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ABSTRACT OF THE DISSERTATION

Distributed Dynamic Tracking: Multi-Agent Leader-Following and Targets Coverage

By

Yi-Fan Chung

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2020

Professor Solmaz Kia, Chair

With the advances in low-cost reliable electronic devices, autonomous multi-agent systems

play an important role in a wide range of applications, such as sensing networks, smart

grid, smart transportation, and exploration in hazardous situations. In recent years, fac-

tors such as avoiding a single failure point, demand for privacy preservation, and opting

for lower computation and communication costs have created the expectation that the au-

tonomous multi-agent systems should be operated in a distributed manner with no central

control. In many operations, coordinating tasks among autonomous multi-agent systems

involve some forms of distributed leader-following problems. That is, it is expected that a

group of networked autonomous agents, normally referred to as followers, should use their

local information and local interactions with their neighboring agents to determine their ac-

tions so that the entire network achieves a desired system-level behavior that depends on the

state(s) of single or multiple leaders. When the dynamics of the leader(s) is unknown, e.g.,

in target tracking problems, and only a subset of the agents can measure the state(s) of the

leader(s) online, the limited information increases the challenge to meet leader-following ob-

jectives. The focus of this dissertation is providing practical leader-following solutions that

require the least possible assumptions on the dynamics of the leader(s). More specifically,

we consider four types of leader-following objectives.

xiii



The first problem addressed is a single leader-following problem for a group of heterogeneous

linear time-invariant followers, where a subset of the followers has access to the state of an

unknown leader in only specific sampling times. We propose a distributed control that uses

a minimum-energy control framework to enable the followers to arrive at the sampled state

of the leader by the time the next sample arrives. The next problem we consider is a con-

tainment control problem, a leader-following problem with multiple leaders, where a group

of mobile agents aim to stay in the convex hull spanned by a group of moving leaders with

unknown dynamics. Our proposed distributed control enables a group of networked unicycle

mobile agents to track the convex hull of the leaders. This algorithm requires the agents

to only communicate with each other in discrete-time fashion. The innovation in our con-

tainment control design is to model the problem in the form of an active average consensus

problem, for which we also propose a novel distributed solution both in continuous-time and

discrete-time form. Active average consensus by itself constitutes the third leader-following

problem that we study, in which a set of networked agents aim to track the average of the

dynamic signals measured by the active agents. The fourth leader-following problem we

consider in this dissertation is a coverage problem via a set of mobile agents for a group of

dense dynamic targets whose distribution in the space is not known a priori. For this prob-

lem, we propose a novel distributed coverage control that first uses a distributed estimation

process to enable all the agents to obtain an estimate of the targets’ distribution when only

a subset of agents in the network can observe the targets. Then, we develop a distributed

deployment solution that enables the agents to re-position themselves in a way that their

collective quality of service (QoS) distribution is in close accordance with the estimated den-

sity distribution of the targets. In our setting, the agents are heterogeneous in the sense that

their spatial QoS distribution is different. We demonstrate our results for event detection

via sensor networks and UAV-aided wireless communication coverage problems.

xiv



Chapter 1

Introduction

1.1 Background and Motivation

Researchers have long noticed different forms of coordinated behaviors in animal groups

in nature that help the group members to meet objectives that benefit everyone but are

beyond the capability of individual members. For example, fish school to defend against

predators, wolves hunt in a pack, birds flock when migrating or ants swarm to collect food.

Inspired by these natural phenomena and the technological advances in miniaturizing low-

cost reliable devices for computing, communication, sensing, and actuation, engineering

coordinated behaviors in multi-agent network systems to enhance capabilities of dynamical

systems have attracted a lot of attention by researchers in recent years.

Multi-agent systems have several advantages over a single agent, including robustness to in-

dividual agents’ failures and the ability to perform challenging tasks that cannot be achieved

by a single agent. The potential applications are, for example, monitoring forest, tracking

wildlife, border patrol, surveillance, and reconnaissance. To enable these applications, var-

ious coordinated control designs need to be developed such that agents in such networks

1



can achieve system-level objectives. The centralized control scheme, which gathers all of the

information in a single place, performs the computation, and then sends the solution back

through the network to each agent, is the straight forward solution. Although simple, the

centralized approach has numerous drawbacks [1]: 1) it is fragile because the failure of the

central agent causes the shutdown of the entire system, 2) it is not scalable because the

amount of communication and computation increases with the size of the network, 3) the

data from each agent needs a unique identifier to avoid double-counting, 4) the delay of data

transmission and computation time grows with the size of the network, and 5) the data is

lacking privacy because the information from each agent is exposed over the entire network.

This motivates the interest in developing distributed solutions for multi-agent systems. For

distributed cooperative control, agents in a network are required to use only local informa-

tion to determine their own decisions such that the whole network achieves the prescribed

system-level behavior.

Consensus problem of multi-agent systems is an important component of many cooperative

control problems, such as rendezvous [2], formation control [3], flocking control [4], contain-

ment control [5] and sensor networks [6]. Consensus problems can be roughly categorized

into leaderless and leader-following. In the leaderless case, the agents aim to reach to a static

or dynamic agreement on a common value [1, 7, 8]. The most famous leaderless consensus

problem is the average consensus problem where the system-level objective is to all agents

to agree on the average value of the reference signals at each agent. On the other hand,

leader-following is a more challenging problem. The agents (which are usually referred to

as followers) aim to reach a desired system-level behavior which depends on the state(s) of

the leader(s). It is common in the literature to consider the leader(s) as an agent(s) in the

multi-agent system so the leader(s) would be with a certain known dynamics and willing to

share its (their) states or even coordinating its (their) motion(s) with the follower agents.

However, the concept of a leader(s) can be further extended to an uncooperative target(s),

an unknown object(s), or even a virtual signal(s) that the agents aim to track. In these

2



scenarios, the dynamics of the leader(s) may be unknown to the agents and only a subset of

the agents can measure the state(s) of the leader(s) online. Hence, the limited information

increases the challenge to achieve the leader-following objective.

This dissertation investigates four different leader-following scenarios. Chapter 2 considers

the single leader-following problem, e.g., a single target tracking. The objective is the agents

to follow the state of a leader whose dynamics is unknown to them. The only information

available about the leader is its sampled state that is collected by a subset of agents in

the network. The potential application is, for example, the formation control for UAVs

to follow a target (see Fig. 1.1). Chapter 3 considers the containment control problem,

which is a multiple leader-following problem. In the Containment control problem agents

want to stay in the convex hull spanned by the leaders. A prime application example

for containment problem, see Fig. 1.2, is when a group of communicating robots follows a

group of leader robots that can avoid obstacles when they transport through a hazardous

area [9]. Other potential applications include formation control for UAVs [10] and underwater

vehicles [11], hazardous material delivery [12] and mobile sensor networks [13]. Chapter

4 considers an extension of dynamic average consensus problem which is referred to as

dynamic active average consensus. In this problem, only a subset of the agents are the

active agents that collect measurements. The objective then is for all active and passive

agents to track the (weighted) average of the collected measurements, see Fig. 1.3. The

scenario that contains the active and passive agents is prevalent in a multi-agent system,

for example, the underwater exploration as shown in Fig. 1.4. Although dynamic average

consensus problem is usually categorized into the leaderless class, it also can be considered as

a leader-following problem when the local reference signal at each agent is constructed by the

leaders measured by the agent. The agents aim to follow the average of the reference signals

corresponding to the measured leaders. In Chapter 4, we also show that the containment

control problem can be formulated as an active average consensus problem and solved in

a efficient way using our proposed dynamic active average consensus algorithm. Chapter 5
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Figure 1.1 – A leader-following application in formation control. (Retrieved from DARPA )

Figure 1.2 – A containment control application in transporting robots through a hazardous
area.

considers the coverage control for mobile agent deployment to track and provide service for

a group of dense targets. Coverage control is a deployment strategy and we use these two

terms interchangeably in the context. The purpose of coverage control is to deploy a group

of agents to provide their service (monitoring, data collection, wireless communication, etc.)

to cover an area occupied by targets. This problem is in leader-following framework because

the agents’ deployment depends on the locations of the targets (leaders) they aim to cover.

Some important applications investigated in literature include wildfire surveillance [14], water

quality monitoring [15], environmental boundary monitoring [16], and UAVs wireless network

coverage [17] (see Fig. 1.5).

The following section reviews the literature about leader-following control, containment con-
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Figure 1.3 – The active average consensus problem: Agent 1,2,4 and 5 are active agents which

have local measured signal; Agent 3 and 6 are passive agents which do not measure a useful signal

or do not have the ability to measure. The objective of the active average consensus is to track
r1+r2+r4+r5

4 .

Figure 1.4 – A underwater exploration scenario contains active agents (submarines), which
can detect the objects of interest, and passive agents (boats).
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Figure 1.5 – The applications of mobile agents deployment in (a) wildfire monitoring and
(b) wireless network coverage.

trol, dynamics average consensus control, and coverage control.

1.2 Literature Survey

1.2.1 Distributed Leader Following Control

The leader-following algorithms for the single integrator and double integrator dynamics

are presented in [18], and for homogeneous LTI systems are proposed in [19] and [20]. For

systems constituted of heterogeneous LTI followers, [21] and [22] propose the algorithms

to synchronize with a passive zero-input LTI leader. [23] and [24] develop the controls for

the single and double integral systems, respectively, to track an active leader (the active

leader is a leader that has a control input). But their works assume the leader’s control

input is available to all the followers. [25] and [26] propose a leader-following algorithm

respectively for homogeneous LTI and heterogeneous nonlinear MASs in which the unknown

input of the leader is bounded and is not available to any follower. But the control inputs

in [25] and [26] have the sliding mode structure and suffer from the well-known undesirable

chattering behavior. We recall that from a practical perspective, chattering is undesirable
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and leads to excessive control energy expenditure [27].

[28] is the recent result for the leader-following problem, which is based on the result of [25]

and develops a distributed observer to estimate the leader’s state for each follower. Then,

the output synchronization of heterogeneous leader-follower linear systems is achieved by

optimal local tracking of the output of the observer. We note that in both [25] and [28], the

active leader is restricted to be linear and have limited input.

The work reviewed so far are all converge to leader following in an asymptotic manner,

i.e., the settling time to reach an agreement is infinity. For fast convergence, [29], [30]

and [31] propose the finite-time synchronization algorithms for single and double integral

MASs, where the upper bound of the settling time explicitly depends on the initial state

of the MAS. Therefore, to use these algorithms, the centralized knowledge of the initial

state of the MAS is essential to estimate the settling time. [32] and [33] propose the fixed-

time synchronization algorithms, where the settling time is bounded and independent of

the initial state of the MAS. However, for both these finite and fixed-time algorithms, the

settling time is upper bounded by a conservative estimation. [34] introduces the specified-

time synchronization control for the leaderless MASs in which one can determine the settling

time exactly in advance. Specified-time synchronization can be useful to the applications

that require precise acting time, such as target attack at a specified time.

1.2.2 Distributed Containment Control

Containment control has been of interest in the literature in recent years. [35] proposes

control for a group of unicycle agents that drives the leaders to a formation and the followers

to the convex hull. [36] design a containment control for single integrator agents based on

the theory of partial differential equations and a stop-go policy for the moving leaders. For

double integrator agents, the containment control problem is considered in [37] and [38]. The
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algorithms proposed in [35–38] require the communication topology of the followers to be an

undirected graph.

In some situations, the interaction topology among agents may be a directed graph due to

realistic communication restrictions. Accordingly, [39] extends the work of [36] and focus on

switching directed interaction topology among agents. The agents with more complex dy-

namics under directed interaction graphs are investigated in [40] for general linear dynamics

and [41] for nonlinear Lagrangian dynamics, respective.

Nevertheless, the work mentioned so far need to continuously exchange information among

the network, which may not be realistic in practice. In [42] a group of agents with discrete-

time dynamics is considered and the containment control problem is solved by a discrete-time

scheme of hybrid model predictive control. However, it is preferable to having control for

continuous-time dynamics agents with discrete-time communications with their neighbors. [9]

propose a containment control based on periodic sampled-data for agents with continuous-

time single and double integrator dynamics over a directed graph. Furthermore, aperiodic

sampled-based containment controls for double integrators and continuous-time linear agents

are studied by [43] and [44], respectively.

It is worth mentioning that all of the work mentioned above is considering the homogeneous

network systems, that is all agents are with identical dynamics. [45] consider a heterogeneous

multi-agent system that the leader group and the follower group can be with either single

or double integrator dynamics, respectively. [46] study a more general case that the follower

agents can be with different linear dynamics and the leader group has the same passive

linear dynamics (linear dynamics without input). However, for the work of [45] and [46],

the leaders are still homogeneous and they follow a certain dynamics that are assumed to be

known to the followers.
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1.2.3 Distributed Dynamics Average Consensus Control

Static average consensus, where agents aim to reach consensus on the average of the agents’

initial static values, is one of the most popular distributed algorithms in coordination of

network systems [7,18,47–49]. Dynamic average consensus, initially discussed in [50], on the

other hand, considers the problem of achieving agreement on the average of the local time-

varying signals of each agent. Designing dynamic average consensus algorithms that achieve

tracking with zero error is challenging. This due to the time that it takes for any agent level

information to propagate through the network. Thus, there are various algorithms in the

literature that try to address this problem with small tracking error. In [51], the authors

propose a proportional-integral dynamic average consensus algorithm that, from any initial

condition, converges with a bounded steady state error, which vanishes if the signals are

static. However, this algorithm reacquires the reference signal of the agents to be bounded

and the graph topology to be connected. On the other hand, [52] proposes a dynamic average

consensus algorithm that works over strongly connected and weight-balanced digraphs and

only requires the rate of change of the agents’ reference signal to be bounded. The steady-

state error of this algorithm is controllable using a parameter in the algorithm, however, this

algorithm requires special initialization and thus it is not robust to agents leaving and then

coming back to the group. To eliminate the tracking error, [53] extends the work of [51] by

making the assumption that a priori information about the model of the reference signal of

the agents is available. More specifically, [53] uses the internal model principle built around a

certain class of time-varying reference signals whose Laplace transform is a rational function

with no poles in the left-hand complex plane. On the other hand, [54–56] proposes average

consensus algorithms with zero steady-state error tracking for arbitrary reference signals

with known bound on the signal value or its derivatives. However, these algorithms use a

sliding mode like components and, thus suffer from the well-known chattering problem for

sliding mode controllers. Recall that from a practical perspective, chattering is undesirable
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and leads to excessive control energy expenditure.

Dynamic active average consensus is an extension of a dynamic average consensus problem.

In dynamic active average consensus, a group of agents interacting over a connected graph

should track the average of their ‘measured’ local signals. However, at any time, only a subset

of these agents are active, meaning that only a subset of agents collects measurements. The

objective then in the active average consensus is for all agents, both active and passive,

to obtain the average of the collected measurements, which is the sum of the collected

measurements divided by the numbers of the measurements (or equivalently numbers of the

active agents). The conventional average consensus problem reviewed above is in fact a

special case of the active average consensus with all the agents being active at all times.

The active average consensus problem can be also viewed as a weighted average consensus

problem [7], in which the weights are 1 for active agents and 0 for passive agents. However,

the solutions for weighted average consensus (see e.g., [7, 57, 58]) use the notation of the

‘equivalent’ Laplacian matrix, which is the multiplication of the inverse of the weight matrix

and the Laplacian matrix, so that the aggregate vector of the weights becomes the left

eigenvector corresponding to the zero eigenvalue of the equivalent Laplacian [7]. Therefore,

the weights should be non-zero, and thus these solutions cannot solve the active average

consensus problem. Solutions specifically addressing the active average consensus problem

are proposed in [59–61], but, they require both the reference inputs and their derivatives to

be bounded to guarantee bounded error tracking. [59, 60] also assume that the active and

passive role of the agents are fixed and agents cannot alternate between modes. On the other

hand, [61] allows the agents to change mode but requires that this change be smooth.
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1.2.4 Distributed Coverage Control for Mobile Agents Deploy-

ment

Over the last decade, deploying a group of networked mobile agents to cover a region with

a service objective such monitoring, data collection, and wireless communication have at-

tracted considerable attention, see for a few examples [14–16]. The deployment strategy

commonly includes partitioning the environment and allocating agents to those partitions.

That is, the area of interest is partitioned into subregions and each agent is allocated to a

location in the subregion such that some coverage metric is optimized. The classic Voronoi-

based deployment strategy [62–77] is a prime example of multi-agent deployment for area

coverage. [62] as one of the initial work in this area develops a deployment algorithm based

on the Llyod method to compute the Voronoi partition and allocate the agents to the Cen-

troidal Voronoi configuration which is well-known as the optimal configuration of a class

of locational optimization cost function [63]. Based on this framework, similar algorithms

are also developed by [64, 65] considering communication constraints, [66] for non-convex

environments and [67] for discovering the coverage holes and increasing coverage.

The original Voronoi-based deployment strategy is developed based on the assumption that

the agents are homogeneous. To reach the optimal coverage with heterogeneous agents whose

service (sensory) capabilities are different, [68–70] employs the weighted Voronoi diagram

(power diagram) where the weightings account for heterogeneity among the agents. The

heterogeneity of agents is also addressed in [71] where the authors present a new locational

cost function that encodes the different service capabilities through heterogeneous density

functions. The works mention above assume the footprint of the service provided by an

agent is disk-shaped, i.e., the distribution of Quality of service (QoS) is isotropic. However,

an anisotropic service model is more realistic because sensory systems such as cameras,

directional antenna, and radars are anisotropic. [72,73] for wedge-shape and [74] for elliptic

footprint adapt an anisotropic service model by modifying the partitioning diagram to match
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the features of the anisotropy of the sensors. But these methods increase the complexity of

the deployment design, which make the design of distributed optimal deployment strategies

very challenging.

The heterogeneity in deployment algorithm design can also be due to non-uniformity in

area of interest. To deal with such scenarios, a priority (sensory) function of the position is

introduced to indicate the importance level over the area, where a location needs higher QoS

if the value at this location is higher. The work [62–74] mentioned above assume the priority

function is known to each agent. However, it is unrealistic to assume this function is a priori

in many scenarios. For example, in deploying agents to clean up an oil spill, the spatial

distribution of the oil spill is the priority function, but the distribution of the concentration

is not known in advance. [75] uses the parameterized basis functions to model the priority

distribution, and [76] models the distribution by a zero-mean Gaussian random field. Then,

in both [75] and [76], the agents gradually fitting their model to the true distribution from

local sensor measurement while exploring the area. In [77], the authors assume the unknown

priority function is a function of the position of some unknown targets. The search agents

detecting the targets while exploiting the area, and then, broadcast their information about

the environment to the service agents so the service agents can focus on the deployment

problem.

1.3 Objectives and Contributions

The contributions of this dissertation lie in providing practical solutions to overcome some

challenges and relax some of the theoretical restrictive assumptions on the design of dis-

tributed solutions for leader-following problems for a group of networked cooperative au-

tonomous agents. This dissertation investigates four leader-following scenarios in the con-

secutive chapters. The objectives and contributions of each chapter are stated in what
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follows.

• Chapter 2: Distributed single leader-following control

We consider a leader-following problem in which the only information available about

the leader is its instantaneous sampled state that is known only to a subset of a group

of homogeneous or heterogeneous LTI followers at the sampling times. We make no

assumptions about the input of the leader or the structural form of its dynamics.

That is, the state of the leader is perceived by the followers as an exogenous signal.

The sampled states of the leader can be the states of a physical system (e.g., in a

pursuit-evasion problem) or a set of desired reference states of a virtual leader (e.g.,

in a waypoint tracking problem). Given the limited information about the leader, we

seek a practical solution that enables the followers to arrive at the sampled state of the

leader before the next sampling time. That is, we design a distributed algorithm that

steers a group of homogeneous or heterogeneous LTI followers to be at the sampled

states of the leader at a finite time just before the next sampled state is obtained.

We note that practical one step lagged tracking has also been used in [78–80] for

a set of dynamic average consensus algorithms with asymptotic tracking behavior.

Our solution is inspired by the minimum energy controller design [81] in the classical

optimal control theory, and is proposed for problems where the interaction topology of

the followers plus the leader is an acyclic digraph with the leader as the global sink.

Directed acyclic interaction topology can be interpreted as the agents only obtaining

information from those in front of them (see, [82, 83] for algorithms designed over

acyclic graphs). Our algorithm also allows the followers to track the sampled state of

the leader with a locally chosen offset, which can be time-varying, to form a formation.

This offset, when the followers are mobile agents and their whole state or part of it

is the position vector, can be used to enable the followers to form a transnational

invariant formation [84] about the sampled state of the leader. For a special class
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of non-homogeneous LTI MAS, we show that our results can be extended to solve a

leader-following problem where we want only an output of the followers to follow the

leader’s sampled state. Finally, if the followers are homogeneous, our algorithm not

only results in a leader following behavior but also it makes the states and inputs of

the followers fully synchronized after the first sampling epoch.

The contributions of the proposed leader following algorithm is summarized as follow:

– We propose a practical leader following solution to track a leader with unknown

dynamics and input.

– The proposed leader following algorithm adapts to both homogeneous and het-

erogeneous group of LTI followers.

– The algorithm steers the followers to be at the sampled states of the leader at the

specified arrival times and in a specified formation.

– The algorithm is a minimum energy control.

• Chapter 3: Distributed containment control.

We consider the problem of the distributed containment control for a group of mobile

agents, which communicate over a strongly connected and weight-balanced directed

graph. The objective is to drive a group of mobile agents into a region that is enclosed

by a group of moving leaders with unknown dynamics. In the literature, to provide

perfect tracking, the containment controls normally assume that the leaders are static

or if they are dynamic they either follow a certain dynamics that are known to the

followers or the leaders’ motions have to be coordinated with the followers (for example,

in [36] the leaders have to execute the stop-go rule to ”wait” for the followers). We

consider the tracking problems where the position of the leaders is only measured

online. We make no assumption about the dynamics of the leaders (so the leaders can

be heterogeneous) except that the change of the state of the leaders is bounded. Under

this setting, we provide a practical solution to let the mobile agents track the convex
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hull of the leader with a bounded tracking error. This tracking error is expected,

similar to what is known in dynamic consensus literature, as the online time-varying

information takes some time to propagate through the network [1]. In our design, the

agents jointly detect the group of moving leaders in a periodic sampling time. Each

agent detects a subset (could be empty) of the leaders and computes the geometric

centers of the subset. We show that the average of the geometric centers of the observed

leaders at each agent is a point in the convex hull of the leaders. Then, we design a

discrete-time consensus-based containment control algorithm to track this average.

Hence, even though some of the agents do not observe any leaders, they still can

track the average which is in the convex hull. In our setting, in accordance with the

practical physical features of the problem, the mobile agents have continuous-time

unicycle dynamics but they only need to communicate with each other and detect the

leaders in discrete-time fashion.

The contributions of the proposed containment control are summarized as follow:

– We propose a practical containment control solution to track the convex hull of

the leaders with unknown dynamics.

– The leaders can be with heterogeneous dynamics and they do not have to coop-

erate with the follower agents.

– The follower agents communicate over a strongly connected and weight-balanced

directed graph which is less restrictive than connected undirected graphs normally

considered in the literature.

– The proposed containment control scheme allows the follower agents to have a

continuous–time dynamics, but only communicate in the discrete-time fashion.

• Chapter 4: Distributed dynamic active weighted average consensus

This chapter studies the dynamic active weighted average consensus problem, which is

motivated by the observation that we made in Chapter 3 that the containment control
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can be cast as a dynamic active average consensus problem. In the containment control,

at any given time, only a part of follower agents, which is referred to as active agents,

observer a subset of leaders. Each active agent computes the geometric center of its

observed leaders as its local reference. We theoretically show that the average of the

local references collected by active agents is a point in the convex hull of the leaders.

Therefore, the containment control problem can be cast as a dynamic active average

consensus problem whose objective is both active and passive agents to track the

average of the collected local references.

We propose a continuous-time solution for dynamic active weighted average consensus

over connected graphs that requires only the rate of the change of the reference inputs

to be bounded. Also, the agents can switch between active and passive modes in-

stantaneously, as long as a dwell time exists between the switching incidences. Abrupt

switching is usually the case for practical problems where agents are observing dynamic

activities that can enter or leave the observation zone of the agents and thus change

the agents’ role from active to passive or vice versa in a non-smooth fashion. Next,

we study the discrete-time implementation of our proposed dynamic active weighted

average consensus algorithm and use it to solve a containment control problem. In

the previous chapter, we used two parallel conventional dynamic average consensus

algorithms, one to generate the sum of the measurements divided by the size of the

network and the other to obtain the sum of the active agents divided by the size of the

network. Then, the average of the active measurements is obtained from dividing the

output of the first algorithm by that of the second one. But when the second one tends

to cross zero, it causes infinity tracking error so we need to introduce zero crossing pro-

tection measure. This chapter is offering a computationally more efficient algorithm,

which has a lower communication complexity and avoids zero-crossing problem for its

approach to solve dynamic active weighted average consensus problem.

The contributions of the proposed dynamic active average consensus algorithm is sum-
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marized as follow:

– Compared to [59–61], to guarantee bounded error tracking, our algorithm only

requires the derivative of the reference signals to be bounded.

– The proposed algorithm allows the agents switch between active and passive

modes instantaneously.

– We show that a containment control problem can be formulated as an active

average consensus problem and solved using our proposed discrete-time algorithm.

– The proposed algorithm has the same computational and communication com-

plexity of conventional dynamic average consensus algorithms.

• Chapter 5: Distributed coverage control for mobile agents deployment

In this chapter, we propose a distributed deployment solution for a group of mobile

agents that are deployed over a set of dense targets to provide a service. The agents

are heterogeneous in a sense that their QoS, modeled as a spatial density distribution,

is not homogeneous. The deployment objective is to match the collective QoS of

the service agents as close as possible to the the density distribution of the targets

such that the service provided by the agents efficiently covers the targets. In our

setting the target density distribution of the target is unknown a priori. We propose

a consensus-based distributed expectation-maximization (EM) algorithm for agents to

estimate the target density distribution, which we model as a Gaussian mixture model

(GMM). The GMM not only decomposes the target density distribution to a set of

Gaussian bases but also partitions the area to subregions each of which represents a

Gaussian basis. Unlike the distributed Voronoi partitioning that require the agents

to communicate to their Voronoi neighbors, which may be unrealistic because Voronoi

neighbors may be our of communication range of each other, our approach only requires

the communication graph among the agents to be connected. The agents use the

Kullback-Leibler divergence (KLD) to evaluate the similarity between their service
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distribution and each Gaussian basis of subregion. Then, a multi-agent assignment

problem is formulated under the framework of the optimal mass transport to allocate

each agent to a subregion of the targets estimated GMM density distribution by taking

the KLD as the cost of assignment. The agents cooperate to solve the assignment

problem, as a result, the summation of the divergences corresponding to each paired

agent’s QoS distribution and subregion’s Gaussian basis is minimal. We demonstrate

our results for the case that the QoS is modeled as a anisotropic Gaussian distribution,

and discuss how our results can be used for non-Gaussian distributions, as well. We

demonstrate the applications of the proposed coverage control in the deployments of

sensor network and UAV-aid wireless communication network.

The contributions of the proposed coverage control are summarized as follow:

– The proposed deployment strategy considers mobile agents with heterogeneous

and anisotropic QoS distribution.

– Agents are not required to know the density distribution (priority function) of

targets in advance.

– The implementation is distributed and only requires the communication graph

among the agents to be connected.
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Chapter 2

Distributed Single Leader Following

Control

2.1 Introduction

The first objective of this chapter is to design a leader-following algorithm, which steers a

group of homogeneous followers with linear dynamics to be at the sampled states of a leader

agent at finite specified times. Then the result is extended to heterogeneous followers that

aim to follower the leader in a specified formation. We assume that the only information

available about the dynamics of the leader is its sampled states, which is known only to a

subset of the followers at the sampling times. We make no assumptions about the input

of the leader or the structural form of its dynamics. The sampled states of the leader can

be the states of a physical system (e.g., in a pursuit-evasion problem) or a set of desired

reference states of a virtual leader (e.g., in a waypoint tracking problem).

Inspired by the classical optimal control results, we propose a distributed minimum en-

ergy control strategy to solve the leader-following problem for networks that the interaction
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topology of the followers plus the leader is an acyclic digraph with the leader as the global

sink. Directed acyclic interaction topology can be interpreted as the agents only obtaining

information from those in front of them (see, [82, 83] for algorithms designed over acyclic

graphs).

For the homogeneous followers, the algorithm not only results in a leader following behavior,

but also it makes the states and inputs of the followers become fully synchronized after the

first sampling epoch. A sufficient condition is provided for heterogeneous followers to achieve

the same synchronization. Our algorithm also allows the followers to track the sampled state

of the leader with a locally chosen offset, which can be time-varying. This offset, when the

followers are mobile agents and their whole state or part of it is the position vector, can

be used to enable the followers to form a transnational invariant formation [84] about the

sampled state of the leader. Moreover, for a special class of LTI MAS, we show that our

results can be extended to solve a leader-following problem where we want only an output

of the followers to follow the leader’s state.

Four numerical examples are used to demonstrate the effectiveness of the algorithm. The

first example considers a case of homogeneous followers and shows the application of the

proposed algorithm in a leader-following task under a specific formation structure for a group

of unicycle robots. In this example, the leader’s dynamics is nonlinear while the dynamics

of the followers are feedback linearized. In the second example, we demonstrate the use of

our algorithm for reference state tracking via a group of second order integrator followers

with bounded control. Using the intrinsic properties of our leader-following algorithm, in

this example, we show that the arrival times at the reference states can be designed in

such a way that the inputs of the agents stay within the pre-specified saturation bounds.

The third example consider a case of heterogeneous followers, and shows the application of

our leader-following algorithm in following a nonlinear mass-spring-damper leader under a

specific formation structure for a group of heterogeneous linear mass-spring-damper systems.
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The last example demonstrates an output-tracking scenario for a group of aircraft.

The outline of this chapter is as follows: Section 2.2 gathers basic notation and graph-

theoretic terminology and notions. Section 2.3 discusses about the leader-following control

for homogeneous followers. The problem definition, distributed leader-follower algorithm

and two numerical application examples are presented sequentially in the subsections. Sec-

tion 2.4 extends the leader-following control to heterogeneous followers tacking a leader

with a specified formation. Similarly, the problem definition, distributed leader-follower al-

gorithm and two numerical application examples for heterogeneous followers are discussed

in the subsections. Section 2.5 concludes the results of this chapter.

2.2 Notations and Preliminaries

Notation: We let R, R>0, R≥0, Z, and Z≥0 denote the set of real, positive real, non-negative

real, integer, and non-negative integer numbers, respectively. The transpose of a matrix

A ∈ Rn×m is A>.

Graph theoretic notations and definitions : Here we review our graph related notations and

relevant definitions and concepts from graph theory following [49]. A digraph, is a triplet

G = (V , E ,A), where V = {1, . . . , N} is the node set and E ⊆ V × V is the edge set, and

A = [aij] ∈ RN×N is the adjacency matrix of the graph defined according to aij = 1 if

(i, j) ∈ E and aij = 0, otherwise. An edge (i, j) from i to j means that agent j can send

information to agent i. Here, i is called an in-neighbor of j and j is called an out-neighbor

of i. A directed path is a sequence of nodes connected by edges. A directed path that starts

and ends at the same node and all other nodes on the path are distinct is called a cycle.

A digraph without cycles is called directed acyclic graph. The out-degree of a node i is

diout = ΣN
j=1aij. The out-degree matrix of a graph is Dout = Diag(d1

out, d
2
out, · · · , dNout). We
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Figure 2.1 – A leader-follower network. The interaction topology of the follower agents, G,
shown via the network with solid edges, is an acyclic digraph. Agent 0 is the leader. The
edges of Gl is shown by the dashed arrow. Here, the leader is the global sink of the G ∪ Gl,
therefore, its information reaches all the agents in an explicit or implicit manner.

denote the set of in-neighbors of an agent i by N i
in and the out-neighbors of agent i by N i

out.

A node i ∈ V is called a global sink of G if it outdegree diout = 0 and for every node j ∈ V

there is at least a path from j to i.

2.3 Homogeneous group of followers with an active

non-homogeneous leader

2.3.1 Problem definition

In this section we formalize our problem of interest. We consider a group of N MAS whose

dynamics is described by

ẋi(t) = A xi(t) + B ui(t), i ∈ V = {1, · · · , N}, (2.1)

where xi ∈ Rn is the state vector and ui ∈ Rm is the control vector. These agents aim to

follow a dynamic signal x0(t) : R≥0 → Rn. This signal can be a dynamic reference signal of

a virtual leader or the state of an active physical leader with nonlinear dynamics

ẋ0(t) = f 0(x0(t),u0(t), t). (2.2)
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in which the control vector u0 ∈ Rm0
is unknown. The interaction topology between the

follower agents is described by a acyclic digraph, denoted by G. A subset of agents in G has

access to x0(t) at the sampling times tk, k ∈ Z≥0. Throughout the paper we assume that

Tk = tk+1− tk ∈ R>0 for any k ∈ Z≥0 with t0 = 0. Moreover, we let N 0
in be the subset of the

agents in G that are connected to the leader. We let Gl be the digraph consisted of the leader

and N 0
in and the directed edges connecting N 0

in to the leader. In what follows, we assume

that the leader is the global sink of the G ∪ Gl, so that its information reaches all the agents

in an explicit or implicit manner (see Fig. 2.1 for an example).

The objective of this chapter is to design a distributed control rule for the input vector ui(t)

of each agent such that they can cooperatively steer the group to be at the state x0(tk) of

the leader in time before the next sampling time tk+1, i.e.,

xi(tk+1) = x0(tk), i ∈ {1, . . . , N}.

Note that the agents have no information about the dynamics that creates the sampled states

x0(tk). Here, we assume that agents’ dynamics (2.1) is controllable. Recall that if a linear

system is controllable, there always exists a control to move the state of the system from

any point in the state space to any other point in finite time.

2.3.2 Leader-following control for homogeneous followers

In this section, we develop a novel distributed solution to solve the leader-follower problem

stated in Section 2.3.1. We start by using a classical optimal control result to make the

following statement. To present this result, we recall that

G(t) =

∫ t

0

eA(t−τ) BB> eA>(t−τ)dτ, (2.3)
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is the controllability Gramian of (A,B) for any finite time t ∈ R>0. Since (A,B) is control-

lable, G(t) is full rank and invertible at each time t ∈ R>0.

Lemma 2.3.1. Consider a leader-follower problem where each agent’ dynamics is given by

(2.1). Suppose i is a follower agent in G that has access to x0(t) of the leader at each sampling

time tk, k ∈ Z≥0, i.e., i ∈ N 0
in. Starting at an initial condition xi(t0) ∈ Rm and ui(t0) = 0,

for any i ∈ N 0
in let

ui(t) = B> eA>(tk+1−t) G−1
k (x0(tk)− eATk xi(tk)), t ∈ (tk, tk+1], (2.4)

where Tk = tk+1 − tk ∈ R>0, and

Gk = G(Tk) =

∫ Tk

0

eA(Tk−τ) BB> eA>(Tk−τ)dτ. (2.5)

Then, for every i ∈ N 0
in we have xi(tk+1) = x0(tk) for all k ∈ Z≥0. Moreover, at each time

interval [tk, tk+1], the control input ui(t) of i ∈ N 0
in satisfies

ui(t) = argmin

∫ tk+1

tk

ui(τ)>ui(τ)dτ, s.t. (2.6a)

ẋi(t) = A xi(t) + B ui(t), (2.6b)

xi(tk) = xi(tk), xi(tk+1) = x0(tk). (2.6c)

Proof. The proof follows from the classical finite time minimum energy optimal control

design [81, page 138].

Recall here that Gk in (2.5) is the controllability Gramian of (A,B). Since (A,B) is con-

trollable, the matrix Gk is invertible.

Lemma 2.3.1 essentially states that any follower that samples the leader, in the inter-sampling

time interval can use the classical minimum energy control to steer towards the latest sampled
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state of the leader. Next, we show that this idea can be extended to a distributed setting

in which only a subset of the followers have access to the leader’s sampled state. To present

our results we first introduce some notations. We denote the adjacency matrix and out-

degree matrix of the followers’ interaction topology G, respectively, by A = [aij] and Dout =

Diag(d1
out, d

2
out, · · · , dNout). We let

1 i =


1, i ∈ N 0

in,

0, otherwise,

(2.7)

be the indicator operator that defines the state of connectivity of agent i of G to the leader.

We also define

Ḡk(t) =

∫ t

tk

eA(t−τ) BB> eA>(tk+1−τ)dτ, t ∈ [tk, tk+1]. (2.8)

We notice that Ḡk(t) = G(t − tk)eA>(tk+1−t), where G is the controllability gramian (2.3).

Therefore at each finite time t ∈ (tk, tk+1], by virtue of controllability of (A,B), Ḡk(t) is

invertible.

With the proper notations at hand, we present our distributed solution to solve our leader-

follower problem of interest as follows.

Theorem 2.3.1. Consider a leader-follower problem where the follower agents’ dynamics

are given by (2.1). Suppose the leader’s time-varying state is x0 : R≥0 → Rn. Let the

network topology be such that G ∪ Gl an acyclic digraph with 0 as the global sink. Suppose

every follower agent i ∈ N 0
in has access to x0(t) at each sampling time tk, k ∈ Z≥0. Let

P(t) = Ḡ
−1
k (t) for t ∈ (tk, tk+1]. Starting at an initial condition xi(t0) ∈ Rn and ui(t0) = 0,

let for t ∈ (tk, tk+1]

ui(t) =ωl

(
B>eA>(tk+1−t) G−1

k (x0(tk)−eATk xi(tk))
)
+
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ωf

(
B> eA>(tk+1−t) P(t)×

N∑
j=1

aij(x
j(t)− eA(t−tk) xj(tk))+ (2.9)

B>eA>(tk+1−t) G−1
k eATk

N∑
j=1

aij(x
j(tk)−xi(tk))

)
,

where ωl = 1 i

1 i+diout
, ωf = 1

1 i+diout
. Then, the followings hold for t ∈ R≥0 and k ∈ Z≥0:

(a) xi(tk+1) = x0(tk), i ∈ {1, . . . , N};

(b) the trajectory of every follower i ∈ {1, . . . , N} is

xi(t)= eA(t−tk)xi(tk)+Ḡk(t)G
−1
k (x0(tk)−eATk xi(tk)); (2.10)

(c) the control input ui(t) of every agent i ∈ {1, . . . , N} is equal to (2.4).

Proof. For G ∪ Gl an acyclic digraph with 0 as the global sink, the agents can be sorted into

a series of hierarchical subsets. Without loss of generality, we sort the agents as follows.

Recall that V = {1, · · · , N} is the set of the followers. We let V0 = {0}. Next, we let V1

to the subset of agents in G that are connected to the leader but they have no out-neighbor

in G, i.e., V1 = {i ∈ V| 1 i = 1 and N i
out = {}}. We sequentially define the lower subset as

Vk = {i ∈ V\ ∪k−1
j=1 Vj| N i

out ⊆ ∪k−1
j=0Vj}, where k ∈ {2, · · · ,m}, such that ∪mj=1Vj = V . In

short, in this hierarchy, the agents in the lower subset only connects to the agents in the

higher subsets.

The proof of the statements can be carried out by induction over time intervals (tk, tk+1],

k ∈ Z≥0. For space limitation we skip the proof of validity of k = 0. We assume that the

statements hold for [t0, tk] and we show the validity of the statements at (tk, tk+1] as follows

via the mathematical induction over Vl where l ∈ {1, · · · ,m}.

Consider first the dynamics of the follower agents in Vl. For l = 1, the control (2.9) reduces
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to (2.4), since ωl = 1 and
∑N

j=1 aij = 0. Hence statement (c) holds. The trajectory of xi(t)

after substituting for the control input ui is

xi(t) = eA(t−tk) xi(tk) +

∫ t

tk

eA(t−τ) Bui(τ)dτ

= eA(t−tk) xi(tk) +

∫ t

tk

eA(t−τ) BB> eA>(tk+1−τ) G−1
k (x0(tk)− eATk xi(tk))dτ.

Then given (2.8), the trajectories of agents i ∈ V1 is given by (2.10) for t ∈ R≥0, confirming

Statement (b). Moreover, when t = tk+1, the final state of the end of this period is

xi(tk+1)=eATk xi(tk)Ḡk(tk+1)G−1
k (x0(tk)−eATk xi(tk)) = x0(tk),

so statement (a) holds.

Next, let statements (a), (b) and (c) be true for i ∈ Vl−1. Then, for the follower i ∈ Vl we

have:

xi(t) = eA(t−tk) xi(tk) +

∫ t

tk

eA(t−τ) Bui(τ)dτ

= eA(t−tk) xi(tk)

+
1 i

1 i + diout

∫ t

tk

eA(t−τ) BB> eA>(tk+1−τ) G−1
k (x0(tk)− eATk xi(tk))dτ

+
1

1 i + diout

∫ t

tk

eA(t−τ) BB> eA>(tk+1−τ) P(τ)
N∑
j=1

aij(x
j(τ)− eA(τ−tk) xj(tk))dτ

+
1

1 i + diout

∫ t

tk

eA(t−τ) BB> eA>(tk+1−τ) G−1
k eATk

N∑
j=1

aij(x
j(tk)− xi(tk))dτ

= eA(t−tk) xi(tk)

+
1 i

1 i + diout

Ḡk(t)G
−1
k (x0(tk)− eATk xi(tk))

+
1

1 i + diout

∫ t

tk

eA(t−τ) BB> eA>(tk+1−τ) P(τ)
N∑
j=1

aij(x
j(τ)− eA(τ−tk) xj(tk))dτ
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+
1

1 i + diout

Ḡk(t)G
−1
k eATk

N∑
j=1

aij(x
j(tk)− xi(tk))

Since j ∈ Vm, where m < l, the trajectory xj(τ) of agent j is assume to follow (2.10).

Therefore, we can put (2.10) into xj(τ).

xi(t) = eA(t−tk) xi(tk)

+
1 i

1 i + diout

Ḡk(t)G
−1
k (x0(tk)− eATk xi(tk))

+
1

1 i + diout

∫ t

tk

eA(t−τ) BB> eA>(tk+1−τ)

×P(τ)
N∑
j=1

aij(e
A(τ−tk) xj(tk) + Ḡk(τ)G−1

k (x0(tk)− eATk xj(tk))− eA(τ−tk) xj(tk))dτ

+
1

1 i + diout

Ḡk(t)G
−1
k eATk

N∑
j=1

aij(x
j(tk)−xi(tk))

= eA(t−tk) xi(tk)

+
1 i

1 i + diout

Ḡk(t)G
−1
k (x0(tk)− eATk xi(tk))

+
1

1 i + diout

Ḡk(t)G
−1
k

N∑
j=1

aij(x
0(tk)−eATk xj(tk))

+
1

1 i + diout

Ḡk(t)G
−1
k eATk

N∑
j=1

aij(x
j(tk)−xi(tk))

= eA(t−tk) xi(tk)

+
1 i

1 i + diout

Ḡk(t)G
−1
k (x0(tk)− eATk xi(tk))

+
diout

1 i + diout

Ḡk(t)G
−1
k (x0(tk)− eATk xi(tk))

= eA(t−tk) xi(tk)+Ḡk(t)G
−1
k (x0(tk)−eATk xi(tk))

xi(tk+1) =eATk xi(tk) + Ḡk(tk+1)G−1
k (x0(tk)−eATk xi(tk)) = x0(tk)
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Thereby, statement (a) and (b) also hold for the case l = l. Then we show that control (2.9)

is equivalent to (2.4):

ui(t) =
1 i

1 i + diout

[B> eA>(tk+1−t) G−1
k (x0(tk)−eATk xi(tk))]

+
1

1 i + diout

[B> eA>(tk+1−t) P(t)
N∑
j=1

aij(x
j(t)− eA(t−tk) xj(tk))

+ B>eA>(tk+1−t) G−1
k eATk

N∑
j=1

aij(x
j(tk)−xi(tk))]

=
1 i

1 i + diout

[B>eA>(tk+1−t) G−1
k (x0(tk)−eATk xi(tk))]

+
1

1 i + diout

[B> eA>(tk+1−t) P(t)

×
N∑
j=1

aij(e
A(t−tk) xj(tk) + Ḡk(t)G

−1
k (x0(tk)− eATk xj(tk))− eA(t−tk) xj(tk))

+ B>eA>(tk+1−t) G−1
k eATk

N∑
j=1

aij(x
j(tk)−xi(tk))]

=
1 i

1 i + diout

[B>eA>(tk+1−t) G−1
k (x0(tk)−eATk xi(tk))]

+
diout

1 i + diout

[B> eA>(tk+1−t) G−1
k (x0(tk)− eATk xi(tk))]

=B> eA>(tk+1−t) G−1
k (x0(tk)− eATk xi(tk)).

Therefore, statement (c) holds.

Since both the base case l = 1 and the inductive step have been proved, by mathematical

induction statement (a), (b) and (c) hold for all l ∈ {1, · · · ,m}.

In the following, we give several remarks regarding the structural properties of the leader-

follower algorithm of Theorem 2.3.1. First, it is worth to note here the interesting synchro-

nization property that the leader-follower algorithm described in Theorem 2.3.1 has.

Corollary 2.3.1 (Followers’ synchronization). Consider the Leader-follower interaction de-
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scribed in Theorem 2.3.1. Then, xi(t) = xj(t) for t ∈ [t1,∞) and ui(t) = uj(t) for t ∈ (t1,∞),

for every i, j ∈ {1, . . . , N}. Moreover, if xi(0) = x0 ∈ Rn for all i ∈ {1, . . . , N}, then these

equalities also hold for t ∈ [0, t1] �

Next we observe the following minimum energy control property which follows from the

statement (c) of Theorem 2.3.1 and the classical result in Lemma 2.3.1.

Corollary 2.3.2 (Minimum energy control in [tk, tk+1]). Consider the Leader-follower in-

teraction described in Theorem 2.3.1. Then, at each time interval [tk, tk+1], k ∈ Z≥0, the

control input ui of each follower agent i ∈ {1, . . . , N} is the minimum energy controller that

transfers the agent from its current state x(tk) to their desired state x(tk+1) = x0(tk). �

Remark 2.3.1 (Tracking a priori known desired states at exact sampling time and design of

arrival times). We note that if the leader is virtual and the sampled states are some desired

states that are known a priori to N 0
in with desired arrival time in R>0, the agents can arrive

at the desired state of the leader at the desired arrival time. Furthermore, in cases that the

arrival times is not specified one of the followers in N 0
in (we refer to it as super node that

knows the initial state of all the other followers) can design the arrival times to meet other

optimality conditions or to avoid violating constraints such as input saturation. In case of

input saturation, the fact that by virtue of statement (c) of Theorem 2.3.1 the form of input

vector of the followers are known to be (2.4) can be instrumental to the super node in design

of arrival times. Our second demonstrative example in the proceeding section offers the

details.. �

Remark 2.3.2 (Robustness to state perturbations). We observe that the leader-following

algorithm of Theorem 2.3.1 has robustness to state perturbations similar to the well-known

Model Predictive Control (MPC). Even though the controller implemented in each epoch

(tk, tk+1] is an open-loop control, since every follower exerts its state at time tk as initial

condition to the controller, the algorithm can account for the slight perturbations in the

follower final state xi(tk+1) at the end of each epoch. �
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Figure 2.2 – Interaction topology of the leader-follower problem of first example. Agent 0 is
the leader.

Remark 2.3.3 (Time-varying MAS dynamics and network topology). From the proof of

Theorem 2.3.1, we can see that the followers dynamics can be allowed to be time-varying

but piece-wise constant over each time interval (tk, tk+1], i.e., A(t) = Ā(tk) and B(t) = B̄(tk),

i ∈ {1, . . . , N} for t ∈ (tk, tk+1]. Similarly the network topology can be allowed to be time-

varying as long as between (tk, tk+1] the topology is fixed and satisfies the connectivity

condition of Theorem 2.3.1. �

2.3.3 Demonstrative examples

In this section, we demonstrate use of our proposed algorithm in Theorem 2.3.1 in solving

two leader-follower problems for mobile agents.

A leader tracking problem for a group of unicycle robots

In this demonstrative example, we use our leader-follower algorithm of Theorem 2.3.1 to

solve a leader-follower problem for a group of unicycle robots

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = ωi,

i ∈ {0, 1, 2, 3, 4}, (2.11)
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Figure 2.3 – The trajectories of the leader and the followers in the first numerical example.

Figure 2.4 – The linearization procedure of unicycle.

where vi ∈ R and ωi ∈ R are linear velocity and angular velocity of each agent i, respectively.

Here, agents V = {1, 2, 3, 4} are the follower agents, and agent 0 is the leader robot which

moves with a known constant linear velocity of v0 = 100 (m/min) but unknown angular

velocity ω0. The interaction topology of the agents is shown in Fig. 2.2. Agent 1 obtains the

states of the leader with a sampling rate of 2 per minute, i.e., Tk = 0.5 minutes, k ∈ Z≥0. The

followers start at x1(0) = [−30 − 30 0]>, x2(0) = [−70 − 30 0]>, x3(0) = [−70 −

70 0]>, x4(0) = [−30 − 70 0]> in a rectangular formation. The follower team wants to

follow the leader in a rectangle formation that preserves the initial vertical and horizontal

relative distances of the agents. To satisfy this objective, we first feedback linearize the

dynamics of the followers and then implement our proposed leader-follower algorithm of

Theorem 2.3.1 as described below. The results of implementing our leader-follower algorithm

is shown in Fig. 2.3. The ‘×’ represents the sampled leader positions and the gray window

shows the resulting formation of the followers at the sampling times.
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It is well known that the unicycle dynamics is feedback linearizable. The linearization

procedure is described in [85] and is shown in Fig. 2.4. For each follower agent i ∈ {1, 2, 3, 4},

the feedback linearized dynamics consists of two decoupled second-order integral systems of



żi1

żi2

żi3

żi4


=



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


︸ ︷︷ ︸

A



zi1

zi2

zi3

zi4


+



0 0

1 0

0 0

0 1


︸ ︷︷ ︸

B

ui1
ui2

 , (2.12)

with the changing variable

zi1 = xi,

zi2 = vi cos θi,

zi3 = yi,

zi4 = vi sin θi.

(2.13)

The resulting dynamic compensator of each follower agent i ∈ {1, 2, 3, 4} is

η̇i = ui1 cos θi + ui2 sin θi, ηi(0) ∈ R,

vi = ηi,

ωi =
ui2 cos θi − ui1 sin θi

ηi
.

(2.14)

In order to follow the states of the leader, we assume that agent 1 constructs z0(tk) =[
x0(tk) v0 cos(θ(tk)) y0(tk) v0 sin(θ(tk))

]>
from the leader’s sampled state vector x0(tk) =[

x0(tk) y0(tk) θ0(tk)

]>
. The follower agents share their feedback linearized states zi. The

follower agents use (2.9) to obtain ui ∈ R2, i ∈ {1, 2, 3, 4}, of (2.12). Then, they obtain

their inputs (vi, ωi), i ∈ {1, 2, 3, 4}, from (2.14). Here, we note that the leaders dynamics

is nonlinear and is not required to be feedback linearized. Given the initial location of
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the agents in Fig. 2.2, to preserve the initial rectangular formation at every t = tk, the

desired state of agent i is an offset with respect to the state of agent j ∈ N i
out. We define

the offset parameter Fij ∈ R4 as the desired state offset of agent i at t = tk with respect

to agent j ∈ N i
out. We set that the followers want to keep the sampled leader’s states

x0(tk) in the center of their rectangular formations at every t = tk+1. Thereby, the offset

parameters are F10 = [20 0 20 0]>, F21 = [−40 0 0 0]>, F32 = [0 0 − 40 0]>

and F43 = [40 0 0 0]>. Then, xi(tk) = xj(tk) + Fij, j ∈ N i
out, is achieved by adding

the term B> eA>(tk+1−t) G−1
k Fij to the control (2.9). One can easily verify the validity of

this approach in a similar way to the proof of Theorem 2.3.1. The details are omitted here

for brevity but the leader following with a formation offset will be formally presented and

proved in the next section.

Reference state tracking for a group of second integrator dynamics with bounded

inputs

We consider a group of 6 followers with second order integrator dynamics

ẋi =

0 1

0 0


︸ ︷︷ ︸

A

xi +

0

1


︸︷︷︸

B

ui, −5 ≤ ui ≤ 5, (2.15)

for i ∈ {1, . . . , 6}. The interaction topology of these followers is shown in Fig. 2.5, where,

agent 0 is the virtual leader that is defined more precisely below. Starting at initial conditions

x1(0) = [0 0]>, x2(0) = [2 0]>, x3(0) = [−2 0]>, x4(0) = [5 0]>, x5(0) = [10 0]>,

x6(0) = [−10 0]>, the leader-following mission for this team is to traverse through the

sequence of desired states xd = {xd
1,x

d
2,x

d
3,x

d
4} =


50

10

 ,
−50

10

 ,
20

10

 ,
0

0


, which for

privacy reason are only known to follower 1. The objective is to meet the sequence of desired
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states without violating any of the followers’ control bounds.

In this problem setting, follower 1 is the super node that knows the initial starting state of

all the followers in the team and has computational power to compute the arrival times as

follows to meet the team’s objective.

• First, we note that by virtue of statement (c) of Theorem 2.3.1 the form of input vector

of the followers are known to be (2.4). Since follower 1 knows xi(t0) for i ∈ {1, · · · , 6},

follower 1 can evaluate ui(t) of all the followers. Starting with td0 = 0, follower 1

computes the arrival time at desired state xd
1 from the process below

td,i1 = argmin

∫ td,i1

td0

dτ subject to − 5 ≤ ui(t) ≤ 5, (2.16)

where ui(t) = B> eA>(td,i1 −t) G−1
0 (xd

0 − eAT0 xi(0)) with T0 = td,i1 − td0. Then, the arrival

time so that the followers input do not saturate over (td0, t
d,i
1 ] is set to td1 = max{td,i1 }.

• Due to Corollary 2.3.1, after first epoch, the agents inputs are equal to each other.

Then, the remaining arrival time tdl , l ∈ {2, 3, 4}. Agent 1 computes these desired

times from the optimization problem

tdk+1 = argmin

∫ tdk+1

tdk

dτ subject to − 5 ≤ u(t) ≤ 5, (2.17)

where u(t) = B> eA>(tdk+1−t) G−1
k (xd

k+1 − eATk xd
k) with Tk = tdk+1 − tdk, for k ∈ {1, 2, 3}.

The solution for this set of sequential optimal control problem is td1 = 6.7178, td2 = 25.2061,

td3 = 30.1592 and td4 = 40.4885 seconds. Finally, agent 1 broadcasts the desired arrival times

to the network. Broadcasting the reference states is not allowed due to privacy reasons.

We note that these processes can be done offline. To match the notation in (2.9), at the

implantation stage, we set x0(tk−1) = xd
k, Tk−1 = tdk − tdk−1, and tk = tk−1 + Tk−1, k ∈
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Figure 2.5 – Interaction topology with 6 agents. Agent 0 is the virtual leader.
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Figure 2.6 – The state and control trajectories of followers of the second numerical example.

{1, . . . , 4}, where td0 = 0. Figures 2.6 shows that all the followers meet the desired reference

state of the virtual leader at the specified arrival times without delay (the ‘+’ marks the

reference states). Figure 2.6 also shows the control history of the agents. As seen, the control

inputs respect the saturation bounds 5 or −5. We can also observe that the followers’ states

and inputs, as predicted in Corollary 2.3.1, are all synchronized after the first epoch.

Note that, one may wonder the feasibility of the design of the sampling time Tk, k ∈

{0, 1, 2, 3}, as described above. The following lemma shows that every Tk, k ∈ {0, 1, 2, 3} is

guaranteed to be a finite value.

Lemma 2.3.2. Consider a second order integrator system initialized at x(t0) = χ(t0) ∈ R2
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at time t0 ∈ R≥0. This system implements the minimum energy controller

u(t) = B>eA>(tk+1−t) G(Tk)
−1(χ(tk+1)− eATk x(tk)), t ∈ (tk, tk+1], (2.18)

and u(t0) = 0 to traverse sequentially through a set of m+ 1 points {χ(tk)}mk=0 ⊂ R2, where

tk ∈ R≥0 is the arrival time at point χ(tk), Tk = tk+1 − tk ∈ R>0, A and B are given in

(2.15), and G is defined in (2.3). For this system, there always exists a set of finite arrival

times {tk}m0 such that |u(t)| ≤ |umax| for any t ∈ [t0, tm], where umax ∈ R≥0 is the known

bound on the control input.

Proof. To establish the proof, similar to the proof of Theorem 2.3.1, we relay on the mathe-

matical induction over time intervals [t0, tk+1], k ∈ {0, · · · ,m− 1}. The proof of the case for

k = 0 is similar to the case of k+ 1 and omitted here for brevity. Now let the statements be

valid over [t0, tk]. Next, we show the validity of the statements at (tk, tk+1], and as a result

the validity of the statement over [t0, tk+1]. Let χ(tk) = [χk,1 χk,2]> ∈ R2, k ∈ {0, · · · ,m}.

Also, given t ∈ (tk, tk+1], let t′ = t− tk ∈ (0, Tk]. Disregarding the control bounds, (2.18) re-

sults in x(tk) = χ(tk) for k ∈ {0, · · · ,m−1}. Therefore, control (2.18) can also be expressed

as

u(t′) =

[
12
T 3
k

(Tk − t′)− 6
T 2
k
− 6
T 2
k

(Tk − t′) + 4
Tk

]χk+1,1 − χk,1 + Tkχk,2

χk+1,2 − χk,2

 .
Since u(t′) is an affine function of t′, the maximum value of |u(t′)| is at either t′ → 0+

or t′ = Tk. That is, |u(t′)| ≤ |u(t′ → 0+)| or |u(t′)| ≤ |u(Tk)| where u(t′ → 0+) =

limt′→0+ u(t′). Next, we show that there always exists a Tk that makes |u(t′ → 0+)| ≤ |umax|

and |u(Tk)| ≤|umax|, which means that |u(t′)| ≤|umax|, t′ ∈ (0, Tk]. Note that |u(t′ → 0+)| =∣∣∣ 6
T 2
k

(χk+1,1 − χk,1)− 2
Tk

(χk+1,2 − 2χk,2)
∣∣∣ ≤ ∣∣∣ 6

T 2
k

(χk+1,1 − χk,1)
∣∣∣+∣∣∣ 2

Tk
(χk+1,2 − 2χk,2)

∣∣∣, and |u(Tk)| =∣∣∣− 6
T 2
k

(χk+1,1 − χk,1)+ 2
Tk

(2χk+1,2 − χk,2)
∣∣∣ ≤ ∣∣∣ 6

T 2
k

(χk+1,1 − χk,1)
∣∣∣+
∣∣∣ 2
Tk

(2χk+1,2 − χk,2)
∣∣∣. Since
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the upper bounds established for |u(t′ → 0+)| and |u(Tk)| monotonically decrease when Tk

increases, there always exists finite value of Tk such that these upper bounds become equal

to umax. Therefore, there always exists a finite value of Tk for which control law (2.18) does

not violate the controller saturation bound.

2.4 Heterogeneous group of followers tracking an ac-

tive leader in a formation

In this section, we extend the leader following control to adapt a more general scenario.

We consider the followers are with different linear dynamics and they aim to follow a un-

certain leader in a specified formation. The formation can be view as a offsets of position

related states between the followers and the leader. The following section redefines the leader

following problem and its objective in this general scenario.

2.4.1 Problem definition

We consider a group of N heterogeneous MAS whose dynamics is described by

ẋi(t) = Ai xi(t) + Bi ui(t), i ∈ {1, · · · , N}, (2.19)

where xi ∈ Rn is the state vector and ui ∈ Rmi is the control vector. Throughout the paper

we assume that the agents’ dynamics (2.19) is controllable, i.e., (Ai,Bi) for i ∈ {1, . . . , N}

is controllable. These agents (referred hereafter as followers) aim to follow a dynamic signal

x0(t) : R≥0 → Rn with possibly a locally chosen offset. This signal can be a dynamic

reference signal of a virtual leader or the state of an active physical leader with (possibly)

a nonlinear dynamics, e.g., ẋ0(t) = f 0(x0(t),u0(t), t). The dynamical model and the input
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u0 ∈ Rm0
of the leader is not known to the followers. The interaction topology between the

followers is described by a acyclic digraph, denoted by G. Only a subset of followers in G,

denoted by N 0
in 6= {}, has access to x0(t) at the sampling times tk ∈ R, k ∈ Z≥0. Throughout

the paper we assume that Tk = tk+1 − tk ∈ R>0 for any k ∈ Z≥0 with t0 = 0. We let Gl

be the digraph consisted of the leader and N 0
in and the directed edges connecting N 0

in to the

leader. In what follows, we assume that the leader is the global sink of G = G ∪ Gl, so that

its information reaches all the agents in an explicit or implicit manner (see Fig. 2.1 for an

example). We let N i

out be the set of the out-neighbors of agent i ∈ {0, 1, · · · , N} in graph

G; we note the N 0

out = {}.

Give that we only have a limited information about the leader (only the sampled states of

the leader x0(tk) is available), we seek a practical solution that enables the followers to arrive

at the sampled state of the leader before the next sampling time. Therefore, our objective

in this paper is to design a distributed control rule for the input vector ui(t) of each follower

i ∈ {1, · · · , N} such that

xi(tk+1) = x0(tk)− Fi0(tk), i ∈ {1, · · · , N}. (2.20)

That is, the follower i ∈ {1, . . . , N} can steer itself to be in Fi0(tk) ∈ Rn offset with respect

to the state x0(tk) of the leader in time before the next sampling time tk+1. We note

that the set of offsets {Fi0(tk)}Ni=1, when it is related to the position offsets of the agents,

defines the formation of the followers around the leader. Here, the term formation refers to

transnational invariant formation [84, Section 6.1.1]. For scenarios where the objective is

to synchronize to the state of the leader, Fi0(tk) is set to zero for all i ∈ {1, · · · , N}. To

form the offset, we assume that at each sampling time tk, follower i ∈ {1, · · · , N} knows

Fij(tk) = Fi0(tk) − Fj0(tk) for j ∈ N i

out; either the follower is given Fij(tk) with respect to

its out-neighbor j or constructs it locally after agent j sends its Fj0(tk) to agent i. We note

that if the leader is a global sink of G, given x0(tk) and a set of Fij(tk), i ∈ {1, . . . , N} and
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j ∈ N i

out, we can show that the state offset Fi0(tk) for follower i with respect to the leader

is unique.

2.4.2 Leader-following control for heterogeneous followers

In this section, we develop a novel distributed solution to solve the leader-following problem

stated in Section 2.4.1. We start by using a classical optimal control result to make the

following statement.

Lemma 2.4.1. Consider a leader-following formation problem where each follower’s dynam-

ics is given by (2.19) with (Ai,Bi) controllable. Suppose i is a follower in G that has access

to x0(t) of the leader at each sampling time tk, k ∈ Z≥0, i.e., i ∈ N 0
in. Also, Fi0(tk) ∈ Rn is

the desired state off-set with respect to x0(tk). Starting at an initial condition xi(t0) ∈ Rn

with ui(t0) = 0, for any i ∈ N 0
in let

ui(t) = Bi>eAi> (tk+1−t) Gi−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk)), t ∈ (tk, tk+1], (2.21)

where Tk = tk+1 − tk ∈ R>0, and

Gi
k = Gi(Tk) =

∫ Tk

0

eAi(Tk−τ) BiBi> eAi> (Tk−τ)dτ. (2.22)

Then, for every i ∈ N 0
in we have xi(tk+1) = x0(tk) − Fi0(tk) for all k ∈ Z≥0. Moreover, at

each time t ∈ [tk, tk+1], the control input ui(t) of i ∈ N 0
in satisfies

ui(t) = argmin

∫ tk+1

tk

ui(τ)>ui(τ)dτ, subject to (2.23a)

ẋi(t) = Ai xi(t) + Bi ui(t), (2.23b)

xi(tk) = xi(tk), xi(tk+1) = x0(tk)− Fi0(tk). (2.23c)
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Proof. The proof follows from the classical finite time minimum energy optimal control

design [81, page 138].

Lemma 2.4.1 essentially states that any follower that samples the leader, in the inter-sampling

time interval can use the classical minimum energy control to steer towards the latest sampled

state of the leader with an offset if specified. Next, we show that this idea can be extended

to a distributed setting in which only a subset of the followers have access to the leader’s

sampled state. To present our results we first introduce some notations. We denote the

adjacency matrix and out-degree matrix of the followers’ interaction topology G, respectively,

by A = [aij] and Dout = Diag(d1
out, d

2
out, · · · , dNout). We let

1 i =


1, i ∈ N 0

in,

0, otherwise,

(2.24)

be the indicator operator that defines the state of connectivity of follower i to the leader.

For i ∈ {1, . . . , N}, we also define

Pi(t) =


0 t = tk,

G
i−1

k (t) t ∈ (tk, tk+1],

(2.25a)

where (2.25b)

G
i

k(t) =

∫ t

tk

eAi(t−τ) BiBi> eAi> (tk+1−τ)dτ, t ∈ [tk, tk+1]. (2.25c)

We notice that G
i

k(t) = Gi(t−tk) eAi> (tk+1−t) , where Gi is the controllability Gramian (2.22).

Therefore at each finite time t ∈ (tk, tk+1], by virtue of controllability of (Ai,Bi), G
i

k(t) is

invertible. Moreover, note that using the classical control results we can show that G
i

k(t)

can be computed numerically from G
i

k(t) = Wi(t)Φi(t) where Wi(t) = Gi(t − tk) and
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Φi(t) = eAi> (tk+1−t) for t ∈ [tk, tk+1] are obtained from

Ẇ
i
(t) = AiWi(t) + Wi(t)Ai> + BiBi> , Wi(tk) = 0n×n,

Φ̇
i
(t) = −Ai>Φi(t), Φi(tk) = eAi>Tk .

With the proper notations at hand, we present our distributed solution to solve our leader-

following problem of interest as follows.

Theorem 2.4.1 (A leader-following in formation algorithm for a group of heterogeneous LTI

followers). Consider a leader-following problem where the followers’ dynamics are given by

(2.19). Suppose the leader’s time-varying state is x0 : R≥0 → Rn. Let the network topology

G = G ∪ Gl be an acyclic digraph with leader, node 0, as the global sink. Suppose every

follower i ∈ N 0
in has access to x0(t) at each sampling time tk, k ∈ Z≥0. Let Fi0(tk) ∈ Rn and

Fij(tk) ∈ Rn be the desired state offset (formation) with reference to x0(tk) and xj(tk+1),

respectively. Starting at an initial condition xi(t0) ∈ Rn with ui(t0) = 0, let for t ∈ (tk, tk+1]

ui(t) =ωil

(
Bi> eAi> (tk+1−t) Gi−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk))
)

+

ωif

(
Bi> eAi> (tk+1−t) Gi−1

k

N∑
j=1

aijG
j
kP

j(t)(xj(t)− eAj(t−tk) xj(tk))

+ Bi> eAi> (tk+1−t) Gi−1

k

N∑
j=1

aij(e
AjTk xj(tk)− eAiTk xi(tk)− Fij(tk))

)
, (2.26)

where Pj(t) is given in (2.25b), ωil = 1 i

1 i+diout
, and ωif = 1

1 i+diout
. Then, the followings hold for

t ∈ R≥0 and k ∈ Z≥0:

(a) xi(tk+1) = x0(tk) − Fi0(tk), moreover, xj(tk+1) − xi(tk+1) = Fij(tk) i, j ∈ {1, . . . , N}

and i 6= j;
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(b) the trajectory of every follower i ∈ {1, . . . , N} is

xi(t) = eAi(t−tk) xi(tk)+G i
k(t)G

i−1

k (x0(tk)−Fi0(tk)−eAiTk xi(tk)); (2.27)

(c) the control input ui(t) of every agent i ∈ {1, . . . , N} is equal to (2.21). �

Proof. For G ∪ Gl an acyclic digraph with 0 as the global sink, the agents can be sorted into

a series of hierarchical subsets. Without loss of generality, we sort the agents as follows.

Recall that V = {1, · · · , N} is the set of the followers. We let V0 = {0}. Next, we let V1 to

be the subset of agents in G that are connected to the leader but they have no out-neighbor

in G, i.e., V1 = {i ∈ V| 1 i = 1 and N i
out = {}}. We sequentially define the lower subset

as Vk = {i ∈ V\ ∪k−1
j=1 Vj| N i

out ⊆ ∪k−1
j=0Vj}, where k ∈ {2, · · · ,m}, such that ∪mj=1Vj = V .

In short, in this hierarchy, the agents in the lower subset only receive information from the

agents in the higher subsets.

We use mathematical induction over time intervals [t0, tk+1], k ∈ Z>0 for our proof. That

is we show that the theorem statements hold for k = 0. Then assuming that the theorem

statements hold for k, we show the validity of the statement over k + 1. The proof of the

case for k = 0 is very similar to the case of k + 1 and omitted here of brevity. Now let

the theorem statements be valid over [t0, tk] and we show the validity of the statements at

(tk, tk+1] and as a result the validity of the statement over [t0, tk+1]. For our proof we use as

the mathematical induction over Vl where l ∈ {1, · · · ,m}.

Consider first the dynamics of the followers in Vl. For l = 1, the control (2.26) reduces to

(2.21), since ωl = 1 and
∑N

j=1 aij = 0. Hence statement (c) holds. The trajectory of xi(t)

after substituting for the control input ui is

xi(t) = eAi(t−tk) xi(tk) +

∫ t

tk

eAi(t−τ) Biui(τ)dτ
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= eAi(t−tk) xi(tk) +

∫ t

tk

eAi(t−τ) BiBi> eAi> (tk+1−τ) Gi−1

k

· (x0(tk)− Fi0(tk)− eAiTk xi(tk))dτ

= eAi(t−tk) xi(tk) + G i
k(t)G

i−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk)).

Then given (2.25c), the trajectories of agents i ∈ V1 is given by (2.27) for t ∈ R≥0, confirming

Statement (b). Moreover, when t = tk+1, the final state of the end of this period is

xi(tk+1) = eAiTk xi(tk) + G i
k(tk+1)Gi−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk)) = x0(tk)− Fi0(tk).

Also, the relative state with respect to follower j ∈ N i

out, is xj(tk+1) − xi(tk+1) = x0(tk) −

Fj0(tk)− x0(tk) + Fi0(tk) = Fij(tk). Therefore, statement (a) holds.

Next, let statements (a), (b) and (c) be true for i ∈ Vs, s ∈ {1, · · · , l − 1}. Then, for the

follower i ∈ Vl we have:

xi(t) = eAi(t−tk) xi(tk) +

∫ t

tk

eAi(t−τ) Biui(τ)dτ

= eAi(t−tk) xi(tk) +
1 i

1 i + diout

∫ t

tk

eAi(t−τ) BiBi> eAi> (tk+1−τ) Gi−1

k

· (x0(tk)− Fi0(tk)− eAiTk xi(tk))dτ

+
1

1 i + diout

∫ t

tk

eAi(t−τ) BiBi> eAi> (tk+1−τ) Gi−1

k

·
N∑
j=1

aijG
j
kP

j(τ)(xj(τ)− eAj(τ−tk) xj(tk))dτ

+
1

1 i + diout

∫ t

tk

eAi(t−τ) BiBi> eAi> (tk+1−τ) Gi−1

k

·
N∑
j=1

aij(e
AjTk xj(tk)−eAiTk xi(tk)− Fij(tk))dτ

= eAi(t−tk) xi(tk) +
1 i

1 i + diout

G i
k(t)G

i−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk))
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+
1

1 i + diout

∫ t

tk

eAi(t−τ) BiBi> eAi> (tk+1−τ) Gi−1

k

·
N∑
j=1

aijG
j
kP

j(τ)(xj(τ)− eAj(τ−tk) xj(tk))dτ

+
1

1 i + diout

G i
k(t)G

i−1

k

N∑
j=1

aij(e
AjTk xj(tk)− eAiTk xi(tk)− Fij(tk)).

Since j ∈ Vs, where s < l, the trajectory xj(τ) of agent j is assume to follow (2.27).

Therefore, we can put (2.27) into xj(τ).

xi(t) = eAi(t−tk) xi(tk) +
1 i

1 i + diout

G i
k(t)G

i−1

k (x0(tk)− eAiTk xi(tk)− Fi0(tk))

+
1

1 i + diout

∫ t

tk

eAi(t−τ) BiBi>eAi>(tk+1−τ) Gi−1

k

N∑
j=1

aijG
j
kP

j(τ)(eAj(τ−tk) xj(tk)

+ G
j

k(τ)Gj−1

k (x0(tk)− Fj0(tk)− eAjTk xj(tk))− eAj(τ−tk) xj(tk))dτ

+
1

1 i + diout

G i
k(t)G

i−1

k

N∑
j=1

aij(e
AjTk xj(tk)− eAiTk xi(tk)− Fij(tk))

= eAi(t−tk) xi(tk) +
1 i

1 i + diout

G i
k(t)G

i−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk))

+
1

1 i + diout

G i
k(t)G

i−1

k

N∑
j=1

aij(x
0(tk)− Fj0(tk)−eAjTk xj(tk))

+
1

1 i + diout

G i
k(t)G

i−1

k

N∑
j=1

aij(e
AjTk xj(tk)− eAiTk xi(tk)− Fij(tk))

= eAi(t−tk) xi(tk) +
1 i

1 i + diout

G i
k(t)G

i−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk))

+
diout

1 i + diout

G i
k(t)G

i−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk))

= eAi(t−tk) xi(tk) + G i
k(t)G

i−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk)).

xi(tk+1) = eAiTk xi(tk) + G i
k(tk+1)Gi−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk))

= x0(tk)− Fi0(tk).
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Similarly, the relative state with respect to agent j ∈ N i
out, is xj(tk+1)−xi(tk+1) = x0(tk)−

Fj0(tk) − x0(tk) + Fi0(tk) = Fij(tk). Thereby, statement (a) and (b) also hold for the case

l = l. Then we show that control (2.26) is equivalent to (2.21) as follows

ui(t) =
1 i

1 i + diout

[Bi> eAi> (tk+1−t) Gi−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk))]

+
1

1 i + diout

[Bi> eAi> (tk+1−t) Gi−1

k

N∑
j=1

aijG
j
kP

j(t)(xj(t)− eAj(t−tk) xj(tk))

+ Bi> eAi> (tk+1−t) Gi−1

k

N∑
j=1

aij(e
AjTk xj(tk)− eAiTk xi(tk)− Fij(tk))]

=
1 i

1 i + diout

[Bi> eAi> (tk+1−t) Gi−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk))]

+
1

1 i + diout

[Bi> eAi> (tk+1−t) Gi−1

k

N∑
j=1

aijG
j
kP

j(t)(eAj(t−tk) xj(tk)

+ G
j

k(t)G
j−1

k (x0(tk)− Fj0(tk)− eAjTk xj(tk))− eAj(t−tk) xj(tk))

+ Bi> eAi> (tk+1−t) Gi−1

k

N∑
j=1

aij(e
AjTk xj(tk)− eAiTk xi(tk)− Fij(tk))]

=
1 i

1 i + diout

[Bi> eAi> (tk+1−t) Gi−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk))]

+
diout

1 i + diout

[Bi> eAi> (tk+1−t) Gi−1

k ((x0(tk)− Fi0(tk)− eAiTk xi(tk))]

= Bi> eAi> (tk+1−t) Gi−1

k (x0(tk)− Fi0(tk)− eAiTk xi(tk)).

Therefore, statement (c) holds.

Since both the base case l = 1 and the inductive step have been proved, by mathematical

induction statement (a), (b) and (c) hold for all l ∈ {1, · · · ,m}.

Several observations and remarks are in order regarding the leader-following formation algo-

rithm of Theorem 2.4.1.

Remark 2.4.1 (Implementation of control law (2.26)). To implement (2.26), we note that
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the component of (2.26) that multiplies ωil is computed using the local variables of follower

i and the sampled state of the leader if ωil is non-zero, i.e., i ∈ N 0
in. The component of

(2.26) that multiplies ωif is computed using the local variables of follower i and variables of

its out-neighbors if diout 6= 0. To compute this term, if the follower i knows (Aj,Bj) of its

out-neighbor j (which is the case e.g., when the group is homogeneous), it can implement

control (2.26) by obtaining the state xj of its out-neighbor j and computing Pj and eAj(t−tk)

locally. Otherwise, each follower needs to obtain zj(t) = Gj
kP

j(t)(xj(t) − eAj(t−tk) xj(tk))

and eAjTk xj(tk) of its each out-neighbor j. We note here that since the interval (tk, tk+1] is

open from the left and the dynamics of all the followers is controllable, Pi(t) is well defined.

However, for t→ t+k from the right, Pi(t) goes to infinity. But, since (xj(t)− eAj(t−tk) xj(tk))

goes to zero as t → t+k from the right, the product Pj(t)(xj(t) − eAj(t−tk) xj(tk)) goes to

zero as t → t+k from the right. The “high-gain-challenge” observed here is often a common

feature in any approach that is geared towards regulation in prescribed finite time. For

example, finite-horizon optimal controls with a terminal constraint inevitably yield gains

that go to infinity (see e.g., [86–88]). In practice, the multiplication of very large and very

small values can create numerical problems. To address the problem, one way proposed in

the literature is equivalent to employ a deadzone on Pj(t)(xj(t) − eAj(t−tk) xj(tk)) at the

beginning of each time interval. Another approach is equivalent to using a lager interval

(tk − δ, tk+1], where δ ∈ R>0 is small positive number, to compute Pj(t) such that Pj(t)

for t ∈ (tk, tk+1] is no longer goes unbounded when t goes to t+k from the right. These

approaches of course result in somewhat sacrifices in the accuracy at each arrival value at

tk+1 at the end of time interval (tk, tk+1]. However, as discussed in Remark 4.1, the errors will

not accumulate. As interestingly discussed in [86], the high-gain-challenge in the finite-time

control can be contrasted with non-smooth feedback in the sliding mode control where the

gain approaches infinity near sliding surface x = 0 [89] (but the total control input is zero).

However, unlike the sliding mode control, where the practical implementation of the high-

gain leads to persistent chattering on the sliding surface [89], in our case the concern arises
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only at the start of each transition from one sampling time to the other. The aforementioned

practical measures to handle the high-gain-challenge in our setting indeed can be compared

to the boundary layer approach [89] in the sliding mode control to eliminate chattering. �

Remark 2.4.2 (Minimum energy control in [tk, tk+1]). From statement (c) of Theorem 2.4.1

it follows that at each time interval [tk, tk+1], k ∈ Z≥0, the control input ui of each follower

i ∈ {1, . . . , N} is the minimum energy controller that transfers the follower from its current

state xi(tk) to their desired state xi(tk+1) = x0(tk)− Fi0
k (tk). �

Remark 2.4.3 (Extension of results to output tracking for a special class of MAS). The

design methodology of the state formation algorithm of Theorem 2.4.1 can be used in output

tracking for a special class of MAS. Let the network topology be as described in Theorem 2.4.1

and the system dynamics of the followers be (2.19) where xi ∈ Rni and ui ∈ Rmi (the state

and input dimensions of the followers are not necessarily the same). Let the objective be

that the output yi = Cixi ∈ Rn, n ≤ ni, of each follower should satisfy

yi(tk+1) = x0(tk)− Fi0(tk), i ∈ {1, · · · , N}. (2.28)

If CiBi is full row rank, we can use the control ui = Bi>Ci>(CiBiBi>Ci>)−1 ·

(vi −CiAixi), i ∈ {1, · · · , N}, to write the output dynamics of each follower i as ẏi = vi.

Then the method of Theorem 2.4.1 can be used to design vi ∈ Rn, which can then be used

to obtain the appropriate ui that will make the followers meet (2.28). �

Finally, we note that if the followers are homogeneous, the followers can achieve full syn-

chronization in the sense stated below.

Corollary 2.4.1 (Full synchronization for homogeneous followers). Let the state offset be

constant i.e., Fi0(tk) = Fi0 ∈ Rn for all i ∈ {1, · · · , N} or (equivalently Fij(tk) = Fij ∈ Rn

for i, j ∈ {1, · · · , N}), and assume that the followers are homogeneous. Then, it follows from

statements (b) and (c) of Theorem 2.4.1 that the followers’ trajectories and inputs satisfy
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xj(t) = xi(t)+Fij for t ∈ [t1,∞) and ui(t) = uj(t) for t ∈ (t1,∞), for every i, j ∈ {1, . . . , N}.

One can easily verify this point by shifting the state coordinate with Fij. Moreover, if the

agents are initially in the specified offset i.e., xj(0) = xi(0) + Fij for all i, j ∈ {1, . . . , N},

then these qualities also hold for t ∈ [0, t1]. �

Remark 2.4.4 (A sufficient condition for heterogeneous followers to achieve synchroniza-

tion). Assume that there exists Ki ∈ Rmi×n, Wi ∈ Rmi×mi for i ∈ {1, · · · , N} and a control-

lable pair (A,B) known to all followers, such that using ui = Kixi + Wivi, i ∈ {1, · · · , N},

makes the followers dynamic homogeneous, i.e., ẋi = Axi + Bvi, A = Ai + BiKi and

B = BiWi, i ∈ {1, · · · , N}. Then, it is also possible to achieve full state synchronization

by implementing (2.26) to vi for heterogeneous followers. One sufficient condition for the

existence of Ki and Wi, i ∈ {1, · · · , N}, is that Bi of each follower i ∈ {1, · · · , N} is full

row rank. Then, Ki = Bi>(BiBi>)−1(A − Ai), Wi = Bi>(BiBi>)−1B and (A,B) can be

any controllable pair.

2.4.3 Demonstrative examples

In this section, we demonstrate our results via numerical examples.

A nonlinear-leader tracking problem for a group of heterogeneous followers

Consider a group of 7 mass-spring-damper system (followers)

ẋi =

 0 1

− ki

mi
− bi

mi


︸ ︷︷ ︸

Ai

xi +

 0

1
mi


︸ ︷︷ ︸

Bi

ui, i ∈ {1, . . . , 7} (2.29)

where xi = [xi ẋi] ∈ R2 is the state vector with xi ∈ R and ẋi ∈ R representing the

displacement and velocity of the mass, ki, bi and mi are spring constant, damping constant
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and mass, respectively, and ui ∈ R is the input force. The system’s parameters (ki, bi,mi)

for i ∈ {1, . . . , 7} are (1, 0.5, 5), (2, 0.5, 15), (2.5, 1.5, 10), (3, 0.8, 8), (3.5, 1.5, 5), (1.2, 1.8, 12),

and (0.5, 1, 10), respectively. The leader denoted by 0 is a nonlinear mass-spring-damper

system

ẋ0 =

 ẋ0

1
m0 (u0 − b0ẋ0 − k0x0 − 0.6x03

)

 , (2.30)

where the input u0 is unknown to the followers and the system parameters (k0, b0,m0) =

(1.2, 2, 5). The interaction topology of the systems is shown in Fig. 2.1. Followers 1, 2 and

3 obtain the state of the leader with a sampling rate of 1 per second, i.e., Tk = 1 second,

k ∈ Z≥0. The followers start at x1(0) = [0 0]>, x2(0) = [−0.5 0]>, x3(0) = [−1 0]>,

x4(0) = [−1.5 0]>, x5(0) = [−2 0]>, x6(0) = [−2.5 0]>, x7(0) = [−3 0]> in a formation

with uniform distance 0.5(m) to the previous number of the follower. The objective is for

the followers to track the state of the leader while preserving the initial formation of the

systems at every sampling time tk. The follower i only knows the local formation, i.e.,

Fij(0) for j ∈ N i

out. For example, follower 3 knows F30(0) = [1 0]>, F31(0) = [1 0]>, and

F32(0) = [0.5 0]>.

The result of implementing the algorithm of Theorem 2.4.1 is shown in Fig. 2.7. The ‘+’

represents the sampled leader states and ‘×’ shows the followers track the leader’s state in the

desired formation at the next sampled time. In this example interestingly in the transition

times similar to what is expected from homogeneous followers the state and input of all the

followers are offset-synchronized. However, this property is not necessarily true in general

for heterogeneous followers.

To show the practical measures to overcome the high gain challenge mentioned in Remark

2.4.1 when implementing control (2.26). Figures 2.8 and 2.9 are the results of employing the

deadzone approach and extended horizon approach, respectively. To observe the implication
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Figure 2.7 – The state and control trajectories of followers of the first numerical example.

of this practical measure more clearly, we simulated a case where the offset of the followers

is set to zero (without formation). We can see that with these two solutions, although losing

some tracking precision, the followers sill can follow the the sampled state of the leader in a

satisfactory level.

Output tracking for a group of aircraft

We consider a group of 7 aircraft whose short-period dynamics is given by (taken from [90,

Example 10.1])

α̇
q̇


︸︷︷︸

ẋi

=

−0.0115 1

−0.0395 −2.9857


︸ ︷︷ ︸

A

α
q


︸︷︷︸

xi

+

 −0.1601

−11.0437


︸ ︷︷ ︸

B

δie︸︷︷︸
ui

, yi(t) =

[
0 1

]
︸ ︷︷ ︸

C

xi,

where αi, qi and δie are are respectively, angle of attack, pitch rate and elevator angle of

aircraft i ∈ {0, · · · , 6}. The interaction topology of these aircraft is shown in Fig. 2.5,
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Figure 2.8 – The state and control trajectories of the followers of the first numerical example
when we employ the deadzone approach discussed in Remark 4.2 to address the high-gain-
challenge. To observe the implication of this practical measure more clearly, we simulated a
case where the offset is set to zero.
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Figure 2.9 – The state and control trajectories of the followers of the first numerical example
when we employ the extended horizon approach (δ = 0.05 (s)) discussed in Remark 4.2 to
address the high-gain-challenge. To observe the implication of this practical measure more
clearly, we simulated a case where the offset is set to zero.
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Figure 2.10 – The state and control trajectories of followers of the second numerical example.

where, agent 0 is the leader. For this system CB = −11.0437, therefore the condition of

Remark 2.4.3 is satisfied and we can design a distributed algorithm to synchronize the pitch

rate of the follower aircraft {1, · · · , 6} to the pitch rate of the leader aircraft when only

sampled pitch rate of the leader at every 0.1 seconds is available to the follower aircraft 1.

Figure 2.10 demonstrates the results.

2.5 Conclusion

In this chapter, we have proposed the distributed leader-following algorithms for homoge-

neous and heterogeneous multi-agent systems with an active leader with unknown input. We

have proved that our distributed leader-following algorithm for the linear followers steers the

group to be at the sampled states of the leader at the specified arrival times in a specified for-

mation. We showed that the control input of each follower agent between the sampling times

is a minimum energy control. We also showed that after the first sampling epoch, the states
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of all the homogeneous follower agents are synchronized with each other. We demonstrated

our results via homogeneous mobile agents with second order integrator dynamics and unicy-

cle dynamics, leader-following problems of heterogeneous mass-spring-damper systems and

aircraft.
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Chapter 3

Distributed containment control

3.1 Introduction

In this chapter, we propose a distributed containment control algorithm for a group of

agents, which communicate over a strongly connected and weight-balanced directed graph.

The agents jointly detect a group of moving leaders in a periodic sampling time. Each

agent detects a subset (could be empty) of the leaders and computes the geometric center

of the subset. Then, the discrete-time containment control algorithm based on the dynamic

average consensus algorithm is developed to track the average of the geometric centers which

we show is in the convex hull of the observed leaders. Therefore, even though some of the

agents do not observe any leaders, they can still track the convex hull. Note that, there

is no assumption about the leaders’ dynamics (they can be heterogeneous) and the agents

only measure the positions of the leaders. Next, we show our proposed containment control

algorithm can be further apply to a group of unicycle mobile robots to track the convex hull

of the moving leaders. The control scheme combines the discrete-time containment control

algorithm as a observer to estimate the average position of the geometry centers in the convex
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hull and a local finite-time control to track their estimate, such that the control scheme can

drive the robots to the convex hull in time. In our proposed framework, the unicycle robots

have continuous-time dynamics but communicate with each other in discrete-time fashion.

A numerical example is demonstrated to show the efficiency of this scheme.

The rest of this chapter is organized as follows. Section 3.2 introduces our basic notation,

graph-theoretic definitions and notions and reviews the dynamic average consensus algo-

rithm, which we use in our developments. Section 3.3 gives our problem definition and

objective statement. Section 3.4 presents our main result on design of a distributed con-

tainment control algorithm. Section 3.5 applies the containment control scheme for unicycle

robots. Section 3.6 gives a numerical example to demonstrate our results. Section 3.7 con-

cludes the results of this chapter.

3.2 Notations and Preliminaries

Notation: We let R, R>0, R≥0, Z, and Z≥a denote the set of real, positive real, non-negative

real, integer, and integer numbers greater than a ∈ Z, respectively. The transpose of a

matrix A ∈ Rn×m is A>. For s ∈ Rd, ‖s‖ =
√

s>s denotes the standard Euclidean norm.

For a given set of points X = {x1,x2, · · · ,xM} in a Euclidean space, their convex hull is

Co(X ) = {q ∈ Rn|q =
∑M

j=1 αjxj, α ≥ 0,
∑M

j=1 αj = 1}, which is the smallest convex set

containing all the points in X . In a network of N agents, to distinguish and emphasis that a

variable is local to an agent i ∈ {1, . . . , N}, we use superscripts, e.g., xi is the local variable

of agent i. Moreover, if ri ∈ Rni is a variable of agent i ∈ V = {1, · · · , N}, the aggregated

ri’s of the network is the vector r = [{ri}i∈V ] = [r1>, · · · , rN>]> ∈ Rm, m =
∑N

i=1 n
i.

Graph theoretic notations and definitions : Here we review our graph related notations and

relevant definitions and concepts from graph theory following [49]. A digraph, is a triplet
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G = (V , E ,A), where V = {1, . . . , N} is the node set and E ⊆ V × V is the edge set, and

A = [aij] ∈ RN×N is the adjacency matrix of the graph defined according to aij = 1 if

(i, j) ∈ E and aij = 0, otherwise. An edge (i, j) from i to j means that agent j can send

information to agent i. Here, i is called an in-neighbor of j and j is called an out-neighbor

of i. A directed path is a sequence of nodes connected by edges. The out-degree of a node

i is diout = ΣN
j=1aij. We let dmax = max{diout}Ni=1. The out-degree matrix of a graph is

Dout = Diag(d1
out, d

2
out, · · · , dNout). The (out-) Laplacian matrix is L = Dout − A. Note that

L1N = 0. A weighted digraph G is weight-balanced if and only if 1>NL = 0. Based on

the structure of L, at least one of the eigenvalues of L is zero and the rest of them have

nonnegative real parts.

Average dynamic consensus algorithm: In our developments we will use a dynamic average

consensus algorithm (see [1]) as described in the lemma below .

Lemma 3.2.1 (Dynamic average consensus algorithm). Let

G(V , E) be a strongly connected and weight-balanced digraph of N agents. Assume each agent

i ∈ V has access to a dynamic input ri(k) = ri(tk) at time tk = kδ, δ ∈ R>0, k ∈ Z≥0. For

δ ∈ (0, β−1(dmax)−1) , where β ∈ R>0, if each agent i ∈ V implements

pi(k + 1) = pi(k) + δβ
N∑
j=1

aij(x
i(k)− xj(k)), (3.1a)

xi(k) = ri(k)− pi(k), (3.1b)

starting at pi(0) = 0, then the trajectory k 7→ pi(k) of each agent i ∈ V is bounded and

satisfies

lim
k→∞

∥∥∥xi(k)− 1

N

N∑
j=1

rj(k)
∥∥∥ ≤ γ(∞) δ

βλ̂2

, (3.2)

where sup
k̄∈Zk̄≥k

‖(IN − 1
N

1N1>N)(r(k̄ + 1) − r(k̄))‖ = γ(k) < ∞, and λ̂2 is second smallest
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eigenvalue of L.

3.3 Problem definition

In this section, we formalize our distributed containment control problem of interest. We

assume that a group of M (M can change with time) mobile leaders are moving with a

bounded velocity on a R2 or R3 space. We let xL,j(t) be the position vector of leader j ∈

{1, . . . ,M} at time t ∈ R≥0. In our setting, a set of networked mobile agents V = {1, · · · , N}

monitor the leaders. The communication topology G of the agents is a strongly connected

and weight-balanced digraph and the agents can communicate at discrete-times tk = kδc,

k ∈ Z≥0, δc ∈ R>0. The agents sample the leaders at sampling times tsk = kδs, k ∈ Z≥0,

δs ∈ R>0. We let V iL(tsk) be the set of leaders observed by agent i ∈ V at sampling time

tsk. Between each sampling time, agent i ∈ V uses xL,j(t) = xL,j(t
s
k) and V iL(t) = V iL(tsk),

t ∈ [tsk, t
s
k+1), k ∈ Z≥0, j ∈ V iL(tsk). At every sampling time tsk ∈ R≥0, we let VL(tsk) be the set

of the mobile leaders that are observed jointly by the agents V , i.e., VL(tsk) = ∪Ni=1V iL(tsk) (see

Fig. 3.1). We let Va(tsk) ⊂ V be the set of the agents that observe at least one leader at tsk,

k ∈ Z≥0; we assume that Va(tsk) 6= ∅. Our objective in this paper is to design a distributed

control algorithm that enables each agent i ∈ V to derive its local state χi to asymptotically

track Co(VL(tsk)), the convex hull of the set of the location of the leaders VL(tsk) with a

bounded error e ≥ 0 (to simplify notation, we wrote Co({xL,j(t)}j∈VL(t)) as Co(VL(t))). We

state our objective as

‖χi(tk)− x̄L(tk)‖ ≤ e, i ∈ V . (3.3)

where x̄L(tk) ∈ Co(VL(tk)). We assume that the agents have no knowledge about the motion

model of the leaders. As the information of each agent takes some time to propagate through

the network, tracking the convex hull of an arbitrarily fast moving leader set with zero error
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Figure 3.1 – The agent set and the leader set. The ellipsoids show the observation zone of the

observing agents.

is not feasible unless agents have some a priori information about the dynamics generating

the signals. Also, how fast the information travels across the network G depends on the

connectivity of G. Interestingly, as expected, we will show that the size of the error e is

going to be a function of the bound on the velocity of the leaders and λ̂2, which is a measure

of connectivity of the network. We will also show that when the leader set is stationary and

observed by the same set of agents, the agents converge to a point in the convex hull of the

leader set, i.e., e = 0.

3.4 Containment control algorithm

In this section, we present our solution for the distributed containment problem stated in

Section 3.3. If the number of the leaders is equal to the number of the agents, i.e., |VL(tsk)| =

N , and V iL(tsk) ∩ V
j
L(tsk) = ∅ for any i, j ∈ V , i 6= j, a simple solution to our containment

problem of interest is to implement the dynamic average consensus algorithm (3.1) with

ri(k) =
∑

j∈ViL(tk) xL,j(tk) for i ∈ V (when V iL(tk) = ∅, we use ri(k) = 0). This is because, in

this scenario, as certified by Lemma 3.2.1, the agents track the geometric center of the leader

set, which is a point in the convex hull of the leader set, with a bounded error. However,

in general, as the agents monitor the leader set, it is likely that the observed leader sets
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Figure 3.2 – Graphical demonstration of Lemma 3.4.1 for an example case.

V iL(tsk), i ∈ V of the agents have overlap and also the number of the leaders be different than

the number of the agents, see Fig 3.1. In what follows, we present a simple solution for the

containment problem that works for the general case.

To present our solution, we first make the following key observation about the convex hull

of a set of points {xi}mi=1 in an Euclidean space.

Lemma 3.4.1 (Auxiliary result on convex hull of a set of points). . Consider a set of

points {xi}mi=1 in R2 or R3. Let Sj 6= ∅, j ∈ {1, · · · , r}, be a subset of {1, · · · ,m}. Let

x̄j =

∑
k∈Sj

xk

|Sj | , j ∈ {1, · · · , r}. Then, the point

x̄ =

∑r
i=1 x̄i
r

(3.4)

is a point in Co({xj}mj=1).

Proof. It is straightforward to confirm that x̄j ∈ Co({xi}i∈Sj), j ∈ {1, · · · , s} and x̄ ∈

Co({x̄i}si=1) (recall the definition of the convex hull). Moreover, since Co({xk}mk=1) is a convex

set, we note that Co({xi}i∈Sj) ⊂ Co({xk}mk=1), j ∈ {1, · · · , s}. Thus, for i ∈ {1, · · · , s},

x̄i ∈ Co({xj}mj=1), and Co({x̄i}si=1) ⊂ Co({xi}mi=1). As a result, x̄ ∈ Co({xj}mj=1).

We note here that in Lemma 3.4.1, Si∩Sj = ∅, i, j ∈ {1, · · · , r}, is not required. An example
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case that demonstrates the result of Lemma 3.4.1 is shown in Fig. 3.2.

Now for the containment problem, consider the general case when 0 < |Va(tsk)| ≤ N , and for

any two distinct agents i, j ∈ Va(tsk), V iL(tsk)∩V
j
L(tsk) is not necessarily empty. Then, in light

of Lemma 3.4.1, we know that

x̄L(tsk) =

∑N
i=1 ri(tsk)

|Va(tsk)|
∈ Co(VL(tsk)), (3.5)

where

ri(tsk) =


∑
j∈Vi

L
(ts
k

)
xL,j(t

s
k)

|ViL(tsk)| , i ∈ Va(tsk),

0, i ∈ V\Va(tsk).
(3.6)

Based on this observation, we propose the following distributed solution for our containment

problem of interest. Our solution uses two dynamic average consensus algorithms of the

form (3.1), to obtain the numerator and the denominator of x̄L in (3.5).

Theorem 3.4.1 (Distributed containment control algorithm). Let the communication topol-

ogy of the agents V be a strongly connected and weight-balanced digraph G(V , E). Assume

that Va(tsk) 6= ∅ at each sampling time tsk, k ∈ Z≥0. Let ri(t) = ri(tsk), i ∈ V, and

x̄L(t) = x̄L(tsk) for t ∈ [tsk, t
s
k+1), where ri(tsk) and x̄L(tsk) are given respectively, in (3.5)

and (3.6). Moreover, let r̄i(tk) = 1 if i ∈ Va(tk), and r̄i(tk) = 0 if i ∈ V\Va(tk). Suppose

that sup
k̄∈Z≥k

‖r(tk̄+1) − r(tk̄)‖ = γ(tk) < ∞, and sup
k̄∈Z≥k

‖r̄(tk̄+1) − r̄(tk̄)‖ = γ̄(tk) < ∞. Assume

that each agent i ∈ V implements the distributed algorithm

pi(tk+1) = pi(tk) + δcβ

N∑
j=1

aij(w
i(tk)−wj(tk)), (3.7a)

wi(tk) = ri(tk)− pi(tk), (3.7b)

qi(tk+1) = qi(tk) + δcβ
N∑
j=1

aij(z
i(tk)− zj(tk)), (3.7c)
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zi(tk) = r̄i(tk)− qi(tk), (3.7d)

χi(tk) =
wi(tk)

max{ε, |zi(tk)|}
, (3.7e)

β ∈ R>0, initialized at pi(t0) = 0 and qi(t0) = 0, with a communication stepsize δc ∈

(0, β−1(dmax)−1) (tk = δck, k ∈ Z≥0). Here, 0 < ε < 1/N is a small positive real number.

Then, there exists a bounded value e ∈ R>0 such that

‖χi(tk)− x̄L(tk)‖ ≤ e, tk ∈ R≥0, i ∈ V , (3.8)

Moreover, if for a finite k̄ ∈ Z≥0 we have γ̄(tk) = 0 for all k ∈ Z≥k̄, i.e., the set of observing

agents is not changing with time for tk ≥ tk̄, we have

lim
k→∞
‖χi(tk)− x̄L(tk)‖ ≤

Nγ(∞) δc

|Va(tk̄)| βλ̂2

, i ∈ V . (3.9)

Proof. Given the initial conditions and stated bounds on r = [{ri}i∈V ] and r̄ = [{r̄i}i∈V ],

by invoking Lemma 3.2.1, we conclude that for k ∈ Z≥0 the trajectories k 7→ wi(tk) and

k 7→ zi(tk), i ∈ V are bounded and satisfy

lim
k→∞

|Va(tk)|
N

∥∥∥wi(tk)/
N

|Va(tk)|
− x̄L(tk)

∥∥∥ =

lim
k→∞

∥∥∥wi(tk)−
1

N

∑
j∈Va(tk)

rj(tk)
∥∥∥ ≤ γ(∞) δc

βλ̂2

, (3.10a)

lim
k→∞

∣∣∣zi(tk)− |Va(tk)|
N

∣∣∣ ≤ γ̄(∞) δc

βλ̂2

. (3.10b)

Therefore, we can conclude that ‖χi(tk)‖ is finite for all k ∈ Z≥0, which confirms also (3.8).

Next, if for a finite k̄ ∈ Z≥0 we have γ̄(tk) = 0 for all k ∈ Z≥k̄, we note that from (3.10b) we

obtain limk→∞ z
i(tk) =

|Vo(tk̄)|
N

, i ∈ V . Consequently, limk→∞χi(tk) = N
|Vo(tk̄)| limk→∞wi(tk),

which along with (3.10a) confirms (3.9).
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It is worth nothing that if in addition to the set of observing agents not changing with time

for tk ≥ tk̄ for all k ≥ k̄ ≥ 0, we also have γ(tk) = 0 for k ≥ k̂ ≥ k̄ (every i ∈ Va(tk) observes

the same leaders for t ≥ tk̂ and the leaders converge to a stationary configuration), it follows

from (3.9) that limk→∞χi(tk) = x̄L(∞), i ∈ V . We also note here that use of a dynamic

average consensus algorithm in constructing the distributed containment controller (3.7)

results in a better tracking performance than use of a static average consensus ( [7]) that

gets re-initialized at each sampling time with the new observed inputs. For more details

see the example scenario discussed in Figure 2 of [1], which compares performance of a

dynamic average consensus algorithm and a static average consensus algorithm for sampled

time-varying input signals.

3.5 An application example: containment problem for

a group of networked unicycle robots

In this section, we demonstrate how a group of N unicycle robots with strongly connected

and weight-balanced topology can track the convex hull of a set of leaders that they observe.

Let the dynamics of each robot be expressed by

xi =


ẋi

ẏi

θ̇i

 =


vi cos θi

vi sin θi

ωi

 , i ∈ V , (3.11)

where xi, yi ∈ R are the coordinates in 2 dimensional space and θi ∈ R is the heading angle

of the robot. vi, ωi ∈ R are, respectively, the linear velocity and angular velocity of robot
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Figure 3.3 – A unicycle robot and its corresponding state variables.

i ∈ V . We define a head point

xih =

xih
yih

 =

xi + b cos θi

yi + b sin θi

 , i ∈ V . (3.12)

as a position at a distance b along the main axis of the robot i as shown in Fig. 3.3. The

head point can be the place where the robot observation sensor (e.g., camera) is located or

a point that carry sensitive goods. There is another group of mobile robots called leaders,

which have the ability to avoid obstacles. These unicycle robots want to track the leaders

and keep their head points inside the convex hull formed by the leaders. The unicycle robots

communicate to their neighbors at the instant tk, k ∈ Z≥0 with the time period δc and jointly

detect the position of the leaders xL,j, j ∈ VL(tsk) at the instant tsk with time period δs, but

they do not have the information of the leaders’ dynamics.

To control the unicycle robots to stay in the convex hull Co(VL(tsk)) of the moving leaders,

we propose a two-layer containment control scheme. The first layer is a distributed observer

with the discrete-time process of (3.7) proposed in Theorem 3.4.1 which produces a estimated

position χi(tk) of a pin x̄L ∈ Co(VL(tsk))) at every discrete communication time tk. By this

distributed observer, the robots can estimate the position of the pin in the convex hull

even though some of them could not detect any leader. Then, in order to track the discrete

estimate χi(tk) in time, we use a local finite-time converging controller which drives the head
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point of the continuous-time unicycle robot to track χi(tk) before the next communication

time tk+1. That is

xih(tk+1) = χi(tk), i ∈ V . (3.13)

The following result gives the local tracking control that realizes the objective (3.13).

Theorem 3.5.1 (Finite-time converging controller to track the convex hull of the leaders).

Consider a group of N unicycle robots with dynamics described by (3.11) and the head point

defined by (3.12). Let the communication topology of the robots be a strongly connected

and weight-balanced digraph and suppose the robots are implementing the containment con-

troller (3.7). Starting at an initial condition xi(t0) ∈ R3 , let for t ∈ [tk, tk+1)

vi(t) = ui1 cos θi + ui2 sin θi, (3.14a)

ωi(t) =
ui2 cos θi − ui1 sin θi

b
, (3.14b)

ui(t) =

ui1
ui2

 =
1

δc
(χi(tk)− xih(tk)). (3.14c)

Then, for every robot i ∈ V, we have limt→t−k+1
xih(t) = χi(tk) for all k ∈ Z≥0.

Proof. Note that

ẋih =

ẋi − bθ̇i sin θi
ẏi + bθ̇i cos θi

 , i ∈ V .

Substituting for robot dynamics from (3.11) and using the velocity inputs (3.14a) and (3.14b),
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we arrive at (see [91])

ẋih =

ui1
ui2

 . (3.15)

Then, using the control input (3.14c), we obtain

xih(t) = xih(tk) +
t− tk
δc

(χi(tk)− xih(tk)), t ∈ [tk, tk+1),

for i ∈ V , which confirms that limt→t−k+1
xih(t) = χi(tk) for all k ∈ Z≥0.

3.6 Numeral demonstration

In this section, we use a numerical example to demonstrate the performance of the distributed

containment control algorithm (3.7) and the local tracking controller (3.14). We consider

a group of 6 unicycle robots with dynamics (3.11) whose communication topology is given

in Fig. 3.4. A position defined by (3.12) is the head point for each robot. The robots aim

to make their head points to track the convex hull that formed by 10 mobile leaders with

unknown dynamics, moving in a 2 dimensional flat space. The robots detect the leaders

at the frequency 0.5 Hz, i.e., δs = 2 seconds. The observed leaders by the robots are time

varying as described below (time intervals are in second):

- 0 ≤ tsk < 5: V1
L(tsk) = {1, 4, 6, 8}, V2

L(tsk) = {2, 4, 7, 8, 10}, V3
L(tsk) = {3, 4, 5, 9}, V4

L(tsk) =

∅, V5
L(tsk) = {1, 3, 9} and V6

L(tsk) = ∅,

- 5 ≤ tsk < 10: V1
L(tsk) = {3, 5, 6, 8}, V2

L(tsk) = {1, 2, 7, 9, 10}, V3
L(tsk) = {3, 4, 5, 9},

V4
L(tsk) = ∅, V5

L(tsk) = {1, 3, 9} and V6
L(tsk) = {2, 5, 7, 9},
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Figure 3.4 – A strongly connected and weight-balance topology with edge weights of 0 and 1.

- 10 ≤ tsk ≤ 20: V1
L(tsk) = {1, 2, 5, 8}, V2

L(tsk) = {2, 3, 6, 7, 10}, V3
L(tsk) = {3, 4, 5, 9},

V4
L(tsk) = {3, 10}, V5

L(tsk) = {1, 3, 9} and V6
L(tsk) = {2, 5, 7, 9}.

The robots implement their distributed containment observer (3.7) at the communication

frequency of 2 Hz, i.e., δc = 0.5 seconds, to estimate x̄L(tk) which is in the convex hull

formed by the leaders. The time varying convex hull of the observed leaders are shown

by the red closed curves in Fig. 3.5 and Fig. 3.6. These Figures along Fig. 3.7 also show

that for the given scenario our proposed tracking control scheme achieves its tracking goal

satisfactorily. Fig. 3.8 and Fig. 3.9 show the performance of our containment controller

when robots communicate in a higher frequency with δc = 0.1 seconds. As we can see, the

containment observer converges faster in every sampling interval and the tracking error start

to diminish over time. It is very likely that the δs is much bigger than δc. For such cases, the

containment observer results shown in Fig. 3.7 and Fig. 3.9 suggest that instead of deriving

the local states to satisfy (3.13) we can use a lower tracking frequency to avid the transient

perturbation at the beginning of each sampling time.

3.7 Conclusion

In this chapter, we first propose the algorithm to solve the containment control problem for

a group of agents that are communicating in discrete-time over a strongly connected and

weight-balance graph. By this containment control algorithm, the group of the agents can

track the convex hull of the dynamic leaders detected in the sampling times. Then, the archi-
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Figure 3.5 – The tracking performance of the robots while implementing the distributed contain-

ment observer (3.7) and the local control (3.14) with δc = 0.5 seconds: the lines show the trajectory

of (xih, y
i
h) vs. time, while “+” show the location of x̄L(tk) of the leaders. The red polygons indicate

the convex hull formed by the moving leaders at each sampling time.

Figure 3.6 – The snapshots showing the leaders convex hull (red polygons), the location of the head

point (xih, y
i
h) of the robots (“o” markers) and the location of x̄L(tk) (“+” marker), when robots

implement the distributed containment observer (3.7) and the local control (3.14) with δc = 0.5

seconds.
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Figure 3.7 – Time history of the output of the containment observer (3.7) with δc = 0.5 seconds:

the blue curves show χi and the markers “+” show the location of the coordinates of x̄L(tk). The

jumps in the location of x̄L(tk) is due to the motion of the leaders and also the changes in the set

of the observed leaders by each agent.

Figure 3.8 – The tracking performance of the robots while implementing the distributed contain-

ment observer (3.7) and the local control (3.14) with δc = 0.1 seconds: the lines show the trajectory

of (xih, y
i
h) vs. time, while “+” show the location of x̄L(tk) of the leaders. The red polygons indicate

the convex hull formed by the moving leaders at each sampling time.
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Figure 3.9 – Time history of the output of the containment observer (3.7) with δc = 0.1 seconds:

the blue curves show χi and the markers “+” show the location of the coordinates of x̄L(tk). The

jumps in the location of x̄L(tk) is due to the motion of the leaders and also the changes in the set

of the observed leaders by each agent.

tecture for applying this containment control algorithm to unicycle robots is constructed by

a two layer controller. The first layer used the distributed containment control algorithm as

the observer to estimate the location of a point in the convex hull of the moving leaders. The

second layer uses a the local finite-time controller to drive the unicycle robots to track their

estimate by the containment observer in finite time. In this framework, the unicycle robots

have continuous-time dynamics but they only communicate with each other in discrete-time

fashion. Numerical results demonstrates the efficiency of our proposed algorithms.
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Chapter 4

Dynamic active weighted average

consensus and its application in

containment control

4.1 Introduction

In this chapter, we consider a dynamic active weighted average consensus problem. In this

problem, a group of agents interacting over a connected undirected graph should track the

weighted average of their ‘measured’ local signals. However, at any time, only a subset of

these agents are active, meaning that only a subset of agents collects measurements. The

objective then in the active weighted average consensus problem is to obtain the weighted

average of the collected measurements, which is the sum of the collected weighted measure-

ments divided by the sum of the weights of the active agents. An example application is the

containment problem shown in Fig. 4.1.

An intuitive solution to the active weighted average consensus problem may be to run two
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Figure 4.1 – A containment control scenario where a set of V = {1, · · · , 6} followers should track

the convex hull of a set of the leader agents that they observe: Here, followers Va = {1, · · · , 5} are

active agents that each observes a subset of the leaders, while follower 6 is the passive agent that

should still follow the convex hull of the leaders despite having no measurement. The average of

the geometric centers of the position of the leaders at each active agent is a point in the convex

hull of the leaders (see Lemma 3.4.1). Thus, this containment problem can be formulated as an

active weighted average consensus problem with the homogeneous weights of active agents.

conventional average consensus algorithms [1] in parallel. In one, the reference input of active

agents is the weighted measurement and the reference input of the passive agents is set to 0.

Then, in another, the number of the sum of the weights of active agents divided by the total

number of the agents is obtained by using the weight as reference input for active agents and

0 for passive agents. Then, the active average weighted consensus solution is to divide the

output of the first algorithm by the output of the second one. The previous chapter follows

this approach to solve the containment control problem described in Fig. 4.1. However,

besides extra computation and communication costs, this method is prone to zero-crossing

for the output of its second average consensus algorithm leading to infinity tracking error so

introducing the zero crossing protection measure (the small positive number of ε in Theorem

3.4.1) is necessary.

In this chapter, we propose a solution for dynamic active weighted average consensus over

connected graphs that has the same computational and communication complexity of typical

dynamic average consensus algorithms. In our proposed algorithm the agents can switch

between active and passive modes or switch their piece-wise constant weights instantaneously,
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as long as a dwell time exists between the switching incidences. Abrupt switching is usually

the case for practical problems where agents are observing dynamic activities that can enter

or leave the observation zone of the agents and thus change the agents’ role from active

to passive or vice versa in a non-smooth fashion. We model our algorithm as a switched

linear system and study its convergence properties carefully by taking into account the

piece-wise access of the agents to the reference signals. Our study employs the concept of

distributional derivatives [92] to model the derivative of piece-wise continuous functions and

characterize the transient error at the switching times. We also show that the bound of steady

state tracking error is only proportional to the maximum rate of change of reference inputs.

Then we derive a discrete-time implementation of our proposed dynamic active weighted

average consensus algorithm and study its convergence. We demonstrate the application of

our proposed algorithm in solving a containment problem. We show that the containment

problem can be formulated and solved as an active average consensus problem.

4.2 Notations and Preliminaries

We let R, R>0, R≥0, Z, Z>0 and Z≥0 denote the set of real, positive real, non-negative real,

integer, positive integer, and non-negative integer, respectively. For s ∈ Rd, ‖s‖ =
√

s>s

denotes the standard Euclidean norm. We let 1n (resp. 0n) denote the vector of n ones

(resp. n zeros), and In denote the n × n identity matrix. When clear from the context, we

do not specify the matrix dimensions. H(t) =


0, t < 0

1, t ≥ 0

is the Heaviside step function.

δ(t) =


∞, t = 0

0, t 6= 0

such that
∫∞
−∞ δ(t)dt = 1 is the Dirac Delta function. In a network

of N agents, the aggregate vector of local variables pi ∈ R, i ∈ {1, . . . , N}, is denoted by

p = (p1, . . . , pN)> ∈ RN .
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Consider the piece-wise continuous function

v(t) =


v0(t), t0≤t<t1,
v1(t), t1≤t<t2,

...
vk̄(t), tk̄≤t

, (4.1)

where vi ∈ C1, i ∈ {1, · · · , k̄}. Using the Heaviside step function, (4.1) reads as v(t) =

v0 +
∑k̄

k=1(vk − vk−1) H(t− tk). Then, following [92], the distributional derivative of v(t) is

d

dt
v = ˙̃v +

∑k̄

k=1
(v(t+k )− v(t−k )) δ(t−tk), (4.2)

where ˙̃v= v̇0+
∑k̄

k=1(v̇k − v̇k−1) H(t− tk) or equivalently

˙̃v =


v̇0(t), t0≤t<t1,
v̇1(t), t1≤t<t2,

...
v̇k̄(t), tk̄≤t.

We assume that the piece-wise continuous signals are right-continuous, i.e. v(tk) = v(t+k ).

Hereafter, we use the notation ‘ ˙̃’ to represent ˙̃v(t) =


v̇(t) t 6= tk

v̇(t+k ) t = tk

.

An undirected graph is a triplet G = (V , E ,A), where V = {1, . . . , N} is the node set and

E ⊆ V × V is the edge set, and A ∈ RN×N is a adjacency matrix such that aij = aji > 0

if (i, j) ∈ E and aij = 0, otherwise. An edge (i, j) from i to j means that agents i and

j can communicate. A connected graph is an undirected graph in which for every pair

of nodes there is a path connecting them. The degree of a node i is di = ΣN
j=1aij. The

Laplacian matrix is L = D − A, where D = Diag(d1, · · · , dN) ∈ RN×N . For connected

graphs, L1N = 0 and 1TNL = 0. Moreover, L has one eigenvalue λ1 = 0, and the rest of

the eigenvalues {λi}Ni=2 are positive. T = [r R] ∈ RN×N is an orthonormal matrix, where

r = 1√
N

1N and R∈RN×(N−1) is any matrix that makes T>T = TT> = I. For a connected

graph, T>LT =
[

0 0
0 L+

]
, where L+ = R>LR, is a positive definite matrix with eigenvalues

{λi}Ni=2 ⊂ R>0.
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Lemma 4.2.1. Suppose the nonzero matrix E ∈ RN×N is a diagonal matrix whose diag-

onal elements are either 0 or of positive real numbers, and L is the Laplacian matrix of a

connected graph. Then, −(E + L) is Hurwitz.

Proof. Consider the system ẋ = −(E + L)x. Now consider Lyapnov function V = 1
2
x>x.

Then, V̇ = −x>Ex − x>Lx ≤ 0, because −x>Ex ≤ 0 and −x>Lx ≤ 0. However, V̇ ≡ 0

happens when −x>Ex = 0 and −x>Lx = 0. But, since −x>Lx = 0 if and only if x = α1,

α ∈ R then V̇ ≡ 0 if x ≡ 0. Therefore, invoking [93, Theorem 4.11], we conclude that the

system ẋ = −(E + L)x is uniformly exponentially stable. Thus, −(E + L) is Hurwitz.

4.3 Problem Definition

Consider a network of N single integrator agents ẋi = ui, i ∈ V , interacting over a connected

undirected graph G. Suppose each agent i ∈ V has access to a measurable locally essentially

bounded reference signal ri : R≥0 → R in a possibly intermittent fashion. For every agent

i ∈ V , we let ηi(t) be the mode and weight indicator function for the agent i ∈ V , which

is in R>0 if agent i is active and has access to ri(t) at time t ∈ R≥0, and 0 otherwise. Let

Va(t) ⊂ V be the set of active agents at time t ∈ R≥0, i.e., Va(t) =
{
i ∈ V

∣∣ ηi(t) > 0
}

. In

what follows, we assume that ηi(t) and |Va(t)| are piece-wise constant functions of time, and

Va(t) 6= ∅ for all t ∈ R≥0. We refer to an agent in V\Va(t) as the passive agent at time t.

Problem 1 (Active weighted average consensus problem). The active average consensus

problem over G is defined as designing a distributed control input ui such that the agreement

state xi(t) ∈ R of every agent i ∈ V tracks

avga(t) =

∑N
i=1 η

i(t) ri(t)∑N
i=1 η

i(t)
. �
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In what follows, we first propose a distributed continuous-time algorithm to solve Prob-

lem 1. Then, we present a discrete-time implementation of this active weighted average

consensus algorithm in which the agents sample the reference inputs with a rate of 1/δs in

a zero-order fashion. Lastly, we show how a containment problem can be cast as dynamic

active (homogeneously weighted) average consensus problem and solved using our proposed

algorithm.

4.4 Continuous-Time Dynamic Active Average Con-

sensus

Our solution to solve Problem 1 over a connected undirected graph G is

ẋi(t) = − ηi(t)(xi(t)− ri(t))−
∑N

j=1
aij(x

i(t)− xj(t))

−
∑N

j=1
aij(v

i(t)− vj(t)) + ηi(t)ṙi(t), (4.3a)

v̇i(t) =
∑N

j=1
aij(x

i(t)− xj(t)), (4.3b)

with xi(0), vi(0) ∈ R, i ∈ V . Here, vi(t) ∈ R is an internal state that acts as an integral

action. Next, we study the convergence properties of (4.3) by modeling it as a switched

system and analyzing the collective response of the agents. In what follows, we let E(t) =

Diag(η1(t), · · · , ηN(t)). E(t) can be considered as switching in the class of non-zero diagonal

matrices {Ep}p∈P , P is the index set, each of which has diagonal elements being either

positive real or 0. That is E(t) = Eσ(t) 6= 0 with the switching signal σ(t) : R≥0 → P . We

let Nσ(0, t) denote the number of switchings of σ(t) on the interval [0, t). In our problem of

interest, the following common assumption for switch linear systems holds [94,95].

Assumption 1. There exist some N0 ∈ Z≥0 and τD ∈ R>0 such that, Nσ(0, t) ≤ N0 + t
τD

,

t ∈ R>0, where τD is called the average dwell time and N0 is the chatter bound. �
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We let avga = avga1, ∆avga
k = avga(t+k ) − avga(t−k ), w(t) = Eσ(t)(r(t) − avga(t)), and

∆wk = w(t+k ) −w(t−k ), where tk, k ∈ Z≥0 is the kth switching time of the switching signal

σ(t). Throughout this paper we assume t0 = 0. Lastly, given a time t ∈ R≥0, k̄ ∈ Z≥0 is the

largest integer such that tk̄ ≤ t.

For convenience in the correctness analysis of algorithm (4.3), we use the change of variables

e = T>(x− avga), q = [q1 q>2:N ]> = T>(Lv −w) to write the equivalent compact form of

(4.3) as

q̇1 = 0, (4.4a) ė

q̇2:N

 = Aσ(t)

 e

q2:N

+ B

E ṙ − ˙̃avga

− ˙̃w

−B
∑k̄

k=1

∆avga
k

∆wk

 δ(t− tk). (4.4b)

where Aσ(t) =

[
−T>(Eσ(t)+L)T −

[
0

IN−1

]
[ 0 L+L+ ] 0

]
and B =

[
T> 0
0 R>

]
. Here, we used the facts that

r> ˙̃w = 0 and r>∆wk = 0. Also, we used RR>L = L to write R>LLR = L+L+. Lastly, note

that since avga and w are piece-wise continuous functions, we used (4.2) to compute their

derivatives that appear in ė and q̇. Using standard results for linear time-varying systems

we can write e(t)

q2:N(t)

= Φ(t, 0)

 e(0)

q2:N(0)

+

∫ t

0

Φ(t, τ)B
(E ṙ − ˙̃avga

− ˙̃w

−∑k̄

k=1

∆avga
k

∆wk

 δ(τ − tk)
)

dτ,

(4.5)

where Φ(t, τ) is the transition matrix of linear system (4.4b). The next result shows that

the internal dynamics of (4.4b) is uniformly exponentially stable. Therefore, there always

exists κs, λs such that

‖Φ(t, τ)‖ ≤ κse
−λs(t−τ), t ≥ τ ≥ 0. (4.6)
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Lemma 4.4.1. Let G be a connected undirected graph. Then, every subsystem matrix Ap, p ∈

P of (4.4b) is Hurwitz. Furthermore, under Assumption 1 the internal dynamics of (4.4b)

is uniformly exponentially stable, i.e., (4.6) holds.

Proof. Consider the radially unbounded quadratic Lyapunov function V = 1
2
q>2:N(L+L+)−1q2:N+

1
2
e>e (a common Lyapunov function for all the subsystems Ap∈P of the switched system

Aσ(t)). Here, note that since L+ > 0, then L+L+ > 0. The Lie derivative of V along the

trajectories of internal dynamics of (4.4b) is

V̇ =− e>T>(Ep + L)T e ≤ 0, p ∈ P . (4.7)

To establish negative semi-definiteness of V̇ , we invoke Lemma 4.2.1. So far we have estab-

lished that V is a weak Lyapunov function. Next, we use the LaSalle invariant principle

and [96, Theorem 4] to establish exponential stability of the internal dynamics of (4.4b).

Let Sp = {(e,q2:N) ∈ RN × RN−1|V̇ ≡ 0} for all p ∈ P . Given (4.7), we then have

Sp = {(e,q2:N) ∈ RN × RN−1|e = 0}, for all p ∈ P . Then, it is straightforward to observe

that the trajectories of the internal dynamics of (4.4b) that belong to Sp∈P , should also

satisfy q2:N ≡ 0. Therefore, the largest invariant set of the internal dynamics of (4.4b) in

Sp∈P is the origin. Thus, using [93, Theorem 4.4] all the subsystems Ap∈P of the switched

system Aσ(t) are globally asymptotically stable. Moreover, because the all subsystems of

the switched system share the common weak quadratic Lyapunov function and the largest

invariant set of Sp∈P contains only the origin, given Assumption 1, by virtue of [96, Theorem

4] the internal dynamics of (4.4b), which is a switched system, is uniformly exponentially

stable. Here, we note that according to [97, Theorem 2.1] the origin being the largest in-

variant set of Sp, for all p ∈ P , ensures that the observability condition in [96, Theorem 4]

is satisfied.

Given (4.5) and (4.6), we can characterize the tracking performance of active average con-
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sensus algorithm (4.3) as follows.

Theorem 4.4.1. Let G be a connected undirected graph and suppose Assumption 1 holds.

Then, starting from any xi(0), vi(0) ∈ R, i ∈ V the trajectories of dynamic active average

consensus algorithm (4.3) satisfy

|xi(t)− avga(t)| ≤ κs e−λst

∥∥∥∥∥∥∥
x(0)− avga(0)

Lv(0)−w(0)


∥∥∥∥∥∥∥

+ κs
∑k̄

k=1
e−λs(t−tk)

∥∥∥∥∥∥∥
∆avga

k

∆wk


∥∥∥∥∥∥∥H(t− tk)

+
κs
λs

sup
0≤τ≤t

∥∥∥∥∥∥∥
Eσ(τ) ṙ(τ)− ˙̃avga(τ)

− ˙̃w(τ)


∥∥∥∥∥∥∥ . (4.8)

Proof. We note that ‖B‖ ≤ 1. Then, given (4.5) and (4.6), we can write

∥∥∥∥∥∥∥
 e(t)

q2:N(t)


∥∥∥∥∥∥∥ ≤ κs e−λst

∥∥∥∥∥∥∥
 e(0)

q2:N(0)


∥∥∥∥∥∥∥+ κs

∫ t

0

e−λs(t−τ)

∥∥∥∥∥∥∥
E ṙ − ˙̃avga

− ˙̃w


∥∥∥∥∥∥∥ dτ

+ κs
∑k̄

k=1

∫ t

0

e−λs(t−τ)

∥∥∥∥∥∥∥
∆avga

k

∆wk

 δ(τ − tk)

∥∥∥∥∥∥∥ dτ.

Then, the Hölder inequality is used to bound the second term of the right hand side to arrive

at ∥∥∥∥∥∥∥
 e(t)

q2:N(t)


∥∥∥∥∥∥∥ ≤ κs e−λst

∥∥∥∥∥∥∥
 e(0)

q2:N(0)


∥∥∥∥∥∥∥+

κs
λs

sup
0≤τ≤t

∥∥∥∥∥∥∥
Eσ(τ) ṙ(τ)− ˙̃avga(τ)

− ˙̃w(τ)


∥∥∥∥∥∥∥

+ κs
∑k̄

k=1

∫ t

0

e−λs(t−τ)

∥∥∥∥∥∥∥
∆avga

k

∆wk

 δ(τ − tk)

∥∥∥∥∥∥∥ dτ.

Consequently, with integration by parts, the last term is equivalent to κs
∑k̄

k=1 e−λs(t−tk)
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∥∥∥[∆avga
k

∆wk

]∥∥∥H(t−tk). Then, since T is an orthonormal matrix, we have
∥∥∥[ e(0)

q2:N (0)

]∥∥∥ =
∥∥∥[ x(0)−avga(0)

Lv(0)−w(0)

]∥∥∥
and ‖x − avga‖ = ‖e‖. Finally, (4.8) is derived along with the relation |xi − avga| ≤∥∥∥[ e> q>2:N ]>

∥∥∥.

We note that the first summand of the tracking error bound (4.8) is the transient response,

which vanishes over time. The second summand is due to the agents alternating between

active and passive sets or active agents switching their weights. If the average dwell time τD

is large, this error also disappears after a while. The third summand can result in a steady-

state error. This error that is expected in dynamic average consensus algorithms, as tracking

an arbitrarily fast average signal with zero error is not feasible unless agents have some priori

information about the dynamics generating the signals [1]. However, the size of this error is

proportional to the rate of change of the signals and can be limited by limiting the rate. We

recall that to provide bounded tracking, previous work in [59–61] require both the reference

input signals and their rate of change to be bounded. If the local reference signals are static

and the agents do not switch, the agents exponentially converge to avga without steady-

state error. Lastly, algorithm (4.3) does not require specific initialization. In other words,

the convergence property of algorithm (4.3) uniformly holds for any initialization. Therefore,

as long as the graph stays connected, agents can leave and join the network without effecting

the convergence guarantees. Figure 4.2 demonstrates the performance of algorithm (4.3) in

a numerical example.

4.5 Discrete-Time Dynamic Active Average Consensus

We consider a scenario where active agents sample their reference inputs at sampling times

tsl = lδs ∈ R≥0, l ∈ Z≥0, δs ∈ R>0. The agents can communicate at discrete-times tck = kδc ∈

R≥0, k ∈ Z≥0, δc ∈ R>0. The objective of every agent i ∈ V is to track avga(k) (where k

is the shorthand for tck). To solve the active average consensus problem under this scenario,
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Figure 4.2 – A network of 6 agents with a ring interaction topology executes the active average

consensus algorithm (4.3). In time interval t ∈ [0, 50), the observing agents Va(t) = {1, 2, 4, 6}
all have dynamic inputs. The observing agents at t ∈ [50, 70) and t ∈ [70, 120] are, respectively,

Va(t) = {2, 3, 5, 6} Va(t) = {3, 6} and their observations are static signals. Agent 1 (black line)

leaves the network at t = 90. The gray thick line represents avga(t). The agents can track the

dynamic avga(t) with bounded error in t ∈ [0, 50), while their tracking error is close to zero for the

rest of the time as the reference signals are constant after t = 50. The transient tracking error at

time t = 70 is due to switching of some of agents to the passive mode. This error is captured by

the second term in the right-hand side of (4.8). Lastly, agent 1’s leaving causes perturbations at

t = 90 but the network still converge to avga(t).

we propose that every agent i ∈ V implements

xi(k) = zi(k) + ηi(k)ri(k), (4.9a)

zi(k + 1) = zi(k)− δcηi(k)(xi(k)− ri(k)) (4.9b)

− δc
N∑
j=1

aij(x
i(k)− xj(k))− δc

N∑
j=1

aij(v
i(k)− vj(k)),

vi(k + 1) = vi(k) + δc
∑N

j=1
aij(x

i(k)− xj(k)). (4.9c)

which is an Euler discretized implementation of the active average algorithm (4.3) with

stepszie δc. Here, we assume that if δs 6= δc, the agents perform a zero-order hold sampling,

so that ri(k) = ri(l̄), i ∈ V , where l̄ is the latest sampling time step such that ts
l̄
≤ tck. We

let σ(k) : Z≥0 → P be the switching signal of E(k), i.e., E(k) = Eσ(k). Then, we implement

the same change of variable as for the continuous-time algorithm (4.3) to write the compact

82



form of (4.9) as

q1(k + 1) = q1(k), (4.10a) e(k + 1)

q2:N(k + 1)

=(I + δcAσ)

 e(k)

q2:N(k)

+B

∆Er(k)−∆avga(k)

−∆w(k)

 , (4.10b)

where Aσ and B are defined in (4.4b), ∆Er(k) = ∆E(k+1)r(k+1)−∆E(k)r(k), ∆avga(k) =

avga(k+1)−avga(k), and ∆w(k) = w(k+1)−w(k). Then, given |xi−avga| ≤
∥∥∥[ e> q>2:N ]>

∥∥∥,

the tracking performance of (4.9) can be understood by studying the convergence properties

of (4.10b). For the discrete-time implementation, the following assumption holds.

Assumption 2. The switched system (4.10b) switches in a finite set of subsystem, i.e.,

σ(k) : Z≥0 → P, where P ⊂ P is a finite subset.

The first result below shows that with a proper choice for δc every subsystem (I+δcAp), p ∈ P

is Schur. However, this is not enough to guarantee that the internal dynamics of (4.10b) is

exponentially stable. To provide such guarantee, following [98, Corollary 1], we impose the

following standard assumption.

Assumption 3. The average dwell time τD of the switching signal σ(k) satisfies τD ≥ τ ∗D,

where τ ∗D is a stable average dwell time of the switched system (4.10b). �

Note that τ ∗D of the switched system (4.10b) can be computed using the methods introduced

in [98,99].

Lemma 4.5.1. Let G be a connected undirected graph. Then, every subsystem matrix (I +

δcAp), p ∈ P of (4.10b) is Schur provided δc ∈ (0, d̄), where

d̄ = min

{
{−2

Re(µi,p)

|µi,p|2
}2N−1
i=1

}
p∈P
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and {µi,p}2N−1
i=1 are the set of eigenvalues of Ap. Furthermore, under Assumption 3 the

internal dynamics of (4.10b) is uniformly exponentially stable, i.e., there always exists κd ∈

R>0 and ωd ∈ (0, 1), such that, the state transition matrix Φ(k, j) of (4.10b) satisfies

‖Φ(k, j)‖ ≤ κd ω
(k−j)
d , k ≥ j ≥ 0, k, j ∈ Z≥0. (4.11)

Proof. Lemma 4.4.1 ensures that every Ap, p ∈ P ⊂ P is a Hurwitz matrix. Then, it

follows from [1, Lemma S1] that (I + δc,pAp), p ∈ P is Schur if δc,p ∈ (0, d̄p), where d̄p =

min{−2
Re(µi,p)

|µi,p|2 }
2N−1
i=1 . As a result, (I + δcAp), p ∈ P is Schur if δc ∈ (0, d̄), where d̄ =

min{d̄p}p∈P . Then, given Assumption 3, it follows from [98, Corollary 1] that the zero input

dynamics of switched system (4.10b) is uniformly exponentially stable.

The next result characterizes the tracking performance of (4.9).

Theorem 4.5.1. Let G be a connected undirected graph and suppose Assumption 2 and 3

hold.. Then, for any δc ∈ (0, d̄), starting from any xi(0), vi(0) ∈ R, i ∈ V, the trajectories of

dynamic active average consensus algorithm (4.9) satisfy

|xi(k)− avga(k)| ≤ κdω
k
d

∥∥∥∥∥∥∥
x(0)− avga(0)

Lv(0)−w(0)


∥∥∥∥∥∥∥

+
κd(1− ωkd)

1− ωd
sup

0≤l≤k−1

∥∥∥∥∥∥∥
∆Er(l)−∆avga(l)

−∆w(l)


∥∥∥∥∥∥∥ . (4.12)

Proof. Using standard results for linear systems, trajectories of (4.10b) are given by

 e(k)

q2:N(k)

 =Φ(k, 0)

 e(0)

q2:N(0)

+
∑k−1

j=0
Φ(k, j + 1)B

∆Er(j)−∆avga(j)

−∆w(j)

 .
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Then, given that ‖B‖ ≤ 1 and (4.11) we can write

∥∥∥∥∥∥∥
 e(k)

q2:N(k)


∥∥∥∥∥∥∥ ≤ κd ω

k
d

∥∥∥∥∥∥∥
 e(0)

q2:N(0)


∥∥∥∥∥∥∥+ κd

∑k−1

j=0
ωjd sup

0≤l≤k−1

∥∥∥∥∥∥∥
∆Er(l)−∆avga(l)

−∆w(l)


∥∥∥∥∥∥∥ .

By the sum of geometric sequence, κd
∑k−1

j=0 ω
j
d =

κd(1−ωkd )

1−ωd
. Then, given that

∥∥∥[ e(0)
q2:N (0)

]∥∥∥ =∥∥∥[ x(0)−avga(0)
Lv(0)−w(0)

]∥∥∥ and |xi − avga| ≤
∥∥∥[ e> q>2:N ]>

∥∥∥, tracking error (4.12) is established.

4.6 Distributed containment control via dynamic ac-

tive average consensus modeling

In this section, we use the discrete-time dynamic active average consensus algorithm to

solve a containment control problem. Let’s briefly recap the containment control setting.

Consider a group of M (M can change with time) mobile leaders that are moving with

a bounded velocity on a R2 or R3 space. xL,j(t) represents the position vector of leader

j ∈ {1, . . . ,M} at time t ∈ R≥0. A set of networked follower agents V = {1, · · · , N}

interacting over a connected graph G monitors the leaders. The agents can communicate

at discrete-times tck = kδc ∈ R≥0, k ∈ Z≥0, δc ∈ R>0. The agents sample the leaders at

sampling times tsl = lδs ∈ R≥0, l ∈ Z≥0, δs ∈ R>0. We let V iL(tsl ) be the set of leaders

observed by agent i ∈ V at sampling time tsl . Between each sampling time, agent i ∈ V

uses xL,j(t) = xL,j(t
s
l ) and V iL(t) = V iL(tsl ), t ∈ [tsl , t

s
l+1), l ∈ Z≥0, j ∈ V iL(tsl ). At every

sampling time tsl ∈ R≥0, we let VL(tsl ) be the set of the mobile leaders that are observed

jointly by the agents V , i.e., VL(tsl ) = ∪Ni=1V iL(tsl ) (see Fig. 4.1). We let Va(tsl ) ⊂ V be the

set of the active agents that observe at least one leader at tsl , k ∈ Z≥0; we assume that

Va(tsl ) 6= ∅. In what follows, the objective is to design a distributed control that enables

each follower i ∈ V to derive its local state xi to asymptotically track Co(VL(tsl )), the convex
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hull of the set of the location of the observed leaders VL(tsl ), with a bounded error e ≥ 0.

To simplify notation, we wrote Co({xL,j(t)}j∈VL(t)) as Co(VL(t)). We state the objective of

the containment control as ‖xi(tck) − x̄L(tck)‖ ≤ e, i ∈ V , where x̄L(tck) ∈ Co(VL(tck)). The

agents have no knowledge about the motion model of the leaders. Since followers observe

the dynamic leaders collaboratively, the tracking error e is expected as the measurement of

each active follower needs time to propagate through the network to the rest of the followers.

Our solution builds on the key observation of Lemma 3.4.1. Let

ri(tsl ) =


∑
j∈Vi

L
(ts
l
)
xL,j(t

s
l )

|ViL(tsl )|
, i ∈ Va(tsl ),

0, i ∈ V\Va(tsl ).

(4.13)

Then, in light of Lemma 3.4.1, we know that

x̄L(tsl ) =

∑
i∈Va(tsl )

ri(tsl )

|Va(tsl )|
∈Co(VL(tsl )). (4.14)

Equation (4.14) states that x̄L(tsl ), a point in the convex hull of the leaders, is the average

of the input ri(tsl ) of the active agents Va(tsl ). Thus, our containment problem can be solved

by implementing the discrete-time active weighted average consensus algorithm (4.9) with

homogeneous weights for the active agents as described in the result below.

Lemma 4.6.1. Let the interaction topology G of the followers be a connected graph and

suppose that the agents communicate at tck = kδc ∈ R≥0, k ∈ Z≥0. Assume that at each

sampling time tsl = lδs ∈ R≥0, l ∈ Z≥0, we have Va(tsl ) 6= ∅. Let the local reference inputs of

the agents be (4.13). Assume that the leader observation is done is a zero order fashion, i.e.,

ri(t) = ri(tsl ), i ∈ V, and xL(t) = xL(tsl ) for t ∈ [tsl , t
s
l+1), where xL(tsl ) is given in (4.14).

Moreover, assume ‖xL,j(tsl+1) − xL,j(t
s
l )‖, j ∈ {1, · · · ,M}, is bounded. Let ηi(t) = 1 if

i ∈ Va(tsl ), otherwise, ηi(t) = 0 for t ∈ [tsl , t
s
l+1). Suppose that each agent i ∈ V implements

the distributed algorithm (4.9). Then, the tracking error ‖xi(tck)− xL(tck)‖ is bounded.
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Proof. It is clear that by letting the local reference inputs of agents be (4.13), the active

average of the reference inputs is avga(tck) =

∑
i∈Va(tc

k
) r
i(tck)

|Va(tck)| = x̄L(tck). Then, Theorem 4.5.1

guarantees ‖xi(tck)− xL(tck)‖ is bounded if each agents implements (4.9).

Our solution in Lemma 4.6.1 applies to scenarios like in Fig. 4.1 where the observation sets of

the followers have overlap. It is interesting to note that in case of overlapping observations,

xL is not the centroid of the leaders. Next, note that by virtue of Theorem 4.5.1, if the

leaders are static or move towards a static configuration, the algorithm convergences exactly

to xL. Otherwise, to ensure that the followers stay in the convex hull while tracking xL with

some error, we may have to require that the convex hull of the leaders should be sufficiently

large.

For demonstration, consider a case that 6 followers with a ring interaction graph aim to

follow the convex hull of 10 leaders in a two dimensional space. The followers observe the

leaders at 1 Hz according to the scenario described below where the set of active followers

changes at tsl =5 and tsl =10 seconds:

- 0 ≤ tsl < 5: V1
L(tsl ) = {1, 4, 6, 8}, V2

L(tsl ) = {2, 4, 7, 8, 10}, V3
L(tsl ) = {3, 4, 5, 9}, V4

L(tsl ) = ∅,

V5
L(tsl ) = {1, 3, 9} and V6

L(tsl ) = ∅,

- 5 ≤ tsl < 10: V1
L(tsl ) = {3, 5, 6, 8}, V2

L(tsl ) = {1, 2, 7, 9, 10}, V3
L(tsl ) = {3, 4, 5, 9}, V4

L(tsl ) = ∅,

V5
L(tsl ) = {1, 3, 9} and V6

L(tsl ) = {2, 5, 7, 9},

- 10 ≤ tsl ≤ 20: V1
L(tsl ) = {1, 2, 5, 8}, V2

L(tsl ) = {2, 3, 6, 7, 10}, V3
L(tsl ) = {3, 4, 5, 9}, V4

L(tsl ) =

{3, 10}, V5
L(tsl ) = {1, 3, 9} and V6

L(tsl ) = {2, 5, 7, 9}.

The communication frequency of the followers is 5 Hz. Figure 4.3 shows that the proposed

distributed containment control of Lemma 4.6.1 results in a bounded tracking of the convex

hull of the observed leaders. The interested reader can also find an application study of

use of our solution in Lemma 4.6.1 in solving containment control for a group of unicycle
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Figure 4.3 – The containment tracking performance of the follower agents while implementing the

distributed algorithm (4.9): the solid curves show the trajectory of xi vs. time, while “+” show the

location of x̄L(tck) of the leaders. The red polygons indicate the convex hull formed by the moving

leaders.

followers with continuous-time dynamics in the previous chapter. There, the algorithm in

Lemma 4.6.1 is used as an observer to generate the tracking points for the followers.

4.7 Conclusion

We proposed a dynamic active weighted average consensus algorithm that makes both active

and passive agents track the weighted average of the collected reference inputs. The stability

and tracking performance were analyzed in both continuous- and discrete-time implementa-

tions. We also showed that a containment control can be formulated as an active average

consensus problem and solved using our proposed discrete-time algorithm.
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Chapter 5

Distributed coverage control for

mobile agents deployment

5.1 Introduction

In this chapter, we propose a novel deployment strategy for mobile agents to cover a col-

lection of dense targets with their heterogeneous anisotropic services. An unknown density

distribution of the dense targets is considered as the priority function in our deployment.

Our deployment objective is deploying the agents such that the resulting QoS distribution of

agents similar to the density distribution of the targets. Hence, the agents’ service efficiently

covers the targets; that is, the place containing more (fewer) targets is served with higher

(lower) QoS.

We model the unknown density distribution of targets by a Gaussian mixture model (GMM).

We propose a consensus-based distributed expectation-maximization (EM) algorithm to let

the agents learn the parameters of GMM. With the proposed distributed EM, we do not

require each agent has to measure the targets locally. Only a subset of the agents can

89



measure the targets and their information is then propagated through the consensus protocol

to all agents. Moreover, the GMM intrinsically partition the area into a set of subregions,

each of which represents a Gaussian basis; therefore, after estimating the target density

distribution, the agents also finish the area partitioning task. We note that unlike the

distributed Voronoi partition requiring the agents to be able to communicate to their Voronoi

neighbors, which may be unrealistic because Voronoi neighbors are not definitely inside

their communication range, our approach only requires the communication graph among the

agents to be connected.

To result in the distributions of QoS and targets similar, we formulate a multi-agent assign-

ment problem under the framework of optimal mass transport to allocate each agent to a

subregion based on the similarity measure, Kullback-Leibler divergence (KLD), between the

distribution of agent’s QoS and the target’s density distribution in the subregion. With the

virtue of distributed simplex algorithm [100], the agents can solve the distributed assignment

problem in a distributed manner and agree on the final assignment plan. Then, a local con-

troller is applied to transport the agents with heterogeneous linear dynamics to their assigned

subregions. We first investigate the case where the agents’ QoS distributions are different

Gaussian distributions. Since the footprint of Gaussian distribution is elliptic, the agents’

QoS are heterogeneous and anisotropic. We theoretically show the optimal pose (position

and orientation) of an agent that causes its QoS distribution most similar to the Gaussian

basis of the subregion once it is assigned to a subregion. Then, we extend to the general

case of non-Gaussian QoS. We seek a suboptimal pose for the agent by discretizing the pose

space and numerically assesses the minimum KLD with each subregion. We illustrate two

applications in the deployments of sensor network and UAV-aided wireless communication

network.
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5.2 Notations and Preliminaries

We let R, R>0, R≥0, Z, Z>0 and Z≥0 denote the set of real, positive real, non-negative real,

integer, positive integer, and non-negative integer, respectively. For s ∈ Rd, ‖s‖ =
√

s>s

denotes the standard Euclidean norm. We let 1n (resp. 0n) denote the vector of n ones

(resp. n zeros), and In denote the n× n identity matrix. Given two continuous probability

density distributions p(x) and q(x), x ∈ X, the Kullback–Leibler divergence (KLD) is defined

as

DKL

(
p(x)||q(x)

)
=

∫
x∈X

p(x) ln
p(x)

q(x)
dx.

KLD is a measure of similarity (dissimilarity) between two probability distributions, whose

the smaller indicates more similarity. KLD is zero if and only if the two distribution are

identical. For two 2-dimensional Gaussian distributions, p(x) = N (x|µ0,Σ0) and q(x) =

N (x|µ1,Σ1), the KLD has a closed form expression [101, eq. (2)]

DKL

(
p(x)||q(x)

)
=

1

2

(
ln
|Σ1|
|Σ0|

+ (µ0 − µ1)>Σ−1
1 (µ0 − µ1) + tr(Σ−1

1 Σ0)− 2
)
,

where {µk}k∈{0,1} and {Σk}k∈{0,1} are the means and the covariance matrices of the two

Gaussian distributions, respectively. For two distributions p(x) and q(x) which are not in the

form of any standard distribution, the KLD can be computed by Monte Carlo method [101,

eq. (4)]. By drawing M i.i.d. samples {x}Mn=1 from the distribution p(x), we have

1

n

M∑
n=1

ln
p(xn)

q(xn)
→ DKL

(
p(x)||q(x)

)
as n → ∞. Rényi divergence of order α is a more general divergence measure. The pa-

rameter α gives the potential improvement of identifying the similarity of two distributions

in application [102]. But tuning the optimal α is not in the scope of this paper, so we use

Kullback–Leibler divergence as the similarity measure for simplicity.
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We follow [49] for Our graph theoretic notations and definitions. A graph, is a triplet

G = (V , E ,A), where V = {1, . . . , N} is the node set and E ⊆ V × V is the edge set,

and A ∈ RN×N is a adjacency matrix such that aij = 1 if (i, j) ∈ E and aij = 0, otherwise.

An edge (i, j) from i to j means that agents i and j can communicate. A path is a sequence

of nodes connected by edges. A connected graph is an undirected graph in which for every

pair of nodes there is a path connecting them.

To develop our distributed density estimator in Section 5.5.1, we rely on the dynamics active

weighted average consensus algorithm that is shown in Algorithm 1. In a dynamics active

weighted average consensus at any time, only a subset of the agents are active, meaning

that only a subset of agents collects measurements ri. The objective then is to enable

all the agents, both active and passive, to obtain the weighted average of the collected

measurements,
∑
i η
i(l)ri(l)∑
i η
i(l)

, without knowing the set of active agents. Here, ηi(l) = 0 if i is

passive at time step l and ηi(l) ∈ R>0 if i is active. Theorem 4.5.1 shows that Algorithm 1,

starting at any zi, yi(0) ∈ R, makes yi(l) track the time varying weighted average signal∑
i η
i(l)ri(l)∑
i η
i(l)

with a bounded tracking error as l → ∞. Moreover, if the weights and reference

signals are static, the tracking error vanishes with time, i.e., liml→∞ yi(l) =
∑
i η
iri∑

i η
i .

Algorithm 1 Active weighted average consensus algorithm [yi, zi,vi]← Con(ηi, ri, zi0,v
i
0)

Require: Weight ηi, reference ri, number of loops L, a small enough number δc > 0.
Initialization: zi(1) = zi0 and vi(1) = vi0
for l = 1 : L do

yi(l) = zi(l) + ηi(l)ri(l),

zi(l + 1) = zi(l)− δcηi(l)(yi(l)− ri(l))

− δc
N∑
j=1

aij(y
i(l)− yj(l))− δc

N∑
j=1

aij(v
i(l)− vj(l)),

vi(l + 1) = vi(l) + δc
∑N

j=1
aij(y

i(l)− yj(l)).

end for
return yi(l), zi(l + 1),vi(l + 1)
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5.3 Problem Definition and Objective

We consider a mobile deployment problem for a group of mobile agents over a set of dense

targets {xnt }Mn=1 ⊂ R2 on a planar ground with the objectives such as event detection, wireless

communication or monitoring, which we refer to it in general term as providing a ‘service’.

The probability density distribution p(x), x ∈ R2, which is unknown to the agents, represents

the density distribution of the targets. The mobile agents communicating over a connected

undirected graph G = (V , E ,A) consist of two types. There are a set Va ⊆ V of active agents

that have the capability to actively detect the targets and a set Vs = {1, · · · , N} ⊆ V service

agents that are deployed to provide the targets with a service, see Fig 5.1. Unlike some

existing literature like [77], Va and Vs do not have to be mutually exclusive. We assume that

the active agents have partitioned the area such that each target is detected only by one

active agent, i.e., no overlapping detection.

We let (xis, θ
i
s) ∈ R2 × [0, 2π] be the pose (position and orientation) of service agent i ∈ Vs.

The QoS provided by a service agent i ∈ Vs is given by conditional probability distribution

function Qi(x|xis, θis) = zi(xis, θ
i
s)q

i(x|xis, θis), x ∈ R2, where zi(xis, θ
i
s) =

∫
x∈R2 Q

i(x|xis, θis)dx is

the normalization constant and qi(x|xis, θis) is the normalized density distribution of QoS of

agent i. We define the collective QoS provided by service agents by the probability density

distribution

q(x|{xis, θis}i∈Vs) =

∑
i∈Vs

Qi∫
x∈R2

∑
i∈Vs

Qidx
=

∑
i∈Vs

ziqi∑
i∈Vs

zi
=
∑
i∈Vs

ωisq
i, (5.1)

where ωis = zi∑
i∈Vs

zi
represents the relative service capability of agent i among Vs.

Our objective in this paper is to first enable all the agents, both active and service agents,

obtain an estimate a mixture model p̂(x) of the density distribution of the targets in dis-

tributed manner. Then, design a distributed deployment strategy to re-position the service
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Figure 5.1 – A multi-agent system with active agents and service agents.

agents in a way that their collective QoS serves the targets in an efficient manner. In other

words, we seek locations and orientations for service agents such that the collective QoS

distribution q is as much similar to as possible to the estimate target density distribution p̂.

The optimal solution for the deployment objective can be obtained from

{xis, θis}i∈Vs = arg min DKL

(
p̂(x)||q(x)

)
. (5.2)

However, we note that p̂(x) and q(x) are mixture distributions, and KLD of mixtures prov-

ably does not admit a closed-form formula. In practice these kind of KLDs are usually

estimated by using costly Monte-Carlo sampling simulation [103]. Moreover, the collective

QoS distribution q(x) contributed by each agent’s QoS distribution, ωisq
i, i ∈ Vs, is a global

information. Accordingly, designing a distributed solver for (5.2) is challenging. There-

fore, in this paper, we seek a suboptimal solution for (5.2) that can be implemented in a

distributed manner and has low computational complexity.
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5.4 Overview of the Proposed Mobile Agent Deploy-

ment Solution

Our proposed distributed solution to meet our objective stated in Section 5.3 is the two-stage

process depicted in Fig. 5.2. In our first stage, we use a GMM with N Gaussian bases to

model the target density distribution. In our setting, the active agents Va detect the positions

of the targets, considered as the sampled data from the unknown distribution p(x). Then, a

distributed EM algorithm, which uses a set of active weighted average consensus algorithm,

is used to enable both active and service agents obtain a coherent estimate of the parameters

of the N Gaussian bases. As a result, the target density distribution is decomposed into N

Gaussian bases. These Gaussian bases partition the target area into N subregions each of

which represents a Gaussian basis. Then, our second consecutive stage is an agent allocation

process following an optimal mass transport framework. In this allocation process first

each service agent i ∈ Vs computes the KLD between its QoS distribution, ωisq
i, and each

subregion’s Gaussian basis estimated from stage 1. Then, a distributed assignment problem

is formulated with the KLDs as the cost of deploying the agent to the each respective

subregion. As a result, each agent is paired with a subregion and the summation of the

divergences corresponding to each paired agent’s QoS distribution and subregion’s Gaussian

basis is minimized. The last step in this stage is a transportation process in which we

implement a local controller to drive the agents to their assigned destinations in finite time.

We present the details of each stage in the following sections.

Then active agents Va detect the targets again and all agents V return to stage 1 process.

This iterative scheme allows the agents to cover the slowly moving targets.
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Figure 5.2 – The proposed two-stage distributed deployment solution.

5.5 Stage 1: distributed target density distribution es-

timation

5.5.1 Consensus-based distributed EM algorithm for GMM

GMM is characterized by finite sum of Gaussian bases with different weights, means and

covariance matrices. Let x ∈ R2 be the observed target’s position drawn from a mixture

of N Gaussian bases with the distribution N (x|µk,Σk), where µk ∈ R2 is the mean and

Σk ∈ R2×2 is the covariance matrix for k ∈ K = {1, · · · , N}. Let z ∈ R be the indicator

which indicates the variable x belongs to kth Gaussian basis when z = k. The variable z is

not observed so z is also called hidden variable or latent variable. The probability of drawing

a variable from the kth Gaussian basis is denoted as πk := Pr(z = k). The distribution of

x given the kth mixture basis is Gaussian, i.e., p̂(x|z = k) = N (x|µk,Σk). Therefore, the

marginal probability distribution for x is given by

p̂(x) =
N∑
k=1

πkN (x|µk,Σk) (5.3)
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The parameters that should be determined to obtain the estimate p̂(x) are the set {πk,µk,Σk}Nk=1.

Next, we employ the EM algorithm to obtain these parameters [104].

The EM algorithm obtains the maximum likelihood estimates of {πk,µk,Σk}Nk=1 given M

independent detected targets’ positions {xnt }Mn=1. It is an iterative method that alternates

between an expectation (E) step and a maximization (M) step. Given a detected target xnt ,

n ∈ {1, · · · ,M}, E-step computes the posterior probability

γkn := Pr(z = k|xnt ) =
πkN (xnt |µk,Σk)∑N
j=1 πj N (xnt |µj,Σj)

, (5.4)

using the current value of {πk,µk,Σk}Nk=1. Then, M-step updates the parameter set {πk,µk,Σk}Nk=1

by the following equations using the current γkn:

πk =

∑M
n=1 γkn
M

, (5.5a)

µk =

∑M
n=1 γknx

n
t∑M

n=1 γkn
, (5.5b)

Σk =

∑M
n=1 γkn(xnt − µk)(x

n
t − µk)

>∑M
n=1 γkn

, (5.5c)

for k ∈ {1, · · · , N}. M-step needs the global information to update the parameter set

{πk,µk,Σk}Nk=1 because the summations in (5.5) are over all detected targets n ∈ {1, · · · ,M}.

However, the information of the targets’ positions {xnt }Mn=1 is distributed among the ac-

tive agents Va. We observe that the right hand side quantities of (5.5) are in the form of

(weighted) average. Therefore, we propose a distributed implementation of the EM algo-

rithm, which invokes a set of active weighted average consensus algorithms such that all the

agents, V = Va∪Vx obtain an approximate value of (5.5) by locally exchanging the informa-

tion with their neighbors. Suppose each agent i ∈ V maintains a local copy of the parameter

set of the Gaussian bases {πik,µi
k,Σ

i
k}Nk=1. At the E-step, every active agent i ∈ Va computes

γkn for k ∈ {1, · · · , N} and n ∈ V it where V it is the set of targets detected by active agent
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i ∈ Va. Then, in the M-step, every agent i ∈ V executes Consensus Algorithm 1 with proper

setting its weight ηi and reference ri to estimate the update of {πik,µi
k,Σ

i
k}Nk=1. It is clear

that by setting ηi = |V it | and ri =

∑
n∈Vit

γkn

|Vit |
if i ∈ Va, otherwise, ηi = 0 and ri = 0, the

consensus variable yi in Algorithm 1 asymptotically converges to (5.5a). Similarly, letting

ηi =
∑

n∈Vit
γkn and ri =

∑
n∈Vit

γknxn∑
n∈Vit

γkn
if i ∈ Va, otherwise, ηi = 0 and ri = 0, yi converges to

(5.5b); letting ηi =
∑

n∈Vit
γkn and ri =

∑
n∈Vit

γkn(xn−µik)(xn−µik)>∑
n∈Vit

γkn
if i ∈ Va, otherwise, ηi = 0

and ri = 0, yi converges to (5.5c). The proposed consensus based distributed EM algorithm

is summarized in Algorithm 2.

Remark 5.5.1. We emphasize that, in [75], the authors also chose the Gaussian distribution

as the basis function to fit the priority function (target density function) but the Gaussian

bases are assumed fixed and given. The agents only learn the weight of each Gaussian basis.

However, in our GMM, not only the weights but also the parameters (means and covariance

matrices) of Gaussian bases are estimated from the proposed EM algorithm so our model

has higher degrees of freedom to fit the true distribution of targets more precisely. �

Because the algorithm is terminated in a finite time. It is expected that p̂i(x) of each active

agent i be slightly different than other active agent. In what follows we let,

p̂i(x) =
N∑
k=1

πikN (x|µi
k,Σ

i
k), (5.6)

be the local final estimate of agent i ∈ Va.

5.5.2 Numerical demonstration

We demonstrate a numerical simulation to show the performance of the proposed distributed

EM algorithm. Consider a group of 6 mobile agents where Va = {1, 2, 3, 6} are the active

agents that monitor the targets to enable the service agents Vs = V = {1, 2, 3, 4, 5, 6} to
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Algorithm 2 Consensus based distributed EM algorithm for GMM

Require: detected targets set {xnt }n∈Vit by agent i, number of Gaussian bases N , number of loops
T
Initialization: {πik, ziπ,k, viπ,k}Nk=1,{µik, ziµ,k,viµ,k}Nk=1,

{Σi
k, z

i
Σ,k,v

i
Σ,k}Nk=1,

for t = 1 : T do
E-step:

if i ∈ Va then
Compute γkn in (5.4) using the current value of {πik µik,Σ

i
k} for k = {1, · · · , N} and n ∈ V it .

end if
M-step:

for k = 1 : N do
if i ∈ Va then

[πik, z
i
π,k, v

i
π,k]← Con(|V it |,

∑
n∈Vit

γkn

|V it |
, ziπ,k, v

i
π,k)

[µik, z
i
µ,k,v

i
µ,k]← Con(

∑
n∈Vit

γkn,

∑
n∈Vit

γknxn∑
n∈Vit

γkn
, ziµ,k,v

i
µ,k)

[Σi
k, z

i
Σ,k,v

i
Σ,k]←

Con(
∑
n∈Vit

γkn,

∑
n∈Vit

γkn(xn−µtk)(xn−µtk)>∑
n∈Vit

γkn
, ziΣ,k,v

i
Σ,k)

else

[πik, z
i
π,k, v

i
π,k]← Con(0, 0, ziπ,k, v

i
π,k)

[µik, z
i
µ,k,v

i
µ,k]← Con(0, 0, ziµ,k,v

i
µ,k)

[Σi
k, z

i
Σ,k,v

i
Σ,k]← Con(0, 0, ziΣ,k,v

i
Σ,k)

end if
end for

end for

return {πik,µik,Σ
i
k}Nk=1
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obtain an estimate of the density distribution p(x) of a group of M = 1000 targets. The

agents V communicate over a connected graph whose adjacency matrix is

A =

 0 −1 0 0 0 −1
−1 0 −1 0 0 0
0 −1 0 −1 0 −1
0 0 −1 0 −1 0
0 0 0 −1 0 −1
−1 0 −1 0 −1 0

 .
The numbers of the targets detected by agent i ∈ Va are |V1

t | = 100, |V2
t | = 250, |V3

t | = 450,

and |V6
t | = 200. The agents, both active and service, execute the distributed EM Algorithm 2

to estimate the parameters of the Gaussian bases of the target density distribution. In the

simulation, the number of the iteration-loops of the consensus algorithm and EM algorithm

are L = 20 and T = 50, respectively. Agents’ estimation results are illustrated in Fig. 5.3

where the black circle’s represent the targets, the elliptic footprints are the 3-σ uncertainty

ellipses of the 6 Gaussian bases N (x|µi
k,Σ

i
k), k ∈ {1, · · · , 6} estimated by agent i and the

thickness of the elliptic footprint represents πik. The result shows that with the proposed

distributed EM algorithm, the agents successfully estimate the parameter of GMM for the

target’s distribution though agent 4 and 5 do not detect any target. We note that with the

help of the consensus algorithm all agents get the approximately same estimation results.

The proposed distributed EM algorithm is a approximate process of the standard centralized

EM algorithm. The accuracy of the approximation depends on the number L of loops of

consensus algorithm 1. Theoretically, if L → ∞ the approximation is exact because the

weight ηi and the reference ri are static in each M-step. In practice, the choice of finite L is a

trade of between the accuracy of the approximation and the consumption of communication

among the agents. Figure 5.4 shows the log-likelihood, ln Pr({xnt }Mn=1|{π4
k µ

4
k,Σ

4
k}Nk=1), at the

50th iteration of the distributed EM versus L. We can observe that with a proper large L,

the performance of the propose distributed EM algorithm is close to the centralized EM.
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Figure 5.3 – The estimate of GMM of each agents of the demonstration in section 5.5.2

Figure 5.4 – The log-likelihood function for different value of L
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5.6 Stage 2: Distributed deployment of service agents

In stage 1, the target density distribution is modeled and estimated by a GMM. The result

of GMM intrinsically partitions the area into a set of subregions each of which represents

a Gaussian basis. Our suboptimal solution to the deployment problem (5.2) is to deploy

each service agent i ∈ Vs = {1, · · · , N} to optimally cover a assigned subregion k ∈ K =

{1, · · · , N}. The service agent assignment is based on the similarity of the agent’s QoS

distribution, i.e., ωisq
i(x|xis, θis), to the Gaussian basis subregion, i.e., πikN (x|µi

k,Σ
i
k), such

that the summation of the KLD of each assigned agent-subregion pair is minimized. This

objective can be formalized as follows. For any service agent i ∈ Vs let

Cik(x
i
s, θ

i
s) = DKL

(
πikN (x|µi

k,Σ
i
k)||ωisqi(x|xis, θis)

)
=

∫
x∈R2

πikN (x|µi
k,Σ

i
k) ln

πikN (x|µi
k,Σ

i
k)

ωisq
i(x|xis, θis)

dx

=πik

(
ln
πik
ωis

+ DKL

(
N (x|µi

k,Σ
i
k)||qi(x|xis, θis)

))
, (5.7)

for k∈K. We note that Cik in (5.7) is a continuous function of the service agent’s pose (xis, θ
i
s).

We introduce a binary decision variable Zik ∈ {0, 1}, which is 1 if agent i is assigned to region

k and 0 otherwise. With the right notation at hand then, our suboptimal deployment solution

is given by

{xi?s ,θi
?

s , {Z?
ik}k∈K}i∈Vs = arg min

∑
i∈Vs

∑
k∈K

Cik(x
i
s, θ

i
s)Zik, (5.8)

Zik ∈ {0, 1}, i ∈ Vs, k ∈ K,∑
k∈K

Zik = 1, ∀i ∈ Vs,

∑
i∈Vs

Zik = 1, ∀k ∈ K.
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Next, we introduce a set of manipulations that allows us to arrive at a distributed solution

for solving (5.8). For each service agent i ∈ Vs, we start by defining

C?
ik = min

xis,θ
i
s

Cik(x
i
s, θ

i
s), k ∈ K. (5.9)

Given (5.9) and the fact that Cik depends on the pose of agent i only, it is straightforward

to show that (5.8) can be written in the equivalent form of

Z?
ik = arg min

∑
i∈Vs

∑
k∈K

C?
ikZik, (5.10)

Zik ∈ {0, 1}, i ∈ Vs, k ∈ K,∑
k∈K

Zik = 1, ∀i ∈ Vs,

∑
i∈Vs

Zik = 1, ∀k ∈ K.

where (xi
?

s , θ
i?

s ) for each service agent i ∈ Vs is equal to minimizer (xik
?

s , θik
?

s ) of the kth (5.9)

that corresponds to Z?
ik = 1. The equivalent optimization representation (5.10) casts our

suboptimal service agent assignment problem in the form of a discrete optimal mass transport

problem [105]. In this optimal mass transport problem, the minimum value of (5.7) given

in (5.9) can be viewed as the cost of assigning agent i to the kth subregion/basis of the

GMM. In Section 5.6.3, we show that the mixed integer programming problem (5.10), in fact

can be cast as a linear programming in continuous space, and then solved in a distributed

manner using existing optimization algorithms. Once each service agent obtains its assigned

pose then in Section 5.6.4, we transport the agents to their assigned region by a finite-

time minimum energy control. In what follows, before presenting our equivalent linear

programming representation of (5.10), we discuss how we can obtain the minimizers of (5.9).

More specifically, in Section 5.6.1 we show that the minimum value for each Cik, when the

QoS distributions are Gaussian, happens at xik
?

s = µk and the orientation θik
?

s that makes
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Figure 5.5 – The principal axis angle of (a) agent i’s QoS Gaussian distribution and (b) the kthe

subregion/basis of p̂i(x).

the principal axis of the uncertainty ellipses of the service distribution and the corresponding

Gaussian distribution are in parallel. Next, in Section 5.6.2, we discuss how (5.10) can be

solved via a numerical approximation method for the case of non-Gaussian QoS distributions.

5.6.1 Gaussian QoS distribution

Let the distribution of QoS provided by agent i ∈ Vs be Gaussian, i.e.,

ωisq
i(x|xis, θis) = ωisN (x|xis,Σi(θis)), (5.11)

where the mean of the Gaussian distribution is at the agent’s location xis and the covariance

matrix is with principal (major) axis at angle θis, see Fig. 5.5. Hence, the covariance matrix

can be decomposed into Σi(θis) = R(θis)Λ
iR(θis)

>, where R(θis) =
[

cos θis − sin θis
sin θis cos θis

]
and Λi =[

σix 0

0 σiy

]
, in which σix, σ

i
y ∈ R>0 with σix ≥ σiy are known service parameters determines the

‘shape’ of the service agent i. Similarly, agent i’s estimated covariance matrix Σi
k, for the kth

subregion/basis of its estimated p̂(x), see (5.6), can be written as Σi
k(θ

i
k) = R(θik)Λ

i
kR(θik)

>,

where Λi
k =

[
σik,x 0

0 σik,y

]
, in which θik is the angle of principal (major) axis of the covariance

matrix and σik,x, σ
i
k,y ∈ R>0 with σik,x ≥ σik,y are the variances in the major axis and minor

axis direction, respectively, see Fig. 5.5. With the right notation at hand, the theorem below

gives a closed-form solution for the minimizer (xik?s , θik?s ) of (5.9).
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Theorem 5.6.1. Consider the optimization problem (5.9) and recall (5.6). Let ωisq
i(x|xis, θis)

be given by (5.11). Then, one of the global minimizer of optimization (5.9) is (xik
?

s , θik
?

s ) =

(µi
k, θ

i
k), where θik is the angle of the principal axis of Σi

k. Moreover,

C?
ik = πik

(
ln
πik
ωis

+
1

2

(
ln

σixσ
i
y

σik,x σ
i
k,y

+
σik,xσ

i
y+σik,yσ

i
x

σixσ
i
y

− 2
))
. (5.12)

Proof. We first note that since πik and ωis are fixed parameters, (5.9) is equivalent to minimize

DKL

(
N (x|µi

k,Σ
i
k)||N (x|xis,Σi(θis))

)
. Invoking the closed-form expression for the KLD of two

Gaussian distributions [101, eq. (2)], we obtain:

DKL

(
N (x|µi

k,Σ
i
k)||N (x|xis,Σi(θis))

))
=

1

2

(
ln
|Σi(θis)|
|Σi

k|︸ ︷︷ ︸
(a)

+ (xis − µi
k)
>Σi(θis)

−1(xis − µi
k)︸ ︷︷ ︸

(b)

+ tr(Σi(θis)
−1Σi

k)︸ ︷︷ ︸
(c)

−2
)
. (5.13)

We note that, in (5.13),

(a) = ln
|R(θis)Λ

iR>(θis)|
|R(θik)ΛkR

>(θik)|
= ln

|Λi|
|Λk|

= ln
σixσ

i
y

σik,x σ
i
k,y

,

thus (a) is a fix term and does not depend on the decision variable θis. Next, we note that

(b) is the only term in (5.13) that depends on µi
k and xis. For any value other than xis = µi

k,

(b) returns a positive value, which means that the minimum of (5.13) happens at xik
?

s = µi
k.

Lastly, we note that (c) in (5.13) reads also as

(c) = tr(R(θis)(Λ
i)−1R(−θis + θik)ΛkR(θik))

= tr(R(θis − θik)(Λi)−1R(−θis + θik)Λk).
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Now, let θ̄ = θis − θik, sθ̄ = sin(θ̄) and cθ̄ = cos(θ̄). Then, we can write (c) as

(c) = tr
(cθ̄ −sθ̄

sθ̄ cθ̄


 1
σix

0

0 1
σiy


 cθ̄ sθ̄

−sθ̄ cθ̄


σik,x 0

0 σik,y

)

=
(σik,xσ

i
y + σik,yσ

i
x)c

2θ̄ + (σik,xσ
i
x + σik,yσ

i
y)s

2θ̄

σixσ
i
y

.

Let α = σik,xσ
i
y + σik,yσ

i
x and β = σik,xσ

i
x + σik,yσ

i
y. Then, (c) reduces

(c) =
α + (β − α)s2θ̄

σixσ
i
y

.

Because σik,x ≥ σik,y and σix ≥ σiy, we have β ≥ α and (β − α)s2θ̄ is non-negative. Hence, the

global minimum of (c) is α
σixσ

i
y

=
σik,xσ

i
y+σik,yσ

i
x

σixσ
i
y

which happens at θ̄? = nπ, n ∈ {0, 1, · · · }, i.e.,

θik?s = θik + nπ, n ∈ {0, 1, · · · }. To complete the proof, we note that n = 0 leads to one of

the global minimums θik
?

s = θik.

By virtue of Theorem 5.6.1 we now know that that if the assignment optimization prob-

lem (5.10), allocates service agent i to the kth subregion/basis of p̂i(x), the corresponding

final pose of agent i will be in the form of xi
?

s = µi
k, θ

i?

s = θik.

5.6.2 Non-Gaussian QoS distributions

Let the distribution of QoS provided by agent i ∈ Vs be ωisq
i(x|xis, θis), where qi(x|xis, θis) is a

non-Gaussian density function. The close-form solution obtained for the minimizer of (5.9) in

Theorem 5.6.1 was obtained by invoking the closed-form expression that exists for the KLD

of Gaussian distributions and also the geometric representation of the covariance matrix of

the Gaussian distribution. For non-Gaussian distributions, such closed-form expressions do

not necessarily exist. Therefore, for non-Gaussian QoS distributions we propose a numerical

procedure that enables us to obtain a suboptimal solution for (5.9), which consequently makes
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our solution to the assignment optimization problem (5.10) also suboptimal. Our numerical

procedure, relies on discretizing the solution space of the pose to finite set of poses and then

choosing the point in this discrete space that gives the minimum value of (5.9).

Let X ik
s = {xiks,j}Nxj=1 and ϑiks = {θiks,j}

Nθ
j=1, for Nx, Nθ ∈ R, be the sets of candidates of poses

of agent i deploying to subregion k. Then agent i can compute (5.7) numerically over the

finite sets of poses drawn from X ik
s × ϑiks, , i.e.,

C?
ik ≈ min

xis∈X iks ,θis∈ϑiks
DKL

(
πikN (x|µi

k,Σ
i
k)||ωisqi(x|xis, θis)

)
. (5.14)

Note that the candidates of poses are chosen empirically; for example, X ik
s can be chosen

from points in the 3− σ uncertainty ellipse of kth basis of p̂i(x). The size of Nx and Nθ can

be decided based on the trade-off between the solutions resolution and the computation cost

of solving (5.14).

5.6.3 Distributed multi-agent assignment problem

The assignment optimization problem (5.10) is an integer optimization problem. As it is

known in the discrete optimal mass transport literature [105], by the convex relaxation [106],

the integer optimization (5.10) can be transferred to the linear programming problem stated

as follows:

min
Zik≥0

∑
i∈Vs

∑
k∈K

C?
ikZik (5.15)

s.t.
∑
k∈K

Zik = 1, ∀i ∈ Vs,

∑
i∈Vs

Zik = 1, ∀k ∈ K.
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Since only agent i knows its own cost C?
ik for k ∈ K, we are interested in solving optimization

problem (5.15) in a distributed way. In general, problem (5.15) may exist several optimal

solutions Zik
?. We also require the agents agreed on the same optimal assignment plan. A

distributed simplex algorithm proposed by [100] can achieve this aim. We rewrite (5.15) to

the standard form of linear programming

min
Z

C?TZ (5.16)

s.t. AZ = b, Z ≥ 0.

where b = 12N ,

Z = [Z11, · · · , Z1N , Z21, · · · , Z2,N , · · · , ZN1 · · · , ZNN ]>,

C? = [C?
11, · · · , C?

1N , C
?
21, · · · , C?

2,N , · · · , C?
N1 · · · , C?

NN ]>,

A = [A11, · · · ,A1N ,A21, · · · ,A2,N , · · · ,AN1 · · · ,ANN ],

in which, Aik ∈ R2N is a column vector with i-th and (N + k)-th entries are 1, and others

are 0. A column of problem (5.16) is a vector hik ∈ R1+2N defined as hik = [C?
ik A>ik]

>.

The set of all columns is denote by H = {hik}i∈Vs,k∈K. Thus, the linear program (5.16) is

fully characterized by the pair (H,b). The information of H is distributed in the service

agents. Let P i = {hik}k∈K is the problem column set known by agent i ∈ Vs, which satisfies

H = ∪Ni=1P i and P i ∩ Pj = ∅,∀(i, j) ∈ Vs. We assume the communication graph Gs(Vs, Es)

of the service agents is connected. Hence the tuple (Gs, (H,b), {P i}i∈Vs) forms a distributed

linear program that can be solved by the distributed simplex algorithm [100]. The result of

the optimization problem (5.15) is the optimal plan Z?
ik, where Z?

ik = 1 means assigning the

agent i to the kth subregion with the optimal pose xis
?

= xiks
?

and θis
?

= θiks
?
.
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5.6.4 Agents transportation

The last step in Stage 2 of our deployment solution is agents transportation to their cor-

responding assigned pose. In practice, local controllers are expected to complete this task.

One such local controller can be the well-known minimum energy control that can transport

the agents to their respective assigned pose in finite time τ ∈ R>0 while also enabling the

agents to save on transportation energy. Let the local dynamics of agent i (linearized) be

given by χ̇i(t) = Aiχi(t) + Bi ui(t), where ui(t) is the control vector, and χi is the state

vector of agent i, which contains the pose and possibly other states. We assume that (Ai,Bi)

is controllable. Starting at an initial condition χi(t0), the minimum energy control is given

by

ui(t) = Bi>eAi> (t0+τ−t) Gi−1

(χi?− eAiτ χi(t0)) (5.17)

for t ∈ [t0, t0+τ ], where χi? is agent i’s desired state whose pose component is set to (xis
?
, θis

?
),

and

Gi =

∫ τ

0

eAi(τ−t) BiBi> eAi> (τ−t)dt.

Control (5.17) is a finite time control that guarantees to drive the agent from it initial state

χi(t0) to it desired state χi? in finite transportation time τ , i.e., χi(t0 + τ) = χi? . Stage 2

of our distributed deployment is finished at t0 + τ . If the targets are dynamic, our two-stage

deployment process can repeat to re-position the service agents in accordance to the changes

in targets distribution.
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5.7 Demonstrations

In this section, we present two case studies to demonstrate the effectiveness of our proposed

suboptimal service matching deployment solution.

5.7.1 Sensors deployment for event detection

Follow the same setting in section 5.5.2, a group of 6 agents with the connected communi-

cation graph Gs aim to cover the 1000 targets. The 6 agents are equipped with a wireless

sensor which is used to detect events of interest that occurred with targets. A commonly

used sensor model is a probabilistic function under the condition of the sensor location and

the event location [107, 108]. If a sensor is at xis, i ∈ Vs and a event happens at xt, the

probability of the sensor detecting the event can be expressed as

Pr(Detected|xis,xt) = βie
−αi (xis−xt)

>(xis−xt)

γi
2 (5.18)

where αi, βi, γi are sensor i’s parameters. We define (5.18) as the QoS of the sensor i at the

location xt. Thus the distribution of QoS of sensor i over the 2-D space x ∈ R2 is

Q(x|xis) = βi e
−αi (xis−x)>(xis−x)

γi
2

=

√
2π|Λi|βi · 1√

2π|Λi|
e−

1
2

(xis−x)>Λi−1
(xis−x)

= ziN (x|xis,Λi), (5.19)

where Λi =
[
σi 0
0 σi

]
, σi = γi

2

2αi
. Hence, the distribution of QoS is a weighted Gaussian

distribution. Note that, this Gaussian distribution of the sensor model is isotropic and

independent to the sensor’s orientation θis because the covariance matrix Λi
s has the same

eigenvalues. In this demonstration, we consider a more general sensor model with anisotropic
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Figure 5.6 – The QoS distribution of a sensor.

sensory capability, i.e. Λi =
[
σix 0

0 σiy

]
, so the distribution of QoS is expressed as

Q(x|xis, θis) = ziN (x|xis,Σi(θis)), (5.20)

where Σi(θis) = R(θis)Λ
iR>(θis) and θis is the orientation of sensor i. One example is shown

in Fig. 5.6. Lastly, the overall density distribution of QoS provided by the 6 sensors is

q(x|{xis,Σi(θis)}i∈Vs) =
∑

i∈Vs
ωisN (x|xis,Σi(θis)) where ωis = zi∑N

i=1 z
i
.

The agents estimate the parameters {πik µi
k,Σ

i
k}6

k=1 of the Gaussian bases by the proposed

distributed EM algorithm in stage 1. The estimate result is illustrated in Fig 5.3 in Section

5.5.2. The parameters for the sensor’s QoS distribution are as follow: ω1
s = 0.15, σ1

x =

70, σ1
y = 25, ω2

s = 0.15, σ2
x = 30, σ2

y = 15, ω3
s = 0.2, σ3

x = 80, σ1
y = 30, ω4

s = 0.1, σ4
x = 30, σ4

y =

30, ω5
s = 0.1, σ5

x = 60, σ5
y = 40, and ω6

s = 0.3, σ6
x = 30, σ6

y = 30. Each agent i ∈ Vs evaluates

its costs C?
ik for all k ∈ K by (5.12). Then, the agents cooperatively solve the distributed

multi-agent assignment problem (5.16) by the means of distributed simplex algorithm [100].

The optimal assignment plan of (5.16) is Z?
14 = 1, Z?

22 = 1, Z?
33 = 1, Z?

41 = 1, Z?
56 = 1, and

Z?
65 = 1.
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Suppose the agents are with unicycle dynamics

ẋis,x = vi cos θis,

ẋis,y = vi sin θis, i ∈ Vs,

θ̇is = ωi, (5.21)

where [xis,x xis,y]
> = xis, v

i ∈ R and ωi ∈ R are are linear velocity and angular velocity of

each agent i, respectively. The agents execute the feedback linearization procedure [85] to

achieve the equivalent linear dynamics



χ̇i1

χ̇i2

χ̇i3

χ̇i4


=



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


︸ ︷︷ ︸

A



χi1

χi2

χi3

χi4


+



0 0

1 0

0 0

0 1


︸ ︷︷ ︸

B

ui1
ui2

 , (5.22)

by the change of variables

χi1 = xis,x,

χi2 = vi cos θis,

χi3 = xis,y,

χi4 = vi sin θis,

(5.23)

and the compensator

v̇i = ui1 cos θis + ui2 sin θis,

ωi =
ui2 cos θis − ui1 sin θis

vi
.

(5.24)

Finally, control (5.17) is applied to to drive the agents to their desired state χi? = [xi
?

s,x vi
?

cos θi
?

s
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Figure 5.7 – The deployment result of the sensors.

xi
?

s,y vi
?

sin θi
?

s ]> corresponding to their assigned subregions and the optimal pose, i.e.,

xi
?

s = µi
k and θi

?

s = θik if Z?
ik = 1, where vi

?
> 0 is the arrival velocity which we can

assign.

Figure 5.7 shows the deployment result where the colored solid circles represent the locations

of the sensors while the black circle’s represent the targets, the elliptic footprints represent the

3-σ uncertainty ellipses of the 6 sensors’ QoS Gaussian distributions, N (x|xis,Σi(θis)), i ∈ Vs

and the thickness of the elliptic footprint represents ωis. Moreover, the density distribution

of QoS provided the 6 agents (sensors) is illustrated in Fig. 5.8. We can see that with

the proposed two-stage deployment strategy, the distribution of QoS efficiently covers the

targets.
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Figure 5.8 – The QoS distribution provided by the 6 sensors.

5.7.2 Deployment of an UAV-aided wireless communication net-

work

The UAV-aided aerial communication has been acknowledged as an alternative to provide

wireless service for the ground users in the recent year. In this section, we implement our

proposed deployment scheme to deploy the 6 UAVs which provide the wireless communica-

tions to the 1000 users on the ground. Assume all UAVs locate at altitude h = 100 (m).

We focus on the downlink communication channel and the Rician fading model is commonly

used to model the communication channel [109]. The instantaneous signal-to-noise ratio

(SNR) of the channel from UAV i ∈ Vs to a user at xt can be expressed as

Γ =
γiP i

T

N i
0 d

α
Ω, (5.25)

where d = (‖xis−xt‖2+h2)
1
2 is the distance between the user and the UAV i, xis is the location

of the projection of UAV i onto the ground, P i
T is the radiated power at the transmitter of

UAV i, N i
0 is the noise power, α is the path loss exponent, γi is a constant related to the
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antenna gain and the operating frequency and Ω ∈ [0,∞) is a random variable follows a

non-central chi-square probability distribution given by

fΩ(ω) = (K + 1) e−K e−(K+1)ω I0

(
2
√
K(K + 1)ω

)
, (5.26)

where ω ≥ 0, I0(·) is the zero-order modified Bessel function of the first kind and K is the

Rician factor. In this application, we define the QoS of UAV i to the user at xt as the

probability of the channel SNR being greater or equal to a threshold ζ, which can be written

as

Pr(Γ ≥ ζ) = Q(
√

2K,
√

2ζ(1 +K)dα/βi), (5.27)

where Q is the first-order Marcum Q–function and βi =
γiP iT
N i

0
. As a result, the QoS of UAV

i forms a distribution Q(x|xis) over the 2-D space x ∈ R2. An example is illustrated in

Fig. 5.9.

For seeking the suboptimal pose of (5.14) for the UAV, we assume UAV i with a QoS

distribution ωisq
i(x|xis, θis), shown in Fig. 5.9, is evaluated (5.14) to a subregion k which

corresponds to a Gaussian basis πikN (x|µi
k,Σ

i
k) = 0.2N (x|0, [ 2000 0

0 1000 ]). Then, the space

of xis = [xis,x xis,y]
> is discretized to Nx = 81 × 81 a set of candidates of locations X ik

s =

{xiks.j}81×81
j=1 around the mean, 0, of the Gaussian basis. We numerically compute the KLD of

(5.14) over set X ik
s and show the KLD of each candidate of location in Fig. 5.10. We can

observer that the minimal value of KLD is at xik
?

s = 0, that is the suboptimal location of

UAV i is at the mean of the Gaussian basis of subregion. Note that since (5.27) is a function

of distance d, the QoS distribution is isotropic and independent to the UAV’s orientation θis.

In this demonstration, the communication graphs G and Gs of the 6 UAVs, and the set

Va and Vs follow the same setting in section 5.5.2. The parameters in (5.27) are K = 10

(dB), ζ = 5 (dB) and α = 2. The parameters related to the UAVs are β1 = β2 = 50
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(dB), β3 = β4 = 51.8 (dB) and β5 = β6 = 53 (dB). In stage 1, the 6 UAVs execute

the distributed EM algorithm 2 to estimate the parameters of Gaussian bases of the users’

density distribution. The estimation results of the UAVs are shown in Fig. 5.11, in which we

can see that all UAVs get almost the same Gaussian bases representing the users’ density.

Then, in stage 2, each agent i ∈ Vs numerically evaluate C?
ik, k ∈ K in (5.14) with the known

suboptimal pose being xik
?

s = µi
k. Then, the agents cooperatively solve the distributed

multi-agent assignment problem (5.16) by the means of distributed simplex algorithm [100].

The optimal assignment plan of (5.16) is Z?
11 = 1, Z?

24 = 1, Z?
33 = 1, Z?

46 = 1, Z?
52 = 1, and

Z?
65 = 1.

Assume the UAVs follow the quadcopter small angle approximate linear dynamics [110].

ẍis,x = gψis, ẍis,y = −gφis, ḧis =
ui1 −mig

mi
, (5.28)

φ̈is =
Li

I ix
ui2, ψ̈is =

Li

I iy
ui3, θ̈is =

1

I iz
ui4,

where xis,x and xis,y are the x and y location coordinate, his is the altitude; φis, ψ
i
s and θis are

the roll, pitch and yaw of the Euler angles, respectively; ui1, us2, us3 and us4 are the thrust,

roll, pitch, and yaw forces; Li is the length from the rotors to the center of mass, mi is

the mass; I ix, I
i
y and I iz are the moments of inertia. Hence the state of the linear system is

χi = [xis,x xis,y his ẋis,x ẋis,y ḣis φis ψis θis φ̇is

ψ̇is θ̇is]
>. Then, the agents are transported to hovering at the means of their assigned subre-

gions, i.e., xi
?

s = µi
k if Z?

ik = 1, by the control (5.17), in which χi? = [xi
?

s,x xi
?

s,y h 0 0 0

0 0 θi
?

s 0 0 0]>. Again, since the distribution of QoS of agent i is independent to the

orientation (yaw angle) θis, we can randomly assign a θi
?

s ∈ [0, 2π].

The density distribution of QoS provided the 6 UAVs after the deployment is illustrated

in Fig. 5.12 where the colored solid circles represent the locations of the UAVs and the

black circle’s represent the users. We can see that with the proposed two-stage deployment
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Figure 5.9 – The QoS distribution of an UAV.

strategy, the distribution of QoS efficiently covers the users.

5.8 Conclusion

We proposed a distributed deployment solution for mobile agents to efficiently cover a group

of dense targets with their service. In our setting, the exact density distribution of the targets

was unknown to the mobile agents. We modeled this unknown density distribution as a

GMM. We then proposed a consensus-based EM algorithm that enabled the agents to obtain

a local copy of this GMM model. Then we introduced KLD to evaluate the similarity of each

pair of agent’s QoS distribution and subregion’s Gaussian basis. The QoS was first assumed

to be a Gaussian distribution and the optimal pose of agent that leads to the smallest KLD

was analysed. We then extended the approach to QoS in any distribution so our approach

can adapt to wide range of heterogeneous and anisotropic service model. In order to making

the distributions of QoS and target density distribution similar, we formulated a distributed

multi-agent assignment problem to allocate every agent to a subregion by taking the KLD

between the agent and subregion as the assignment cost. Finally, agents with heterogeneous
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Figure 5.10 – DKL versus candidate locations of xiks = [xiks,x xiks,y]
>.

Figure 5.11 – The estimate of GMM of each UAV of the demonstration in section 5.7.2
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Figure 5.12 – The QoS distribution provided by the 6 UAVs.

linear dynamics was transported to their subregion by the local controller. We illustrated

two application examples to show the efficiency of our deployment strategy.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

In this dissertation, we investigated four different distributed cooperative tracking problems

for a group of autonomous agents that aim to meet a set of leader-following objectives.

Chapter 2 considered a single leader-following problem for a group of homogeneous or het-

erogeneous LTI followers interacting over a directed acyclic graph. Only a subset of the

followers has access to the state of the leader in specific sampling times. The dynamics of

the leader that generates its sampled states is unknown to the followers. For interaction

topologies in which the leader is a global sink in the graph, we proposed a distributed al-

gorithm that allows the followers to arrive at the sampled state of the leader by the time

the next sample arrives. Our algorithm is a practical solution for a leader-following problem

when there is no information available about the state of the leader except its instantaneous

value at the sampling times. Our algorithm also allows the followers to track the sampled

state of the leader with a locally chosen offset that can be time-varying. When the follow-

ers are mobile agents whose state or part of their state is their position vector, the offset
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mechanism can be used to enable the followers to form a transnational invariant formation

about the sampled state of the leader. We proved that the control input of the followers to

take them from one sampled state to the next one is minimum energy. We also showed in

case of the homogeneous followers, after the first sampling epoch the states and inputs of all

the followers are synchronized with each other. Four numerical examples demonstrated our

results.

Chapter 3 proposed a distributed containment control solution for a group of communicating

mobile agents that aim to track the convex hull spanned by a group of moving leaders with

unknown dynamics. The communication topology of the mobile agents is described by a

strongly connected and weight-balanced directed graph. In our problem setting the agents

can communicate in discrete-time and also detect the leaders in specific sampling times. The

contribution in this chapter was to show how a group of unicycle robots can use the proposed

containment control algorithm to track the convex hull of their jointly monitoring mobile

leaders. In the proposed framework, the unicycle robots have continuous-time dynamics

but communicate with each other in discrete-time fashion. We demonstrated our results

through a numerical example. Then, we observed the containment control problem is a

multi-agent system consisted of active agents and passive agents, which motivated us to

investigate the dynamic active weighted average consensus problem. Chapter 4 proposed a

continuous-time dynamic active weighted average consensus algorithm in which the agents

can alternate between active and passive modes depending on their ability to access to their

reference input. The algorithm was modeled as a switched linear system whose convergence

properties were carefully studied considering the agents’ piece-wise constant access to the

reference signals and possible piece-wise constant weights. We also studied the discrete-time

implementation of this algorithm. Next, we showed how a containment control problem

could be cast as an active average consensus problem, and solved efficiently by our proposed

dynamic active average consensus algorithm. Numerical examples demonstrated our results.
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Finally, chapter 5 proposed a distributed coverage control for mobile agents with heteroge-

neous and anisotropic QoS distributions. The proposed coverage control deploys the agents

to efficiently cover the targets, i.e., making QoS distribution similar to the target den-

sity distribution. The target density distribution is unknown in advance. We proposed a

consensus-based distributed EM algorithm for agents to estimate the target density distri-

bution which was modeled by a GMM. The GMM not only decomposes the target density

distribution to a set of Gaussian bases but also partitions the area into subregions each of

which represents a Gaussian basis. We first assumed the QoS distribution of each agent is a

Gaussian distribution. KLD was used to evaluate the similarity between each agent’s QoS

distribution and each subregion’s Gaussian basis. Then, a multi-agent assignment problem

was formulated under the framework of optimal mass transport to allocate each agent to a

subregion by taking the divergence as the cost of assignment. As a result, the summation

of the divergences corresponding to each paired agent’s QoS distribution and subregion’s

Gaussian basis is minimal. We then extended this approach to adapt to agents with their

QoS in any distribution. Two application examples were demonstrated to show the efficiency

of the proposed deployment strategy.

6.2 Future Work

In this dissertation, we proposed four distributed controls: single leader-following control,

containment control, dynamic active weighted average control, and coverage control. We

outline several directions of this work that can be investigated in the future.

• Discrete-time communication for single leader-following control

In chapter 2, we have developed the distributed leader-following control to track a sin-

gle leader. The proposed control needs the follower agents to continuously acquire the

state of their neighbors. However, continuous-time communication may not be realistic
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in practice. Therefore, an algorithm that only requires discrete-time communication

is preferable. Theorem 2.4.1 shows the closed-form of the follower agent’s state tra-

jectory when it implements the proposed control (2.26). The closed-form contains the

information of the sampled state of the leader. Hence, follower agents are possible to

resolve the sampled state of the leader by analyzing their neighbors’ state trajectories

that sampled in a discrete-time fashion.

• Collision avoidance containment control

Chapter 3 has provided the containment control to drive the unicycle robots to track a

point in the convex hull spanned by the leaders. A practical measure that can enhance

this design is to consider collision avoidance and also spreading out the agents in a way

that they still stay inside the convex hull.

• Controllable tracking error bounds for active weighted average consensus control

In chapter 4, we have shown that the tracking error of the proposed control is bounded.

It is worth to improve the algorithm to make the size of tracking error bound control-

lable. Then, users can control the size of the bound based on a trade-off between

the desired tracking error and the control effort of their controller. Eq. (4.8) shows

the tracking error bound is a function of the convergence parameters (κs and λs) of

switched system Aσ(t) of (4.4b). Once the relation between the convergence parame-

ters and switched system Aσ(t) is explicitly resolved (for example relate the parameters

to the eigenvalues of Ap, p ∈ P), it is possible to add a coefficient before each term

of algorithm (4.4) to control the size of the tracking error bound, as it has been done

in [52] for a dynamic average consensus algorithm.

• Using other mixture models for target density distribution in coverage control

In chapter 5, the first stage of the proposed deployment strategy estimates the unknown

target density distribution by a GMM which also partitions the area into subregions.

We first investigated the case that the agent’s QoS distribution is also a Gaussian
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distribution. In the second stage, each agent is paired with a subregion based on the

divergence of the agent’s QoS Gaussian distribution and subregion’s Gaussian basis.

We then extended the idea of matching the divergence of two distributions to the

case that the agent’s QoS is in any form of distribution. However, in this case, the

target density distribution was still modeled by a GMM. It is possible to use another

distribution as a mixture model’s basis. Especially, using the identical agent’s QoS

distribution as the mixture model’s basis may result in a smaller divergence in the

second stage. But the mixture model needs a new algorithm to estimate the parameters

of the bases (as the EM algorithm for GMM), so developing the algorithm for a mixture

model with general basis may be a challenging problem.

• Deployment under constraint

Our deployment strategy aims to deploy the agents such that their collective QoS is

as similar as possible to the spatial distribution of the targets. However, in some

applications they may be some constrains such as avoiding overlap in service footprint

of the agents in wireless signal coverage that should also be taken into account. In

future directions can explore deployment strategy design under such constrains.
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