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ABSTRACT OF THE DISSERTATION

Characterizing compound coastal flood risk

in urbanized communities:

A Multivariate approach

by

Joseph Thomas-Daniel Lucey

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2023

Professor Timu Gallien, Chair

Coastal flooding is a growing concern. Compound coastal flooding considers the joint im-

pacts of marine and hydrologic events characterized by multiple flooding pathways (i.e.,

high offshore water levels, streamflow, energetic waves, precipitation) acting concurrently.

Flood risks are commonly assessed using numerical models or statistical methods. Quanti-

fying event uncertainty is critical to accurate flood risk assessment. This work develops a

hybrid statistical-hydrodynamic flood modeling methodology to characterize flood mapping

uncertainty in highly urbanized, tidally and wave dominated regions. Uncertainties asso-

ciated with copula selection, sampling method, data record length, utilized rainfall gauge,

and event choice along an isoline were considered. Univariate statistics are analyzed for

individual sites and events. Conditional and joint probabilities are developed using a range

of copulas, sampling methods, and hazard scenarios. Multiple copulas (Nelsen, BB1, BB5,

and Roch-Alegre, Fischer-Koch) consistently passed a Cramér-von Mises test and presented

similar event pairs, with the exception of the BB5 copula which was often more conservative

ii



(i.e., more severe event pairs). Sampling impacts are considered using annual maximum,

annual coinciding, wet season monthly maximum, and wet season monthly coinciding sam-

pling. Generally, annual maximum sampling yielded the largest (most severe) event pairs.

However, in some cases wet season monthly coinciding sampling suggested higher marine

water levels. Uncertainties associated with record length were quantified by creating subsets

with different sizes from long data records (∼100 years). Significant event pair variability was

observed when using short data record lengths, although results stabilized at 70-years. Flood

risk estimates using local rainfall gauges significantly varied suggesting microclimatologies

must be considered in flood risk analysis. Validated Delft3D-FM hydrodynamic models were

developed for multiple urbanized coastal communities. Compound events were simulated to

quantify flood mapping uncertainties associated with statistical characterization.
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CHAPTER 1

Introduction

1.1 Sea Level Rise

Coastal flooding is a significant human hazard (Leonard et al., 2014; Wahl et al., 2015)

and is considered a primary health hazard by the U.S. Global Change Research Program

(Bell et al., 2016). Coastal migration and utilization continues to increase (Nicholls et al.,

2007; Nicholls, 2011). Over 600 million people populate coastal zones (Merkens et al., 2016).

Climate change-induced sea level rise will substantially increase flood risk (Church et al.,

2013; Horton et al., 2014), and negatively impact coastal populations (Bell et al., 2016).

Even relatively modest sea level rise will significantly increase flood frequencies through the

US (e.g., Tebaldi et al., 2012; Taherkhani et al., 2020). California is especially vulnerable

to the effects of sea level rise as 67% of California’s population live along its coastlines and

produces over $2 trillion of California’s gross domestic product (NOAA, Accessed 2021b).

A projected sea level rise of 1.4 m results in an 85% increase to the vulnerable population

and an additional 33 million in economic risk caused by the 100-year water level along the

California coast (Heberger et al., 2011). Small changes in sea level (∼5 cm) double the odds

of the 50-year flooding event (Taherkhani et al., 2020) and the 100-year event is expected

to become annual by 2050 (Tebaldi et al., 2012). Regional research has explored flood risks

caused by sea level rise and coastal forcing (e.g., Heberger et al., 2011; Hanson et al., 2011;

Gallien et al., 2015). However, accurately characterizing future, coastal vulnerability requires

considering the joint and potentially nonlinear impacts of compound (marine and hydrologic)

events (Gallien et al., 2018).
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1.2 Compound Flooding

Compound flooding is a recent and rapidly developing topic (Sebastian, 2022). Flooding

may occur from various sources including marine water levels, waves, precipitation, and flu-

vial flows. Compound flooding considers the combined impacts of multiple flood sources

where events are co-occurring or in succession resulting in an amplified or extreme event

(Seneviratne et al., 2012; Leonard et al., 2014; Zscheischler et al., 2018). In urban coastal

settings multiple flooding pathways (i.e., high marine water levels, wave runup and overtop-

ping, large fluvial flows, and pluvial flooding from precipitation) interact with infrastructure

(e.g., sea walls, human-made dunes, and the storm system) potentially exacerbating hazards.

Traditionally, literature has focused on river discharge or storm surge dominated multivari-

ate events (Table 1.1). Along the U.S. West Coast wave runup accounts for nearly half of

maximum total water levels (Serafin et al., 2017), and Reguero et al. (2019) suggest wave

impacts will be amplified in a changing climate. Quantifying multivariate events explicitly

accounting for wave impacts is critical to characterizing coastal flooding in wave influenced

areas (e.g., Erikson et al., 2018; Gallien et al., 2018; Barnard et al., 2019). Exclusion of one

or more significant flood pathways may underestimate flood risks (Moftakhari et al., 2017).

Table 1.1: A non-exhaustive list of multivariate studies which utilized copulas to

study the associated variables

Variable Pairs References

Waves and water level
Masina et al. (2015); Mazas and Hamm (2017);

Didier et al. (2019); Radfar et al. (2021)

Waves and storm duration
De Michele et al. (2007); Salvadori et al. (2014,

2015)

Waves and storm surge
Wahl et al. (2012); Paprotny et al. (2018);

Chen et al. (2019); Marcos et al. (2019)
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Variable Pairs References

Wave height and period Kim et al. (2018); Wrang et al. (2021)

River discharge and water level

White (2007); Bray and McCuen (2014);

Sadegh et al. (2018); Ganguli and Merz

(2019a,b)

River discharge and storm surge Paprotny et al. (2018); Ganguli et al. (2020)

River discharge and volume

Yue (2001a,b); Shiau (2003); Favre et al.

(2004); De Michele et al. (2005); Poulin et al.

(2007); Li et al. (2013); Salvadori et al. (2013);

Requena et al. (2013); Aghakouchak (2014)

River discharge, rainfall, and water

level
Bray and McCuen (2014); Jeong et al. (2014)

Multiple river discharges Salvadori and De Michele (2010)

Rainfall and tide

Lian et al. (2013)*, Xu et al. (2014)*, Tu et al.

(2018)*, Xu et al. (2019)*, Bevacqua et al.

(2020), Yang et al. (2020)*

Rainfall and water levels Jane et al. (2020)

Rainfall and storm surge
Wahl et al. (2015); Paprotny et al. (2018); Be-

vacqua et al. (2019)

Rainfall intensity and depth
Yue (2000a,b, 2002); De Michele and Salvadori

(2003)

Rainfall and groundwater Anandalekshmi et al. (2019)

Rainfall and runoff Zhang and Singh (2012); Hao and Singh (2020)

Rainfall and river discharge Zhong et al. (2020)

Rainfall and temperature Zhang et al. (2017)

Rainfall and duration Salvadori and De Michele (2007)
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Variable Pairs References

Combinations of rainfall intensity,

depth, and duration
Zheng et al. (2014)

Combinations of river discharge,

volume, and duration

Karmakar and Simonovic (2009); Reddy and

Ganguli (2012); Ganguli and Reddy (2013);

Gräler et al. (2013); Mitková and Halmová

(2014)

Combinations of water level, wave

height and period, and storm du-

ration

Corbella and Stretch (2012)

Combinations of sea level, precip-

itation, wave height, and storm

surge

Hawkes (2008)

*Note these studies use the term tide measurement but actually represent observed water level measurements.

1.3 Characterizing Flooding Hazards

From a flood risk perspective there are multiple methods to characterize events. A univariate

approach is often used where a single variable (e.g., water level) is considered. For example,

FEMA recommends characterizing multivariate events by developing univariate water level

and discharge statistics and then adopting a smooth, blended result for transitional areas

(FEMA, 2011, 2016c). This can lead to underestimating flood risk because of the inter-

play between two flood pathways (i.e., a high tail water forces fluvial flooding upstream).

Conditional probabilities represent an alternative where the multivariate flood risk can be

evaluated given available information on a primary variable (e.g., water level) to determine

the exceedance probability of a secondary variable (e.g., precipitation) (Shiau, 2003; Kar-

makar and Simonovic, 2009; Zhang and Singh, 2012; Li et al., 2013; Mitková and Halmová,
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2014; Serinaldi, 2015, 2016; Anandalekshmi et al., 2019). A third method uses copulas to

analyze the dependence of multiple flood drivers and develop joint statistics.

Multivariate studies typically employ copulas to evaluate dependencies between flood

drivers and develop multivariate statistics. Numerous studies have used a copula based

approach to study floods from various combinations of variables (Table 1.1). Compound

flood risks can be described and quantified from previous copula studies (Salvadori, 2004;

Salvadori and De Michele, 2004, 2007; Salvadori et al., 2011, 2013, 2016), and estimated flood

risk varies depending upon the copula selection (Sadegh et al., 2018; Couasnon et al., 2020;

Lucey and Gallien, 2022). A select group of copulas (Clayton, Frank, Gumbel, Student t,

and Gaussian) are often used in multivariate inland and coastal hydrology risk assessments,

however alternative copulas may better characterize coastal applications (Jane et al., 2020;

Lucey and Gallien, 2022). Additionally, hazard scenarios provide various perspectives on

critical multivariate events (Salvadori et al., 2016), but current studies are often limited to

select hazard scenarios (Table 1 in Salvadori et al. (2016)).

1.4 Hydrodynamic Flood Modeling

Numerical models of varying complexity have been widely used to investigate compound

flooding events (Table 1.2). Reduced complexity models (i.e., diffusive wave) are limited to

slowly-varying flows and cannot resolve sub- and supercritical flow transitions (Neal et al.,

2012). In urban environments where flow transitions are common inertial terms improve

predictions (Sanders, 2017). The full two-dimensional nonlinear shallow water models have

proven to provide excellent velocity and depth estimates (e.g. Mignot et al., 2006; Gallegos

et al., 2009; Gallien, 2016). Particular attention should be paid to the numerical implemen-

tation and its suitability for rapidly variable flows. Godunov-based finite volume schemes

and discontinuous Galerkin finite element methods admit supercritical flows from abrupt

elevation changes inherent to urban environments such as sea walls, streets, and curbs with-
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out case specific parameter tuning. Finite volume schemes are the most widely used 2D

nonlinear shallow water solution method (Teng et al., 2017). Numerous Godunov-type finite

volume codes have been successfully implemented in coastal embayment modeling (Arega

and Sanders, 2004; Cea et al., 2006; Sanders et al., 2008; Gallien et al., 2011), urban flood

simulations (Mignot et al., 2006; Villaneueva and Wright, 2006; Sanders et al., 2008; Schu-

bert et al., 2008; Gallegos et al., 2009; Schubert and Sanders, 2012) and compound modeling

(e.g., Gallien, 2016; Herdman et al., 2018; Shen et al., 2019; Muñoz et al., 2020; Nederhoff

et al., 2021).

More recently, a hybrid approach combining multivariate statistical and numerical model-

ing have been adopted. Copulas are developed to investigate dependence structures between

variables after numerical modeling (Bevacqua et al., 2019, 2020; Couasnon et al., 2020; Gan-

guli et al., 2020; Santos et al., 2021; Tanim and Goharian, 2021; Xu et al., 2022), and have

been used to characterize multivariate return periods for flood modeling (Sebastian et al.,

2017; Couasnon et al., 2018; Didier et al., 2019; Moftakhari et al., 2019). Xu et al. (2022)

uses copulas after modeling tropical cyclone events to establish pairs of peak water levels

and precipitation for an area without water level observations. Moftakhari et al. (2019)

established copulas for coastal-riverine compound flooding then models pairs to compare to

the suggested FEMA coastal-riverine compound flooding guidelines (FEMA, 2015). Hybrid

approaches simulating multivariate events present an attractive option for quantifying flood

mapping uncertainties associated with statistical characterization.

1.5 Uncertainty

Previous studies have explored multiple sources of uncertainty and their influences on nu-

merical models or events estimates (Table 1.3). Studies have observed significant variability

in event estimates depending on the sampling methods (Mazas and Hamm, 2017; Lucey and

Gallien, 2023). Two sampling methods commonly used are peaks over threshold (Jarušková
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Table 1.2: Numerical models used in recent coastal flood applications

Model References

Delft3D

Cañizares and Irish (2008); Irish and

Cañizares (2009); Horstman et al. (2013);

Symonds et al. (2016); Martyr-Koller et al.

(2017); Van Thanh et al. (2017); Kumbier

et al. (2018); Herdman et al. (2018); Ganguli

et al. (2020); Paprotny et al. (2020); Muñoz

et al. (2020); Nederhoff et al. (2021); Xu et al.

(2022)

LISFLOOD-FP Bates et al. (2005); Purvis et al. (2008)

TUFLOW Shen et al. (2019)

Delft-FLS (Brown et al., 2007)

TOMAWAC Dawson et al. (2009)

TRIM-2D Knowles (2010)

MIKE21 Martinelli et al. (2010)

BreZo
Gallien et al. (2011, 2014); Gallien (2016);

Moftakhari et al. (2019)

SELFE Chen and Liu (2014)

SLOSH Thompson and Frazier (2014)

AdH Savant et al. (2019a,b)
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and Hanek, 2006), which partitions events above a predetermined threshold as the events of

concern, and block maxima (Engeland et al., 2004), which selects the maximum event per

“block” of time (yearly, seasonal, semiannual, etc.). Many studies utilize 12-month block

maxima sampling, the annual maximum sampling method (Baratti et al., 2012; Bezak et al.,

2014; Wahl et al., 2015), and is specifically recommended by FEMA (2016c) for evaluating

coastal hazards. Alternatively, studies utilize a “coinciding” type sampling to define events

where the primary variable is sampled with a maximum type sampling and other variables

are sampled where they co-occur with the primary variable (Lian et al., 2013; Xu et al., 2014;

Sadegh et al., 2018; Tu et al., 2018; Lucey and Gallien, 2022). Sampling methods may be

the most influential for extreme value studies (Mazas and Hamm, 2017), yet there is limited

understanding of data sampling impacts on flood risk estimates (Mazas and Hamm, 2017;

Sadegh et al., 2017; Lucey and Gallien, 2022).

Multiple data sources within a geographic area may exist and the choice of observa-

tions may influence flood risk estimates. Previous studies have shown model inputs (e.g.,

gauge measurements, DEMs, distributions) pose a significant source of uncertainty on results

(Coveney and Fotheringham, 2011; Bates et al., 2014; Sampson et al., 2014; Saint-Geours

et al., 2015). Recent studies have also emphasized record length impacts on estimates (Gen-

est et al., 2009; Su and Tung, 2013; Tong et al., 2015; Sadegh et al., 2017; Dodangeh et al.,

2019). Genest et al. (2009) observes the significance of goodness-of-fit tests significantly in-

crease with sample size given that copula dependency structure is better defined with larger

samples. Sadegh et al. (2017) showed short data records result in large event estimate un-

certainties regardless of the fitted distribution’s goodness of fit. Tong et al. (2015) found

various return periods of annual maximum flood magnitudes were overestimated when using

shorter data records. While observations and record length impart uncertainties in studies,

there is no suggested minimum record length for characterizing coastal flooding events.

Numerical models have their sources of uncertainties as well. Teng et al. (2017) identifies

model structure, inputs, parameters, validation data quality, landscape cover, and nonsta-
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tionarity as key sources of uncertainty within flood models. Coasatal flood modeling is well

established in the literature (e.g., Table 1.2). The challenge of accurate modeling lies in

resolving infrastructure (e.g., storm drainage systems, seawalls, berms), including wave im-

pacts, and quantifying event uncertainty (Gallien et al., 2018). While studies continue to

identify and quantify sources of uncertainty (Table 1.3), it is unknown how compound event

statistical characterization affects flood mapping applications, particularly in infrastructure-

rich urban applications.

1.6 Proposed Work

This research proposes to evaluate and quantify multivariate coastal flood risk uncertainty

in highly urbanized regions. Three studies are proposed which evaluate univariate and

multivariate flood risks in highly urbanized regions while exploring the effects of sampling

methods, flood defense structures, data selection, record length, distribution choice, and

event choice on risk assessments. The first study (Chapter 3) explores events considering

observed water levels (OWL) and precipitation at urbanized coastal communities in a semi-

arid region. A unique structural scenario, considering a drainage system and sea wall, is

explored and the effects of data sampling and distribution choice are evaluated. The second

study (Chapter 4) expands by accounting for wave impacts and quantifying uncertainties

induced by sampling methods, record length, distribution choice, and precipitation gauge

source. Wave measurements are combined with observed water levels into total water levels

(TWL, discussed in Methods) resulting in three univariate (observed and total water levels,

and precipitation) and two bivariate (observed water level-precipitation and total water level-

precipitation) flood hazards under consideration. Lastly, various multivariate flood events

are hydrodynamically modeled in an infrastructure-rich test site to consider the uncertainty

impacts in modeled flooding outcomes (Chapter 5).
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Table 1.3: List of sources of uncertainties and studies which quantify their impacts

Uncertainty Source References

Sampling methods

Engeland et al. (2004); Jarušková and Hanek

(2006); Mazas and Hamm (2017); Sadegh et al.

(2017); Lucey and Gallien (2022, 2023)

Distribution choice
Jane et al. (2020); Lucey and Gallien (2022,

2023)

Data availability

(Genest et al., 2009; Su and Tung, 2013; Tong

et al., 2015; Sadegh et al., 2017; Dodangeh

et al., 2019; Lucey and Gallien, 2023)

Observation source Lucey and Gallien (2023)

Microclimatology Lucey and Gallien (2023)

Distribution parameters Wahl et al. (2012); Sadegh et al. (2017, 2018)

Numerical model inputs

Brown et al. (2007); Coveney and Fothering-

ham (2011); Bates et al. (2014); Sampson et al.

(2014); Saint-Geours et al. (2015)

Reveiw on numerical modeling un-

certainty
Teng et al. (2017)
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CHAPTER 2

Methods

2.1 Univariate, bivariate, & conditonal distributions

Potential flooding events are determined with three different probability definitions: uni-

variate, conditional, and bivariate. Assuming X and Y are random variables, x and y are

observations of these variables, and FX and FY represent the variables’ respective cumulative

distribution functions (CDF). Formulations for univariate (FX(x), FY (y)) and bivariate joint

(FXY (x, y)) CDFs follow DeGroot and Schervish (2014) (Eq. (2.1) and (2.2)). Condition-

als (FX|Y≥y(x|Y ≥ y), FX|Y≤y(x|Y ≤ y), and FX|Y=y(x|Y = y)) are developed from Shiau

(2003) (Eq. (2.3)) and Serinaldi (2015) (Eq. (2.4) and (2.5)). Conditionals 1 (C1), 2 (C2),

and 3 (C3) represent Eq. (2.3), (2.4), and (2.5) going forward. Univariate statistics are

developed using the appropriate continuous random variable distribution while conditional

and bivariate CDFs are determined using copulas.

Copulas are functions that associate random variables’ univariate CDFs to their joint

CDF (e.g., FX and FY to FX,Y (x, y)) according to Sklar’s theorem (Sklar, 1959; Salvadori,

2004). There is no requirement for the univariate distributions to be the same. This is

particularly advantageous since the optimal univariate distributions may be used for each

variable. Bivariate probabilities for different hazard scenarios, which represent various mul-

tivariate events, and conditional probabilities can be calculated using fitted copula functions.

FX(x) = Pr(X ≤ x) (2.1)
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FX,Y (x, y) = Pr(X ≤ x and Y ≤ y) (2.2)

FX|Y≥y(x|Y ≥ y) = Pr(X > x|Y ≥ y) =
FX(x)− FXY (xy)

1− FY (y)
(2.3)

FX|Y≤y(x|Y ≤ y) = Pr(X > x|Y ≤ y) = 1− FX,Y (x, y)

FY (y)
(2.4)

FX|Y=y(x|Y = y) = Pr(X > x|Y = y) = 1− ∂FXY (xy)

∂y
(2.5)

2.2 Hazard scenarios

Notation and definitions from Salvadori et al. (2016), unless otherwise stated, are used to

define the upper set (S) and scenario types. Salvadori et al. (2016) and Serinaldi (2015)

present figures of each scenario’s probability space. Further discussion of hazard scenarios

and copulas assume a bivariate situation.

2.2.1 “OR”

“OR” scenario events have one or both random variables exceed a specified threshold. That

is, what is the probability of a water level or precipitation event exceeding a given value?

Standard univariate CDFs make up the associated copula.

α∨
x = P(X ∈ S∨

x ) = 1−C(F1(x1), ...,Fd(xd)) (2.6)

2.2.2 “AND”

“AND” scenario events have both random varibles exceed a specified threshold. In this

case the fundamental question is “what is the probability of a particular water level and
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precipitation rate exceeding specified values?”. The survival copula (Ĉ(u, v)) is comprised

of univariate survival CDFs (F̄(x) = 1 − F(x)) and the provided equation can be found in

Serinaldi (2015) and Salvadori and De Michele (2004).

α∧
x = P(X ∈ S∧

x ) = Ĉ(F̄1(x1), ..., F̄d(xd)) (2.7)

Ĉ(u, v) = 1− u− v + C(u, v) (2.8)

2.2.3 “Kendall”

The “Kendall” (K) scenario highlights an infinite set of OR events that separate the subcrit-

ical (i.e, “safe”) and supercritical (i.e.,“dangerous”) statistical regions. In the OR scenario,

events along an isoline (t) share a common probability, but define separate regions. Events

along a Kendall t represent the same super critical region (Serinaldi, 2015) and provide a

“safety lower bound” (Salvadori et al., 2011). Essentially the Kendall scenario considers the

minimum OR events of concern. K(t) is estimated by a method outlined in Salvadori et al.

(2011).

K(t) = P(F(X1, ..., Xd) ≤ t) = P(C(F1(X1), ..., Fd(Xd)) ≤ t) (2.9)

αK
t = P(X ∈ SK

t ) = 1−K(t) (2.10)

2.2.4 “Survival Kendall”

“Survival Kendall” (SK) scenario highlights an infinite set of AND events which also separate

safe and dangerous statistical spaces. AND events along a t also share a common probability,

but define separate regions. Events along an SK t represent the same super critical region,
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but provide an “(upper) bounded safe region” (Salvadori et al., 2013). The Survival Kendall

specifically considers the largest AND events of concern and is estimated by the method

outlined in Salvadori et al. (2013).

K̂(t) = P(F(X1, ..., Xd) ≤ t) = P(Ĉ(F̄1(X1), ..., F̄d(Xd)) ≤ t) (2.11)

αǨ
t = P(X ∈ SǨ

t ) = 1− Ǩ(t) = K̂(t) (2.12)

2.2.5 “Structural”

The “Structural” scenario considers the probability of an output from a structural func-

tion, Ψ(X), exceeding a design load or capacity (z) (Salvadori et al., 2016). For example,

De Michele et al. (2005) and Volpi and Fiori (2014) used a structural function to evaluate a

dam spillway while Salvadori et al. (2015) considers the preliminary design of rubble mound

breakwater. In this work, the structural failure function focuses on the question “what is

the probability of a water level forcing tide valve closure and subsequent flooding during a

precipitation event?”.

αΨ
z = P(X ∈ SΨ

z ) = P(Ψ(X) > z) (2.13)

2.3 MvCAT

Sadegh et al. (2017) developed a publicly available MATLAB toolbox called The Multivariate

Copula Analysis Toolbox (MvCAT) where users can fit multiple copula functions for char-

acterizing bivariate events. Additional information about MvCAT and its updated version

(MhAST) can be found in Sadegh et al. (2017, 2018). The MvCAT framework was expanded

in Lucey and Gallien (2022), and is used to determine all uni- and multivariate statistics.

Copulas without continuous PDF functions or complex derivatives (Cuadras-Auge, Raftery,
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Shih-Louis, Linear-Spearman, Fischer-Hinzmann, Marshal-Olkin, Gaussian, and Student t)

were removed from the studies. However, all copulas were considered when creating isolines

to assess the uncertainty in the flood metrics for events of the same return period (i.e., along

the same isoline).

2.4 Return periods

Return period (T ) is a statistical description of event severity and is commonly used in

hydrologic studies (e.g., De Michele et al., 2005, 2007; FEMA, 2011; Wahl et al., 2012;

USACE, 2013; Salvadori et al., 2014; Wahl et al., 2015; Salvadori et al., 2015). A return

period is the inverse of an event’s probability of exceedance presented as F in Eq. (2.14) (Tu

et al., 2018). N is the utilized record length, n is the number of considered events within

N , and Ne is the average number of events per unit of time (monthly, yearly, etc.) in Eq.

(2.15). Ne = 1 when using annual samplings (Tu et al., 2018) and will vary when using the

wet season monthly samplings depending on the average number of events sampled per year.

T = 1/(Ne ∗ F ) (2.14)

Ne = n/N (2.15)

2.5 Goodness of fit metrics

Multiple goodness of fit metrics and correlations serve to quantify the quality of distribution

fits and dependencies between variables. Marginal fits are selected by Bayesian Information

Criterion (BIC; Eq. (2.19)) and must pass the Chi-square goodness-of-fit test at standard

significance levels (α = 0.05), unless otherwise stated. Copulas are selected by BIC and

must pass the Cramér-von Mises test (Genest et al., 2009; Couasnon et al., 2018; Sadegh
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et al., 2018; Ward et al., 2018). Likelihood (L ∈ [0,∞)) measures how well a distribution’s

estimated parameters fit the sample data with larger values suggesting a better fit. Log-

likelihood (ℓ ∈ (−∞,∞)) is the log transformation of Eq. (2.16) used to calculate BIC. BIC

(BIC ∈ (−∞,∞)) is similar to the likelihood, but penalizes for the number of estimated

parameters (D) and the data’s sample size (n). Smaller BIC values represent a better fit.

Equations and definitions can be found in Sadegh et al. (2017). Correlation measurements

include Pearson’s linear correlation, Kendall’s tau, and Spearman’s rho coefficients.

L(θ|Ỹ) =
n∏

i=1

1√
2πσ̃2

exp{−1

2
σ̃2[ỹi − yi(θ)]

2} (2.16)

σ̃2 =

∑n
i=1[ỹi − yi(θ)]

2

n
(2.17)

ℓ(θ|Ỹ) = −n

2
ln(2π)− n

2
ln σ̃2 − 1

2
σ̃2

n∑
i=1

[ỹi − yi(θ)]
2 (2.18)

BIC = Dln(n)− 2ℓ (2.19)

16



CHAPTER 3

Characterizing multivariate coastal flooding events

from precipitation and high marine water levels

3.1 Background

Coastal flooding studies primarily focus on locations defined by storm-surge-dominated

oceanographic conditions with warm and humid (Wahl et al., 2012; Lian et al., 2013; Xu

et al., 2014; Masina et al., 2015; Wahl et al., 2015; Mazas and Hamm, 2017; Paprotny et al.,

2018; Tu et al., 2018; Bevacqua et al., 2019; Didier et al., 2019; Xu et al., 2019; Yang et al.,

2020) climatic conditions (i.e. Köppen-Geiger system, Beck et al., 2018). In contrast, along

the southern California coast typical tidal variability is 1.7 to 2.2 m (Flick, 2016) and storm

surge rarely exceeds approximately 20 cm (Flick, 1998). Notably, during the wet season

(October to March), when precipitation typically occurs, spring tide ranges are relatively

large (∼ 2.6 m). Critically, few studies consider areas where coastal flooding events are

dominated by large tides and either precipitation or wave events (Masina et al., 2015; Mazas

and Hamm, 2017; Didier et al., 2019; Jane et al., 2020). This study explores univariate

and multivariate flooding events in a semi-arid, tidally dominated, highly urbanized region.

Here, the dependency between observed water levels and precipitation, impacts of sampling

methods and distribution fitting, and the resulting flood values are explored.
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3.2 Site description & data

This study considers observed water level and precipitation influences for coastal multi-

variate events at Santa Monica (SM), Sunset Beach (S), and LA Jolla (SD) areas in Los

Angeles, Huntington Beach, and San Diego, California (Fig. 4.1); three semi-arid, tidally

dominated sites in the United States. All are low-lying estuarine or bay-backed highly ur-

banized beach communities requiring extensive coastal management to mitigate flooding

events. For example, sea walls and artificial berms in Sunset Beach protect infrastructure

from high embayment water levels, wave runup, and overtopping along the open coast. The

storm drain network is managed to prevent back flooding during high tides. Notably, Gallien

et al. (2014) suggested when tide valves are closed, the storm drain network cannot reduce

pluvial flooding caused by alternative flooding pathways (e.g., precipitation or wave over-

topping). Pacific Coast Highway (PCH) is heavily utilized and is a primary transportation

corridor along the southern California coastline. All locations are densely urbanized and

highly impacted by flooding.

Observed water levels from the Los Angeles (Station ID: 9410660), La Jolla (Station ID:

9410230), and Santa Monica (Station ID: 9410840) tide gauges are available on NOAA’s

Tides and Currents for daily high-low, hourly, or six minute intervals (NOAA, Accessed

2019c). Verified hourly water levels (m NAVD88) had the longest record length at all three

stations and provided an additional 31-years of observations overlapping precipitation data

for Los Angeles and La Jolla, and 6-years for Santa Monica. The resulting observations

windows are November 22, 1973 to December 19, 2013 for Santa Monica, July 1, 1948 to

December 1, 2012 for Sunset and July 1, 1948 to December 19, 2013 for San Diego (Table

3.1).

It is worth noting, that within the body of multivariate flooding literature, the terms

tide and water level may be interchanged (e.g., Lian et al., 2013; Xu et al., 2014; Tu et al.,

2018; Xu et al., 2019; Yang et al., 2020). This is a key distinction since compound event
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dependencies may change depending on water level selection. Recent efforts have been made

to standardize language where tide represents only the astronomical changes in water levels

and storm surge specifically excludes astronomical variability and consists only of the inverse

barometric effects along with wind and wave setup (Gregory et al., 2019). In this study, the

term observed water level (OWL) is adopted. OWL is the water level measured at the NOAA

tide gauges which includes all tidal, storm, and climatic effects.

The U.S. Hourly Precipitation Data dataset provided by NOAA’s National Centers for

Environmental Information (NOAA, Accessed 2019b) at the Signal Hill (COOP:048230),

Los Angeles International Airport (COOP:045114), and San Diego International Airport

(COOP:047740) stations is used as the precipitation inputs. Observations do not contain

trace amounts (< 0.25 mm) and are provided as cumulative precipitation (mm) per event.

Precipitation measurements were converted to a mmday−1 rate by dividing the total event

precipitation by the event duration to match the hourly OWL measurements. The final

precipitation input is a 24-hour cumulative precipitation record made from the hourly ob-

servations. All data was transformed to UTC for analysis.

Multivariate flood probabilities are determined with combinations of sampling methods:

Annual Maximum (AM), Annual Coinciding (AC), Wet Season Monthly Maximum (WMM),

and Wet Season Monthly Coinciding (WMC). AM sampling pairs the single largest precipi-

tation and OWL observations within a given year (without regard to co-occurrence), where

AC sampling pairs the single largest precipitation observation within a given year to the

largest OWL observation within its 24-hour accumulation period. Each sampling method

samples from a unique probability space and therefore will provide varying perspectives for a

return period. A summary of each sites’ associated gauges, observation windows, and num-

ber of pairs is provided in Table 3.1. Southern California’s wet season is defined between

October to March and provides a majority of the total annual rainfall (Cayan and Roads,

1984; Conil and Hall, 2006). It is likely for extreme multivariate events to occur during

this period. Maximum sampling pairs the single largest precipitation and OWL observa-
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Table 3.1: Water level and precipitation observations at Santa Monica (SM), Sunset (S), and

San Diego (SD) using annual maximum (AM), annual coinciding (AC), wet season monthly

maximum (WMM), and wet season monthly coinciding (WMC) samplings

Site
Tide Precip. Observation AM AC WMM WMC

Gauge Gauge Window Pairs Pairs Pairs Pairs

SM 9410840 045114
November 22, 1973 to

December 19, 2013
40 38 193 191

S 9410660 048230
July 1, 1948 to

December 1, 2012
63 63 257 258

SD 9410230 047740
July 1, 1948 to

December, 19 2013
65 60 328 329

tions within each year or wet season month. A multivariate event created with the largest

observed precipitation and OWL within a year or wet season month can result in an event

with severe flooding potential. Although strictly speaking maximum parings (annual or wet

season) do not technically represent an observed multivariate event, they would represent a

severe event and are consistent with the blended approach recommended by FEMA (2016c).

Coinciding sampling pairs the single largest precipitation observation within each year or

wet season month to the largest OWL observation within its 24-hour accumulation period,

providing more realistic pairs compared to maximum sampling.

Distributions are fit with existing precipitation observations greater than zero consistent

with previous studies (Swift Jr and Schreuder, 1981; Hanson and Vogel, 2008). Months

with no OWL measurements were excluded. In the case of coinciding sampling, pairs that

had three or more OWL measurements missing within the 24-hour window were manually

reviewed and removed if their tidal peak was clearly missing. Specifically for WMM sampling,

months with more than half their observations missing were also reviewed and removed if

the tidal peak was missing. The resulting data pairs are shown in Fig. 3.2.

20



Figure 3.1: Map displaying (a) Santa Monica, (b) Sunset, and (c) San Diego sites along

with locations of tide gauges (triangle) and precipitation stations (circle). The road drain

(square) and boundary (yellow) at Sunset (∼2 km2) is for the Structural scenario. Aerial

imagery from NOAA (Accessed 2020).

Figure 3.2: Data pairs for each sampling method. annual maximum (AM, cross), annual

coinciding (AC, plus), wet season monthly maximum (WMM, dot), and wet season monthly

coinciding (WMC, triangle) at (a) Santa Monica, (b) Sunset, and (c) San Diego
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3.3 Results

Univariate, conditional, and bivariate probabilities were developed using four sampling meth-

ods (AM, AC, WMM, and WMC) and seventeen different copulas. Two marginal distribu-

tions do not pass the chi square test at the standard 0.05 level of significance (San Diego

AM OWL and Santa Monica WMM OWL). These distributions pass at reduced significance

levels of 0.01. Four copulas almost always passed (Nelsen, BB1, BB5, and Roch-Alegre) the

Cramér-von Mises test and are used for analysis. It is noted the Roch-Alegre (Roch.) did

not pass at Sunset for WMM sampling, and the BB1 and BB5 did not pass at San Diego

for WMC sampling. Additionally, Santa Monica’s AM data is slightly negatively correlated

(> −0.06). Copula and sampling effects differ significantly at low (i.e., low return period)

and high (i.e., severe return period) probabilities of non-exceedance. In the case of annual

sampling, non-exceedance (exceedance) probabilities are 0.9 (0.1) and 0.99 (0.01) for the

10- and 100-year events, respectively. In wet season sampling, return period exceedance

probabilities vary depending on sampling type and location due to the average number of

event observations per year (Ne from Eq. (2.15)). For example, San Diego WMC sampling

has 329 observations within the 65 year record (i.e., Ne = 5.06). Therefore, the exceedance

probabilities (F in Eq. (2.14)) associated to a 10- and 100-year event are 0.0198 and 0.0020

(non-exceedance probabilities at 0.9802 and 0.9980), respectively. Table 3.2 presents wet

season (WMM and WMC) exceedance probabilities for all sites.

Table 3.2: Santa Monica, Sunset, and San Diego exceedance probabilities at the 10- and

100-year return periods for wet season monthly maximum (WMM) and wet season monthly

coinciding (WMC) samplings.

Santa Monica Sunset San Diego

10-year 100-year 10-year 100-year 10-year 100-year

WMM 0.0207 0.0021 0.0245 0.0025 0.0198 0.0020

WMC 0.0209 0.0021 0.0244 0.0024 0.0198 0.0020
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Figure 3.3: (a) OWL and (b) precipitation marginals for Santa Monica (SM, solid lines),

Sunset (S, dashed lines), and San Diego (SD, dotted lines) using annual maximum (AM,

blue), annual coinciding (AC, green), wet season monthly maximum (WMM, black), and

wet season monthly coinciding (WMC, red) samplings.
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3.3.1 Marginals

The selected marginal distributions (Fig. 3.3, Table 7.1) were tested and/or suggested fits

in previous studies. Rainfall has been widely fit with an Exponential distribution (refer to

Table 2 in Salvadori and De Michele (2007)), but more recently been fit using a variety

of distributions including Gamma (Husak et al., 2007), Rayleigh (Pakoksung and Takagi,

2017; Esberto, 2018), Generalized Pareto or Birnbaum-Saunders (Ayantobo et al., 2021).

In the case of annual precipitation (coinciding or maximum sampling) Santa Monica was

well described by a Birnbaum-Sanders, Rayleigh best described Sunset data, and a Gamma

was the best fit for San Diego data. Similarly, wet season precipitation data (maximum or

coinciding sampling) was best described by the Exponential distribution for Santa Monica

and Sunset while the Generalized Pareto best represented San Diego.

Historically, water levels have been described using a number of distributions including

Normal (Hawkes et al., 2002), Generalized Pareto (Mazas and Hamm, 2017), Log Logistic

and Nakagami (Sadegh et al., 2018), Birnbaum-Saunders (Sadegh et al., 2018; Didier et al.,

2019; Jane et al., 2020), along with Gamma, Weibull, and Inverse Gaussian (Jane et al.,

2020). Observed water levels did not exhibit site specific patterns and were described by a

range of distributions (Table 7.1).

3.3.2 Copulas

San Diego wet season monthly coinciding conditional CDFs display individual copulas effects

(Fig. 3.4). The Nelsen, Roch., and BB1 copulas consistently suggest similar OWL (Fig. 3.4a,

e) and precipitation values (Fig. 3.4b, f) while, in this example, the BB5 suggests higher

OWL and precipitation values (solid black line, Fig. 3.4a, b, e, f). C1’s 100-year pair in

Table 3.5 displays an example of the BB5’s conservative nature. Copula choice has nearly no

effect on the Conditional 2 scenario (Fig. 3.4c, d). Most probable OWL and precipitation

values in Tables 3.4 and 3.5 further display the aforementioned behaviors. These conditional
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Table 3.3: Best fitting univariate distributions for each location and sampling method (an-

nual maximum (AM), annual coinciding (AC), wet season monthly maximum (WMM), wet

season monthly coinciding (WMC)).

Dataset Variable Santa Monica Sunset San Diego

AM
OWL L BS GP

Precip BS R G

AC
OWL N GP NA

Precip BS R G

WMM
OWL N W GEV

Precip E E GP

WMC
OWL G IG IG

Precip E E GP

BS - Birnbaum-Saunders; GP - Generalized Pareto; E - Exponential

R - Rayleigh; N - Normal; L - Log logistic; G - Gamma

W - Weibull; IG - Inverse Gaussian; NA - Nakagami

patterns generally persist at all locations with an additional note that the Nelsen can suggest

lower OWL values and the BB5 can provide similar results to the Roch. and BB1 copulas.

Figures 3.5 and 3.6 show the 10- and 100-year return periods, respectively, for the four

focused copulas using wet season monthly coinciding sampling at San Diego. Clearly the

BB5 presents conservative results suggesting higher OWL and precipitation pairs in the AND

and SK scenarios (Fig. 3.5a, c and 3.6a, c), while the BB1, Nelsen, and Roch-Alegre copulas

present similar OWL and precipitation values. The OR and Kendall scenarios suggest quite

similar isolines between copulas, suggesting similar values, but the BB5 suggests less severe

OWL and larger precipitation values according to the densest location along its isoline (Fig.

3.5b, d, and 3.6b, d). Tables 3.4 and 3.5 further display the bivariate patterns. Again, these

bivariate patterns generally persist at all locations with the additional notes: the Nelsen
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Figure 3.4: San Diego wet season monthly coinciding OWL (left column) and precipita-

tion (right column) (a), (b) C1, (c), (d) C2, and (e), (f) C3 CDFs using the Nelsen (blue),

Roch-Alegre (Roch), BB1 (green), and BB5 (black) copulas. OWL/ Precipitation condition-

als are conditioned on the occurrence of a 25-year precipitation/ OWL event.
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may suggest lower OWL values in the AND and SK scenarios, the BB5 typically has similar

results to the Roch. and BB1 copulas in the AND and SK scenarios, and the BB5 typically

agreed with the other copula results outside of San Diego for the OR and K scenarios.

Table 3.4: San Diego 10-year marginal (M), conditional (C), and bivariate OWL (m) and

precipitation (mmday−1) values using wet season monthly coinciding sampling. Conditionals

are conditioned on a 25-year event occurring.

Nelsen Roch. BB1 BB5

OWL Precip OWL Precip OWL Precip OWL Precip

M 2.11 33.64 2.11 33.64 2.11 33.64 2.21 33.64

C1 2.19 36.79 2.18 36.27 2.16 35.41 2.62 48.65

C2 2.11 33.61 2.11 33.61 2.11 33.62 2.09 33.02

C3 2.19 36.76 2.18 36.24 2.15 35.37 2.46 44.92

AND 1.85 22.49 1.85 22.15 1.84 21.65 1.91 24.99

OR 2.20 37.06 2.17 38.29 2.20 37.06 2.12 43.47

K 2.22 37.67 2.22 37.67 2.05 32.52 2.14 44.11

SK 2.15 35.13 2.15 35.11 2.15 35.04 2.21 37.88

3.3.3 Sampling

San Diego conditional CDFs using the BB1 copula clearly present sampling effects (i.e.

maximum versus coinciding and annual versus wet season months). It should be noted,

that each sampling method represents a unique probability space and accordingly results

in alternative realizations of a given return period. Coinciding samplings exhibit similar

OWL CDFs (green and red lines, Fig. 3.7a, c, e), whereas wet season samplings exhibit

similar precipitation CDFs (red and black lines Fig. 3.7b, d, f). OWL values can be larger

for maximum samplings at lower non-exceedance probabilities (i.e lower return periods)

(Fig. 3.7a, c, e blue and black lines, Table 3.6). However, the extended tail from WMC
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Figure 3.5: San Diego wet season monthly coinciding (a) AND, (b) OR, (c) SK, and (d)

K hazard scenarios with the Nelsen, Roch-Alegre (Roch), BB1, and BB5 10-year isolines.

Copula labels point to the mostly likely value on their respective isolines.
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Figure 3.6: San Diego wet season monthly coinciding (a) AND, (b) OR, (c) SK, and (d)

K hazard scenarios with the Nelsen, Roch-Alegre (Roch), BB1, and BB5 100-year isolines.

Copula labels point to the mostly likely value on their respective isolines.
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Table 3.5: San Diego 100-year marginal (M), conditional (C), and bivariate OWL (m) and

precipitation (mmday−1) values using wet season monthly coinciding sampling. Conditionals

are conditioned on a 25-year event occurring.

Nelsen Roch. BB1 BB5

OWL Precip OWL Precip OWL Precip OWL Precip

M 2.40 43.34 2.40 43.34 2.40 43.34 2.40 43.34

C1 2.47 45.26 2.46 44.95 2.44 44.48 2.89 52.72

C2 2.40 43.32 2.40 43.32 2.40 43.34 2.35 42.11

C3 2.47 45.26 2.46 44.92 2.44 44.42 2.68 49.72

AND 2.04 30.77 2.03 30.45 2.02 29.93 2.20 37.42

OR 2.47 45.53 2.48 45.39 2.47 45.53 2.40 49.17

K 2.22 31.79 2.22 31.79 2.17 40.13 2.14 38.59

SK 2.31 40.97 2.33 41.53 2.32 41.26 2.46 45.25

sampling produces larger OWL at higher return periods (red line Fig. 3.7a, c, e; Table 3.7).

Annual coinciding sampling displays significantly lower OWL values at low (Table 3.6) and

high (Table 3.7) return periods. Only minimal differences between annual and wet season

precipitation exist at the 10- and 100-year return periods (maximum difference of 1.06 and

4.56 mmday−1 respectively; Tables 3.6 and 3.7). Annual (wet season) precipitation CDFs

appear similar as OWL measurements are chosen subsequent to precipitation observations

(Fig. 3.7b, d, f).

Figures 3.8 and 3.9 present the 10- and 100-year return periods using the BB1 copula for

all samplings (AM, AC, WMM, and WMC). For the AND and K scenarios, AM sampling

results in the largest OWL compared to the other sampling methods (Fig. 3.8a, d and

3.9a, d, Tables 3.6 and 3.7). Additionally for the AND and K scenarios (Fig. 3.8a, d and

3.9a, d), maximum samplings (AM and WMM) provide more conservative OWLs compared

to WMC OWL values (Tables 3.6 and 3.7). When comparing maximum samplings (AM
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Figure 3.7: San Diego OWL (left column) and precipitation (right column) (a), (b) C1, (c),

(d) C2, and (e), (f) C3 CDFs for annual maximum (AM, blue), annual coinciding (AC, green),

wet season monthly maximum (WMM, black), and wet season monthly coinciding (WMC,

red) samplings using the BB1 copula. OWL/ Precipitation conditionals are conditioned on

the occurrence of a 25-year precipitation/ OWL event.
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and WMM) to WMC sampling in the OR and SK scenarios, maximum samplings generally

provide larger OWL values at lower return periods (Fig. 3.8b, c; Table 3.6), but smaller

or similar OWL at larger return periods (Fig. 3.9b, c; Table 3.7). AC sampling generally

results in the smallest OWL levels at all hazard scenarios. These behaviors persist across all

locations. Given wet season monthly coinciding sampling results in larger OWL values for

the marginal, conditional, OR, and Kendall scenarios, this suggests maximum type sampling

may not accurately reflect OWL at extreme return periods.

Table 3.6 and 3.7 shows the most probable 10- and 100-year marginal and multivariate

event values. AM OWL exceed AC OWL across all probability types and sites, which is

expected given the (nonphysical) paring of the two largest individual OWL and precipitation

events without regard to co-occurrence. For example, in the 10-year return period annual

maximum OWLs are at least 30 cm higher than AC (Table 3.6). In the 100-year return

period annual maximum OWLs exceed annual coinciding OWLs by at least 17 cm (Table

3.7). Precipitation is generally consistent across sampling types with only minor variations

observed. AM and WMM sampling generally produced similar OWL results at both the 10-

and 100-year return periods with maximum difference of 6 cm across all conditionals and

copulas.

3.3.4 Structural failure

A structural scenario is presented to consider flood severity along the Pacific Coast Highway

(PCH) in Sunset Beach. PCH road elevation ranges from 1.7-2.4 m NAVD88 (Fig. 3.10), be-

low typical spring tide (∼2.13 m) and more extreme (∼2.3 m) water levels (NOAA, Accessed

2019a), requiring tide valves along PCH for flood prevention. Tide valve closures prevent

back-flooding from high bay water levels coming up through subsurface storm drains that

(normally) discharge to the bay. Additionally, closed tide valves enable precipitation pooling

since water cannot be drained to the bay. Severe pooling may result in a critical highway

closure, which can further damage property and inhibit emergency service operations.
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Table 3.6: San Diego 10-year marginal (M), conditional (C), and bivariate OWL (m) and

precipitation (mmday−1) values using the BB1 with annual maximum (AM), annual coin-

ciding (AC), wet season monthly maximum (WMM), and wet season monthly coinciding

(WMC) samplings. Conditionals are conditioned on a 25-year event occurring.

AM AC WMM WMC

OWL Precip OWL Precip OWL Precip OWL Precip

M 2.22 33.38 1.83 33.76 2.20 33.61 2.11 33.64

C1 2.24 35.20 1.86 35.03 2.21 34.39 2.16 35.41

C2 2.22 33.31 1.83 33.70 2.20 33.60 2.11 33.62

C3 2.23 34.50 1.86 34.99 2.21 34.31 2.15 35.37

AND 2.14 26.13 1.66 26.79 2.09 20.89 1.84 21.65

OR 2.25 37.03 1.91 37.71 2.22 38.48 2.20 37.06

K 2.24 36.02 1.89 36.44 2.18 32.10 2.05 32.52

SK 2.25 38.45 1.94 38.70 2.21 35.06 2.15 35.04

Areal precipitation flooding extent and depth can be estimated for water levels exceeding

tide valve closure elevation. A water level equal to or greater than 1.68 m NAVD88 forces

valve closures and frames the structural failure as a Conditional 1 type event. The local

watershed is convex and drains an area of 94,897 m2. Water pools in the low elevation

areas along PCH (Fig. 3.10). When pluvial water levels exceed the sea wall elevation, water

overflows the sea wall and exits to the harbor. The maximum pool storage is 11,342 m3.

The percent of flooding is then calculated with Eq. (3.1) as the structural function.

Structural scenario precipitation and percent flooding (Ψ) values utilizing the Nelsen,

Roch-Alegre, and BB1 copulas are shown in Table 3.8. Rows and columns separate the

utilized sampling methods and return periods of interest, respectively. Fig. 3.11 shows Ψ

as a function of precipitation for the Nelsen, Roch-Alegre, and BB1 copulas along with the

5- (square), 10- (circle), and 100-year (diamond) return periods. All copulas display similar
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Table 3.7: San Diego 100-year marginal (M), conditional (C), and bivariate OWL (m) and

precipitation (mmday−1) values using the BB1 with annual maximum (AM), annual coin-

ciding (AC), wet season monthly maximum (WMM), and wet season monthly coinciding

(WMC) samplings. Conditionals are conditioned on a 25-year event occurring.

AM AC WMM WMC

OWL Precip OWL Precip OWL Precip OWL Precip

M 2.27 45.07 2.08 45.65 2.26 43.32 2.40 43.34

C1 2.27 48.54 2.10 46.76 2.27 43.98 2.44 44.48

C2 2.27 44.90 2.08 45.60 2.26 43.30 2.40 43.34

C3 2.27 46.35 2.10 46.69 2.27 43.79 2.44 44.42

AND 2.23 34.01 1.85 34.39 2.17 29.29 2.02 29.93

OR 2.27 48.15 2.14 48.83 2.27 45.52 2.47 45.53

K 2.26 42.81 2.02 42.45 2.22 39.68 2.17 40.13

SK 2.27 46.20 2.08 45.65 2.25 40.90 2.32 41.26

values across sampling methods (Fig. 3.11, Table 3.8). For example, the 10-year precipitation

with wet season monthly coinciding sampling is 82.49, 81.95, and 81.09 for the Nelsen,

Roch-Alegre, and BB1 copulas, respectively. Again, AC sampling severely underestimates

precipitation and flooding.

% flooding =
precipitation× area

volume
× 100 (3.1)

3.4 Discussion

Previous multivariate studies typically use a small, popular group of copulas (e.g., Clayton,

Frank, Gumbel, Student t, and Gaussian). Gaussian and Student t copulas were excluded

from this study due to their lack of a computationally simple derivative or integral while
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the Clayton, Frank, and Gumbel failed to pass the Cramér-von Mises test. Nelsen, BB1,

BB5, and Roch-Alegre copulas generally present similar values with the BB5 occasionally

presenting more conservative pairs (Fig. 3.6). Well fit copulas concentrate probabilities

around more centralized OWL and precipitation values for multivariate events. This is most

pronounced at higher (i.e., 100-year) return periods (Fig. 3.6). Given that the resulting

copulas exhibit agreement between values (for a given sampling) suggests that choosing

a reasonable copula may be sufficient to provide a robust characterization of considered

multivariate flooding events.

The choice in sampling imparts a significant influence on event risk interpretation. When

maximum versus coinciding sampling is considered, maximum samplings (AM and WMM)

tend to provide the largest OWL at low return periods (Fig. 3.7a, c, e, Fig. 3.8, and Table

3.6). At larger return periods, wet season monthly coinciding then provides significantly

larger OWLs (Fig. 3.7a, c, e, Fig. 3.9, and Table 3.7). This is observed in the conditionals

and bivariates (minus the AND and K hazard scenarios which maximum samplings display

the largest OWLs) at all sites. From a logical perspective, coinciding sampling provides

a more realistic view of multivariate events (by definition these are pairs that have co-

occurred to produce a multivariate flooding event). At long return periods annual coinciding

sampling may require a long data record, which is often unavailable. Notably, in this study

annual coinciding produced OWL samplings that were substantially lower than any of the

other samplings. For example when comparing 100-year OWLs with annual and wet season

monthly coinciding samplings, the marginal was 32 cm lower and the AND scenario was 17

cm lower (Table 3.7). Given that sea wall protected urban coastal areas are highly sensitive

to even minor elevations differences (e.g., Gallien et al., 2011), this suggests with limited

data records annual coinciding sampling should be avoided.

An important note is each probability type appropriately describes a unique event, char-

acterized by OWL and precipitation. Serinaldi (2015) suggests inter-comparing univariate,

multivariate, and conditional probabilities and return periods is misleading as each proba-
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bility type describes its associated event. Events where only extreme OWL or precipitation

is of concern, should simply utilize marginal statistics and follow current FEMA guidelines.

Multivariate event analysis may utilize a variety of scenarios. Conditional type distribu-

tions become useful when future information on one variable is known (ex., predicted OWL

levels). AND scenarios may be applied when both variables exceeding given limits is of

concern. The Survival Kendall scenario is an alternative to the AND scenario using a more

conservative approach to develop events of concern (Salvadori et al., 2013). An OR scenario

should be applied when either multivariate variable exceeding a limit is of concern, whereas

the Kendall scenario provides minimum OR events of concern (Salvadori et al., 2011). The

benefit of the Kendall and Survival Kendall is all the events along their isolines describe

a similar probability space versus the AND and OR isolines describe events with similar

probabilities of non-exceedance. It is critical for practitioners and future studies to define

concerning flood events within a region since the associated probability will result in varying

event risk estimates as seen within this work. The selected probability type will have sig-

nificant influence on flood risk studies and modeling efforts. A majority of previous studies

focus on specific probability types and do not consider multiple flooding pathways. Only a

single study explores all the probabilities associated to different extreme events (Serinaldi,

2016).

From a regulatory perspective, FEMA recommends individual (univariate) analysis to

develop return periods for multivariate coastal flooding applications (FEMA, 2011, 2016c,

2020), and blending the two hazard mapping results. Fundamentally, this type of approach

assumes (event) independence and may underestimate multivariate flood hazards (e.g., Mof-

takhari et al., 2019; Muñoz et al., 2020). FEMA provides guidelines for coastal-riverine

(FEMA, 2020), tide, surge, tide-surge (FEMA, 2016a), surge-riverine (FEMA, 2016c), and

tropical storm (or hurricane) type flooding events (FEMA, 2016b). Currently, FEMA does

not provide specific guidance for considering high marine water levels and precipitation.

However, this work suggests, at high return periods the sampling method is critical to char-

36



acterizing both univariate and joint probabilities.

Structural scenarios provide a quantitative context to frame flood vulnerability. In the

structural failure context, annual coinciding sampling significantly underestimates flooding

at all return periods, and annual maximum sampling underestimates severe (i.e., 100-year)

events, echoing previous annual maximum and coinciding sampling issues. Similar values

between most copulas support the suggestion that choosing a reasonable copula will provide

robust results in these types of applications. Precipitation events in the Structural scenario

(Table 3.8) range between 33.30 mmday−1 and 131.44 mmday−1, resulting between 27.86

% and complete (100 %) backshore flooding. This significant flooding at all return periods

suggests severe flood vulnerability, which is validated by frequent closures of PCH. This

structural function provides a quick and simple alternative to poorly performing bathtub

flood models (e.g., Bernatchez et al., 2011; Gallien et al., 2011, 2014; Gallien, 2016) to quan-

titatively explore flood severity while accounting for infrastructure and joint probabilities.

The maximum OWL and precipitation observations within the record are 2.33 m and

118.93 mmday−1 for Sunset, 2.27 m and 42.11 mmday−1 for San Diego, and 2.45 m and

76.83 mmday−1 for Santa Monica. Most likely precipitation and OWL pairs in high return

periods often exceed the current data record’s maximums (e.g. Table 3.7). This study is

limited to the available data records and sea level rise clearly imparts a non-stationary trend.

Current water level values restricted to today’s distribution tails, will become more frequent

in the next century (Taherkhani et al., 2020). For example, Wahl et al. (2015) suggests

a previously 100-year event in New York is now a 42-year event based on the increasing

correlation between extreme precipitation and storm surge events. Similarly, our results

suggest increasing precipitation and, particularly, OWL levels.
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3.5 Conclusions

Univariate and multivariate event risks from OWL and/or precipitation were explored at

three sites in a tidally dominated, semi-arid region. Seventeen copulas were considered.

Previous studies typically relied upon a small number of copulas (e.g. Clayton, Frank, Gum-

bel, Student t, and Gaussian) for multivariate flood assessments. In this case, the Nelsen,

BB1, BB5, and Roch-Alegre copulas passed the Cramér-von Misses test and produced sim-

ilar, quality fits across all sampling methods. Although, in some cases, the BB5 produced

conservative results. Copulas exhibit similar most probable pairs (e.g., Fig. 3.5, 3.6) suggest-

ing a number of potential copulas may provide a robust multivariate analysis. The impact

of sampling and distribution choice on uni- and multivariate return period values are pre-

sented, however uncertainties deserve further characterization. This work focused solely on

exploring conditional and joint probabilities of OWL and precipitation in a tidally and wave

dominated semi-arid region and would not be applicable to regions experiencing multiple

flooding seasons (e.g., Couasnon et al., 2022). Although wave impacts were not included in

this assessment, they are fundamental to coastal flooding, particularly in regions subjected

to long period swell. Joint probability methods explicitly including wave contributions to

multivariate event risk characterizations are needed for future work.

The annual maximum method is widely recognized for hazard assessments (FEMA, 2011,

2016c), and is common practice in flood risk analysis (e.g., Baratti et al., 2012; Bezak et al.,

2014; Wahl et al., 2015). Concerningly, this work suggests that annual maximum sampling

does not characterize severe flooding potential for extreme events. Water levels are sub-

stantially underestimated as annual sampling neglects a large portion of observations (Table

3.7). Generally, maximum samplings produced larger values at minor return periods but

significantly underestimated water levels at longer return periods than wet season monthly

coinciding sampling. Similarly, annual coinciding type sampling (Tables 3.6, 3.7) grossly

underestimate OWLs. Wet season sampling quadruples data pairs (Table 3.1), providing
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additional historical joint event information. Further investigation into monthly coincid-

ing and, where appropriate, water year coinciding are needed to develop optimal sampling

strategies for given regional conditions.

3.6 Data Availability

NOAA precipitation data is available for download at https://www.ncei.noaa.gov/metadata/

geoportal/rest/metadata/item/gov.noaa.ncdc:C00313/html\#. Tidal data is available

for download on NOAA’s Tides & Currents wetbsite (https://tidesandcurrents.noaa.

gov).
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Figure 3.8: San Diego (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios for annual

maximum (AM, cross), annual coinciding (AC, plus), wet season monthly maximum (WMM,

dot), wet season monthly coinciding (WMC, triangle) data and 10-year isolines using the

BB1 copula. Sampling labels point to the mostly likely value on their respective isolines.
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Figure 3.9: San Diego (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios for annual

maximum (AM, cross), annual coinciding (AC, plus), wet season monthly maximum (WMM,

dot), wet season monthly coinciding (WMC, triangle) data and 100-year isolines using the

BB1 copula. Sampling labels point to the mostly likely value on their respective isolines.
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Figure 3.10: Elevations within the Pacific Coast Highway boundary ranging from low (pur-

ple) to high (blue). Background imagery from NOAA (Accessed 2020).

Figure 3.11: Structural scenario 5- (square), 10- (circle), and 100-year (diamond) return

periods for annual maximum (AM, blue), annual coinciding (AC, green), wet season monthly

maximum (WMM, black), and wet season monthly (WMC, red) data using the (a) Nelsen,

(b) Roch-Alegre, and (c) BB1 copulas.
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Table 3.8: Precipitation and percent flooding (Ψ) associated to the 5-, 10-, and 100-year

return periods (T ) using the Nelsen, Roch-Alegre, and BB1 copulas to determine C1 val-

ues with annual maximum (AM), annual coinciding (AC), wet season monthly maximum

(WMM), and wet season monthly coinciding (WMC) samplings. Precipitation values are in

mmday−1 and Ψ is a percentage. Values are based off a OWL of ≥ 1.68 m which forces tide

valve closure.

T
5-yr. 10-yr. 100-yr.

Precip Ψ Precip Ψ Precip Ψ

Nelsen

AM 63.51 53.14 75.97 63.56 107.44 89.89

AC 34.45 28.82 47.41 39.66 89.39 74.79

WMM 64.51 53.97 79.27 66.32 128.26 100.00

WMC 67.71 56.65 82.49 69.02 131.44 100.00

Roch-Alegre

AM 63.51 53.14 75.97 63.56 107.44 89.89

AC 33.70 28.19 46.57 38.97 88.50 74.05

WMM 64.57 54.02 79.34 66.38 128.44 100.00

WMC 67.17 56.20 81.95 68.56 130.92 100.00

BB1

AM 63.51 53.14 75.97 63.56 107.44 89.89

AC 33.30 27.86 46.41 38.83 89.44 74.83

WMM 64.60 54.05 79.38 66.42 128.44 100.00

WMC 66.34 55.50 81.09 67.84 130.03 100.00
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CHAPTER 4

Quantifying compound flood event uncertainty from

wave induced flooding

4.1 Background

Traditionally, compound flooding literature has focused on the combined impacts of river dis-

charge and storm surge events (Table 1 in Lucey and Gallien (2022)). Modeling approaches

rarely include wave driven impacts (e.g., Barnard et al., 2019; Johnson, 2019). Similarly,

few multivariate copula based studies explicitly consider wave impacts (Table 1.1). Masina

et al. (2015) quantified flood risks from wave and water levels and highlighted the critical

the importance of considering wave impacts for realistic flood estimates. Wahl et al. (2012)

explored compound flood risks caused by storm surge and incident waves and showed flood

risks were underestimated when excluding waves. Along the U.S. West Coast wave runup

accounts for nearly half of maximum total water levels (Serafin et al., 2017), and Reguero

et al. (2019) suggest wave impacts will be amplified in a changing climate. Quantifying mul-

tivariate events explicitly accounting for wave impacts is critical to characterizing coastal

flooding (e.g., Erikson et al., 2018; Gallien et al., 2018; Barnard et al., 2019).

This study explores wave driven compound coastal flood risk and uncertainties associated

with copula choice, sampling methods, utilized rainfall gauge, and record length for various

hazard scenarios. Events caused (independently or in combination) by waves, tides, and

precipitation are considered since both waves and tides dominate total water level signals

along the California Coast (Erikson et al., 2018), and only limited studies account for these
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flood pathways (Hawkes, 2008).

4.2 Site description & data

This study focuses on two Southern California beaches, with over 70-years of tide, wave,

and precipitation records, to explore uncertainties associated to copula and sampling choice:

Sunset Beach in Huntington Beach, California and La Jolla in San Diego, California. San

Francisco is used to explore uncertainties associated to data length since its local tide and

precipitation records have 100-years of overlap. These locations are densely populated, highly

urbanized, and extensively managed to prevent flooding events which would have severe

economic, recreational and societal impacts. A single, local precipitation gauge is used to

represent the local meteorology for both San Francisco and La Jolla. For Sunset Beach two

precipitation stations, Torrance and Long Beach Airports at 9.4 m and at 26.6 m NAVD88,

were used to explore uncertainties related to the utilized rainfall gauge. The Torrance and

Long Beach precipitation gauges are approximately 11 km and 15.5 km from the LA tide

gauge, respectively, and the gauges themselves are approximately 18 km apart. Therefore

four sites are explored (Figure 4.1): San Francisco (SF), Torrance (T), Long Beach (LB),

and San Diego (SD).

Verified hourly observed water levels (OWLs, m NAVD88) at the San Francisco (Station

ID: 9414290), Los Angeles (Station ID: 9410660), and La Jolla (Station ID: 9410230) were

downloaded from NOAA’s Tides and Currents website (NOAA, Accessed 2022b). Months

with no OWL measurements were excluded. Daily precipitation summaries (P, mmday−1)

at the Downtown San Francisco (USW00023272), Torrance Airport (USW00003122), Long

Beach Airport (USW00023129), and San Diego (USW00093107) stations were downloaded

from NOAA’s Global Historical Climatology Network daily dataset (NOAA, Accessed 2021a).

Daily precipitation observations that were flagged by NOAA (NOAA, Accessed 2021a), were

manually verified and removed if necessary before being included in the study. All data are
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in UTC time. Table 4.1 presents the overlapping observation periods between OWL and P

at each site.

Two sources of wave data are used in this study: the Global Ocean Wave (GOW) re-

analysis (Reguero et al., 2012; Shope et al., 2021) and Coastal Data Information Program

(CDIP) wave observations (Scripps, Accessed 2021). Both datasets are provided at 100 m

alongshore intervals at Scripps Monitoring and Prediction (MOP) lines. MOP Lines 669-678,

and 598-618 were used for San Diego and Los Angeles, respectively. CDIP wave buoys along

the Southern California Coast have minimal wave records (<30-years). Combining the GOW

and CDIP wave records significantly increases data availability resulting in an additional 54-

and 51-years at San Diego and Los Angeles, respectively. GOW hindcast data is available

in hourly intervals with observations from February 01, 1948 to December 31, 2008, while

CDIP wave data is in 30 minutes intervals (i.e., two measurements made per hour). CDIP

data is coarsened to one observation per hour to match GOW data; the largest CDIP wave

height observation is selected for each hour. The full GOW data record is combined with

the CDIP wave buoy data after December 31, 2008 to create each sites’ wave record. Total

water levels (TWL), the sum of observed water level and wave runup,

TWL = OWL+R2% (4.1)

were then calculated using R2% (Stockdon et al., 2006), which represents the highest two

percent of wave runup elevations expected for a given wave height (Hs), wave period (Tp),

and beach slope (β). Representative foreshore beach slopes of 0.125 for Los Angeles (Vos

et al., 2020) and 0.055 for San Diego (Ludka et al., 2018) were used. R2% is given by

R2% = 1.1(0.35β(HsL0)
0.5 + (

[HsL0(0.563β
2 + 0.004)]0.5

2
)) (4.2)

where the deep water wave length (L0) is
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L0 = (T 2
p g)/(2π). (4.3)

Only the largest wave runup value across all the mop lines per hour were used in the final

wave dataset for each site. Table 4.2 presents the overlapping observation periods between

TWL and P at each site.

Various sampling methods are used to characterize multivariate flood events: annual

maximum (AM), annual coinciding (AC), wet season monthly maximum (WMM), and wet

season monthly coinciding (WMC). Maximum sampling pairs the largest observations within

a given time frame (e.g., year) and may result in pairs that did not historically occur (e.g., a

maximum August OWL paired with a maximum precipitation observation from December).

However, this paring strategy has been used in multiple studies (e.g., Bezak et al., 2014;

Wahl et al., 2015; Lucey and Gallien, 2022), and has been recommended for coastal hazard

assessment (FEMA, 2016c). In the case of WMM sampling, months with missing data were

reviewed and removed if the tidal peak was absent. Coinciding sampling is commonly used

to characterize compound events (Sadegh et al., 2018; Ganguli and Merz, 2019a; Lucey and

Gallien, 2022). This sampling strategy selects the largest primary observation (precipitation)

within a given time frame (e.g., month, year) and pairs it with the largest secondary obser-

vation (OWL or TWL) occurring on that same day. For example, the largest precipitation

event recorded within a year will be paired with the largest OWL or TWL measurement

that occurred on the day of the precipitation event. Coinciding sampling pairs with three

or more OWL measurements missing within the 24-hour accumulated precipitation window

were manually reviewed and removed if the tidal peak was not recorded. Southern Cali-

fornia’s wet season occurs between October to March and provides a majority of the total

annual rainfall (Cayan and Roads, 1984; Conil and Hall, 2006; Guirguis and Avissar, 2008).

Therefore, wet season monthly samplings only utilize observations from October to March.

Figure 4.2 displays the resulting data pairs. Tables 4.1 and 4.2 provide a summary of each

sites’ associated gauges, observation windows, and number of pairs for OWL-P (Table 4.1)

47



Figure 4.1: Map displaying (a) San Francisco, (b) Long Beach, Torrance, and (c) San Diego

sites along with locations of tide gauges (triangle) and precipitation stations (circle). Wave

gauges are not displayed because they are deep water wave gauges (far from shore). Aerial

imagery from NOAA (Accessed 2022a).

and TWL-P (Table 4.2) events.

4.3 Bootstrapping Method

San Francisco is used to explore uncertainties associated to record length given the extensive

observed water level and precipitation records (100-years). Bootstrapping techniques have

commonly been used to explore various sources of uncertainty (Genest et al., 2009; Serinaldi,

2013; Tong et al., 2015; Dodangeh et al., 2019) and are utilized to quantify record length

uncertainties. The 10- and 100-year observed water levels and precipitation values were es-

timated with the full 100-year record and various subsets. Ten subsets of 90-, 80-, 70-, 50-,

30-, and 20-years of data were created from the original San Francisco precipitation and tide

records for univariate, conditional, and bivariate scenarios using all sampling methods (an-

nual maximum, annual coinciding, wet season monthly maximum, and wet season monthly

coinciding). Table 7.2 in the Appendix displays the periods used for each subset. The vari-
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Figure 4.2: Data pairs using annual maximum (AM; dot), annual coinciding (AC; triangle),

wet season monthly maximum (WMM; cross), and wet season monthly coinciding (WMC;

plus) sampling for (a)(b)(c) OWL-P, (d)(e)(f) TWL-P pairs at (a)(d) Long Beach, (b)(e)

Torrance, and (c)(f) San Diego
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Table 4.1: Water level and precipitation (P) observations for San Francisco (SF), Torrance

(T), Long Beach (LB), and San Diego (SD) using annual maximum (AM), annual coinciding

(AC), wet season monthly maximum (WMM), and wet season monthly coinciding (WMC)

samplings. The presented SF pairs are when using the full 100-year record.

Site
Tide P Observation AM AC WMM WMC

Gauge Gauge Window Pairs Pairs Pairs Pairs

SF 9414290 023272
January 1, 1921 to

July 31, 2021
100 100 583 581

T 9410660 003122
January 1, 1932 to

July 31, 2021
90 89 469 467

LB 9410660 023129
January 1, 1943 to

July 31, 2021
73 73 381 380

SD 9410230 093107
July 1, 1947 to June

30, 2021
71 65 360 356

Table 4.2: Total water level and precipitation information for Torrance (T), Long Beach

(LB), and San Diego (SD) using annual maximum (AM), annual coinciding (AC), wet season

monthly maximum (WMM), and wet season monthly coinciding (WMC) samplings. The

observation windows provided are the combined record of two wave datasets.

Site
Wave Observation AM AC WMM WMC

Gauge Window Pairs Pairs Pairs Pairs

T 092 February 1, 1948 to July 26, 2021 74 73 378 377

LB 092 February 1, 1948 to July 26, 2021 73 73 381 380

SD 100 February 1, 1948 to June 30, 2021 71 65 366 355
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ability and behaviors of estimates associated to sampling size can be visualized with boxplots

and further compared to the estimates from the full record. A Nelsen copula is used for all

bivariate and conditional estimates, as it frequently passed the Cramér-von Mises test. It

should be noted that the best fitting marginal distribution changed depending on the period

and sample size and will therefore have some influence on estimates.

4.4 Results

A majority of correlations (67%) were positive and significant at the Torrance, Long Beach,

and San Diego sites for OWL-P and TWL-P pairs using all sampling methods. Correlations

which were not significant at standard levels (p > 0.05) are noted: Long Beach with annual

maximum sampling for OWL-P, and annual coinciding sampling for TWL-P. Torrance with

annual maximum and coinciding sampling for OWL-P and San Diego with annual maximum

and coinciding sampling for OWL-P along with annual coinciding and wet season monthly

maximum for TWL-P. The associated marginals generally passed the Chi-squared test at

standard levels. Table 7.1 in the Appendix presents the marginal fits and those with below

standard significance levels are noted: Long Beach OWL using wet season monthly coinciding

sampling for OWL-P pairs, Torrance OWL and P when using wet season monthly maximum

and coinciding sampling for OWL-P pairs and annual maximum and coinciding sampling for

TWL-P pairs, and San Diego OWL using wet season monthly coinciding for OWL-P pairs.

4.4.1 Copula choice

Uncertainties induced by copula selection were explored at all locations (excluding San Fran-

cisco), but the San Diego site annual maximum sampling for TWL-P pairs best illustrates the

results in this subsection. In this example, the Clayton, AMH, FGM, Nelsen, Roch-Alegre

(Roch.), Fischer-Kock (Fisc.), BB1, and BB5 copulas passed the Cramér-von Mises test.

When observing the conditional CDFs (Figure 4.3), there is a general agreement between
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Figure 4.3: Conditional 1 CDFs at San Diego using annual maximum sampling for (a) TWL

and (b) P fitted with Clayton, AMH, FGM, Nelsen, Roch-Alegre (Roch.), Fischer-Kock

(Fisc.), BB1, and BB5 copulas. The primary variable is conditioned on the secondary variable

at a 25-year return period.

the copulas’ estimates except BB5 estimates are more conservative. For example, the 10-

and 100-year TWL estimates (from the copulas except the BB5) have a range of 8 cm (4.11

m to 4.19 m) and 10 cm (5.05 m to 5.15 m), but BB5 10- and 100-year estimates are larger

(5.79 m and 7.41 m).

A similar pattern emerges in the bivariate estimates (Figure 4.4). All copula isolines,

except the BB5, present strong agreement. BB5 isolines provide the largest 10- and 100-

year (Figures 4.4a, 4.4c) AND estimates, but slightly lower 10-and 100-year (Figures 4.4b,

4.4d) OR estimates. For example, the most likely 10-year AND (Figure 4.4a) TWL and P

estimates vary by 2 cm (4.11 m - 4.13 m) and 1 mmday-1 (43.77 mmday-1 to 44.71 mmday-1)

and 100-year AND (Figure 4.4c) TWL and P estiamates vary by 3 cm (4.42 m to 4.45 m)

and 1 mmday-1 (55.71 mmday-1 to 57.05 mmday-1). BB5 TWL and P estimates were larger

by 2 cm and 1 mmday-1 (4.15 m and 45.19 mmday-1) for the 10-year event and 13 cm and

6 mmday-1 (4.58 m and 63.05 mmday-1) for the 100-year event.
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Figure 4.4: (a)(c) AND and (b)(d) OR (a)(b) 10- and (c)(d) 100-year isolines at San Diego

using annual maximum sampling for TWL-P pairs fitted with Clayton, AMH, FGM, Nelsen,

Roch-Alegre (Roch.), Fischer-Kock (Fisc.), BB1, and BB5 copulas. Arrows point toward

the most likely event pair along an isoline generated by the labeled copula. Red and blue

locations along an isoline indicate higher and lower probability densities, respectively.
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4.4.2 Sampling

The Long Beach site, fitted with a Nelsen copula, was used to best illustrate uncertainties

induced by sampling methods. For the univariate case, annual coinciding sampling provides

the lowest OWL estimates (Figure 4.5a). The other sampling methods have similar OWL

estimates except wet season monthly coinciding sampling provides the largest 100-year OWL

estimates (Figure 4.5a). Annual coinciding sampling generally results in the lowest TWL

estimates (Figure 4.5c). Maximum samplings (annual and wet season monthly) produce the

largest 10-year TWL estimates and wet season monthly maximum provided the largest 100-

year TWL estimates (except at San Diego where wet season monthly coinciding sampling

provided the largest TWL estimates). OWL and TWL estimates varied depending on sam-

pling method with more variability in TWL estimates than OWL estimates (e.g., 10-year

OWL and TWL range between 25 cm of OWL and 1.26 m of TWL; Figure 4.5a, c). Marginal

precipitation estimates are generally similar regardless of sampling method, but can diverge

at the 100-year return period where annual type samplings exceed those of the wet season

monthly samplings (Figure 4.5b, d).

In the conditional case (Figure 4.6), annual coinciding sampling generally result in the

lowest OWL (Figure 4.6a) and TWL (Figure 4.6c) values. However, annual coinciding sam-

pling occasionally produced values greater than or similar to other samplings (e.g., 100-year

OWL estimates with annual maximum, annual coinciding, and wet season monthly maximum

are within a 5 cm range; Figure 4.6a). Wet season monthly coinciding sampling generally

provides the largest OWL estimates. Multiple sampling methods provided the largest TWL

estimates which varied between locations and the utilized copula. These upper and lower

limits result in significant variability for OWL and TWL, and TWL was significantly more

variable compared to OWL estimates. For example, there is a 17 cm range between 10-year

OWL estimates (Figure 4.6a) and a 1.29 m range between 10-year TWL estimates (Figure

4.6c). Precipitation estimates follow one of two patterns: estimates are grouped as annual

samplings and wet season monthly samplings (i.e., similar estimates between annual maxi-
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mum and coinciding and between wet season monthly maximum and coinciding samplings;

Figure 4.6b), or estimates are similar across sampling choice (e.g., 10-year precipitation

estimates have a range of 6 mmday-1; Figure 4.6d).

Across hazard scenarios (Figure 4.7) the annual coinciding sampling method generally

results in the smallest OWL and TWL values. There are instances where estimates from

an annual coinciding sampling were similar to estimates produced from other samplings

(e.g., there is a 5 cm range between 100-year OR OWL values produced by the annual

maximum, annual coinciding, and wet season monthly maximum samplings; Figure 4.7f).

Estimates from annual maximum and/or wet season monthly maximum sampling resulted

in the largest OWL and TWL values except for the 100-year OR scenario where estimates

using a wet season monthly coinciding sampling generally generated the largest OWL and

TWL values. Similar to the marginal and conditional cases, OWL and TWL estimates vary

significantly due to sampling choice. For example, 10-year OWLs had a range of 37 cm

(Figure 4.7a) and 10-year TWLs had a range of 1.42 m (Figure 4.7c) in the AND scenario.

Precipitation estimates follow the same two behaviors as the conditional cases: estimates are

similar between annual samplings and wet season monthly samplings (e.g., Figure 4.7h) or

estimates have minimal differences between sampling methods (e.g., 10-year OR precipitation

varies by 1 mmday-1; Figure 4.7d). These patterns persist across locations and copulas.

4.4.3 Rainfall gauge choice

Results from using a wet season monthly coinciding sampling and a fitted Nelsen and BB5

copula were used to display uncertainties associated to rainfall gauge choice. Marginal TWL

CDFs (Figure 4.8a) show a general agreement, but marginal precipitation estimates differ

(Figure 4.8b). Torrance 10- (96 mmday-1 versus 77 mmday-1) and 100-year (152 mmday-1

versus 115 mmday-1) marginal precipitation estimates were always larger than Long Beach

marginal precipitation estimates for all sampling methods including OWL-P results.

Rainfall gauge choice further impacts conditional CDFs (Figure 4.9). Conditional TWL
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Figure 4.5: Marginal CDFs, with 10- (asterisks) and 100-year (dot) values, at Long Beach us-

ing annual maximum (AM), annual coinciding (AC), wet season monthly maximum (WMM),

and wet season monthly coinciding (WMC) sampling for (a)OWL-(b)P and (c)TWL-(d)P

pairs.
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Figure 4.6: Conditional 1 CDFs, with 10- (asterisks) and 100-year (dot) values, at Long

Beach using annual maximum (AM), annual coinciding (AC), wet season monthly maximum

(WMM), and wet season monthly coinciding (WMC) sampling with a fitted Nelsen copula for

(a)OWL-(b)P and (c)TWL-(d)P pairs. The primary variable is conditioned on the secondary

variable at a 25-year return period.
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estimates vary between Long Beach and Torrance (Figure 4.9a). In this example the 100-

year TWL estimate can vary between 6.36 m and 9.73 m (range of 3.37 m) depending on

the utilized rainfall gauge. Torrance conditional precipitation estimates generally exceed

Long Beach estimates when comparing similar copulas. Figure 4.9b 100-year conditional

precipitation estimates vary between 127 mmday-1 and 263 mmday-1 (range of 136 mmday-1)

depending on the utilized rainfall gauge and copula. An exception was Long Beach 100-year

precipitation estimates were larger or similar to Torrance estimates when using an annual

sampling (annual maximum or coinciding).

Bivariate estimates also vary depending on rainfall gauge choice (Figure 4.10). In the

AND scenario (Figure 4.10a, c), Torrance and Long Beach TWL estimates were generally

similar per copula (e.g., Long Beach and Torrance 100-year TWLs were 5.01 m and 5.10 m

using the Nelsen copula). Torrance AND precipitation estimates were always larger than

Long Beach. In the OR scenario (Figure 4.10b, d), Torrance precipitation estimates were

generally larger than Long Beach. TWL OR estimates typically were larger at Torrance at

the 10-year return period (e.g., Torrance and Long Beach TWLs with a BB5 copula were 5.35

m and 5.28 m; Figure4.10b), but Long Beach bivariate estimates were larger at the 100-year

return period (e.g., Torrance and Long Beach TWLs with a BB5 copula were 6.16 m and

7.61 m; Figure4.10d). There were cases where Torrance and Long Beach had similar TWL

bivariate estimates (e.g., Torrance and Long Beach 100-year TWLs with a Nelsen copula

were 5.61 m and 5.56 m; Figure4.10d). Long Beach and Torrance always had similar 10-year

bivariate OWLs, but Long Beach had larger 100-year bivariate OWLs. The range between

Long Beach and Torrance estimates generally increased at more severe return periods (e.g.,

there is a 35 cm and 69 cm range for 10- and 100-year AND TWLs; Figure4.10 a, c) for

magninal, conditional, and bivariate cases. These behaviors were observed across sampling

methods and OWL-P estimates unless noted.
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4.4.4 Record length

Figures 4.11 and 4.12 show 10- and 100-year OWL and precipitation estimates from the full

record and subsets for the marginal, conditional, and bivariate cases using each sampling

method at San Francisco. The variability of the 10- and 100-year OWL and precipitation

estimates were the largest within the 20-year subsets (small data record) and the least within

the 90-year subsets (ample data record). This variability increases between the 10- to 100-

year estimates. For example, the 10- and 100-year OWL has a range of approximately 20

cm and 45 cm, respectively, for the AND scenario using annual maximum sampling with

20-year subsets (Figure 4.11a and 4.12a).

Notably, the variability of the 10- and 100-year OWL and precipitation estimates re-

duced significantly for marginal, conditional, and bivariate scenarios when utilizing sample

sizes greater than or equal to 70-years for all sampling methods (Figures 4.11 and 4.12).

Generally when comparing the subset estimates to estimates made from the 100-year record,

the medians of the boxplots made from 90-, 80-, and 70-year subsets are similar with the

estimates provided by the 100-year record (e.g., Figure 4.11a). However, there is a notice-

able difference between the medians from shorter subset lengths and the 100-year record’s

estimates (e.g., approximately 6 cm difference for the AND scenario using 20-year subsets;

Figure 4.11a). Also, the interquartile ranges at shorter subset lengths occasionally do not

encompass the estimate calculated using the 100-year record (e.g., 100-year Conditional 1

OWL with 20-year subsets using an annual maximum sampling; Figure 4.12a).

4.5 Discussion

Copula choice, sampling methods, rainfall gauge choice, record length, and the inclusion

of waves can impact flood risk estimates. Copulas which pass a Cramér-von Misses test,

suggesting a significant fit, display similar estimates with the exception of the BB5 (Figures

4.3, 4.4). This is similar to observations in Lucey and Gallien (2022). From a design or
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management perspective, this would require different practices given the different copula

estimates at equal return periods and similar sampling methods. For example, if a flood

wall must withstand a 10-year OWL exacerbated by at least a 25-year precipitation event

(Conditional 1 scenario), the 2.22 m versus 2.60 m estimates provided by the Nelsen and

BB5 copulas, when using wet season monthly coinciding sampling, will have different de-

sign requirements. This potential under-design (or over-design) of the structure may have

significant consequences for urbanized communities. Currently, there is a paucity of studies

exploring how various well fitting copulas could impact design scenarios (Lucey and Gallien,

2022).

Sampling choice imparts the largest uncertainties. Annual coinciding sampling generally

resulted in the lowest estimates for the marginal (Figure 4.5), conditional (Figure 4.6), and

bivariate (Figure 4.7) cases. The annual maximum and wet season monthly (maximum and

coinciding) samplings provided the largest estimates depending on the probability scenario

(marginal, conditional, AND, OR) and variable in question (OWL, TWL). While it should be

expected that different sampling methods will result in different estimates (Engeland et al.,

2004; Jarušková and Hanek, 2006; Lucey and Gallien, 2022), quantifying the range of esti-

mates based on various sampling methods is novel. Generally, annual coinciding sampling,

on the lower end, and one of the other samplings, on the higher end, envelope the possible

range of estimates. This could be beneficial for management and design applications as a

method to quantify the uncertainty associated with sampling methods. There is also a lim-

ited pool of studies exploring the impacts sampling methods could have on design scenarios

(Engeland et al., 2004; Tu et al., 2018; Lucey and Gallien, 2022).

Rainfall gauge choice has the potential to influence flood risk estimates. There is a

significant amount of uncertainty associated to univariate (Figure 4.8), conditional (Figure

4.9), and bivariate (Figure 4.10) estimates depending on the utilized rainfall gauge, echoing

previous findings on uncertainty associated to model inputs (Coveney and Fotheringham,

2011; Bates et al., 2014; Sampson et al., 2014). Urban microclimates (Pacific Energy Center,
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Accessed 2022; World Meteorological Organization, 2008; Barry and Blanken, 2016) are likely

driving these differences. Urbanization has been shown to alter precipitation patterns around

cities (Han et al., 2014; Pour et al., 2020) which, in turn, influences urban flood developments

(Huong and Pathirana, 2013; Pathirana et al., 2014; Pour et al., 2020). Accurate flood

risk assessments and studies at coastal urban communities must account for the possible

influence of microclimates when selecting a rainfall station. Future work should further

explore microclimate and chosen rainfall gauge induced uncertainties and their propagation

into flood estimates.

Waves inclusion alters uncertainty. TWL and OWL are fundamentally different variables,

accordingly TWL-P and OWL-P results vary. Copula choice behaviors for TWL-P and

OWL-P estimates were similar (Figure 4.4), but sampling behaviors differed (Figure 4.7).

The largest estimates of TWL-P most frequently resulted from utilizing a maximum type

sampling (annual or wet season monthly maximum) versus the wet season monthly coinciding

as noted for OWL-P estimates. TWL consistently had much larger variability in its estimates

versus OWL estimates. For example when using annual maximum sampling at Long Beach,

the 10-year (univariate) OWL and TWL are estimated to be 2.25 m and 5.95 m (Figure

4.5a, c). This is a drastic difference in the estimated 10-year event and should emphasize the

importance in accounting for all potential flooding pathways (Gallien et al., 2018), especially

waves for Southern California studies (e.g., Erikson et al., 2018).

Data length was shown to largely influence estimates. Similar to previous studies (Su

and Tung, 2013; Sadegh et al., 2017; Dodangeh et al., 2019), the variability of the 10-

and 100-year OWL and P estimates were the largest within the 20-year subsets and the

smallest within the 90-year subsets (i.e., there was more uncertainty in estimates when

using a limited data record). This is visualized in Figure 4.11a where there is a 3 cm

and 24 cm range of 10-year AND OWLs when using subsets with 90- and 20-year lengths.

Figure 4.13 further highlights this uncertainty, the isolines created by the 100-year record

(red line) and subsets (black lines) strongly agree when using the 90-year subsets (Figure
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4.13b) but vary dramatically when using the 20-year subsets (Figure 4.13a). Uncertainties

further increase when comparing the ranges of the 10- and 100-year estimates (e.g., there

is a 24 cm and 30 cm range of 10- and 100-year OWLs when using subsets with 20-year

lengths for the AND scenario with annual maximum sampling; Figure 4.11a and 4.12a), also

noted by Dodangeh et al. (2019) (i.e., recognizes more uncertainty associated with higher

return period estimates). Most importantly, the variability of the 10- and 100-year OWL

and precipitation estimates significantly reduce for the marginal, conditional, and bivariate

cases when utilizing sample sizes greater than or equal to 70-years for all sampling methods

(Figures 4.11, 4.12). This reduction in uncertainty when utilizing larger records suggests an

inadequate sample size can generate biased estimates largely due to the poor characterization

of the dependence structure between variables. Abnormalities (e.g., Figure 4.12e Conditional

1) can be attributed to marginals which did not pass the Chi Square test at standard levels

and/or insignificant correlations.

It should be noted climatic conditions, non-stationarity, and/or alternative sampling

methods may affect results. Wave direction (Masina et al., 2015) and El Niño-Southern

Oscillation patterns (ENSO; Allan and Komar, 2006) were explored, but datasets filtered

by wave direction (e.g., events with waves originating from the North Pacific) or ENSO

season (El Niño years) typically resulted in an insufficient number of pairs (e.g., San Diego

OWL-P pairs with annual maximum sampling decreased from 71-pairs to 34-pairs when

only considering El Niño years). Peaks over threshold sampling (Jarušková and Hanek,

2006) was also utilized, but the resulting datasets had either insignificant or negligible cor-

relations (correlations < 0.04). While peaks over threshold sampling, wave direction, and

ENSO resulted in negligible correlations or limited data availability, these should not be

discounted as other studies have found success by considering these variables (Allan and

Komar, 2006; De Michele et al., 2007; Masina et al., 2015; Liu et al., 2018) and sampling

method (Jarušková and Hanek, 2006; Tu et al., 2018; Ghanbari et al., 2021). Future work

should expand to consider all available flooding pathways, variables, and sampling methods
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which could contribute to flooding events, exacerbate current trends, and better characterize

variable relations.

4.6 Conclusions

Uncertainties owing to sampling methods, copula choice, selected rainfall gauge, and record

length were explored by considering events caused by OWL-P and TWL-P events in densely

populated, urban coastal communities. Univariate, conditional, and bivariate situations

were considered. Copulas passing a Cramér-von Misses test produced similar flood event

estimates except estimates from the BB5 copula were often more conservative. Various sam-

pling methods were employed: annual maximum, annual coinciding, wet season monthly

maximum, and wet season monthly coinciding. Estimates largely varied depending on sam-

pling method. However, uncertainties induced by sampling could be constrained by using

the lowest and highest estimates produced by a variety of sampling methods. Microclimates

were suspected to drive the differences between Long Beach and Torrance event estimates

and the disagreement between estimates at these local sites present the chosen rainfall gauge

as a critical source of uncertainty. There is a substantial difference between observed and

total water level estimates and their variability (> 1 m). In some cases, waves account of

over half of the TWL estimates. This emphasizes the importance of explicitly including wave

impacts is open coast flooding applications.

Available record length significantly impacted marginal and multivariate estimates. Vari-

ability was the largest and smallest at 20- and 90-years worth of data, echoing previous

studies (Su and Tung, 2013; Sadegh et al., 2017; Dodangeh et al., 2019). Estimates at

larger return periods also had increased ranges of variability, also noted by Dodangeh et al.

(2019). However, estimates were typically constrained with records of at least 70-years and

this could serve as a reasonable record length to minimize flood risk estimate uncertainties.

Future work should explore the uncertainties from other sampling methods (e.g., peaks over
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threshold), variables (e.g., ENSO season), and events (e.g., OWL-R2%) and their influence

on flood risk estimates. Additionally, the contribution of non-stationary processes (e.g., sea

level rise) should be determined and accounted for within estimates.

4.7 Data Availability

NOAA precipitation data is available for download at https://www.ncei.noaa.gov/metadata/

geoportal/rest/metadata/item/gov.noaa.ncdc:C00313/html\#. Tidal data is available

for download on NOAA’s Tides & Currents website (https://tidesandcurrents.noaa.

gov). GOW hindcast data is available at https://www.sciencebase.gov/catalog/item/

5ee17ff582ce3bd58d7be907. CDIP wave observations are available at https://cdip.

ucsd.edu/m/.
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Figure 4.7: (a)(c)(e)(g)AND and (b)(d)(f)(h)OR (a)(b)(c)(d)10- and (e)(f)(g)(h)100-year

isolines at Long Beach using annual maximum (AM; dot), annual coinciding (AC; triangle),

wet season monthly maximum (WMM; cross), and wet season monthly coinciding (WMC;

plus) sampling with a fitted Nelsen copula for (a)(b)(e)(f)OWL-P and (c)(d)(g)(h)TWL-P

pairs. Arrows point toward the most likely event pair along an isoline generated by the

labeled copula. Red and blue locations along an isoline indicate higher and lower probability

densities, respectively.
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Figure 4.8: Marginal CDFs, with 10- (asterisk) and 100-year (dot) values, at Long Beach

and Torrance using a wet season monthly coinciding (WMC) sampling for (a) TWL-(b) P

pairs.

Figure 4.9: Conditional 1 CDFs, with 10- (asterisk) and 100-year (dot) values, at Long Beach

(LB) and Torrance (T) using a wet season monthly coinciding (WMC) sampling with a fitted

Nelsen and BB5 copula for (a) TWL-(b) P pairs. The primary variable is conditioned on

the secondary variable at a 25-year return period.

66



Figure 4.10: (a)(c) AND and (b)(d) OR (a)(b) 10- and (c)(d) 100-year isolines at Long Beach

(LB) and Torrance (T) using a wet season monthly coinciding (WMC) sampling with a fitted

Nelsen and BB5 copula for TWL-P pairs. Arrows point toward the most likely event pair

along an isoline generated by the labeled copula. Red and blue locations along an isoline

indicate higher and lower probability densities, respectively.
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Figure 4.11: 10-year marginal (M), Conditional 1 (C1), AND, and OR (a)(c)(e)(g) observed

water levels (OWL) and (b)(d)(f)(h) precipitation estimates using 90-, 80-, 70-, 50-, 30-, and

20-year subsets with (a)(b) annual maximum, (c)(d) annual coinciding, (e)(f) wet season

monthly maximum, and (g)(h) wet season monthly coinciding sampling. Asterisks indicate

the 10-year estimate based from the 100-year record and crosses indicate outliers which are

more than 1.5 times the interquartile range.
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Figure 4.12: 100-year marginal (M), Conditional 1 (C1), AND, and OR (a)(c)(e)(g) observed

water levels (OWL) and precipitation (b)(d)(f)(h) estimates using 90-, 80-, 70-, 50-, 30-, and

20-year subsets with annual maximum (a)(b), annual coinciding (c)(d), wet season monthly

maximum (e)(f), and wet season monthly coinciding sampling (g)(h). Asterisks indicate the

100-year estimate based from the 100-year record and crosses indicate outliers which are

more than 1.5 times the interquartile range.
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Figure 4.13: 10-year isolines for observed water levels (OWL) and precipitation pairs from (a)

20- and (b) 90-year subsets with annual maximum sampling for the AND scenario (isolines

representative of Figure 4.11a) at San Francisco. Black and red lines correspond to isolines

created by subsets and the full 100-year record, respectively, while the markers represent

observation (Obs.) pairs from the 100-year record.
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CHAPTER 5

Hybrid statistical-numerical modeling for compound

flood risk assessment and uncertainty quantification

5.1 Background

Recently, a hybrid approach combining copulas and numerical models has developed. Often

studies apply copulas after modeling efforts to consider dependencies between variables (Be-

vacqua et al., 2019, 2020; Couasnon et al., 2020; Ganguli et al., 2020; Santos et al., 2021;

Tanim and Goharian, 2021; Xu et al., 2022). For example, Xu et al. (2022) models tropical

cyclone events and subsequently uses copulas to determine peak water level-precipitation

pairs for design purposes in an area without water level records. Only limited studies utilize

copulas to provide inputs to numerical models and determine the flood risk likely experienced

by an area (Sebastian et al., 2017; Couasnon et al., 2018; Didier et al., 2019; Moftakhari et al.,

2019). Moftakhari et al. (2019) presents a methodology to improve on FEMA’s guidelines

for riverine-coastal compound flooding (FEMA, 2015) by creating copulas for ocean water

levels and streamflow and then modelling those events to establish the possible floodplain.

Although the hybrid statistical-numerical modeling is rapidly developing, it is unknown how

statistical uncertainties will impact flood maps.

Previous studies have explored multiple sources of uncertainty and their influences on

events estimates and numerical models outcomes (Table 1.3). Significant event pair vari-

ability has been observed depending on the utilized sampling methods (Mazas and Hamm,

2017; Lucey and Gallien, 2023). Observation record length present a critical source of un-
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certainty (Genest et al., 2009; Su and Tung, 2013; Tong et al., 2015; Sadegh et al., 2017;

Dodangeh et al., 2019; Lucey and Gallien, 2023). Teng et al. (2017) characterized uncer-

tainties pertaining numerical modeling (e.g., model structure, inputs, parameters, validation

data quality, landscape cover, and nonstationarity) and suggested methodologies to account

for uncertainty. However, it is unknown how statistical event characterization (e.g., record

length, sampling strategy, observational data) influence flood maps. This study explores

how statistical modeling (i.e., copula choice, sampling methods, event choice, and record

length) impacts flood estimates. Univariate and multivariate statistics are determined and

used as numerical model inputs. Uncertainty is quantified utilizing modeled flood event

characteristics (e.g., areal extent, depth, flood volume)

5.2 Data & Study Sites

Two extensively managed, densely populated, urbanized Southern California beaches were

used to explore uncertainties, Sunset Beach and Newport Beach. These sites have over 70-

years of precipitation and tide observations to develop copulas while minimizing uncertainty

from data availability (Lucey and Gallien, 2023) and benefit from previous flood validation

data (Gallien et al., 2011, 2014; Tang and Gallien, 2023). Figure 5.1 displays the location of

the utilized precipitation and tide gauges along the sites.

5.2.1 Tide & Precipitation

Verified hourly and 6-minute observed water levels (OWLs, m NAVD88) at the Los Angeles

(Station ID: 9410660) were downloaded from NOAA’s Tides and Currents website (NOAA,

Accessed 2023b). Months with no OWL measurements were excluded. Daily precipitation

summaries (P, mmday−1) at the Long Beach Airport (USW00023129) and Newport Beach

Harbor (USC00046175) stations were downloaded from NOAA’s Global Historical Clima-

tology Network dataset (NOAA, Accessed 2023a). Sunset Beach utilizes the Long Beach
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Figure 5.1: (a) Location of data gauges and the study sites. Subsets display (b) Sunset

Beach and (c) Newport Beach domains with seawalls delineated as red lines.
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Figure 5.2: Pairs of observed water level (OWL; m) and precipitation (mmday−1) using

annual maximum (AM; cross), annual coinciding (AC; plus), wet season monthly maximum

(WMM; dot), and wet season monthly coinciding (WMC; triangle) samplings at (a) Sunset

Beach and (b) Newport Beach

Airport precipitation observations, while Newport Beach utilizes the Newport Beach Harbor

precipitation data. Daily precipitation observations flagged by NOAA (NOAA, Accessed

2023a) were removed if necessary. All data are in UTC time. Table 5.1 presents the over-

lapping observation periods between OWL and P at each site. All locations utilize the same

observed water level observations.

5.3 Numerical Modeling

Shock capturing full nonlinear shallow water (NLSW) models have proven to provide ac-

curate flood estimates in complex urban environments without specific parameter tuning

(e.g., Gallien et al., 2011; Akoh et al., 2017; Xie et al., 2019; Moftakhari et al., 2019; Rong

et al., 2020; Stephens et al., 2022). Similarly, a number of 2D NLSW models have been
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Table 5.1: Observed Water level (OWL) and precipitation (P) observations for Sunset (S)

and Newport Beach (NB) using annual maximum (AM), annual coinciding (AC), wet season

monthly maximum (WMM), and wet season monthly coinciding (WMC) samplings.

Site
OWL P Observation AM AC WMM WMC

Gauge Gauge Window Pairs Pairs Pairs Pairs

S 9410660 USW00023129
January 1, 1943 to

March 31, 2023
75 75 387 388

NB 9410660 USC00046175
November 28, 1923 to

March 31, 2023
101 100 531 531

successfully used in coastal (Table 1.2), and compound flooding applications (e.g., Herdman

et al., 2018; Shen et al., 2019; Muñoz et al., 2020; Nederhoff et al., 2021). Delft3D flow

(http://oss.deltares.nl/web/delft3dfm) solves full 2D NLSW equations using a shock-

capturing scheme (Kramer and Stelling, 2008; Toro and Garcia-Navarro, 2007; Toro, 2013),

and has been successfully used to model complex coastal environments (e.g., Martyr-Koller

et al., 2017; Kumbier et al., 2018; Ganguli et al., 2020; Muñoz et al., 2020; Paprotny et al.,

2020; Nederhoff et al., 2021; Xu et al., 2022; Tang and Gallien, 2023). Delft3D-FM is open

source, widely used, boundary fitting, and employs a shock capturing numerical scheme ap-

propriate to urban environments. Accordingly, Delft3D-FM is selected for all hydrodynamic

modeling in this work.

Infrastructure presents a particular challenge in urban coastal flood modeling and is crit-

ical to resolve within numerical modeling applications (Fewtrell et al., 2011; Gallien et al.,

2011, 2014; Wang et al., 2018). Gallien et al. (2011); Gallien (2016); Tang and Gallien (2023)

collected infrastructure and validation data in various California (e.g., Surfside-Sunset, New-

port Beach, Imperial Beach). Sea wall elevations were measured using a Stonex S900A and

incorporated into the Delft3D model using elevated nodes along mesh edges. In this work,

urban drainage infrastructure is not incorporated into the model domains since information

75



Figure 5.3: Example of model (a) observed water level (m) inputs for 24-hours simulation

window. Black lines indicated the model input after modification (if needed) of the original

data signal (blue line).

on drainage infrastructure is not publicly available. Topobathy for the Newport Beach model

utilizes LiDAR topography datasets provided by the City of Newport Beach and U.S. Army

Corps of Engineer’s bathymetric surveys as utilized in Gallien et al. (2011). Sunset Beach

topobathy data is composed of multiple DEM sources and surveys provided by Table 2 in

Tang and Gallien (2023).

Simulations were run for 24-hours of model time where precipitation events were spatially

and temporally uniform. A great diurnal range tide cycle (referred to as the “base tide”)

from the Los Angeles tide gauge from approximately mean lower low water to mean higher

high water levels (-0.04m and 1.63m NAVD88 respectively, NOAA2023a) provides the ocean

water level forcing. Ocean water levels were created by raising the base tide to the estimated

event while maintaining the tidal range and peaks of the signal. For example (Figure 5.3),

67 cm is added to the 24-hour base tide signal for a 10-year event with a peak of 2.3 m (i.e.,

1.63 m plus 0.67 m is 2.3 m) over the simulation window. Flood metrics presented in the

results include flooded area (m2) and volume (m3) and the maximum flood depth difference

between events at each grid cell (m).
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5.4 Results

Table 7.3 in the Appendix presents the marginal fits and those with below standard signifi-

cance levels are noted: observed water level marginals with annual coinciding and wet season

monthly maximum and coinciding samplings at Newport Beach, precipitation marginals with

wet season monthly maximum and coinciding samplings at Newport Beach, and observed

water level marginals with wet season monthly coinciding sampling at Sunset Beach. Figure

7.3 presents marginal CDF plots. Correlations were positive and significant at all locations

except when using an annual maximum sampling.

5.4.1 Copula choice

Copula choice impacts on modeled flood estimates were quantified with Clayton, Nelsen,

Roch-Alegre (Roch.), Fischer-Kock (Fisc.), BB1, and BB5 copulas. These copulas passed a

Cramér-von Misses test at Sunset or Newport Beach. Compound event estimates between

copulas were generally similar, but BB5 estimates occasionally produced greater event esti-

mates. Observed water level estimates varied by 3 cm and 12 cm, and precipitation estimates

varied by 2.35 mmday−1 and 19.78 mmday−1 for 10- and 100-year events at Sunset Beach

when using an annual coinciding sampling (Figure 5.4; Table 7.5). Additionally, BB5 ob-

served water level and precipitation event estimates were the largest compared to the other

copula estimates in this example (Figure 5.4; Table 7.5).

The most likely compound events using an annual coinciding sampling at Sunset Beach

(Figure 5.4; Table 7.5) were then modeled to quantify copula choice influence on model

estimates (Figure 5.5). Univariate 10-year precipitation was 72.89 mmday−1 and OWL was

2.01 m. Compound AC OWL ranged from 1.82 m to 1.85 m. Precipitation values were

between 76.66 mmday−1 to 99.44 mmday−1 (Figure 5.4, Table 7.5). The 10-year OWL is

beneath the sea wall level (approximately 2.4 m), no flooding was observed. The flooded

area for multivariate events was minimally variable, 87,870 m3 to 88,280 m3 depending on
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Figure 5.4: Isolines for (a) 10- and (b) 100-year compound events at Sunset Beach using

an annual coinciding sampling and Clayton, Nelsen, Roch-Alegre (Roch.), Fischer-Kock

(Fisc.), BB1, and BB5 copulas. Dots display pairs of observed water level (OWL; m) and

precipitation (P; mmday−1) events. Arrows point to the most likely event along an isoline

and indicate the copula used to generate that isoline. Probability density is gradated along

the isolines from low (blue) to high (red) density.
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copula (Table 5.2).

Similarly, trivial flood volumes variations (less than 1%) were observed between copulas,

96 m3, and 577 m3 for the 10- and 100-year flood events, respectively. Again, the BB5

provided the largest flood (or most conservative) events compared to the other copulas

(Table 5.2). Copulas aside from the BB5 copula only varied by 45 m3 and 209 m3 for the

10- and 100-year flood event (Table 5.2). Only minor differences at a maximum of 3 cm and

6 cm in the maximum flood depths for the 10- and 100-year event were observed (Figure

5.5). In this particular case, precipitation clearly dominates the flooding signal and results

are insensitive to copula choice.

Table 5.2: Modeled maximum flooded area (103 m2) and volume (Vol.; 102 m3) for 10-

and 100-year compound and univariate, observed water level (OWL) and precipitation (P),

events using an annual coinciding sampling at Sunset Beach. Compound events were created

using a Clayton, Nelsen, Roch-Alegre (Roch.), Fischer-Kock (Fisc.), BB1, and BB5 copula

passing a Cramér-von Misses test for one or more cases.

Clayton Nelsen Roch. Fisc. BB1 BB5 OWL P

10-year

Area 87.87 88.05 88.01 87.99 87.92 88.28 0 90.96

Vol. 88.05 88.51 88.38 88.36 88.22 89.02 0 95.46

100-year

Area 91.46 91.79 91.69 91.69 92.20 93.63 14.74 96.06

Vol. 96.97 97.97 97.57 97.56 99.06 102.75 15.16 109.57

5.4.2 Sampling

Figure 5.6 shows the 10- and 100-year isolines for multivariate events comprised of high

marine water levels and precipitation using a Nelsen copula. The most likely compound

79



Figure 5.5: Differences in (a) 10- and (b) 100-year maximum flood depths per grid cell at

Sunset Beach. Events were created using an annual coinciding sampling and Clayton, Nelsen,

Roch-Alegre (Roch.), Fischer-Kock (Fisc.), BB1, and BB5 copulas’ most likely events in

Figure 5.4 and Table 7.5. The difference in the maximum flood depths are gradated from

minor (yellow) to significant (blue) depth changes.
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events and all sampling methods at Sunset Beach (Figure 5.6; Table 7.4) were modeled to

quantify sampling method influences of on model outcomes (Figure 5.7; Table 5.3). Here,

flood metrics varied depending only slightly on the utilized sampling method. Compound

flood volumes varied by 692 m3 and 652 m3 for the 10- and 100-year event depending on the

utilized sampling (Table 5.3). 10- and 100-year events created with an annual type sampling

resulted in the largest flood metrics, and events created from an annual maximum sampling

resulted in the largest flooding compared to events produced from the other sampling meth-

ods (Table 5.3). Sampling methods also influenced the maximum flood depths to a maximum

of 8 cm, primarily concentrated at low-elevation regions and coastal-inland entrances (Figure

5.7).

Table 5.3: Modeled maximum flooded area (103 m2) and volume (Vol.; 102 m3) for 10-

and 100-year marginal, observed water levels (OWL) and precipitation (P), and compound

events (AND) using annual maximum (AM), annual coinciding (AC), wet season monthly

maximum (WMM), and wet season monthly coinciding (WMC) samplings at Sunset Beach.

Compound events were created using the Nelsen copula passing a Cramér-von Misses test

AND OWL P

Area Vol. Area Vol. Area Vol.

10-year

AM 89.05 90.99 0.54 0.20 90.96 95.46

AC 88.05 88.51 0 0 90.96 95.46

WMM 86.51 85.13 0.54 0.20 91.34 96.56

WMC 86.19 84.07 0 0 91.34 96.57

100-year

AM 92.86 100.71 14.74 15.16 96.06 109.57

AC 91.79 97.97 14.74 15.16 96.06 109.57

WMM 90.73 95.34 12.33 11.69 94.59 105.50

WMC 90.31 94.18 99.81 191.07 94.59 105.50
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Figure 5.6: Isolines for (a) 10- and (b) 100-year compound events at Sunset Beach using a

Nelsen copula and various samplings. Markers display pairs of observed water level (OWL;

m) and precipitation (P; mmday−1) using annual maximum (AM; cross), annual coinciding

(AC; plus), wet season monthly maximum (WMM; dot), and wet season monthly coinciding

(WMC; triangle) samplings. Arrows point to the most likely event along an isoline and

indicate the sampling method used to generate that isoline. Probability density is gradated

along the isolines from low (blue) to high (red) density.
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5.4.3 Multivariate events sharing a common return period

Isolines created using an annual coinciding sampling and a Gaussian copula passing a

Cramér-von Misses test at Sunset Beach were used to observe the variability of flood extent

estimates along an isoline (Figure 5.8; Table 5.4). Five events along the 10- and 100-year

isolines were modeled: three around the center of the isoline, where the most probable events

lie, and two utilizing the estimated univariate observed water level or precipitation event.

This results in a 10-year observed water level and precipitation range of 0.96 m and 61

mmday−1 and a 100-year observed water level and precipitation range of 1.05 m and 113

mmday−1 (Table 5.4). Modeling the events in Figure 5.8 produced flood volumes varying

by 7,039 m3 and 5,152 m3 for the 10- and 100-year events (Tables 5.5). The maximum flood

depth varied up to 0.4 m and 0.2 m for the 10- and 100-year events (Figure 5.9), with the

largest variability occurring at the center (Figure 5.9a) and western (Figure 5.9b) portions

of the domain.

Table 5.4: 10- and 100-year compound observed water level (OWL; m) and precipitation (P;

mmday−1) events at Sunset Beach created with an annual coinciding sampling and Gaussian

copula passing a Cramér-von Misses test.

OWL P

[m] [mmday−1]

10 100 10 100

Case 1 2.01 2.32 11.78 20.70

Case 2 1.84 2.09 55.00 83.93

Case 3 1.69 2.03 64.77 93.67

Case 4 1.94 2.15 43.56 74.60

Case 5 1.05 1.26 72.89 133.30
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Figure 5.7: Differences in (a) 10- and (b) 100-year maximum flood depths per grid cell at

Sunset Beach. Events were created using a Nelsen copula and an annual maximum and

coinciding, and wet season monthly maximum and coinciding samplings’ most likely events

in Figure 5.6 and Table 7.4. The difference in the maximum flood depths are gradated from

minor (yellow) to significant (blue) depth changes.
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Figure 5.8: (a) 10- and (b) 100-year isolines made with using a Gaussian copula and an

annual coinciding sampling at Sunset Beach. Triangles are where the marginal observed

water level (OWL) or precipitation (P) intersect the isoline while circles are samples at the

35th, 50th, and 65th percentile along the isoline.

85



Figure 5.9: Differences in (a) 10- and (b) 100-year maximum flood depths (m) per grid cell

at Sunset Beach using the marked events on the isolines shown in Figure 5.8 and listed in

Table 5.4. Events were created using an annual coinciding sampling and Gaussian copula

passing a Cramér-von Misses test. The difference in the maximum flood depths are gradated

from minor (yellow) to significant (blue) depth changes.
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Table 5.5: Modeled maximum flooded area (103 m2) and volume (Vol.; 102 m3) for 10-

and 100-year compound observed water level (OWL) and precipitation (P) events at Sunset

Beach. Compound events were created using an annual coinciding sampling and Gaussian

copula passing a Cramér-von Misses test.

Case 1 Case 2 Case 3 Case 4 Case 5

10-year

Area 52.20 88.04 89.39 86.12 90.21

Vol. 22.83 88.47 91.64 83.91 93.22

100-year

Area 73.13 92.16 93.03 91.28 95.58

Vol. 56.40 98.86 101.15 96.55 107.92

5.4.4 Record length

The uncertainties associated with record length were assessed at Newport Beach using the

annual maximum and coinciding, and wet season monthly maximum and coinciding sam-

plings with a Nelsen copula which generally passed a Cramér-von Misses test. Significant

variability amount exists in observed water level and precipitation estimates when using short

data records (<70-years) and further increases between the 10- and 100-year event estimates

(Figure 5.10). For example, 10- and 100-year marginal observed water level estimates vary

by 17 cm and 44 cm when utilizing record lengths of 20-years and a wet season monthly

coinciding sampling (Figure 5.10g). Estimates made when using at least 70-year records

tend to be well constrained (Figure 5.10). AND observed water level estimates generally

vary less than 3 cm for the 10- and 100-year events when utilizing 90-year record lengths

(Figure 5.10a, c, e, g).
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Figure 5.10: 10-year marginal (M-10), 100-year marginal (M-100), 10-year AND (AND-10),

and 100-year AND (AND-100) (a)(c)(e)(g) observed water levels (OWL) and (b)(d)(f)(h)

precipitation estimates using 90-, 80-, 70-, 50-, 30-, and 20-year subsets with (a)(b) annual

maximum, (c)(d) annual coinciding, (e)(f) wet season monthly maximum, and (g)(h) wet

season monthly coinciding sampling. Asterisks indicate the 10- or 100-year estimate based

from the full record (Val-full) and crosses indicate outliers which are more than 1.5 times

the interquartile range. All cases used a Nelsen copula.
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Compound events were modeled at Newport Beach (Figure 5.11) using an annual max-

imum sampling. 10-year maximum compound flood depths varied up to 30 cm and 8 cm

when utilizing the estimates with 20- (Figure 5.11a) and 90-year records (Figure 5.11b). The

domain’s northwest corner and east island significantly differ in flood depths when using 20-

year subsets (Figure 5.11a). In contrast, the domain has minimal to moderate differences

when using 90-year subsets (Figure 5.11b). 10-year compound events from 20- and 90- sub-

sets (Figure 5.11) produced flooded areas varying by 93,600 m2 and 14,413 m2, respectively

(Figure 5.12). Generally, modeled flood area and volume variability progressively decreased

as the utilized data record length increased (Figure 5.12).

5.5 Discussion

Uncertainties from sampling methods, copula choice, record length, and chosen isoline events

affect flood prediction. Sampling methods impart significant uncertainties onto event esti-

mates (Lucey and Gallien, 2023), however this does not always translate into fundamentally

different outcomes. Annual coinciding estimates produced the lowest observed water level

estimates versus other sampling method estimates (Table 7.4) as previously observed (Lucey

and Gallien, 2022, 2023), but did not translate into the lowest flood metrics. Annual sam-

plings generally had larger flood metrics (and greater precipitation estimates) compared to

wet season monthly samplings for 10- and 100-year marginal and compound events (Table

5.3). Precipitation is a dominant driver in flood developments in urban areas (Gaitan et al.,

2016; Huang et al., 2018; Vorobevskii et al., 2020) and cases that had larger precipitation es-

timates, regardless of the estimated observed water level, produced larger flood metrics. For

example, the 10-year compound event flood volume was 8,850 m3 and 8,513 m3 when using

an annual coinciding (observed water level and precipitation of 1.84 m and 55 mmday−1)

versus wet season monthly maximum (observed water level and precipitation of 2.16 m and

44 mmday−1) sampling. Here, sampling methods only trivially affected modeled flood es-
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Figure 5.11: Differences in flood depths (m) for 10-year AND events using (a) 20- and (b)

90-year subsets at Newport Beach. Events were created using a Nelsen copula and an annual

maximum sampling. The difference in the maximum flood depths are gradated from minor

(yellow) to significant (blue) depth changes.
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Figure 5.12: Modeled compound flooded (a) area (m2) and (b) volume (m3) at Newport

Beach when using various subset sizes with an annual maximum sampling and a Nelsen

copula. X-axis labels indicate the return period (10- or 100-year) and subset size (90-, 80-,

70-, 50-, 30-, and 20-year) used for the estimates. Asterisks indicate the 10- or 100-year flood

area or volume based from the full record (Val-full) and crosses indicate outliers which are

more than 1.5 times the interquartile range.
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timates. It should be noted drainage infrastructure is not represented within the current

models and is known to influence urban flooding (Gallien et al., 2011, 2014; Shen et al.,

2019; Rong et al., 2020). Additionally, Tang and Gallien (2023) showed that the Surfside-

Sunset maximum flood volume is constrained by the flood wall and that approximately 25

mm of precipitation fills the basin and begins discharging over the seawall into the bay. This

suggests that sampling time windows and drainage infrastructure play a key role in accurate

compound flood event modeling.

Copulas passing a Cramér-von Misses test generally produced similar event (previously

observed by Lucey and Gallien (2022, 2023)) and flood estimates excluding the BB5 copula

which occasionally resulted in larger values (Figure 5.4). The conservative nature of the

BB5 copula was previously observed Lucey and Gallien (2023). The range of compound

flood volume (2,169 m3 to 738 m3) and area (96 m2 to 45m 2) is substantially reduced

when excluding the BB5 flood metrics (Table 5.2). Only minor variability was observed in

maximum flood depths for the 10-year event (Figure 5.4a) and slightly increased for the

100-year event (Figure 5.4b). These results may suggest copula selection as a minor source

of uncertainty, assuming copulas pass a Cramér-von Misses (or alternative goodness of fit)

test. Future work should further explore which copulas provide more conservative estimates

(e.g., BB5 copula), which have a consistent agreement, and if the dependencies between

event variables (e.g., waves and tide, precipitation and temperature, streamflow and tide)

indicate particular copula choices.

If a copula function is used without its probability density function (De Michele et al.,

2007; Wahl et al., 2012; Sadegh et al., 2017), it is necessary to understand what events to

choose along an isoline and their implications on flood developments. Compound events of

concern should be constrained between marginal intersections on the isoline (triangles in

Figure 5.8). In this example, the largest flooding events occurred together with the highest

precipitation event (where the precipitation marginal intersected the isoline) and not around

the center of the isoline where the most likely event commonly occurs. There was also
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less variability in the 100-year versus 10-year flood volumes (7,039 2,169 m3 versus 5,152

m3) and areas (38,013 m2 versus 22,450 m2) even though the magnitude for the 100-year

flood events were higher (Table 5.5). This suggests flooding is reaching a saturation point

or a volumetric capacity during the 100-year events. Drainage infrastructure is critical in

flooding development (Gallien et al., 2011, 2014; Shen et al., 2019; Rong et al., 2020; Tang

and Gallien, 2023). Future work must integrate drainage infrastructure into models when

accounting for pluvial-induced flooding which is modulated by marine water levels.

Multiple studies have explored the influence of record length on event magnitudes (Genest

et al., 2009; Su and Tung, 2013; Tong et al., 2015; Sadegh et al., 2017; Dodangeh et al., 2019;

Lucey and Gallien, 2023), but examination of event magnitude flooding outcomes is novel.

Similar to Lucey and Gallien (2023), event estimates from shorter record lengths increase

variability. In this study, utilizing longer records (≥70 years) constrained estimates (Figure

5.10). The maximum difference in flood depth between subsets changes from 30 cm to 8

cm when using 20- (Figure 5.11a) and 90-year (Figure 5.11b) subsets indicating significant

variability per grid cell. Figure 5.11a (10-year event with 20-year subsets) has a range of

93,600 m2 of flooding, and multiple zones indicating significant changes to the maximum

flood depths. Figure 5.11b (10-year event with 90-year subsets) has a range of 14,413 m2 of

flooding, and most of the domain indicates minor changes to flood depth.

Additional sources of uncertainty exist beyond the scope of this particular study. For

example, numerical model inputs (e.g., topography, bathymetry, flood protection infrastruc-

ture operation) are known to contribute to flood map uncertainty (Coveney and Fother-

ingham, 2011; Bates et al., 2014; Sampson et al., 2014; Saint-Geours et al., 2015). Future

work quantifying flood map uncertainties and investigating uncertainty bounds within hy-

brid statistical-numerical modeling studies should be undertaken. Waves can contribute to

significant flooding (Erikson et al., 2018; Gallien et al., 2018; Lucey and Gallien, 2023) and

should be accounted for in areas where they affect flooding. Integrating overland flows and

wave overtopping (Smith et al., 2012; Wadey et al., 2012; Gallien, 2016; Gallien et al., 2018)
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into coupled hydrodynamic models is necessary to consider the role wave related flooding in

compound events. Stationarity had been a typical assumption when conducting frequency

analysis studies. Accounting for non-stationarity is critical for future work as it amplifies

flood risk estimate uncertainties (Naseri and Hummel, 2022).

5.6 Conclusions

This work utilized a statistical-modeling hybrid framework to determine univariate and bi-

variate (compound) observed water level and precipitation flooding events in highly ur-

banized coastal regions while quantifying uncertainties in model flood estimates originating

from coupla choice, sampling methods, record length, and event choice. Copulas passing

a Cramér-von Misses test resulted in similar event estimates, translating into model flood

estimates with negligible differences. The BB5 copuls consistently provided the most con-

servative (i.e., largest) events compared with other copulas. Event estimates were created

with an annual maximum, annual coinciding, wet season monthly maximum, and wet season

monthly coinciding. Annual type events produced larger precipitation estimates resulting in

larger flood estimates even when other sampling methods had larger observed water level

estimates. Utilizing data records of at least 70-years resulted in minimal event estimate

variability and significant reductions in modeled flood extent and depth.

Flood estimates vary widely depending on the event choice along an isoline. Mod-

eled results were noticeably greater when precipitation estimates were larger, suggesting

the dominant role of precipitation in urban flooding (Gaitan et al., 2016; Huang et al., 2018;

Vorobevskii et al., 2020). However, drainage infrastructure alters flood estimates (Gallien

et al., 2011, 2014; Shen et al., 2019; Rong et al., 2020), and future work must account for

urban drainage infrastructure to improve the accuracy of flood model estimates and quan-

tification of errors attributed to uncertainty sources. Additionally, wave events occur within

limited time windows and their flooding outcomes are predicated on marine water levels.
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Research is needed to determine appropriate time sampling windows for transient events.

Future work should consider the possibility of compounding or amplifying uncertainties due

to non-stationary data (Naseri and Hummel, 2022), model inputs (Coveney and Fothering-

ham, 2011; Bates et al., 2014; Sampson et al., 2014; Saint-Geours et al., 2015), or coinciding

critical uncertainty sources (e.g., minimal data records for a non-stationary variable) within

a study.

5.7 Data Availability

NOAA precipitation data is available for download at https://www.ncei.noaa.gov/maps/

alltimes/. NOAA DEM data (topography, bathymetry, areal imagery) is available for

download at NOAA’s Digital Coast: Data Access Viewer (https://coast.noaa.gov/dataviewer/

#/lidar/search/where:ID=8658). Tidal data is available for download on NOAA’s Tides

& Currents website (https://tidesandcurrents.noaa.gov).
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CHAPTER 6

Conclusions and Future Work

Coastal flooding caused by precipitation, observed water levels, and waves were assessed

at highly urbanized coastal communities while accounting for uncertainties and quantifying

the implications of methodologies. A hybrid statistical-numerical modeling framework was

developed to quantify statistical characterization impacts on flooding outcomes. Uncertain-

ties stemming from copula choice, sampling methods, record length, selected rainfall gauge,

and event choice were considered. Previous studies typically relied upon a small number of

copulas (e.g. Clayton, Frank, Gumbel, Student t, and Gaussian) for multivariate flood risk

assessments, but copulas such as the Nelsen, BB1, BB5, and Roch-Alegre passed Cramér-

von Misses tests indicating alternative copulas may be more appropriate for coastal flood

hazards. Utilizing copulas passing a Cramér-von Misses test to determine event or flood

estimates present similar results suggesting a number of potential copulas may provide for

a robust multivariate analysis. Certain copulas, such as the BB5 copula, produce more

conservative event and flood estimates and future work should identify which copulas best

characterize coastal flooding in wave and tidally dominated applications.

Sampling methods imparted a critical source of uncertainty. Various sampling methods

were employed: annual maximum, annual coinciding, wet season monthly maximum, and

wet season monthly coinciding. An annual maximum sampling is commonly used in practice

(FEMA, 2011, 2016c) and studies (e.g., Baratti et al., 2012; Bezak et al., 2014; Wahl et al.,

2015), but may not characterize severe flooding potential. Annual coinciding sampling re-

peatedly resulted in lower observed water level estimates compared to estimates made with
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other sampling methods. Utilizing sampling methods with higher sampling frequencies (i.e.,

wet season type samplings) benefit from additional data pairs potentially improving the

characterization of event dependencies. However, modeling events generated form various

sampling methods showed that events with larger precipitation estimates resulted in larger

flooding metrics. The largest flood events were produced with annual type samplings.

Available record length imparted the most uncertainty into both flood event pairs and the

resulting flood maps. Event estimates had significant variability when utilizing minimal data

records (< 70 years), but were well constrained when using at least 70-years of records. Using

longer data records further translated to significant reductions in model flood variability

across the domain and at each grid cell. Novel to this work, microclimates were suspected

to drive the differences between local event estimates and the disagreement between local

estimates present data source, in this case chosen rainfall gauge, as a critical source of

uncertainty. Additionally, event and model flood estimates greatly varied depending on the

utilized event pair along an isoline.

While critical sources of uncertainty were quantified, other factors need to be accounted

for in future studies. Flooding results were greater when precipitation estimates were larger,

suggesting a dominant role of precipitation in urban flooding (Gaitan et al., 2016; Huang

et al., 2018; Vorobevskii et al., 2020). Exclusion of drainage infrastructure is a limitation of

this work and deserves consideration since it is known to control flood development (Gallien

et al., 2011, 2014; Shen et al., 2019; Rong et al., 2020). Sea level rise will increase and intensify

both tidal and wave driven flooding (e.g., Tang and Gallien, 2023). Waves significantly

impact event estimates (Serafin et al., 2017; Reguero et al., 2019). Explicitly accounting for

wave impacts is critical to characterizing coastal flooding (e.g., Erikson et al., 2018; Gallien

et al., 2018; Barnard et al., 2019). Long term, vulnerable coastal sites may shift from pluvial

to marine dominated flooding and highlight the critical need to consider non-stationarity.

Other sources of uncertainty (e.g., ENSO influence, topobathy inputs, event window timing)

should also be accounted for in future work. Hybrid statistical-numerical frameworks must
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continue to be applied to environments with different dominate flood drivers and studies

should explore their benefits over traditional statistical or numerical modeling methods.
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CHAPTER 7

Appendix

7.1 Additional Information for Chapter 3
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Figure 7.1: Marginal OWL BIC values per fitted copula for Santa Monica (left column),

Sunset (middle column), and San Diego (right column) using (a)(b)(c) annual maximum,

(d)(e)(f) annual coinciding, (g)(h)(i) wet season monthly maximum, and (j)(k)(l) wet sea-

son monthly coinciding. The Y-axis is orientated to display best BIC (top) to worse BIC

(bottom).
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Figure 7.2: Marginal precipitation BIC values per fitted copula for Santa Monica (left col-

umn), Sunset (middle column), and San Diego (right column) using (a)(b)(c) annual maxi-

mum, (d)(e)(f) annual coinciding, (g)(h)(i) wet season monthly maximum, and (j)(k)(l) wet

season monthly coinciding. The Y-axis is orientated to display best BIC (top) to worse BIC

(bottom).
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7.2 Additional Information for Chapter 4
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Table 7.1: Fitted observed (OWL) and total water level (TWL), and precipitation (P)

univariate distributions using annual maximum (AM) and coinciding (AC), and wet season

monthly maximum (WMM) and coinciding (WMC) samplings. San Francisco marginals

were fitted when using the 100-year record. Distributions with an star (*) indicate fits with

below standard levels of significance (α < 0.05).

OWL-P

Sampling Variable San Francisco Torrance Long Beach San Diego

AM
OWL L BS BS Normal

P L BS L Logistic

AC
OWL Nakagami Weibull Nakagami Gamma

P L BS L Logistic

WMM
OWL Gamma Normal* GEV Normal

P Nakagami* GP* GP GP

WMC
OWL Gamma BS* Gamma* GP*

P Nakagami* GP* GP GP

TWL-P

AM
TWL - IG* IG IG

P - BS L Logistic

AC
TWL - GP* L L

P - BS L Logistic

WMM
TWL - GEV GEV GEV

P - Exponential GP GP

WMC
TWL - LN L L

P - Exponential GP GP

BS - Birnbaum-Saunders; GP - Generalized Pareto; L - Log logistic

LN - Log Normal; GEV - Generalized Extreme Value; IG - Inverse Gaussian
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Table 7.2: The periods used for the 90-, 80-, 70-, 50-, 30-, and 20-years of subsets created

from the original San Francisco record. There are ten different periods per subset length.

Subset size Periods

(years)

90

1931-2021, 1921-1930 and 1941-2021, 1921-1940 and 1951-2021, 1921-

1950 and 1961-2021, 1921-1960 and 1972-2021, 1921-1970 and 1982-

2021, 1921-1981 and 1992-2021, 1921-1991 and 2002-2021, 1921-2001

and 2012-2021, 1921-2011

80

1941-2021, 1921-1930 and 1951-2021, 1921-1940 and 1961-2021, 1921-

1950 and 1972-2021, 1921-1960 and 1982-2021, 1921-1965 and 1987-

2021, 1921-1970 and 1992-2021, 1921-1981 and 2002-2021, 1921-1991

and 2012-2021, 1921-2001

70

1951-2021, 1921-1930 and 1961-2021, 1921-1935 and 1966-2021, 1921-

1940 and 1972-2021, 1921-1945 and 1977-2021, 1921-1950 and 1982-

2021, 1921-1960 and 1992-2021, 1921-1970 and 2002-2021, 1921-1981

and 2012-2021, 1921-1991

50
1921-1970, 1926-1976, 1931-1981, 1941-1991, 1946-1996, 1951-2001,

1956-2006, 1961-2011, 1966-2016, 1972-2021

30
1921-1950, 1931-1960, 1936-1965, 1941-1970, 1951-1981, 1961-1991,

1972-2001, 1982-2011, 1987-2016, 1992-2021

20
1921-1940, 1931-1950, 1941-1960, 1951-1970, 1961-1981, 1972-1991,

1982-2001, 1987-2006, 1992-2011, 2002-2021
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7.3 Additional Information for Chapter 5

Table 7.3: Best fitting observed water level (OWL) and precipitation (P) univariate distri-

butions for each location using annual maximum (AM), annual coinciding (AC), wet season

monthly coinciding (WMM), and wet season monthly coinciding (WMC) samplings. Distri-

butions with a star (*) indicate the distribution did not have standard levels of significance

(p ≤ 0.05).

Sampling Variable Long Beach-Sunset Newport

AM
OWL BS BS

P L G

AC
OWL NA GP*

P L G

WMM
OWL GEV N*

P GP GP*

WMC
OWL G* G*

P GP GP*

BS - Birnbaum-Saunders; GP - Generalized Pareto; G - Gamma

N - Normal; L - Log logistic; NA - Nakagami
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Figure 7.3: Univariate cumulative distribution function plots for observed water level (OWL)

and precipitation (P) at Long Beach using an annual maximum (AM; blue), annual coin-

ciding (AC; green), wet season monthly coinciding (WMM; black), and wet season monthly

coinciding (WMC; magenta) sampling.

106



Table 7.4: 10- and 100-year events for marginal, observed water levels (OWL) and precipi-

tation (P), and compound events (AND) using annual maximum (AM), annual coinciding

(AC), wet season monthly maximum (WMM), and wet season monthly coinciding (WMC)

samplings at Sunset Beach. Compound events were created using the Nelsen copula passing

a Cramér-von Misses test.

OWL P

[m] [mmday−1]

Sampling 10 100 10 100

AND

AM 2.21 2.26 55.87 81.27

AC 1.84 2.07 54.96 80.12

WMM 2.16 2.23 44.10 66.46

WMC 1.96 2.14 43.98 66.30

Marginal

AM 2.25 2.32 72.89 133.30

AC 2.01 2.32 72.89 133.30

WMM 2.25 2.31 76.66 113.87

WMC 2.22 2.49 76.70 114.05
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Table 7.5: 10- and 100-year events for marginal (Uni.), observed water levels (OWL) and pre-

cipitation (P), and compound events using an annual coinciding sampling at Sunset Beach.

Compound events were created using a Clayton, Nelsen, Roch-Alegre (Roch.), Fischer-Kock

(Fisc.), BB1, and BB5 copula passing a Cramér-von Misses test for one or more cases.

OWL P

[m] [mmday−1]

Sampling 10 100 10 100

Clayton 1.82 2.04 53.93 76.66

Nelsen 1.84 2.07 54.96 80.12

Roch. 1.83 2.06 54.69 78.75

Fisc. 1.84 2.06 54.57 78.68

BB1 1.83 2.09 54.31 83.95

BB5 1.85 2.16 56.29 96.44

Uni. 2.01 2.32 72.89 133.30
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