
UC Irvine
UC Irvine Previously Published Works

Title
Genesis, Pathways, and Terminations of Intense Global Water Vapor Transport in 
Association with Large‐Scale Climate Patterns

Permalink
https://escholarship.org/uc/item/5s12h2qj

Journal
Geophysical Research Letters, 44(24)

ISSN
0094-8276

Authors
Sellars, SL
Kawzenuk, B
Nguyen, P
et al.

Publication Date
2017-12-28

DOI
10.1002/2017gl075495

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5s12h2qj
https://escholarship.org/uc/item/5s12h2qj#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Genesis, Pathways, and Terminations of Intense Global
Water Vapor Transport in Association
with Large-Scale Climate Patterns
S. L. Sellars1 , B. Kawzenuk1 , P. Nguyen2 , F. M. Ralph1 , and S. Sorooshian2

1Center for Western, Weather, and Water Extremes, Scripps Institute of Oceanography, La Jolla, CA, USA, 2Center for
Hydrometeorology and Remote Sensing, University of California, Irvine, Irvine, CA, USA

Abstract The CONNected objECT (CONNECT) algorithm is applied to global Integrated Water Vapor
Transport data from the NASA’s Modern-Era Retrospective Analysis for Research and Applications – Version
2 reanalysis product for the period of 1980 to 2016. The algorithm generates life-cycle records in time
and space evolving strong vapor transport events. We show five regions, located in the midlatitudes, where
events typically exist (off the coast of the southeast United States, eastern China, eastern South America, off
the southern tip of South Africa, and in the southeastern Pacific Ocean). Global statistics show distinct genesis
and termination regions and global seasonal peak frequency during Northern Hemisphere late fall/winter
and Southern Hemisphere winter. In addition, the event frequency and geographical location are shown to
be modulated by the Arctic Oscillation, Pacific North American Pattern, and the quasi-biennial oscillation.
Moreover, a positive linear trend in the annual number of objects is reported, increasing by 3.58 objects year-
over-year.

Plain Language Summary A computational science approach to tracking global atmospheric
water vapor plumes is applied to a NASA data set from 1980 to 2016. Results show regions of the
globe where intense water vapor transport often exists, including their genesis and termination locations.
Winter time months tend to have more water vapor plumes in both the Southern and Northern
Hemispheres. In addition, climate phenomena also have an impact on the frequency and location of these
water vapor plumes.

1. Introduction

Large-scale water vapor transport processes in the atmosphere are an important component of the global
hydrological cycle (Waliser & Guan, 2017). Water vapor transport is driven by different mechanisms in the
atmosphere, including midlatitude, extratropical cyclones, tropical cyclones, and monsoon transport. In the
midlatitudes, one phenomenon known to transport massive amounts of water vapor globally, and the pri-
mary focus of this paper, is atmospheric rivers (ARs). An AR is defined as “a long, narrow, and transient corri-
dor of strong horizontal water vapor transport that is typically associated with a low-level jet stream ahead of
the cold front of an extratropical cyclone” (American Meteorological Society, 2017). In recent years, ARs have
been found to be major contributors to extreme rain events leading to flooding, mudslides, and other natural
hazards impacting the western U.S. (Dettinger et al., 2011; Neiman et al., 2013; Ralph & Dettinger, 2011; Ralph
et al., 2006, 2011; Ruby Leung & Qian, 2009; White et al., 2013, among others). In addition, ARs have been
found to have beneficial impacts such as contributing to water resources and mitigating and breaking
droughts (Dettinger, 2011, 2013; Guan et al., 2010). The frequency, location, and landfall of these extreme rain
events associated with ARs have been shown to be modulated by season, geographic region, and climate
variability (Baggett et al., 2017; Guan et al., 2012; Guan & Waliser, 2015; Mundhenk et al., 2016; Sellars et al.,
2015; Waliser & Guan, 2017).

Scientists are interested in understanding ARs’ occurrences, including their frequency, landfall location,
and intensity. One of the challenges in studying ARs is defining the event, given that ARs are highly
dynamic and fluid areas of the atmosphere and are notoriously challenging to track in time and space.
Similar challenges have been observed when tracking other atmospheric phenomena, including tropical
cyclones (Ullrich & Zarzycki, 2017; Kerns & Zipser, 2008, 2009) and extratropical cyclones (Hodges et al.,
1994). Many methods have been developed and used to characterize AR events into catalogs, or list of
dates when ARs occur at specific locations. These AR detection methods are regional and global
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(Dettinger, 2011; Hagos et al., 2015; Mundhenk et al., 2016; Neiman et al., 2009; Ralph et al., 2012; Rutz
et al., 2014; Sellars et al., 2013, 2015; Wick et al., 2013) and provide researchers with the means to study
the statistical information impacting their formation and evolution.

AR detection methods often focus on one or two variables, Integrated Water Vapor (IWV) (Hagos et al., 2015;
Jiang et al., 2014; Neiman et al., 2008; Ralph et al., 2004; Wick et al., 2013) or Integrated Water Vapor
Transport (IVT), which were shown to be fundamental components of ARs (Moore et al., 2012; Neiman
et al., 2008; Rutz et al., 2014). Ralph et al. (2004) focused on using remotely sensed observations of IWV to
isolate the AR structure. They defined ARs as a continuous region of at least 20 mm of IWV that were at least
2,000 km in length and less than 1,000 km in width. Other detection approaches advanced using strict geo-
metrical criteria (Guan et al., 2015; Lavers et al., 2013; Mundhenk et al., 2016; Rutz et al., 2014). It is important
to note that these previous studies do not focus on tracking ARs as unique objects over their entire life cycle,
they simply seek to determine if an AR is present at a given time or location, based on the criteria
described above.

To address limitations and lack of life-cycle tracking by current AR catalogs and to capture other water vapor
transport mechanisms important in global water vapor transport (e.g., tropical cyclones and monsoons), this
study isolates IVT transport events without setting any geometrical or percentile-based criteria by introdu-
cing a tracking algorithm that has advanced data structure: the CONNected objeECT, or CONNECT algorithm
(Sellars et al., 2013, 2015). One advantage of the CONNECT algorithm is that it keeps track of the entire life
cycle of an object, from the genesis to the termination location by “connecting” pixels in time and space,
and tracking the system to be analyzed as a “4-D” object. These objects can originate from any location
and propagate globally and can be continuously tracked.

This study harnesses the CONNECT approach to build global life-cycle records of the time and space of evol-
ving IVT objects from their genesis to termination, track climate conditions, and determine how climate varia-
bility impact their characteristics. The National Aeronautics and Space Administration (NASA) Modern-Era
Retrospective Analysis for Research and Applications (Bosilovich et al., 2011; Gelaro et al., 2017; Rienecker
et al., 2011), Version 2 (MERRA V2) is used from 1980 to 2016. From this point on, the archive is referred to
as IVT-CONNECT (Sellars et al., 2017). To investigate climate variabilities’ impact on IVT objects, the population
of objects contained in the archive were split into subsets during the positive/negative (±) phases of one glo-
bal index, the quasi-biennial oscillation (QBO) (Baldwin et al., 2001), and two regional climate indexes, the
Arctic Oscillation (AO) (Thompson & Wallace, 1998) and the Pacific North American Pattern (PNA) (Barnston
& Livezey, 1987).

2. Materials and Methods
2.1. CONNected objECT (CONNECT) Tracking Algorithm and Data

The four-dimensional (4-D) object-oriented algorithm was developed by a team of researchers from the
University of California, Irvine (Sellars et al., 2013, 2015). Earth science variables can be described as statistical
4-D objects evolving in space (2-D), time (1-D), and magnitude of the selected variable (IVT in this case) (1-D).
The algorithm defines objects by identifying instantaneous IVT “footprints” (i.e., the geographic spatial pat-
terns) and recognizes the sequential footprints from the same system with overlapped or “connected” areas
in time and space. Each object has a unique ID and set of selected characteristics. Figure S1 in the supporting
information shows the time evolving footprint of a single IVT object over its life cycle. The time and space
footprint represents the dynamical evolution of the phenomena and can be associated with weather and
climate features (e.g., midlatitude jet stream and ocean/atmosphere teleconnections). Organizing the data
into 4-D objects helps one to visualize the dynamical changes to the object (iRain-UC Irvine, 2017; Nguyen
et al., 2017).

The MERRA V2 reanalysis product represents the satellite era using a state-of-the-art assimilation system,
known as the Goddard Earth Observing System Data Assimilation System Version 5 (Bosilovich et al., 2015;
Rienecker et al., 2011). The data have a temporal frequency of 3-hourly from 00:00 UTC (instantaneous), with
a 3-D spatial grid at full horizontal resolution. The resolution is 0.5° × 0.625° in latitude and longitude, and 42
vertical levels from the surface to 0.01 hPa. For the calculation of IVT, the assimilatedmeteorological field data
archive (M2I3NPASM) is used.

Geophysical Research Letters 10.1002/2017GL075495
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2.1.1. Integrated Water Vapor Transport
IVT is a measure of the horizontal water vapor transport in the atmosphere integrated from 1,000 to 200 hPa
calculated from several parameters available in the MERRA data set. The IVT is calculated similar to the meth-
odology of Cordeira et al. (2013) and is defined as

IVT ¼ � 1
g
∫200 hPa
1000 hPaqVdp

where q is the specific humidity, g is the gravitational acceleration, and V is the total vector wind. The units for
IVT are kilograms of water per meter per second, and the vertical integration is computed using 25 hPa iso-
baric layers from 1,000 to 700 hPa and 50 hPa layers from 700 to 200 hPa.
2.1.2. CONNECT Algorithm Settings for MERRA-V2’s IVT Data
CONNECT requires two thresholds: (1) a minimum value of the selected variable to locate intensity patterns or
“footprints” with a certain magnitude and (2) a life-cycle time threshold that ensures the object exists for a
minimum length in time. To generate IVT-CONNECT, the study set a minimum threshold of IVT intensity at
750 kg m�1 s�1 and applied a duration threshold that required all systems to have a life cycle of at least 24 h
(i.e., ignoring systems that last for a shorter time periods under these conditions). Twenty-four hours was
found to be a good temporal threshold for segmenting large-scale atmospheric systems as reported in
Sellars et al. (2015). Midlatitude water vapor transport studies associated with ARs have used a threshold
as low as 250 kg m�1 s�1 and if used herein would include weak to moderate transport processes. The
750 kg m�1 s�1 threshold is selected to target only the strongest water vapor transport processes. There is
a sensitivity of the results to the choice of the IVT threshold, as with all AR detection methods, but further dis-
cussion is beyond the scope of this paper.

2.2. IVT-CONNECT Physical and Climate-Based Features

Each object that has been generated by the CONNECT algorithm can be described using a wide range of
features (i.e., descriptors of the object). For the physical features, the genesis and termination regions can
be determined using the first and final groupings of pixels for each object in the data set. Other physical
features include duration, average intensity, speed (km/h based on the distance change between centroid
locations from sequential time steps), and many others that can be seen in Table S1 in the supporting
information.

Similar to the physical based features, each object can be described by the phase of specific climate phenom-
ena that existed when the object occurred. This paper focuses on only three large-scale climate phenomena
described as features below, AO, QBO, and PNA, and were downloaded from the National Oceanic and
Atmospheric Administration. Many other features are calculated but are beyond the scope of this paper (see
Table S1).
2.2.1. Arctic Oscillation (AO)
The Northern Annular Mode, or Arctic Oscillation (AO), is a major cause of extratropical circulation variability
in the midlatitude and high latitude of the Northern Hemisphere (NH). AO is characterized by a zonal symme-
try of the north-south geopotential height perturbations impacting the midlatitude jet stream (Thompson &
Wallace, 1998). The loading pattern of AO is defined as the first leading mode from the principle component
analysis of monthly mean height anomalies at 1,000 hPa (NH) or 700 hPa (SH). The seesaw pattern (positive
and negative phase) describes the strength and location of the geopotential height perturbations and can
allow arctic air to penetrate the middle latitudes causing short-medium shifts in regional climate.
2.2.2. Quasi-Biennial Oscillation (QBO)
The QBO is described as the prevailing eastward and westward propagation of winds in the equatorial strato-
sphere at approximately 16 to 50 km above the Earth’s surface. The wind jets quasi-biennially descend
through the stratosphere from near the top of the atmosphere, ~1 hPa, down to the top of the troposphere
~100 hPa (Baldwin et al., 2001; Ebdon, 1960; Lindzen & Holton, 1968). The QBO is considered a tropical phe-
nomenon, as the vertical wave propagation originates there; yet, it is known to affect the stratospheric flow in
the polar regions thus modulating extratropical wave propagation (Baldwin et al., 2001). Here the QBO index
is calculated from the zonal average of the 30 hPa zonal wind at the equator as computed from the National
Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis, where eastward
and westward propagation is characterized by negative and positive values, respectively.

Geophysical Research Letters 10.1002/2017GL075495
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2.2.3. Pacific North American Pattern (PNA)
The PNA is a phenomenon known to influence North American climate, consisting of anomalies in midtropo-
spheric geopotential height over the U.S. The PNA is calculated using the orthogonally rotated principle com-
ponent analysis of 1 month mean NH 700 hPa heights. The PNA leading patterns show a dipole with two
phases; a positive phase of above normal geopotential-heights (higher pressure) over the western U.S.,
and below normal geopotential-heights (lower pressure) over the eastern U.S, and a negative phase with
the opposite pattern of below normal heights over the western U.S. and above normal heights over the
southeastern U.S. (Barnston & Livezey, 1987; Latif & Barnett, 1994).

3. Results
3.1. Global IVT-CONNECT Object Climatology

The IVT-CONNECT data set has a total of 39,480 objects globally. The objects are independent in the sense
that they are not directly connected to one and another in time or space. Analyzing annual and monthly
counts of objects provide insight into global characteristics of the monthly, seasonal, and interannual fre-
quency of the events. Annual and monthly mean frequency results are 1,067 and 89.7 objects, respectively.
The seasonal cycle and interannual variability are shown in Figure 1a, which shows two peaks in the seasonal

Figure 1. (a) Global IVT-CONNECT object average monthly values (i.e., seasonal cycle—repeated once for visualization).
(b) Global IVT-CONNECT object annual frequency with linear trend overlaid.

Geophysical Research Letters 10.1002/2017GL075495
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cycle. One peak is in NH late fall and SH late spring (November/December), and the second peak is during NH
summer/SH winter (July/August). These results indicate that the pole to equator temperature gradient and
solar radiation maxima/minima, and the resulting seasonal shifts in large-scale atmospheric circulation
(e.g., shifting of the midlatitude jet stream), for each hemisphere may play a role in IVT object genesis. The
annual number of objects for the period 1980 to 2016 is shown in Figure 1b, with a range of annual IVT
objects from 981 to 1,233. An increasing trend is observed with an estimated linear increase of 3.58,
corresponding to a 95% confidence interval of ±1.39, year-over-year for the recorded period (with the
baseline 1,067 per year on average). These results indicate the influence that global climate trends may
have on IVT object genesis and will be detailed in additional research.

3.2. Global IVT-CONNECT Object Locations

An investigation of the IVT object locations revealed distinct regions where IVT “seed” regions exist. There is a
large-scale organization of IVT objects globally with broad hemispheric patterns, spanning the Pacific and
Atlantic Ocean basins in both hemispheres and tend to be located in the midlatitude regions. Figure 2a high-
lights five regions (off the coast of the southeast United States, eastern China, eastern South America, off the
southern tip of South Africa, and the over the ocean in the southeastern Pacific) that have the largest number
of objects, in terms total number of objects to impact each grid cell. IVT objects tend to be over the extratro-
pical ocean basins, propagating eastward and oriented toward the poles; similar results were found in Zhu
and Newell (1994, 1998) and Guan and Waliser (2015). The most pronounced regions lie to the east of con-
tinental landmasses (Asia, North America, and South America), with two regions that originate over the ocean
(southern tip of Africa and southeastern Pacific Ocean).

A geographical assessment concludes that the two NH regions, off the coast of East Asia and eastern U.S., are
known to include moisture-rich sources, such as dense vegetation and high tropical atmospheric moisture.
Tropical systems tend to move westerly and can recurve northward and eastward when encountering the
prevailing westerly winds in the subtropics. Intense moisture anomalies are known to propagate northward,
along the Gulf of Mexico, and have been linked to IVT anomalies causing floods in the central U.S. (Lavers &

Figure 2. (a) Total number of IVT objects from January 1980 to August 2016. (b) Average duration in hours of object at each grid cell. (c) The number of objects at
genesis (starting) locations for all IVT objects. (d) The number of objects at termination (ending) locations for all IVT objects. The gray areas represent landmass.

Geophysical Research Letters 10.1002/2017GL075495
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Villarini, 2013; Moore et al., 2012). Depending on the large-scale atmospheric circulation patterns, anomalous
moisture can propagate northeasterly across the southeastern U.S., moving offshore toward the northern
Atlantic, impacting Europe (Ramos et al., 2016). A similar mechanism often occurs east of Asia as tropical sys-
tems often recurve and undergo extratropical transition and transport large amounts of moisture across the
north Pacific (Jones et al., 2003).

The IVT object seed regions in the SH include the east coast of South America, South Pacific, and southern
Indian ocean. The dynamics of the South American jet stream, influenced by the Andes Mountain range
and rainforest moisture to the east, prove to be incredibly conducive to the formation of IVT objects off
the east coast of South America as the topography can promote the growth of atmospheric wave perturba-
tions and lee cyclogenesis (Gan & Rao, 1991; Vera et al., 2002). Off the southern tip of South Africa is also a key
IVT object formation region. Hoskins and Hodges (2005) shows similar regions of “storm” genesis down-
stream of the Andes and off the Southern tip of South Africa. The southeastern Pacific Ocean also shows
increased objects between 30°S and 60°S. Nguyen et al. (2017) recently showed the South Pacific being influ-
enced by barotropic wave train patterns from Hadley Circulation (HC) extension into the midlatitudes and
extratropics of the SH. This HC extension is seen when tropical heating in the Indian Ocean-Maritime
Continent region occurs and it is plausible that IVT spatial orientation and frequency are also related to
this mechanism.

3.3. Global IVT-CONNECT Object Average Duration

IVT-CONNECT object average duration is calculated at each grid cell and represents the average number of
hours (based on 3-hourly time steps) for all unique objects impacting that cell (Figure 2b). The longest dura-
tion IVT objects tend to be in the tropical region, between �30°S and 30°N with an average of 16.2 h. The
monsoon regions (such as the Indian Monsoon and over the Maritime Continent) show this increased dura-
tion, suggesting that these large-scale moisture transport processes are important when considering intense
IVT globally. These tropical regions feature a lower number of IVT-CONNECT objects than the midlatitudes
(Figure 2a); however, when they do occur the duration is significantly longer.

The IVT object storm tracks in the midlatitudes are shown extending across the ocean basins with a lower
midlatitude average duration of 8.8 h from 30.5°N to 60°N and 7.2 h from 30.5°S to 60°S. This is in contrast
with the AR duration results shown in Guan and Waliser (2015), where they found the longest durations
existed in the extratropical ocean basins at 16 h. This difference is most likely caused by several factors
included in the detection methods. First, they apply geometric constraints that restrict ARs to have a long
and narrow shape; second, the threshold used was the 85th percentile value of IVT, which is much lower than
750 kg m�1 s�1 used in this study, resulting in significant differences in duration.

3.4. Global IVT-CONNECT Object Genesis and Termination Locations

The genesis and termination locations of each IVT-CONNECT object are shown in Figures 2c and 2d. For
visualization purposes these locations are displayed rounded to the nearest one degree. Several distinct
regions appear as the main genesis locations for the objects with the majority appearing near ~10°N
or 30°N or S. Midlatitude genesis regions are most likely associated with extratropical cyclones and/or
ARs, while tropical genesis regions are most likely associated with tropical cyclones, strong convection,
or monsoon patterns. The highest number of genesis points are in general upstream of regions with
the highest number of objects (Figure 2a), suggesting that most IVT-CONNECT objects are not stationary
and propagate along the large-scale atmospheric flow. The grid point with the highest number of object
genesis is over the Gulf of Tehuantepec, central America. This is most likely due to the topography of the
region as the Chivela Pass is a low-lying gap in the otherwise high topography of the Sierra Madre
Mountain ranges. Given the right large-scale atmospheric environment, strong gap-outflow winds can
be generated in this region and penetrate over the eastern Pacific (Schultz et al., 1997; Steenburgh
et al., 1998).

The termination locations show enhanced clusters of landfall locations on the west coast of continents
(Figure 2d). These regions of high terminations in most cases, and especially in the midlatitudes, appear
downstream from the highest concentrated genesis regions. Key locations include the western U.S., western
Europe, and southwest South America. Many studies have found the western U.S. (Rutz et al., 2014) and wes-
tern Europe (Lavers et al., 2012) to be regions with elevated IVT often associated with landfalling ARs during
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the cool season. Other studies have documented AR landfalls in the central Andes in South America (Vera
et al., 2002; Viale & Nuñez, 2011; Viale et al., 2013). North of 60°N and south of 60°S, fewer intense IVT objects
occur, although it should be noted that it is not zero. AR landfalls do occur in high latitudes, such as
Greenland and Antarctica, and are active area of research (Gorodetskaya et al., 2014; Neff et al., 2014);

Figure 3. (a) Total number of positive (+) AO minus negative (�) AO IVT objects. (b) Total number of positive (+ or westerly
phase) QBO minus negative (� or easterly phase) QBO IVT objects. (c) Total number of positive (+) PNA minus negative (�)
PNA IVT objects. Hatching indicates regions where the difference between the total number of objects categorized by
climate phase are statistically significant based on Fisher’s Exact Test with p-value < .01. Background gray shading
represents land masses.
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however, most ARs in these regions do not reach IVT values of 750 k m�1 s�1 due to the limited moisture
holding capacity of air at cooler temperature.

3.5. Global IVT-CONNECT Objects: Large-Scale Climate Variability Impacts

Using the IVT-CONNECT data set, groupings of objects can be easily performed using different phases of cli-
mate indicators. Figure 3a shows the difference in the number of objects that occurs between AO+ phase and
AO� phase (based on NOAA’s AO PC EOF1 PSL time series statistical index), where the difference in number
of objects in these two phases is displayed as colored contours. Positive values represent locations where
more IVT-CONNECT objects occurred in the positive phase than in the negative phase. In the North
Atlantic and North Pacific oceans, the IVT objects associated with the positive or negative AO phase show
a distinct shift in location and spatial orientation. Objects during a positive (negative) AO phase showed a
more northerly (southerly) track and were predominately north (south) of ~40°N. Many studies have indi-
cated how the AO can modulate the geopotential height field and thus shift the storm track (Lorenz, 1951;
Thompson & Wallace, 2000a, 2000b) in the NH midlatitudes. In addition, Jeong and Ho (2005) showed
enhanced penetration of cold Arctic air and associated storminess over the North Atlantic during the nega-
tive AO phase.

Recent studies have shown that the negative phase of QBO is generally driven by upward propagating tro-
pical waves, and the frequency of these upward propagating waves can increase the midlatitude waves from
the tropics, including teleconnections to the Madden Julian Oscillation, known to modulate extratropical
weather and climate (Hood, 2017; Son et al., 2017). Figure 3b compares the number of IVT-CONNECT objects
that occurred at each grid point during positive and negative QBO phases. In most locations, globally more
IVT-CONNECT objects occurred during the negative phase. This pattern is especially evident in the NH mid-
latitude storm tracks over the north Atlantic and Pacific oceans between 30°N and 50°N. These regions saw
significant increases in IVT-CONNECT objects during the negative QBO phase. Baggett et al. (2017) found
anomalous IVT values point toward the Pacific Northwest, which suggests higher (lower) likelihood of AR
landfalls during the �QBO (+QBO) as well.

Leathers et al. (1991) described the correlation between midtropospheric flows associated with each PNA
phase and the resulting precipitation over North America. It was shown that a more zonal flow associated
with the �PNA phase will result in the polar jet being pushed further north over the eastern U.S. Similar
results were found by Coleman and Rogers (2003), who found that the PNA index is strongly aligned to water
vapor transport in the Ohio Valley. This mechanism is highlighted in the spatial orientation and increased fre-
quency of IVT-CONNECT objects associated with a �PNA over the northeast U.S. (Figure 3c). The opposite of
this mechanism, +PNA, results in more development of IVT-CONNECT objects over the southeastern U.S. and
offshore of the western U.S. A significant shift in storm track over the north Pacific is also observed.

4. Conclusions

In this paper, CONNECT is applied to MERRA-V2 IVT data to provide a global climatological record of life cycle,
time, and space evolving IVT-CONNECT objects, including their genesis and termination regions. Each IVT-
CONNECT object is described by physical and environmental characteristic information. These data were
used to investigate geographical regions where IVT objects exist and large-scale climate variability is shown
to impact the dynamics of water vapor transport, spatial orientation, and frequency of occurrence.

Thirty-nine thousand, four hundred, and eighty IVT-CONNECT objects were detected and tracked over their
life cycle. IVT objects exist globally and show broad hemispheric patterns in five distinct regions. These results
agree with foundational work by Zhu and Newell (1994) that midlatitude transport of moisture tends to be
over the extratropical ocean basins, propagating eastward and oriented toward the poles. IVT object subsets
provide the ability to investigate different physical and environmental characteristics from three selected cli-
mate phenomena, AO, QBO, and PNA. Results show that IVT object frequency and location are modulated
depending on the phase of each phenomena. Through additional research and analysis of object frequency
and features, it may be possible to use this tool to determine causality by building predictive models that
accurately predict IVT object frequency based on these results.

CONNECT can be applied to any Earth science variable (i.e., sea surface temperature, sea level pressure, and
atmospheric vorticity) for object analysis. This tool will allow these future studies to investigate other modes
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of variability and climate features in the Earth system, some of which are shown in Table S1 in the appendix.
Further research will continue to investigate the connection between moisture transport processes and
large-scale climate dynamics, with the hope that insight can be gleaned about the causes of the mechanisms
found and patterns that exist. Exploration of the interconnectivity of Earth system phenomena and physical
and environmental features using CONNECT is unlimited.
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