=1, 2, ...,n.

11



The Lagrangean to the GME problem is
L(A,p,n) =-Y a;lna, =Y Y w, Inw,
(3.7) =Y An -a -v'w ) - p( - 1)
+yY n(@-21w).

- — S

whereA, p, andn are Lagrange multipliers. Solving this problem, we obtain the GME estimators

i exp(—)'\S) _ exp(—)'\S)

: a, 1
- Yen k) )
(3.9) W, - eXp(‘Asv"m - expl- Svm)’

Z E‘Xp(—)\svm) Lps(z)
and "
(3.10) & - Vi,

The Hessian is negative definite (the firstelements on the diagonal are al/the rest are
-1, and the off-diagonal elements are 0) so the solution is globally unique.
Following Agmon et. al (1979), Miller (1994), and Golan et al. (1996), we can reformu-

late the GME problem as a generalized-likelihood function, which includes the traditional

12



likelihood as a special case:

L(A)
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Minimizing Equation 3.11 with respect ®— setting the gradienfAL(A) =n* - a - e, equal to
zero — yields the same estimates as from the original formulation, Equation 3.8. One advantage

of this dual formulation, Equation 3.11, is that it is computationally more efficient.

3.4 Generalized Maximum Entropy Formulation of the Nash Model
We can also use the GME approach to estimate the strategies subject to the game-
theoretic restrictions. Here, we require the estimates to satisfy the optimality conditions,
Equations 2.3 and 2.5, and the Nash condition, Equatiod Z6us, our objective is to recover
the strategiesqg, for each firm given thel observations and our knowledge of the economic
generating process. We first assume that the econometrician knows the parameters of the

functional form ofrt, and we later discuss how the problem is changed when some parameters,

3 Equations 2.3 and 2.4 are not standard econometric _
restrictions, as each includes an additional unknown parameter: 0
in Equation 2.3 and o, in Equation 2.4. Therefore, it might appear
that the added degree of freedom caused by the new parameter
cancels the added information in the restriction. However, when
these restrictions are imposed, the parameters 0, and O, appear in
the criterion function. As a result, imposing these restrictions
causes the estimates of all the parameters to change and improves
the estimates, as we show below.

13



such as the demand coefficients, must be estimated.
Equation 2.3 includes the noise componeitsand Equation 2.5 includes the noise
components 'pandd, i = 1, 2. Our first step is to reparameterize these six vectors in terms of

probabilities. Letv® be a vector of dimensiod® > 2 with corresponding unknown weights

such that
(3.12) Y oo =1,
j
(3.13) vyl = d,
ford =y, 6, andd, i = 1, 2. The support space$ are defined to be symmetric around zero

for all d. The natural boundaries for the errorfsamd |1 are [-1, 1]. We do not have natural
boundaries fof' or &, so we use the "three-sigma rule" (Pukelsheim, 1994; Miller 1994; Golan,
Judge, and Miller 1996) to choose the limits of these support spaces, where sigma is the
empirical standard deviation of the discrete action space of prices or quantities.

To simplify the notation, letn* = (n™, n”), a = (@”, a’), w = W', w’)’, and
w=(w, o, &, &, &, o) '. Asabove, we assume independence between the

actions and the errors. The GME problem is

(3.14) MaxH(g,v_v,Q)= -ad'lna -wihw-oinw

o,W,0

subject to the data consistency conditions 3.4, the necessary economic conditions 2.3 and 2.5, the
Nash condition 2.6, and the normalizations éorw, andw. The errors,, |, andd. in 2.3 and
2.5 are defined by Equations 3.12 and 3.13. Solving this problem yields estithatesnd .

If we do not know the parameters of the profit or demand functions, we simultaneously

14



estimate the profit or demand parameters and the strategy parameters using GME estimation
procedures. To do so, we need to modify the objective function 3.14 and add the profit (or
demand) functions for each firm as additional constraints in the GME-Nash model. This model,

for the unknown profit/demand parameters, is described in Appendix 1.

3.5 Properties of the Estimators and Normalized Entropy

All three different estimators, the ME-ML, GME, and GME-Nash, are consistent, but they
differ in efficiency and information content. The ML estimator is known to be consistent.
Because the ME and ML estimators are identical, as we noted above, the ME estimator is also
consistent. Under the assumption that a solution to the GME-Nash estimation problem exists for
all samples and given an appropriate choice of the bounds of the error in the data consistency
constraint 3.2, we show in Appendix 2 that the GME and GME-Nash estimators are also
consistent.

The GME estimator ofi has smaller variance than the ME-ML estimator (Golan, Judge,
and Perloff 1996). Given that the game-theoretic constraints are correct, the possible solution
space for GME-Nash estimate afis a subset of the solution space of the GME estimate. of
Thus, we conjecture that the GME-Nash estimator has a smaller variance than the GME. In the
sampling experiments reported below, this conjecture is always confirmed.

We can compare the different estimators empirically using the normalized entropy (infor-
mation) measur&a) = -(Z o In a/(In n), which measures the extent of uncertainty about the
unknown parameters. If there is no uncertairg) = 0. If there is full ignorance, in the sense
that all actions are equally likeh§a) = 1. All else the same, additional information reduces

the uncertainty in the data analyzed, resulting in a lower normalized entropy measure. Thus, to

15



the degree that the constraints 2.3, 2.5, and 2.6 bind, the GME-Nash normalized entropy measure

is lower than is the GME measurg&da) < S4).

4. AIRLINES
We estimated the strategic behavior of American and United Airlines using the ME-ML,
GME, and GME-Nash approaches. We assume that the airlines set price. We allow for the
possibility that American and United provide differentiated services on a given route and assume

that the demand curve facing Firms

(4.1) G =a -bp ~dp - u,

wherea, andd. are positive b, is negative, andy, is an error ternf. In Appendix 1, we show
how to reparametrize 4.1 so that it can be estimated along with the other parameters in the GME-
Nash model.

If firms choose prices, the necessary conditions 2.3 and 2.5 become

(4.2) Y B(p-c)gi-Y -8 <0

(*:3) étBir(psi‘C‘)qu—Y‘§GL+uL)+6‘S=o.

The Nash condition 2.6 is unchanged.

The data include price and quantity and cost data for 15 quarters (1984:4-1987:4, 1988:2,

*  We experimented with including various additional right-
hand-side variables such as measures of income, population, or

economic  conditions. None of these \variables, however,
significantly affected the fit of the equation or the parameters
a, b, and d.
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1988:4) for various routes between Chicago and other Citi¢§¥e calculated marginal costs
using the formula in Oum, Zhang, and Zhang (1993), and we used the average of these for the
parameterg’. The nominal data are deflated using the Consumer Price Index.

On each of these routes, these two firms had no (or trivial) competition from other firms.
We restrict our attention to two city pairs: Chicago-Providence and Chicago-Wichita. We did
not estimate our model for the other city pairs in the data set because of two problems. For the
Chicago-Las Vegas and Chicago-Sacramento routes, the average marginal cost was higher than
the average observed price, hence we were unwilling to make the assumption that the firms were
engaged in single-period maximizing behavior. On the basis of economic theory, we require that
b, < 0 (demand curves slope down) add> O (the services are substitutes) for each demand
curve. For the remaining routes, the demand curves estimated using ordinary least squares

violated these properties.

4.1 The Airline Model Specification
To determine the price space for each city, we first specify the upper and lower bound
of the price space. The lower bound is the smallest observed price for both airlines minus 10%
and the upper bound is the largest observed price for both airlines plus 10%. We then divide the
price space into 20 equal increments.
Because we do not know the true demand curve parameters, we simultaneously estimate

linear demand curves for each firm and a price-strategic choice model. As we have a measure

°> The data were generously provided by James A. Brander and
Anming Zhang. They used these data in three excellent papers:
Brander and Zhang (1990, 1993) and Oum, Zhang, and Zhang (1993).
See these papers for a description of the data.
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of the average marginal costs, we did not have to estiiate

4.2 Airline Estimates

In the GME-Nash model, the correlation between the actual and estimated quantities in
the demand equations are 0.1 for the American demand equation and 0.2 for the United equation
for Providence and 0.5 for both Wichita equations. For Providence, the demand coeffigients (
b, andd) are 1,865.8, -12.1, 4.7 for American Airlines and 1,571.7, -10.2, 4.8 for United
Airlines. Given these parameters, the own-demand elasticities at the sample mean are -2.6 for
American and -2.1 for United, and both the cross-elasticities are 0.95. In Wichita, the demand
coefficient are 694.0, -3.8, and 2.4 for American and 668.7, -4.1, and 2.8 for United. The own-
demand elasticities are -1.6 for America and -1.4 for United, and the cross-price elasticities are
0.82 in the American equation and 0.92 in the United equation. Estimating these demand curves
using ordinary least squares yields estimates of the same sign and magnitude.

On the Providence route, the estimated strategy paramatei®, American Airlines are
shown in Figure 1a and for United are shown in Figure 1b. The corresponding distributions for
Wichita are shown in Figures 2a and 2b. The ME-ML estimates are the observed frequencies.

The GME distribution is more uniform than that of the ME-ML model because the GME
consistency conditions 3.2 allow the estimates to differ from the actual frequency. In attempting
to maximize entropy, the GME estimator pushes the probability estimates toward uniformity.

The GME-Nash distribution is smoother than the other two models and has one peak for
American and two peaks for United in both cities. The global maximum of the GME-Nash
distribution is closer to the average price based on a standard Bertrand model than to a Cournot

or Collusive model. [The Cournot — $227 for American and $223 for United — and collusive
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— $286 and $274 — means are too large to appear in Figure 2 for Wichita.]

Based on Kolmogorov-Smirnov tests, we cannot distinguish between the ME-ML, GME,
and GME-Nash distributions. The normalized entropy measi{oe, for Providence are 0.66
for American and 0.67 for United for the ME-ML model. The corresponding normalized entropy
measures are both 0.90 for the GME model and 0.61 and 0.65 for the GME-Nash model. The
normalized entropy measures for Wichita are, respectively, 0.73 and 0.77 for the ME-ML, 0.93
and 0.94 for the GME, and 0.70 and 0.68 GME-Nash. The drop in the entropy measure when
we switch from the GME to the GME-Nash shows that the theoretical restrictions contain
substantial information.

The estimated expected ren¥,are $420,000 for American and $435,000 for United on
the Providence route, and $500,000 for each airline on the Wichita route. These rent calculations
are based on the assumption that the average cost equals the marginal cost. These numbers do
not include fixed costs. Unless the fixed costs are large, these number suggest that the airlines
were making positive profits during this period. The estimated expected rents are consistent with
the magnitudes of the prices and quantities observed.

For both airlines for both cities, the average valuda$ practically zero. The average
value of d is positive. For example, in Providence, only 2 out of the 40 valued wfere
negative. This sign pattern is consistent with firms having private, uncorrelated information.
This pattern is inconsistent with the hypothesis that firms use mixed strategies despite the absence

of exogenous randomness.

19



4.3 Comparing Estimators

How does our approach compare to traditional methbdsRor the purposes of
comparison, we estimated a traditional conjectural variations (CV) model given our heterogenous
demand equations. The CV model consists of four equations: the two demand curves and two
optimality (first-order) condition$.

Figures 3a and 3b show how the conjectural variations distribution compares to the GME-
Nash and ME-ML for Providence. The CV distribution has multiple peaks, with its global
maximum slightly higher than the GME-Nash. The CV distribution is significantly different than
the ME-ML for United on the Chicago-Providence route based on a Kolmogorov-Smirnov test.
Similarly, for United on the Chicago-Wichita route, the CV distribution differs from the GME-
Nash strategy distribution.

The estimated market power of these firms differs across the estimators. Table 1 shows

how the average Lerner Index of market power (the difference between price and marginal cost

6 We cannot directly compare our results to those in Brander
and Zhang (1990, 1993) and Oum, Zhang, and Zhang (1993), because
they assume that the services of the two airlines are homogeneous,
whereas we estimate demand curves based on differentiated services.
Moreover, two of their papers estimate pure strategy models, where
we permit mixed or pure strategies. The other paper, Brander and

Zhang (1993), estimates a supergame (trigger price) model. If
there are punishment periods during the sample, our estimates may
show two or more peaks in the distribution of a. If, however, the

firms are using such supergames, we should modify our repeated
single-period game model accordingly.

! When we tried to estimate the four equations
simultaneously, some of the demand parameters took on theoretically
incorrect signs. Consequently, we estimated the demand curves and
then estimated the optimality conditions treating the estimated
demand parameters as exact. Both methods produced similar
estimates of the conjectures. Figures 3a and 3b use the second set
of estimates where we used the marginal cost in each period to
generate a distribution of estimates.
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as a percentage of price) varies across the estimators. The ME-ML Lerner Index is identical to
the index based on the observed data. The GME indexes are virtually the same or slightly lower
than the ME-ML indexes. The average GME-Nash and CV estimates are virtually identical and
slightly higher than the sample-based index.

Using the demand parameters from the GME-Nash model, we also calculated the average
Bertrand, Cournot, and collusive Lerner Indexes. The average Bertrand index is virtually the
same as the average GME-Nash and CV indexes. The Cournot and collusive indexes are much

higher.

4.4 Sample Size Sensitivity Experiments

The squared-error loss of each of our three estimators differs as sample size changes. We
can demonstrate these properties using sensitivity experiments, where we assume that the
estimated demand equations for the Chicago-Wichita route hold with an error term that is distrib-
uted N(0, 1). We assume that Firithas informatione' about its marginal cost and that this
information is private and uncorrelated (as is consistent with our estimates), so that'$=irm
beliefs, !, do not depend ol,. The marginal cost for each firm in each period is drawn from
a normal distribution N(60, 5), which closely approximates the distribution of marginal costs for
Wichita. We approximate this continuous distribution using a finite grid and use the probabilities
associated with the resulting discrete distributigpto determine the Nash restriction that beliefs
are correct in equilibrium. This restriction requires tBatol,p, = B.. We then generate Nash
equilibrium strategiesx using this restriction and the necessary conditions 2.1 and 2.2. (We
establish by means of sensitivity studies that this equilibrium is unique.) We use the resulting

equilibrium probabilitiesx to generate samples of actions by drawing a uniform random number
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on the unit interval and using that to assign an action for each observation. We generated 200
samples fofT (the number of observations in each sample) = 10, 20 and 40,nWttre number
of possible actions for each firm) = 20.

According to our analytic results, the GME estimator has lower variance than the ME-ML.
We conjecture that the GME-Nash has a lower variance than the GME. These superior finite
sample properties of the GME-Nash and GME over the ME-ML are confirmed by our sampling
experiments in terms of the empirical mean square error (M$E(Z,, (aL, - a)%200 (where
the indext denotes the sample) and the correlation coefficient between the estimated am true
for each of the models (Table 2). The table shows two sets of results depending on whether the
econometrician knows the demand coefficients or has to estimate them. In the latter case, we
generate quantities demanded by adding a N(O, 1) term to the demand equation.

The ME-ML and GME perform better (in terms of MSE and correlations) as the number
of observations increases. The GME-Nash, however, performs well (relative to the other
estimators) for a small number of observations, and the GME-Nash estimates do not improve as
the number of observations increases beyond 20. This latter result is very attractive if, as usual,
one has relatively few time-series observations. Finally, the GME-Nash estimator yields superior
estimates even when the demand coefficients are unknown, without assuming knowledge of the

error distributions.

5. CONCLUSIONS
Our generalized-maximum-entropy-Nash (GME-Nash) estimator can estimate firms’
strategies consistent with game theory and the underlying data generation process. It is free of

parametric assumptions about distributions and ad hoc specifications such as those used in
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conjectural-variations models.

Our simplest approach to estimating strategies is to use the maximum-likelihood (ML) or
maximum-entropy (ME) estimators. These approaches produce the same estimates, which are
the observed frequencies in the data. These estimators do not make use of demand or cost
information and do not impose restrictions based on theory.

We also estimate two GME models. The basic GME estimator allows greater flexibility
than the ML-ME estimator, but does not use demand, cost, or game-theoretic information. We
show analytically and through simulations that this GME estimator is more efficient than the ME-
ML estimator in terms of mean-square error, correlation, and other measures of variance. The
GME-Nash estimator uses all available data, and game-theoretic information. In our sampling
experiments, the GME-Nash estimator is more efficient than the basic GME and ME-ML
estimators.

In future papers, we plan three generalizations of our approach. First, we will examine
whether a price-choice or quantity-choice model is appropriate. Here, we have assumed that the
firms chose price. Second, we will estimate more complex games where firms choose price or
guantities simultaneously with advertising. Third, we will generalize the model so that strategies
may vary with variables the econometrician observes.

We believe that this approach to estimating games can be applied to many problems in
addition to oligopoly, such as wars and joint decisions by husbands and wives. To do so only

requires replacing profits with some other criterion.

23



References

Agmon, Noam, Y. Alhassid, and Rafi D. Levine (1979): "An Algorithm for Finding the Distribu-
tion of Maximal Entropy,"Journal of Computational Physic80, 250-9.

Bjorn, P. A. and Q. H. Vuong (1985): "Simultaneous Equations Models for Dummy Endogenous
Variables: A Game Theoretic Formulation with an Application to Labor Force
participation,” California Institute of Technology working paper 537.

Brander, James A., and Anming Zhang (1990): "Market Conduct in the Airline Industry: An
Empirical Investigation,'Rand Journal of Economic21, 567-83.

Brander, James A., and Anming Zhang (1993): "Dynamic Oligopoly in the Airline Industry,"
International Journal of Industrial Organizatioril, 407-35.

Bresnahan, Timothy F. (1989): "Studies of Industries with Market Power," in Richard
Schmalensee and Robert Willig, eddandbook of Industrial OrganizatiogrNew York:
North Holland, 1989.

Bresnahan, Timothy F., and Peter C. Reiss (1991): "Empirical Models of Discrete Games,"
Journal of Econometrigs48, 57-81.

Csiszar, 1. (1991): "Why Least Squares and Maximum Entropy? An Axiomatic Approach to
Inference for Linear Inverse Problem3Jhe Annals of Statisticd9, 2032-2066.

Davidson, R., and J. G. MacKinnon (199&stimation and Inference in Econometriddew
York: Oxford University Press.

Golan, Amos, George Judge, and Jeffrey M. Perloff (1996): "Recovering Information from
Multinomial Response Data,"Journal of the American Statistical Associatjon

forthcoming.

24



Golan, Amos, George Judge, and Douglas J. Miller (198&ximum Entropy Econometrics:
Robust Estimation with Limited Dat&lew York: John Wiley & Sons, forthcoming.

Jaynes, E. T. (1957a): "Information Theory and Statistical Mecharitg;sics Revieyi 06, 620-
630.

Jaynes, E. T. (1957b): "Information Theory and Statistical MechanicsPHysics Revienl08,
171-190.

Kooreman, Peter (1994): "Estimation of Econometric Models of Some Discrete Galnasal
of Applied Econometri¢®, 255 - 68.

Kullback, J. (1959)information Theory and Statisticblew York: John Wiley & Sons.

Levine, Rafi D. (1980): "An Information Theoretical Approach to Inversion Probledwm,tnal
of Physics A, 13, 91-108.

Miller, Douglas J. (1994)Entropy and Information Recovery in Linear Economic Mogels.D.
thesis, University of California, Berkeley.

Oum, Tae Hoon, Anming Zhang, Yimin Zhang (1993): "Inter-firm Rivalry and Firm Specific
Price Elasticities in Deregulated Airline Marketggdurnal of Transport Economics and
Policy, 27, 171-92.

Perloff, Jeffrey M. (1992): "Econometric Analysis of Imperfect Competition and Implications for
Trade Research,” in lan M. Sheldon and Dennis R. Henderson, kuhistrial
Organization and International Trade: Methodological Foundations for International
Food and Agricultural Market ResearcNC-194 Research Monograph Number 1.

Pukelsheim, F. (1994): "The Three Sigma Rularherican Statistician48, 88-91.

Shannon, C. E. (1948): "A Mathematical Theory of Communicatidgll System Technical

25



Journal 27, 379-423.

Shore, J. E., and R. W. Johnson (1980): "Axiomatic Derivation of the Principle of Maximum
Entropy and the Principle of Minimum Cross-Entrop\gEE Transactions on Information
Theory IT-26, 26-37.

Skilling, J. (1989): "The Axioms of Maximum Entropy," in J. Skilling, edlaximum Entropy

and Bayesian Methods in Science and Engineedadrecht: Kluwer Acadmic, 173-87.

26



Appendix 1: GME-Nash with Unknown Demand Coefficients
In order to use the GME-Nash estimator when the parameters of the demand curves are
unknown, we estimate the demand curves simultaneously with the rest of the model. For

example, let the demand curve facing Firrbe

(Al.1) g =a+bp ~dp +u=Xp +u,

whereq, is the quantity vectom, is the price vectora andd, are positive scalar$, is a negative
scalar,u, is a vector of error terms is a matrix, and3, is a vector of parameters. To use an
entropy approach, we need to map the unknown paramBteasd u; into probability space.
Following Golan, Judge, and Miller (1996), we model these unknown parameters as discrete
random variables with finite supports. L& be in the interior of an open, bounded
hyperrectangleZ O 0¥, and, for eaclB,, let there be a discrete random variaglewith M >

2 possible realizationg,..., z,, and corresponding probabilitigs,,..., P,y such that

M
(AlZ) Bk = Z pkmzkm'
m=1

Letting Z be theM-dimensional support foz,, any3 J Z may be expressed as

Z 0.0 O
i
. Z 0
(A1.3) E=ZE=E % —ng
O, .. O
N T
@Q'ZK%M

whereZ is a (K x KM) matrix andp is a KM-vector of weights such thai, >> 0 andp, 1,, =
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1 for each demand parameter for 1, 2, 3. The upper and lower boundszfz, andz,,, are
far apart and known to contaf§. Further, we use our knowledge of the signs of the unknown
parameters from economic theory when specifying the support shace

The unknown and unobservable erraug, are treated similarly. For each observation,
the associated disturbanag, is modelled as a discrete random variable with realizatigns,
v, O v with corresponding probabilities!,,..., »,;. That is, each disturbance may be modelled

as

J
(Al.4) u, = Zl ARV
i

for eacht = 1,...,T. The elements of the vectet form an evenly spaced grid that is symmetric
around zero.

Given a sample of datg, a simple way to determine the upper and lower boungof
is to use the three-sigma rule together with the sample standard dewsgtidfor example, if
J =3, thenv' = (-30,, 0, 30,). Golan, Judge, and Miller (1996) has a detailed discussion of the
statistical implications of the choice of bounds and sampling experimentg ford Z.

Having reparametrized the system of demand equation in this manner, the GME-Nash

model with unknown demand parameters is

(A1.5) max H(a, w,p,w = -a'Ina -w'inw-p'inp -« Inw,
P,

Lwpw

subject to the consistency conditions 3.4, the necessary economic conditions 2.3 and 2.5, the

Nash conditions 2.6, the two demand equations for Firnasd j, Equations Al.1, and the
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normalizations fom, w, p, andw, wherew = (o', ', ', o,

The bounds of the error supports for the demand equatiogg +3
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Appendix 2: Consistency
Call the GME-Nash estimates of the stratedieshe GME estimated, and the ME-ML
estimatesi. We make the following assumptions:
Assumption 1 A solution of the GME-Nash estimatoéi (W, @) exists for any
sample size.
Assumption 2 The expected value of each error term is zero, its variance is finite,
and the error distribution satisfies the Lindberg condition (Davidson and
MacKinnon, 1993, p. 135).
Assumption 3 The true value of each unknown parameter is in the interior of its
support.
We want to prove

Proposition Given assumptions 1-3, and lettirayl the end point of the error
support spaces and V' be normed byﬁ , plin) = plim(@) = plim(@) = a.

When the profit parameterf are unknown, the GME-Nash estimatBsare

consistent.
According to this proposition, the GME-Nash estimafesGME basic estimatest, and the ME-
ML estimatesf, are equal to each other and to the true strategies in the limit as the sample size
becomes infiniteT — . That is, all the estimators are consistent.

Proof.

i) The ME-ML estimates are the observed frequencies: TAs, «, the observed
frequencies converge to the population frequencies, so the ME-ML estimates are consistent: plim

P

G, = Q.
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i) The GME is consistent: Let the end points of the error supportg of andv,,, be
-1/ \/? and1/ ﬁ respectively. A3 - o, Y, —» 1 for all sin the dual-GME, Equation 3.12.

Thus, %, In Y (A) - 0 and plimd; = a.

iii) The GME-Nash with known profit parameters is consistent: By Assumption 1, after
we have added the restrictions 2.3 and 2.5, we still have a solution. The argument in (ii) together
with Assumption 2 implies that plindi; = Q.

iv) The GME-Nash with unknown profit parameters is consistent: The normed moment

version of the linear statistical model, Equation Al.1, is

(A2.1) X'q _ X'X . X'u
A __— = B+ _—=.
T T T

Given Assumption 3, the GME is a consistent estimatop @ Equation A2.1 (Golan, Judge,

and Miller, 1996, Ch. 6): plinf}; = B. By the argument in (i), plimi, = a.
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Table 1: Average Lerner Indexes (p - MC)/p

Providence Wichita

American United American United
ME-ML: Observed 0.35 0.37 0.62 0.62
GME 0.34 0.35 0.62 0.61
GME-Nash 0.37 0.40 0.65 0.65
Conjectural Variation 0.37 0.40 0.65 0.64
Bertrand 0.37 0.40 0.66 0.65
Cournot 0.40 0.43 0.74 0.73
Collusive 0.45 0.48 0.79 0.78
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Table 2: Sample Size Sampling Experimen{n = 20)

Correlation, Correlation,
MSHoa") MSHo?) Firm 1 Firm 2
T=10
ME-ML .285 145 .68 .79
GME 137 .068 .66 g7
GME-NasH .086 .037 .79 .89
GME-NasH 110 .060 .66 .76
T=20
ME-ML .263 .104 .69 .84
GME 132 .050 .66 .81
GME-NasHK .075 .023 A7 91
T =40
ME-ML .245 .091 .70 .86
GME 124 .049 .67 .80
GME-NasH .075 .026 .78 .90

! Known demand coefficients.
2 Unknown demand coefficients.
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