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ABSTRACT 

This work develops accurate weight functions for a single crack at a hole in a finite width 
plate for various hole sizes. In order to develop an accurate weight function, we first obtain 
accurate stress intensity factors, using the finite element method (FEM), for a reference load case 
of uniform stress on the crack line. Following the earlier approach for developing a weight 
function suggested by Wu and Carlsson, we fit the reference stress intensity factor data from 
FEM to a smooth analytic function; however, for the open hole it is necessary to adopt a 
piecewise polynomial to fit the stress intensity factor data, in place of the single polynomial 
suggested by Wu and Carlsson. We validate the new weight function for the case of remote 
uniform applied stress, which induces a stress field on the crack line exhibiting the well-known 
stress concentration at the hole, and for which we have accepted stress intensity factor solutions. 
The new weight functions provide stress intensity factors that agree very well with results from 
two commercial fracture mechanics software packages. Comparing results from the new and 
earlier weight functions shows good agreement for some crack line stress fields, but errors of a 
few percent for other stress fields, with the new weight function providing more reasonable 
results. The improved quality of the new weight functions is due both to the new reference 
solution for uniform crack line stress and to the piecewise fit to the reference stress intensity 
data. Trivial changes to the FEM model allow us to provide additional weight functions for the 
cases of symmetric double cracks at a hole (by adding a symmetry plane to the FEM mesh) and a 
single crack at a hole in a square plate (by reducing the length of the FEM mesh). 
KEYWORDS 

Weight function, Radial crack, Open hole, Stress intensity factor, Fracture mechanics 

1. INTRODUCTION 

Wu and Carlsson developed a library of weight functions for cracks in many different 

geometries [1]. Generally, these have good accuracy, but their weight function for a single crack 

at a hole in a long, finite width strip (Figure 1) was found to have limited accuracy in recent 

work [2]. One inaccuracy arises because their solutions are for a limited range of geometry, and 
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our earlier work used test coupons that fell outside of that range. But, there are additional causes 

of inaccuracy, as will be made clear below. Therefore, the goal in the present work is to develop 

a more accurate weight function for a crack at a hole in a finite width plate. 

Weight functions are derived from a known reference load case (1), for which the stress 

intensity factor and crack face displacement are known [3,4]. The definition of the weight 

function is 

𝑚 𝑎, 𝑥 =
𝐸!

𝐾(!) 𝑎
 
𝜕𝑢(!)(𝑎, 𝑥)

𝜕𝑎  , (1) 

where a is the crack size, x is the coordinate along the cracking-driving direction, with origin at 

the crack mouth, Eʹ is the effective elastic modulus (E for plane stress and E/(1 – ν) for plane 

strain), and u(1)(a,x) is the vertical (opening) displacement of the crack face under loading 

system (1). Given the weight function, the stress intensity factor K(2)(a) of any load system (2) 

may be found from the weight function m(a,x) and the crack-line stress in the uncracked body 

due to load system (2), σ(2)(x). The specific expression for K(2)(a) is 

𝐾 ! 𝑎 = 𝜎 ! 𝑥 ∙𝑚 𝑎, 𝑥 𝑑𝑥
!

!
 . (2) 

Petroski and Achenbach [5] and Wu [6] showed that the crack face displacement of a center 

or edge crack can also be expressed as a function of the reference stress intensity factor, so the 

reference stress intensity factor is the only unknown and is the key factor related to the accuracy 

of a specific weight function. In addition, according to Wu and Carlsson [1], uniform stress on 

the crack-line is the best choice for the reference load case, because of its mathematical 

simplicity. 

However, for cracks at a hole in a long strip [1], the only available reference solution is for 

remote uniform stress, for which accurate stress intensity factors are available [7]. In this case, 



	

	 3 

the crack-line stress field is non-uniform, owing to the stress concentration at the hole. This 

allowed us to improve upon the earlier work of Wu and Carlsson. First, we developed a reference 

solution using uniform crack-line stress for a crack at a hole in a finite width strip. Second, 

piecewise polynomials were used to fit the reference stress intensity factor data, instead of using 

a single power series polynomial, as Wu had proposed [6]. This second step was required 

because the stress intensity factor solution for a crack at a hole has a rather complicated shape, 

with high gradients and curvature for both short and long cracks. 

Following the same procedure as for a single crack in a long strip with an open hole, two 

additional weight functions were developed: (i) double-sided cracks in a long strip with an open 

hole, and (ii) a single crack in a square plate with an open hole. The square plate may provide a 

first approximation of the weight function for a cracked lug. For the double-sided cracks at a 

hole, it is assumed that the both radial cracks have the same length, and the stress distribution on 

the crack-line is symmetric with respect to the vertical center line. 

2. METHODS 

2.1. Geometries of Interest 

Here, a weight function for a single crack in a long strip with an open hole (Figure 1) is 

developed. The weight function varies depending on the ratio of the half width of the strip (B) to 

the hole radius (R), so six different geometries, B/R = 2, 2.5, 3, 4, 6, 6.27 and 10, are considered 

(where B/R = 2 represents a large hole and B/R = 10 represents a small hole, relative to the strip 

width). 

2.2. Wu and Carlsson’s Weight Function for a Long Strip with a Circular Hole 

For any B/R, Wu and Carlsson [1] expressed the reference stress intensity factor in a 

normalized form, called the reference geometry factor 
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𝑓! 𝑎 𝑊 =
𝐾! 𝑎 𝑊
𝜎 𝜋𝑎

 (3) 

which they fitted using a power series with crack size 

𝑓! 𝑎 𝑊 = 𝛼!
𝑎
𝑊

!
!

!!!

  (4) 

where 

Kr: reference stress intensity factor 
a: crack size 
σ: normalizing stress magnitude 
W: ligament width (see Figure 1) 
αi: polynomial coefficients for the reference geometry factor (i = 

0, 1, 2, …, I) 
I: order of polynomial for the reference geometry factor. 

The crack-line stress that produces the reference stress intensity factor was also expressed as a 

power series 

𝜎! 𝑥 𝑊
𝜎 = 𝑆!

𝑥
𝑊

!
!

!!!

 (5) 

where 

x: coordinate along the crack-line starting from the edge of a 
circular hole 

σr: reference crack-line stress 
Sm: polynomial coefficients of the crack-line stress (m = 0, 1, 2, …, M) 
M: order of polynomial for the reference crack-line stress. 

An approximate weight function can be derived [1] from the reference stress intensity solution 

and stress field, and for an edge crack is 

𝑚 𝑎, 𝑥 =
1
2𝜋𝑎 

𝛽! 𝑎 𝑊 ∙ 1−
𝑥
𝑎

!!!!
!

!!!

 (6) 

where 
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𝛽! 𝑎 𝑊 = 2.0

𝛽! 𝑎 𝑊 =
1

𝑓! 𝑎 𝑊 

4𝑎
𝑊
𝑓!! 𝑎 𝑊 + 2𝑓! 𝑎 𝑊 +

3
2
𝐹! 𝑎 𝑊

𝛽! 𝑎 𝑊 =
1

𝑓! 𝑎 𝑊 

𝑎
𝑊
𝐹!! 𝑎 𝑊 −

1
2
𝐹! 𝑎 𝑊

 (7) 

and 

𝐹! 𝑎 𝑊 = 4𝑓! 𝑎 𝑊

𝐹! 𝑎 𝑊 =
1

𝐸! 𝑎 𝑊 
2𝜋𝜙 𝑎 𝑊 − 𝐸! 𝑎 𝑊 ∙ 𝐹! 𝑎 𝑊  (8) 

with 

𝜙 𝑎 𝑊 =
1

𝑎 𝑊 ! 𝑠 ∙ 𝑓! 𝑠 !𝑑𝑠
! !

!
 (9) 

𝜙!(𝑎/𝑊) = −
2

𝑎 𝑊 𝜙 𝑎 𝑊 +
1

𝑎 𝑊 𝑓! 𝑎 𝑊 ! (10) 

𝐸! 𝑎 𝑊 =
2!!!𝑚! 𝑆! 𝑎/𝑊 !

1+ 2𝑗 + 2𝑘!
!!!

!

!!!

 . (11) 

The weight function of Eq. (6) has dimensionality that is consistent with Eq. (1) (one over square 

root of length). Wu and Carlsson [1] pursue a dimensionless analysis, and provide a similar 

equation for m(a,x) that is non-dimensional, equal to Eq. (6) multiplied by W1/2.  

2.3. Calculation of Reference Stress Intensity Factors 

In order to obtain the reference stress intensity factor under uniform stress for each geometric 

configuration (i.e., value of B/R), a two-dimensional FEM model was constructed with a plane 

stress formulation and elastic material properties E/σ = 1000 (where σ is a normalizing stress 

magnitude) and ν = 0.33. For convenience, a half-symmetric body was analyzed, with symmetry 

about the crack-line, y = 0. The mesh was constructed with an increasing level of refinement 

toward the crack-line and the hole, and was composed of four-node bilinear plane stress 
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quadrilateral elements (Figure 2). Unit uniform stress was applied on the crack face. From the 

finite element analysis, the J-integral was found for a range of crack size (14 points between a/W 

= 0 and 0.1, 5 points per 0.1 between 0.1 and 0.3, and 4 points per 0.1 between 0.3 and 0.9, for a 

total of 48 points). The reference stress intensity factor for each crack size was calculated from 

𝐾! 𝑎 𝑊 = 𝐽 𝑎 𝑊 ∙ 𝐸  (12) 

and then the reference geometry factor, fr(a/W), was computed using Eq. (3).  

Mesh refinement was carefully studied to ensure accurate reference geometry factors. Initial 

geometry factors were developed using a refined mesh having: 400 elements of uniform size 

(along x) on lines (1) and (4) of Figure 2 (the crack plane and symmetry plane, respectively); 200 

elements biased along line (2) so that node spacing was smaller at the symmetry plane and twice 

as large at the upper end of line (2); 200 elements along line (3), biased so node spacing at the 

upper edge of the mesh was twice as large as at the bottom of line (3). More refined meshes were 

developed by halving node spacing (each quadrilateral element divided into 4 elements) and the 

analysis rerun until stress intensity factors converged to better than 0.1%. Accurate stress 

intensity factors were found with meshes having 3200 elements along lines (1) and (4) for the 

shortest cracks, and having 800 elements along these lines for longer cracks. 

2.4. Fitting the Reference Geometry Factor with Piecewise Spline Curves 

To fit accurately the reference geometry factor data from FEM, piecewise polynomial splines 

were used, because they can approximate a function over a large interval with smaller error than 

can the single polynomial used in the prior work (i.e., Eq. (4)). Piecewise polynomial splines also 

have global smoothness, even at breakpoints, which are endpoints of each piecewise interval. To 

have smooth derivatives of the polynomial splines, geometry factor data were fit with fifth order 

B-splines, which can be written [8] as a recurrence relation 
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𝑓! 𝑎/𝑊 = 𝑐!𝐵!,!!! 𝑎/𝑊 ,
!

!!!

 (13) 

where 

𝐵!,! 𝑎/𝑊 =
𝑎/𝑊 − 𝑡!
𝑡!!! − 𝑡!

𝐵!,!!! 𝑎/𝑊 +
𝑡!!!!! − 𝑎/𝑊
𝑡!!!!! − 𝑡!!!

𝐵!!!,!!! 𝑎/𝑊  (14) 

and 

𝐵!,! 𝑎/𝑊 =
1, 𝑖𝑓 𝑡! ≤ 𝑎/𝑊 < 𝑡!!!
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.           

 (15) 

with 

a: crack size 
fr(a/W): spline fit for the reference geometry factor  
d: order of a spline, taken as 5 
Bj,d: jth B-spline of dth order 
cj: coefficients of B-splines 
m: number of B-splines 
tj: knots, non-decreasing sequence of real numbers, j = 1, 2, …, m + d + 1. 

The knot sequence tj includes breakpoints for the splines, including the two global endpoints (the 

first and last points of the knot sequence) each occurring d+1 times, so that the spline passes 

through the endpoints. Trial and error was used to find a useful number of piecewise polynomial 

intervals, and the trials provided m = 7 intervals between global endpoints of a/W = 0 and 0.9, 

with six break points between. For all but one geometry, the breakpoints, found by trial and 

error, are 0.05, 0.15, 0.25, 0.45, 0.65, and 0.8; for B/R = 10, the breakpoints are 0.03, 0.08, 0.15, 

0.35, 0.55 and 0.7. Therefore, the knot sequence vectors for the splines are {0, 0, 0, 0, 0, 0, 0.05, 

0.15, 0.25, 0.45, 0.65, 0.8, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9} for all but B/R = 10, and {0, 0, 0, 0, 0, 0, 

0.03, 0.08, 0.15, 0.35, 0.55, 0.7, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9} for B/R = 10. The coefficients of B-

splines, cj were calculated from the 48 reference geometry factor values from FEM using least 
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squares. For convenience, the B-spline reference geometry factor fit of Eq. (13) will be written 

with a polynomial form, so the coefficients αi of Eq. (4) will be reported for each piecewise 

interval. 

2.5. Computing βi(a/W) Function Values 

The weight function is a linear combination of βi(a/W) functions, each multiplied by a 

function of x/a, and βi(a/W) functions are determined from reference geometry factor piecewise 

spline fits (fr(a/W)) and crack-line stress related terms (Ej(a/W)). Because the loading is a simple 

unit uniform stress on the crack-line, Ei(a/W) in Eq. (11) become constants, which are 

𝐸! 𝑎 𝑊 =
2
3  𝑎𝑛𝑑 𝐸! 𝑎 𝑊 =

2
5 , (16) 

and the determination of βi(a/W) is dramatically simplified. Substituting Eq. (8) and (16) into Eq. 

(7), 

𝛽! 𝑎 𝑊 = 2.0

𝛽! 𝑎 𝑊 =
1

𝑓! 𝑎 𝑊 

4𝑎
𝑊
𝑓!! 𝑎 𝑊 − 8𝑓! 𝑎 𝑊 +

15 2𝜋
4

𝜙 𝑎 𝑊

𝛽! 𝑎 𝑊 =
1

𝑓! 𝑎 𝑊 

5 2𝜋𝑎
2𝑊

𝜙! 𝑎 𝑊 −
5 2𝜋
4

 𝜙 𝑎 𝑊

−
20𝑎
3𝑊 𝑓!! 𝑎 𝑊 +

10
3 𝑓! 𝑎 𝑊 .

 (17) 

In Eq. (17), fr'(a/W) is obtained by derivation of a piecewise polynomial form of fr(a/W) in 

Eq. (13). The function ϕ(a/W) and its derivative ϕ'(a/W) (Eq. (9) and (10) respectively) include 

the integration of a polynomial of eleventh order, so sixth order Gaussian quadrature was used 

for the accurate numerical integration (n-th order Gaussian quadrature is accurate for all 

polynomials up to order 2n−1). 
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2.6. Computing Geometry Factor 

Once a weight function is known, a new geometry factor due to a given arbitrary crack-line 

stress can be calculated using Eq. (2) and Eq. (3) and written with Eq. (6) as 

𝑓 𝑎 𝑊 =
1
2𝜋𝑎

𝜎 𝑥
𝜎 𝛽! 𝑎 𝑊 1−

𝑥
𝑎

!!!!
!

!!!

𝑑𝑥
!

!
 (18) 

where σ(x) is an arbitrary crack-line stress field. To compare the present work to the earlier work 

of Wu and Carlsson, we determine f(a/W) for two stress fields, one being the crack-line stress 

due to remote loading and the other being uniform crack-line stress. For remote loading, the 

crack-line stress σ(x) is required, and was found from the same finite element meshes used to 

determine the stress intensity factors, but the model contained no crack, and uniform stress was 

applied on the remote boundary (i.e., at the top and bottom edge of Figure 1). 

2.7. Additional Weight Functions 

The FEM models described above were altered to develop weight functions for two other 

geometries, one geometry being two symmetric cracks at a hole in a long strip, and the other 

being a single crack at a hole in a square plate. For symmetric cracks, a vertical symmetry plane 

was introduced along the line (5) in Figure 2, all nodes and elements to the left of that line were 

removed, and the analyses repeated to develop new stress intensity factors. For the square plate, 

all nodes and elements were removed from the upper region of the strip model (areas near line 

(3) in Figure 2), and the analyses were repeated. From the modified FEM model results, 

reference geometry factors are obtained and fitted with piecewise spline curves, then βi(a/W) 

functions in Eq. (18) are calculated. Geometry factors are also calculated to verify the weight 

functions. 
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3. RESULTS 

3.1. Reference Geometry Factors 

Reference geometry factors for a single crack at a hole under uniform crack-line stress are 

expressed as 5th-order piecewise polynomials, with the six coefficients for each geometry given 

in Table 1. The reference geometry factor for B/R = 2 is shown in Figure 3(a). The seven, 5th-

order piecewise polynomials fit the FEM results with a high degree of accuracy (around 0.02% 

maximum difference). Figure 3(b) shows the derivative of the piecewise polynomial fit, which is 

smooth over the whole range, including the breakpoints. Figure 4(a) shows the two piecewise 

polynomials for 0 < a/W < 0.05 and 0.05 < a/W < 0.15, which fit the FEM results very well in 

their intervals. A 7th-order single polynomial was fit for the whole range (0 < a/W < 0.9), and is 

shown for comparison, having a maximum misfit of 0.11%. Figure 4(b) shows that the single 

polynomial curve expresses the FEM results less accurately near the concave region 

(a/W = 0.15). 

3.2. βi(a/W) Values 

The calculated βi(a/W) values for a single crack at a hole are given for selected crack sizes in 

Table 2. A more complete table of βi(a/W) values is provided as an attachment. For selected 

geometries (B/R = 2, 4, and 6), the newly calculated βi(a/W) values are plotted and compared to 

those from Wu and Carlsson (W&C) (B/R = 2, 3.5, and 5) in Figure 5. In Figure 5(a), there is 

good agreement for B/R = 2, but for other B/R, β2(a/W) is smooth for the present results, but 

wavy for the earlier work. In Figure 5(b), β3(a/W) from this work for B/R = 2, 4, and 6 have a 

similar form, but β3(a/W) for the earlier work is again wavy. The waviness observed in β2(a/W) 

and β3(a/W) is discussed below. 
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3.3. Stress Intensity Factor Solutions for Point Loads (Green’s Function) 

The geometry factor for opposing point loads applied on the crack face is known as the 

Green’s function, and is expressed as 

𝐺 𝑎 𝑊 , 𝑥 𝑎 =
2
2 2 1−

𝑥
𝑎

!!! + 𝛽! 𝑎 𝑊 ∙ 1−
𝑥
𝑎

!
!
 

+𝛽! 𝑎 𝑊 ∙ 1−
𝑥
𝑎

!
!  . 

(19) 

Figure 6 shows Green’s function for B/R = 2. Figure 6 has four sub-figures that include (a) 

Green’s function for x/a = 0, 0.5, 0.8, and 0.9, (b) same as (a) but focused on 0 < a/W < 0.4, (c) 

Green’s function for x/a = 0, 0.1, 0.2, 0.3, and 0.5, and (d) same as (c) but focused on 

0 < a/W < 0.4. At x = 0, the Green’s function from this work agrees with Wu and Carlsson with 

difference less than 2% except in the range of 0.01 < a/W < 0.23 where the maximum difference 

increases up to 6%. As the position of the point load (x/a) increases, the differences decrease. 

The Green’s function for point loads at specific locations are compared in Figure 7 for a 

range of B/R. Figure 7(a) shows the Green’s function for point loads at x/a = 0 and Figure 7(b) is 

focused for smaller crack sizes, 0 < a/W < 0.4. Figure 7(c) and (d) show similar Green’s function 

results for point loads at x/a = 0.5 and 0.9, respectively. The Green’s function values decrease as 

B/R increases. While the results of this work are smooth and self-similar, results from the earlier 

work become wavier as B/R increases. 

3.4. Geometry Factors 

 Geometry factors for unit uniform crack-line pressure (σ(x) = 1) are shown in Figure 8(a) 

and (b). Discrepancies among the current weight function method (this work), the earlier work 

(W&C), and the commercial package (NASSIF, TC13 [9]) are apparent for small crack sizes 

(a/W < 0.2). There is reasonable agreement for larger crack sizes between this work and the 
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earlier work, but the discrepancies continue between this work and the NASSIF results after a/W 

= 0.2 for some geometries. Some waviness is apparent in results based on the earlier work and 

the NASSIF results, but the new results are smooth. 

For remote load, crack-line stresses are concentrated at the hole, as shown in Figure 9(a). 

Geometry factors calculated with the current weight function method (this work), the earlier 

work, and commercial packages (AFGROW [10] and NASSIF, TC13 [9]) are shown in Figure 

9(b). In addition, the theoretical value of the geometry factor at a/W = 0 is shown, estimated as 

1.12 times the stress concentration factor at the hole, (SCF), the SCF being taken from [11]. 

There is good agreement among all the results for B/R = 2 and 2.5, and the results for the other 

geometry cases (B/R = 3, 4, 6, and 10 for this work and B/R = 3.5 and 5 for the earlier weight 

function) are reasonably placed in the order of the B/R ratio. Results of the present weight 

function also fall between those from the commercial packages. 

3.5. Additional Weight Functions 

Coefficients of the piecewise polynomials of the reference geometry factor are provided in 

Table 3 and Table 4 respectively. In addition, βi(a) values for these additional cases are listed in 

Table 5 and Table 6, respectively. Comparison plots of geometry factors due to uniform crack-

line pressure and remote load for double-sided cracks in a long strip with an open hole are shown 

in Figure 10 and Figure 11. While the crack-line pressure case shows obvious discrepancies with 

commercial software, the remote load case shows excellent agreement with them. 

4. DISCUSSION 

4.1. Reasons of Waviness of βi(a/W) and G(a/W, x/a) 

The waviness of β2(a/W) from Wu and Carlsson is caused by the derivative of the reference 

geometry factor that is a high order single polynomial. From Eq. (17), we have 
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𝛽! 𝑎 𝑊 = 4𝑔! 𝑎 𝑊 − 8+
15 2𝜋
4 𝑔! 𝑎 𝑊  (20) 

where 

𝑔! 𝑎 𝑊 =
𝑎
𝑊  𝑓!! 𝑎 𝑊
𝑓! 𝑎 𝑊   

𝑔! 𝑎 𝑊 =
𝜙 𝑎 𝑊
𝑓! 𝑎 𝑊  .  

(21) 

Figure 12(a) and (b) compare fr(a/W) and fr'(a/W)  for this work and the W&C work, for a mid-

value of B/R. Figure 12(c) compares g1(a/W), which is a dominant term in Eq. (20). The g1(a/W) 

of W&C is wavy and similar to β2(a/W) (Figure 12(d)) while g1(a/W) for this work is smooth. 

The waviness of g1(a/W) seems to be due to the waviness of fr'(a/W). β3(a/W) is more complex 

than β2(a/W), but the dominant term in the waviness is also fr'(a/W). 

4.2. Geometry Factors 

Geometry factors for the earlier work show inconsistent curve shapes between the different 

B/R, with waviness consistent with waviness of the Green’s function, while the geometry factors 

for this work have an improved shape. These characteristics are shown more clearly by plotting a 

ratio of geometry factor for various B/R to the geometry factor for B/R = 2 of this work. In the 

plot of geometry factor ratio for uniform crack-line stress (Figure 13(a) and (b)), the curves for 

this work are smooth and self-similar, but the curves for the earlier work show the waviness 

noted earlier. However, the geometry factor ratios for remote load (Figure 13(c) and (d)) are very 

close to one another, and show less waviness. From these comparisons, it seems that the earlier 

weight function may have different quality, depending on the applied load, while results for this 

work show consistent quality regardless of loading. 
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5. CONCLUSIONS 

This work developed accurate weight functions for a radial crack at a hole in a strip for 

B/R = 2, 2.5, 3, 4, 6, 6.27, and 10. The present work first focused on finding accurate reference 

stress intensity factors because they are a key factor for developing an accurate weight function. 

Uniform crack-line stress was used as the load case for the reference stress intensity factor, and 

5th-order piecewise polynomial splines were used to fit the reference stress intensity factors 

found from finite element analysis. With an accurate approximation for the new reference stress 

intensity factor, we developed parameters for the new weight function. The new weight function 

provides stress intensity factors due to the point loads and uniform crack-line stress that are 

smooth and self-similar, unlike results from an earlier weight function. The new weight function 

also provides stress intensity factors for remote loads that agree well with those from typical 

commercial software packages. 
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TABLES 

Single	crack	(Long	strip	with	a	hole,	H/B	≥	2)	
B/R	 Polynomial	 Interval	 α0	 α1	 α2	 α3	 α4	 α5	
2	 1	 0	<	a/W	<	0.05	 1.1200125	 -0.80763166	 7.9355633	 -100.81862	 994.09834	 -4055.5336	
	 2	 0.05	<	a/W	<	0.15	 1.1187217	 -0.67855268	 2.7724042	 2.4445643	 -38.533495	 74.993714	
	 3	 0.15	<	a/W	<	0.25	 1.1269285	 -0.95211242	 6.4198673	 -21.871857	 42.521242	 -33.079269	
	 4	 0.25	<	a/W	<	0.45	 1.0933887	 -0.28131771	 1.0535096	 -0.40642595	 -0.40961970	 1.2654203	
	 5	 0.45	<	a/W	<	0.65	 0.95083523	 1.3026101	 -5.9861697	 15.237306	 -17.791544	 8.9907200	
	 6	 0.65	<	a/W	<	0.80	 -16.954556	 139.03639	 -429.78240	 667.23151	 -519.32554	 163.30887	
	 7	 0.80	<	a/W	<	0.90	 -1164.0292	 7308.2530	 -18352.824	 23071.033	 -14521.702	 3663.9029	

2.5	 1	 0	<	a/W	<	0.05	 1.1199209	 -1.1721983	 6.6368645	 -33.181707	 190.77533	 -666.51998	
	 2	 0.05	<	a/W	<	0.15	 1.1197181	 -1.1519171	 5.8256183	 -16.956782	 28.526078	 -17.522981	
	 3	 0.15	<	a/W	<	0.25	 1.1204887	 -1.1776031	 6.1680976	 -19.239978	 36.136729	 -27.670516	
	 4	 0.25	<	a/W	<	0.45	 1.0924625	 -0.6170781	 1.6838978	 -1.3031784	 0.26313048	 1.0283628	
	 5	 0.45	<	a/W	<	0.65	 0.95932882	 0.86218450	 -4.8906026	 13.306822	 -15.970204	 8.2431780	
	 6	 0.65	<	a/W	<	0.80	 -15.933916	 130.81022	 -404.73071	 628.44545	 -489.15376	 153.83812	
	 7	 0.80	<	a/W	<	0.90	 -1048.5171	 6584.4550	 -16538.843	 20796.085	 -13093.929	 3305.0318	
3	 1	 0	<	a/W	<	0.05	 1.1200326	 -1.6101665	 11.314142	 -99.924447	 827.92879	 -3210.7765	
	 2	 0.05	<	a/W	<	0.15	 1.1190318	 -1.5100920	 7.3111608	 -19.864826	 27.332582	 -8.3916980	
	 3	 0.15	<	a/W	<	0.25	 1.1212756	 -1.5848849	 8.3083994	 -26.513083	 49.493439	 -37.939508	
	 4	 0.25	<	a/W	<	0.45	 1.0837252	 -0.8338765	 2.3003321	 -2.4808142	 1.4289008	 0.51212285	
	 5	 0.45	<	a/W	<	0.65	 0.94781330	 0.67625586	 -4.4113673	 12.434073	 -15.143196	 7.8774994	
	 6	 0.65	<	a/W	<	0.80	 -14.818988	 121.95934	 -377.59008	 586.55518	 -456.77481	 143.76415	
	 7	 0.80	<	a/W	<	0.90	 -995.12770	 6248.8888	 -15694.914	 19733.210	 -12423.434	 3135.4289	
4	 1	 0	<	a/W	<	0.05	 1.1201194	 -2.4721241	 21.961779	 -216.18080	 1741.6216	 -6578.0708	
	 2	 0.05	<	a/W	<	0.15	 1.1181073	 -2.2709161	 13.913458	 -55.214385	 131.95745	 -139.41414	
	 3	 0.15	<	a/W	<	0.25	 1.1111855	 -2.0401895	 10.837103	 -34.705355	 63.594021	 -48.262896	
	 4	 0.25	<	a/W	<	0.45	 1.0647808	 -1.1120948	 3.4123457	 -5.0063246	 4.1959615	 -0.74444760	
	 5	 0.45	<	a/W	<	0.65	 0.91826511	 0.51585691	 -3.8229953	 11.072211	 -13.669078	 7.1955700	
	 6	 0.65	<	a/W	<	0.80	 -13.476201	 111.24252	 -344.52042	 535.22209	 -416.86129	 131.25471	
	 7	 0.80	<	a/W	<	0.90	 -909.17002	 5709.3289	 -14339.736	 18029.242	 -11350.624	 2864.6953	
6	 1	 0	<	a/W	<	0.05	 1.1201988	 -4.1884339	 54.782022	 -663.38188	 5567.3210	 -21054.572	
	 2	 0.05	<	a/W	<	0.15	 1.1137889	 -3.5474399	 29.142262	 -150.58668	 439.36893	 -542.76350	
	 3	 0.15	<	a/W	<	0.25	 1.0767375	 -2.3123936	 12.674977	 -40.804785	 73.429281	 -54.843972	
	 4	 0.25	<	a/W	<	0.45	 1.0261734	 -1.3011120	 4.5847247	 -8.4437744	 8.7072594	 -3.0663550	
	 5	 0.45	<	a/W	<	0.65	 0.83094084	 0.86813907	 -5.0563913	 12.980928	 -15.097965	 7.5137449	
	 6	 0.65	<	a/W	<	0.80	 -11.758031	 97.706383	 -303.02022	 471.38682	 -367.71788	 116.01218	
	 7	 0.80	<	a/W	<	0.90	 -806.50051	 5064.8469	 -12720.871	 15993.701	 -10069.164	 2541.3738	

6.27	 1	 0	<	a/W	<	0.05	 1.1201837	 -4.4000240	 58.698738	 -708.10978	 5898.0048	 -22219.016	
	 2	 0.05	<	a/W	<	0.15	 1.1134349	 -3.7251439	 31.703535	 -168.20572	 498.96421	 -622.85352	
	 3	 0.15	<	a/W	<	0.25	 1.0702438	 -2.2854394	 12.507474	 -40.231981	 72.385078	 -54.081349	
	 4	 0.25	<	a/W	<	0.45	 1.0202378	 -1.2853200	 4.5065193	 -8.2281607	 8.3774365	 -2.8752361	
	 5	 0.45	<	a/W	<	0.65	 0.83722459	 0.74816025	 -4.5311705	 11.855594	 -13.937847	 7.0426677	
	 6	 0.65	<	a/W	<	0.80	 -11.879041	 98.565588	 -305.50787	 474.89667	 -370.12329	 116.63819	
	 7	 0.80	<	a/W	<	0.90	 -788.90521	 4954.9792	 -12446.542	 15651.189	 -9855.3060	 2487.9339	
10	 1	 0	<	a/W	<	0.03	 1.1199303	 -7.3122707	 135.12522	 -1975.6814	 20782.311	 -111861.34	
	 2	 0.03	<	a/W	<	0.08	 1.1175705	 -6.9189607	 108.90455	 -1101.6592	 6215.2744	 -14747.757	
	 3	 0.08	<	a/W	<	0.15	 1.0719704	 -4.0689547	 37.654401	 -211.03233	 648.85643	 -831.71197	
	 4	 0.15	<	a/W	<	0.35	 1.0108645	 -2.0320928	 10.496243	 -29.977941	 45.341811	 -27.025810	
	 5	 0.35	<	a/W	<	0.55	 0.81957681	 0.70058851	 -5.1190793	 14.637265	 -18.394198	 9.3947666	
	 6	 0.55	<	a/W	<	0.70	 1.2778489	 -3.4655211	 10.030410	 -12.907262	 6.6462812	 0.28913797	
	 7	 0.70	<	a/W	<	0.90	 -55.926164	 405.13457	 -1157.3984	 1654.8482	 -1184.6076	 340.64740	

Table 1 – Coefficients αi of the piecewise polynomials of the reference geometry factor for a single crack in a long 
strip with an open hole 
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a/W	 β1(a/W)	 β2(a/W)	 β3(a/W)	 	 β1(a/W)	 β2(a/W)	 β3(a/W)	
	 B/R	=	2	 	 B/R	=	2.5	

0.01	 2.00000	 1.28379	 0.21892	 	 2.00000	 1.25934	 0.21737	
0.10	 2.00000	 1.07432	 0.18230	 	 2.00000	 0.88425	 0.17222	
0.20	 2.00000	 1.06110	 0.18035	 	 2.00000	 0.74587	 0.16106	
0.30	 2.00000	 1.18123	 0.16694	 	 2.00000	 0.77746	 0.12617	
0.40	 2.00000	 1.44332	 0.09990	 	 2.00000	 0.97201	 0.03054	
0.50	 2.00000	 1.89209	 -0.05531	 	 2.00000	 1.37288	 -0.17477	
0.60	 2.00000	 2.65011	 -0.39985	 	 2.00000	 2.10896	 -0.61338	
0.70	 2.00000	 3.98797	 -1.14980	 	 2.00000	 3.46072	 -1.53139	
0.80	 2.00000	 6.85984	 -3.28770	 	 2.00000	 6.40013	 -3.97310	
0.90	 2.00000	 15.8901	 -12.0033	 	 2.00000	 15.4942	 -13.1901	
	 	 	 	 	 	 	 	
	 B/R	=	3	 	 B/R	=	4	

0.01	 2.00000	 1.23509	 0.21491	 	 2.00000	 1.18724	 0.21052	
0.10	 2.00000	 0.72617	 0.16261	 	 2.00000	 0.48063	 0.15886	
0.20	 2.00000	 0.51382	 0.15731	 	 2.00000	 0.19044	 0.18220	
0.30	 2.00000	 0.49615	 0.12956	 	 2.00000	 0.12620	 0.17791	
0.40	 2.00000	 0.65425	 0.03101	 	 2.00000	 0.24474	 0.09182	
0.50	 2.00000	 1.02695	 -0.19251	 	 2.00000	 0.58419	 -0.14396	
0.60	 2.00000	 1.74474	 -0.67631	 	 2.00000	 1.27819	 -0.67752	
0.70	 2.00000	 3.09525	 -1.68969	 	 2.00000	 2.61829	 -1.79802	
0.80	 2.00000	 6.05087	 -4.30418	 	 2.00000	 5.56963	 -4.60325	
0.90	 2.00000	 15.16420	 -13.8765	 	 2.00000	 14.6301	 -14.5386	
	 	 	 	 	 	 	 	
	 B/R	=	6	 	 B/R	=	6.27	

0.01	 2.00000	 1.09730	 0.20255	 	 2.00000	 1.08594	 0.20170	
0.10	 2.00000	 0.14580	 0.17991	 	 2.00000	 0.11007	 0.18423	
0.20	 2.00000	 -0.20057	 0.27254	 	 2.00000	 -0.24048	 0.28744	
0.30	 2.00000	 -0.29545	 0.30631	 	 2.00000	 -0.33587	 0.32235	
0.40	 2.00000	 -0.20736	 0.23534	 	 2.00000	 -0.24962	 0.25225	
0.50	 2.00000	 0.10805	 -0.02020	 	 2.00000	 0.06316	 -0.00405	
0.60	 2.00000	 0.77573	 -0.59691	 	 2.00000	 0.73043	 -0.58777	
0.70	 2.00000	 2.08896	 -1.80445	 	 2.00000	 2.04088	 -1.80165	
0.80	 2.00000	 5.01246	 -4.78318	 	 2.00000	 4.95580	 -4.78674	
0.90	 2.00000	 13.9260	 -14.9841	 	 2.00000	 13.8517	 -15.0059	
	 	 	 	 	 	 	 	
	 B/R	=	10	 	 	 	 	

0.01	 2.00000	 0.93992	 0.19115	 	 	 	 	
0.10	 2.00000	 -0.25911	 0.28567	 	 	 	 	
0.20	 2.00000	 -0.61037	 0.44032	 	 	 	 	
0.30	 2.00000	 -0.71897	 0.50712	 	 	 	 	
0.40	 2.00000	 -0.62360	 0.40111	 	 	 	 	
0.50	 2.00000	 -0.32855	 0.14098	 	 	 	 	
0.60	 2.00000	 0.30411	 -0.45087	 	 	 	 	
0.70	 2.00000	 1.64222	 -1.80686	 	 	 	 	
0.80	 2.00000	 4.40498	 -4.71450	 	 	 	 	
0.90	 2.00000	 12.5992	 -14.1780	 	 	 	 	

Table 2 – βi(a/W) for a single crack in a long strip with an open hole for B/R = 2, 2.5, 3, 4, 6, 6.27, and 10 
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Double	cracks	(Long	strip	with	a	hole,	H/B	≥	2)	
B/R	 Polynomial	 Interval	 α0	 α1	 α2	 α3	 α4	 α5	
2	 1	 0	<	a/W	<	0.05	 1.1199803	 -0.79132654	 8.8128839	 -87.864685	 820.20325	 -3330.1256	
	 2	 0.05	<	a/W	<	0.15	 1.1189176	 -0.68505692	 4.5620992	 -2.8489910	 -29.953691	 70.502143	
	 3	 0.15	<	a/W	<	0.25	 1.1275595	 -0.97311945	 8.4029329	 -28.454549	 55.398170	 -43.300338	
	 4	 0.25	<	a/W	<	0.45	 1.0833785	 -0.08949973	 1.3339751	 -0.17871822	 -1.1534923	 1.9409916	
	 5	 0.45	<	a/W	<	0.65	 0.92589008	 1.6603712	 -6.4432289	 17.103957	 -20.356465	 10.475646	
	 6	 0.65	<	a/W	<	0.80	 -21.182461	 171.72461	 -529.71780	 822.14177	 -639.61632	 201.01714	
	 7	 0.80	<	a/W	<	0.90	 -1458.2202	 9153.2103	 -22983.432	 28889.285	 -18181.581	 4586.5082	

2.5	 1	 0	<	a/W	<	0.05	 1.1199989	 -1.1908629	 11.358652	 -96.064405	 789.66491	 -3071.7995	
	 2	 0.05	<	a/W	<	0.15	 1.1190373	 -1.0946964	 7.5119921	 -19.131208	 20.332937	 5.5284363	
	 3	 0.15	<	a/W	<	0.25	 1.1228583	 -1.2220650	 9.2102398	 -30.452859	 58.071775	 -44.790014	
	 4	 0.25	<	a/W	<	0.45	 1.0780051	 -0.32500062	 2.0337248	 -1.7467987	 0.65965468	 1.1396824	
	 5	 0.45	<	a/W	<	0.65	 0.89451513	 1.7137767	 -7.0275078	 18.389274	 -21.713759	 11.083422	
	 6	 0.65	<	a/W	<	0.80	 -21.353966	 172.85594	 -533.61878	 828.52970	 -644.89870	 202.83263	
	 7	 0.80	<	a/W	<	0.90	 -1433.3315	 8997.7153	 -22595.767	 28406.215	 -17880.952	 4511.8460	
3	 1	 0	<	a/W	<	0.05	 1.1200352	 -1.6116083	 16.415641	 -146.21711	 1149.2618	 -4335.6366	
	 2	 0.05	<	a/W	<	0.15	 1.1187048	 -1.4785736	 11.094256	 -39.789407	 84.984810	 -78.528597	
	 3	 0.15	<	a/W	<	0.25	 1.1162404	 -1.3964256	 9.9989498	 -32.487363	 60.644663	 -46.075068	
	 4	 0.25	<	a/W	<	0.45	 1.0712325	 -0.49626800	 2.7976887	 -3.6823191	 3.0345746	 0.01300297	
	 5	 0.45	<	a/W	<	0.65	 0.85220952	 1.9373205	 -8.0182602	 20.353123	 -23.671472	 11.882357	
	 6	 0.65	<	a/W	<	0.80	 -21.073313	 170.59518	 -526.96553	 818.73354	 -637.81025	 200.84814	
	 7	 0.80	<	a/W	<	0.90	 -1446.7700	 9081.1994	 -22803.476	 28664.372	 -18041.334	 4551.7291	
4	 1	 0	<	a/W	<	0.05	 1.1200964	 -2.4706654	 31.473564	 -339.38424	 2769.1337	 -10441.706	
	 2	 0.05	<	a/W	<	0.15	 1.1169112	 -2.1521468	 18.732820	 -84.569354	 220.98488	 -249.11027	
	 3	 0.15	<	a/W	<	0.25	 1.1027295	 -1.6794234	 12.429842	 -42.549503	 80.918711	 -62.355381	
	 4	 0.25	<	a/W	<	0.45	 1.0414704	 -0.45424061	 2.6283793	 -3.3436529	 2.5070109	 0.37397968	
	 5	 0.45	<	a/W	<	0.65	 0.84197031	 1.7624265	 -7.2234746	 18.549356	 -21.818554	 11.185342	
	 6	 0.65	<	a/W	<	0.80	 -21.977386	 177.29594	 -547.32658	 849.47721	 -660.99383	 207.85466	
	 7	 0.80	<	a/W	<	0.90	 -1441.4270	 9048.8558	 -22726.226	 28573.102	 -17988.259	 4539.6710	
6	 1	 0	<	a/W	<	0.05	 1.1201810	 -4.1804079	 74.875380	 -995.41503	 8573.1815	 -32622.770	
	 2	 0.05	<	a/W	<	0.15	 1.1102289	 -3.1851891	 35.066630	 -199.24004	 611.43159	 -775.77034	
	 3	 0.15	<	a/W	<	0.25	 1.0553288	 -1.3551884	 10.666621	 -36.573307	 69.209155	 -52.807091	
	 4	 0.25	<	a/W	<	0.45	 1.0039286	 -0.3271833	 2.4425801	 -3.6771449	 3.4168299	 -0.1732309	
	 5	 0.45	<	a/W	<	0.65	 0.7863487	 2.0903711	 -8.3021061	 20.199936	 -23.113260	 11.617920	
	 6	 0.65	<	a/W	<	0.80	 -22.434741	 180.71413	 -557.91369	 865.75621	 -673.54117	 211.74958	
	 7	 0.80	<	a/W	<	0.90	 -1394.9675	 8759.0442	 -22003.739	 27673.038	 -17428.092	 4400.3873	
10	 1	 0	<	a/W	<	0.03	 1.1199516	 -7.2502613	 185.14378	 -3257.0975	 38685.631	 -221748.31	
	 2	 0.03	<	a/W	<	0.08	 1.1150655	 -6.4359179	 130.85422	 -1447.4453	 8524.7616	 -20675.845	
	 3	 0.08	<	a/W	<	0.15	 1.0495253	 -2.3396508	 28.447540	 -167.36188	 524.24000	 -674.54109	
	 4	 0.15	<	a/W	<	0.35	 0.99995068	 -0.68716487	 6.4143941	 -20.474241	 34.614535	 -21.707134	
	 5	 0.35	<	a/W	<	0.55	 0.80303106	 2.1259726	 -9.6606769	 25.454534	 -30.998000	 15.785743	
	 6	 0.55	<	a/W	<	0.70	 1.3337221	 -2.6984910	 7.8828269	 -6.4427461	 -2.0004730	 5.2411878	
	 7	 0.70	<	a/W	<	0.90	 -108.19500	 779.64954	 -2227.3973	 3186.8145	 -2282.8985	 656.92634	

Table 3 – Coefficients αi of the piecewise polynomials of the reference geometry factor double-sided cracks in a 
long strip with an open hole  
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Single	crack	(Square	plate	with	a	hole)	
B/R	 Polynomial	 Interval	 α0	 α1	 α2	 α3	 α4	 α5	
2	 1	 0	<	a/W	<	0.05	 1.1199577	 -0.78467247	 9.0869927	 -87.532458	 798.28634	 -3232.6665	
	 2	 0.05	<	a/W	<	0.15	 1.1189264	 -0.68153317	 4.9614206	 -5.0210157	 -26.828082	 67.791201	
	 3	 0.15	<	a/W	<	0.25	 1.1274715	 -0.96637028	 8.7592487	 -30.339870	 57.568100	 -44.737040	
	 4	 0.25	<	a/W	<	0.45	 1.0824820	 -0.06658159	 1.5609393	 -1.5466322	 -0.01837623	 1.3321402	
	 5	 0.45	<	a/W	<	0.65	 0.96536456	 1.2347237	 -4.2226400	 11.305766	 -14.298819	 7.6790035	
	 6	 0.65	<	a/W	<	0.80	 -17.005308	 139.47067	 -429.56401	 665.67711	 -517.66139	 162.55979	
	 7	 0.80	<	a/W	<	0.90	 -1093.1349	 6865.2808	 -17244.089	 21683.834	 -13654.009	 3446.6468	

2.5	 1	 0	<	a/W	<	0.05	 1.1200150	 -1.1956259	 11.1878891	 -95.661546	 765.95288	 -2949.2844	
	 2	 0.05	<	a/W	<	0.15	 1.1190966	 -1.1037842	 7.5142215	 -22.188194	 31.219354	 -10.350330	
	 3	 0.15	<	a/W	<	0.25	 1.1215821	 -1.1866350	 8.6188984	 -29.552707	 55.767732	 -43.081500	
	 4	 0.25	<	a/W	<	0.45	 1.0786032	 -0.32705612	 1.7422674	 -2.0461825	 0.75468312	 0.92893915	
	 5	 0.45	<	a/W	<	0.65	 0.95520483	 1.0440368	 -4.3514788	 11.495476	 -14.291604	 7.6161777	
	 6	 0.65	<	a/W	<	0.80	 -15.647502	 128.75717	 -397.31495	 616.05466	 -479.33713	 150.70711	
	 7	 0.80	<	a/W	<	0.90	 -1028.5758	 6459.5592	 -16224.320	 20399.811	 -12844.185	 3241.9191	
3	 1	 0	<	a/W	<	0.05	 1.1200054	 -1.5970855	 14.115831	 -117.17595	 879.11469	 -3275.4447	
	 2	 0.05	<	a/W	<	0.15	 1.1190040	 -1.4969436	 10.110154	 -37.062415	 77.979313	 -70.903190	
	 3	 0.15	<	a/W	<	0.25	 1.1170745	 -1.4326279	 9.2526121	 -31.345467	 58.922819	 -45.494530	
	 4	 0.25	<	a/W	<	0.45	 1.0718455	 -0.52804671	 2.0159623	 -2.3988676	 1.0296199	 0.82002909	
	 5	 0.45	<	a/W	<	0.65	 0.95363220	 0.78543414	 -3.8217304	 10.5737827	 -13.384436	 7.2262762	
	 6	 0.65	<	a/W	<	0.80	 -14.906594	 122.78717	 -379.21169	 588.09679	 -457.63291	 143.91811	
	 7	 0.80	<	a/W	<	0.90	 -959.88892	 6028.9267	 -15144.561	 19044.783	 -11993.062	 3027.7753	
4	 1	 0	<	a/W	<	0.05	 1.1201070	 -2.4711928	 26.421776	 -280.64152	 2290.6120	 -8649.5021	
	 2	 0.05	<	a/W	<	0.15	 1.1174667	 -2.2071598	 15.860456	 -69.415117	 178.34794	 -200.44593	
	 3	 0.15	<	a/W	<	0.25	 1.1060482	 -1.8265456	 10.785599	 -35.582740	 65.573352	 -50.079808	
	 4	 0.25	<	a/W	<	0.45	 1.0574077	 -0.8537345	 3.0031107	 -4.4527858	 3.3134444	 -0.2718814	
	 5	 0.45	<	a/W	<	0.65	 0.9192012	 0.6818929	 -3.8219000	 10.713905	 -13.538434	 7.2178422	
	 6	 0.65	<	a/W	<	0.80	 -13.470834	 111.37447	 -344.41445	 534.70244	 -416.60654	 131.23880	
	 7	 0.80	<	a/W	<	0.90	 -899.02533	 5646.0901	 -14181.203	 17830.689	 -11226.598	 2833.7367	
6	 1	 0	<	a/W	<	0.05	 1.1201581	 -4.1639508	 57.853776	 -710.20132	 5961.4497	 -22515.610	
	 2	 0.05	<	a/W	<	0.15	 1.1133119	 -3.4793338	 30.469096	 -162.50772	 484.51368	 -607.86641	
	 3	 0.15	<	a/W	<	0.25	 1.0707548	 -2.0607629	 11.554818	 -36.412534	 64.196390	 -47.443355	
	 4	 0.25	<	a/W	<	0.45	 1.0273729	 -1.1931256	 4.6137199	 -8.6481394	 8.6676019	 -3.0203245	
	 5	 0.45	<	a/W	<	0.65	 0.81584227	 1.1572151	 -5.8322390	 14.565102	 -17.124889	 8.4430048	
	 6	 0.65	<	a/W	<	0.80	 -11.290800	 94.285229	 -292.37997	 455.40777	 -356.23464	 112.78447	
	 7	 0.80	<	a/W	<	0.90	 -836.80942	 5253.7766	 -13191.108	 16578.818	 -10433.366	 2632.0674	

6.27	 1	 0	<	a/W	<	0.05	 1.1201718	 -4.3953421	 63.377169	 -797.72436	 6765.2945	 -25641.557	
	 2	 0.05	<	a/W	<	0.15	 1.1123618	 -3.6143459	 32.137321	 -172.92740	 517.32500	 -649.67859	
	 3	 0.15	<	a/W	<	0.25	 1.0669289	 -2.0999138	 11.944893	 -38.311213	 68.604358	 -51.384407	
	 4	 0.25	<	a/W	<	0.45	 1.0187992	 -1.1373209	 4.2441500	 -7.5082424	 6.9984164	 -2.0996541	
	 5	 0.45	<	a/W	<	0.65	 0.8449288	 0.7945729	 -4.3420449	 11.572191	 -14.202065	 7.3227821	
	 6	 0.65	<	a/W	<	0.80	 -11.689475	 97.213065	 -301.01433	 467.99109	 -365.29353	 115.35092	
	 7	 0.80	<	a/W	<	0.90	 -814.79973	 5116.6521	 -12849.612	 16153.738	 -10168.885	 2566.2489	
10	 1	 0	<	a/W	<	0.03	 1.1199762	 -7.3406837	 144.48356	 -2335.8682	 27190.507	 -155776.36	
	 2	 0.03	<	a/W	<	0.08	 1.1165298	 -6.7662735	 106.18954	 -1059.4010	 5916.0530	 -13946.662	
	 3	 0.08	<	a/W	<	0.15	 1.0737770	 -4.0942283	 39.388415	 -224.38687	 697.21487	 -899.56646	
	 4	 0.15	<	a/W	<	0.35	 1.0072763	 -1.8775375	 9.8325374	 -27.347683	 40.417589	 -23.836744	
	 5	 0.35	<	a/W	<	0.55	 0.83643619	 0.56303558	 -4.1135945	 12.498408	 -16.505398	 8.6906772	
	 6	 0.55	<	a/W	<	0.70	 1.1080975	 -1.9066126	 4.8669442	 -3.8298445	 -1.6615321	 3.2929079	
	 7	 0.70	<	a/W	<	0.90	 -54.018535	 391.85505	 -1120.1664	 1603.3606	 -1149.6547	 331.29096	

Table 4 – Coefficients αi of the piecewise polynomials of the reference geometry factor for a single crack in a square 
plate with an open hole 
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a/W	 β1(a/W)	 β2(a/W)	 β3(a/W)	 	 β1(a/W)	 β2(a/W)	 β3(a/W)	
	 B/R	=	2	 	 B/R	=	2.5	

0.01	 2.00000	 1.28529	 0.21898	 	 2.00000	 1.26170	 0.21685	
0.10	 2.00000	 1.16288	 0.17866	 	 2.00000	 1.01491	 0.16707	
0.20	 2.00000	 1.32036	 0.19725	 	 2.00000	 1.10098	 0.18098	
0.30	 2.00000	 1.64212	 0.22673	 	 2.00000	 1.37595	 0.19668	
0.40	 2.00000	 2.11776	 0.24249	 	 2.00000	 1.82218	 0.18243	
0.50	 2.00000	 2.77901	 0.23364	 	 2.00000	 2.47546	 0.11847	
0.60	 2.00000	 3.74063	 0.13090	 	 2.00000	 3.45661	 -0.06981	
0.70	 2.00000	 5.25440	 -0.20008	 	 2.00000	 5.03195	 -0.53088	
0.80	 2.00000	 8.23762	 -1.54974	 	 2.00000	 8.15079	 -2.08486	
0.90	 2.00000	 17.2563	 -8.43988	 	 2.00000	 17.3699	 -9.19363	
	 	 	 	 	 	 	 	
	 B/R	=	3	 	 B/R	=	4	

0.01	 2.00000	 1.23832	 0.21458	 	 2.00000	 1.19304	 0.21007	
0.10	 2.00000	 0.89890	 0.16125	 	 2.00000	 0.72865	 0.16008	
0.20	 2.00000	 0.95035	 0.18198	 	 2.00000	 0.75455	 0.21793	
0.30	 2.00000	 1.20611	 0.20035	 	 2.00000	 1.00017	 0.24764	
0.40	 2.00000	 1.64092	 0.17732	 	 2.00000	 1.43118	 0.21394	
0.50	 2.00000	 2.29478	 0.08495	 	 2.00000	 2.08951	 0.08901	
0.60	 2.00000	 3.29032	 -0.15090	 	 2.00000	 3.10796	 -0.21048	
0.70	 2.00000	 4.90532	 -0.69152	 	 2.00000	 4.76603	 -0.83892	
0.80	 2.00000	 8.10360	 -2.36561	 	 2.00000	 8.04881	 -2.65058	
0.90	 2.00000	 17.4535	 -9.63238	 	 2.00000	 17.5907	 -10.1651	
	 	 	 	 	 	 	 	
	 B/R	=	6	 	 B/R	=	10	

0.01	 2.00000	 1.10970	 0.20154	 	 2.00000	 0.97148	 0.18887	
0.10	 2.00000	 0.52456	 0.19432	 	 2.00000	 0.32355	 0.32754	
0.20	 2.00000	 0.55447	 0.31867	 	 2.00000	 0.40899	 0.46707	
0.30	 2.00000	 0.80961	 0.35296	 	 2.00000	 0.68144	 0.48155	
0.40	 2.00000	 1.24595	 0.29937	 	 2.00000	 1.14968	 0.35622	
0.50	 2.00000	 1.91705	 0.12780	 	 2.00000	 1.82053	 0.16775	
0.60	 2.00000	 2.95930	 -0.23811	 	 2.00000	 2.86196	 -0.22943	
0.70	 2.00000	 4.65592	 -0.95080	 	 2.00000	 4.64309	 -1.09906	
0.80	 2.00000	 8.01591	 -2.89337	 	 2.00000	 7.92295	 -2.92529	
0.90	 2.00000	 17.6317	 -10.4884	 	 2.00000	 16.9183	 -9.49277	

Table 5 – βi(a/W) for double-sided cracks in a long strip with an open hole for B/R = 2, 2.5, 3, 4, 6, and 10 
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a/W	 β1(a/W)	 β2(a/W)	 β3(a/W)	 	 β1(a/W)	 β2(a/W)	 β3(a/W)	
	 B/R	=	2	 	 B/R	=	2.5	

0.01	 2.00000	 1.28572	 0.219049	 	 2.00000	 1.26141	 0.216801	
0.10	 2.00000	 1.17739	 0.181897	 	 2.00000	 0.991449	 0.173347	
0.20	 2.00000	 1.32625	 0.225686	 	 2.00000	 0.994673	 0.205071	
0.30	 2.00000	 1.57811	 0.302179	 	 2.00000	 1.11937	 0.245838	
0.40	 2.00000	 1.90791	 0.368565	 	 2.00000	 1.34242	 0.251801	
0.50	 2.00000	 2.34501	 0.381964	 	 2.00000	 1.70234	 0.170068	
0.60	 2.00000	 3.00928	 0.224581	 	 2.00000	 2.3337	 -0.136998	
0.70	 2.00000	 4.16543	 -0.326358	 	 2.00000	 3.52733	 -0.934857	
0.80	 2.00000	 6.75977	 -2.26821	 	 2.00000	 6.26417	 -3.29225	
0.90	 2.00000	 15.3653	 -10.7821	 	 2.00000	 15.1545	 -12.5816	
	 	 	 	 	 	 	 	
	 B/R	=	3	 	 B/R	=	4	

0.01	 2.00000	 1.23758	 0.21485	 	 2.00000	 1.18990	 0.21034	
0.10	 2.00000	 0.83385	 0.16663	 	 2.00000	 0.57830	 0.16307	
0.20	 2.00000	 0.74325	 0.19732	 	 2.00000	 0.38291	 0.20682	
0.30	 2.00000	 0.79849	 0.22548	 	 2.00000	 0.37165	 0.23810	
0.40	 2.00000	 0.96762	 0.20991	 	 2.00000	 0.49037	 0.21744	
0.50	 2.00000	 1.28808	 0.09260	 	 2.00000	 0.77236	 0.07893	
0.60	 2.00000	 1.90080	 -0.28031	 	 2.00000	 1.35939	 -0.34390	
0.70	 2.00000	 3.10859	 -1.20195	 	 2.00000	 2.57018	 -1.38563	
0.80	 2.00000	 5.91244	 -3.79448	 	 2.00000	 5.42401	 -4.22927	
0.90	 2.00000	 14.9072	 -13.5079	 	 2.00000	 14.5182	 -14.4791	
	 	 	 	 	 	 	 	
	 B/R	=	6	 	 B/R	=	6.27	

0.01	 2.00000	 1.10042	 0.20256	 	 2.00000	 1.08886	 0.20153	
0.10	 2.00000	 0.22189	 0.18132	 	 2.00000	 0.18422	 0.18496	
0.20	 2.00000	 -0.05406	 0.27571	 	 2.00000	 -0.09768	 0.28787	
0.30	 2.00000	 -0.10532	 0.32795	 	 2.00000	 -0.14963	 0.33961	
0.40	 2.00000	 -0.01950	 0.31555	 	 2.00000	 -0.06543	 0.32842	
0.50	 2.00000	 0.23757	 0.16218	 	 2.00000	 0.18642	 0.17934	
0.60	 2.00000	 0.79458	 -0.28629	 	 2.00000	 0.74374	 -0.27717	
0.70	 2.00000	 1.98850	 -1.41514	 	 2.00000	 1.93787	 -1.41564	
0.80	 2.00000	 4.85832	 -4.47437	 	 2.00000	 4.80027	 -4.48068	
0.90	 2.00000	 13.9435	 -15.1551	 	 2.00000	 13.8811	 -15.1951	
	 	 	 	 	 	 	 	
	 B/R	=	10	 	 	 	 	

0.01	 2.00000	 0.94274	 0.19086	 	 	 	 	
0.10	 2.00000	 -0.20590	 0.27944	 	 	 	 	
0.20	 2.00000	 -0.50370	 0.42868	 	 	 	 	
0.30	 2.00000	 -0.56920	 0.50103	 	 	 	 	
0.40	 2.00000	 -0.47635	 0.45528	 	 	 	 	
0.50	 2.00000	 -0.23818	 0.30296	 	 	 	 	
0.60	 2.00000	 0.28826	 -0.15400	 	 	 	 	
0.70	 2.00000	 1.50174	 -1.40525	 	 	 	 	
0.80	 2.00000	 4.24168	 -4.42383	 	 	 	 	
0.90	 2.00000	 12.5549	 -14.2454	 	 	 	 	

Table 6 – βi(a/W) for a single crack in a square plate with an open hole for B/R = 2, 2.5, 3, 4, 6, 6.27 and 10 
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FIGURES 

	
Figure 1 – Geometry of a finite width plate with a crack at a circular hole (after Wu and Carlsson [1]) 

     

Figure 2 – Layout diagram for the two-dimensional FEM model of a half symmetric coupon (a simple depiction of 
the actual mesh would not be useful because node spacing is very small); features indicated by numeric labels (1) 

through (5) are described in the text 
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(a) (b) 

Figure 3 – Piecewise spline fitting of the reference geometry factor resulting from FEM; (a) reference geometry 
factor fit, (b) the first derivative of the reference geometry factor fit 
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Figure 4 – 5th-order piecewise spline fit and 7th-order single spline fit of the reference geometry factors; splines for 
(a) 0 < a/W < 0.05 and 0.05< a/W < 0.15, (b) 0.05 < a/W < 0.15 and 0.15< a/W < 0.25, (c) 0.15 < a/W < 0.25 and 
0.25< a/W < 0.45, (d) 0.25 < a/W < 0.45 and 0.45< a/W < 0.65, (e) 0.45 < a/W < 0.65 and 0.65< a/W < 0.8, and 

(f) 0.65 < a/W < 0.8 and 0.8 < a/W < 0.9 
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(a) (b) 

Figure 5 – (a) β2(a/W), and (b) β3(a/W) versus normalized crack size for B/R = 2, 4, and 6 for this work, and 
B/R = 2, 3.5, and 5 for Wu and Carlsson [1] (W&C)	
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(a) (b) 

  
(c) (d) 

Figure 6 – Green’s function results as a function of normalized crack size for point loads for a single crack in a long 
strip with an open hole (B/R = 2); (a) for the whole crack sizes at x/a = 0, 0.5, 0.8, and 0.9, (b) for 0 < a/W <0.4 at 

x/a = 0, 0.5, 0.8, and 0.9, (c) for the whole crack sizes at x/a = 0, 0.1, 0.2, 0.3, and 0.5, (d) for 0 < a/W <0.4 at 
x/a = 0, 0.1, 0.2, 0.3, and 0.5 
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(a) (b) 

  
(c) (d) 

Figure 7 – Green’s function results as a function of normalized crack size for point loads and various B/R ratios for 
a single crack in a long strip with an open hole; point load at (a) x/a = 0, (b) x/a = 0 for 0 < a/W <0.4, (c) x/a = 

0.5, and (d) x/a = 0.9 
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(a) (b) 

Figure 8 – Geometry factor due to uniform crack-line pressure on a single crack as a function of normalized crack 
sizes for this work, W&C and NASSIF TC13 (NASGRO version 6.21); (a) for all a/W, and (b) for 0 < a/W < 0.6 

  
(a) (b) 

Figure 9 – (a) Normalized crack-line stress due to remote load and (b) geometry factor as a function of normalized 
crack sizes for this work, W&C, AFGROW (version 4.0012.15), and NASSIF TC13 (NASGRO version 6.21) 
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(a) (b) 

Figure 10 – Geometry factor due to uniform crack-line pressure on double-sided cracks in a long strip with an open 
hole as a function of normalized crack sizes for this work, W&C and NASSIF; (a) for all a/W, and (b) for 

0 < a/W < 0.6 

 
Figure 11 – Geometry factor due to remote load on double-sided cracks in a long strip with an open hole as a 
function of normalized crack sizes for this work, W&C, AFGROW (version 4.0012.15), and NASSIF (NASGRO 

version 6.21, solution TC13) 
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(a) (b) 

  
(c) (d) 

Figure 12 – Comparison of β2(a/W) and its major components for this work (B/R = 4) and W&C (B/R = 5) (LSN1); 
(a) Non-dimensional reference geometry factors, fr(a/W), (b) derivatives of the reference geometry factors, fr’(a/W), 

(c) g1(a/W), and (d) β2(a/W) 
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(a) (b) 

  
(c) (d) 

Figure 13 – Ratio of geometry factor for various B/R to geometry factor for B/R = 2 of this work, due to (a) unit 
uniform crack-line stress, (b) unit uniform crack-line stress magnified for vertical axis, (c) remote uniform stress, 

and (d) remote uniform stress magnified for vertical axis 
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