## **UC Santa Barbara**

# **UC Santa Barbara Previously Published Works**

#### **Title**

Self-Injection Locked Frequency Conversion Laser

#### **Permalink**

https://escholarship.org/uc/item/5s27w5q4

## Journal

Laser & Photonics Review, 17(5)

#### ISSN

1863-8880

#### **Authors**

Ling, Jingwei Staffa, Jeremy Wang, Heming et al.

## **Publication Date**

2023-05-01

#### DOI

10.1002/lpor.202200663

### **Copyright Information**

This work is made available under the terms of a Creative Commons Attribution License, available at <a href="https://creativecommons.org/licenses/by/4.0/">https://creativecommons.org/licenses/by/4.0/</a>

Peer reviewed

# RESEARCH ARTICLE

LASER & PHOTONICS REVIEWS

www.lpr-journal.org

# Self-Injection Locked Frequency Conversion Laser

Jingwei Ling, Jeremy Staffa, Heming Wang, Boqiang Shen, Lin Chang, Usman A. Javid, Lue Wu, Zhiquan Yuan, Raymond Lopez-Rios, Mingxiao Li, Yang He, Bohan Li, John E. Bowers,\* Kerry J. Vahala,\* and Qiang Lin\*

High-coherence visible and near-visible laser sources are centrally important to the operation of advanced position/navigation/timing systems as well as classical/quantum sensing systems. However, the complexity and size of these bench-top lasers are an impediment to their transition beyond the laboratory. Here, a system-on-chip that emits high-coherence near-visible lightwaves is demonstrated. The devices rely upon a new approach wherein wavelength conversion and coherence increase by self-injection locking are combined within a single nonlinear resonator. This simplified approach is demonstrated in a hybridly-integrated device and provides a short-term linewidth of around 4.7 kHz (10 kHz before filtering). On-chip converted optical power over 2 mW is also obtained. Moreover, measurements show that heterogeneous integration can result in a conversion efficiency higher than 25% with an output power over 11 mW. Because the approach uses mature III–V pump lasers in combination with thin-film lithium niobate, it can be scaled for low-cost manufacturing of high-coherence visible emitters. Also,

# 1. Introduction

Highly coherent semiconductor lasers are crucial for many applications, ranging from communication, spectroscopy, metrology, medicine, to quantum technology. Recent advances in integrated photonic lasers via hybrid/heterogeneous integration have shown remarkably narrow linewidths that are now comparable to or even surplus the bench-top solid-state counterparts.<sup>[1–4]</sup> So far, the majority of research efforts have focused on the telecom band around 1.2–1.7  $\mu$ m, primarily in response to the significant demand from optical communication. Development is fairly limited in the visible and near-infrared spectral regions

