Title

Study of CP-violating asymmetries in $B 0 \rightarrow \pi+\pi-, K+\pi-$ decays

Permalink

https://escholarship.org/uc/item/5s21h7ww

Journal

Physical Review D, 65(5)
ISSN
2470-0010

Authors

Aubert, B
Boutigny, D
Gaillard, J-M
et al.

Publication Date

2002-03-01
DOI
10.1103/physrevd.65.051502

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Study of $\boldsymbol{C P}$-violating asymmetries in $B^{0} \rightarrow \pi^{+} \pi^{-}, K^{+} \pi^{-}$decays

B. Aubert, ${ }^{1}$ D. Boutigny, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees,,${ }^{1}$ P. Robbe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ G. P. Chen, ${ }^{3}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A. W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ A. R. Clark, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A. V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R. W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ J. F. Kral, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ A. Perazzo, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ A. Romosan, ${ }^{5}$ M. T. Ronan, ${ }^{5}$ V. G. Shelkov, ${ }^{5}$ A. V. Telnov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ P. G. Bright-Thomas, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ D. J. Knowles, ${ }^{6}$ S. W. O’Neale, ${ }^{6}$ R. C. Penny, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$ T. Deppermann, ${ }^{7}$ K. Goetzen, ${ }^{7}$ H. Koch, ${ }^{7}$ M. Kunze, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ K. Peters, ${ }^{7}$ H. Schmuecker, ${ }^{7}$ M. Steinke, ${ }^{7}$ J. C. Andress, ${ }^{8}$ N. R. Barlow, ${ }^{8}$ W. Bhimji, ${ }^{8}$ N. Chevalier, ${ }^{8}$ P. J. Clark, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ N. Dyce,,${ }^{8}$ B. Foster, ${ }^{8}$ C. Mackay, ${ }^{8}$ D. Wallom, ${ }^{8}$ F. F. Wilson, ${ }^{8}$ K. Abe, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ S. Jolly, ${ }^{10}$ A. K. McKemey, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ D. A. Bukin, ${ }^{11}$ A. R. Buzykaev, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ A. A. Korol, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ A. A. Salnikov, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ V. I. Telnov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Chao, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ S. McMahon, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ K. Arisaka, ${ }^{13}$ C. Buchanan, ${ }^{13}$ S. Chun, ${ }^{13}$ D. B. MacFarlane,,${ }^{14}$ S. Prell, ${ }^{14}$ Sh. Rahatlou, ${ }^{14}$ G. Raven, ${ }^{14}$ V. Sharma, ${ }^{14}$ C. Campagnari, ${ }^{15}$ B. Dahmes, ${ }^{15}$ P. A. Hart, ${ }^{15}$ N. Kuznetsova, ${ }^{15}$ S. L. Levy, ${ }^{15}$ O. Long, ${ }^{15}$ A. Lu, ${ }^{15}$ J. D. Richman, ${ }^{15}$ W. Verkerke, ${ }^{15}$ M. Witherell, ${ }^{15}$ S. Yellin, ${ }^{15}$ J. Beringer, ${ }^{16}$ D. E. Dorfan, ${ }^{16}$ A. M. Eisner, ${ }^{16}$ A. A. Grillo, ${ }^{16}$ M. Grothe, ${ }^{16}$ C. A. Heusch, ${ }^{16}$ R. P. Johnson, ${ }^{16}$ W. S. Lockman, ${ }^{16}$ T. Pulliam, ${ }^{16}$ H. Sadrozinski, ${ }^{16}$ T. Schalk, ${ }^{16}$ R. E. Schmitz, ${ }^{16}$ B. A. Schumm, ${ }^{16}$ A. Seiden, ${ }^{16}$ M. Turri, ${ }^{16}$ W. Walkowiak, ${ }^{16}$ D. C. Williams, ${ }^{16}$ M. G. Wilson, ${ }^{16}$ E. Chen, ${ }^{17}$ G. P. Dubois-Felsmann, ${ }^{17}$ A. Dvoretskii, ${ }^{17}$ D. G. Hitlin, ${ }^{17}$ S. Metzler, ${ }^{17}$ J. Oyang, ${ }^{17}$ F. C. Porter, ${ }^{17}$ A. Ryd, ${ }^{17}$ A. Samuel, ${ }^{17}$ M. Weaver, ${ }^{17}$ S. Yang, ${ }^{17}$ R. Y. Zhu, ${ }^{17}$ S. Devmal, ${ }^{18}$ T. L. Geld, ${ }^{18}$ S. Jayatilleke, ${ }^{18}$ G. Mancinelli, ${ }^{18}$ B. T. Meadows, ${ }^{18}$ M. D. Sokoloff, ${ }^{18}$ T. Barillari, ${ }^{19}$ P. Bloom, ${ }^{19}$ M. O. Dima, ${ }^{19}$ S. Fahey, ${ }^{19}$ W. T. Ford, ${ }^{19}$ D. R. Johnson, ${ }^{19}$ U. Nauenberg, ${ }^{19}$ A. Olivas, ${ }^{19}$ P. Rankin, ${ }^{19}$ J. Roy, ${ }^{19}$ S. Sen, ${ }^{19}$ J. G. Smith, ${ }^{19}$ W. C. van Hoek, ${ }^{19}$ D. L. Wagner, ${ }^{19}$ J. Blouw, ${ }^{20}$ J. L. Harton, ${ }^{20}$ M. Krishnamurthy, ${ }^{20}$ A. Soffer, ${ }^{20}$ W. H. Toki, ${ }^{20}$ R. J. Wilson, ${ }^{20}$ J. Zhang, ${ }^{20}$ R. Aleksan, ${ }^{21}$ A. de Lesquen, ${ }^{21}$ S. Emery, ${ }^{21}$ A. Gaidot, ${ }^{21}$ S. F. Ganzhur, ${ }^{21}$ P.-F. Giraud, ${ }^{21}$ G. Hamel de Monchenault, ${ }^{21}$ W. Kozanecki, ${ }^{21}$ M. Langer, ${ }^{21}$ G. W. London, ${ }^{21}$ B. Mayer, ${ }^{21}$ B. Serfass, ${ }^{21}$ G. Vasseur, ${ }^{21}$ Ch. Yèche, ${ }^{21}$ M. Zito, ${ }^{21}$
T. Brandt, ${ }^{22}$ J. Brose, ${ }^{22}$ T. Colberg, ${ }^{22}$ M. Dickopp, ${ }^{22}$ R. S. Dubitzky, ${ }^{22}$ A. Hauke, ${ }^{22}$ E. Maly, ${ }^{22}$ R. Müller-Pfefferkorn, ${ }^{22}$ S. Otto, ${ }^{22}$ K. R. Schubert, ${ }^{22}$ R. Schwierz, ${ }^{22}$ B. Spaan, ${ }^{22}$ L. Wilden, ${ }^{22}$ D. Bernard, ${ }^{23}$ G. R. Bonneaud, ${ }^{23}$ F. Brochard, ${ }^{23}$ J. Cohen-Tanugi, ${ }^{23}$ S. Ferrag, ${ }^{23}$ E. Roussot, ${ }^{23}$ S. T'Jampens, ${ }^{23}$ Ch. Thiebaux, ${ }^{23}$ G. Vasileiadis, ${ }^{23}$ M. Verderi, ${ }^{23}$ A. Anjomshoaa, ${ }^{24}$ R. Bernet, ${ }^{24}$ A. Khan, ${ }^{24}$ D. Lavin, ${ }^{24}$ F. Muheim, ${ }^{24}$ S. Playfer, ${ }^{24}$ J. E. Swain, ${ }^{24}$ J. Tinslay, ${ }^{24}$ M. Falbo, ${ }^{25}$ C. Borean, ${ }^{26}$ C. Bozzi, ${ }^{26}$ S. Dittongo, ${ }^{26}$ L. Piemontese, ${ }^{26}$ E. Treadwell, ${ }^{27}$ F. Anulli, ${ }^{28, *}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ D. Falciai, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28, *}$ M. Piccolo ${ }^{28}{ }^{28}$ Y. Xie, ${ }^{28}$ A. Zallo, ${ }^{28}$ S. Bagnasco, ${ }^{29}$ A. Buzzo, ${ }^{29}$ R. Contri, ${ }^{29}$ G. Crosetti, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ F. C. Pastore, ${ }^{29}$ C. Patrignani, ${ }^{29}$ M. G. Pia, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi ${ }^{29}$ M. Morii, ${ }^{30}$ R. Bartoldus, ${ }^{31}$ R. Hamilton, ${ }^{31}$ U. Mallik, ${ }^{31}$ J. Cochran, ${ }^{32}$ H. B. Crawley, ${ }^{32}$ P.-A. Fischer, ${ }^{32}$ J. Lamsa, ${ }^{32}$ W. T. Meyer, ${ }^{32}$ E. I. Rosenberg, ${ }^{32}$ G. Grosdidier ${ }^{33}$ C. Hast, ${ }^{33}$ A. Höcker, ${ }^{33}$ H. M. Lacker, ${ }^{33}$ S. Laplace, ${ }^{33}$ V. Lepeltier, ${ }^{33}$ A. M. Lutz, ${ }^{33}$ S. Plaszczynski, ${ }^{33}$ M. H. Schune, ${ }^{33}$ S. Trincaz-Duvoid, ${ }^{33}$ G. Wormser, ${ }^{33}$ R. M. Bionta, ${ }^{34}$ V. Brigljević, ${ }^{34}$ D. J. Lange, ${ }^{34}$ M. Mugge, ${ }^{34}$ K. van Bibber, ${ }^{34}$ D. M. Wright, ${ }^{34}$ M. Carroll, ${ }^{35}$ J. R. Fry, ${ }^{35}$ E. Gabathuler, ${ }^{35}$ R. Gamet, ${ }^{35}$ M. George, ${ }^{35}$ M. Kay, ${ }^{35}$ D. J. Payne, ${ }^{35}$ R. J. Sloane, ${ }^{35}$ C. Touramanis, ${ }^{35}$ M. L. Aspinwall ${ }^{36}$ D. A. Bowerman, ${ }^{36}$ P. D. Dauncey, ${ }^{36}$ U. Egede, ${ }^{36}$ I. Eschrich, ${ }^{36}$ N. J. W. Gunawardane, ${ }^{36}$ J. A. Nash, ${ }^{36}$ P. Sanders, ${ }^{36}$ D. Smith, ${ }^{36}$ D. E. Azzopardi, ${ }^{37}$ J. J. Back, ${ }^{37}$ P. Dixon, ${ }^{37}$ P. F. Harrison, ${ }^{37}$ R. J. L. Potter, ${ }^{37}$ H. W. Shorthouse, ${ }^{37}$ P. Strother, ${ }^{37}$ P. B. Vidal, ${ }^{37}$ M. I. Williams, ${ }^{37}$ G. Cowan, ${ }^{38}$ S. George, ${ }^{38}$ M. G. Green, ${ }^{38}$ A. Kurup, ${ }^{38}$ C. E. Marker, ${ }^{38}$ P. McGrath, ${ }^{38}$ T. R. McMahon, ${ }^{38}$ S. Ricciardi, ${ }^{38}$ F. Salvatore, ${ }^{38}$ I. Scott, ${ }^{38}$ G. Vaitsas, ${ }^{38}$ D. Brown, ${ }^{39}$ C. L. Davis, ${ }^{39}$ J. Allison, ${ }^{40}$ R. J. Barlow, ${ }^{40}$ J. T. Boyd, ${ }^{40}$ A. C. Forti, ${ }^{40}$ J. Fullwood, ${ }^{40}$ F. Jackson, ${ }^{40}$ G. D. Lafferty, ${ }^{40}$ N. Savvas, ${ }^{40}$ E. T. Simopoulos, ${ }^{40}$ J. H. Weatherall, ${ }^{40}$ A. Farbin, ${ }^{41}$ A. Jawahery, ${ }^{41}$ V. Lillard, ${ }^{41}$ J. Olsen, ${ }^{41}$ D. A. Roberts, ${ }^{41}$ J. R. Schieck, ${ }^{41}$ G. Blaylock, ${ }^{42}$ C. Dallapiccola, ${ }^{42}$ K. T. Flood, ${ }^{42}$ S. S. Hertzbach, ${ }^{42}$ R. Kofler, ${ }^{42}$ V. G. Koptchev, ${ }^{42}$ T. B. Moore, ${ }^{42}$ H. Staengle, ${ }^{42}$ S. Willocq, ${ }^{42}$ B. Brau, ${ }^{43}$ R. Cowan, ${ }^{43}$ G. Sciolla, ${ }^{43}$ F. Taylor, ${ }^{43}$ R. K. Yamamoto, ${ }^{43}$ M. Milek, ${ }^{44}$ P. M. Patel, ${ }^{44}$ F. Palombo, ${ }^{45}$ J. M. Bauer, ${ }^{46}$ L. Cremaldi, ${ }^{46}$ V. Eschenburg, ${ }^{46}$ R. Kroeger, ${ }^{46}$ J. Reidy, ${ }^{46}$ D. A. Sanders, ${ }^{46}$ D. J. Summers, ${ }^{46}$ J. P. Martin, ${ }^{47}$ J. Y. Nief, ${ }^{47}$ R. Seitz, ${ }^{47}$ P. Taras, ${ }^{47}$ V. Zacek, ${ }^{47}$ H. Nicholson, ${ }^{48}$ C. S. Sutton, ${ }^{48}$ C. Cartaro, ${ }^{49}$ N. Cavallo, ${ }^{49, \dagger}$ G. De Nardo, ${ }^{49}$ F. Fabozzi, ${ }^{49}$ C. Gatto, ${ }^{49}$ L. Lista, ${ }^{49}$ P. Paolucci, ${ }^{49}$ D. Piccolo, ${ }^{49}$ C. Sciacca, ${ }^{49}$ J. M. LoSecco, ${ }^{50}$ J. R. G. Alsmiller, ${ }^{51}$ T. A. Gabriel, ${ }_{53}{ }_{53}$ T. Handler, ${ }^{51}{ }^{5}$ J. Brau, ${ }^{52}$ R. Frey, ${ }^{52}$ M. Iwasaki, ${ }^{52}$ N. B. Sinev, ${ }^{52}$ D. Strom, ${ }^{52}$ F. Colecchia, ${ }_{53}$ F. Dal Corso, ${ }^{53}$ A. Dorigo, ${ }^{53}$ F. Galeazzi ${ }^{53}$ M. Margoni, ${ }^{53}$ G. Michelon, ${ }^{53}$ M. Morandin, ${ }^{53}$ M. Posocco, ${ }^{53}$ M. Rotondo, ${ }^{53}$ F. Simonetto, ${ }^{53}$ R. Stroili, ${ }^{53}$ E. Torassa, ${ }^{53}$ C. Voci, ${ }^{53}$ M. Benayoun, ${ }^{54}$ H. Briand, ${ }^{54}$ J. Chauveau, ${ }^{54}$ P. David, ${ }^{54}$ Ch. de la Vaissière, ${ }^{54}$ L. Del Buono, ${ }^{54}$ O. Hamon, ${ }^{54}$ F. Le Diberder, ${ }^{54}$ Ph. Leruste, ${ }^{54}$ J. Ocariz, ${ }^{54}$ L. Roos, ${ }^{54}$ J. Stark, ${ }^{54}$ S. Versillé, ${ }^{54}$ P. F. Manfredi, ${ }^{55}$ V. Re, ${ }^{55}$ V. Speziali, ${ }^{55}$ E. D. Frank, ${ }^{56}$ L. Gladney, ${ }^{56}$ Q. H. Guo,${ }^{56}$ J. Panetta, ${ }^{56}$ C. Angelini, ${ }^{57}$ G. Batignani,${ }^{57}$ S. Bettarini, ${ }^{57}$ M. Bondioli, ${ }^{57}$ M. Carpinelli, ${ }^{57}$ F. Forti, ${ }^{57}$ M. A. Giorgi, ${ }_{57}$ A. Lusiani, ${ }^{57}$ F. Martinez-Vidal, ${ }^{57}$ M. Morganti, ${ }_{57}$ N. Neri, ${ }^{57}$ E. Paoloni, ${ }^{57}$ M. Rama, ${ }^{57}$ G. Rizzo, ${ }^{57}$ F. Sandrelli, ${ }^{57}$ G. Simi, ${ }^{57}$ G. Triggiani, ${ }^{57}$ J. Walsh, ${ }^{57}$ M. Haire, ${ }^{58}$ D. Judd, ${ }^{58}$ K. Paick, ${ }^{58}$ L. Turnbull, ${ }^{58}$ D. E. Wagoner, ${ }^{58}$ J. Albert, ${ }^{59}$ P. Elmer, ${ }^{59}$ C. Lu, ${ }^{59}$ K. T. McDonald, ${ }^{59}$ V. Miftakov, ${ }^{59}$ S. F. Schaffner, ${ }^{59}$ A. J. S. Smith, ${ }^{59}$ A. Tumanov, ${ }^{59}$ E. W. Varnes, ${ }^{59}$ G. Cavoto, ${ }^{60}$ D. del Re, ${ }^{60}$ R. Faccini, ${ }^{14,60}$ F. Ferrarotto, ${ }^{60}$ F. Ferroni, ${ }^{60}$
E. Lamanna, ${ }^{60}$ E. Leonardi, ${ }^{60}$ M. A. Mazzoni, ${ }^{60}$ S. Morganti, ${ }^{60}$ G. Piredda, ${ }^{60}$ F. Safai Tehrani, ${ }^{60}$ M. Serra, ${ }^{60}$ C. Voena, ${ }^{60}$ S. Christ, ${ }^{61}$ R. Waldi, ${ }^{61}$ T. Adye, ${ }^{62}$ N. De Groot, ${ }^{8,62}$ B. Franek, ${ }^{62}$ N. I. Geddes, ${ }^{62}$ G. P. Gopal, ${ }^{62}$ S. M. Xella, ${ }^{62}$ N. Copty, ${ }^{63}$ M. V. Purohit, ${ }^{63}$ H. Singh, ${ }^{63}$ F. X. Yumiceva, ${ }^{63}$ I. Adam, ${ }^{64}$ P. L. Anthony, ${ }^{64}$ D. Aston, ${ }^{64}$ K. Baird, ${ }^{64}$ N. Berger, ${ }^{64}$ E. Bloom, ${ }^{64}$ A. M. Boyarski, ${ }^{64}$ F. Bulos, ${ }^{64}$ G. Calderini, ${ }^{64}$ M. R. Convery, ${ }^{64}$ D. P. Coupal, ${ }^{64}$ D. H. Coward, ${ }^{64}$ J. Dorfan, ${ }^{64}$ W. Dunwoodie, ${ }^{64}$ R. C. Field, ${ }^{64}$ T. Glanzman, ${ }^{64}$ G. L. Godfrey, ${ }^{64}$ S. J. Gowdy, ${ }^{64}$ P. Grosso, ${ }^{64}$ T. Haas, ${ }^{64}$ T. Himel,,${ }^{64}$ T. Hryn'ova, ${ }^{64}$ M. E. Huffer, ${ }^{64}$ W. R. Innes, ${ }^{64}$ C. P. Jessop, ${ }^{64}$ M. H. Kelsey, ${ }_{64}$ P. Kim, ${ }^{64}$ M. L. Kocian ${ }^{64}$ U. Langenegger, ${ }^{64}$ D. W. G. S. Leith, ${ }^{64}$ S. Luitz, ${ }^{64}$ V. Luth, ${ }^{64}$ H. L. Lynch, ${ }^{64}$ H. Marsiske, ${ }^{64}$ S. Menke, ${ }^{64}$ R. Messner, ${ }^{64}$ K. C. Moffeit, ${ }^{64}$ R. Mount, ${ }^{64}$ D. R. Muller, ${ }^{64}$ C. P. O'Grady, ${ }^{64}$ V. E. Ozcan, ${ }^{64}$ M. Perl, ${ }^{64}$ S. Petrak, ${ }^{64}$ H. Quinn, ${ }^{64}$ B. N. Ratcliff, ${ }^{64}$ S. H. Robertson, ${ }^{64}$ L. S. Rochester, ${ }^{64}$ A. Roodman, ${ }^{64}$ T. Schietinger, ${ }^{64}$ R. H. Schindler, ${ }^{64}$ J. Schwiening, ${ }^{64}$ V. V. Serbo, ${ }^{64}$ A. Snyder, ${ }^{64}$ A. Soha, ${ }^{64}$ S. M. Spanier, ${ }^{64}$ J. Stelzer, ${ }^{64}$ D. Su, ${ }^{64}$ M. K. Sullivan, ${ }^{64}$ H. A. Tanaka, ${ }^{64}$ J. Va’ vra, ${ }^{64}$ S. R. Wagner, ${ }^{64}$ A. J. R. Weinstein, ${ }^{64}$ W. J. Wisniewski, ${ }^{64}$ D. H. Wright, ${ }^{64}$ C. C. Young, ${ }^{64}$ P. R. Burchat, ${ }^{65}$ C. H. Cheng, ${ }^{65}$ D. Kirkby, ${ }^{65}$ T. I. Meyer, ${ }^{65}$ C. Roat, ${ }^{65}$ R. Henderson, ${ }^{66}$ W. Bugg, ${ }^{67}$ H. Cohn, ${ }^{67}$ A. W. Weidemann, ${ }^{67}$ J. M. Izen, ${ }^{68}$ I. Kitayama, ${ }^{68}$ X. C. Lou, ${ }^{68}$ F. Bianchi, ${ }^{69}$ M. Bona, ${ }^{69}$ D. Gamba, ${ }^{69}$ A. Smol, ${ }^{69}$ L. Bosisio, ${ }^{70}$ G. Della Ricca, ${ }^{70}$ L. Lanceri, ${ }^{70}$ P. Poropat, ${ }^{70}$ G. Vuagnin, ${ }^{70}$ R. S. Panvini, ${ }^{71}$ C. M. Brown, ${ }^{72}$ P. D. Jackson, ${ }^{72}$ R. Kowalewski, ${ }^{72}$ J. M. Roney, ${ }^{72}$ H. R. Band, ${ }^{73}$ E. Charles, ${ }^{73}$ S. Dasu, ${ }^{73}$ F. Di Lodovico, ${ }^{73}$ A. M. Eichenbaum, ${ }^{73}$ H. Hu, ${ }^{73}$ J. R. Johnson, ${ }^{73}$ R. Liu, ${ }^{73}$ Y. Pan, ${ }^{73}$ R. Prepost, ${ }^{73}$ I. J. Scott, ${ }^{73}$ S. J. Sekula, ${ }^{73}$ J. H. von Wimmersperg-Toeller, ${ }^{73}$ S. L. Wu, ${ }^{73}$ Z. Yu, ${ }^{73}$ T. M. B. Kordich, ${ }^{74}$ and H. Neal ${ }^{74}$

[^0]${ }^{41}$ University of Maryland, College Park, Maryland 20742
${ }^{42}$ University of Massachusetts, Amherst, Massachusetts 01003
${ }^{43}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139
${ }^{44}$ McGill University, Montréal, Quebec, Canada H3A 2T8
${ }^{45}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{46}$ University of Mississippi, University, Mississippi 38677
${ }^{47}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C $3 J 7$
${ }^{48}$ Mount Holyoke College, South Hadley, Massachusetts 01075
${ }^{49}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126 Napoli, Italy
${ }^{50}$ University of Notre Dame, Notre Dame, Indiana 46556
${ }^{51}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
${ }^{52}$ University of Oregon, Eugene, Oregon 97403
${ }^{53}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{54}$ Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
${ }^{55}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
${ }^{56}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104
${ }^{57}$ Università di Pisa, Scuola Normale Superiore and INFN, I-56010 Pisa, Italy
${ }^{58}$ Prairie View A\&M University, Prairie View, Texas 77446
${ }^{59}$ Princeton University, Princeton, New Jersey 08544
${ }^{60}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{61}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{62}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
${ }^{63}$ University of South Carolina, Columbia, South Carolina 29208
${ }^{64}$ Stanford Linear Accelerator Center, Stanford, California 94309
${ }^{65}$ Stanford University, Stanford, California 94305-4060
${ }^{66}$ TRIUMF, Vancouver, British Columbia, Canada V6T 2 A3
${ }^{67}$ University of Tennessee, Knoxville, Tennessee 37996
${ }^{68}$ University of Texas at Dallas, Richardson, Texas 75083
${ }^{69}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{70}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{71}$ Vanderbilt University, Nashville, Tennessee 37235
${ }^{72}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{73}$ University of Wisconsin, Madison, Wisconsin 53706
${ }^{74}$ Yale University, New Haven, Connecticut 06511

(Received 25 October 2001; published 13 February 2002)

Abstract

We present a measurement of the time-dependent $C P$-violating asymmetries in neutral B decays to the $\pi^{+} \pi^{-} C P$ eigenstate, and an updated measurement of the charge asymmetry in $B^{0} \rightarrow K^{+} \pi^{-}$decays. In a sample of 33 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays collected with the BABAR detector at the SLAC PEP-II asymmetric B factory, we find $65_{-11}^{+12} \pi^{+} \pi^{-}$and $217 \pm 18 K^{+} \pi^{-}$candidates and measure the asymmetry parameters $S_{\pi \pi}=0.03_{-0.56}^{+0.53} \pm 0.11, C_{\pi \pi}=-0.25_{-0.47}^{+0.45} \pm 0.14$, and $\mathcal{A}_{K \pi}=-0.07 \pm 0.08 \pm 0.02$, where the first error is statistical and the second is systematic.

DOI: 10.1103/PhysRevD.65.051502
PACS number(s): 13.25.Hw, 11.30.Er, 12.15.Hh

In the Standard Model, all $C P$-violating effects arise from a single complex phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. One of the central questions in particle physics is whether this mechanism is sufficient to explain the pattern of $C P$ violation observed in nature. Recent measurements of the parameter $\sin 2 \beta$ by the BABAR [2] and BELLE [3] Collaborations establish that $C P$ symmetry is violated in the neutral B-meson system. In addition to measuring $\sin 2 \beta$ more precisely, one of the primary goals of the B-factory experiments

[^1]in the future will be to measure the remaining angles (α and $\gamma)$ and sides of the Unitarity Triangle in order to further test whether the Standard Model description of $C P$ violation is correct.

The study of B decays to charmless hadronic two-body final states will play an increasingly important role in our understanding of $C P$ violation. In the Standard Model, the time-dependent $C P$-violating asymmetry in the reaction B^{0} $\rightarrow \pi^{+} \pi^{-}$is related to the angle α. In addition, observation of a significant rate asymmetry between $B^{0} \rightarrow K^{+} \pi^{-}$and $\bar{B}^{0} \rightarrow K^{-} \pi^{+}$decays would be evidence for direct $C P$ violation, and ratios of branching fractions for various $\pi \pi$ and $K \pi$ decay modes are sensitive to the angle γ. Finally, branching fraction measurements provide critical tests of the-
oretical models that are needed to extract reliable information on $C P$ violation from the experimental observables.

The BABAR Collaboration recently reported measurements of branching fractions and charge asymmetries for several charmless two-body B decays using a data set of 23 million $B \bar{B}$ pairs [4]. In this paper, using a data sample of approximately 33 million $B \bar{B}$ pairs, we report a measurement of time-dependent $C P$-violating asymmetries in neutral B decays to the $\pi^{+} \pi^{-} C P$ eigenstate and an updated measurement of the charge asymmetry in $B^{0} \rightarrow K^{+} \pi^{-}$decays.

The time-dependent $C P$-violating asymmetry in the decay $B^{0} \rightarrow \pi^{+} \pi^{-}$arises from interference between mixing and decay amplitudes, and interference between the $b \rightarrow u W^{-}$(tree) and $b \rightarrow d g$ (penguin) decay amplitudes. A $B^{0} \bar{B}^{0}$ pair produced in $\Upsilon(4 S)$ decay evolves in time in a coherent P-wave state until one of the two mesons decays. We reconstruct a sample of B mesons ($B_{h h^{\prime}}$) decaying to the $h^{+} h^{\prime-}$ final state, where h and h^{\prime} refer to π or K, and examine the remaining charged particles in each event to "tag" the flavor of the other B meson (B_{tag}). The decay rate distribution f_{+} $\left(f_{-}\right)$when $h^{+} h^{\prime-}=\pi^{+} \pi^{-}$and $B_{\text {tag }}=B^{0}\left(\bar{B}^{0}\right)$ is given by [5]

$$
\begin{align*}
f_{ \pm}(\Delta t)= & \frac{e^{-|\Delta t| / \tau}}{4 \tau}\left[1 \pm S_{\pi \pi} \sin \left(\Delta m_{d} \Delta t\right)\right. \\
& \left.\mp C_{\pi \pi} \cos \left(\Delta m_{d} \Delta t\right)\right] \tag{1}
\end{align*}
$$

where τ is the B^{0} lifetime, Δm_{d} is the $B^{0} \bar{B}^{0}$ mixing frequency, and $\Delta t=t_{h h^{\prime}}-t_{\mathrm{tag}}$ is the time between the $B_{h h^{\prime}}$ and $B_{\text {tag }}$ decays. The $C P$-violating parameters $S_{\pi \pi}$ and $C_{\pi \pi}$ are defined as

$$
\begin{equation*}
S_{\pi \pi}=\frac{2 \operatorname{Im} \lambda}{1+|\lambda|^{2}} \quad \text { and } \quad C_{\pi \pi}=\frac{1-|\lambda|^{2}}{1+|\lambda|^{2}} \tag{2}
\end{equation*}
$$

If the decay proceeds purely through the tree process, the complex parameter λ is directly related to CKM matrix elements,

$$
\begin{equation*}
\lambda\left(B \rightarrow \pi^{+} \pi^{-}\right)=\left(\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}^{*}}\right)\left(\frac{V_{u d}^{*} V_{u b}}{V_{u d} V_{u b}^{*}}\right), \tag{3}
\end{equation*}
$$

where we are assuming equal widths $\left(\Delta \Gamma_{B}=0\right)$ for the heavy and light mass eigenstates. Thus, at tree level in the standard model, $|\lambda|=1$ and $\operatorname{Im} \lambda=\sin 2 \alpha$, where $\alpha \equiv \arg \left[-V_{t d} V_{t b}^{*} / V_{u d} V_{u b}^{*}\right]$.

Recent theoretical estimates indicate that the contribution from the gluonic penguin amplitude can be significant [6-8]. The process $b \rightarrow d g$ carries the weak phase $\arg \left(V_{t d}^{*} V_{t b}\right)$, which can modify both the magnitude and phase of λ. Thus, in general, $|\lambda| \neq 1$ and $\operatorname{Im} \lambda=|\lambda| \sin 2 \alpha_{\text {eff }}$, where $\alpha_{\text {eff }}$ depends on the magnitudes and strong phases of the tree and penguin amplitudes. Several approaches have been proposed to obtain information on α in the presence of penguins [6,9].

In this analysis, we extract signal and background yields for $\pi^{+} \pi^{-}, K^{+} \pi^{-}$, and $K^{+} K^{-}$decays [10], and the amplitudes of the $\pi \pi$ sine $\left(S_{\pi \pi}\right)$ and cosine $\left(C_{\pi \pi}\right)$ oscillation
terms simultaneously from an unbinned maximum likelihood fit. We parametrize the $K \pi$ component in terms of the total yield and the $C P$-violating charge asymmetry

$$
\begin{equation*}
\mathcal{A}_{K \pi} \equiv \frac{N_{K^{-}} \pi^{+}-N_{K^{+} \pi^{-}}}{N_{K^{-} \pi^{+}}+N_{K^{+} \pi^{-}}} . \tag{4}
\end{equation*}
$$

The data sample used in this analysis consists of $33.7 \mathrm{fb}^{-1}$ collected with the BABAR detector at the SLAC $e^{+} e^{-}$storage ring PEP-II between October 1999 and June 2001. The PEP-II facility operates nominally at the $\Upsilon(4 S)$ resonance, providing collisions of 9.0 GeV electrons on 3.1 GeV positrons. The data set includes $30.4 \mathrm{fb}^{-1}$ collected in this configuration (on-resonance) and $3.3 \mathrm{fb}^{-1}$ collected below the $B \bar{B}$ threshold (off-resonance) that are used for continuum background studies.

A detailed description of the BABAR detector is presented in Ref. [11]. Charged particle (track) momenta are measured in a tracking system consisting of a 5-layer doublesided silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) filled with a gas mixture of helium and isobutane. The SVT and DCH operate within a 1.5 T superconducting solenoidal magnet. The typical decay vertex resolution for fully reconstructed B decays is approximately $65 \mu \mathrm{~m}$ along the center-of-mass (c.m.) boost direction. Photons are detected in an electromagnetic calorimeter (EMC) consisting of $6580 \mathrm{CsI}(\mathrm{Tl})$ crystals arranged in barrel and forward endcap subdetectors. The flux return for the solenoid is composed of multiple layers of iron and resistive plate chambers for the identification of muons and long-lived neutral hadrons.

Tracks from the $B_{h h^{\prime}}$ decay are identified as pions or kaons by the Cherenkov angle θ_{c} measured with a detector of internally reflected Cherenkov light (DIRC). The typical separation between pions and kaons varies from 8σ at $2 \mathrm{GeV} / c$ to 2.5σ at $4 \mathrm{GeV} / c$, where σ is the average resolution on θ_{c}. Lower momentum kaons used in B flavor tagging are identified with a selection algorithm that combines θ_{c} (for momenta down to $0.6 \mathrm{GeV} / c$) with measurements of ionization energy loss $d E / d x$ in the DCH and SVT. The selection efficiency is approximately 85% for a pion misidentification probability of 2.5%.

Hadronic events are selected based on track multiplicity and event topology. We require at least three tracks in the laboratory polar angle region $0.41<\theta_{\text {lab }}<2.54$ satisfying the following requirements: transverse momentum greater than $100 \mathrm{MeV} / c$, at least 12 DCH hits, and originating from the interaction point within 10 cm in z and 1.5 cm in $r-\varphi$ [12]. Residual two-prong events from the reaction $e^{+} e^{-} \rightarrow l^{+} l^{-}$ ($l=e, \mu, \tau$) are suppressed by requiring the ratio of FoxWolfram moments H_{2} / H_{0} [13] to be less than 0.95 and the sphericity [14] of the event to be greater than 0.01 .

Candidate $B_{h h^{\prime}}$ decays are reconstructed from pairs of oppositely charged tracks forming a good quality vertex, where the $B_{h h^{\prime}}$ four-vector is calculated assuming the pion mass for both tracks. We require each track to have an associated θ_{c} measurement with a minimum of six Cherenkov photons above background, where the average is approximately 30 for both pions and kaons. Protons are rejected based on θ_{c} and electrons are rejected based on $d E / d x$,
shower shape in the EMC, and the ratio of shower energy and track momentum. Background from the reaction $e^{+} e^{-}$ $\rightarrow q \bar{q} \quad(q=u, d, s, c)$ is suppressed by removing jet-like events from the sample: we define the c.m. angle θ_{S} between the sphericity axes of the B candidate and the remaining tracks and photons in the event, and require $\left|\cos \theta_{S}\right|<0.8$, which removes 83% of the background. The total efficiency on signal events for all of the above selection is approximately 38%.

We define a beam-energy substituted mass $m_{\text {ES }}$ $=\sqrt{E_{\mathrm{b}}^{2}-\mathbf{p}_{B}^{2}}$. The candidate energy is defined as $E_{\mathrm{b}}=(s / 2$ $\left.+\mathbf{p}_{i} \cdot \mathbf{p}_{B}\right) / E_{i}$, where \sqrt{s} and E_{i} are the total energies of the $e^{+} e^{-}$system in the c.m. and laboratory frames, respectively, and \mathbf{p}_{i} and \mathbf{p}_{B} are the momentum vectors in the laboratory frame of the $e^{+} e^{-}$system and the $B_{h h^{\prime}}$ candidate, respectively. Signal events are Gaussian distributed in $m_{\text {ES }}$ with a mean near the B mass and a resolution of $2.6 \mathrm{MeV} / c^{2}$, dominated by the beam energy spread. The background shape is parametrized by a threshold function [15] with a fixed end point given by the average beam energy.

We define a second kinematic variable ΔE as the difference between the energy of the $B_{h h^{\prime}}$ candidate in the c.m. frame and $\sqrt{s} / 2$. The ΔE distribution is peaked near zero for $\pi^{+} \pi^{-}$decays. For decays with one (two) kaons, the distribution is shifted relative to $\pi \pi$ on average by -45 MeV $(-91 \mathrm{MeV})$, respectively, where the exact separation depends on the laboratory momentum of the kaon(s). The resolution on ΔE for signal decays is approximately 26 MeV . The background is parametrized by a quadratic function.

Candidate $h^{+} h^{\prime-}$ pairs selected in the region $5.2<m_{\mathrm{ES}}$ $<5.3 \mathrm{GeV} / c^{2}$ and $|\Delta E|<0.15 \mathrm{GeV}$ are used to extract yields and $C P$-violating asymmetries with an unbinned maximum likelihood fit. The total number of events in the fit region satisfying all of the above criteria is 9741 . A sideband region, defined as $5.20<m_{\mathrm{ES}}<5.26 \mathrm{GeV} / c^{2}$ and $|\Delta E|<0.42 \mathrm{GeV}$, is used to extract various background parameters.

The analysis method combines the techniques used to measure charmless two-body branching fractions [4] and $\sin 2 \beta$ [2]. The primary issues in this analysis are determination of the $B_{\text {tag }}$ flavor, measurement of the distance Δz between the $B_{h h^{\prime}}$ and B_{tag} decay vertices, discrimination of signal from background, identification of pions and kaons, and extraction of yields and $C P$ asymmetries.

To determine the flavor of the $B_{\text {tag }}$ meson we use the same B-tagging algorithm used in the $\sin 2 \beta$ and $B^{0}-\bar{B}^{0}$ mixing [16] analyses. The algorithm relies on the correlation between the flavor of the b quark and the charge of the remaining tracks in the event after removal of the $B_{h h^{\prime}}$ candidate. We define five mutually exclusive tagging categories: Lepton, Kaon, NT1, NT2, and Untagged. Lepton tags rely on primary electrons and muons from semileptonic B decays, while Kaon tags exploit the correlation in the process $b \rightarrow c$ $\rightarrow s$ between the net kaon charge and the charge of the b quark. The NT1 (more certain tags) and NT2 (less certain tags) categories are derived from a neural network that is sensitive to charge correlations between the parent B and unidentified leptons and kaons, soft pions, or the charge and momentum of the track with the highest c.m. momentum.

TABLE I. Tagging efficiency ϵ, average dilution $D=1 / 2\left(D_{B^{0}}\right.$ $\left.+D_{\bar{B}^{0}}\right)$, dilution difference $\Delta D=D_{B^{0}}-D_{\bar{B}^{0}}$, and effective tagging efficiency Q for signal events in each tagging category.

Category	$\epsilon(\%)$	$D(\%)$	$\Delta D(\%)$	$Q(\%)$
Lepton	11.0 ± 0.3	82.3 ± 2.7	-2.1 ± 4.5	7.5 ± 0.5
Kaon	35.8 ± 0.5	64.8 ± 2.0	3.5 ± 3.1	15.0 ± 1.0
NT1	8.0 ± 0.3	55.6 ± 4.2	-12.1 ± 6.7	2.5 ± 0.4
NT2	13.9 ± 0.4	30.2 ± 3.8	9.0 ± 5.7	1.3 ± 0.3
Untagged	31.3 ± 0.5			
Total Q				26.3 ± 1.2

The addition of Untagged events improves the signal yield estimates and provides a larger sample for determining background shape parameters directly in the maximum likelihood fit.

The quality of tagging is expressed in terms of the effective efficiency $Q=\sum_{i} \epsilon_{i} D_{i}^{2}$, where ϵ_{i} is the fraction of events tagged in category i and the dilution $D_{i}=1-2 w_{i}$ is related to the mistag fraction w_{i}. The statistical errors on $S_{\pi \pi}$ and $C_{\pi \pi}$ are proportional to $1 / \sqrt{Q}$. Table I summarizes the tagging performance in a data sample $B_{\text {flav }}$ of fully reconstructed neutral B decays into $D^{(*)-} h^{+}\left(h^{+}=\pi^{+}, \rho^{+}, a_{1}^{+}\right)$ and $J / \psi K^{* 0}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)$flavor eigenstates. We use the same tagging efficiencies and dilutions for signal $\pi \pi, K \pi$, and $K K$ decays. Separate background tagging efficiencies for each species are obtained from a fit to the $h^{+} h^{\prime-}$ onresonance sideband data and reported in Table II.

The time difference Δt is obtained from the measured distance between the z position of the $B_{h h^{\prime}}$ and $B_{\text {tag }}$ decay vertices and the known boost of the $e^{+} e^{-}$system. The z position of the $B_{\text {tag }}$ vertex is determined with an iterative procedure that removes tracks with a large contribution to the total $\chi^{2}[2,16]$. An additional constraint is constructed from the three-momentum and vertex position of the $B_{h h^{\prime}}$ candidate, and the average $e^{+} e^{-}$interaction point and boost. The typical Δz resolution is $180 \mu \mathrm{~m}$. We require $|\Delta t|$ $<17 \mathrm{ps}$ and $0.3<\sigma_{\Delta t}<3.0 \mathrm{ps}$, where $\sigma_{\Delta t}$ is the error from the vertex fit. The resolution function for signal candidates is a sum of three Gaussians, identical to the one described in Ref. [2], with parameters determined from a fit to the $B_{\text {flav }}$ sample (including events in all five tagging categories). The background resolution function is parametrized as the sum of three Gaussians, with the parameters determined from a fit to the $h^{+} h^{\prime-}$ on-resonance sideband data.

TABLE II. Tagging efficiencies (\%) for background events in each species.

Category	$\epsilon(\pi \pi)$	$\epsilon(K \pi)$	$\epsilon(K K)$
Lepton	1.0 ± 0.1	1.0 ± 0.1	1.5 ± 0.2
Kaon	26.0 ± 0.4	33.1 ± 0.6	23.5 ± 0.7
NT1	6.6 ± 0.2	5.4 ± 0.3	6.9 ± 0.4
NT2	17.6 ± 0.4	15.3 ± 0.5	19.7 ± 0.6
Untagged	48.9 ± 0.7	45.2 ± 0.6	48.3 ± 0.8

The data sample used in the fit contains 97% background, mostly due to random combinations of tracks produced in $e^{+} e^{-} \rightarrow q \bar{q}$ events. Discrimination of signal from background in the maximum likelihood fit is enhanced by the use of a Fisher discriminant \mathcal{F} [4]. The discriminating variables are constructed from the scalar sum of the c.m. momenta of all tracks and photons (excluding tracks from the $B_{h h^{\prime}}$ candidate) entering nine two-sided 10 -degree concentric cones centered on the thrust axis of the $B_{h h^{\prime}}$ candidate. The distribution of \mathcal{F} for signal events is parametrized as a single Gaussian, with parameters determined from Monte Carlo simulated decays and validated with $B^{-} \rightarrow D^{0} \pi^{-}$decays reconstructed in data. The background shape is parametrized as the sum of two Gaussians, with parameters determined directly in the maximum likelihood fit.

Identification of $h^{+} h^{\prime-}$ tracks as pions or kaons is accomplished with the Cherenkov angle measurement from the DIRC. We construct Gaussian probability density functions (PDFs) from the difference between measured and expected values of θ_{c} for the pion or kaon hypothesis, normalized by the resolution. The DIRC performance is parametrized using a sample of $D^{*+} \rightarrow D^{0} \pi^{+}, \quad D^{0} \rightarrow K^{-} \pi^{+}$decays reconstructed in data. Within the statistical precision of the control sample (approximately 10^{5} events), we find similar response for positively and negatively charged tracks and use a single parametrization for both.

We use an unbinned extended maximum likelihood fit to extract yields and $C P$ parameters from the $B_{h h^{\prime}}$ sample. The likelihood for candidate j tagged in category c is obtained by summing the product of event yield n_{i}, tagging efficiency $\epsilon_{i, c}$, and probability $\mathcal{P}_{i, c}$ over the eight possible signal and background hypotheses i (referring to $\pi \pi, K^{+} \pi^{-}, K^{-} \pi^{+}$, and $K K$ decays),

$$
\begin{equation*}
\mathcal{L}_{c}=\exp \left(-\sum_{i} n_{i} \epsilon_{i, c}\right) \prod_{j}\left[\sum_{i} n_{i} \epsilon_{i, c} \mathcal{P}_{i, c}\left(\vec{x}_{j}: \vec{\alpha}_{i}\right)\right] . \tag{5}
\end{equation*}
$$

For the $K^{\mp} \pi^{ \pm}$hypotheses, the yield is parametrized as n_{i} $=N_{K \pi}\left(1 \pm \mathcal{A}_{K \pi}\right) / 2$, where $N_{K \pi}=N_{K^{-} \pi^{+}}+N_{K^{+} \pi^{-}}$. We fix the tagging efficiencies ϵ_{i} to the values in Tables I and II. The probabilities $\mathcal{P}_{i, c}$ are evaluated as the product of PDFs for each of the independent variables \vec{x}_{j} $=\left\{m_{\mathrm{ES}}, \Delta E, \mathcal{F}, \theta_{c}^{+}, \theta_{c}^{-}, \Delta t\right\}$, where θ_{c}^{+}and θ_{c}^{-}are the Cherenkov angles for the positively and negatively charged tracks. The total likelihood \mathcal{L} is the product of likelihoods for each tagging category and the free parameters are determined by minimizing the quantity $-2 \ln \mathcal{L}$.

The Δt PDF for signal $\pi^{+} \pi^{-}$decays is given by Eq. (1), modified to include the dilution and dilution difference for each tagging category, and convolved with the signal resolution function. The Δt PDF for signal $K \pi$ events takes into account $B^{0}-\bar{B}^{0}$ mixing, depending on the charge of the kaon and the flavor of $B_{\text {tag }}$. We parametrize $B^{0} \rightarrow K^{+} K^{-}$decays as an exponential convolved with the resolution function.

There are 18 free parameters in the fit. In addition to the $C P$-violating parameters $S_{\pi \pi}, C_{\pi \pi}$, and $\mathcal{A}_{K \pi}$, the fit determines signal and background yields (six parameters), the background $K \pi$ charge asymmetry, and eight parameters de-

TABLE III. Central values and 90% C.L. intervals for $S_{\pi \pi}$, $C_{\pi \pi}$, and $\mathcal{A}_{K \pi}$ from the maximum likelihood fit.

Parameter	Central value	90% C.L. interval
$S_{\pi \pi}$	$0.03_{-0.56}^{+0.53} \pm 0.11$	$[-0.89,+0.85]$
$C_{\pi \pi}$	$-0.25_{-0.47}^{+0.4} \pm 0.14$	$[-1.0,+0.47]$
$\mathcal{A}_{K \pi}$	$-0.07 \pm 0.08 \pm 0.02$	$[-0.21,+0.07]$

scribing the background shapes in $m_{\mathrm{ES}}, \Delta E$, and \mathcal{F}. We fix τ and Δm_{d} to the world-average values [17].

In a sample of 33 million $B \bar{B}$ pairs, we find $65_{-11}^{+12} \pi \pi$, $217 \pm 18 K \pi$, and $4.3_{-4.3}^{+6.3} K K$ events. These yields are consistent with the branching fractions reported in Ref. [4], as well as measurements from other experiments $[18,19]$. The results for $C P$-violating asymmetries are summarized in Table III. Statistical errors correspond to unit change in χ^{2} $\equiv-2 \ln \mathcal{L}$. For each parameter, we also calculate the 90% confidence level (C.L.) interval corresponding to a change in χ^{2} of 2.69 , and taking into account the systematic error. The correlation between $S_{\pi \pi}$ and $C_{\pi \pi}$ is -21%, while $\mathcal{A}_{K \pi}$ is uncorrelated with either $S_{\pi \pi}$ or $C_{\pi \pi}$.

Figure 1 shows distributions of m_{ES} and ΔE for events enhanced in signal decays based on likelihood ratios. We define $\mathcal{R}_{\text {sig }}=\Sigma_{s} n_{s} \mathcal{P}_{s} / \Sigma_{i} n_{i} \mathcal{P}_{i}$ and $\mathcal{R}_{k}=n_{k} \mathcal{P}_{k} / \Sigma_{s} n_{s} \mathcal{P}_{s}$, where $\Sigma_{s}\left(\sum_{i}\right)$ indicates a sum over signal (all) hypotheses, and \mathcal{P}_{k} indicates the probability for signal hypothesis k. The probabilities include the PDFs for θ_{c}, \mathcal{F}, and $m_{\mathrm{ES}}(\Delta E)$ when plotting $\Delta E\left(m_{\mathrm{ES}}\right)$. The selection is defined by optimizing the signal significance with respect to $\mathcal{R}_{\text {sig }}$ and \mathcal{R}_{k}. The solid curve in each plot represents the fit projection after correcting for the efficiency of the additional selection (approximately 55% for $\pi \pi$ and 85% for $K \pi)$.

Figure 2 shows the Δt distributions and the asymmetry

FIG. 1. Distributions of m_{ES} and ΔE (unshaded histograms) for events enhanced in signal (a),(b) $\pi \pi$ and (c),(d) $K \pi$ decays based on the likelihood ratio selection described in the text. Solid curves represent projections of the maximum likelihood fit result after accounting for the efficiency of the additional selection, while dashed curves represent $q \bar{q}$ and $\pi \pi \leftrightarrow K \pi$ cross-feed background. Shaded histograms show the subset of events that are tagged.

FIG. 2. Distribution of Δt for events enhanced in signal $\pi \pi$ decays based on the likelihood ratio selection described in the text. (a) and (b) show events (points with errors) with $B_{\text {tag }}=B^{0}$ or \bar{B}^{0}. Solid curves represent projections of the maximum likelihood fit, dashed curves represent the sum of $q \bar{q}$ and $K \pi$ background events, and the shaded region represents the contribution from signal $\pi \pi$ events. (c) shows $\mathcal{A}_{\pi \pi}(\Delta t)$ for data (points with errors), as well as fit projections for signal and background events (solid curve), and signal events only (dashed curve).
$\mathcal{A}_{\pi \pi}(\Delta t)=\left[N_{B^{0}}(\Delta t)-N_{\bar{B}^{0}}(\Delta t)\right] /\left[N_{B^{0}}(\Delta t)+N_{\bar{B}^{0}}(\Delta t)\right]$ for tagged events enhanced in signal $\pi \pi$ decays. The selection procedure is the same as Fig. 1, with the likelihoods defined including the PDFs for $\theta_{c}, \mathcal{F}, m_{\mathrm{ES}}$, and ΔE. Approximately $24 \pi \pi, 22 q \bar{q}$, and $5 K \pi$ events satisfy the selection.

Systematic uncertainties on $S_{\pi \pi}, C_{\pi \pi}$, and $\mathcal{A}_{K \pi}$ arise primarily from imperfect knowledge of the PDF shapes and uncertainties on tagging efficiencies, dilutions, τ, and Δm_{d}. The total systematic error is calculated as the sum in quadrature of the individual uncertainties. The error on $\mathcal{A}_{K \pi}$ is dominated by uncertainty in the mean of the $\Delta E \operatorname{PDF}(0.01)$ and possible charge bias in track and θ_{c} reconstruction (0.01)
[20]. Errors on $S_{\pi \pi}$ and $C_{\pi \pi}$ are dominated by the parametrization of Δt resolution for signal and background $(\approx 0.07$ for $S_{\pi \pi}$, ≈ 0.03 for $C_{\pi \pi}$), tagging (0.05), and, for $C_{\pi \pi}$ only, the mean of the $\Delta E \operatorname{PDF}(0.1)$.

Extensive studies were performed to validate the fit technique. A large ensemble of Monte Carlo pseudo-experiments was generated from the nominal PDFs with the statistics observed in the full data set. Parameter errors and the maximum value of the likelihood obtained in the data fit are all consistent with expectations based on these pseudoexperiments, and all free parameters are unbiased. We have checked that consistent results are obtained when separating events by $B_{\text {tag }}$ flavor. As a validation of the Δt parametrization in data, we fit the full data set to simultaneously extract yields, background parameters, $\tau, \Delta m_{d}, S_{\pi \pi}$, and $C_{\pi \pi}$. We find $\tau=(1.52 \pm 0.12) \mathrm{ps}$ and $\Delta m_{d}=(0.54 \pm 0.09) \hbar \mathrm{ps}^{-1}$, and all other parameters are consistent with the nominal fit.

In summary, we have presented a measurement of timedependent $C P$-violating asymmetries in $B^{0} \rightarrow \pi^{+} \pi^{-}$decays and an updated measurement of the charge asymmetry $\mathcal{A}_{K \pi}$. The latter is consistent with our previous result reported in Ref. [4], as well as results from other experiments [21,22]. We observe no evidence for direct $C P$ violation in the $K \pi$ mode and determine a 90% C.L. interval excluding a significant part of the allowed region. Although the current measurements of $S_{\pi \pi}$ and $C_{\pi \pi}$ do not significantly constrain the Unitarity Triangle, with the addition of more data and further improvements in detector performance and analysis techniques, future results will yield important information about $C P$ violation in the B-meson system.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRSIN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 091801 (2001).
[3] BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 091802 (2001).
[4] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 151802 (2001).
[5] For a general review of the formalism, see Y. Nir and H. Quinn, Annu. Rev. Nucl. Part. Sci. 42, 211 (1992).
[6] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, Nucl. Phys. B606, 245 (2001).
[7] Y. Y. Keum, H.-n. Li, and A. I. Sanda, Phys. Rev. D 63, 054008 (2001).
[8] M. Ciuchini et al., Phys. Lett. B 515, 33 (2001).
[9] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990); Y. Grossman and H. R. Quinn, Phys. Rev. D 58, 017504 (1998); J. Charles, ibid. 59, 054007 (1999); M. Gronau, D. London, N. Sinha, and R. Sinha, Phys. Lett. B 514, 315 (2001).
[10] When only one charge mode is given, conjugate decay modes are implied.
[11] BABAR Collaboration, B. Aubert et al., BABAR-PUB-01/08, hep-ex/0105044.
[12] The unit vector \hat{z} is aligned along the detector axis in the electron beam direction.
[13] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[14] S. L. Wu, Phys. Rep. 107, 59 (1984).
[15] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[16] BABAR Collaboration, B. Aubert et al., BABAR-PUB-01/02, hep-ex/0112044.
[17] Particle Data Group, D. E. Groom et al., Eur. Phys. J. C 15, 1 (2000).
[18] CLEO Collaboration, D. Cronin-Hennessey et al., Phys. Rev. Lett. 85, 515 (2000).
[19] BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 101801 (2001).
[20] BABAR Collaboration, B. Aubert et al., Phys. Rev. D (to be published), hep-ex/0111087.
[21] CLEO Collaboration, S. Chen et al., Phys. Rev. Lett. 85, 525 (2000).
[22] BELLE Collaboration, K. Abe et al., Phys. Rev. D 64, 071101(R) (2001).

[^0]: (BABAR Collaboration)
 ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
 ${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
 ${ }^{6}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
 ${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
 ${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{12}$ University of California at Irvine, Irvine, California 92697
 ${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024
 ${ }^{14}$ University of California at San Diego, La Jolla, California 92093
 ${ }^{15}$ University of California at Santa Barbara, Santa Barbara, California 93106
 ${ }^{16}$ Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064
 ${ }^{17}$ California Institute of Technology, Pasadena, California 91125
 ${ }^{18}$ University of Cincinnati, Cincinnati, Ohio 45221
 ${ }^{19}$ University of Colorado, Boulder, Colorado 80309
 ${ }^{20}$ Colorado State University, Fort Collins, Colorado 80523
 ${ }^{21}$ DAPNIA, Commissariat à l'Energie Atomique/Saclay, F-91191 Gif-sur-Yvette, France
 ${ }^{22}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{23}$ Ecole Polytechnique, F-91128 Palaiseau, France
 ${ }^{24}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{25}$ Elon University, Elon University, North Carolina 27244-2010
 ${ }^{26}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
 ${ }^{27}$ Florida A\&M University, Tallahassee, Florida 32307
 ${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
 ${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
 ${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138
 ${ }^{31}$ University of Iowa, Iowa City, Iowa 52242
 ${ }^{32}$ Iowa State University, Ames, Iowa 50011-3160
 ${ }^{33}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
 ${ }^{34}$ Lawrence Livermore National Laboratory, Livermore, California 94550
 ${ }^{35}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
 ${ }^{36}$ University of London, Imperial College, London SW7 2BW, United Kingdom
 ${ }^{37}$ Queen Mary, University of London, E1 4NS, United Kingdom
 ${ }^{38}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 OEX, United Kingdom
 ${ }^{39}$ University of Louisville, Louisville, Kentucky 40292
 ${ }^{40}$ University of Manchester, Manchester M13 9PL, United Kingdom

[^1]: *Also with Università di Perugia, Perugia, Italy.
 ${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy.

