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Fast and Easy: Approximating Uniform Information Density in Language
Production

Jesús Calvillo (jesusc@coli.uni-saarland.de)
Saarland University, Germany

Abstract

A model of sentence production is presented, which imple-
ments a strategy that produces sentences with more uniform
surprisal profiles, as compared to other strategies, and in accor-
dance to the Uniform Information Density Hypothesis (Jaeger,
2006; Levy & Jaeger, 2007). The model operates at the al-
gorithmic level combining information concerning word prob-
abilities and sentence lengths, representing a first attempt to
model UID as resulting from underlying factors during lan-
guage production. The sentences produced by this model
showed indeed the expected tendency, having more uniform
surprisal profiles and lower average word surprisal, in compar-
ison to other production strategies.
Keywords: information density; sentence production; rational
analysis; connectionist; semantics

Introduction
For a given semantics, humans are able to produce a large
number of surface representations that express its meaning.
However, some constructions are preferred over others, some
sentences are easier to understand, while some others are
more difficult, so people tend to avoid them.

Uniform Information Density Hypothesis (UID, Jaeger,
2010; Levy & Jaeger, 2007) presents one way to rank sen-
tences according to how uniform their surprisal profiles are;
where a sentence is preferred if the surprisal of each of its
words remains uniform. This is explained as a rational strat-
egy of language production at the computational level of
analysis, as such strategy maximizes the probability of suc-
cessful communication in a bandwidth-limited noisy channel
while maximizing information transmission. Alternatively,
and without the assumption of a noisy channel, comprehen-
sion effort is also minimized utilizing a UID strategy (Levy
& Jaeger, 2007), provided that the effect of surprisal on com-
prehension effort is superlinear (Hale, 2001; Levy, 2008).

Empirical evidence supports this hypothesis (e.g., Aylett
& Turk, 2004; Bell et al., 2003), however, as far as one
can tell, no modeling attempts explore this at the algorith-
mic or implementational levels. Here, a mechanistic account
of sentence production is presented, which balances on the
one hand speed of information transmission and on the other
hand comprehension and production effort. The sentences
produced by this strategy present more uniform surprisal pro-
files, compared to other strategies, and thus, represent a first
approximation to UID.

In particular, the model assumes that speakers act under
three different pressures: a first one, pushing speakers to be
fast under time restrictions; a second one, related to produc-
tion effort, pushing speakers to produce available content first
(see Ferreira & Dell, 2000); and a third one, related to com-
prehension effort, pushing speakers to avoid high information

density structures. Here I present a way to balance these pres-
sures in order to obtain sentences with more uniform surprisal
profiles, which could be later linked to a bandwidth-limited
communication channel.

The language production model proposed here extends the
one presented by Calvillo, Brouwer, and Crocker (2016),
which produces sentences describing a given semantics by
maximizing word probabilities. The semantic representations
used are a variation of those defined by the Distributed Situa-
tion Space model (DSS, Frank, Koppen, Noordman, & Vonk,
2003; Frank, Haselager, & van Rooij, 2009). The rest of this
section briefly presents the DSS model as well as the model
described by Calvillo et al. (2016).

Distributed Situation Space
The DSS model (Frank et al., 2003, 2009) defines a mi-
croworld in terms of a finite set of basic events (e.g.,
play(charlie,chess)) —the smallest meaning-discerning
units of propositional meaning in that world. Basic
events can be conjoined to form complex events (e.g.,
play(charlie,chess) ∧ win(charlie)). However, the mi-
croworld poses both hard and probabilistic constraints on
event co-occurrence; as a result, some complex events are
very common, and some others impossible to happen.

A situation-state space is a large set of m microworld obser-
vations defined in terms of n basic events, yielding an m× n
matrix (see Table 1). Each observation in this matrix is en-
coded by setting basic events that are the case in the given ob-
servation to 1 (True) and those that are not to 0 (False). This
matrix is constructed by sampling m observations such that
no observation violates any hard world knowledge constraint,
and such that the m observations approximate the probabilis-
tic nature of the microworld. The resulting matrix encodes
then all knowledge about the microworld, where each col-
umn, also called situation vector, represents the meaning of
each basic event in terms of the observations in which the
basic event is true.

Frank et al. (2009) successfully used these DSS representa-
tions in a connectionist comprehension model. They defined
a microworld consisting of 44 basic events centered around
three people. Then they constructed a situation-state space
by sampling 25,000 observations. As an example, in this
space the situation vector for play(charlie,chess) would cor-
respond to a column in the matrix, where each dimension
corresponds to one observation, and its value would be 1 if
Charlie is playing chess in that observation. Finally, they
reduced the dimensionality of the resulting 25k-dimensional
situation vectors to 150 dimensions using a competitive layer
algorithm.
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Table 1: Situation-state space.
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observation1 1 0 0 . . . 1
observation2 0 1 1 . . . 1
observation3 1 1 0 . . . 0
. . . . . . . . . .
observationm 0 1 0 . . . 0

DSS Language Production

DSS representations were also used by Calvillo et al. (2016)
in a connectionist model of language production, showing
that they are suitable for modeling production.

While Calvillo et al. (2016) used the same microworld as
Frank et al. (2009), the DSS representations were modified in
order to avoid the competitive layer dimensionality reduction.
Instead, the original 25-k dimensional situation vectors were
converted to belief vectors. Each dimension of the latter is
equal to the conditional probability of each basic event given
the original 25k-dimensional DSS representation that is asso-
ciated to each sentence.1 The result is a 44-dimensional vec-
tor that avoids the loss of information associated to the com-
petitive layer algorithm, and consequently renders a higher
performance in a language production task.

The architecture of the model presented by Calvillo et
al. (2016), represented by the dotted rectangle in Figure 1,
implements an extension of a Simple Recurrent Network
(Elman, 1990) with a 45-unit input layer, a 120-unit recur-
rent hidden (htan) layer, and a 43 unit (softmax) output layer.
The input layer contains 44 units corresponding to the 44 ba-
sic events in the microworld, plus one binary unit indicating
whether the model must output an active sentence (1), or a
passive one (0). The output layer contains 43 units matching
the number of available words in the vocabulary.

Time in the model is discrete. At each time step t, the re-
current hidden layer receives as input the DSS representation,
its own activation at time step t− 1 (zeros at t = 0) and the
identity of the word that was produced at time step t−1 (ze-
ros at t = 0). Activation of the hidden layer is then propagated
to the softmax output layer.

The activation of the output layer yields a probability dis-
tribution over the available words, where the word produced
at time-step t is defined as the one with highest probabil-
ity (highest activation). Production stops after an end-of-
sentence marker has been produced.

1This vector is computed by calculating the dot product between
the situation-state matrix and the original 25k-dimensional situation
vector, and then normalizing each dimension of the resulting vec-
tor by the sum over the dimensions of the original 25k-dimensional
situation vector.

The identity of the word that was produced at time-step
t − 1 is forwarded to the hidden layer through monitoring
units connecting the output layer to the hidden layer, where
only the output unit of the word produced at time-step t−1 is
activated (set to 1), while all other units are set to 0.

Finally, the hidden and output layers also receive input
from a bias unit with a constant activation of 1.

UID Model
The here proposed model architecture, shown in Figure 1,
consists of two paths of processing: the first one (above, in-
side the dotted rectangle), computes word probabilities given
the context, and is identical to the model of Calvillo et al.
(2016); and the second one (below), receives the output of
the former and computes derivation length estimations, i.e.,
how long a sentence can be if a particular word is produced.
We call probabilities the layer containing the output of the
first path, and der lengths the layer containing the output of
the second path.

The output of these two paths is then combined in a final
layer (words) that receives unmodified copies of the activa-
tion of probabilities and der lengths and whose activation is a
combination of these two types of information. At this point
the model produces the word with the highest activation in
words, whose identity is then passed to the first hidden re-
current layer through monitoring units in order to process the
next word production. Finally, production stops when an end-
of-sentence marker is produced.

The rest of this section presents in more detail each of these
parts, along with their justification.

Figure 1: UID Production Model.

Semantic and Linguistic Information
The information content or surprisal of a sentence s is defined
as its negative log probability−logP(s). Moreover, sentences
express events in the world, such that a sentence can be paired
with one or more events, and vice versa. Therefore, we can
decompose the probability of a sentence s into:

P(s) = ∑
i

P(s|ei)P(ei)
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where ei is an event in the world that is paired with s.
From this, we can distinguish two kinds of information:

P(ei), related to each event that can be paired with the sen-
tence; and P(s|ei), related to the linguistic elements used in
this particular sentence to express ei.

We call the first one semantic surprisal, and the second one
linguistic surprisal (cf. Frank & Vigliocco, 2011). Semantic
surprisal represents how unexpected the events conveyed by
the sentence are. Linguistic surprisal can be seen as the in-
formation that the sentence conveys, given that the semantics
is already known; thus, it is not information about the world,
but about the sentence itself.

These two types of information cannot be easily disen-
tangled because they are embedded in each sentence/event.
Knowing the identity of an event gives information about
the possible related sentences, and vice versa. Nonetheless,
based on our definition, we can express total semantic sur-
prisal of a sentence s as:

SemSurp(s) =−log∑
i

P(ei)

where ei is each event that can be expressed by s.
While one sentence can be paired with several events, nor-

mally when a speaker produces a sentence, he/she has one
specific event in mind eα. Thus, while total semantic surprisal
is as described above, the semantic information/surprisal that
the speaker is trying to communicate is only:

−logP(eα)

As a result, the relevant information associated with a spe-
cific sentence s assuming that the speaker is trying to com-
municate the event eα is given by:

Surpeα
(s) =−logP(s|eα)P(eα)

=−logP(s|eα)− logP(eα)

where the semantic information −logP(eα) remains constant
across all different surface realizations that could convey it;
in contrast to the linguistic information −logP(s|eα), which
can vary widely depending on the specific syntactic structures
or words that the speaker chooses.

Being Easy to Produce
Surprisal Theory (Hale, 2001; Levy, 2008) states that the cog-
nitive effort associated to the processing of a word is pro-
portional to its surprisal. Evidence supporting this has been
shown for comprehension (e.g., Hale, 2001; Levy, 2008), and
production (e.g., Griffin & Bock, 1998). Therefore, one can
assume that a rational model of production would try to min-
imize effort for both interlocutors.

While comprehension effort is minimized following a UID
strategy, production effort can be minimized by following
an Availability Based Production strategy (ABP, Ferreira &
Dell, 2000), where items are produced as they are available.

In this respect, producing the most probable word, and there-
fore most available, at each time step minimizes (to some ex-
tent) production effort by locally minimizing linguistic sur-
prisal:

wt+1 = argmin
w
−logP(w|DSS,w0, ...,wt)

where w is a word in the vocabulary and DSS is the semantic
representation related to eα. This is already implemented by
the model described by Calvillo et al. (2016), where the word
produced at each time step is the one with highest conditional
probability given the semantics and the previously produced
words. In our model these probabilities are obtained at the
Probabilities layer in Figure 1.

Being Fast

The information contained by a sentence results from the sum
of the information contained by each of its words. Thus,
knowing that the semantic surprisal related to eα should sum
up to −logP(eα), and that this information is distributed
among the words in the sentence, we can calculate average
word semantic information/surprisal with respect to eα:

E[WordSemSurpeα
] =
−logP(eα)

n

where n is the number of words in the sentence. Hence, if
one wants to maximize average semantic information trans-
mission of the desired event eα, it suffices to minimize n.

We hypothesize that in general speakers tend to maximize
information transmission of the desired semantics eα by min-
imizing n, and therefore by favoring shorter sentences.

The model presented minimizes sentence lengths by esti-
mating at each time step a score that reflects the expected
derivation length that would follow the production of a cer-
tain word. This is done by the second path shown in Figure
1, below. This path is constituted by a hidden recurrent layer
followed by a softmax layer. The recurrent layer contains 30
sigmoid units and receives as input the DSS semantic repre-
sentation, the output of probabilities, and its own activation
at time step t − 1 (zeros at t = 0). Activation of this layer
is then propagated to a softmax layer (der lengths) with di-
mensionality equal to the size of the vocabulary(43), and that
calculates for each word a probability value DL, where values
closer to 0 represent longer derivations and values closer to 1
represent shorter derivations, and where probability mass is
distributed among all words that can be produced at the given
time step. Finally, these layers receive also input from a bias
unit with a constant activation of 1.

A model that produces at each time step the word that
maximizes this score would prefer words leading to shorter
derivations, regardless of their information content:

wt+1 = argmax
w

DL(w|DSS, probabilitiest+1)
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Being Easy to Comprehend
A model combining the previous two strategies would pro-
duce sentences with more uniform surprisal profiles, com-
pared to a model that only applies one of them. However,
these strategies do not take into account that world events
with high surprisal represent higher comprehension effort.

Speakers know beforehand how unexpected the event they
are trying to communicate is. Therefore, one can propose
that they balance these two strategies according to this infor-
mation. That is, when the speaker is trying to communicate
an event eα with low surprisal, the speaker would prefer to
be faster; but, when the event represents high surprisal, the
speaker would prefer sentences with lower linguistic surprisal
and possibly longer. Thus, at each time step, the model would
produce the word that maximizes the score:

wt+1 = argmax
w
{(1−P(eα))P(w|...)+P(eα)DL(w|...)}

This final model is expected to produce sentences with
more uniform surprisal profiles, compared to strategies that
only maximize one of these measures, or that do not take into
account semantic surprisal.

In our model this is computed at the words layer (see Fig-
ure 1), which receives P(w|...) values from the probabilities
layer and DL(w|...) scores from the der lenghts layer. The
value of P(eα) is assumed to be known.

Training and Evaluation
Examples Set
We use the same examples set as Calvillo et al. (2016), which
consist of a set of pairs {(DSS1,ϕ1), . . . ,(DSSn,ϕn))} where
each DSSi ∈ [0,1]45 is formed by a DSS representation plus
an extra bit that indicates whether the model must produce a
a passive sentence (0) or an active one (1); and ϕi is the set of
all the sentences that encode the information contained in the
corresponding DSSi and in the expected voice.

The sentences are those generated by the microlanguage
defined by Frank et al. (2009) (see their Tables 5–8). This
microlanguage consists of 40 words that can be combined
into 13556 sentences according to its grammar. After adding
determiners (a,the) and an end-of-sentence marker (.), there
were 43 words, which were encoded at the output layer
probabilities in the form of localist vectors. After ruling out
sentences expressing situations that are not allowed by the
microworld, there were a total of 8201 sentences related to
782 DSS representations.

This set was used because it pairs each semantic repre-
sentation with several sentences, allowing to define different
ranking functions. In future work a new set could be defined
in order to assess more specific phenomena.

Derivation Length Scores. For each DSS representation,
we know beforehand the sentences that can encode it accord-
ing to the grammar. Furthermore, we know at each deriva-
tion point what words can be produced and how long the sen-
tences would be if a particular word is produced. Using this

information, we compute a probability distribution over the
vocabulary that reflects the length of the sentences that one
can expect after producing a particular word.

Given a DSS representation and a derivation point, for each
possible word production wi , we get its minimum derivation
length min dl(wi), which is the length of the shortest sen-
tence that can be produced if wi is produced. Afterwards we
calculate a score dl(wi):

dl(wi) = max
w
{min dl(w)}−min dl(wi)+1

which is equal to the difference between the greatest min dl
value among all the words that can be currently produced and
the min dl associated to each specific word wi, plus 1. Fi-
nally, in order to have a proper distribution, we normalize by
dividing by the sum over all the possible word continuations.

These scores are the values expected at the output layer
of der lengths. According to these, all possible word pro-
ductions at a specific derivation point have some probability
mass that is inversely proportional to the length of the shortest
sentence that can be obtained by following that production.

Semantic Probability. For each DSS representation in the
examples set, a semantic probability value P(eα) was com-
puted. Considering that the model is trained only on the pairs
given in the examples set and that all sentences are presented
an equal number of times during training, then the probability
of a DSS representation is given by the number of sentences
related to that representation divided by the total number of
sentences in the examples set.

However, since P(eα) is used to balance word probabilities
and derivation lengths, less biased values are needed because
as it is, P(eα) is in general very low, and 1−P(eα) is very
high. Therefore instead of normalizing by the total number
of sentences, normalization is done with respect to the high-
est number of sentences that can be related to a DSS repre-
sentation, which is 130. Hence, for each DSS, its probability
P(eα), or henceforth P(DSS), is given by the number of sen-
tences paired with the representation, divided by 130.

Training Procedure
Since the output layer receives unmodified copies from prob-
abilities and der lengths, the connections from the latter to
the former are fixed one-to-one and do not need training. In
other words, the ith unit of probabilities is only connected to
the ith unit of words with a connection weight fixed to 1, and
likewise for the connections between der lenghts and words.

Prior to training, all weights on the projections between
layers (with the exception of those mentioned in the last para-
graph) were initialized with random values drawn from a nor-
mal distribution N (0,0.1). Weights on the bias projections
were initially set to zero.

Training consists of setting the connection weights lead-
ing to the computation on the one hand of probabilities and
on the other hand of der lengths, corresponding to the two
paths of processing. Accordingly, training is performed in
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two phases, in both cases using cross-entropy backpropaga-
tion (Rumelhart, Hinton, & Williams, 1986) with weight up-
dates after each word in the sentence of each training item.

probabilities. The first phase corresponds to the training of
the path leading to probabilities, which is performed as de-
scribed by Calvillo et al. (2016), where the model is trained
to predict the next word given the semantic representation and
the previously produced words.

During this phase, the monitoring units were set at time
t to what the model was supposed to produce at time t − 1
(zeros for t = 0). This reflects the notion that during train-
ing the word contained in the training sentence at time-step
t−1 should be the one informing the next time step, regard-
less of the previously produced (and possibly different) word.
During production, the monitoring units are set to 1.0 for the
word that was actually produced and 0.0 everywhere else.

This path was trained for a maximum of 200 epochs, each
one consisting of a full presentation of the training set, which
was randomized before each epoch. Note that each item of
this set consisted of a DSSi paired with one of the possi-
ble sentence realizations describing the state of affairs rep-
resented in DSSi. Hence, during each epoch, the model saw
all the possible realizations of DSSi. An initial learning rate
of 0.124 was used, which was halved each time there was no
improvement of performance during 15 epochs. No momen-
tum was used. Training halted if the maximum number of
epochs was reached or if there was no performance improve-
ment over a 40-epoch interval.

der lengths. The second path can be trained after the train-
ing of the first one is completed. During this phase, the con-
nection weights calculated during the first phase are fixed, so
that only the second path weights are modified.

At each time step, the DSS is fed into the first path, which
outputs a probability distribution over the vocabulary. This
is fed into the second recurrence, as well as the DSS rep-
resentation. Monitoring units are handled exactly as in the
first training phase. The activation of the second recurrence
is then propagated to der lengths. Its output is compared to
the derivation length values, as defined in the previous sec-
tion, and finally the connection weights are updated.

Training of this path was performed for a maximum of 80
epochs, with the training items arranged in the same way as
in the previous phase. An initial learning rate of 0.24 was
used, which was halved each time there was no improve-
ment of performance during 10 epochs. No momentum was
used. Training halted if the maximum number of epochs was
reached or if there was no performance improvement over a
20-epoch interval.

Evaluation

The model presented defines a production strategy as an in-
teraction between production goals. Thus, in order to assess
the model, its productions were compared to those obtained
by using the following alternative strategies, where at each

time step the model produces the word with:

• Min Linguistic Surprisal

• Min Derivation Length

• Max Word Probability +/* Derivation Length Score

• Complete Model

For each DSS representation in the examples set that was
related to more than one sentence (968), the model generated
a sentence according to each production strategy.

In order to measure surprisal, a language model was trained
implementing a Simple Recurrent Network (Elman, 1990).
This model was trained on the whole set of sentences for 200
epochs with a learning rate of 0.24 which was halved each
time there was no improvement in performance. Using this
language model, surprisal values were calculated for each one
of the words of the produced sentences.

Uniformity of information density was measured in terms
of standard deviation of word surprisal, assuming that com-
plete uniformity would produce a standard deviation of 0.

Results and Discussion
The results can be seen in Table 2, where the columns denote
respectively: production strategy, production accuracy (Acc)
as defined by Calvillo et al. (2016) and denoting how precise
the sentences convey the given semantics, average sentence
length (AvDL), average word surprisal (AvS), and standard
deviation of surprisal (Std).

Table 2: Results of each production strategy.

Acc AvDL AvS Std
Min LS 99.67 9.01 1.0 0.89
Min DL 99.86 7.55 1.20 0.97

Max P(+/*)DL 99.82 7.77 1.16 0.95
Max 3P-2DL 98.23 10.15 0.89 0.84

SemSurp 97.67 10.17 0.89 0.83

As expected, minimizing linguistic surprisal (Min LS) led
to lower surprisal values compared to minimizing derivation
lengths (Min DL). Combining these two strategies by a sum
or product led to results almost identical to each other, and
very close to Min DL, suggesting that derivation length scores
were mostly dominating production.

Given that linguistic surprisal and derivation lengths are
different in nature, one can expect a more complex relation
between them in order for the resulting score to be helpful.
Consequently, grid search was performed in order to find lin-
ear factors that would minimize the standard deviation of sur-
prisal. The resulting model corresponds to the fourth row in
Table 2, where the model produces at each time step the word
that maximizes:

3P(w|DSS,w0, ..,wn)−2DL(w|DSS, probabilities)
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where one can see that minimizing linguistic surprisal is fa-
vored, while minimizing derivation lengths is penalized. As
a result the sentences produced are longer than only minimiz-
ing linguistic surprisal. However, uniformity of information
density is higher than with the previous models and addition-
ally average surprisal is lowest.

The final row in Table 2 presents the results of the model
that incorporates semantic probabilities. For this case grid
search was also used, which led to a model that at each time
step produces the word that maximizes:

(3.5−P(DSS))P(w|...)+(P(DSS)−2.5)DL(w|...)

which is very similar to the previous model, but with some in-
fluence from semantic probabilities. While the performance
of this model is very similar to the previous one, its sentences
present slightly higher uniformity of information density; and
the influence of semantic surprisal is in the expected direc-
tion, where semantics with high surprisal produce longer sen-
tences and vice versa.

The small difference between the last two strategies could
be caused by the nature of the language model, which re-
ceives no semantic information during training, which means
that rather than being a joint model of semantics and sen-
tences, it only considers word sequences. Furthermore, the
production model here proposed uses semantic surprisal at a
sentence level, while speakers can be sensitive to this infor-
mation incrementally at a word level. These issues will be
addressed in future work.

In general the model outlined here shows: first, that as ex-
pected, shorter sentences are more dense in terms of informa-
tion content. Second, that longer sentences present informa-
tion in a more uniform way. Third, that sentences with more
uniform information densities present in average lower word
surprisal, therefore minimizing comprehension effort. And
finally and most importantly, that sentences with higher uni-
formity of information density can be produced by balancing
sentence lengths and word probabilities. In future work, this
can help to address uniformity for a given channel capacity.

Conclusion
This article presents a model of language production that
takes into account word probabilities and sentence lengths
in order to produce sentences with uniform surprisal pro-
files, and in order to model the Uniform Information Den-
sity Hypothesis. The sentences produced by this model were
compared to those produced using other strategies, showing
that the proposed model produces sentences with more uni-
form surprisal profiles and lower average word surprisal. This
model represents a first attempt to model the Uniform Infor-
mation Density Hypothesis at the algorithmic level, where
uniformity arises by balancing word probabilities and sen-
tence lengths in a mechanistic way.
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