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Abstract

Scaling All-Digital Millimeter-Wave Massive Multiuser MIMO

by

Mohammed A. Abdelghany

All-digital architectures enable taking full advantage of the large number of antennas

that can be integrated into mmWave transceivers, with fully flexible beamforming that

enables the number of simultaneous users K sharing the band to scale with the number of

antennas N. The small carrier wavelength in these bands allows realization of antenna ar-

rays with a large number of elements with a relatively small footprint, opening a path to

truly massive Multiple Input Multiple Output (MIMO) systems. However, two key bot-

tlenecks to realizing this potential are the cost/power consumption of Radio Frequency

(RF) frontends at high carrier frequencies and the high complexity incurred in the digital

baseband processing due to the large number of antennas. In this dissertation, we develop

approaches for addressing these bottlenecks by adapting signal processing architectures

and algorithms to hardware design considerations, while taking advantage of the unique

characteristics of the mmWave band. We first develop an analytical model for the impact

of nonlinearities such as RF amplifiers and Analog-to-Digital Converters (ADCs) on the

performance of a mmWave massive MIMO uplink. We illustrate the utility of this model

in providing specific guidelines for hardware design based on desired system-level perfor-

mance. For example, the framework allows specification of the desired 1 dB compression

point for RF amplifiers and the desired number of bits of ADC precision in order for the

system outage at a target bit error rate to be below 5%. These hardware design pre-

scriptions depend on coarse system-level parameters such as the number of antennas N,

the number of simultaneous users K, and the maximum and minimum link distances to
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be supported. An important conclusion from the analytical framework is that hardware

specifications can be substantially relaxed by reducing the load factor, defined as the

ratio β = K/N .

We then consider the problem of scaling digital signal processing in this regime. For

a relatively small number of antennas and users, the Linear Minimum Mean Squared

Error (MMSE) approach is a standard technique for handling multiuser interference at

reasonable complexity. However, for fixed load factor β, the complexity of computing the

LMMSE detector, as well as the complexity of using it for demodulation, grow polyno-

mially with the number of antennas. We propose complexity reduction techniques that

substantially improve scaling by taking advantage of the spatial sparsity of the mmWave

channel. Specifically, we use a spatial Discrete Fourier transform (DFT) across antennas

to create N discrete beams, transforming from antenna space to beamspace. We show

that each user’s energy is concentrated in a small number of DFT bins in beamspace.

Assuming ideal single path channels, we show that each user can be demodulated reli-

ably using a local LMMSE detector which employs a beamspace window whose size does

not scale with the number of antennas. The local LMMSE detector approaches the per-

formance of standard LMMSE detection at substantially reduced complexity, and these

performance-complexity tradeoffs become more favorable at lower system load factor β.

For larger load factors, the beamspace window required by the local LMMSE detector

increases, but we show that it is possible to scale well in such regimes by adding a layer

of nonlinear interference cancellation on top of the local LMMSE receiver.

Next, drawing on the duality between uplink linear multiuser detection and downlink

linear precoding, we demonstrate the efficacy of beamspace techniques for linear pre-

coding on the downlink, in order to reduce the interference seen by a given user due to

signals directed at other users by the base station.

Finally, we address the problem of simultaneous scaling of bandwidth and number
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of antennas. As bandwidth and hence symbol rate increase, the signal from a given

user impinging on a large antenna array incurs a multi-symbol delay spread across the

array, which smears the spatial frequency for each user across the band. We introduce a

novel technique that combines DFTs in the spatial and time domains, together with an

interpolation technique that limits the dispersion of spatial frequency across the band.

We show that this results in significantly reduced complexity in computing LMMSE

weights for uplink multiuser detection.
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Chapter 1

Introduction

The potential of massive scale multiuser MIMO for meeting the ever-increasing demand

for wireless mobile data is well understood [2, 3]. Massive MIMO becomes particularly

attractive as we move up in the frequency spectrum toward millimeter wave (mmWave)

and terahertz (THz) frequencies, where bandwidth is plentiful, and the wavelength is

small enough to fit a large number of antennas on moderately sized platforms. By utilizing

these advantages, mmWave massive MIMO can potentially support tens or hundreds of

simultaneous users with per-user data rates of multiple gigabits/second (Gbps).

Two key bottlenecks to realizing this potential are the cost/power consumption of ra-

dio frequency (RF) frontends at high carrier frequencies and the high complexity incurred

in the digital baseband processing due to the large number of antennas.

• RF Frontend: The cost and power consumption of the RF frontends signifi-

cantly increase in massive MIMO systems due to the increased number of required

RF chains. Moreover, the linearity requirement of the RF frontend imposes design

challenges in high-frequency RF components. This requirement becomes even more

significant for multicarrier systems (such as Orthogonal Frequency Division Multi-

plexing (OFDM)), since these systems typically suffer from high Peak-to-Average
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Power Ratio (PAPR), requiring high dynamic range for the RF frontends. Thus,

some researchers have suggested utilizing single-carrier operation for mmWave Mas-

sive MIMO systems.

• Digital Baseband Processing: Typical receivers for multiuser systems utilize

linear interference suppression using Zero Forcing (ZF) or linear Minimum Mean

Square Error (LMMSE) criteria, both of which rely on matrix inversions. The

complexity of the matrix inversion operations is O(N3) where N is the number of

antennas. This complexity becomes prohibitive for massive MIMO systems, which

have huge number of antennas.

In this dissertation, we address the aforementioned bottlenecks as follows. First,

we provide an analytical framework to design multiuser massive MIMO receivers in the

presence of RF/baseband nonlinearities. More specifically, we provide analytical guide-

lines for maximum permissible levels of nonlinearities originating from Analog-to-Digital

Converters (ADC) and baseband/passband amplifiers, in order to provide the desired

system-level performance guarantees (e.g., on outage probabilities).

Second, we focus our attention to reducing the complexity of the digital baseband

processing of fully-digital mmWave massive MIMO systems. More specifically, we pro-

pose different algorithms that exploit the sparse structure of the mmWave channels in

beamspace to reduce the computational complexity of typical linear MMSE receivers, in

both uplink and downlink. For even larger number of users, we propose to enhance the

receiver’s performance by adding a layer of nonlinear interference cancellation on top of

the local LMMSE receiver. Furthermore, single-carrier operation, which is envisioned

for reducing the cost of RF frontends as described earlier, adds more challenges to the

baseband design, since the wideband channel results in multi-symbol delay spread across

the receiver array. For such scenarios, we propose novel techniques for limiting the spread

2
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Figure 1.1: The system model considered in this dissertation: The cell size is con-
strained radially between Rmin and Rmax and angularly between −π/3 ≤ θ ≤ π/3.
BW3dB stands for the 3 dB beamwidth.

of each user’s spatial frequency across the band, which, in turn, will further reduce the

complexity of the beamformer weight acquisition.

1.1 Concept System

Fig. 1.1 shows the system model. The base station performs horizontal scanning with

a 1D half-wavelength spaced N -element array. Let K denote the number of simultaneous

users, and β = K
N

the load factor.

Throughout the dissertation, we assume a line-of-sight (LoS) channel between the

base station and each mobile. The direction of arrival (DoA) from the kth mobile is

denoted by θk, and corresponds to spatial frequency Ωk = 2π dx
λ

sin θk, where λ denotes

the carrier wavelength and dx denotes the inter-element spacing, set to λ
2

in our numerical

results. The N × 1 spatial channel for mobile k is given by

hk = Ake
jφk [1 ejΩk ej2Ωk . . . ej(N−1)Ωk ]ᵀ, (1.1)

3
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where φk is an arbitrary phase shift and A2
k =

(
λ

4πRk

)2
depends on the radial location Rk

of mobile k, using the Friis formula for path loss [4].

Most of the work reported in this discussion focuses on the uplink from mobiles to

the base station, where the main signal processing task is multiuser detection of signals

from different mobiles which may interfere with each other. However, analogous concepts

also apply to the downlink from base station to mobiles, where the task is to precode the

transmitted signal from the base station such that the signal received at a given mobile

is minimally corrupted by signals directed at other mobiles.

The cascade of the system’s RF nonlinearities is modeled as a complex baseband

equivalent nonlinearity g(·). Focusing our discussion on the uplink, the complex baseband

received signal vector z at the base station is therefore given by

z = g(y) = g

 H︸︷︷︸
N×K

x + n

 , (1.2)

where H = [h1h2 . . .hK ] is the channel matrix, x = [x1, ..., xK ]T is the vector of symbols

(normalized to unit energy: E [|xk|2] = 1) transmitted by the mobiles, n ∼ CN (0, σ2
nI) is

the thermal AWGN vector, and g(·) is the effective per-antenna nonlinearity in complex

baseband.

Note: In scenarios where we analyze the system without considering its RF non-

linearities, we set g(y) = y, i.e. the complex baseband received signal vector becomes

z = y = H︸︷︷︸
N×K

x + n.

We consider, as a running example, a 256-element linear array (N = 256) at 140

GHz carrier frequency, with a symbol rate of 5 Gbaud with QPSK modulation for each

supported user. The load factor β ranges from β = 1
16

(K = 16 users) to β = 1
2

(K = 128

users). Hence, the aggregate data rate ranges from 160 Gbps to 1.28 Tbps.
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1.2 Dissertation Contributions

We now provide a high-level overview of the contributions in this thesis, and how

they relate to the state of the art. Detailed discussion of relevant prior work is provided

in the individual chapters.

• We develop an analytical model for the impact of RF nonlinearities in mmWave

massive MIMO systems, and illustrate its utility in providing hardware design

guidelines regarding two key challenges: the low available precision of analog-to-

digital conversion at high sampling rates, and nonlinearities in ultra-high speed

radio frequency (RF) and baseband circuits. These results have been published

in [5, 6]. In comparison with the existing literature, the key conceptual novelty

in our work is that we provide an analytical framework for mapping system-level

performance goals to hardware design prescriptions for per-antenna nonlinearities.

Thus, while prior work assesses the hardware design tradeoffs in particular sce-

narios [7, 8], we are able to provide a general framework which provides compact

prescriptions that hardware designers can apply to design RF chains jointly with

ADCs. Finally, unlike prior work on fading channels, we employ a LoS model which

is a more suitable abstraction for mmWave channels [9, 10, 11, 12].

• We propose and investigate a local Linear Minimum Mean Square Error (LMMSE)

receiver that exploits the sparsity of the mmWave wireless channel. Specifically,

in mmWave uplink transmissions, most of a user’s transmitted energy reaches the

receiver through very few dominant paths. Hence, a spatial Discrete Fourier Trans-

form (DFT) at the receiver array concentrates the energy of each user onto a few

DFT bins in beamspace, as shown in Figure 1.2. By exploiting this property, one

can greatly reduce the complexity of LMMSE detectors by using a small window

in beamspace to demodulate each user. Our proposed approach provides 10-fold
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Figure 1.2: Sparsity of the mmWave LoS channel in the beamspace. The vertical axis
represents the DFT bin index, while the horizontal axis represents the users indices.

complexity reduction when compared to conventional LMMSE detectors for a sys-

tem with 256 antennas. This initial exposition of beamspace techniques has been

published in [13].

• We extend and investigate the concept of complexity reduction via beamspace to

three different scenarios:

1. In a scenario where the number is of users is very high, compared to the number

of base station antennas, while most interference is suppressed linearly by our

proposed linear local LMMSE receiver, for each user, residual interference

originating from a small number of strongly interfering users persists. In such

cases, we propose to layer nonlinear interference cancellation on top of the

local LMMSE receiver. The added nonlinear interference cancellation handles

the residual interference after suitably whitening the local LMMSE output.

This method provides reliable demodulation at higher load factor (defined as

number of users divided by the number of antennas) than enabled by linear

interference suppression alone, at order of magnitude lower complexity than

6
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standard interference cancellation. These results have been published in [14].

2. We extend the linear LMMSE receiver idea to the dual downlink problem.

Specifically, we propose a near-optimal linear precoding algorithm that ex-

ploits the sparsity of mmWave channels, employing a beamspace decompo-

sition which limits the spatial channel seen by each user to a small window

which does not scale with the number of antennas. This drastically reduces

the complexity of computing the precoder, with complexity per iteration scal-

ing linearly with the number of users, and makes it feasible to scale the system

up to hundreds of antennas. These results have been published in [15].

3. In single-carrier mmWave systems, wideband operation results in multi-symbol

delay spread across the receiver array, consequently, raising the issue of Inter-

Symbol Interference (ISI). For such scenarios, we propose a novel technique

that combines spatial domain FFT and time-domain FFT, together with an

interpolation technique for limiting the spread of each user’s spatial frequency

across the band. These results have been published in [16]. As compared

to the previous attempts on reducing the complexity of beamformer weight

acquisition in such scenarios, we provide a framework for multiuser detection in

single-carrier wideband mmWave systems, while previous papers have tackled

the problem in single-user operation mode only [17, 18].

7



Chapter 2

A Design Framework For All-Digital

mmWave Massive MIMO with

Per-antenna Nonlinearities

In this chapter, we address the problem of desgining mmWave massive MIMO systems,

taking into account the cost and power consumption of radio frequency (RF) frontends at

high carrier frequencies and analog-to-digital conversion at large bandwidths. Due to the

higher power consumption of high-speed RF chains, mmWave prototypes have thus far

opted against fully digital arrays [19], and much of the recent research and development

has focused on analog RF beamforming [20, 21, 22, 23, 24, 25], supporting a single user

at a time, or hybrid beamforming [26, 27, 28, 29, 30, 31], where the number of supported

users equals the number of RF chains, typically set to be much smaller than the number

of antennas. However, recent advances in mmWave silicon hardware imply that scaling

the number of RF chains with the number of antennas is on the cusp of feasibility,

opening up the possibility of digital beamforming, where the number of supported users

scales linearly with the number of antennas. By reducing dynamic range requirements

8
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and increasing amplifier loading, we can boost the power efficiency of each RF chain

enough to allow scaling to fully digital arrays with hundreds of elements, but at the cost

of increasing nonlinearity in the RF chain. Similarly, drastically reduced precision can be

used to control the cost and power consumption of analog-to-digital conversion, as well as

that of communication and computation on the digital backend. Robust system design

in the presence of such nonlinearities therefore plays a critical role in scaling digital

beamforming to mmWave massive MIMO. Our goal in this chapter is to provide an

analytical framework for quantifying the system-level impact of such nonlinearities, and

to demonstrate how the increased degrees of freedom help relax linearity requirements

and hardware specifications.

We consider, as a running example, a 256-element linear array at 140 GHz carrier

frequency, with a symbol rate of 5 Gbaud with QPSK modulation for each supported

user. For a load factor (defined as the ratio of the number of simultaneous users to the

number of antennas) ranging from 1
16

(16 users) to 1
2

(128 users), the aggregate data

rate ranges from 160 Gbps to 1.28 Tbps! However, scaling to this regime is challenging:

wideband RF and baseband circuits scaled via relatively low-end silicon semiconductor

processes (e.g., CMOS) exhibit significant nonlinearities, while the analog-to-digital con-

verters (ADCs) available at multi-GHz sampling rates have relatively low precision. We

provide in this chapter an analytical framework that enables designers to determine the

permissible levels of such nonlinearities for their desired system-level performance guar-

antees. As we shall show, the RF linearity and ADC precision requirements for load

factor 1
2

are quite stringent, while reducing the load factor to 1
16

results in significantly

relaxed hardware specifications. For a given number of users to be supported, therefore,

a massive MIMO architecture can be leveraged to overcome severe nonlinearities, by in-

creasing the number of antenna elements in order to reduce the load factor. We note

that, besides the enormous aggregate throughput from supporting multiple simultaneous

9
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users, recent work also indicates that an all-digital solution can be more efficient in terms

of hardware power consumption and area compared to a hybrid architecture [32].

Contributions:

We provide design guidelines based on linear MMSE reception, with an analytical

framework based on two core concepts:

(a) We use a matched filter bound to show that the impact of per-antenna nonlinearities

is effectively summarized by a quantity that we term the intrinsic SNR, corresponding

to a normalized version of the nonlinearity. Key elements of this characterization are

the well-known Bussgang decomposition, an overview of which can be found in [33], and

the observation that, even for a moderate number of simultaneous users and without

rich scattering, the antenna input is well modeled as zero-mean complex Gaussian. We

show that the matched filter bound on the effective SNR for a given user, which captures

the effect of the self-noise generated by per-antenna nonlinearities, depends only on four

parameters: the user’s SNR, the intrinsic SNR, the load factor and a power control factor

which summarizes the variations in received signal power across users.

(b) We show that a pessimistic estimate of the degradation in performance due to mul-

tiuser interference can be obtained by analyzing (theoretically and/or numerically) an

ideal system without nonlinearities. This enables us to provide a lower bound on the out-

put signal-to-interference-plus-noise ratio (SINR) of a linear MMSE receiver, accounting

for both nonlinearities and multiuser interference.

Combining these two concepts, averaging over the spatial distribution of users, and

specializing to an edge user in the cell, allows us to provide analytical guidelines for

maximum permissible levels of nonlinearities in order to provide the desired system-level

performance guarantees (e.g., on outage probabilities). Consequently, our analysis utilizes

the analytical capabilities of the Bussgang decomposition and LMMSE framework to

provide a cross-layer design tool that links hardware level specifications to the system level

10
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performance metrics of a multi-user massive MIMO system. This enables exploration of

fundamental tradeoffs between power consumption and cost of RF frontends and system

performance. We consider third order RF and baseband nonlinearities that can be

specified using the so-called 1 dB compression point [34], termed P1dB. The per-antenna

ADCs for the in-phase and quadrature components are modeled as overloaded uniform

quantizers optimized (for a specified number of bits) to minimize the mean square error

with zero mean Gaussian input. Using our framework, we are able to provide compact

design prescriptions for P1dB and the number of ADC bits. For example, for a load factor

of 1/2, the system can work with 4-bit ADC and passband/baseband P1dB of 8.4 dB /

5 dB. On the other hand, 2-bit ADC with passband/baseband P1dB of 1.4 dB / -1 dB

suffice to work properly with a load factor of 1/16. We present extensive simulations

verifying our analytical predictions and prescriptions.

2.1 Related Work

While the focus in the present chapter is on mmWave massive MIMO, there is a sig-

nificant body of closely related recent research on the effect of nonlinearities on multiuser

massive MIMO at lower carrier frequencies. Most of this prior work also employs Buss-

gang’s theorem [35] to model the effect of nonlinearities, both for uplink reception and

downlink precoding. Our discussion here is limited to the literature on uplink massive

MIMO, since that is the focus of the present chapter, but the design framework for mod-

eling downlink nonlinearities such as power amplifiers and digital-to-analog converters

(DACs) is well known to be entirely analogous.

The line of sight (LoS) channel model used in our performance evaluation is different

from that in much of this prior work, which employs models that are better matched to

the propagation environments at lower frequencies. However, our analytical framework is

11
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quite general, and can be used to obtain design prescriptions for lower carrier frequencies

as well. Conversely, many of the general observations emerging from prior work at lower

carrier frequencies are consistent with the conclusions in the present chapter, given a

common underlying mathematical framework that employs the Bussgang decomposition

and exploits the relaxation of hardware constraints enabled by the increase in the number

of antennas. In the following, we briefly review this prior work in order to place the

contributions of the present chapter in perspective.

The potential for relaxing hardware constraints by increasing the number of antennas

is clearly brought out by the theoretical results in [36], which show that the perfor-

mance degradation due to hardware impairments vanishes asymptotically as the number

of base station antennas gets large. The same trend holds for a finite but large num-

ber of antennas, as is clear from the results in [37, 38, 39], which study the spectral

efficiency of quantized massive MIMO over frequency nonselective Rayleigh and Rician

fading channels using maximum ratio combining. Another interesting conclusion from

the simulations of [38] is that, for Rician fading, the system is more vulnerable to drastic

quantization as the relative strength of the dominant component increases. Thus, the

LoS model considered in this chapter may be a worst-case scenario for obtaining design

prescriptions regarding nonlinearities.

The impact of imperfect power control for quantized massive MIMO over frequency

nonselective channels is included in the analysis in [40, 41]. Using spectral efficiency

as a performance measure, an example conclusion from [40] is that 3-bit ADC suffices

for a system with 100 antennas serving 10 users at a spectral efficiency of 3.5 bits per

channel use, with 4-bit ADCs recommended to handle imperfections in power control and

automatic gain control. Similar conclusions are obtained in [41], which shows moderate

drops in spectral efficiency due to imperfect power control.

The impact of quantization on multiuser OFDM MIMO over a frequency-selective

12
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channel is studied in [7], with a focus on low-complexity channel estimation and data

detection. The simulations in this chapter show that, for the models considered, 4-

bit ADC is sufficient to achieve a near-optimal performance (in terms of packet error

rate) for a load factor of 1/8 or lower. More recent work with a similar model [8]

employs a Bussgang-based analysis for the joint distortion introduced by nonlinear low-

noise amplifiers, phase noise, and finite-resolution ADCs, and demonstrates its accuracy

by comparing analytical predictions with simulations.

In comparison with the existing literature, the key conceptual novelty in the present

chapter is that we provide an analytical framework for mapping system-level performance

goals to hardware design prescriptions for per-antenna nonlinearities. The theoretical

foundation for this mapping is our observation (Theorem V.2) that an ideal system

without nonlinearities provides a means of obtaining pessimistic performance estimates,

together with our abstraction of self-noise via intrinsic SNR and the associated matched

filter bound (Theorem V.1). Thus, while prior work such as [7, 8] demonstrates the ac-

curacy of Bussgang modeling and assesses design tradeoffs in particular scenarios, we are

able to provide a general framework which provides compact prescriptions that hardware

designers can apply to design RF chains jointly with ADCs, by considering the cascade

of passband amplifiers, baseband amplifiers and ADCs as the nonlinearities employed in

our performance evaluation. Finally, unlike prior work on fading channels, we employ a

LoS model which is a more suitable abstraction for mmWave channels [9, 10, 11, 12].

2.2 System Model

Fig. 2.1 shows the system model. The base station performs horizontal scanning with

a 1D half-wavelength spaced N -element array. Let K denotes the number of simultaneous

users, and β = K
N

the load factor.
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Figure 2.1: The cell size is constrained between Rmin and Rmax in link range and
between −π/3 ≤ θ ≤ π/3 in angle. BW3dB stands for the 3 dB beamwidth. The pass-
band and baseband nonlinearities are modeled by saturated third order polynomials.
An overloaded uniform ADC with b bits per dimension, optimized for a zero-mean
standard Gaussian random variable, is used. Linear MMSE reception is employed
after digitization.

We assume a line-of-sight (LoS) channel between the base station and each mobile.

The direction of arrival (DoA) from the kth mobile is denoted by θk, and corresponds

to spatial frequency Ωk = 2π dx
λ

sin θk, where λ denotes the carrier wavelength and dx

denotes the inter-element spacing, set to λ
2

in our numerical results. The N × 1 spatial

channel for mobile k is given by

hk = Ake
jφk [1 ejΩk ej2Ωk . . . ej(N−1)Ωk ]ᵀ, (2.1)

where φk is an arbitrary phase shift and A2
k =

(
λ

4πRk

)2
depends on the radial location Rk

of mobile k, using the Friis formula for path loss.

The cascade of the nonlinearities described in Sections 2.2.2 and 2.2.3 is modeled as

a complex baseband equivalent nonlinearity g(·). The complex baseband received signal
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vector z at the base station is therefore given by

z = g(y) = g

 H︸︷︷︸
N×K

x + n

 , (2.2)

where H = [h1h2 . . .hK ] is the channel matrix, x = [x1, ..., xK ]T is the vector of symbols

(normalized to unit energy: E [|xk|2] = 1) transmitted by the mobiles, n ∼ CN (0, σ2
nI) is

the thermal AWGN vector, and g(·) is the effective per-antenna nonlinearity in complex

baseband.

Running example: As mentioned in the introduction, for our running example, we set

N = 256, with load factor β ranging from 1
16

to 1
2

(i.e., K ranging from 16 to 128). We

provide the link budget analysis for the envisioned system in Appendix A to highlight

the feasibility of low-cost silicon hardware realizations.

In the remainder of this section, we characterize the statistics of the received signal

at each antenna and describe the nonlinearity models included in our numerical results.

2.2.1 Per-antenna Received Signal Statistics

The input to the effective complex baseband nonlinearity g(·) at, say, antenna m, is

given by

ym =
K∑
k=1

Ake
jφkxke

jmΩk . (2.3)

For a uniform spatial distribution of users over the region of interest, the amplitudes

{Ak} and spatial frequencies {Ωk} are independent and identically distributed (i.i.d.).

The phases {φk} are uniform over [0, 2π], and xk are i.i.d. QPSK symbols. By virtue of

the central limit theorem (CLT), the received signal is well modeled as zero-mean complex

Gaussian for large K, and jointly Gaussian across antennas. We have verified empirically,

via histogram comparisons, quantile-quantile plots and KL divergence computations, that
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Figure 2.2: The pdf of the standard normal distribution and the histogram of the
normalized real/imaginary part of the received signal at each antenna element when
K users transmit.

this Gaussian approximation holds for even moderate number of mobiles (e.g., K = 8)

in all settings that we have considered. Fig. 2.2 (a) illustrates a comparison between the

histogram of the normalized real/imaginary component of the received signal and the

standard normal distribution N (0, 1).

In terms of technical conditions for applying the CLT, we note that it holds for

independent, non-identically distributed random variables if the variances are bounded

[42], which is the case here: with power control, the amplitudes of {Ak} are tightly

clustered, whereas with no power control they lie within a range of values determined

by the maximum and minimum link distance. The randomness in the terms of the sum

in (2.3) results from randomness in channel phases and data modulations, and CLT is

applied conditioned on {Ak}. We average over the realizations of {Ak} to determine

expected receiver performance and reliability bounds.
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Unity Gain

Figure 2.3: The 1 dB compression point (P1dB) is defined as the input power at which
the output power of the desired sinusoid (at fo) is compressed by 1 dB.

2.2.2 Passband and Baseband Nonlinearity Model

The passband nonlinearity arises in the low noise amplifier and the mixer, while the

baseband nonlinearity is in the variable gain amplifier. We model each nonlinearity as a

saturated third-order polynomial function with a nominal gain of unity. The function is

parametrized by the 1 dB compression point (P1dB) [34], defined as the input power of a

sinusoid of frequency fo (taken to be the carrier frequency) at which the output power

is reduced by 1 dB relative to the nominal. The concept is illustrated in Fig. 2.3. A

commonly used model for gain saturation using third-order nonlinearity is the cubic soft

clipper which can be parametrized by P1dB as follows:

g(y(t)) =


y(t)(1− 0.44|y(t)|2

3P1dB
) if |y(t)|2 ≤ P1dB

0.44

y(t)
|y(t)|
√
P1dB if |y(t)|2 > P1dB

0.44

. (2.4)
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The gain compression for the passband nonlinearity depends on the absolute value of

the complex baseband signal, while the gain compression depends on the absolute value

of the I and Q components for the baseband nonlinearity. Fig. 2.4 (a) illustrates the

distribution of the input powers of the passband and baseband nonlinearities, along with

example input/output (I/O) characteristics. In this work, we consider the nonlinearities

to be memoryless and free of phase distortion.

2.2.3 ADC Model

After down-conversion, each baseband component is quantized to b bits by an ADC.

We design the quantizer to minimize the mean squared error (MSE) assuming that the

incoming signal is Gaussian with zero mean and unit variance. An automatic gain control

(AGC) precedes the ADC in order to normalize the average power of the input signal

to unity, and ensure that the full dynamic range of the ADC is utilized. We employ an

overloaded uniform ADC [43]: while the MSE could be improved slightly by designing a

non-uniform quantizer for standard Gaussian input, the improvement is slight and has

no discernible impact on system-level performance (see Appendix B for a quantitative

discussion). Fig. 2.4 (b) depicts a 4-bit uniform overloaded quantizer.

2.2.4 Linear MMSE Detector

We show in a following section that the impact of a per-antenna nonlinearity g(·) can

be modeled as additional noise, leading to an equivalent system model of the form

y = Hx + ñ, (2.5)

where ñ is zero mean with variance (σ2
n + ν2

g )I. The value of νg is specified in section 2.5.

Thus, any adaptive implementation of the linear MMSE receiver automatically accounts
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Figure 2.4: (a) Third-order nonlinearities characterized by P1dB, and probability dis-
tribution function of instantaneous input power, p(Pin), for passband and baseband
signals. (b) Histogram of I and Q baseband components along with ADC quantization
bins.

for the nonlinearities. The linear MMSE receiver is specified as follows:

x̂ = Wy, (2.6)

where

W =
(
HHH + (σ2

n + ν2
g )I
)−1

HH . (2.7)

The linear MMSE detector has a rich history with well-known properties [44, 45]. In

order to provide a self-contained exposition, we state a few properties that are relevant

for our present purpose, and sketch their proof in Appendix C.
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2.3 Bussgang Linearization

In order to provide a self-contained exposition, we review Bussgang linearization in

the context of our MIMO system.

2.3.1 Scalar Bussgang Linearization

For a zero mean complex-valued random variable y and a nonlinearity g(·), a linear

MMSE approximation of g(y) by ay satisfies the orthogonality principle [46]:

E((g(y)− ay)y∗) = 0. (2.8)

Standard computations for the linear gain a and the variance of the approximation error

e = g(y)− ay yield

a =
E(g(y)y∗)

E(|y|2)
, (2.9)

σ2
g = E(|e|2) = E(|g(y)|2)− |a|2E(|y|2). (2.10)

Hence, g(y) can be written as

g(y) = ay + e, (2.11)

where a and E(|e|2) = σ2
g can be computed analytically or empirically for any distribution

of y and nonlinear function g(·). Bussgang evaluated a and σ2
g for different nonlinear

functions when the input y is Gaussian random variable [35]. In our analysis, we consider

the function g(·) described in (2.4) for the overall RF chain nonlinearity.
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2.3.2 Vector Bussgang Linearization

The main part of Bussgang’s theorem in [35], and its extension to the complex domain

in [47], is the preservation of covariance structure under nonlinearities for jointly Gaussian

random variables:

If y and z are jointly Gaussian random variables and g(·) is a nonlinear function, then

E(g(y)z∗) = aE(yz∗), where a is defined in (2.9).

This result allows us to characterize the linear MMSE fit for a Gaussian random vector

in terms of the scalar linear MMSE fits for its components. It has been customized to

MIMO in many recent papers [48, 8, 41, 49], hence we state the relevant result here

without proof (see Appendix A in [49] for a derivation).

Theorem 2.3.1 Vector Bussgang Decomposition

Let y denote the jointly Gaussian random vector input to the effective nonlinearity g(·)

referred to complex baseband, so that the received signal z = g(y). Then the Bussgang

decomposition of z is given by

z = g(y) = Ay + e, (2.12)

where

A =Diag([a1, . . . , aN ]), (2.13)

ai =
E(g(yi)y

∗
i )

E(|yi|2)
, (2.14)

and the variance of element ei of the approximation error vector e is given by

σ2
gi =E(|g(yi)|2)− |ai|2E(|yi|2). (2.15)
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The Bussgang theorem on covariance preservation therefore leads to a linear MMSE

fit with diagonal covariance structure. Moreover, the diagonal elements are equal if the

statistics of {yi} are identical, as in the following straightforward corollary, stated without

proof.

Corollary 1 If the diagonal elements of the covariance of y are equal, i.e., E(|yi|2) =

E(|yk|2), ∀ i, k, then the Bussgang decomposition specializes to

z = g(y) = ay + e, (2.16)

where a and E(|ei|2) = σ2
g are the scalar Bussgang parameters of g(·).

It is worth noting that the self-noise e may be spatially correlated. However, recent

work [48] indicates that this correlation becomes negligible when the number of users is

large, and we ignore it in our analysis here.

2.4 Bussgang Normalization and Intrinsic SNR

In this section, we define a normalization such that the Bussgang parameters for

a nonlinearity are independent of input power. We introduce the concept of intrinsic

SNR to characterize the self-noise in this normalized setting. As we shall see, this is

the summary specification that is provided by system-level design requirements to the

hardware designer, based on the analytical framework described in the next section.

Finally, we show, via the simple example of a limiter, how such a summary can be used

to determine hardware specifications for a nonlinearity.
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Normalized Nonlinearity

As shown in Fig. 2.5 (a) and (b), Bussgang decomposition characterizes a nonlinear

function g(·) by parameters a and σ2
g . These parameters depend on the input power by

definition as shown in Eq. (2.9) and (2.10).

Fig. 2.5 (c) illustrates a normalized version of the nonlinearity in Fig. 2.5 (a): the

input power is scaled to one before the nonlinearity, and the scaling is undone after the

nonlinearity. The Bussgang linearization of the normalized nonlinearity, with parameters

ã and σ̃2
g , is depicted in Fig. 2.5 (d). The parameters ã and σ̃2

g represent the Bussgang

decomposition of the normalized nonlinear function g̃(·), depicted in Fig. 2.5 (c). The

equivalence of the nonlinear models (a) and (c) implies that the corresponding linear

models (b) and (d) must satisfy ã = a and σ̃2
g = σ2

g/E(|y|2).

It is convenient to define hardware specifications for the normalized nonlinearity; in

hardware design parlance, the specifications are ”referred to the input power.” We sum-

marize these using the concept of intrinsic SNR, which plays a key role in our analytical

framework.

Definition 2.4.1 Intrinsic SNR

We define the “intrinsic SNR” of a nonlinearity g(·) using the Bussgang parameters of

its normalized version g̃(·) as follows:

γg =
|ã|2

σ̃2
g

. (2.17)

As a simple example, consider a memoryless limiter as depicted in Fig. 2.6 (a), which is

specified by the gain G and the power threshold Pth at which the output signal is clipped.

The normalized version of this function has unity gain, as shown in Fig. 2.6 (b), hence

we only need to specify a single parameter to characterize it: the clipping threshold
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(a) Nonlinear model

+

(b) Linear model

(c) Normalized nonlinear model

+

(d) Normalized linear model

Figure 2.5: The nonlinear function g(·) in (a) can be decomposed to the linear model
in (b) whose parameters depend on the input power. We define a normalized version
of the nonlinearity in (c), which allows us to provide design specifications independent
of input power. The corresponding normalized linearization is depicted in (d).

(a) Limiter function (b) Normalized limiter function

Figure 2.6: (a) The conventional limiter function. (b) a unity-gain limiter function
whose clipping threshold is normalized to the effective input power.
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Figure 2.7: (a) Bussgang parameters and (b) the intrinsic SNR of the normalized
limiter function.

P̃th = Pth/G
2σ2

y normalized to the input power σ2
y. The Bussgang parameters of the

normalized limiter function are shown in Fig. 2.7 (a), and the intrinsic SNR is shown in

Fig. 2.7 (b).

Henceforth, nonlinearities and their Bussgang parameters are normalized to the input

power, and we drop the “tilde” notation to denote the normalized version. For example,

the 1 dB compression point of a passband/baseband nonlinearity is normalized to the

input power, and hence is measured in dB instead of dBm.

Design Approach

The analytical framework described in the next section leads the following design

approach for going from system-level performance metrics to hardware design specifica-

tions:

• MIMO performance specifications lead to a requirement for the intrinsic SNR for the

per-antenna nonlinearities, ignoring the specific nature of the nonlinearities. For exam-
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ple, suppose that we require an intrinsic SNR of 20 dB at least 95% of the time.

•We map the intrinsic SNR requirement to a specification for the normalized nonlinear-

ity. Taking the limiter in Fig. 2.6 as an example, we see from Fig. 2.7 (b), the clipping

threshold normalized to the effective input power, Pth/G
2σ2

y, must be at least 6 dB in

order to attain an intrinsic SNR of 20 dB.

• In this step, the absolute value of the gain and clipping threshold is calculated. For

example, suppose that the system in our running example is at load factor β = 1/4, i.e.,

64 users. Then, according to the link budget presented in Appendix A, the input power

to the receive chain is −60 dBm if power control is employed. We therefore obtain that

Pth/G
2 = −54 dBm. The hardware designer now has to choose G and Pth in order to

achieve this ratio or better.

2.5 Analytical Framework

Our analytical framework is developed as follows.

1. We derive a matched filter bound for each user in the MIMO system that accounts

for the self-noise due to the per-antenna nonlinearities (which scales with the power

summed across users) as well as thermal noise. To this end, we use Bussgang

linearization and the intrinsic SNR discussed in the previous section.

2. We derive a lower bound for the output SINR of the LMMSE receiver for any given

user. Defining the efficiency of the LMMSE receiver for a given user as the ratio

of SINR to SNR, we show that the efficiency of a user in an ideal system without

nonlinearities is a lower bound on that of the actual system. This, together with

the matched filter bound, provides a lower bound on the LMMSE output SINR.

3. We obtain system-level design prescriptions by specializing the preceding lower
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bound to an “edge” user whose performance is stochastically poorer than that of

any other user.

2.5.1 Bussgang Linearized Model

As described in section 2.2, we denote by {Ak, k = 1, . . . , K} the amplitudes of

the incoming waves for the K users, and by σ2
n the variance of the thermal noise at

each antenna. We can therefore model the incoming signal at each receive antenna as

ym ∼ CN (0, σ2
y), where

σ2
y =

K∑
k=1

A2
k + σ2

n = σ2
n +KA2

rms, (2.18)

and

Arms =

√√√√ 1

K

K∑
k=1

A2
k (2.19)

is the root mean square (rms) amplitude, averaged across users.

As depicted in Fig. 2.5 (c), using the normalized Bussgang linearization requires

scaling the incoming signal to unit variance as follows:

ỹm =
ym
σy
. (2.20)

For a normalized nonlinearity g(·) as defined in the previous section, our per antenna

linearized model is given by:

g(ỹm) = aỹm + em. (2.21)

For the received signal (2.2), the normalized signal prior to passing through the

nonlinearity is given by

ỹ =
y

σy
. (2.22)
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Using the Bussgang decomposition, we have

g(ỹ) = aỹ + e =
a

σy
y + e, (2.23)

where E[eeH ] = σ2
gI. We can now go back to the original signal scaling to obtain

ŷ =
σy
a
g(ỹ) = y +

σy
a

e = Hx + n +
σy
a

e. (2.24)

This is the model (2.5), with effective noise

ñ = n +
σy
a

e (2.25)

of variance

E(ññH) = (σ2
n + ν2

g )I (2.26)

where

ν2
g =

σ2
y

|a|2
σ2
g =

σ2
y

γg
. (2.27)

2.5.2 Matched Filter Bound

For the kth user, the matched filter bound for the linearized model (2.5), with equiv-

alent noise as in (2.24)-(2.25), is simply given by

SNRk(g) =
||hk||2

σ2
n + ν2

g

. (2.28)

Our design framework is built around the dependence of this bound on key system

parameters as stated in the following theorem. We first ignore thermal noise, in order to
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clearly brings out the role of intrinsic SNR, γg, and load factor, β, and then include its

effect.

Theorem 2.5.1 Matched filter bound

(a) Self-noise only: Ignoring thermal noise, the matched filter bound for user k is given

by

SNRk(g) = γg
A2
k

βA2
rms

. (2.29)

(b) Self-noise and thermal noise: The matched filter bound for user k, considering

both self-noise and thermal noise, is given by

SNRk(g, σ
2
n) =

1
1

SNRk(g)
+ 1+γg

γg
1

SNRk

, (2.30)

where SNRk = NA2
k/σ

2
n is the SNR for user k accounting for thermal noise alone.

Proof: The proof involves algebraic manipulations based on the linearized model

(2.24)-(2.25).

(a) Using (2.1), the numerator in (2.28) is given by

||hk||2 = NA2
k. (2.31)

Using (2.18) and (2.27), and setting σ2
n = 0, the denominator in (2.28) is given by

ν2
g =

KA2
rms

γg
. (2.32)
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Plugging (2.31) and (2.32) into (2.28), we obtain

SNRk(g) =
NA2

kγg
KA2

rms

=
γgA

2
k

βA2
rms

, (2.33)

which is the desired result (2.29).

(b) From (2.28) and (2.31), we have

1

SNRk(g, σ2
n)

=
σ2
n

NA2
k

+
ν2
g

NA2
k

. (2.34)

For non-zero thermal noise, we have, using (2.18) and (2.27), that

ν2
g =

KA2
rms + σ2

n

γg
. (2.35)

Plugging into (2.34), we obtain upon simplification the desired result (2.30).

Note that, if γg � 1, then the formula (2.30) reduces to

SNRk(g, σ
2
n) =

1
1

SNRk(g)
+ 1

SNRk

. (2.36)

In order to provide system-level performance guarantees, we focus on supporting users

at the cell edge. We therefore now set Ak to the worst-case amplitude Aedge (at 100 m

range for our running example), while computing Arms by a statistical average
√
E[A2]

given the users distribution, assuming a large enough number of users. Let us term the

ratio of the power of the edge user to the rms power as the power control factor, since it

depends on the power control scheme used. The power control factor αp is given by

αp =
A2

edge

A2
rms

. (2.37)
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Specializing (2.29) to the edge user, we now obtain that

SNRedge(g) = γg
1

β
αp. (2.38)

Power control factor with no power control: For users who are uniformly distributed over

the area bounded by [Rmin, Rmax] and a given angular range, we obtain upon straightfor-

ward computation that, for a system without power control,

αp =

1
R2

max

1
R2

max−R2
min

∫ R2
max

R2
min

1
r
dr
,

=
1− R2

min

R2
max

2 log Rmax

Rmin

. (2.39)

which evaluates to -7.8 dB for Rmax = 100 m, Rmin = 5 m.

2.5.3 Lower Bound on LMMSE Output SINR

We now provide a lower bound on the output SINR of any user via the ideal system.

Theorem 2.5.2 LMMSE Lower Bound

In the presence of nonlinearity, a lower bound on the output SINR of a linear MMSE

receiver for any user is given as

SINR ≥ SNR(g, σ2
n) ηideal, (2.40)

where

ηideal =
SINR(ideal)

SNR(ideal)
. (2.41)
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is the efficiency in an ideal system with the same user configuration and amplitudes, but

without nonlinearity.

Proof: Since the system described in (2.5) is a pessimistic model for the system in

(2.2), we have by Lemma C.1 in Appendix C that

SINR

SNR(g, σ2
n)
≥ SINR(ideal)

SNR(ideal)
, (2.42)

where SINR(ideal) is the target linear MMSE output SINR for a user in an ideal system

(without nonlinearities).

We evaluate ηideal through simulations of the ideal system for the edge user, as shown

in Fig. 2.8, where SNRedge =
NA2

edge

σ2
n

, and Aedge is the received amplitude of the user at

100 m. The target output SINR of the linear MMSE, i.e., SINRedge(ideal) is 9.7 dB. This

number corresponds to the SNRedge in a single user case. Hence, in a single user case

ηideal = 1. As the load factor increases, there is noise enhancement due to interference

suppression: ηideal = 9.7− SNRedge|dB can be inferred from Fig. 2.8 (b).

2.5.4 From System-Level Performance to Intrinsic SNR

The chosen quality of service measure maps to an SINR requirement at the LMMSE

output. We compute this for the ideal system. For example, simulating the ideal system,

a target BER of 10−3 with 95% availability is obtained for SINRedge(ideal) = 9.7 dB.

Since the SNR for an edge user is 14 dB, we see from Fig. 2.8 (b) that the efficiency for

the ideal system is given by 9.7− 14 = −4.3 dB for no power control and β = 1/2. This

is an upper bound on the efficiency of the actual system.

We can now compute the minimum SNRedge(g, σ
2
n) from Eq. (2.40) to achieve the

required SINR in the presence of nonlinearities. Finally, we can infer the intrinsic SNR
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Figure 2.8: (a) BER for 5% outage in an ideal system (no nonlinearities) for different
load factors. (b) SNR for an edge user (100 m from base station) to guarantee that
95% of the mobiles have raw BER of 10−3 for different load factors.

γg required from Eq. (2.30) and Eq. (2.36). This is now mapped to detailed hardware

specifications, as illustrated by examples in the next section.

2.6 Design Examples and Performance Evaluation

The system parameters are as described in Section 2.2. We illustrate our design for a

target uncoded BER of 10−3, which is low enough for reliable performance using a high-

rate channel code with relatively low decoding complexity. For QPSK, the corresponding

required SNR over a SISO AWGN link is 9.7 dB. This becomes our target SINR at the

output of the LMMSE receiver for an edge user. This setting is simply for illustration:

our analytical framework applies for any QoS measure that can be approximated in terms

of SINR (e.g., outage capacity or spectral efficiency using Shannon’s formula).

In the following, we first describe the user distribution and power control schemes
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deployed in the cell. Then, we apply the analytical design framework to define the

specification on the receive chain: the passband/baseband nonlinearity and the ADC

resolution. We then evaluate the efficacy of the framework in attaining the desired

system-level performance by simulations for selected scenarios. Finally, we provide design

guidelines on the receive chain requirements in a more comprehensive set of scenarios.

2.6.1 User Distribution

The mobiles are uniformly distributed inside a region bordered by a minimum and

a maximum distance away from the base station, Rmin and Rmax, respectively. Since

dΩ
dθ
∼ cos θ, the spatial frequency is less responsive to changes in DoA for θ near ±π

2
, which

makes it more difficult to separate mobiles towards the edge of the angular field of view.

We therefore confine the field of view for the antenna array to −π/3 ≤ θ ≤ π/3. While

the mobiles are placed randomly in our simulations, we enforce a minimum separation in

spatial frequency between any two mobiles in order not to incur excessive interference,

choosing it as half the 3 dB beamwidth: ∆Ωmin = 2.783
N

[4] (mobiles closer in spatial

frequency could be served in different time slots, for example). An example distribution

of mobiles is depicted in Fig. 2.9.

2.6.2 Power Control Schemes

Our analysis in Section 2.5 first considers a system with no power control, in which

each transmitter transmits at equal power. We then consider two power control schemes:

a naive scheme in which transmitters adjust their powers to be roughly equal at the re-

ceiver, to within a tolerance, and an adaptive power control scheme designed for the linear

MMSE receiver [50] aimed at meeting an SINR target for each mobile at the receiver.

Power control is a very well-studied area, hence our goal is to provide quick insight on
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Figure 2.9: (a) An instantiation of 128 mobiles on a polar chart. (b) Normalized
correlation between two users with spatial frequency difference of ∆Ω. Note that the
closest users, depicted by red points, are separated by larger or equal to half the 3 dB
beamwidth.

its implications for our system, rather than performing a comprehensive evaluation.

Naive power control

In this scheme, the base station asks all the users to decrease their power to make

their received power at the base station equal the received power of the farthest mobile,

i.e., at Rmax. A disadvantage of this scheme, illustrated by our performance results in

subsequent subsections, is that nearby users are no longer able to use their larger signal

strength to overcome the impact of interference from other users who are nearby (in

terms of spatial frequency separation). The power factor αp of the naive power control

scheme is equal to 0 dB because all the users have the same received signal strength.
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Adaptive power control

In order to avoid the pitfalls of naive power control, we consider an adaptive power

control scheme aimed at meeting an SINR target SINRth at the output of the linear

MMSE receiver. This method was proposed and shown to converge in [50]. We restate

it with all values represented in the dB scale in Algorithm 1. Starting from no power

control and all users transmitting at maximum power, the algorithm seeks to enforce a

threshold SINR, termed SINRth, iteratively as follows: every mobile with SINR greater

than SINRth reduces its power by SINR − SINRth. This process is repeated until a

convergence criterion is met. The power factor, αp, that results from this adaptive

power control scheme is found via simulation to equal about −2 dB for our running

example.

Algorithm 1: Adaptive power control

Input: H, {P (0)
k }k=1,...,K

parameter: SINRth, ε
Output: {Pk}k=1,...,K

1 Margin = ε+ 1;
2 while Margin > ε do
3 {SINRk}1:K ← calculate LMMSE output SINR;
4 for k ← 1 to K do
5 ∆SINRk ← max{SINRk − SINRth, 0};
6 Pk ← Pk −∆SINRk;

7 Margin← max{∆SINRk}1:K ;

2.6.3 Applying the Design Framework

For illustration, we consider β = 1
2

and β = 1
16

, with no power control, naive power

control and adaptive power control.

The design steps are as follows:
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1. System-level design: We require SINRedge(ideal) ≈ 10 dB for our target QoS. Using

simulations for the ideal system, we compute the LMMSE efficiency ηideal as shown

in Fig. 2.8. For our four scenarios, the LMMSE efficiency ηideal is found to be (a)

4.5 dB, (b) 0 dB, (c) 4.5 dB, and (d) 0 dB.

After that, we determine the SNR of the edge mobile and the intrinsic SNR jointly

to achieve the LMMSE lower bound. Specifically, the contours in Fig. 2.10 (a)

illustrates the following equation for each scenario:

SNR(g, σ2
n) =

SINRedge

ηideal

,

1
β

γgαp
+ 1+γg

γg
1

SNRedge

=
10

ηideal

.

We pick the following combinations of (SNRedge,γg): (a) (20,20) dB, (b) (11,12)

dB, (c) (16,17.5) dB, and (d) (12,7) dB.

2. Hardware-level design: This step determines the specifications of the passband/baseband

nonlinearity and the ADC to achieve the required intrinsic SNR. Fig. 2.10 (b) shows

the tradeoff between the number of ADC bits and the 1 dB compression point of the

baseband nonlinearity P bb
1dB and the passband nonlinearity P pb

1dB. The 1 dB compres-

sion points computed are normalized to the input power. The absolute compression

points in dBm are computed by determining the average received input power at

each base station antenna.

Here we have taken the link budget, or attainable SNRedge, as our constraint, and

have designed the nonlinearity specifications accordingly, We can, of course, utilize the

same framework to determine the link budget required for a given set of nonlinearities.
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Figure 2.10: (a) Lower bound on the linear MMSE output SINR as a function in
the intrinsic SNR, γg, and the SNR required for the edge user, SNRedge, for different
scenarios. The contours depicted are for constant SINRedge = 10 dB. The solid circles
in Fig. (a) show the operating points we choose to work at. (b) Intrinsic SNR of a
receive chain comprising passband and baseband nonlinearities and ADC.
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Figure 2.11: (a) and (b) show the BER attained by 95% of the users for load factor
of 1/2 and 1/16, respectively. The SNRedge is the SNR required by the user at 100
m away from the base station. The receive chain specifications for each curve are
demonstrated in table 2.1.
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β PC b P bb
1dB P pb

1dB γg SNRedge SNRedge

(dB) (dB) (dB) (upper bound) (sim.)
1/2 none 5 8.4 6.7 20 20 17.5
1/2 naive 4 8.4 4.9 17.5 18.7 18.4
1/2 adaptive 4 8.4 4.9 17.5 16 14.7
1/4 none 4 8.2 2.4 15 14 12.8
1/4 naive 3 3.7 0.7 10.5 15 14.8
1/4 adaptive 3 3.4 1.9 11.5 12.5 11.9
1/8 none 3 4.2 1.4 12 13 12.2
1/8 naive 3 2.2 -1.1 8.7 12.7 12.7
1/8 adaptive 3 3.2 1.9 11 10.9 10.8
1/16 none 3 4.2 1.4 12 11.2 10.8
1/16 naive 2 1.4 -1.1 7.6 11.5 11.5
1/16 adaptive 2 -1.1 -1.9 7 11.8 11.2

Table 2.1: This table presents the analytical predictions and simulation results for
the SNR budget needed to meet the desired performance criterion (10−3 BER at 95%
availability) for different scenarios. The intrinsic SNR γg corresponds to the cascade of
the passband and baseband nonlinearities, specified by their 1 dB compression points
(P pb

1dB and P bb
1dB, respectively), together with b-bit ADCs for I and Q. PC and β denote

the power control scheme used, and the load factor, respectively.

2.6.4 Simulation-based Verification

Here, we verify the designs produced by our analytical framework by numerical sim-

ulations. In Fig. 2.11, we plot the BER that 95% of the users attain for the cases we

mention in the previous subsection. As shown, all the curves reach the 10−3 at slightly

smaller SNRedge than predicted by our analytical framework, which shows that our ap-

proach is both conservative and accurate. Table 2.1 summarizes our design prescriptions

for different scenarios. As shown in the table, we examine the combination of four load

factors with no power control and two power control strategies. We demonstrate the

specification of the receive chain along with the resultant intrinsic SNR, γg. Then we

compute an upper bound for the SNR needed for the edge user to achieve the perfor-

mance metric. Finally, using simulations, we show the accuracy of the derived upper

bound.
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The results reported in Table 2.1 show that massive MIMO is key to relaxed hardware

specifications: increasing the number of antennas for a given number of users reduces load

factor, providing a “degrees of freedom” advantage that is used to level out the distortions

caused by nonlinearities. For example, when serving 16 users with a 256 element array

(β = 1
16

), only 2 bits of quantization per dimension is required and the 1-dB compression

point of RF and baseband amplifiers is very low (both below 0 dB with adaptive power

control). In practice, a lower compression point allows higher loading, i.e., the amplifier

can support a larger input signal and produce a stronger signal in the output, which

increases the power efficiency of an amplifier. This is very desirable trait for scaling to

large arrays. The results also bring out the impact of power control. Higher disparities in

user powers requires higher ADC granularity to allow effective interference suppression of

strong users which might otherwise “drown out” weak users. The reduction in user power

disparities and required dynamic range with better power control is reflected clearly in

our results.

2.7 Conclusion

The analytical framework provided in this chapter is a conservative, yet accurate, ap-

proach for designing hardware specifications for nonlinear elements in all-digital mmWave

massive MIMO. Scaling using a larger number of antennas with a smaller load factor is

attractive, since the specifications for RF nonlinearities, baseband nonlinearities, and

ADC precision can all be significantly relaxed by operating at lower load factors. The

requirements can also be relaxed by use of appropriate power control, as illustrated by

the simple adaptive power control scheme considered here.

While we have considered LoS channel models here, we note that our approach extends

to sparse multipath channels. At high symbol rates, equalization over a large delay spread
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becomes computationally unattractive. In this case paths that differ significantly in delay

and angular spread from the dominant path play the role of additional interference, and

can be folded into our framework.

In addition to the extensive effort required to realize our design prescriptions in

hardware, there are also important open issues related to the digital backend, given the

challenges of both computation and data transport for the multiGigabaud, multiuser sys-

tem considered here. Thus, despite the extensive prior research on multiuser detection,

there are significant open issues on the design of strategies that are efficient enough (in

terms of both computation and communication on the backend fabric) to scale with the

number of antennas, number of users, and bandwidth. We also note the importance of

exploring nonlinear reception techniques (such as interference cancellation) that could

outperform LMMSE detection while maintaining low computational overhead. As dis-

cussed in Chapters 3 through 6, exploiting channel sparsity is a promising approach for

developing such techniques.
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Chapter 3

Beamspace Local LMMSE: An

Efficient Digital Backend for

mmWave Massive MIMO

All-digital architectures enable taking full advantage of the large number of antennas

that can be integrated in mmWave transceivers, with fully flexible beamforming that

enables the number of simultaneous users K sharing the band to scale with the number of

antennas N , with scaling ratio, or load factor, β = K
N

. Standard criteria for beamforming

include spatial matched filtering (MF), as well as linear interference suppression using the

zero forcing (ZF) or linear minimum mean square error (LMMSE) criteria. Fig. 3.1(a)

depicts the raw bit error rate (BER) achieved by 95% of the mobiles for the picocellular

uplink considered in this chapter. Clearly, interference suppression becomes necessary

for moderate load factors (e.g., β > 1/16), where MF performance is far inferior to

that of LMMSE, with the gap persisting even if power control is employed, as shown

in Fig. 3.1(b). However, the computational complexity of LMMSE detection becomes

prohibitive for large K and N .

42



Beamspace Local LMMSE Chapter 3

6 8 10 12 14 16
SNR

edge
 (dB)

10-4

10-3

10-2

10-1

p
(B

E
R

 
 b

er
) 

= 
95

%
LMMSE, =1/2
LMMSE, =1/4
LMMSE, =1/8
LMMSE, =1/16

MF, =1/2
MF, =1/4
MF, =1/8
MF, =1/16

(a) BER without power control

5 10 15 20
SNR

edge
 (dB)

10-4

10-3

10-2

10-1

p
(B

E
R

 
 b

er
) 

= 
95

%

LMMSE, =1/2
LMMSE, =1/4
LMMSE, =1/8
LMMSE, =1/16

MF, =1/2
MF, =1/4
MF, =1/8
MF, =1/16

(b) BER with power control

Figure 3.1: Massive MIMO uplink performance using MF and LMMSE receivers for
β = K/N = {1/16, 1/8, 1/4, 1/2} and N = 256.

Recent efforts at complexity reduction, for both uplink and downlink, include two-

stage beamforming strategies [51, 52, 53, 54]. In [51], a statistical outer beamformer based

on grouping mobiles based on similar correlation matrices reduces the effective spatial

dimension of the equivalent channels [51, 52]. This is followed by an inner beamformer

that suppresses both intra- and inter-group interference, resulting in significant reduction

in computation [53, 54].

In this chapter, we propose a Beamspace Local LMMSE algorithm which leverages the

sparsity of the spatial channel in mmWave bands. A spatial discrete Fourier transform

(DFT) is employed to concentrate the energy of each mobile into a smaller number of

DFT bins, i.e., in “beamspace.” We show that performance close to that of standard

LMMSE can be obtained by a local LMMSE detector operating on a beamspace window

of a size that does not scale with N . We provide analytical rules of thumb for choosing

window size as a function of load factor β and target outage rate. We also show how

our architecture provides a low-complexity solution for implicit channel estimation via
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Figure 3.2: System model for the beamspace massive MIMO.

an efficient adaptive implementation.

3.1 System Model

The massive MIMO system model is depicted in Fig. 3.2: a sector covered by a base

station which can scan horizontally with a 1D half-wavelength spaced N -element array,

serving K mobiles (assumed to each have a single antenna for simplicity).

The linear multiuser detector comprises a beamformer weights acquisition module,

and a beamformer module. Using the received training matrix Y, defined later, and

the training sequences for each user {ti}Ki=1, the weight acquisition block generates the

beamformer weights {wi}Ki=1. These weights are used by the beamformer module to

estimate the users’ data vector x out of the received vector y.

We assume a line-of-sight (LoS) channel from each mobile to the base station. The
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channel vector for the kth user can be written as follows:

hk = Ak [1 ejΩk ej2Ωk . . . ej(N−1)Ωk ]ᵀ, (3.1)

where A2
k =

(
λ

4πRk

)2
depends on the radial location Rk of user k and wavelength λ, using

the Friis formula for path loss. A spatial frequency Ωk = 2π dx
λ

sin θk defines the angular

location of the kth user, where dx is the inter-distance between antenna elements and

chosen to be λ/2.

The received signal vector y in the base station is given by

y = H︸︷︷︸
N×K

x + n, (3.2)

where H = [h1h2 . . .hK ] is the channel matrix, x is the users symbols vector, E(xk) = 1,

and n ∼ CN (0, σ2I) is the AWGN vector. As shown in Fig. 3.3, the LoS channel is sparse

in beamspace.

3.1.1 Linear MMSE receiver

The LMMSE receiver is given by x̂ = Wy, such that

W = HH(HHH + σ2I)−1 = (HHH + σ2I)−1HH , (3.3)

where the second equality is a direct result of Sherman–Morrison–Woodbury matrix

identity.
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Figure 3.3: Sparse LoS channel in the beamspace.

3.1.2 Implicit channel estimation

Adaptive implementations of the LMMSE receiver implicitly estimate the channel

using training sequences for the users of interest. Let T = [t1t2 . . . tK ]ᵀ be a matrix

that hold the training sequences tk, k = 1, . . . , K of length L, such that ||tk||22 = L. We

assume that sequences are orthogonal across users, i.e., tHi tj = 0∀i 6= j. Hence the

received training sequence can be written as,

Y︸︷︷︸
N×L

= HT + N, (3.4)

where N = [n1n2 . . .nL] is the noise matrix. Therefore, the covariance of the received

signal and the channel matrix can be computed empirically and approximated at high
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SNR as (assuming L > N)

C =
1

L
YYH = HHH +

1

L
NNH ≈ HHH + σ2I, (3.5)

and

U =
1

L
TYH = HH +

1

L
TNH ≈ HH , (3.6)

while the computational complexity of the previous two steps are O(N2L) and O(βN2L),

respectively. The LMMSE solution can be formed as,

x̂ = UC−1y. (3.7)

If we used the Cholesky decomposition [55], then the computation complexity of inverting

C is O(N3), while the complexity of computing x̂ is O(βN2) per received signal vector

y.

3.2 Beamspace Local LMMSE

In general, the observation at each antenna is a superposition of signals received

from all the users. For a specific user, the information about its symbol is distributed

equally between all the antennas. Hence, the base station must engage all the antenna

observations to extract the user’s symbol with high precision. In beam domain processing,

on the other hand, the base station compresses the information of a user into a smaller

number of spatial observations. As a result, the computational complexity can be greatly

reduced.

In this section, we first describe the method to attain the weights of beamspace local

LMMSE in the absence of explicitly estimated CSI using the received training sequence
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Figure 3.4: Local LMMSE weights acquisition in beamspace.

Y. Then, we explain the beamforming process for the received data vector y.

3.2.1 Beamspace Local LMMSE Weight Acquisition

Fig. 3.4 summarizes the steps of the local LMMSE weights acquisition. Starting by

the received training sequence matrix Y, the acquisition steps are given as follows.

Calculate the DFT of the received training sequence

The DFT is used to transform the antenna domain signal to beam domain by applying

it on each column of the received training sequence matrix Y to get Y′ as

y′p,` =
N∑
n=1

yn,`e
−j2π(n−1)(p−1)/N , (3.8)
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where Y = [yn,`] and Y′ = [y′p,`], ∀p = 1, . . . , N . The fast Fourier transform (FFT)

algorithm [56] is applied to realize the DFT operation with a complexity of O(LN logN)

for the whole training sequence matrix.

Generate the band matrix C̃

The band matrix C̃ is generated as

c̃n,p =


1
L
Y′[n,∗]Y

′H
[p,∗], if |n− p| < W

0, otherwise,

(3.9)

where Y′[n,∗] is the nth row in the matrix Y′. Instead of computing the entire N × N

beam domain sample covariance matrix ( 1
L
Y′Y′H), only the dominant elements around

the diagonal within a window size W are computed. Hence, the complexity of this step

is O(WNL). We define the block matrices on the diagonal Rm as

Rm︸︷︷︸
W×W

=C̃[m:m+W−1,m:m+W−1]. (3.10)

Invert each Rm

One matrix inversion R−1
m has a complexity of O(W 3). Normally, the matrix inversion

should be applied N −W + 1 times for all possible m, and the resulting total complexity

would be O(NW 3). In the following, we propose a method that greatly reduces the

number of operations required. The beam domain sample covariance matrix C̃ has the
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following structure

C̃ =



. . .
...

...
... . .

.

. . . c1 bH1 · . . .

. . . b1 A b2 . . .

. . . · bH2 c2 . . .

. .
. ...

...
...

. . .


. (3.11)

Let us define

Rm =

c1 bH1

b1 A

 and Rm+1 =

A b2

bH2 c2

 . (3.12)

Using the elements in (3.12), R−1
m can be defined as

R−1
m =

 1
s1

− 1
s1

bH1 A−1

− 1
s1

A−1b1 A−1 + 1
s1

A−1b1b
H
1 A−1


=

x11 xH12

x12 X22

 , (3.13)

where s1 = c1 − bH1 A−1b1 is the Schur complement of block A of matrix Rm. Given

A−1, the inverse R−1
m+1 for the block m+ 1 can be computed as

R−1
m+1 =

A−1 + 1
s2

A−1b2b
H
2 A−1 − 1

s2
A−1b2

− 1
s2

bH2 A−1 1
s2

 , (3.14)
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where s2 = c2 − bH2 A−1b2 is the Schur complement of block A of matrix Rm+1. Finally,

A−1 can be computed from the entries of R−1
m as

A−1 = X22 −
1

x11

x12x
H
12. (3.15)

The matrix inversion is computed only once for a particularm, while the rest of the matrix

inverses are generated using the above recursive steps. Therefore, the total complexity

is reduced to O(NW 2).

Compute h′k for each user k

The beam domain channel h′k of user k can be computed empirically as

h′k ≈
1

L
Y′t∗k, (3.16)

while the approximation error vanishes for large L and SNR. The complexity of computing

h′k for all users is O(NLK). Finally, the beam domain channels of size W for each sliding

window m are constructed as

uk,m = h′k[m : m+W − 1]. (3.17)

Search the index m with Minimum MSE

In this step, the window m providing the minimum mean square error (MSE) is found

for each user k. The MSE criterion for each index pair (k,m) is given as [57]

MSEk,m = 1− uHk,mR−1
m uk,m, (3.18)
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and the optimum window index m for each user k is found as

m∗k = arg min
m

MSEk,m. (3.19)

The complexity of the entire search process is O(βN2W 2). Finally, the optimum local

LMMSE weights for each user k in the beamspace is given as

wk = uHk,m∗
k
R−1
m∗
k
. (3.20)

3.2.2 Beamspace Local LMMSE Beamforming process

Given the computed beamspace weights computed in the previous subsection, the

detection of data symbols from (3.2) simply consists of two steps:

Calculate the DFT y′ for the received vector y

The complexity of this step is O(N logN).

Calculate the estimate x̂k = wky
′[m∗k : m∗k +W − 1] ∀ k

The complexity of this step is O(βWN).

3.3 Window Size W Does Not Scale with N

In this section, we sketch an argument showing that the required window size W does

not scale with the number of antenna elements N . Under a simplified model of user’s

spatial distribution as being uniform across the N FFT bins, the number of users falling

into a typical window is a binomial random variable X ∼ Bin(K,W/N). For β < 1, the

mean number of users falling in a window, which is ν = KW/N = βW , is smaller than
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the available dimension W , which implies that linear interference suppression is expected

to be successful for a window size W , where the choice of W depends only on β, and

does not scale with N .

We can now obtain rules of thumb on the choice of W as a function of β and a target

outage probability. For large N,K and fixed β, X tends to a Poisson with mean ν, with

Chernoff bound on tail probabilities[58]

P (X ≥ x) ≤ e−ν(eν)x

xx
, (3.21)

Assuming that outage in a given window occurs if and only if the number of users

X > W , the probability of outage in a window is given by P [X > W ]. Assuming that

all users falling in the window are in outage when this happens, the expected number of

users in outage, after direct mathematical manipulation, is E[XIX>W ] = νP [X ≥ W ] =

βWP [X ≥ W ]. Summing over the N −W + 1 distinct windows and dividing by the

number of users K, we obtain

P (outage) =
N −W + 1

K
βWP [X ≥ W ] ≤ WP [X ≥ W ]

Plugging in (3.21), we obtain upon simplification that

P (outage) ≤ W
(
βe1−β)W (3.22)

Given a 5% outage target, the window size computed using the above formula would be

2, 4, 8, 34 for load factors 1/16, 1/8, 1/4, 1/2, respectively, which are remarkably close

to those obtained by simulations in Section 3.4.
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3.4 Numerical Results

We consider the system setup in Fig. 3.2 with number of antennas fixed at N = 256

for all numerical experiments. The field of view for the sector is restricted to −π/3 ≤

θ ≤ π/3. The users are uniformly distributed inside a region bordered by a minimum

and a maximum distance away from the base station, Rmin = 5 m and Rmax = 100 m,

respectively. While the user terminals are placed randomly in our simulations, we enforce

a minimum separation in spatial frequency between any two users in order not to incur

excessive interference, arbitrarily choosing it as half the 3 dB beamwidth: ∆Ωmin = 2.783
N

[4]. BW3dB in Fig. 3.2 stands for the 3 dB beamwidth. We assume that users with similar

spatial frequency can be served in different time or frequency resource blocks.

We measure link quality by the outage probability at a target uncoded BER of 10−3

for QPSK which requires SNR of 9.7 dB for a SISO AWGN link. This becomes the

target SINR at the output of the multiuser detector for an edge user. No power control

is deployed. The efficiency of the proposed beam space local LMMSE is defined as the

ratio between the SNRedge required to attain the link quality using standard LMMSE,

relative to that required with local LMMSE:

η =
SNRedge(LMMSE)

SNRedge(local)
(3.23)

Assuming perfect CSI, Fig. 3.5(a) shows the BER achieved by at least 95% of the

users for different window sizes W and with load factor β = 1/4. Fig. 3.5(b) illustrates

the efficiency η of the beamspace local LMMSE where the edge user SNR is adjusted

such that at least 95% of the users achieve BER of 10−3. In order to incur loss of only

1 dB or less in performance, a window size of 2, 3, 7, and 31 should be applied for load

factors 1/16, 1/8, 1/4, and 1/2, respectively.
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Figure 3.5: (a) BER achieved by at least 95% of the users for different W . (b) Edge
user η with β = {1/2, 1/4, 1/8, 1/16}

Figs. 3.6(a) and 3.6(b) plot the performance of the local LMMSE with implicit channel

estimation as a function of training samples L, for β = 1/2 and β = 1/4, respectively. The

training sequences are constructed from the Hadamard matrix such that user sequences

are mutually orthogonal. There is a clear trade-off between the window size W and

performance of the beamspace local LMMSE receiver (3.20). The optimum window size

depends on both L and β. A larger window W provides an advantage in terms of the

degrees of freedom available for suppressing inter-user interference in Rm∗
k
; see analysis

in Section 3.3. However, at the same time, the estimation quality of outermost elements

in uk,m∗
k

quickly decays as W is increased due to the sinc-like shape of the DFT beams.

Thus, for finite L, the performance of (3.20) begins to deteriorate if W is made too large.

For a single user, local LMMSE approximates spatial matched filtering. Fig. 3.7

shows the worst-case loss in the output SNR of local LMMSE compared to the MF for

a single user, which arises due to off-grid effects: with probability one, a user’s location

in beamspace is not aligned with the DFT bins. As shown, W = 3 is enough to collect
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Figure 3.6: Local LMMSE with implicit channel estimation.

most of the energy.

Fig. 3.8 compares, for β = 1/4, the complexity of conventional LMMSE and beamspace

local LMMSE, resulting in 10-fold complexity reduction for N = 256 with local LMMSE

for both weights acquisition (Fig. 3.8 (a)) and beamforming (Fig. 3.8 (b)).

3.5 Conclusion

We have shown that, for the sparse spatial channels typical of mmWave bands, we can

scale up the number of antennas and users without scaling the dimension of the signal

subspace required to demodulate a given user. Thus, once we incur the O(N log2N)

complexity of performing a spatial DFT, we can significantly reduce the complexity

of multiuser detection: for example, the beamspace local LMMSE approach studied

here achieves a ten-fold reduction in complexity compared to conventional LMMSE for

the range of system parameters considered here. We have also shown how an adaptive

implementation of this approach can be extended to provide implicit channel estimation.
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Figure 3.8: Complexity comparison of beamspace local LMMSE and conventional LMMSE.
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Chapter 4

Scalable Nonlinear Multiuser

Detection for mmWave Massive

MIMO

In Chapter 3, we show that effective linear interference suppression is provided by the

“local LMMSE” receiver which demodulates each user from a small window of the signal

vector in beamspace. The required size of the window depends on the load factor and

the minimum user separation, but does not scale with N . In this chapter, we show that

low-complexity nonlinear interference cancellation can be layered on top of such a local

LMMSE receiver, enabling reliable demodulation at higher load factors.

The key idea is as follows. For any given “desired” user, the local LMMSE receiver

effectively suppresses most of the interference except for a small number of users which

are “nearby” (in beamspace). Therefore, the output of the local LMMSE receiver can be

treated as a virtual MIMO system with a small number of users and colored noise. After

noise whitening, we apply interference cancellation to this smaller system to enhance the

reliability of demodulation for the desired user. We apply this second stage of interference
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cancellation for each user separately. The parameters of our approach are the size of

the window used for local LMMSE reception in beamspace, and the maximum number

of interferers cancelled for each user in the second stage. Our approach retains the

gains in computational efficiency obtained from the sparsity of the mmWave channel,

while allowing us to push the system to higher load factors than is possible with linear

interference suppression.

Related Work: Multiuser detection (MUD) for MIMO has a rich history [59], with

many recent works focussing on complexity reduction motivated by massive MIMO. Ma-

trix inversion in high dimensions is a bottleneck for linear interference suppression, and

proposed complexity reduction techniques include Newton iteration [60], Neumann series

expansion (NSE) [61], the Gauss-Seidel method [62, 63], and Cholesky decomposition

[64]. The correlation structure of the matrix can be further exploited to reduce com-

plexity. For example, [65] exploits a tridiagonal structure for the Wishart matrix in a

VLSI implementation. Complexity reduction techniques for nonlinear MUD include [66],

wherein a sphere decoder is selectively applied by leveraging a linear detector, and [67],

where approximate message passing is applied to reduce sphere decoding complexity. A

survey of massive MIMO detection techniques can be found in [68]. Unfortunately, these

and other existing techniques are not easily scaled up to the system sizes that we consider

here.

The results in Chapter 3 imply that, as long as we pay the O(N logN) price of a

spatial fast Fourier transform (FFT), linear interference suppression for each user can

be accomplished at complexity that does not scale with system size, assuming that the

mmWave channel is concentrated in beamspace. In this chapter, we show that similar

conclusions hold for nonlinear multiuser detection as well, enabling us to push the system

load factor further up without sactificing link reliability.

Notation: We use lowercase bold letters for vectors, and uppercase bold letters for
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matrices. The notation x = [xi]
I
i=1 represents column vector x of length I and its

elements are denoted by xi. For a matrix, we use X = [xi,j]
I,J
i=1,j=1. {.}Kk=1 denotes a

list of K scalars, vectors or matrices. The identity matrix is denoted by I and 0M is a

column vector which consists of M zeros.

4.1 System Model

We consider the uplink MIMO system depicted in Fig. 4.1a. The base station employs

a linear array with N elements to simultaneously serve K = βN mobile users, where β is

the system load factor. Each mobile transmits a single data stream and uses an antenna

array to perform ideal transmit beamforming towards the base station.

Channel Model: We assume that a single path dominates the channel between the base

station and any mobile. Such a model is well suited for mmWave channels as it has been

experimentally validated in a typical university campus at 60 GHz [69]. Therefore, the

channel matrix is of the form H = [h1h2 . . .hK ], where hk is the N × 1 spatial channel

for the kth mobile, hk = αk [1 ejΩk ej2Ωk . . . ej(N−1)Ωk ]ᵀ. Here, Ωk is the spatial frequency

(corresponding to the angle of arrival) and αk is the complex channel amplitude of the

path of user k.

The single path channel has a concentrated structure in the discrete spatial frequency

domain, or “beamspace”, as shown for a typical example in Fig. 4.1b. We define the

beamspace channel matrix as H̃ = [h̃1 . . . h̃K ], where h̃k = DFT (hk) and DFT (.) is the

discrete Fourier transform (DFT) operator. The received signal vector in the original

spatial domain is given by y = Hx + n, where x is the K × 1 vector of users’ symbols,

E(|xk|2) = 1, and n ∼ CN (0, σ2I) is additive white Gaussian noise (AWGN). By taking

the DFT of this vector, we obtain the beamspace signal model, ỹ = H̃x + ñ, where

ñ = DFT (n) ∼ CN (0, σ2I). Our goal is to perform MUD by estimating the transmitted
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Figure 4.1: (a) Uplink massive MIMO system model. (b) The sparsity of single-path
channel in beamspace.

symbol vector, x, from this beamspace signal, which is a sufficient statistic for estimating

x. We describe in the following section some conventional approaches for MUD.

4.2 Conventional MIMO Detectors

In this chapter, we assume that channel estimation is error-free and focus our dis-

cussion on the MUD, which consists of two blocks: a preprocessor and a demodulator.

Based on the estimated channel matrix and noise variance, the preprocessor provides

the demodulator with filters and parameters required to decode users’ symbols from the

received signal vector. Conventional multiuser reception techniques include the following.

LMMSE reception is the optimal linear MUD method. It provides the best combi-

nation of zero-forcing interference suppression and matched filtering which are optimal at

high and low SNR, respectively. The LMMSE beamformer estimates the vector of trans-

mitted symbols as x̂ = Wy, with the optimal receive matrix, W , which is computed by
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the preprocessor based on channel state information as

W = HH(HHH + σ2I)−1 = (HHH + σ2I)−1HH .

It should be noted that the second equality is more computationally efficient to calculate

as it requires inverting a smaller matrix (since K ≤ N). The computational complexity

of LMMSE is O(βN2) for beamforming and O(β2N3) for computing W, which does

not scale well with the number of antennas. Furthermore, even though it provides near-

optimal performance in low-loaded systems, its performance diminishes once the load

factor, β, exceeds 1
4
, especially when the near-far power disparity is large or some channels

are very close in spatial frequency. In these conditions, nonlinear techniques can provide

significant performance gains.

Interference cancellation (IC) is the most intuitive and well-known nonlinear MUD

method. After decoding a user’s digital symbol, this receiver calculates the interference

of that user on other channels and subtracts it from the original observations before

a second demodulation. This can be done successively (SIC) [70], starting from the

strongest user to the weakest, or in parallel (PIC) [71]. The former is advantageous in

terms of performance, especially when variation in channel strength is large among users,

but entails higher delay and is not easily parallelizable. An efficient implementation of

SIC is the V-BLAST algorithm that admits a complexity of O(N3) [72].

In the next section, we describe our proposed MUD which combines linear techniques

in beamspace with nonlinear interference cancellation to provide a scalable receiver de-

sign.
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4.3 Scalable Nonlinear Multiuser Detection

The beamspace local LMMSE receiver developed in our prior work [13] takes advan-

tage of channel concentration in spatial frequency domain to perform linear estimation

of each user’s symbol using a small window of the beamspace signal vector, ỹ. This win-

dowing approach significantly reduces the computational burden of the linear detector;

however, the limited dimensionality of observations limits its interference suppression

capability, and linear techniques, in general, are very suboptimal at high load factor or

when trying to detect users that are close in spatial frequency and have highly correlated

channels. Nonlinear techniques are effective in these cases, but their complexity can

become a bottleneck for massive MIMO systems. To facilitate a scalable nonlinear detec-

tor, we augment the beamspace local LMMSE receiver with a user-centric virtual MIMO

system that models the cross-interaction of nearby neighbors in beamspace. Nonlinear

detection is possible on this smaller virtual system, especially as the number of significant

interferers for any given user remains relatively constant as the system is scaled up in

size. In this section, we describe the stages of this proposed approach and determine the

computational complexity of each stage.

4.3.1 Local LMMSE

The initial local LMMSE stage (summarized in Algorithm 2) carries out a lightweight

linear estimation of users’ symbols by transferring the received signal vector to beamspace

via an FFT operation, and then limiting the observation window used for the mth user to

a small number (W1) of FFT bins around the mth user’s spatial frequency. This window

is chosen for each user such that the resulting mean squared error (MSE) is minimized,

as described in Algorithm 2. Using these limited dimensions, the local LMMSE receiver

suppresses interference produced by other users via linear projection, and provides the
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local LMMSE estimate,

x̄m = wH
mỹ, (4.1)

where wm is the local LMMSE filter for the mth user (obtained by Algorithm 2) which

contains W1 nonzero entries. It is worth noting that there are only W1 nonzero complex

multiplication operations in (4.1). The estimates {x̄k}Kk=1 serve as observations for the

next stage of processing.

4.3.2 User-centric whitened virtual MIMO

In the second stage, we create a small virtual MIMO system in order to obtain a better

estimate of its symbol as follows. The virtual MIMO system for user m is obtained by

taking the set of W2 − 1 nearest users (in beamspace) and forming the set Jm of users,

as shown in Fig. 4.2. The measurement vector for this system is denoted as

zm = [x̄k]k∈Jm = ẆH
m(H̃x + ñ)

= ẆH
mH̃Jm︸ ︷︷ ︸
Bm

xJm + ẆH
m(H̃J cmxJ cm + ñ)︸ ︷︷ ︸

im

, (4.2)

where Ẇm = [wk]k∈Jm , H̃Jm = [h̃`]`∈Jm , H̃J cm = [h̃`]`/∈Jm , xJm = [x`]`∈Jm , and xJ cm =

[x`]`/∈Jm . We treat the interference from users that are not in Jm as noise, and compute

the overall noise covariance matrix of (4.2) as

Σm = E[imiHm] = ẆH
m(H̃J cmH̃H

J cm + σ2I)Ẇm. (4.3)
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Since the FFT taps used for different users in Jm are likely to overlap, this distortion is

“colored”. We whiten each virtual MIMO system by computing

z̄m = Σ
− 1

2
m zm.

The whitening filter can be computed efficiently using a Cholesky decomposition [55].

This yields the following model for the mth whitened virtual MIMO system:

z̄m = AmxJm + nm, (4.4)

where the effective channel seen by the users in Jm becomes

Am = Σ
− 1

2
m Bm,

and the “noise” (which includes interference due to users in J c
m) in the virtual MIMO

system is white: nm ∼ CN (0, I).

4.3.3 Nonlinear MUD for the virtual MIMO systems

We may now apply any nonlinear MUD to the W2-dimensional virtual MIMO system

centered at user m to get an estimate of its symbol, xm. We report results for LMMSE-

SIC operating on each virtual MIMO system. For simplicity, we describe it for a generic

whitened virtual MIMO system of the form:

z̄ = Ax + n,

where we drop the subscripts from (4.4), and number the users from 1 to W2.

The SIC demodulator consists of W2 successive stages. In the first stage, it receives

65



Scalable Nonlinear Multiuser Detection for mmWave Massive MIMO Chapter 4

Algorithm 2: Local LMMSE Preprocessing.

Input: H̃ = [h̃k]
K
k=1 ∈ CN×K , σ2, N , and m

Output: wm

Parameter: W1 (window size)

1: set G = H̃H̃H + σ2I {Compute the covariance matrix}
2: for i = 1 to N −W1 + 1 do

3: set Ri = [G`,n]i+W1−1,i+W1−1
`=i,n=i

4: set ḣi =
[
H̃`,m

]i+W1−1

`=i

5: set MSEi = 1− ḣHi R−1
i ḣi

6: end for
7: set i∗ = arg miniMSEi {Optimal window location}
8: set wH

m = [0ᵀ
i∗−1, ḣHi∗R

−1
i∗ , 0ᵀ

N−i∗−W1+1]

9: set wm ← wm

wH
mh̃m

{Remove the estimation bias}

the observation vector z̄ and linearly projects it on v1 (see the description of the pre-

processing in Algorithm 3) to decode user `1’s symbol, i.e., ẋ`1 = vH1 z̄. Then, using a

constellation demapper, the demodulator retrieves the original constellation symbol x̂`1

from the estimate ẋ`1 . The SIC then subtracts its effect from the observation vector to

get z̄(1) = z̄− [An,`1 ]
W2
n=1x̂`1 . In the next step, the same process is applied on z̄(1) to decode

user `2’s symbol, and so on.

The nonlinear demodulator needs the order of users L = {`k}W2
k=1 and the projection

vectors V = {vk}W2
k=1 from the preprocessing step. As shown in algorithm 3, preprocessing

starts by computing the MSE of each user’s estimate (step 3), picks the user with the

highest SINR (step 4) and computes its projection vector (step 5-6). It then removes

that user’s channel vector from the channel matrix A (step 8). The acquisition repeats

this procedure W2 times until it completely computes L and V .
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Figure 4.2: Proposed MUD scheme for one virtual MIMO system.

4.3.4 Computational complexity

Algorithm 2 describes the preprocessing stage of the local LMMSE block. The algo-

rithm starts with computing the covariance matrix H̃H̃H+σ2I (step 1), and then searches

for the location of the optimum observation window to minimize the MSE for each user

(steps 2-7). The algorithm then forms the local LMMSE projection vector (steps 8-9).

The complexity of the local LMMSE beamformer is O(βW1N) for demodulation

(performed on a per-symbol scale), and O(βW1N
2) for preprocessing (performed on

scale of channel coherence time). The most computationally expensive part of this step

is computing the Gram matrix H̃H̃H . Initially, it has a computational complexity of

O(βN3), however, the algorithm uses the elements on the matrix diagonal band only,

reducing the computational complexity to O(βW1N
2).

The complexity of the whitening process is O(W 2
2 βN). For preprocessing, computing

the overall noise covariance matrix, described in (4.3), dominates the computational

complexity. Notice that the matrix Ẇm has only W1 ×W2 nonzero elements. Hence,

computing ẆH
mH̃J cm and the covariance matrix Σm incur a computational complexity
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Algorithm 3: SIC Preprocessing.

Input: A ∈ CW2×W2 , and W2

Output: V = {vk}W2
k=1 and L = {`k}W2

k=1

1: set M = {1, 2, . . . ,W2}
2: for i = 1 to W2 do
3: set B =

(
AHA + I

)−1

4: set n = arg mink Bkk {Find the user with minimum MSE}
5: set vHi = [Bnk]

W2

k=1 AH

6: set vi ← vi

vHi [Amn]
W2
m=1

{Remove the estimation bias}

7: set `i =Mn

8: set [Amn]W2
m=1 = [ ] {Remove the nth column}

9: set Mn = [ ] {Remove the nth entry}
10: end for

of O(W2W1βN) and O(W 2
2 βN) per virtual MIMO system, respectively. Since we have

K virtual system, the total computational complexity of the whitening preprocessor

becomes O(W2(W1 + W2)β2N2). The total computational complexity of the nonlinear

MUD step is O(W 2
2 βN) for detection and O(W 3

2 βN) for preprocessing.

Thus, the overall complexity of our proposed algorithm is dominated by∼ O(N logN)

for demodulation (which is performed on a symbol by symbol basis) and ∼ O(N2) for

preprocessing (which is repeated on a time scale of channel coherence time), assuming

window sizes are small.

4.4 Results

We consider the MIMO system illustrated in Fig. 4.1a with a carrier frequency of

140 GHz. We select the number of antennas at the base station to be N = 256 according

to the link budget calculation described in [5]. All numerical simulations are conducted

at load factor β = 1/2, unless otherwise stated. The sector field of view is restricted

to −π/3 ≤ θ ≤ π/3 radians. The users are placed uniformly in the coverage area, at a
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distance of at least 5 m and at most 100 m from the base station.

While the user terminals are placed randomly in our simulations, we enforce a min-

imum separation between them in spatial frequency to avoid irrecoverable excessive in-

terference. As shown in Fig. 4.1a, the minimum spatial frequency between any two users

∆Ωmin is at least half the 3 dB beamwidth (BW3dB), i.e., ∆Ωmin = 2.783
N

radians [4].

We assume that the base station can serve users that are closer than this threshold in

different time or frequency resource blocks.

We do not deploy any power control scheme in our simulations, and hence the near-far

effect between users prevails. We assume that the base station has perfect knowledge of

the channel state information (CSI). We measure link quality by the outage probability

at a target uncoded BER of 10−3 for QPSK. This BER requires SNR of about 10 dB

for a single AWGN link, which becomes the target SINR at the output of the multiuser

detector for an edge user. We use the single user scenario as a benchmark, and compare

between four MUD schemes: conventional LMMSE, conventional SIC, local LMMSE,

and the proposed scheme, which we refer to in figures by “Local SIC.”

Performance and efficiency: Fig. 4.3 (a) depicts the bit error rate that 95% of users in

the cell achieve as a function of the SNR of the edge user, which is defined as SNRedge =

NPtx|α100|2
σ2 where |α100|2 is the free-space path loss at 100 m and Ptx is the transmitted

power of user devices.

Fig. 4.3 (b) shows the efficiency of each MUD scheme compared to single user perfor-

mance at target uncoded BER of 10−3. We define the efficiency η as the ratio between

the transmit power levels required for single user operation and multiuser operation (with

a given MUD scheme) achieving the target BER, i.e.,

η =
SNRedge(Single User)

SNRedge(MUD)
,
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Figure 4.3: (a) The BER achieved by at least 95% of the users for different window
sizes. (b) The efficiency of the proposed scheme relative to the conventional SIC.

where SNRedge(Single User) and SNRedge(MUD) are the SNR levels required for the edge

user to achieve the target BER in single user and multiuser scenarios, respectively.

Scalability: Fig. 4.4 (a) depicts efficiency relative to single-user performance as a

function of load factors for different MUD schemes and window sizes. The performance

gap between the different MUDs and the single-user baseline increases as the load factor

increases. Fig. 4.4 (b) reports these trends as a function of array size. It is clear that the

efficiency of the proposed MUD is almost constant, regardless of the number of elements.

Therefore, for maintaining the desired performance, window sizes do not need to be scaled

with the number of antennas.

Computational complexity: We categorize the complexity of the MUD into beam-

forming and preprocessing complexities. Fig. 4.5 (a) and (b) demonstrate the number of

complex multiplications required to carry out each MUD scheme. The FFT dominates

the proposed scheme’s beamforming complexity as O(N log(N)), whereas the preprocess-
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Figure 4.4: The efficiency of different configurations of the proposed MUD versus (a)
the load factor and (b) the number of antenna elements.

ing complexity is O(βW1N
2) which mostly pertains to computing the Gram matrix. At

the cost of 1 dB performance degradation in efficiency, the proposed algorithm achieves

savings in complexity by four and ten times compared to SIC in beamforming and pre-

processing, respectively.

4.5 Conclusions

The proposed nonlinear multiuser detection strategy leverages the sparsity of the

mmWave channel in beamspace to accomplish drastic reductions in the complexity of

both computing the receiver parameters (which remain unchanged over a channel coher-

ence time) in preprocessing, and of per-symbol demodulation. Preprocessing complexity

scales quadratically instead of cubically (which is the complexity of standard linear mul-

tiuser detection) with system size. Per-symbol complexity is dominated by the spatial

FFT, and is O(N logN), instead of O(βN2) as with linear multiuser detection. The per-

formance is close to that of standard interference cancellation with an order of magnitude
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Figure 4.5: Complexity comparison of the proposed scheme with other MUD techniques.

lower complexity.
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Chapter 5

Efficient Beamspace Downlink

Precoding for mmWave Massive

MIMO

We investigate linear transmit precoding for all-digital millimeter wave (mmWave) mas-

sive MIMO cellular downlink with a large number N of base station antennas, and with

the number of simultaneously served users K scaling with N : we set K = βN , where β is

termed the load factor. This complements the work in the earlier chapters, in which we

explore the feasibility, efficacy, and challenges of the uplink in such a system. Specifically,

we have shown in Chapters 3 and 4 that the signal processing for uplink receive beam-

forming could be vastly simplified with beamspace techniques that exploit the sparsity

of the mmWave channel. In this chapter, we demonstrate that beamspace techniques

may have an even greater impact in terms of accomplishing downlink precoding with

reasonable complexity as K and N get large. The problem of linear downlink precod-

ing involves two tasks, power allocation subject to a total budget at the base station,

and beamforming for interference suppression across users. Such power allocation is not
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possible on the uplink: a mobile might use power control and not use the entirety of its

power budget, but it cannot transfer this power to another user. However, optimal linear

downlink precoding can be mapped [73, 74] to a virtual uplink problem with analogous

power control and beamforming steps.

Contribution: Optimal downlink precoding is typically accomplished by iterative op-

timization, with computational complexity scaling as O(KN2), or O(N3) in the scaling

regime of interest. This is clearly infeasible for the regimes of interest to us: at mmWave

frequencies, hundreds of base station antennas can be packed into compact form factors,

which opens up the capability to support a correspondingly large number of simulta-

neous users in each base station sector using spatial multiplexing. In this chapter, we

propose precoding in beamspace, exploiting the sparsity of the spatial channel from the

base station to each mobile user. Under our model, the channel vector for each user

in beamspace spans a few spatial frequency bins, and the optimal beamformer for a

given user is well approximated over a window in beamspace whose size W does not

scale with the number of base station antennas. The computational complexity of the

resulting algorithm is O(KW 2), which is linear in the number of users/antennas, and

can therefore scale to the regimes of interest to us. Our numerical results illustrate the

drastic reduction in complexity, and show that, for a computational budget which yields

near-optimal performance with the proposed scheme, the performance of the standard

approach to computing the precoder exhibits significantly poorer performance (e.g., 6

dB worse SINR) because of the small number of iterations that can be run within that

computational budget.

Related Work: The transmit precoding problem can be posed as minimizing the total

transmitted power at the base station, subject to each user attaining a desired SINR.

The duality between this problem and that of receive beamforming problem was pointed

out in [73, 74], and used to provide an iterative algorithm that converges to the optimal
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solution, assuming that a feasible solution exists. Discussion of feasibility within this

duality framework was included in [75]

An alternative formulation of transmit precoding is to maximize the minimum SINR

across users. In this form, the problem is always feasible, and can be solved by considering

fixed point iterations for normalized transmit beamforming vectors and power allocations

[1]. This is the approach adopted in this chapter as we seek to exploit spatial channel

sparsity in beamspace.

It is worth noting that the connections between various forms of the transmit pre-

coding problem are discussed in [76], where the authors also provide fast algorithms to

approach local optima which are globally optimum under sufficiently weak interference.

Notation: We use lowercase bold letters for vectors, and uppercase bold letters for

matrices. The notation x = [xi]
I
i=0 represents column vector x of length I and its

elements are denoted by xi. For a matrix, we use X = [xi,j]
I,J
i=0,j=0. If the size of the

vector or the matrix can be inferred from the context, we write X = [xi,j]i,j for simplicity.

{.}Kk=1 denotes a list of K scalars, vectors or matrices.

5.1 The Downlink Precoding Problem

Consider the downlink system depicted in Fig. 5.1. The base station employs a linear

array with N elements to simultaneously serve K = βN mobile users. We assume that

each mobile can perform ideal receive beamforming towards the base station, and include

the gain due to such spatial matched filtering into the spatial channel hk from the base

station to mobile k, k = 1, ..., K.

Linear Precoding: The linear precoder at the base station allocates power pk to mobile

k, and employs beamforming direction {w̄k} (normalized to unit norm), so that the
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Beamformer
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100m
Beamformer 
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Figure 5.1: Downlink massive MIMO system model.

transmitted signal is given by

y =
K∑
i=1

w̄i
√
pixi, (5.1)

where xk is the kth user symbol. Thence, the kth user’s equipment receives

zk = hHk w̄k
√
pkxk +

K∑
i=1
i 6=k

hHk w̄i
√
pixi + nk, (5.2)

where nk is additive white Gaussian noise (AWGN) with variance σ2
k.

In Fig. 5.1, the weights acquisition block computes the power allocation and beam-

forming directions, given the mobile users’ channel vectors, {hk}, and receiver noise vari-

ances, {σ2
k}, along with the total power budget, Ptot. The beamformer block performs

the actual precoding (5.1) using the computed weights.
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SINR: The signal-to-interference-plus-noise ratio (SINR) of the kth user is given by

SINRk =
|hHk w̄k|2pk

σ2
k +

K∑
i=1
i 6=k

|hHk w̄i|2pi
. (5.3)

The SINR is a widely used performance measure because, under a Gaussian approx-

imation for the interference-plus-noise, it provides an excellent approximation for the

bit error rate (BER) (e.g., see [77] for the closely related problem of uplink multiuser

detection), as well as for the achievable data rate.

Channel Model: We assume that the channel between the base station and any mobile

is dominated by a single path, so that, for a linear array, the N × 1 spatial channel for

the kth mobile is given by

hk = Ak [1 ejΩk ej2Ωk . . . ej(N−1)Ωk ]ᵀ, (5.4)

where Ωk is the spatial frequency and |Ak| the channel amplitude for the path.

Such a model is well suited for mmWave channels for several reasons:

• Typical surfaces (e.g., roads, concrete walls) look rougher at small carrier wave-

lengths. Hence a significant portion of the energy from a reflection is scattered.

Thus, mmWave channels are typically comprised of a small number of dominant

paths.

• The relative delay between different paths is large (relative to the symbol interval)

for the large signaling bandwidths at mmWave bands. Gathering the energy across

a large number of symbols using an appropriately designed space-time filter is

computationally complex. Hence a reasonable design is to focus spatial beams

along a single dominant path.
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• For a large antenna array, beamforming along a given path significantly attenuates

other paths, so that they can be safely neglected post-beamforming.

5.1.1 Problem Formulation

We consider here the max-min fair formulation of the precoding optimization problem.

Thus, precoding weights acquisition block calculates the beamforming directions, {w̄k},

and the power allocation, {pk}, by solving the following optimization problem:

γo = maximize
w̄k,pk∀k

min
k

SINRk (5.5a)

subject to
K∑
i=1

pi ≤ Ptot, (5.5b)

‖w̄k‖2 = 1 ∀k, (5.5c)

pk ≥ 0 ∀k. (5.5d)

This problem can be cast as a generalized eigenvalue problem and is always feasible [1].

After defining suitable Lagrange multipliers λk, the optimality conditions for problem

(5.5) can be formulated as follows,

hHk

(
I +

K∑
i=1

λi
σ2
i

hih
H
i

)−1

hk
λk
σ2
k

=
γo

1 + γo
∀k, (5.6)

K∑
i=1

λi =Ptot, (5.7)

λk ≥0 ∀k. (5.8)
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As a consequence, the beamforming directions can be written as follows,

w̄k =

(
I +

∑K
i=1

λi
σ2
i
hih

H
i

)−1

hk∥∥∥∥(I +
∑K

i=1
λi
σ2
i
hihHi

)−1

hk

∥∥∥∥
2

, (5.9)

and the power vector, p = [p1, . . . , pK ]ᵀ, can be evaluated by solving the following system

of linear equations,

(
1 + γo
γo

I−
[
|hHi w̄j|2

|hHi w̄i|2

]K,K
i=1,j=1

)
p =

[
σ2
i

|hHi w̄i|2

]K
i=1

. (5.10)

It is evident that the Lagrange multipliers, λk, play a critical role in solving the

optimization problem posed in (5.5). Hence, all solution approaches revolve around

finding optimal (or sub-optimal) values of the Lagrange multipliers λk.

5.1.2 Fixed Point Iterations for Optimal Precoding

We review the method proposed in [1] for tackling the optimization problem (5.5).

This provides a benchmark for optimal precoding for general channel models, as well as

a basis for our proposed beamspace approach tailored to sparse channels. The optimality

condition (5.6) can be rewritten as follows:

λk =
γo

1 + γo

σ2
k

hHk

(
I +

∑K
i=1

λi
σ2
i
hihHi

)−1

hk

∀k, (5.11)

which motivates using a fixed-point iteration method to find the optimal Lagrange mul-

tipliers, {λk}. The scaling of the fixed point depends on γo, which is the max-min SINR

solution to the optimization problem, and is therefore unknown. Thus, fixed point iter-

ations are interleaved with a scaling step based on the total power constraint (5.7). The
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Algorithm 4: Fixed point iteration to find optimal λk [1]

Input: {hk}, {σ2
k}, and Ptot

Output: {λk}

1: initialize λk = Ptot/K
2: repeat
3: set B =

(
I +

∑
i hih

H
i λi/σ

2
i

)
(III)

4: set G = B−1 (IV)
5: set qk = hHk Ghkλk/σ

2
k (V)

6: set λ̄k = λk/qk
7: set λk = Ptotλ̄k/

∑
i λ̄i

8: until qk are all equal ∀k.

resulting algorithm, whose convergence is proved in [1], is summarized as Algorithm 4:

one fixed point iteration (steps 5 and 6) is followed by imposing the total power constraint

(step 7), repeated until convergence to within some tolerance of the optimality condition

(5.6).

Most prior evaluations of optimal precoding focus on a relatively small number of an-

tennas. As we increase the number of antennas, the computational complexity for attain-

ing convergence becomes excessive. In order to compare our low-complexity beamspace

technique with the state of the art, we consider terminating Algorithm 4 after a fixed

number of iterations based on a computational budget. The resulting Lagrange multi-

pliers are suboptimal, and the optimality condition (5.6) is not necessarily satisfied. We

can still compute the normalized beamforming directions (5.9) using these suboptimal

Lagrange multipliers, but the power allocation (5.10) cannot be used, since we do not

know γo. Instead, we fix the suboptimal beamforming directions w̄k, and solve an optimal
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power allocation problem as follows to obtain a benchmark for comparison:

maximize
pk∀k

min
k

|hHk w̄k|2pk

σ2
k +

K∑
i=1
i 6=k

|hHk w̄i|2pi
(5.12a)

subject to
K∑
i=1

pi ≤ Ptot, (5.12b)

pk ≥ 0 ∀k. (5.12c)

Once again, the optimization problem (5.12) is always feasible and admits a fixed point

solution that satisfies

p̃ =

([
|hHi w̄j|2

|hHi w̄i|2

]K,K
i=1,j=1

− I

)
p +

[
σ2
i

|hHi w̄i|2

]K
i=1

, (5.13)

pk =p̃k
Ptot∑
i p̃i

. (5.14)

Computational Complexity: The complexity of Algorithm 4 is dominated by the

steps labeled (III), (IV), and (V). The computational complexity per iteration for these

steps is calculated as follows.

• (III): The complexity of computing matrix B ∈ CN×N is O(KN2).

• (IV): The matrix inversion can be carried out efficiently using Cholesky decompo-

sition [55], whose complexity is O(N3).

• (V): The complexity of this step is O(KN2).
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5.2 Proposed Beamspace Solution

We define the beamspace representation of the channel matrix as

H̄ = [DFT (h1), . . . ,DFT (hK)]

where DFT (.) is the discrete Fourier transform (DFT) operator. We plot the magnitude

of H̄ in Fig. 5.2, which makes evident the sparsity of single-path channels in beamspace.

As shown in our prior work [13], for such channel models, operating in beamspace can

significantly reduce the complexity of uplink multiuser detection. Given downlink-uplink

duality and the iterative nature of optimization for downlink precoding, we expect even

greater savings in complexity in our present setting.

We describe the proposed beamspace optimization algorithm, depicted in Algorithm

5, as follows. We assume here that we have access to estimates of the N × 1 channel

vectors, {hk}, and hence account for the complexity of taking DFT to go to beamspace.

This process could potentially be avoided by use of channel estimation techniques that

utilize beamspace techniques up front (e.g., the use of reciprocity, and uplink techniques

such as those in [13]).

1) Computing the DFT of the channel vectors: The DFT is used to transform each

channel vector hk from the antenna domain to the beam domain to get h̄k evaluated as

follows,

h̄ki =
N∑
n=1

hkne
−j2π(n−1)(i−1)/N . (5.15)

Using the fast Fourier transform (FFT) algorithm [56], the complexity of this step be-

comes O(KN log(N)).
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2) Energy detection: The energy distribution of the channel vector in beamspace is

concentrated around its spatial frequency. Because we do not know the spatial frequency

beforehand, we search for a window of size W that contains most of the channel energy.

The use of a sliding window for this purpose incurs O(N) complexity per user.

For a given user, after finding the window that holds most of its channel energy, it is

convenient to define two “synthetic” channels in beamspace: a truncated W × 1 channel

h̃k centered on the chosen window for user k, and an approximated N × 1 channel ĥk

obtained by filling in zeros around the window.

3) Computing Lagrange multipliers: We use steps similar to Algorithm 4 to calcu-

late Lagrange multipliers, but with a drastic reduction of complexity by using synthetic

channels in beamspace.

• We use the approximated channel vectors, each containing only W nonzero elements,

to compute the matrix B. As a consequence, the complexity of this step decreases to

O(KW 2) instead of O(KN2) per iteration, where W � N .

• In step (V) of Algorithm 4, we replace the original channel vector with the approxi-

mated ones. For each user, only the inverse of a small W ×W block inside B, denoted

by Gk, needs to be computed in step (IV): compare step (IV) in Algorithm 4, where we

invert the entire matrix B, with that in Algorithm 5, where we invert K blocks of size

W ×W . Thus, the complexity of step (IV) is reduced from O(N3) to O(KW 3).

• Finally, the complexity of step (V) is automatically reduced from O(KN2) to O(KW 2).

5.3 Results

We consider the system depicted in Fig. 5.1, with number of antennas fixed at N =

256. The field of view for the sector is restricted to −π/3 ≤ θ ≤ π/3. The users are
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Figure 5.2: Sparsity of single-path channel in beamspace.

uniformly distributed inside a region bordered by a minimum and a maximum distance

away from the base station, Rmin = 5 m and Rmax = 100 m, respectively. While the

user terminals are placed randomly in our simulations, we enforce a minimum separation

in spatial frequency between any two users in order not to incur excessive interference,

arbitrarily choosing it as half the 3 dB beamwidth: ∆Ωmin = 2.783
N

[4]. BW3dB in Fig. 5.1

stands for the 3 dB beamwidth. We assume that users with similar spatial frequency can

be served in different time or frequency resource blocks.

We measure link quality by the outage probability at a target uncoded BER of 10−3

for QPSK, which corresponds to a target SINR of 9.8 dB for each downlink user.

We define the SNRedge as the SNR that would be attained by a single user at the cell

edge (100 m away from the base station) if the entire power budget of the base station

were directed at that user. For free space propagation and ideal beamforming at both
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Algorithm 5: Proposed beamspace approach to find near-optimal λk
Input: {hk}, {σ2

k}, W and Ptot

Output: {λk}

1: set h̄k = FFT (hk) (I)

2: set `k = arg max
`

`+W−1∑
i=`

|h̄ki|2 (II)

3: set h̃k = [h̄ki]
`k+W−1
i=`k

4: set ĥk =
[
01×(`k−1) h̃ᵀ

k 01×(N−`k−W+1)

]ᵀ
5: initialize λk = Ptot/K
6: repeat

7: set B = [bij]i,j =
(
I +

∑
i ĥiĥ

H
i λi/σ

2
i

)
(III)

8: set Gk =
(

[bij]
`k+W−1,`k+W−1
i=`k,j=`k

)−1

(IV)

9: set qk = h̃Hk Gkh̃kλk/σ
2
k (V)

10: set λ̄k = λk/qk
11: set λk = Ptotλ̄k/

∑
i λ̄i

12: until qk are all equal ∀k.

ends, we have

SNRedge =
NMGtGr

L100mσ2
Ptot, (5.16)

where L100m is the free space path loss incurred at 100 m away from the base station, M

is the number of elements in the mobile’s array, σ2 is the noise variance in the mobile

(which is identical in all mobiles), and Gt and Gr are the transmit and receive element

gain, respectively.

Precoding Efficiency: Fig. 5.3 (a) shows the 5th percentile of the minimum SINR across

different channel realization, namely SINRmin, versus the power budget represented in

SNRedge. That is, SINRmin is defined such that P(min(SINR) ≤ SINRmin) = 5%.

Assuming no interference between the users, if the base station power budget is allo-
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cated equally between K edge users, then each user would attain an SINR of SNRedge/K.

Using this as the benchmark against which we compare the minimum SINR attained by

our precoding scheme, the precoding efficiency η is defined as

η =
SINRmin

SNRedge/K
. (5.17)

As shown in Fig. 5.3 (b), the efficiency can exceed 100% at low load factor β, since the

base station can transfer power from nearby users to edge users to enhance the minimum

SINR, and the noise enhancement due to interference suppression on the virtual uplink

is small. As the load factor increases, the loss in SINR due to interference suppression

becomes more significant, and efficiency drops below 100%.

Feasibility of Target SINR: We evaluate this using the same system settings as in

our prior work on uplink design [5]: M = 16, Gt = Gr = 3 dBi, L100m = 115 dB and

σ2 = −70 dBm. For a given SNRedge, the resulting link budget requires a total trans-

mitted power of Ptot = SNRedge(dB) + 3 dBm. The required emitted power for the

power amplifier (PA) driving each antenna is a factor of N smaller, or 24 dB smaller for

N = 256, and is therefore given by PPA = SNRedge(dB)−21 dBm. The required SNRedge

corresponding to attaining the target SINR of 9.8 dB with 5% outage is obtained by sim-

ulations and shown in Fig. 5.3 (b). For β = 1/2, SNRedge = 37 dB, corresponding to

Ptot = 40 dBm and PPA = 16 dBm. Such a PA specification is difficult to obtain with

low-cost CMOS technologies (CMOS PA designs of up to 11 dBm have been reported

in [78]), and may require more expensive alternatives such as InP technology [79]. On

the other hand, if we reduce the load factor to β = 1/4, we obtain Ptot = 30 dBm and

PPA = 6 dBm, which can be comfortably attained in CMOS.
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Figure 5.3: (a) The solution to the optimization problem (5.5) for different power
budgets and system load factors. (b) The power budget required to achieve minimum
SINR of ∼ 10 dB along with the precoding efficiency at various system load factors.

Complexity and Performance: Table 5.1 lists the computational complexity, in terms

of number of multiplication and addition operations, of the computationally expensive

steps, labeled by Roman numerals, in algorithms 4 and 5. The table clearly brings out

the big savings in complexity due to the proposed beamspace algorithm. Of course, the

proposed algorithm incurs the additional cost of going to beamspace (steps I and II).

However, these steps are required only once per channel realization, whereas the other

steps (III, IV, V) are invoked on every iteration. Furthermore, as noted earlier, we may

be able to fold steps I and II into channel estimation algorithms operating in beamspace.

Fig. 5.4 (a) depicts, for different load factors, the multiplication operations count

for both the conventional and the proposed algorithm to achieve the same performance

versus the number of elements in the base station array. It is evident that the difference

in complexity is at least one order of magnitude, even for a relatively small N = 16.

Fig. 5.4 (b) illustrates the performance gap between the conventional and the proposed
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Step
# Multiplications # Additions

Conventional Beamspace Conventional Beamspace
I 0 KN

2
(log2(N)− 1) 0 KNlog2(N)

II 0 KN 0 2KN
III KN2J KW 2J KN2J KW 2J

IV N3

2
J KW 3

2
J N3

2
J KW 3

2
J

V KN2J KW 2J KN2J KW 2J

Table 5.1: The approximate number of multiplications and additions in the conven-
tional [1] and the proposed beamspace algorithm to find nearly-optimal values of
Lagrange multipliers λk. W and J denote the window size and the number of itera-
tions.

algorithm if the computational budget is limited to that of a single iteration of the

conventional algorithm. As shown, the beamspace algorithm achieves higher SINR (by

6 dB) while using only one-fifth of hardware resources.

5.4 Conclusion

We have demonstrated the drastic complexity reduction in computing optimal down-

link linear precoding weights via beamspace techniques exploiting spatial channel spar-

sity. Conventional iterative techniques, which are required for general channel models,

require a complexity per iteration which is cubic in the number of antennas, while the

proposed beamspace algorithm requires linear complexity per iteration. Coupled with

the work in Chapters 3 and 4 showing the efficacy of beamspace techniques for uplink

multiuser detection, it is clear that beamspace techniques are a powerful tool for sup-

porting truly massive MIMO in the mmWave and THz bands, since they are naturally

matched to the channel sparsity characteristic of these bands.
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Figure 5.4: (a) Comparison of the number of multiplication operations in the con-
ventional and the beamspace algorithm as the number of elements in base station
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Chapter 6

An Efficient Digital Backend for

Wideband Single-Carrier mmWave

Massive MIMO

In this chapter, we consider the design of all-digital mmWave massive MIMO systems

that take advantage of the massive available bandwidth. The fundamental bottleneck

that we address is that, as we increase both the number of antenna elements and the

bandwidth, the “narrowband assumption” for modeling the array response for a given

user no longer applies, and the spatial channel for the user varies across the band.

Specifically, the worst-case delay spread for a user across the array, normalized to the

symbol period, is given by

τD =BWτmax (6.1)

=
BW

2fc
× (N − 1)× sin θmax, (6.2)

where BW denotes bandwidth (and hence symbol rate, ignoring excess bandwidth), fc
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Sym. 1

Sym. 2

(a) Narrowband scenario.

Sym. 1

Sym. 2

Sym. 3

Sym. 4

Sym. 5

(b) Wideband scenario.

Figure 6.1: (a) Narrowband assumption holds, (b) Wideband modeling is required.

is the carrier frequency. The nominal system parameters we consider to illustrate our

ideas are 140 GHz carrier frequency, 14 GHz bandwidth (10% of the carrier frequency),

and N = 256, which yields a worst-case delay spread of about 11 symbols. On the other

hand, if we reduced the bandwidth to as low as 200 MHz, the delay spread becomes 16%

of a symbol, and the narrowband assumption is a good approximation. Fig. 6.1 provides

a geometric illustration on when the narrowband assumption holds, and when wideband

modeling must be used.

If we employ a standard multiuser detection strategy such as linear minimum mean

square error (LMMSE) for spatial interference suppression based on nominal array re-

sponses at the center of the band, namely narrowband LMMSE, we can expect good

performance in the scenario of Fig. 6.1 (a), and poor performance in that of Fig. 6.1 (b).

This is illustrated by Fig. 6.2, which plots the BER attained with 5% outage in a picocell

using narrowband LMMSE as a function of bandwidth. The performance is adequate

for a small bandwidth of 200 MHz (worst-case delay spread of about 0.16 symbol), but
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Figure 6.2: The figure shows the BER attained by 95% of the users if the narrowband
LMMSE is used versus the SNR of the edge user at 100 m. The carrier frequency is
140 GHz and the base station is equipped with 256-element linear array.

deteriorates drastically by the time the bandwidth is increased to 1 GHz (worst-case

delay spread of 0.8 symbol).

A natural approach to address this problem is to employ MIMO-OFDM, a common

strategy for lower carrier frequencies. For a large enough number of subcarriers, the

narrowband assumption applies to each subcarrier, and we can perform per-subcarrier

multiuser detection. While this has also been proposed for mmWave systems in a num-

ber of papers [80, 81, 7, 82], there are two drawbacks to this approach. The first is

the high Peak-to-Average Power Ratio (PAPR) of OFDM, which impairs power ampli-

fier efficiency, already low in mm-wave systems with carrier frequencies above 100GHz.

The second is that, since the spatial channels for the users are different over different

subcarriers, one must employ a different spatial multiuser detection receiver for each sub-

carrier. This is potentially wasteful of computation, since it does not take advantage of

the sparsity of the mmWave channel. In this chapter, therefore, we consider single-carrier
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modulation, and exploit channel sparsity for the design of an efficient digital backend for

wideband massive MIMO.

Related Work: For wideband single-carrier multiuser systems, there is general agree-

ment in the literature on the strategy of dividing the spectrum of the received signal

into smaller chunks and performing multiuser detection on each chunk separately, but

there are variations in detail. In [83], the authors investigate a single-carrier frequency-

domain equalization (SC-FDE) solution that employs LMMSE for MIMO processing.

The authors of [84] combine SC-FDE with a time-domain decision feedback equalizer,

along with interference cancellation. Since there is no channel structure assumed in [83]

and [84] (the channel between each transmit and receive antenna element is modeled as

multi-tap Rayleigh-fading), the LMMSE weights acquisition is complex.

In [17], the authors study the use of long arrays in LoS single-input multiple-output

(SIMO) systems. They illustrate coupled signal dispersion in time and spatial frequency

in the channel model, and design space-time receiver processing only over the dominant

beams to reduce complexity. However, the problem of multiuser interference is not con-

sidered in [17]. In [18], the authors exploit the sparsity of the channel in both angular

and delay domains to come up with channel estimation techniques which require less

training overhead and have no pilot contamination. However, the paper does not address

efficient multiuser detection.

Contributions: In this work, we address the problem of efficient multiuser detection in

single-carrier wideband massive MIMO. Our benchmark is a signal-carrier frequency do-

main strategy, which may be interpreted simply as moving the inverse FFT in an OFDM

transmitter to the receiver. Our main contribution is an alternative approach that ex-

ploits the sparsity of the received signal in the beamspace-frequency domain, which results
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from the sparsity of the spatial channel. Intuitively, transmitting over a wide band to a

long array amounts to transmitting from a spread of spatial frequencies. In our proposed

algorithm, we correct this spread by mapping it to fewer spatial frequencies. While the

mapping does not completely remove the dependence of the channels on frequency, it

dramatically reduces the variations, which in turn reduces the number of weights to be

acquired for multiuser detection (e.g., by 16-fold compared to the benchmark approach

for the parameters considered here).

Notation: We use lowercase bold letters for vectors, and uppercase bold letters for

matrices. The notation x = [xi]
I
i=0 represents column vector x of length I and its

elements are denoted by xi. For a matrix, we use X = [xi,j]
I,J
i=0,j=0. If the size of the

vector or the matrix can be inferred from the context, we write X = [xi,j]i,j for simplicity.

{.}Kk=1 denotes a list of K scalars, vectors or matrices.

6.1 System Model

The massive MIMO system comprises one base station and K single-antenna user

terminals, as depicted in Fig. 6.3. The linear multiuser detector comprises two main

blocks, the beamformer weights acquisition and the beamformer. The weights acquisition

takes the spatial frequency of each mobile Ωk = π sin θk and the noise variance σ2 as

inputs and generate the beamformer weights {w}Ki=1. After that, the beamformer uses

these weights to estimate the mobiles’ data vector x(t) out of the received vector y(t).

The time-domain received signal at the nth antenna element in the base station, yn(t),

can be expressed as

yn(t) =
K−1∑
k=0

Akxk(t− nτk)e−j2πnfcτk + nn(t), (6.3)
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Figure 6.3: The cell size is constrained radially between 5 m and 100 m, and angu-
larly between −π/3 ≤ θ ≤ π/3. BW3dB and x̂(t) stand for the 3dB beamwidth the
estimated data symbols vector. λ denotes the carrier’s wavelength.

where xk(t) is a unit-variance time-domain symbols stream of the kth user, nn(t) is band-

limited complex white Gaussian noise process with variance σ2, and A2
k = λ2/(4πRk)

2

depends on the radial location Rk of mobile k, using the Friis formula for path loss.

fc and λ are the carrier frequency and wavelength, and τk is the delay experienced by

the kth user’s symbols stream between successive antenna elements. The delay τk =

(sin θk)/(2fc), n ∈ [0, N), and k ∈ [0, K). We assume that the pulse shape deployed in

xk(t) is the sinc function.

6.1.1 Narrowband system

Here the delays τk are small compared to the symbol time, so that xk(t−nτk) ≈ xk(t),

and (6.3) can be written as

y(t) = HNBx(t) + n(t), (6.4)

where the received vector y(t) = [y0(t), . . . , yN−1(t)]ᵀ, the data symbols vector x(t) =

[x0(t), . . . , xK−1(t)]ᵀ, the noise vector n(t)=[n0(t), . . . , nN−1(t)]ᵀ, the narrow-band chan-
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nel matrix HNB = [e−jnΩk ]n,kD([Ak]k), and D(.) is the diagonlization operator.

The LMMSE receiver is given by

x̂ = WNBy, (6.5)

such that

WNB = (HH
NBHNB + σ2I)−1HH

NB. (6.6)

6.1.2 Wideband system

Here, the delays τk can be larger than a symbol period. Taking the temporal Fourier

transform F(.) for equation (6.3) yields

ỹn(f) =
K−1∑
k=0

Akx̃k(f)e−j2πn(f+fc)τk + ñn(f)

=
K−1∑
k=0

Akx̃k(f)e−jn(1+f/fc)Ωk + ñn(f), (6.7)

where ỹn(f) = F(yn(t)), x̃k(f) = F(xk(t)), and ñn(f) = F(nn(t)). This system of

equations can be written in vector form as follows:

ỹ(f) = H̃WB(f)x̃(f) + ñ(f), (6.8)

where the received vector in the frequency domain at the base station

ỹ(f)=[ỹ0(f), . . . , ỹN−1(f)]ᵀ
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, the transmitted symbols stream in the frequency domain by the K users

x̃(f)=[x̃0(f), . . . , x̃K−1(f)]ᵀ

, the noise vector ñ(f)=[ñ0(f), . . . , ñN−1(f)]ᵀ, and the wide-band channel matrix H̃WB(f) =

[e−jn(1+f/fc)Ωk ]n,kD([Ak]k).

The LMMSE solution at each frequency f is given by

x̂(t) = F−1(W̃(f)ỹ(f)), (6.9)

where

W̃WB(f)=
(
H̃WB(f)HH̃WB(f) + σ2I

)−1

H̃WB(f)H. (6.10)

Practical digital signal processing methods must work with discretized system models,

as discussed in the next subsection.

6.1.3 Signaling structure

Each mobile sends data in blocks of the length of M symbols. There is a guard interval

of length L symbols between successive blocks to prevent Inter-Block Interference (IBI).

Each guard interval is filled with a cyclic prefix to emulate a circular convolution. At the

receiver, the base station discards the cyclic prefix and handles each data block separately.

The sampled received signal can be written as

yn,m =
K−1∑
k=0

Akxk(mTs − nτk)e−jnΩk + nn,m, (6.11)

where Ts = 1/BW is the sampling time and BW is the bandwidth of the received signal,

and m ∈ [0,M).
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6.2 Benchmark Wideband LMMSE

Fig. 6.4 illustrates the block diagram of the benchmark wideband LMMSE algorithm,

which involves the following steps.

Temporal FFT

The discrete Fourier transform of equation (6.11) is given as follows,

ỹn,` =
K−1∑
k=0

Akx̃k,`e
−jn(1+` BW

Mfc
)Ωk + ñn,`, (6.12)

where [x̃k,−M/2, . . . , x̃k,M/2−1] = DFT([xk(
m
BW

)]m), DFT(.) is the discrete Fourier trans-

form operation, and ` ∈ [−M/2,M/2). Given that ỹ` = [ỹn,`]n, x̃` = [x̃k,`]k, and

ñ` = [ñn,`]n, the previous equation can be written in vector form as follows,

ỹ` = H(`)x̃` + ñ`, (6.13)

where the channel matrix is given as

H(`) =
[
e−jn(1+` BW

Mfc
)Ωk
]
n,k
D([Ak]k). (6.14)

The temporal FFT divides the frequency domain of the received signal to M sub-band

assuming that the channel is almost constant on the sub-band.

LMMSE Detection

In each sub-band, we can recall the narrowband assumption and detect x̃` using

LMMSE as follows,

ˆ̃x` = W(`)ỹ`, (6.15)
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Figure 6.4: Block diagram for benchmark wideband LMMSE, where Y denotes the
grid of received samples in antenna-space and time domain.
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Figure 6.5: Block diagram of the proposed wideband LMMSE approach, where Y
denotes the grid of received samples in antenna-space and time domain.

where

W(`) =
(
H(`)HH(`) + σ2I

)−1
H(`)H . (6.16)

Temporal IFFT

Finally, the receiver retrieves the data of the kthuser from the frequency-domain using

temporal IFFT as [x̂k,0, . . . , x̂k,M−1] = IDFT([ˆ̃xk,`]`), where IDFT(.) is the inverse discrete

Fourier transform operator. If the mobiles used OFDM instead of single carrier signaling,

this step would have been already on the transmitter side.

6.3 Proposed Wideband LMMSE

Fig. 6.5 delineates the block diagram of the proposed wideband LMMSE algorithm.

The proposed algorithm is described in the following steps.
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Temporal FFT

Similar to equation (6.13), the temporal FFT divide the bandwidth to M equally

sub-bands. After this step, the conventional and proposed schemes start to differ.

Zero Padding and Spatial FFT

In this step, we aim to transform the received samples from the antenna-space to the

beamspace with oversampling ratio O. So first, we pad the received samples vector per

frequency bin ỹ` by a vector of zeros of size (N(O− 1))× 1. Then, we perform upon the

spatial FFT as follows,

y̆` = DFT([ỹ`,0N(O−1)]
ᵀ), (6.17)

where 0M is vector of zeros of size M × 1. Fig. 6.6 portrays the grid of the received

samples power in beamspace-frequency-domain, i.e, [|y̆p,`|2]p,`, where p ∈ [−N O
2
, N O

2
).

This figure delineates the key idea of the proposed algorithm. As shown, each user is

represented by a line that is governed by the equation Ω = Ωk(1 + f/fc), where Ω is the

spatial frequency, and intersect the point f = 0 and Ω = Ωk. This can be inferred by the

explicit expression of equation (6.17) which is given as follows,

y̆p,` =
K−1∑
k=0

Akx̃k,`ck,p,`
sin(N

2
(s`Ωk + 2πp

N O
))

sin(1
2
(s`Ωk + 2πp

N O
))

+ n̆p,`, (6.18)

where s` = (1 + `BW
Mfc

), ck,p,` = 1√
N O

e−j
(N−1)

2
(s`Ωk+ 2πp

N O
), `BW

M
is the discretized version of

f , 2πp
N O

is the discretized version of Ω, and n̆p,` is the noise element in the beamspace.

The main idea of the proposed algorithm is to correct these tilted lines to make them

horizontal. This is done by dividing the grid into multiple segments and correcting the

slope of each segment, as shown in Fig. 6.7. Consequently, one LMMSE beamformer is

adequate to retrieve all the data of a user per segment.
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Slope Correction

We use linear interpolation to acquire the in-between points to correct the slope. We

correct the slope by scaling p in equation (6.18), in that y̆p,` becomes y̆p s`
sx
,` where sx

corresponds to the frequency of the mid of the segment. We choose to work with linear

interpolation due to its feasibility to be built in hardware.

Beamspace LMMSE Detection

In a segment, we use the channel corresponding to the mid of the segment to calculate

the LMMSE solution for that segment. One can use efficient algorithm to do LMMSE

detection in the beamspace as shown in [13].

Temporal IFFT

Finally, similar to the benchmark algorithm, the receiver retrieves the users’ data

from the frequency-domain using temporal IFFT.

Why the need for partitioning the data grid into multiple seg-

ments?

In slope correction process, the beam shapes get compressed or expanded. Fig. 6.8

depicts the beam shape of a single user after the data grid correction. Because the beam

shape changes across the band, then one LMMSE beamformer is not adequate to retrieve

the data from the entire band.
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Figure 6.6: The beamspace-frequency-domain data grid before correction.
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Figure 6.7: The beamspace-frequency-domain data grid after correction.
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Figure 6.8: The beam shape of a single user after the grid correction.

6.4 Results

The system setup is as illustrated in Fig. 6.3. The number of antennas is fixed at

N = 256 for all numerical experiments. In the simulations, the field of view is restricted

to −π/3 ≤ θ ≤ π/3. The users are uniformly distributed inside a region bordered by a

minimum and a maximum distance away from the base station, Rmin = 5 m and Rmax =

100 m, respectively. While the user terminals are placed randomly in our simulations,

we enforce a minimum separation in spatial frequency between any two users in order

not to incur excessive interference, arbitrarily choosing it as half the 3dB beamwidth:

∆Ωmin = 2.783
N

[4]. We assume that users with similar spatial frequency can be served at

different time. The number of users served simultaneously in the cell is 64 users, each is

using QPSK modulation.

The carrier frequency of the system is fc = 140 GHz and we choose to operate

at bandwidth equals to 10% of fc, i.e., 14 GHz. As can be inferred from Fig. 6.2,
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the narrowband assumption is inappropriate to use when dealing with such wide band-

width and long array. The length of the cyclic prefix used L = 2 × dBW × τmaxe = 24

samples. We assume perfect CSI and no power control is deployed. The presented

BER curves is plotted versus the SNR of the edge user at 100 m which is defined as

SNRedge = NA2
100m/σ

2, where N = 256 elements, and the channel strength at 100 m

A2
100 = λ2/(4πRk)

2 = 0.0022/(4π100)2.

6.4.1 Benchmark Wideband LMMSE

Fig. 6.9 shows the BER at 95% availability when the benchmark wideband LMMSE

is employed. The benchmark algorithm is parameterized with the block length M , which

determines the number of chunks into which the bandwidth is divided. As shown in the

figure, a block length of 128 is enough to be within 1 dB of the baseline, defined for a

system in which the narrowband assumption holds. Generally, what matters most is the

maximum delay spread experienced by each sub-band not the block length itself. Using

a block length of 128 symbols and bandwidth of 14 GHz, the maximum delay spread can

be computed from equation (6.2) to be 9% of the symbol time.

6.4.2 Proposed Wideband LMMSE

Fig. 6.10 shows the BER at 95% availability for the proposed wideband LMMSE

scheme. We choose the block length to be 256 to compensate for any additional errors

introduced by the proposed algorithm. O refers to the oversampling ratio in beamspace,

and S denotes the number of segments used for beamspace partitioning. We use linear

interpolation for simplicity. As shown in the figure, the proposed algorithm that uses an

oversampling ratio of O = 8 and S = 8 yields a BER that is within 1 dB of the baseline.

In contrast to the benchmark algorithm, which must learn a set of LMMSE weights per
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Figure 6.9: BER at 95% availability for the benchmark scheme with different block sizes.

sub-band per user (i.e., 128 weight vectors per user), the proposed scheme only needs to

learn 8 weight vectors per user. The price paid for simplifying the acquisition process

is the increase in beamformer complexity due to an O times larger spatial FFT (the

additional complexity due to linear interpolation is negligible).

6.5 Conclusion

Our work shows that, as we push the limits of all-digital processing in scaling both

bandwidth and spatial degrees of freedom, it is critical to exploit the characteristics of

the mmWave channel to simplify processing. Specifically, we exploit the sparsity of the

mmWave channel in this chapter to drastically simplify the process of weights acquisition

for frequency domain LMMSE (by 16-fold for the parameters considered here).
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Figure 6.10: BER at 95% availability for the proposed wideband LMMSE for different
settings and a block size of 256.
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Chapter 7

Conclusions and Future Work

The contributions presented in this thesis demonstrate the critical role of co-design of

signal processing and hardware, and of accounting for the unique characteristics of the

mmWave band, for progress towards the realization of next generation all-digital massive

MIMO systems. The small carrier wavelength allows realization of antenna arrays with

a large number of elements, and leads to spatially sparse channels because of loss due to

reflection (reflecting surfaces look rougher at small wavelengths) and blockage (obstacles

look larger at small wavelengths). The large available bandwidth allows us to consider

relatively small signaling constellations even when targeting multiGbps data rates per

user. Key technical insights from the work presented in this thesis are summarized as

follows:

• The results of Chapter 2 imply that if we wish to support a given number of simul-

taneous users, the linearity requirements on RF and baseband analog processing, as

well as ADC precision, can be relaxed by increasing the number of antenna elements

in order to reduce the load factor. It is worth mentioning complementary results

demonstrating that hardware specifications regarding phase noise also benefit from

scaling [85, 86].
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• The results of Chapters 3 through 6 take advantage of the sparsity of the mmWave

spatial channel to concentrate the power for each user into a small number of

signaling dimensions via a spatial FFT across antennas. This observation can be

employed to devise beamspace signal processing schemes that scale far better (as

the number of users and antennas increase) than conventional multiuser detection

or precoding strategies.

• The narrowband assumption for array modeling and processing must be revisited

as we scale up both the bandwidth and the number of antenna elements. The work

reported in Chapter 6 is a first step in this direction.

There are many important directions for future research and development. A natural

extension of our system design framework is to explore the impact of analog nonlin-

earities and low-precision ADCs on beamspace multiuser detection and precoding. The

development of efficient channel estimation and tracking for uplink multiuser detection

and downlink precoding for all-digital massive MIMO, and the design of link layer and

medium access control protocols, are important steps towards a complete system design.

The design of efficient uplink and downlink signal processing architectures for wideband

massive MIMO, building on the preliminary results in Chapter 6, remains an open prob-

lem.

Hardware realizations of our proposed approaches require continuing research, includ-

ing exploration of RFIC design and packaging [87] for tiled architectures [86] for scaling

up the number of antennas, and development of efficient FFT front ends [88, 89] for

beamspace signal processing.
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Appendix A

Uplink Link Budget

We provide here example parameters that demonstrate that the link budget for all-digital

massive multiuser MIMO uplink system is realizable with low-cost silicon:

• antenna element gain covering a hemisphere is 3 dBi,

• 16-element array at the mobile gives 12 dBi transmit beamforming gain, plus 12

dB power pooling gain,

• 256-element array in the base station gives 24 dBi receive beamforming gain,

• noise figure for each RF chain in the base station of 7 dB,

• thermal noise power over 5 GHz bandwidth is about -77 dBm,

• and free space path loss of an edge user at 100 m using a carrier frequency of

140 GHz is about 115 dB.

The transmit power required from each power amplifier (PA) at the mobile to achieve a

target SNR (in dB) for an edge-user, namely SNRedge|dB, can now be computed as

PPA = SNRedge|dB − 9 dBm. (A.1)
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For example, SNRedge|dB of about 16 dB (shown to suffice for our case study) requires

7 dBm PA output, which is realizable in CMOS (CMOS designs of up to 11 dBm have

been reported in [90]).
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Appendix B

Uniform VS Nonuniform

Quantization

Our simulation results are for an overloaded ADC. The overloaded uniform ADC com-

prises two regions in its I/O characteristic, the granular and overload regions. The

granular region is quantized uniformly, with bounded quantization noise. While quan-

tization noise in the overload region, represented by the quantizer levels at the edges,

is unbounded, the contribution to the MSE is kept comparable to that of the granular

region by minimizing the MSE for the given input distribution; see Fig. B.1 (a), where

MSE is plotted against overload threshold.

An alternative is to employ an MSE-optimal quantizer using Lloyd’s algorithm [91],

with quantization bins as listed in [92]. The MSE comparison between these two options

is shown in Fig. B.1 (b). The advantage of nonuniform MSE-optimal quantization is

barely noticeable for the small number of quantization bits of interest here, hence we

choose to work with the simpler overloaded uniform quantizer.
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Figure B.1: (a) MSE versus overload threshold. (b) MSE comparison of overload uni-
form quantizer versus MSE-optimal nonuniform quantizer. The percentages represent
the relative reduction in MSE from using MSE-optimal nonuniform quantization
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Appendix C

Linear MMSE Properties

From the point of view of a given user (the desired user) with channel h, we may write

the received signal corresponding to a single symbol as

r = sh + wI + wN , (C.1)

where s denotes the transmitted symbol, wI denotes the interference vector and wN is

the zero mean noise vector with covariance matrix σ2
nI. Standard assumptions necessary

for effective interference suppression are that the desired symbol is uncorrelated with the

interference and noise: E[s∗wI ] = E[s∗wN ] = 0. We also assume that the interference

and noise are uncorrelated.

A linear correlator c produces a decision statistic cHr for the desired symbol, and its

SINR is given by

SINR(c) =
E[|scHh|2]

E[|cH(wI + wN)|2]

=
σ2
s |cHh|2

cHRIc + σ2
n||c||2

, (C.2)
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where RI = E[wIw
H
I ] is the interference covariance matrix, and RN = E[wNwH

N ] = σ2
nI

is the noise covariance matrix.

The LMMSE correlator minimizes MSE = E[|cHr − s|2] and maximizes SINR [44].

For the additive noise-plus-interference model (C.1), it is known to be proportional to a

whitened matched filter (i.e., it suppresses interference by whitening it):

cMMSE = α(RI + RN)−1h = α(RI + σ2
nI)−1h, (C.3)

where α is a scale factor that can be solved for easily (e.g., see [44]). Since SINR does

not depend on scale factor, it is easy to show, plugging into (C.2), that

SINR =σ2
sh

H (RI + RN)−1 h

=σ2
sh

H
(
RI + σ2

nI
)−1

h. (C.4)

Let us also for reference define the SNR:

SNR = σ2
sh

H (RN)−1 h = σ2
s ||h||2/σ2

n. (C.5)

Remark 1 A positive definite matrix A(θ) increases with θ if A(θ)−A(θ′) ≥ 0 for any

θ > θ′. That is, for any vector u, uHA(θ)u ≥ uHA(θ′)u.

We can now infer the following properties relevant for our approach to performance

analysis, stated as a lemma.

Lemma C.0.1 If the noise level σ2
n increases, with the signal and interference charac-

teristics unchanged, then

(a) Absolute performance gets worse, with SINR and SNR both decreasing.

(b) The noise enhancement gets better: SNR
SINR

decreases.
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Proof: For (a), we note that the positive definite matrix RI + σ2
nI increases with

σ2
n, hence its inverse decreases with σ2

n. For (b), note that

SNR

SINR
=

||h||2/σ2
n

hH (RI + σ2
nI)−1 h

,

=
||h||2

hH (RI/σ2
n + I)−1 h

. (C.6)

The positive definite matrix RI/σ
2
n+I decreases with σ2

n, hence its inverse increases with

σ2
n. Thus, the denominator on the right-hand side of equation (C.6) increases with σ2

n,

while the numerator is independent of it, proving the desired result.
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