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Birth and Death of LTR-Retrotransposons in

Aegilops tauschii

Xiongtao Dai,*' Hao Wang," Hongye Zhou,' Le Wang,* Jan Dvoiak,* Jeffrey L. Bennetzen,*

and Hans-Georg Miiller *

*Department of Statistics, University of California, Davis, California 95616, TDepartment of Genetics, University of Georgia,
Athens, Georgia 30602, and *Department of Plant Sciences, University of California, Davis, California 95616

ORCID ID: 0000-0002-6996-5930 (X.D.)

ABSTRACT Long terminal repeat-retrotransposons (LTR-RTs) are a major component of all flowering plant genomes. To analyze the
time dynamics of LTR-RTs, we modeled the insertion rates of the 35 most abundant LTR-RT families in the genome of Aegilops tauschii,
one of the progenitors of wheat. Our model of insertion rate (birth) takes into account random variation in LTR divergence and the
deletion rate (death) of LTR-RTs. Modeling the death rate is crucial because ignoring it would underestimate insertion rates in the
distant past. We rejected the hypothesis of constancy of insertion rates for all 35 families and showed by simulations that our
hypothesis test controlled the false-positive rate. LTR-RT insertions peaked from 0.064 to 2.39 MYA across the 35 families. Among
other effects, the average age of elements within a family was negatively associated with recombination rate along a chromosome,
with proximity to the closest gene, and weakly associated with the proximity to its 5’ end. Elements within a family that were near
genes colinear with genes in the genome of tetraploid emmer wheat tended to be younger than those near noncolinear genes. We
discuss these associations in the context of genome evolution and stability of genome sizes in the tribe Triticeae. We demonstrate the
general utility of our models by analyzing the two most abundant LTR-RT families in Arabidopsis lyrata, and show that these families

differed in their insertion dynamics. Our estimation methods are available in the R package TE on CRAN.

KEYWORDS transposable elements; insertion rates; demography; population dynamics

ONG terminal repeat-retrotransposons (LTR-RTSs) are pre-

sent in virtually all studied eukaryotes, and make up the
majority of the nuclear genomes in many flowering plants
(Bennetzen and Wang 2014). LTR-RTs are classified into five
superfamilies: Copia, Gypsy, Bel-Pao, retrovirus, and endoge-
nous retrovirus (ERV), and among them, Copia and Gypsy are
predominant in plant genomes, which each contain hundreds
of different LTR-RT families that are operationally distin-
guished by their different LTR sequences (Wicker et al.
2007). Any single plant will routinely contain several hun-
dred different LTR-RT families, of which a few will be highly
abundant (contributing hundreds to thousands of copies) but
most will have only one to five intact members (Baucom et al.
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2009a,b). Variation in the copy numbers of LTR-RTs is the
major factor responsible for the huge (>3000-fold) genome
size variation in flowering plants (Leitch and Leitch 2013).
Because LTR-RTs transpose via integration of a reverse-transcribed
transcript, while leaving the donor element in place, they can
rapidly increase their number in a genome. The most dra-
matic case of this amplification has been observed in the
Zea lineage, where the massive transposition of several dif-
ferent LTR-RT families in the ancestors of Zea luxurians led to
more than a doubling of genome size in <2 MY, resulting in
the addition of >2400 Mb of new LTR-RT DNA in that short
time period (Estep et al. 2013).

The transposition of different LTR-RT families exhibits
episodic and apparently stochastic activation over evolution-
ary time (Wicker and Keller 2007; Baucom et al. 2009b).
Because the two LTRs of a single LTR-RT are usually identical
at the time of insertion, insertion dates can be estimated by
investigating the degree of LTR divergence within a single
LTR-RT (SanMiguel et al. 1998). Such analyses indicate that
individual LTR-RT families exhibit different histories of
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“amplification bursts” in any given lineage, and that this ac-
counts for the great variation in the structure of even closely
related plant genomes. Even in small plant genomes, like that
of rice (Oryza sativa, ~400 Mb), LTR-RTs can add hundreds
of megabases of new LTR-RTs per MY. However, this process
does not always lead to genome size expansion over evolu-
tionary time, because there are also processes for the rapid
removal of DNA from flowering plant genomes (Devos et al.
2002; Ma et al. 2004; Vitte et al. 2007; Hawkins et al. 2009).
Unequal homologous recombination (HR) between the LTRs
of a single LTR-RT leads to the loss of all internal sequences
and the generation of a solo-LTR, which is a process that
attenuates transposition-driven genome growth. DNA loss
by accumulated deletions caused by illegitimate recombi-
nation can slow or even reverse genome growth. The
mechanism(s) of illegitimate recombination responsible for
genome shrinkage has not been proven, but deletions result-
ing from the repair of double-strand breaks or adjacent sin-
gle-strand nicks appear to be the most important drivers
(Kirik et al. 2000; Devos et al. 2002; Vaughn and Bennetzen
2014; Schiml et al. 2016).

The relative rates of amplification and removal of LTR-RTs
and other unnecessary DNA varies across plant lineages (Vitte
and Bennetzen 2006), and may also be quite variable across
regions in the plant genome (Ma and Bennetzen 2006) and
over evolutionary time within a lineage (Estep et al. 2013).
This dynamic state of plant genomes creates the raw material
for natural selection, especially when one considers that a
high percentage of transposable element (TE) insertions of
all types can lead to altered regulation, both genetic and
epigenetic, of nearby genes (Lisch and Bennetzen 2011). Un-
derstanding the significance of genome dynamics created by
TE activities and rates of genome change will require more
accurate parametrization and modeling than any of the iso-
lated observations published to date. This study, which fo-
cused on modeling the dynamics of the LTR-RT families
during the evolution of the Aegilops tauschii genome, pro-
vides an important step in that direction.

Ae. tauschii is one of the three diploid progenitors of hexa-
ploid bread wheat. It has a large genome, ~4.3 Gb, that
contains at least 66% LTR-RTs (Luo et al. 2017), mostly pre-
sent as nested arrays of TEs between tiny gene islands
(Gottlieb et al. 2013). These intergenic arrays are entirely
replaced in a span of 3-4 MY driven by the deletion of old
elements and the insertion of new ones (Dubcovsky and
Dvorak 2007).

The dynamic nature of the Ae. tauschii LTR-RTs is
employed here in modeling their biodemography. The inser-
tion rates of LTR-RTs have been analyzed previously in many
species, including O. sativa (Vitte et al. 2007; Wang et al.
2008; Baucom et al. 2009b), Triticeae (Wicker and Keller
2007), wheat chromosome 3B (Choulet et al. 2010), maize
(SanMiguel et al. 1998), and Arabidopsis (Wicker and Keller
2007), but an explicit statistical modeling approach was not
used. Statistical models have been proposed for analyzing the
dynamics of TEs in Drosophila (Charlesworth and Langley
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1989), Saccharomyces cerevisiae (Promislow et al. 1999),
Arabidopsis thaliana (Hollister and Gaut 2007), Hylobates
(Wacholder et al. 2014), and hominids (Marchani et al
2009; Levy et al. 2017).

In this work, we formulate the insertion/deletion dynamics
of LTR-RTs in terms of birth/death processes that change the
age distribution over time, building on a model from biode-
mography (Miiller et al. 2007), and recover the insertion
rates for each LTR-RT family in the Ae. tauschii genome with
= 50 elements. A key difference between the age distribution
and the insertion rate is that the former describes the ages of
only the intact elements that survived the deletion process to
the present, while the latter is the rate of insertion for all
surviving and deleted LTR-RTs. We reject the hypothesis that
LTR-RTs were inserted into the Ae. tauschii genome at a uni-
form rate with high significance. Since the removal of LTR-
RTs from a genome cannot be easily dated, we conduct a
sensitivity analysis to investigate different scenarios of death
rates and their influence on insertion rates. In a regression
analysis, we find that death rates, as proxied by the average
age of intact elements, were associated with several genomic
factors.

Materials and Methods
LTR-RTs

Intact LTR-RTs with a target site duplication (TSD) were
identified by using LTR_FINDER (Xu and Wang 2007) and
LTRharvest (Ellinghaus et al. 2008) to scan the Ae. tauschii
genome sequence v4.0 (Luo et al. 2017), and by combining
nonredundant predictions of the two program tools. An intact
LTR-RT element was identified if the element showed all of
the following characteristics: (1) highly similar 5’ and 3’
LTRs, (2) TG-CA termini of the LTRs, and (3) exact TSD [e.g.,
see Ma et al. (2004)]. Artificial predictions were excluded
by manual inspection, with more details included in the Sup-
plemental Materials. A group of elements were classified into
a family if their 25-bp TE ends exhibited =80% identity.

Atotal of 18,024 intact copies of 390 LTR-RT families were
identified, and we performed the demographic analysis
on 15,781 elements in the 35 largest LTR-RT families, all
with =50 copies. The 35 families consisted of 9 Copia and
26 Gypsy families (Supplemental Material, Table S1). The
divergence of an LTR-RT was defined as the number of mis-
matches in the two LTRs divided by the LTR length. Indels
were not included in this analysis.

Additionally, 14,481 solo-LTRs were identified by applying
RepeatMasker (Smit 2004) to search the Ae. tauschii genome
with intact LTR-RT masked, using a solo-LTR sequence library
built from the 5’ LTRs of the intact elements. TSDs of 4-6 bp
at both ends of a solo-LTR were required.

To demonstrate that our modeling framework is applicable
to other species, we annotated LTR-RTs in the A. lyrata ge-
nome. We found 397 intact elements in 38 LTR-RT families
(Table S2) and analyzed the two largest families, namely a



Gypsy and a Copia family with 183 and 58 copies, respec-
tively. No counterparts of these two A. lyrata LTR-RT families
were found among those annotated in A. thaliana (Lamesch
et al. 2011) using the Basic Local Alignment Search Tool and
the family allocation system proposed by Wicker et al.
(2007). An element in the largest Gypsy family with an out-
lying number of mismatches (> 7.5 SD above the mean) was
removed from our analysis.

Statistical modeling for LTR-RT insertion activities

For each LTR-RT family, we model its population demograph-
ics as follows. Throughout, any time t =0 refers to time in
years in the past relative to the current calendar time, i.e.,
t years before the current calendar time, which is set to 0. The
age distribution at any time t in the past is defined as the
distribution of the ages (i.e., time since insertion) of all intact
LTR-RTs within the family at that time. We use the probability
density function g(a, t) to represent the age (a) distribution at
time t, so g(a, 0) is the age distribution at present. We let y(t)
denote the birth rate or insertion rate (insertions per million
year) at time t in the past, and assume that y(t) corresponds
to the intensity of an inhomogeneous Poisson point process;
then vy(t) is proportional to the expected number of elements
inserted into the genome within period [t,t + A], for an in-
finitesimal time interval A.

The insertion rate y(t) is assumed to be changing over time
to reflect periods with changing insertion activities, in con-
trast to the assumption of constant insertion rate (Promislow
et al. 1999; Marchani et al. 2009). A key difference between
the age distribution g(a, 0) at present-time (t = 0) as a func-
tion of age a, and the insertion rate y(t), as a function of time
t, is that the g(a,0) describes the ages of only the intact
elements that survived the deletion process to the present
day, while the +(t) is the rate of birth for all elements at some
time t in the past, regardless of whether they have been de-
leted or not at present. The insertion rate y(t) corresponds to
the underlying genome dynamics, while the age distribution
g(a,0) does not directly reflect y(t) because even if y(t) has
been constant, g(a,0) will be decreasing because elements
inserted in more distant past are less likely to survive.

Since LTR-RTs are subject to rapid deletion (Devos et al.
2002; Ma et al. 2004), one must take into account the de-
letion process when estimating the insertion rate, instead of
simply regarding the age distribution as solely indicative of
the insertion rate and effectively making a zero-deletion as-
sumption. Assume each newly inserted LTR-RT has probabil-
ity F(a) = P(X > a) to survive the deletion process to age a,
where X is the life span of an LTR-RT, and that the survival
function F(a) does not depend on the calendar time t. This
assumption means that the intensity of deletion activities
depends only on the age of the elements but not on calendar
time, which is likely to hold if the overall genetic and epige-
netic environment that affects retrotransposon deletion has
been constant in the past. At time t, the density of intact
elements of age a (those born at t + a years in the past) is

proportional to the product of y(t + a)F(a), where y(t + a) is

the birth intensity at time t + a years before present, and F(a) is
the fraction of elements surviving past age a. By normalizing the
product into a density function, we obtain the age distribution
¥(t +a)F(a)

= OFG)E W

g(a,t)
The integral in the previous display is finite if y(t) is bounded
and E(X) is finite. By fixing time t at t = 0, the current calen-
dar time, and by reordering (1), we obtain the insertion rate a
years ago as

8(a,0)
F(a)’
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where o« denotes a proportional relationship, since the inte-
gral does not depend on a. The ratio g(a,0)/F(a) can be
interpreted as the shape of the insertion rate function y(a),
which contains information for peak insertion periods and
the time-dynamic change in the rate of insertion activities,
and thus is the target of investigation.

We next estimate the survival function F(a). In the literature,
it is generally assumed that the distribution of the life span of
TEs is exponential, which means that the rate of removal of TEs
is constant and the distribution is characterized by half-life. The
half-life for rice LTR-RTs was estimated to be < 3 MY (Ma et al.
2004; Vitte et al. 2007) and that for rice Copia elements
~796,000 years (Wicker and Keller 2007). Throughout our
analysis, we adopt this commonly made assumption that life
span X follows an exponential distribution, and estimate its
half-life through Maximum Likelihood Estimation (MLE).

Estimating age distribution

In the current literature, the age distribution g(a, 0) is gener-
ally estimated by the histogram of the insertion date esti-
mates (Ma et al. 2004; Vitte et al. 2007; Wicker and Keller
2007; Wang et al. 2008; Nystedt et al. 2013), which are in
turn estimated using LTR divergence d = N/I, where N is the
number of mismatches in the aligned LTRs of a retroelement
and [ is the length of the alignment. This estimate is only a
proxy for the true age due to the randomness of mutations in
the LTRs of an element, and the accuracy is lower for ele-
ments with shorter LTRs. Due to the variability in the indi-
vidual estimates, their pooling within a family is subject to
increased statistical error, which provides the motivation for
the improved methodology introduced here.

Assume that the number of mutations in a single LTR with
length [ inserted x years ago follows a Poisson distribution with
rate rlx [the same assumption as in Marchani et al. (2009)],
where r = 1.3 X 1078 substitutions// (year - site), as proposed
by Ma and Bennetzen (2004). Then, the number of mis-
matches N on a pair of LTRs follows a Poisson distribution with
rate 2rlx. The conventional age estimate d/(2r) = N/(2lr) will
vary around age x, the center of its distribution.

To demonstrate the variability of the estimates, assume
that each of the LTR-RTs within a single family has LTR
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length [ = 500 bp, is inserted atx = 1 MYA, and the number of
mismatches N between the two LTRs follows the Poisson dis-
tribution specified above. The distribution of the number of
mismatches N shows considerable variability (Figure 1), even
in this case where all elements are inserted into the genome at
the same time, with a large coefficient of variation (0.277),
defined as the ratio of SD over the mean. The histogram esti-
mate of the age distribution by pooling the individual age
estimates will have the same coefficient of variation as N rather
than concentrate at 1 MYA, regardless of how many elements
are in the family. Therefore, an approach based on the raw
divergence is inadequate.

We approach this problem by modeling the number of
mismatches N directly without estimating the age of individual
elements, where we find that the distributions of N within
most of the LTR-RT families are well approximated by negative
binomial distributions [see, for example, the solid and dashed
lines in the fitting of the number of mismatches in Gypsy 1
(Fatima), Figure 3B]. Therefore, we use a negative binomial
distribution to approximate the marginal distribution of N. For
each family, we assume that the length [ of each LTR is the
same and is well approximated by the alignment length. This is
reasonable since 97% of the elements had alignment lengths
within =10% around their corresponding family mean. Let
random variable A be the age or insertion date of an element,
which is assumed to be an independent and identical realiza-
tion from the age distribution of its family. Then, the condi-
tional distribution of the number of mismatches for a given
insertion date is N|JA = a ~Poisson (2rla). By a known prob-
abilistic relationship (Leemis and McQueston 2008), the dis-
tribution of A follows a gamma distribution, which is flexible
to model exponentially decreasing distributions and many
unimodal age distributions. Denote the negative binomial
distribution for N as NB(n, p), with size n and success prob-
ability p, and the gamma distribution for A as I'(«, 8) with
shape a = n and rate 8 = 2prl/(1 — p). We obtain estimates
(n,p) for (n,p) by MLE, and then use

@ =n,B=2prl/(1—-p) 3

as the parameter estimates for the gamma distribution of A.
The estimated age distribution g(a, 0) is set to be the density
of I'(&, B). The probability distributions and the MLE algo-
rithms used are described in the Supplemental Materials.

In the special case where the size parameter of the negative
binomial is n = 1, the negative binomial distribution for N re-
duces to a geometric distribution with probability p, and the age
distribution will follow an exponential distribution with rate
2prl/(1 —p). Under the assumption that the age distribution
is exponential, as a special case of the gamma distribution, the
rate of the exponential distribution can be estimated by

A=2prl/(1-p). )

where p is the MLE for the probability p.
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Figure 1 The distribution of the number of mismatches in a simulation
when all elements are of length 500 bp, inserted 1 MYA, and have the
same rate of mutation (and zero death rate). Under random mutations,
the histogram of raw mismatches (or divergence) is seen to be inadequate
for representing the age distribution.

Alternatively, the inaccuracy in the individual age esti-
mates may be handled by nonparametrically deconvoluting
the histogram of age estimates in estimating the age distri-
bution. However, upon implementing this approach, we found
that nonparametric deconvolution was unstable as it requires
extensive tuning, which diminishes its practical value.

Inference

It is of biological interest to test for a given LTR-RT family
whether the insertion rate y(t), and thus transposition activ-
ity, is constant/homogeneous over time. Formally, the null
hypothesis is Hy : y(t) = c for some constant c vs. the alterna-
tive Hy : y(t) # cfor all c. By (1) we find that under Hy, for any
time

¢(a,2) = cF(a) / / F(s)ds = F(a) /E(X) = f(a),

where the second equality is due to a probabilistic equiva-
lence, the third equality is due to a property of exponential
distributions, and f(a) is the exponential density function of
the survival time X. This implies that g(a,0) is exponential
and that the distribution of N is geometric, a special case of
the negative binomial distribution (Leemis and McQueston
2008). Then, rejecting the null hypothesis Hy of a constant
insertion rate is implied by rejecting that N follows a geo-
metric distribution. We carried out this test by embedding
the geometric distribution into the negative binomial family,
and tested for

Hp : N follows a geometric distribution vs
H; : N follows a negative binomial distribution.

We are free to choose the alternative hypothesis, which does
not affect the size (type [ error rate) of the test, but could limit



the power (type II error rate) if the true alternative is in-
advertently omitted.

Sensitivity analysis and death rate

The birth rate can be obtained from Equation 2 after estimat-
ing the age distribution if one knows the survival function
F(a), which corresponds to the death rate. However, even
with the exponential life span assumption, the death rate is
difficult to estimate precisely from the data because deletion
mechanisms could remove TEs completely (see the Discussion
section), leaving no trace that the deletion has occurred.
Therefore, we compare a range of death rates and conduct
a sensitivity analysis.

The exponential death rate parameter \ for the distribu-
tion of survival times X is estimated by fitting a geometric
distribution to the mismatch data and then recovering the
exponential rate, as in Equation 4. Since a single estimate of
A may not be accurate because there is no guarantee of a
constant birth rate, we investigated three scenarios: Base-
line death rates A = A, low death rates \ = X/Z, and high
death rates \ = 2\, where A is the MLE for the death rate
under a constant birth rate model obtained according to
Equation 4. As per Equation 2, we only estimate the birth
rate up to a constant multiplier, and we normalized all birth
rates into density functions that have area under the curve
equal to 1.

To justify the plausibility of the baseline death rate X for Ae.
tauschii, we constructed an additional death rate estimate A;
from the solo-LTRs, which is expected to serve as a lower
bound for the true death rate due to various other factors
causing or affecting TE removal from the genome, such as
insertions of other TEs into the LTR-RT, deletions via illegit-
imate recombination, and purifying selection. Since the sur-
vival function of an intact element past age a is F(a) = e ¢
under constant death rate A, using a; and y; to denote the age
and survival status (intact = 1, solo = 0) of an LTR element,
we obtain the likelihood function for the ith LTR element as

Li(A) =yie "% + (1 —y;)(1 —e %), for A >0.

Approximating a; using d;/2r where d; is the divergencie
in the ith element, we obtain the death rate estimate A
based on solo-LTRs as the MLE of the joint likelihood
L(A) = [TLLiA).

Goodness-of-fit of negative binomial fit

For some of the families, negative binomial distributions
showed a lack of fit for the mismatch data, which may result
in unreliable age distribution estimates. We used the Kullback-
Leibler (Kullback and Leibler 1951) (KL) divergence as a cri-
terion to evaluate the goodness-of-fit of our negative binomial
models. For discrete probability distributions P and Q, the KL
divergence from P toQ is defined to be
D (PIQ) = Y P(i) IOgll.),
i=0 QD)

where we use the kernel density estimate (KDE) as P, repre-
senting the underlying “true” distribution, and the negative
binomial distributions as Q. By inspecting the difference be-
tween the KDE and the negative binomial fit, we found that
for families with Dy; = 0.025 a negative binomial distribu-
tion provided a reasonably good fit, while this was not the
case for families with Dg; > 0.025 (Gypsy families 24, 35, 36,
40, and 44 and Copia families 27, 38, and 45, which have
relatively small copy numbers). For those families, a mixture
of two negative binomial distributions was fitted to the mis-
match data by MLE (see the Supplemental Materials), with
1000 random starting points to search for the global maxi-
mizer of the likelihood function. That resulted in a recov-
ered age distribution which was a mixture of two gamma
distributions.

Regression analysis of TE ages

Given a population of previously inserted LTR-RTs, the mean
age of the surviving intact elements is negatively correlated
with the death rate in this population. Therefore, the death
rate of LTR-RTs under different genomic variables can be
proxied by the mean age of intact elements. We investigated
through a linear mixed model the relationship between re-
sponse insertion date of a TE, as approximated by d/2r, and its
other attributes, including the chromosome, local meiotic HR
rate (cM/Mb), log distance (base pair) to the nearest gene,
superfamily membership (either Gypsy or Copia), the synteny
of the closest gene (yes or no) with the wild emmer wheat
(Triticum turgidum ssp. dicoccoides) genome (Dvorak et al.
2018), the closest codon (start or stop), and an LTR-RT family
random effect. All intact elements with known chromosomal
membership (n = 17834) were included. The local meiotic
HR rates were estimated by the first derivative of a local
quadratic smoother applied on genetic linkage data in cM
(Fan and Gijbels 1996), with Gaussian kernel and bandwidth
equal to 5 Mb. To calculate the distances to the nearest gene,
we used only high-confidence genes (Luo et al. 2017).

Since we found that the log distance to the nearest gene had
the strongest effect on the mean age of a TE, we performed an
additional nonparametric regression to scrutinize the pattern
of change of this effect in dependence on the distance to
nearest gene. First, we fitted a linear mixed effects model that
was the same as the model described in the last paragraph,
except that the log distance to the nearest gene was not
included as a predictor, and then extracted the residuals (of
age) from this regression model. Second, a nonparametric
regression using cubic regression splines was fitted to the age
residuals as response and log distance to the nearest gene as
predictor. This nonparametric regression assesses a possibly
nonlinear relationship between the log distance to the nearest
gene and the mean element age.

Implementation

User-friendly and fast algorithms that implement the pro-
posed analysis are made available in the R package TE on
CRAN. The estimation methods for the insertion rate, age

Birth and Death of LTR-RTs 1043



Figure 2 Simulated distribution of the number of mis-
matches, where each element is inserted into the genome
uniformly over the past 10 MY, and has a half-life of 1 MY
and LTR length equal to 500 bp. (A) Histogram for the
mismatches in a random selection of 100 such elements
that survive to the current time. An exponential decay
pattern is apparent while the true insertion rate is con-
stant. (B) The estimated insertion rate using a negative
binomial fit (solid, our proposed method) and a geometric
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distribution, deletion rate, the hypothesis test of a constant
insertion rate, and the sensitivity analysis produced by a single
distribution fit were implemented in the function EstDynamics
and the estimation for the mixture model in EstDynamics2.
For the ease of comparison with other approaches for dating
insertion dynamics (Promislow et al. 1999; Marchani et al. 2009),
we also implemented functions MasterGene and MatrixModel.
Helper functions such as PlotFamilies and SensitivityPlot for
generating additional plots that display multiple families are
also provided.

Data availability

LTR-RT data and code are included in the R package TE,
available on CRAN (https://cran.r-project.org/). Supplemen-
tal material available at Figshare: https://doi.org/10.25386/
genetics.6988631.

Results
LTR-RT demographics in the Ae. tauschii genome

To compare our approach with age histogram-based methods
and to assess the false-positive rate of our method, we con-
ducted a simulation with a data set generated under Hy,
where each element was inserted uniformly over the past
10 MY, had a half-life of 1 MY, and an LTR length equal to
500 bp. Under these conditions, the distribution of ages com-
puted from mismatches in LTRs followed an exponential
decay (Figure 2A). This could lead, based on previous
approaches, to inference of an exponential insertion rate,
when the true insertion rate is uniform. This simulation thus
illustrates that the age histogram of LTR-RTs may lead to
incorrect assessments of the insertion rates. This is because
the insertion rate bears out the history of insertions for all
LTR-RTs, including those that have been removed from the
genome at present time, while the age distribution reflects
only the surviving intact LTR-RTs without adjusting for the
survival bias caused by the removal of elements from the
genome. In contrast to the histogram method, the insertion
rate estimate based on our method (solid curve, Figure 2B)
closely approximated the true uniform insertion rate (dashed
line, Figure 2B) used in this simulation by correctly account-
ing for the death rate. We tested Hy at the 0.05 significance
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fit (dashed), correctly accounting for the death process
and thus producing a constant insertion rate. MY, million
years.

level in 2000 simulations under the same setting as Figure 2,
and the proportion of times rejecting Hy was 0.051, showing
that our test accurately controls the false-positive rate.

The age distribution of the largest Gypsy family, Fatima
(Figure 3A, in the mismatch scale rather than timescale),
was well fitted by a negative binomial distribution to the
number of mismatches, since the negative binomial distribu-
tion fit was close to the kernel density estimate with
Dy, = 0.001. The age distribution based on our method
had a more salient peak at 1.28 MYA in the timescale (trans-
formed from a peak at 15.6 mismatches) than that produced
by the histogram method, which significantly underesti-
mated the age distribution near the peak period, suffering
from the convolution with the Poisson error. In some LTR-RT
families, the negative binomial distribution showed a certain
degree of lack of fit, as defined by Dg; > 0.025, and this is
illustrated by Gypsy family 24 (Nusif) (Figure 3B). The lack of
fit was remedied by using a mixture of two negative binomial
distributions (Dg; = 0.009). This mixture model improved
the fit and reduced Dg; to < 0.025 for all families that for-
merly showed lack-of-fit (Dg; > 0.025) when a single nega-
tive binomial fit was applied.

The null hypothesis that the insertion rate is constant was
rejected with very small P-values for each of the 35 Ae. tau-
schii LTR-RT families (Tables S3 and S4). Compared to the
peaks in the age distributions (Figure 4A), earlier peaks of the
normalized insertion rates (Figure 4B) were attenuated and
later peaks were amplified. This is because old elements are
less likely to survive the deletion process as compared to
young elements, and thus later peaks in the age distribution
require more adjustment to yield the insertion rates than
earlier peaks. Here, the insertion rates were estimated by
adjusting the age distribution with the baseline death rate
\. Each LTR-RT family was active during a different time
range (Figure 4B) with peak activity ranging from 0.064 to
2.39 MYA. The most recent insertions were two Copia ele-
ments in family 27 (Maximus) that occurred 0.064 MYA;
these two elements had only one and four mismatches in
their LTRs and were vastly different from other elements in
the same family that had an average of 40 mismatches. These
two elements could be products of gene conversions between
their LTRs. More work is needed to confirm that.
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Anearly universal destiny of LTR-RTs is to be removed from
the genome. That can take place by deleting the entire element
or converting it into a solo element by HR, which ultimately is
obliterated by small deletions, insertions, and substitutions.
The abundance and divergence of solo elements can therefore
be used as a lower bound of LTR-RT death rate. The ratios of
solo to intact elements in each family varied extensively
(Figure S1) from 0.01 (Copia 16) to 7.11 (Gypsy 34), and
were significantly positively associated with the mean LTR
length (P < 10~!2, Figure S2). Within most families, the ratio
increased steadily as elements aged. The death rates A esti-
mated from the solo-LTRs (Tables S3 and S4) were consis-
tently smaller than the baseline death rate \ (see Materials
and Methods) except for Gypsy 34, which had the largest solo-
to-intact element ratio.

Some age histograms, such as those for families Copia 3,
Gypsy 31, and Gypsy 40 (Figure S3A), show a peak in ages of
complete elements and an additional peak of solo elements.
Analyzing these three families with our model shows that
insertion rates in these three LTR-RT families experienced
two bursts of insertions and, subsequently, silencing (Figure
S3B).

The age distribution obtained with the matrix population
model (Promislow et al. 1999) and the master gene model
(Marchani et al. 2009) for the largest Gypsy and Copia fam-
ilies (1 and 4, respectively) (Figure S4 and Table S5) was an
exponential and a uniform distribution, respectively. Neither
distribution reflected the existence of the peaks in the age
distributions and the uniform fit produced by the master gene
model omitted the oldest elements. The death rates g esti-
mated by the matrix population model were smaller than A,
for both families.

To demonstrate the sensitivity of our results to the estimates
of death rates, we studied the insertion rates corresponding to
three death rate scenarios for the first, third, and fifth largest
Copia and Gypsy families (Figure 5), which were based
on family-specific baselines according to Equation 4 (see
Materials and Methods). The varying death rates between

families are supported by their varying abundance of solo-
LTRs (Figure S1). An important outcome of exploring the
three death rate scenarios is that, while the precise date of
the peaks of insertion times may move in time, the sequence
of peaks across families is not much affected by varying
assumptions on death rates. Salient peaks in the insertion
rates were evident in each family, meaning that these fam-
ilies all underwent periods of rapid amplification. In a sce-
nario assuming a higher death rate, peaks were shifted back
in time, meaning that the peak of insertion activity was
calculated to be at a more ancient date; this is a conse-
quence of Equation 2.

Relationships between Ae. tauschii LTR-RT ages and
biological predictors

To investigate factors affecting the death rates of LTR-RTs in
the Ae. tauschii genome, we computed regression coefficients
(Table 1) between element age (MYA) approximated by LTR
divergence (response) and the following potential predic-
tors: (1) chromosome membership (1D to 7D), (2) local mei-
otic HR rate (cM/Mb), (3) proximity to the 5’ (start codon) or
3’ (stop codon) end of the nearest gene, (4) colinearity of the
nearest gene with genes on a homeologous pseudomolecule
in wild emmer wheat (yes or no) (Dvorak et al. 2018), (5) log
distance to the nearest gene (bp), and (6) superfamily mem-
bership (Copia or Gypsy).

All predictors had a significant effect on the age of LTR-RTs
(response) at the P = 0.05 level. (1) Taking chromosome 1D
arbitrarily as a baseline in the regression analysis, LTR-RTs on
chromosomes 2D, 4D, 6D, and 7D were on average older than
those on chromosome 1D, whereas those on chromosomes
3D and 5D did not significantly differ. (2) An increase by
1 cM/Mb in meiotic HR rate was associated with a decrease
of 0.021 MY in age. (3) If an element was near the 5’ end of
the nearest gene, it was on average 0.012 MY younger than if
it was near the 3’ of the nearest gene, but this effect was weak
and barely significant (P = 0.049). (4) If a gene nearest to an
element was in a colinear location with a homologous gene in
wild emmer wheat (Dvorak et al. 2018), then the element
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Figure 4 (A) Age distributions and (B) normalized insertion rates in the 35 largest Ae. tauschii long terminal repeat-retrotransposon families. Each curve
represents the estimated age distribution (A) or insertion rate as normalized into a probability density function (B) of a single family. Copia families are
shown in red and Gypsy families in blue, and the first, third, and fifth largest Copia and Gypsy families are highlighted in green, purple, and orange,
respectively. Gray triangles on the x-axis indicate the peak locations. The peak insertion activities ranged from 0.064 to 2.39 MYA, marked by black

squares (right).

was on average 0.050 MY younger than an element that was
near a gene in a noncolinear location. (5) A unit increase in
the log distance to the nearest gene was associated with an
increase in age of 0.070 MY, and this effect had the largest
t-value. In an additional nonparametric regression (Figure S5),
we demonstrated that the mean LTR-RT age did not vary as
the distance to the nearest gene increased up to 22 kb, after
which point the mean element age was linearly associated
with the log distance to the nearest gene. (6) Gypsy families
were on average 0.094 MY older than Copia families.

LTR-RT demographics in the A. lyrata genome

To compare LTR-RT demographics in the large genome of Ae.
tauschii, containing a great abundance of TEs, with a genome
containing far fewer TEs, we applied our model to two A.
lyrata LTR-RT families, Gypsy 1 and Copia 2. For both fami-
lies, a single negative binomial distribution provided a close
fit to the mismatches with Dy; < 0.025 (Figure S6). The re-
covered age distribution for Gypsy 1 had a peak that trans-
lated to 0.125 MYA, while that for Copia 2 peaked at present.
The constant insertion rate hypothesis was rejected for the
Gypsy 1 family (P = 1.3 X 10™°) but not for the Copia 2 fam-
ily (P =0.259). The two families have distinctly different
demographics and distinctly different profiles of the rates
during the past 3 MY (Figure S7). The Gypsy 1 profile
showed a recent burst of insertion activities, while that of
Copia 2 showed a nearly constant amplification during the
past 3 MY.
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Discussion
LTR-RT demographics modeling

LTR-RTs are a large component of plant genomes. In the tribe
Triticeae, which includes wheat and its ancestors, they
represent >60% of the genome (Avni et al. 2017; Luo et al.
2017; Mascher et al. 2017; Zhao et al. 2017). It has been
stated many times that this large and dynamic component
of plant genomes has a profound effect on the evolution of
plant genome structure and gene expression. To advance our
understanding of these effects, we developed and deployed
statistical models to study the rates of birth and death of LTR-
RTs in Ae. tauschii, one of the three progenitors of bread
wheat (Luo et al. 2017). By inferring insertion rates for each
LTR-RT family from the age distribution of its members,
inferred from the divergence of LTRs and the death rate,
we arrived at a more realistic portrait of amplification of
LTR-RTs during genome evolution than the current approaches
based on an age histogram.

The advantages of our method are twofold. First, our model
takes into account the deletion process, producing more re-
alistic estimates that put more weight on the older and thus
harder to observe elements. Using our model, one can for-
mally test the hypothesis that the insertion rate is constant
over time. In this case, the distribution of divergence is
exponentially decaying due to the death of old elements.
Neglecting the death rate and equating the age distribution
with the insertion rate, a feature common to other approaches,
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can lead to an imprecise estimate of the insertion rate, espe-
cially if the insertion rate is constant or nearly constant, a
situation that we found to be true for Copia family 2 of A.
lyrata. Our method showed a constant insertion rate for this
family, whereas a histogram of age distribution suggested an
exponential decay that would lead to a wrong impression of a
recent burst of insertions (compare right panels of Figures S6
and S7). Second, the relationship between the number of
mutations and the age of an LTR-RT is subject to random
variation. Our model takes that into account, which results
in more pronounced peaks in the age distribution estimates.

Our model accommodates varying insertion rates of
LTR-RT families over time, which is appropriate for dynamic
transposition activity as demonstrated in simulations (Le
Rouzic et al. 2007). Our hypothesis test rejected constancy
of insertion rates for all 35 Ae. tauschii LTR-RT families and
Gypsy family 1 in A. lyrata, with the biological implication
that LTR-RT families go through bursts of various intensity of
amplification, followed by decline and eventual removal.
LTR-RT families such as Copia 27 (Figure 5) and Copia 9,
Gypsy 31, and Gypsy 40 (Figure S1) had at least two past
activations, as shown by their bimodal insertion rates and/
or age distributions. This demonstrates that the activation
and silencing in each LTR-RT family can be cyclic.

Our approach is applicable to modeling the TE demograph-
ics in species with LTR-RT dynamics that may differ from that

in Ae. tauschii. This is illustrated by the analyses of LTR-RT
families in A. lyrata, a much smaller genome with a much
lower content of LTR-RTs. The analyses of two major A. lyrata
LTR-RT families with our approach revealed two contrasting
patterns, even though a single negative binomial distribution
provided a close fit to the LTR mismatches for both families.
The constant insertion rate hypothesis was rejected for the
Gypsy 1 family but not for the Copia 2 family. The two families
exhibit distinctly different profiles of the insertion rates dur-
ing the past 3 MY. The Gypsy 1 profile showed a recent burst
of insertions peaking at 0.125 MYA, while that of Copia 2
showed a nearly constant amplification during the past
3 MY. Copia 2 was the only family we observed in our analysis
of Ae. tauschii and A. lyrata that showed peak amplification at
the present time, and may therefore provide a window into
the insertion rates prior to attenuation and decline.

The matrix population model of Promislow et al. (1999)
provides easy-to-calculate insertion and death rate estimates
under constant insertion and exponential age distribution
assumption. In contrast, our approach accommodates greater
variation in age distribution by allowing a more flexible
gamma distribution fit. Marchani et al. (2009) proposed a
master gene model, which is largely applicable to TE families
with nearly constant insertion rate and without element re-
moval, but the model failed to capture peaks in the age dis-
tributions in Ae. tauschii families. Previous analyses of TE
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Table 1 Regression coefficient estimates for the age of an LTR-RT
as response and various genomic factors as predictors

Regression®

Predictor? coefficient SE t-value  P-value
Intercept 0.252 0.043 5.796 0.000
Chr2 0.024 0.011 2.207 0.027
Chr3 0.009 0.011 0.765 0.444
Chra 0.022 0.012 1.876 0.061
Chr5 0.011 0.011 0.999 0.318
Chré 0.023 0.012 1.904 0.057
Chr7 0.042 0.011 3.741 0.000
HR —0.021 0.007 —3.062 0.002
Near 5’ end -0.012 0.006 —1.971 0.049
Near colinear gene —0.050 0.006  —8.335 0.000
Log distance to a gene 0.070 0.003 25.434 0.000
Gypsy superfamily 0.094 0.045 2.089 0.037

Chr, chromosome; HR, homologous recombination.

? The following predictors are considered: chromosome membership (Chr2-7, with
Chr1 as baseline), adjacent HR rate, proximity to the 5’ end of a gene (with
proximity to the 3’ end as baseline), colinearity of the closest gene with the
homologous gene on a homeologous pseudomolecule in wild emmer (Dvorak
et al. 2018) (with baseline that the gene is next to a noncolinear gene), log
distance (bp) to the nearest gene, and long terminal repeat-retrotransposon su-
perfamily membership (with Copia as baseline).

b The regression coefficients for the various predictors correspond to: for Chr2, the
difference between the mean age on Chr2 and that on Chr1; analogously for
Chr3-7; for “Near 5’ end,” the difference between the mean age of long terminal
repeat-retrotransposons (LTR-RTs) near the 5’ end of a gene and those near the 3’
end; for “Near colinear gene,” the difference between the mean age of LTR-RTs
next to colinear genes and those next to noncolinear genes; for Gypsy superfamily,
the difference in mean age between Gypsy and Copia elements; and for “Inter-
cept,” the mean age in the reference level, consisting of Copia elements on Chr1
closest to a noncolinear gene and its 3’ end.

dynamics in A. thaliana employed multiple genome lineages
(Hollister and Gaut 2007) to reveal a positive relationship
between Helitron age and its distance to the nearest gene.
Our analysis revealed the same relationship employing a sin-
gle lineage (accession) of the much larger Ae. tauschii ge-
nome with abundant LTR-RTs.

For pragmatic reasons, we employed the exponential life
span assumption followed by other authors (Ma and Bennetzen
2004; Vitte et al. 2007; Wicker and Keller 2007), which
amounts to a constant hazard rate. The resulting baseline
death rate estimates A were larger than A, estimated from
the solo-LTRs except for one LTR-RT family, in accordance
with the fact that the deletions of an entire element are not
reflected in solo-LTRs. As the ratio of solo to intact element
increased steadily within most families for older elements
(Figure S1), the death rate due to forming solo-LTRs does
not seem to vary over time, which partially supports our
constant death rate assumption.

If the death rates would vary significantly for TEs inserted
at different times, the death rates could be a factor shaping the
age distributions, in addition to the insertion rates. For ex-
ample, if the insertion rate were constant but a removal
process that applies to only young LTR-RTs started at time
t, then one would observe a sharp decrease in abundance of
elements younger than age t. This could occur if the fitness of
an individual bearing such elements would decrease steeply
as the copy number of the LTR-RTs increased (Charlesworth
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and Langley 1989), or if the species acquired a new excision
mechanism at time t that targets only newly inserted ele-
ments. However, the estimation of time- or age-dependent
hazard rates requires the observation of historical TE removal
events. Further elucidation is left for future work because
quality data on deletion are unavailable at this stage.

The LTR-RT age distribution estimated from a randomly
selected focal individual will be an unbiased estimate of the
population (average) age distribution because we consider
the total number of inserted copies, regardless of whether
each copy is fixed in the population. Nonetheless, since
younger TEs not fixed in the genome are more likely to vary
in copy numbers between different individuals, sampling
variation for these younger elements will increase and thus
result in larger variance in the estimates corresponding to the
younger age range.

Gene conversion was not considered in our modeling of
LTR-RT demographics. Gene conversion between paralogous
LTR-RTs would lead to homogenization of dispersed copies
and probably minimally affect the results since our model is
concerned with a single-genome sequence, not with allelic
frequencies in a population, unlike the case considered for
example in Blumenstiel et al. (2014). Gene conversion be-
tween LTRs within a single element would homogenize them
and lead to underestimation of time of insertion as suggested
for the two exceptional elements of Copia family 27. Model-
ing such gene conversions needs future work, and this factor
should be included into our model if found significant. How-
ever, it is of interest that we did not find elements with iden-
tical LTRs, which we would have interpreted as current
LTR-RT insertions, among the 35 Ae. tauschii LTR-RT families
we studied. This remarkable absence of currently inserted
elements is contrary to what is expected if gene conversions
within LTR-RTs were common.

Element ages and genome evolution

The balance between the insertion and removal rates of
LTR-RT elements determines the global rate of sequence
turnover in a genome, and shapes the structure of its chro-
mosomes (Devos et al. 2002; Ma and Bennetzen 2006; Vitte
and Bennetzen 2006). Our regression analysis revealed that
the age of LTR-RTs within Ae. tauschii LTR-RT families was
negatively associated with recombination rates along the
chromosome, and positively with proximity to genes and
their 5" ends. Since genes and their 5’ ends frequently act
as recombination hotspots (Schnable et al. 1998), the three
associations seem to indicate that the local recombination
rate is a major factor determining the local rate of the re-
moval of elements from the genome (Ma and Bennetzen
2006). However, the same associations can be cited in sup-
port of purifying selection as the major factor. One reason for
that is the Hill-Robertson effect, which is the positive rela-
tionship between the effectiveness of purifying selection and
the local recombination rate (Hill and Robertson 1966). The
other reason lies in the inverse relationship between gene
expression and degree of methylation of nearby LTR-RTs



(Hollister and Gaut 2009; Hollister et al. 2011). In
Arabidopsis, methylated LTR-RTs near genes are associated
with low gene expression and are therefore subjected to pu-
rifying selection, compared to those that are far away from
genes or those that are not methylated. Likewise, either re-
combination or purifying selection could be cited as major
factors accounting for our observation that elements near
genes colinear with homologous genes in wild emmer,
thereby enriched for the conserved gene repertoire of the
Ae. tauschii genome, tend to be younger than those near non-
colinear genes. This gene repertoire effect was also captured
(Table S6) if colinearity of the Ae. tauschii genes was assessed
against the Brachypodium distachyon genome (Luo et al.
2017). A significant portion of the Ae. tauschii genes that
are in noncolinear locations may be pseudogenes or may
not be expressed, and be free of natural selection but also
not acting as recombination hotspots.

Methylated LTR-RTs were estimated to detrimentally af-
fect gene expression at distances of 1.0 kb in A. lyrata and
2.5 kb in A. thaliana (Hollister and Gaut 2009; Hollister et al.
2011). These estimates can be turned around and used as
estimates of the distance from a gene for which purifying
selection would act against a methylated LTR-RT. In the Ae.
tauschii genome with much greater content of LTR-RTs com-
pared to the Arabidopsis genome, genes affected the mean
element age for >22 kb, with no actual distance limit. This
seems to argue for strong purifying selection acting against
LTR-RTs and against recombination as a major factor causing
this association, since it seems unlikely that the initiation of
recombination near a gene can cause recombination leading
to a deletion of an element that far away. This long-distance
effect of genes on the age, and hence the rate of turnover, of
LTR-RTs in the intergenic regions of the Ae. tauschii genome
highlights the potential importance of epigenetic effects of
LTR-RTs on gene expression in the Triticeae genomes and the
need for more work in this area.

LTR-RT insertion rates and genome sizes in Triticeae

The tribe Triticeae includes >300 species (Love 1984), most
of them polyploid, that radiated over a period of ~10 MY
(Huang et al. 2002; Ramakrishna et al. 2002; Dvorak and
Akhunov 2005). In that time period, the arrays of LTR-RTs
between genes have been turned over more than once
in individual Triticeae lineages (Dubcovsky and Dvorak
2007). Based on this massive turnover and the fact that
LTR-RTs account for large portions of the Triticeae genomes,
one would expect to find great stochastic variation in genome
sizes in the tribe. However, the sizes of genomes in the diploid
Triticeae species vary by a factor of two, from 3.9 to 8.1 Gb
(Dvorak 2009). An impressive property of the insertion rate
profiles of the 35 most abundant Ae. tauschii LTR-RT families
over the past 3 MY is their similarity and the absence of
extremes. One by one, families go through an amplification
burst, which reaches a peak of height similar among the fam-
ilies, and then the burst is quenched. Several families, e.g.,
Copia 3, Copia 27, Gypsy 31, and Gypsy 40, show the cyclic

nature of this process. Work in Arabidopsis highlighted the
importance of epigenetic silencing for LTR-RT transposition
by methylation and small interfering RNAs (Tsukahara et al.
2009; Hollister et al. 2011). The logical conclusion of these
observations is that the constancy of genome sizes in Triti-
ceae, despite the unprecedented rate of LTR-RT turnover,
resides in the constancy of epigenetic control over LTR-RT
amplification over the past 10 MY.
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