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Updimensioning strategy derived 
from synthetic equiaxed grain 
structures for approximating 3D 
grain size distributions from 2D 
visualizations with 1D parameters
Kevin Gillespie1, Algirdas Baskys1,2, Ian Pong1 & Jean-Francois Croteau1

We generated synthetic equiaxed grain structures using computer graphics software to explore the 
relationship between various grain size determination methods and true three-dimensional (3D) 
grain diameters. Mirroring grain measurement techniques, the synthetic 3D grain structures are 
imaged as 2D micrographs which are measured to yield 1D grain size parameters. Synthetic grain 
structures provide data at a mass scale and permit exploration of both polished and fractured surface 
micrographs, revealing one-to-one correspondence between exposed 2D grain cross-sections and 
individual 3D grains. Analysis of this correspondence yielded a procedure to approximate 3D equiaxed 
grain size and volume distributions based on the mode of the 2D fractograph grain size distribution. 
The 3D approximation procedure is shown to be less susceptible to different imaging conditions that 
affect small, undiscernible grains compared to the standard planimetric and linear intercept methods, 
which by design also tend to underestimate the 3D grain diameter. The procedure requires larger 
sample sizes to lower variance and a deeper analysis which could become more practical with machine 
learning (ML) models for grain boundary segmentation, which synthetic grain structures can help train. 
This work lays the foundation for analyzing other grain distributions such as columnar and composite 
grains in similar depth.

No high-volume engineering material is “perfect” and completely defect free in its crystal structure. Grain 
boundaries, a type of lattice imperfection or defect, separate grains: regions of material with a shared 
crystallographic orientation. Processes introducing engineered defects such as grain boundaries into the lattice 
of a material are often desirable to achieve specific properties. For example, small grains lead to a higher yield 
stress, following the so-called Hall-Petch effect which is well applied in structural material analysis1,2. The 
generation and usage of synthetic grain structures permits a more detailed and easily scalable study of grain 
microstructure by connecting the 3D “ground truth” to the grain size measurement methods employed on 2D 
cross-sections. The current study leads us to propose an alternative method for measuring and approximating 
equiaxed grain size and volume distributions which could prove less susceptible to different experimental 
conditions and unpredictable imaging noise.

Grain size can be determined by a range of techniques and methods, from those that have been practiced 
by metallurgists for millennia to those that were invented in recent decades. Most studies of grain size are 
conducted stereologically by imaging a material surface with a microscope, which is when aberration, noise, 
surface unevenness, and other factors can introduce artifacts. The surface is often sectioned and polished (and 
chemically etched when appropriate). When a material is brittle and intergranular fracture is predominant, a 
surface may also be fractured to yield a fractograph. After the target features (e.g. grain boundaries) are identified 
and segmented, the American Society for Testing and Materials (ASTM) standard methods such as the Heyn 
line-intercept and Saltykov planimetric methods are commonly performed on these cross-sections to determine 
the grain size as a 1D diameter-equivalent parameter3. Some of these methods can yield grain size distributions, 
though average values are often sufficient and reported4.

Thus, grain size is routinely determined by viewing and measuring an ensemble of discernible, lower 
dimensional grain area projections. This dimension reduction of the problem comes with a loss of information 
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that is often necessary due to the difficulty and high expense of obtaining physical 3D grain information3. The 
further reduction of 2D cross-sections to a 1D diameter-equivalent parameter can be advantageous to establish 
relationships between grain features and materials properties. For example, the detection of fine-grain emergence 
during high temperature superplastic forming was sufficient evidence of dynamic recrystallization5,6.

However, for some applications and for advancing materials science, the insufficiency arising from the loss 
of information will become evident. Complications arise in applications where the grain sizes examined within 
and across different studies require better precision. Smaller grains and larger spread both approach a limit 
where microscope performance and image acquisition artifacts become a non-negligible factor in grain size 
determination, thus affecting the comparisons. For example, in Nb3Sn superconductors, very small grain sizes 
increase the maximum supercurrent carrying capability by a phenomenon called “flux-pinning”7. Differing 
determination methods and uncertain artifacts during image analysis would complicate the quantitative 
understanding of the effects of novel design parameters on the Nb3Sn wire performance. Analysis of synthetic 
grain structures suggests an alternative procedure for determining the true 3D grain size parameter that is more 
robust to these effects.

Synthetic modeling of grain structures
According to many experimental studies, grain volume distributions for equiaxed, single phase crystallographic 
materials are unimodal and right skewed, modeled by log-normal or gamma distributions8–10. Log-normal 
distributions model multiplicative effects such as volume in grain-growth kinetics, where larger volumes grow 
faster due to an expanding surface area. The gamma distribution description of the grain volume density function 
stems from the cell-growth model. If grain volumes are converted into a 1D equivalent diameter, the resulting 
distribution is less skewed. When surveying the literature, it is important to maintain a distinction between 1D, 
2D, and 3D parameters and whether they are lower-dimensional projections (e.g. cords, cross-section areas) or 
equivalent diameters, as these details influence the resulting density function for the parameter.

Synthetic modeling of grain structures ranges from packing standard shapes, to Voronoi tessellation 
techniques, to more expensive but realistic grain-growth kinetics models such as Montecarlo-Potts11. Voronoi 
tessellation involves the sampling of random nucleation sites and creating individual grains out of the regions 
of space closest to each of these sites. The widely accepted Voronoi tessellation methods for modeling grains 
can use a Euclidian distance metric (Poisson, Hardcore) or a more configurable power metric (Laguerre) which 
can account for more grain irregularity and larger grains12. We use a Poisson Voronoi tessellation13 to provide 
lower structural variance compared to other techniques, which allows us to draw broader conclusions about the 
fundamental properties of stereological methods.

The Poisson Voronoi technique creates a roughly symmetric distribution of 1D spherical equivalent 
diameters14, which corresponds with a distribution of 3D grain volumes that is approximately gamma15. Poisson 
Voronoi generation has been used to model material deformation14 and calculate physical constants such as 
thermal expansion coefficients16. The findings from this synthetic grain model could be leveraged to enhance 
more advanced Laguerre or Hardcore Voronoi models that use optimization procedures to capture the properties 
of specific materials.

The synthetic grain structures (Fig. 1) allow for rapid simulation and exploration of the impacts of imperfect 
vision and non-representative cross-sections on the ASTM standards measurement analysis techniques. Imaging, 
“perfect segmentation” (allowed by the synthetic nature of our data), and grain size determination methods are 
performed on the structures to reveal direct grain-correspondence between the imaged 2D grain cross-sections 
and 3D “ground truth” information about each grain. Although resource-intensive methods such as atom probe 
tomography and serial sectioning17 can acquire data about the microstructure’s 3D characteristics, synthetic 
grain structures can achieve this more efficiently and cheaply, providing unparalleled statistics with options to 
integrate and study other data acquisition artifacts. Additionally, the synthetic grain structures permit the direct 
comparison of methods that may otherwise be impossible to use on the same volume of a sample.

Two types of 2D cross-section, flat polish (Fig. 1a) and intergranular fractograph (Fig. 1b) are generated 
and analyzed to establish one-to-one correspondences between 1D grain parameters and 3D measurement 

Fig. 1. Three steps of the synthetic structure generation pipeline. (a) A synthetic grain structure in the 3D 
environment. (b) Fractograph image showing the geometry of a synthetic cross-section. (c) A colorized 
cross-section for image analysis. Each grain has a distinct color for unique identification and one-to-one 
correspondence with its 3D counterpart.
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data. Grain sizes from the projected cross-sections and the synthetic grain volume itself are compared by using 
equivalent “2D” and “3D” diameters, as illustrated in Fig. 2. The former is the diameter of the circle with an 
equivalent area to the cross-section projection of a grain. The latter is the diameter of the sphere with an equivalent 
volume to a 3D grain. Thus, both the grain areas and volumes can be measured in a manner which allows for a 
meaningful one-to-one correspondence between 2D and 3D grain measurements. The 3D diameter distribution 
is less skewed and more symmetric than the volume distribution due to the change of dimensionality, shown for 
α-iron, Al-2%Sn, and Ti-21 S β experimentally14,18–20.

Results
Grain size distributions
Grain size distributions are collected from a synthetic grain structure by taking a fractograph cross-section, 
flat polish cross-section, and the 3D grain structure itself and calculating all the equivalent diameters. The 
probability density distributions of the equivalent diameters can then be fitted and plotted.

Figure 3a shows the probability density plot of the 3D equivalent diameters alongside the distributions for 
flat polish and fractograph cross-sections. The distributions presented include measurements aggregated across 
several synthetic grain structures. The data from each synthetic grain structure is normalized to its own mean 
3D diameter such that the combined average is 1. Figure  3b contains the density plot of the corresponding 
normalized grain volumes, which has a characteristic right skewed gamma distribution15.

The 3D diameter distribution, which would typically be unobtainable by cross-section analyses of a real 
sample, is symmetric. This symmetry results from the Voronoi construction, but is seen in real samples, typically 
with a larger spread14. In contrast, both the flat polish and fractography distributions have a significant left skew. 
As will be demonstrated, this skew emerges from cross-sections that underestimate true 3D grain size and can 
unpredictably influence standard ASTM measurement techniques. The mode of the fractograph distribution 
corresponds closely with the mode of the 3D diameter distribution, while the flat polish mode is smaller. 

Fig. 2. Schematics of the equivalent 2D and 3D diameters used for comparisons between dimensions. (a) A 
cross-section projection of a grain on the left with a circle of equivalent area on the right. The diameter of this 
equivalent area circle is the 2D diameter. (b) Similarly, an individual 3D grain is shown on the left with an 
equivalent volume sphere on the right. The diameter of this equivalent volume sphere is the 3D diameter.
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Additionally, the upper bound of the fractograph distribution’s domain is close to the upper bound of the 3D 
diameter distribution.

The existence of 2D diameters that approach 0 can be explained by small, barely exposed grains that are 
mostly “buried” by the surrounding grains in the projection. These small 2D diameters may not be visible in 
practice due to resolution limitations and boundary labels, but uncertainty surrounding the size of this effect 
could contribute to “imperfect vision” of grain cross-sections in practice.

Figure  4 shows a set of complementary fractograph and flat polish samples. When creating a flat polish 
surface on a given plane of material, there are often certain grain projections present that would have been 
removed had there instead been a brittle fracture along the same plane. In the complementary fractograph, the 
absence of these grain projections results in the grains immediately underneath being unobscured, enlarging 
their projection areas.

Figure 4b and d show the change in grain projection areas for this region between the fractograph and flat 
polish samples. Grain 1a is larger than grain 1b, and the absence of certain grains that were obscuring grain 
1a can be seen around the area of grain 1b. This difference in the two samples illustrates how the fractograph 
distribution realistically has a wider domain and larger mode. Grains 2a and 2b are two different grains; they 
represent the result of an opposite effect. In this case, that flat polish grain projection 2b (removed in the 
fractograph, revealing the grains underneath) has a larger area than the revealed grain projection 2a in the 
fractograph. However, grain 2b can also be seen to be obscuring two grains to either side, which are larger in the 
fractograph cross-section.

The fractograph distribution in Fig.  3a contains measurements of larger grain projections that are now 
revealed (e.g. grain 1a in Fig. 4a) due to being unobscured by the removal of surrounding, often smaller (in 
projected cross-section), grains. This unobscuring implies a better match between the fractograph grain 

Fig. 4. The same surface subsection imaged in four different ways. (a) A realistic fractograph rendering of 
the surface. (b) The colored 2D projections of the fractograph surface. (c) A flat polish rendering of the same 
subsection. (d) The 2D projections of these grains for the flat polish surface.

 

Fig. 3. (a) Grain size distributions for a synthetic 3D grain structure, polished surface, and fractured surface. 
The 3D grain probability densities were based on 89,787 3D grains, while the fractograph and flat polish 
distributions were based on 12,534 and 10,461 2D grains, respectively. (b) The normalized volume distribution 
of the same 3D grains, fit by a gamma distribution (α = 5.93).
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diameter distribution and the 3D grain size distribution among these larger diameters. Correspondingly, the 
fractograph distribution to the right of its mode aligns more closely with the 3D grain size distribution than its 
flat polish counterpart.

Within each bin from the 3D diameter distribution in Fig. 3, the correspondence of each grain to its projected 
2D diameter value is known. The bin’s 2D diameter distribution can be heat-plotted along a horizontal slice 
which, when combined with the grain data from other bins, yields a “heat map” (Fig. 5). Summing all of the 
horizontal slices of the heat plot in Fig. 5 results in Fig. 3a. Thus, Fig. 5a and b demonstrate the discrepancy 
between true 3D grain size and the apparent 2D grain size from 2D projection methods for flat polish and 
fractograph surfaces, respectively.

As indicated by Fig. 5, the full picture is complex. Individual 2D grain projections can underestimate, be 
equivalent to, or overestimate the true 3D volume regardless of their relative size in the probability density 
function or the imaging method. Crucially, one can observe that the “hottest” (highest frequency) area in the 
fractograph heat map aligns better with the equivalence line compared to the flat polish heatmap. The fractograph 
distribution centers closely on the actual 3D volume across all sizes across the equivalence line. The demonstrated 
correspondence between the fractograph 2D diameter distribution and the 3D diameter distribution suggests 
a measurement procedure to approximate the 3D grain size distribution from 2D fractograph cross-sections.

Procedure to approximate 3D grain size
The following procedure assumes equiaxed grain structure and an approximately symmetric distribution of 3D 
grain sizes. We define the distribution of equivalent diameters from a grain cross-section to be p2D (d) and the 
distribution of equivalent diameters for the 3D structure to be p3D (d). The Eq. 

 
−
d3D = kmax

d
p2D (d) (1)

states that the mean 3D equivalent diameter, 
−
d3D, is equal to the mode of p2D (d) multiplied by a constant factor 

k.
The constant factor is determined based on the type of cross-section, flat polish or fractograph, and by the 

shape of the grains in the structure. For a flat polish surface, as seen in Fig. 3a, k < 1. For a fractograph surface, 
since grain cross-sections are less obscured, k ≈ 1. Thus,

 
−
d3D ≈ max

d
p2D,fractograph (d) (2)

Fig. 5. Joint frequency density plots, on the same color scale, derived from one-to-one grain correspondence 
relating 2D and 3D equivalent diameters for individual grains. The diagonal yellow solid line indicates 
equivalent 2D and 3D diameters. Grains to the left of the equivalence line are underestimated by their 2D 
diameter, while those to the right are overestimated. For individual grains in both fractograph and polished 
cross-sections, measurements can range from large underestimation to slight overestimation of the actual 
3D grain sizes. (a) Flat polish. (b) Fractograph, where regions i and ii contain grains near and far from the 
equivalence line, respectively. Regions K, T, and G are used for discussion.
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holds for a fractograph cross-section. This approximation of the mean 3D diameter, 
−
d3D, is shown as the peak 

of p3D,approx (d)in Fig. 6a.
The data required to characterize p2D (d) to approximate 

−
d3D is more detailed than what is traditionally 

collected using the ASTM standard methods. We are assuming that the 2D equivalent grain sizes of the individual 
grains in the image can be calculated with the assistance of image analysis or advanced segmentation models. 
We will demonstrate that, while requiring more data to lower the variance of the measurement, this new method 
could prove more robust to differing imaging conditions that obscure small grains by eliminating reliance on 
smaller grain projections.

Approximating the equivalent diameter distribution
For estimating the spread of the 3D grain size distribution in Fig. 6a, we assume the largest grain size in the 
2D distribution sample D2D corresponds closely with the largest 3D grain in the distribution. This largest 
grain size value can be used to approximate the spread, or standard deviation, of the grain size distribution. As 
demonstrated in Fig. 6a, given that the 3D distribution is assumed normal, the spread is approximated according 
to the following equation:

 
s3D ≈ d2Dmax −

−
d3D

logn
 (3)

Here, s is the estimated spread of the 3D distribution, d2Dmax is the largest observed equivalent diameter of the 
2D distribution, 

−
d3D is the result from Eq. 1, and logn is the order of magnitude for the number of grain cross-

sections used.
This approximation is based on that, in a normal distribution, the probability of sampling a larger value gets 

exponentially smaller as the value gets further from the mean. For a sample of n = 1000 grains, log (n) = 3 
implies that the largest measured diameter (d2Dmax) is expected to be 3 standard deviations from the mean 
(
−
d3D). This roughly corresponds to the 0.27% chance that a random 3D grain diameter is 3s3D greater than 

−
d3D. Thus, with n = 1000, one might expect 2–3 grains to be 3 standard deviations away, so it is reasonably 
safe to use d2Dmax. This expectation becomes less reasonable as sample size decreases, in which case mirroring 
p2D, fractograph (d) about its mode using Eq. 5.2 and taking the standard deviation (making use of more grain 
projection samples) is another option.

Combining the results from Eqs. 2 and 3, we can derive the approximation of the probability density function 
for the 3D equivalent diameter distribution, represented by the random variable D3D, approx:

 
P (D3D, approx = d) = p3D,approx (d) ∼ N


−
d3D,

d2Dmax −
−
d3D

logn


 (4)

Fig. 6. (a) Approximated and actual 3D grain size distributions alongside the 2D fractograph distribution. 
The bins of the fractograph grains represent the sample D2D. The approximated 3D grain size distribution of 
a synthetic data sample was derived from its 2D fractograph distribution of equivalent diameters using 15,464 
grains and kernel density estimation. (b) Three approximations of the grain volume distribution, varying the 
order of approximation (A), conversion to 3D volume (C), and mirroring of the grain distribution across the 
mode (M).
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where N  is the normal distribution.

Approximating grain volume distributions
Methods to approximate the grain volume distribution from a lower dimensional cross-section can also be 
derived based on the previous results. These methods consist of three operations. Approximating (A) is applying 
a curve-fit to the present data. Conversion (C) turns 3D equivalent diameters into a volume measurement. 
Mirroring (M) takes the grain diameters to the right of the peak in the sample D2D and mirrors them across 
the mode value 

−
d3D, using Eq. 5.2. This operation, good for lower grain sample sizes, relies on more points and 

constructs an approximate, symmetric histogram.

 
D2D,half =

{
di ∈ D2D|di ≥

−
d3D

}
 (5.1)

 
D2D, mirrored = D2D,half ∪

{
2
−
d3D − di|di ∈ D2D,half

}
 (5.2)

The first method of Fig. 6b in red (A, C) approximates the blue (3D grain) curve as in Fig. 6a and Eq. 4 before 
applying the following conversion into volume:

 
V =

π D3D, approx
3

6
 (6)

The quality of this approach relies on the approximation of the equivalent diameter distribution. The second 
method (M, A, C) constructs the modified sample D2D, mirrored by Eq.  5.2 and fits a normal (symmetric) 
distribution, before transforming the distribution to grain volume using Eq. 6. Finally, the third method (M, C, 
A) applies the mirroring operation, converts each individual grain in D2D, mirrored to a grain volume, and then 
fits the gamma distribution to the grain volumes using statistical software21.

Here, the first (A, C) and second (M, A, C) methods line up the approximation’s peak well since the volume 
conversion takes place after the approximation. The third method (M, C, A) suffers from a “stretch” effect during 
conversion to volume. This method misaligns the peak of the volume distribution but characterizes the spread 
better than the second method. When approximating the up-dimensional distribution, this “stretch” effect, 
decided by the sequence of operations, should be considered.

Robustness of the approximation method to imperfect vision
Ideally, image analysis would have “perfect vision” free of artifacts and resolution limitation such that grain 
boundaries can be accurately delineated. However, in practice, there may be a limit to the number of grains 
that can be imaged with sufficient resolution for grain boundary identification22. In this section, we model this 
imperfect vision and segmentation by assuming that they disproportionately affect smaller grain projections in 
the image.

In our model, we start with a baseline perfect vision by considering every grain in the cross-section and then 
systematically increase the degree of imperfect vision by raising a minimum grain area threshold for each grain 
to be considered. This is also analogous to having different microscope settings where the same area of interest 
is imaged with a lower pixel count or a less well aligned electron beam. Across varying degrees of this imperfect 
vision, we ran the 3D grain size approximation, Heyn linear intercept, and Saltykov planimetric methods on 
numerous samples, seen in Fig. 7.

For a given set of imaging conditions, it is difficult to know precisely what amount of “imperfection” exists. 
Consider Fig. 7 where, as small grains are disproportionately impacted, the imperfection level has a considerable 
impact on the conventional standard measurement methods. Both ASTM standard methods are also shown 
to underestimate 

−
d3D due to the heavy left tail of p2D (d); interestingly, they also approach 

−
d3D by an uncertain 

amount related to the degree of imperfect vision. By contrast, the mode approximation method does not rely on 
small grains and is much more robust across a range of imperfection levels.

This robustness falters once the minimum area threshold gets close to the mean itself, but such a case would 
be assuming a microscopist who cannot image an average grain in focus and may therefore be duly ignored. 
Thus, the most practical range shown in Fig.  7 is roughly between 0 and 8%, as these assume well imaged 
cross-sections and contain minimal effects from the effective distribution of ignored grains’ projections to the 
remaining grains.

The 
−
d3D approximation using KDE has a higher standard deviation than the other methods. However, 

this is expected since the measurement method relies on the mode, which can be more susceptible to random 
sampling when less data is used. To counteract this, the precision of the 3D grain diameter approximation can 
be increased by increasing the number of grains sampled, N . Machine learning (ML) models that automatically 
label fractograph grain boundaries could play a large role in collecting enough data to allow the standard error 
of the 3D approximation method to be comparable to the standard methods.

Discussion
Theoretical basis for the approximation procedure
The 3D grain size approximation method outlined in Eqs. 2, 3 and 4 can be explained by considering the random 
sampling of cross-sections from a single, equiaxed, and convex grain. Keeping the same orientation, there is a 
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single plane that produces the cross-section with the maximum area, likely close to the middle of the grain. On 
either side of this maximizing plane, all cross-sectional area projections are smaller.

Thus, while randomly sampling the 2D equivalent diameters of a single, equiaxed grain at a given orientation 
like in Fig. 8, one would expect a maximum possible value corresponding closely to the 3D equivalent diameter 
of the grain, illustrated with cross-section A. Any other cross-sectional 2D diameters could range from 0 to this 
maximum 2D equivalent diameter, such as B. This is analogous to taking the equivalent diameters of spherical 
cross-section from a sphere, which range from 0 to the sphere’s diameter at the center. Notably, the maximum 2D 
diameter of an irregularly shaped (but almost always convex) equiaxed grain could result in a value slightly larger 
than the equivalent 3D diameter. Drawing 1D lines on the projected areas of imaged 2D grains and plotting the 
cord length distribution results in a similar underestimation effect but at this lower dimension.

Now, consider an entire distribution of packed equiaxed grains. When a cross-sectional surface is exposed, 
the total area of all grains imaged is the same, regardless of whether a polished or fractured surface is used. 
However, the distribution and number of projected areas are different in the two cases, and hence the 2D 
diameter distributions also differ. In both surface exposures, the resulting areas for each grain are typically 
underestimations of their actual size, but more so for a flat polish cut, as seen in Fig. 3a. A less obscured grain 
from a fractograph, as shown in Fig.  4, becomes akin to viewing an individual grain from above. Thus, the 
resulting 2D equivalent diameter becomes closer to the upper limit: the grain’s actual 3D equivalent diameter. 
This intuition corresponds with the higher frequency densities for the fractograph heatmap near the equivalence 
line in Fig. 5b.

The result is that the aggregate distribution of the fractograph corresponds closely with the shape of the 
true p3D (d) to the right of its peak (i.e. grains larger than the mode). As visualized in Fig.  5b, the value of 
p2D, fractograph (d) represents the projections of individual 3D grains that either are roughly equal to the 
equivalence line and therefore a good estimate of the true 3D diameter (region i), or are not (region ii). 

Fig. 7. 3D grain size approximation, Heyn linear intercept, and Saltykov planimetric methods plotted across 
levels of imperfect imaging conditions. Imperfect imaging conditions are modeled by ignoring grains below 
a certain area projection threshold while performing the procedures as they otherwise would be performed. 
The area threshold is taken as a percentage of the max grain cross-section area, which corresponds to a grain 
roughly 1.6x the average 3D grain size. The 3D approximation uses the mode of the fractograph distribution 
based on kernel density estimation (KDE). Each set of measurements along the x-axis represents 250 random 
samplings of cross-sections including roughly 180 grains each. The error bars show standard deviations. For 
the 3D approximation method, the ignored grains are not included in the 2D projection distribution prior to 
performing it. For both ASTM standard methods, the small grain area is effectively distributed amongst all 
the remaining grains due to not counting them (see Methods, Implementing Standard Grain Size Analysis 
Techniques, Eqs. 7–10).
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These projections can be divided into distinct regions. Within region G, where 
−
d3D ≤ d ≤ d3D,max, the case 

where 2D equivalent diameters are a good 3D estimate dominates and should be used. In region K, where 
d < d3D,min, all grain projections underestimate the actual 3D grain and should not be used. Region T, where 
d3D,min ≤ d ≤

−
d3D, marks the transition between regions G and K where there is an increased prevalence of 

2D diameters that underestimate the true 3D grain size; its use is not recommended. Within p2D, fractograph (d)
, the 2D equivalent diameters in regions K and T lose correspondence with p3D (d) and instead constitute the 
significant left tail of the distribution.

Therefore, the “peak,” or statistical mode, of the fractograph distribution corresponds closely to the actual 
mean grain size of the 3D grain size distribution, explaining the approximation of 

−
d3D in Eq. 1. Likewise, the 

maximum cross-sectional area sampled in p2D, fractograph (d) corresponds closely with the maximum grain size 
in the distribution of 3D grains, justifying the assumption used in Eq. 3.

In essence, an “up-dimensional” approximation of 3D grain size from a 2D cross-section is possible because: 
(1) equiaxed grains are mostly convex and roughly symmetric, (2) each sampled grain cross-section has an upper 
limit set by its 3D grain size, and (3) there exists a mode value in the underlying distributionp3D (d). These reasons 
are agnostic to the Voronoi tessellation method or grain model used, although the spread of p3D (d) can reduce 
the factor k in Eq. 1. Together, these underpinnings suggest a stable approximation of the average 3D grain size, 
−
d3D. Upon considering rough symmetry in 3D equivalent diameter distributions14, the 2D diameters d2D >

−
d3D 

such as d2D,max can be used to approximate p3D (d) itself, which can be converted to a gamma distribution of 
grain volume.

Fig. 8. A single convex grain with two labeled cross-sections. Certain cross-sections such as A can produce 
more representative equivalent diameters compared to underestimating cross-sections such as B for a single 
given grain. The maximal cross-section implies that underestimations of grains of this size interfere with 
information provided by smaller grains more so than larger grains.

 

Scientific Reports |        (2024) 14:23007 9| https://doi.org/10.1038/s41598-024-73090-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Uncertain effects of 2D artifacts
Various factors influence the relationship between the standard grain size measurements based on metallography 
images and the “ground truth” 3D size of grains. These factors can also influence the relationships and 
comparability of methodologies across experimental conditions. Most prominently, small grains are likely to be 
missed due to factors such as magnification, shadowing, variations in depth, resolution, and image noise.

The resolution will determine the threshold at which small grains will be ignored, or the “imperfection 
level” from Fig. 7. Variations in depth in fractograph images can also result in “shadows” that obscure smaller, 
deeper grains. Magnification controls to what extent these factors affect measurements. At one extreme, the 
magnification may be too low to see any grains clearly. At the other extreme, smaller grains may become revealed, 
but the number of larger grains in the image is also reduced, skewing measurements in the opposite direction.

The amount of bias caused by this incomplete information will remain difficult to determine in practice. 
However, the mode of the 2D grain size distribution stays intact regardless of these factors, provided only 
relatively smaller grains are affected such that determination of the mode of the distribution is not impacted. 
Thus, the proposed procedure has the advantages of being more “forgiving” on magnification requirements and 
of yielding a more consistent measurement across experimental conditions, as shown by Fig. 7, as the grain size 
distribution estimation does not depend strongly on the smaller grains.

Use in additional cases
As mentioned earlier in Eq. 1, the projected areas can overestimate the true equivalent 3D diameter by a certain 
factor k dependent on its shape. As grains become more spherical, k approaches 1, but they also lose the ability 
to fully pack Euclidian space. The factor k can vary based on the type of surface and general shape of the grains 
along a given surface plane. For an equiaxed, unimodal distribution of grain sizes on a fractography surface as 
studied in this work, k ≈ 1.

The results have implications for flat polish surface as well. The 3D approximation method, when applied to 
a fractograph, results in a 1D grain size parameter that is robust to imaging noise (Fig. 7) and approximates 

−
d3D 

(Fig. 6a). When the method is applied to a flat polish distribution, the resulting grain size parameter would have 
a smaller value of k and require an offset adjustment to correct for the underestimation of the true 3D grain size 
(see Fig. 5a).

With regard to more complex grain structures that are multi-phase, bimodal, or not equiaxed, one could 
subdivide the analysis of grains based on the identified phase and direction of the stereological plane, allowing 
for an analysis to be performed on the separate phases and directions to yield a full picture of the structure. This 
is similar to the methods suggested by the ASTM standards when applying the traditional standard methods to 
more complex grain microstructures.

Conclusion
The synthetic generation of grain structures using a Voronoi construction permits a massive collection of 
data with more complete, 3D information than practically attainable. Such data facilitate an assessment and 
analysis of commonly used ASTM procedures, shedding light on their discrepancy with the true 3D distribution 
parameters, especially due to over-consideration of smaller grain area projections. Additionally, imperfect vision 
and segmentation stemming from resolution and imaging methodology can introduce an unpredictable error 
affecting these stereological techniques. This is not of practical importance when grain size tolerances for desired 
properties are large, but these biases could affect comparisons of different samples that require more refined 
analysis. Using synthetic data, it is possible to model the “ground truth” against which to compare and quantify 
the differences due to image acquisition and analysis artifacts.

By comparing the distribution of 2D equivalent diameters in a cross-section with the 3D equivalent diameters 
of the entire structure, we can show that the distribution of fractograph diameters corresponds closely to that 
of the 3D diameters for grain sizes greater than the mode. By contrast, smaller 2D grain diameters can just as 
easily reflect either a similar 3D grain diameter or a cross-section that underestimates a much larger grain. Since 
there is a decisive upper limit for the cross-sectional area that can be extracted from the lower dimensional 2D 
projection of a grain, this correspondence between the 2D and 3D grain diameter distributions above the mode 
value allowed the authors of this work to propose a new grain size and volume distribution approximation 
procedure that holds particularly well for fractographs due to the un-obscuring of grain areas that occurs during 
a fracture.

Within this procedure, the statistical mode of the equivalent 2D diameter is used. Provided that enough 
grains are sampled to reveal a mode value and a maximizing cross-section of one of the largest grains, the lack of 
dependence on the left tail (smaller grain projections) of the 2D grain distribution makes the method robust to 
the uncertain bias resulting from imperfect and varying imaging conditions. Thus, the spread of the distribution 
can be approximated using the estimated 

−
d3D and the maximum 2D grain diameter that is sampled, d2D,max.

This procedure for approximating grain size distributions does not require changes to existing image 
acquisition and segmentation techniques, but it does require a more substantial analysis compared to the 
planimetric and line intercept methods. In exchange, it delivers an “up-dimensional” approximation previously 
not considered. This is particularly relevant in situations where detailed comparisons of material properties 
beyond what can be obtained from ASTM standards is important, and when grain size interpretation consistency 
across experiments and research groups is critical.

In this work, the cases of equiaxed grains for fractography and flat polish surfaces were considered. For future 
work, the Voronoi construction can be adjusted to model other types of grains or specific materials by using 
different tessellation techniques (e.g. Hardcore, Laguerre) which provide a 3D ground truth reference. Another 
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potent spinoff application using the realistic synthetic grain structure data is for training artificial intelligence 
/ machine learning (AI-ML) models to automatically perform instance segmentation (grain labeling) on 
fractograph or polished cross-sections. The fact that any images thus generated come with the ground truth can 
dramatically reduce – if not eliminate – human-induced or acquisition-related labeling bias and imperfections. 
These structures can be generated and fine-tuned to specific cases in huge numbers to provide training data, 
opening a potentially transformative path to expediting AI-ML development in fundamental materials science.

Methods
Generating synthetic grain structures
We performed a Poisson Voronoi tessellation using the “cell fracture” add-on in the computer graphics software 
application Blender23. Starting with a rectangular prism, this add-on takes a random distribution of points and 
subdivides the object into smaller cells via a Voronoi tessellation24. This process yields a random, simulated grain 
structure (Fig. 1a) where the 3D grain diameters are symmetrically distributed and the grains are equiaxed.

Each grain is colorized with a unique color value and zero shading (Fig. 1c) such that every grain can be 
matched with its projection in a 2D cross-section. Random colorization yields a convenient unique identifier 
that ensures each grain can be matched to a cross-section for one-to-one comparisons. Prior to the taking of 
simulated cross-sections, the 3D information of each grain is saved and linked to its unique identifier.

Synthetic cross-sections
In this study, two types of 2D cross-sections (“intergranular fracture surface” and “polished surface”) are 
generated and analyzed for one-to-one grain parameter comparisons.

Fractograph cross-sections are generated by iterating over the grains in the synthetic structure and deleting 
grains that fall outside a specified range or function. The function applied can yield both a planar fracture as 
well as other practical fracture landscapes such as image tilts and larger variations in depth. Planar fracture 
cross-sections are relevant to brittle materials that fracture in an intergranular mode, such as the transverse cross 
sectional fracture of Nb3Sn within a uniform filament25, whereas an undulating fracture landscape can simulate 
the longitudinal fractographs of Nb3Sn filaments26. In this paper, we focused on planar fracture cross sections.

Polished surface cross-sections are simulated by using a flat bisection cut across the grain structure along a 
plane. The typical physical preparation of a flat polished surface involves grinding and fine polishing to expose 
an artifact-free microstructure for examination and etching if necessary to reveal the grains for microscopy. This 
serves to remove uneven heights and a damage layer at the surface of the sample. Creating a polished surface is 
the most common metallographic sample preparation; it is correspondingly the assumed cross-section type for 
most standard methods of measuring grain size.

Data about the 2D cross-sections such as area, diameter, eccentricity, and perimeter are extracted using the 
scikit-image27 and scipy21 libraries. This data then needs to be scaled to match the scale of the grain structure in 
3D space. This scaling ratio can be determined for any given virtual magnification by rendering a simple object 
such as a rectangle of known length (in the arbitrary length units in the 3D environment). The pixel length of the 
object can then be measured, and a pixels-per-length unit ratio can be determined. The ratio is dependent on the 
camera’s distance from the surface, resolution, and aspect ratio of the render within the simulated environment.

One-to-one grain matching
The colored cross-section is processed to extract information about each individual grain projection, including 
its color, area, perimeter, and bounding box. Knowledge of the bounding box allows for any future processing to 
ignore grains that are cut off on the edge of the frame; something which must be done to avoid underestimating 
the areas of any 2D grain projections. The color acts as a unique identifier so that information about each grain’s 
2D projected cross-section can be matched with its 3D counterpart in the synthetic model. The result is a one-
to-one correspondence of individual grains in the cross-section with data about their shape and size in the full 
3D structure.

To facilitate a properly scaled comparison, the one-to-one correspondence is used to calculate an equivalent 
2D and 3D diameter for each individual grain shown in the cross-section. These refer to the circular and spherical 
equivalent diameters, as demonstrated in Fig. 2. For example, a grain with a cross-sectional surface area of π has 
an equivalent circular diameter of 2 (referred to as the 2D diameter). Similarly, a grain with an actual volume 
of 43π  would have an equivalent spherical diameter of 2 (referred to as the 3D diameter). These equivalent 
diameters are calculated from the areas and volumes when combining the data.

Implementing standard grain size analysis techniques
Two grain size analysis techniques from the ASTM standards3 were implemented: the Heyn line-intercept 
procedure and the Saltykov planimetric method. These are methods that are used with cross-section images of 
grains to extract information regarding the average grain size in the form of 1D grain size parameters.

The line intercept is a 1D technique that yields an average diameter by, in one form, drawing many lines across 
a cross section and counting the number of grains intercepted28. The lines should be as long as possible and vary 
in rotation; the end grains that the line does not pass fully through are counted as half a grain. Equation 7 below 
yields the average lineal intercept l by adding the lengths, Li, of all n drawn lines and dividing them by the 
number of intercepted grains NI . Equation 8 yields Nl, the average number of intercepts per unit length of test 
line.

 

−
l=

∑
n
i=1Li

NI
 (7)
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Nl =

1
−
l

 (8)

The linear intercept method for determining grain size is implemented using scikit-image27. The implementation 
takes a grain image where each grain has a unique color identifier, as shown in structure Fig. 1c, and draws a 
specified number of lines, keeping track of total length and the number of unique grains encountered. Obtuse 
grains that partially wrap another grain, although not occurring in the structures used, would not be double 
counted. The function to determine the mean linear intercept can run thousands of times per grain projection, 
collecting an accurate and consistent value. Finally, the result is scaled back from pixels to blender units for 
comparison to 3D values.

The planimetric procedure consists of drawing a known area over the cross-section and counting the number 
of grains it inscribes, where grains intercepted partially at the boundary are counted as a half grain29. Rather than 
using a known circular area, Saltykov proposed using a rectangular area in order to reduce the bias in the counting 
procedure30. Thus, Eq. 9 yields the number of encapsulated grains, NA, for a rectangular area. Nintercepted ignores 

the corner grains, which are instead counted as 14  a grain each, resulting in adding 1. Equation 10 yields the 

average area of each grain, 
−
A, given NA and the known area A. A 1D diameter parameter is obtained by d =

√
−
A.

 NA = NInside + 0.5Nintercepted + 1 (9)

 

−
A=

A

NA
 (10)

The Saltykov planimetric method is implemented in Python with scikit-image to draw a rectangle on the image 
and count the number of grain projections contained within it based on Eq. 9.

Calculating the mode 2D diameter
Binning method
The sampled 2D equivalent diameters, D2D, from the grain cross-sections can be binned into a histogram. For a 
fractograph cross-section, the middle of the peak binning region can then be taken as an estimate of 

−
d3D. Using 

a binning method by itself is an ideal strategy when the sample size of cross-section grains is high enough to 
reveal a clear peak in the distribution.

However, the choice of binning scheme can unpredictably affect results, especially for small sample sizes. It 
is important to understand the effects that one’s binning method will have on results: bins that are too large will 
offset trends by hiding important details (“low pass”), while bins that are too small will make measurements 
far more susceptible to random noise (“high pass”). Additionally, there is a relationship between the domain 
of p2D (d) and the number of bins that can offset results. To alleviate such issues, one possible method is to run 
multiple analyses with different bin sizes and average each of their 

−
d3D approximations from Eq. 1.

Median filter
A median filter can be applied to the sample D2D before taking the mode of the binned equivalent diameters 
in scenarios where the sample size is not high enough to decisively determine a peak. The result is an adjusted 
binned distribution where the value in each new bin is set equal to the median of the region within a certain 
window size of each old bin. This operation effectively smooths the distribution and can help prevent the 
selection of an underestimating approximated grain size which can arise especially at low sample sizes due to the 
heavy left tail as shown in p2D (d) in Figs. 3a and 6.

Kernel density estimation (KDE)
Another method for finding a peak value is by using a continuous approximation of p2D (d), such as Scott kernel 
density estimation31 as used in Fig. 7. For this method, an appropriate kernel size needs to be selected so that the 
density estimation does not over-fit the sampled data. The kernel density estimation built into libraries such as 
Seaborn32 and Matplotlib33 may also be used.

Once a smooth approximation of p2D (d) has been obtained, its mode can be taken as the approximation 
of 

−
d3D. The KDE method performs best when the sample size is high enough to see either a clear distribution 

or slight variations about an otherwise observable shape. If there are large spikes in the lower grain sizes of the 
distribution, other options such as the median filter or collecting more samples may be more ideal.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding au-
thor on reasonable request.
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