
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Efficient Deep Learning for Massive MIMO Channel State Estimation

Permalink
https://escholarship.org/uc/item/5s40n8m3

Author
del Rosario, Mason

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5s40n8m3
https://escholarship.org
http://www.cdlib.org/


Efficient Deep Learning for Massive MIMO Channel State Estimation 
By 

 
MASON DEL ROSARIO 

DISSERTATION 
 

Submitted in partial satisfaction of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

in 
 

Electrical and Computer Engineering 
 

in the 
 

OFFICE OF GRADUATE STUDIES 
 

of the 
 

UNIVERSITY OF CALIFORNIA 
 

DAVIS 
 

Approved: 
 

         
Zhi Ding, Chair 

 
         

Lifeng Lai 
 

         
Khaled Abdel-Ghaffar 

 
Committee in Charge 

 
2023 

 

 

i 



Acknowledgements

Completing this dissertation would not have been possible without the support of many

kind, driven, and supportive researchers, to whom I want express my gratitude. First, I want

to thank to my advisor, Zhi Ding, who secured the funding for my degree1 and who always

challenged me to be a better researcher. I would also like to thank Lifeng Lai and Khaled

Abdel-Ghaffar, who served on both my qualifying exam and dissertation committees, as well

as Daniela Cabric and Zhaojun Bai, who graciously served as members of my qualifying

exam committee. Finally, I thank my and collaborators and lab mates, particularly Zhenyu

Liu, Yu-Chien Lin, Carlos Feres, Siyu Qi, and Lahiru Chamain, who provided feedback and

fruitful discussions which helped shaped the research described in this dissertation.

Outside of my advisors and colleagues in research, I had numerous other mentors and

collaborators during my time at UC Davis. I want to thank Hooman Rashtian, with whom

I taught as a teaching assistant for several undergraduate courses and the COSMOS pro-

gram. Hooman’s passion as an educator helped me develop an appreciation of engineering

education, and I enjoyed working with him immensely. I would also like to acknowledge

my colleagues in 2021-22 cohort of the Professors for the Future Fellowship as well as the

organizers of the program, Teresa Dillinger, Ellen Hartigan-O’Connor, and David Blancha.

Finally, I would like to thank my colleagues and consultees from the Graduate Writing Fel-

lows program as well as the head of the program, Katherine Gossett.

Lastly, I want to thank my family and friends who have tirelessly supported me on my

1The research conducted in this dissertation was supported by the National Science Foundation under the
following grants: ECCS-1711823, ECCS-2029027, and CNS-2002937.

ii



doctoral journey. I want to start by thanking my parents, Michael and Gail, who have pro-

vided me with countless opportunities to succeed in life. I also want to thank my brother,

Zach, who inspired me to embark on this doctoral journey, who always advocated for me,

and who continues to inspire me to this day. I will also thank my friends from Olin College,

Ankur, Carly, Brandon, Abe, and Wanyi (an honorary Oliner), my best friend from Carnegie

Mellon, Josh, and my friends from Temple University Japan, Ty and Casey. Most impor-

tantly, I thank my partner, Misha, who keeps me grounded and who fills my life with love

and light.

iii



Abstract

Future wireless communications networks will implement massive MIMO technologies

to significantly improve spectrum efficiency where a base station (BS) with large multi-

antenna arrays serves a large number of user equipment (UE) terminals. Such multiantenna

arrays enable high capacity communications via beamforming, as evidenced by work in in-

formation theory. To achieve the expected capacity in massive MIMO networks, the base

station requires accurate estimates of downlink channel state information (CSI) at the trans-

mitter for precoding.

Typically, receivers can estimate CSI using known pilot signals. In the special case of

time-division duplex (TDD) mode, channel reciprocity allows the BS to estimate the down-

link CSI via pilots in uplink transmissions. However, in frequency division duplex (FDD)

mode, channel reciprocity between uplink and downlink channels is comparatively weak,

and the BS must rely on feedback from the UE to estimate downlink CSI. Specifying an

appropriate CSI feedback scheme is a key issue and involves reducing feedback bandwidth

while maintaining accurate downlink CSI estimates.

Conventional methods for CSI feedback compression can rely on compressive sensing

(CS), which seeks to reconstruct high-dimensional data based on low-dimensional measure-

ments. Many CS methods are based on convex relaxations of an underdetermined least-

squares problem, and such methods rely on iterative solvers (e.g., the proximal gradient

method). When using an iterative solver, reconstruction can consume an undue amount of

time even when measurements are available, making faster CSI reconstruction methods an
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attractive research direction.

Recent works in deep learning for compressed CSI estimation have presented viable

alternatives to CS methods. These proposed methods typically employ convolutional neu-

ral networks (CNNs) to extract compressed representations of high-dimensional CSI. Deep

learning architectures used in CNN-based works can be placed in one of two categories.

The first category is CNN-based autoencoders, networks which utilize two subnetworks:

an encoder network which learns a low-dimensional representation with the original data

as an input and a decoder network which estimates the original data with the encoder’s

low-dimensional representation as an input. The second category is unrolled optimization

networks, inspired by the aforementioned CS methods by structuring the CNN as a finite

number of repeated blocks with each block imitating an iteration of a given CS algorithm.

This dissertation explores both CNN autoencoders and unrolled optimization networks

for CSI estimation. However, instead of taking a black box approach, we focus on domain

knowledge, including physical insight into the wireless channel or features of the communi-

cations protocol, to improve the performance of these CSI estimation networks with respect

to accuracy, feedback rate, or network efficiency. Prior works have demonstrated superior

performance of these architectures over conventional CS methods, and this dissertation in-

vestigates the myriad ways that domain knowledge of wireless channels and communications

protocols can be leveraged to improve CSI estimation.

The first research direction discussed is spherical normalization, which involves scaling

CSI data by the channel’s power and can improve CSI estimation accuracy without increas-

ing model complexity. The second research innovation applies deep differential encoding,

which estimates the error in CSI estimates based on a one-step Markov model. We describe

a deep differential encoder which offers a significant reduction in computational complex-

ity when compared to state-of-the-art recurrent neural networks while achieving superior

estimation accuracy. In the third research direction, we use the practical, sparse frequency

domain pilots to estimate the truncated delay domain, enabling the usage of the delay do-
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main CSI commonly adopted in deep learning based CSI estimation works. Additionally,

we implement a heterogeneous differential encoder, which uses different network architec-

tures at each timeslot and offers superior estimation accuracy over the prior homogeneous

differential encoders. In the final chapter, we propose model reuse, where a smaller model is

used multiple times on a relatively large input, and we show that this method can maintain

comparable estimation accuracy while reducing computational complexity.

vi



Contents

1 Introduction 1

1.1 MIMO Channel Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Practical Pilot-based Channel Estimation in 4G/5G Networks . . . . . . . . 3

1.3 Geometric Stochastic Channel Models (GSCMs) . . . . . . . . . . . . . . 5

1.4 Classical CSI Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Objective and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Deep Learning for CSI Estimation 10

2.1 Deep Learning Background . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Data Pre-processing for CSI Data . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Sparse Basis for CSI . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Bidirectional Reciprocity in FDD Networks . . . . . . . . . . . . . 16

2.2.3 Minmax Data Normalization . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Spherical Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 CsiNet-Pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Temporal Coherence and Differential Encoding 23

3.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



3.2 Differential Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 MarkovNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Network Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Performance under Quantization . . . . . . . . . . . . . . . . . . . 30

3.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Bandwidth Efficient Pilot-based CSI Feedback 34

4.1 Pilots-to-delay Estimator (P2DE) . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Diagonal Pilot Allocations for 3GPP Standards . . . . . . . . . . . 37

4.2 Heterogeneous Differential Encoding with P2DE . . . . . . . . . . . . . . 39

4.2.1 Iterative Optimization Networks for CS-based CSI Feedback . . . . 40

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Accuracy of P2DE . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 P2DE Compression Network Comparison . . . . . . . . . . . . . . 44

4.3.3 Heterogeneous Differential Encoding Networks . . . . . . . . . . . 46

4.3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Improving Computational Efficiency 50

5.1 Direct Pilot-based Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Model Re-use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Accuracy vs. K Subcarriers . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Accuracy vs. Network Complexity . . . . . . . . . . . . . . . . . . 54

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

viii



6 Conclusion 59

6.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.1 Rate-distortion Bounds for CSI Feedback . . . . . . . . . . . . . . 60

6.1.2 Trainable Codewords . . . . . . . . . . . . . . . . . . . . . . . . . 61

References 65

A Computational Complexity of Common Layers 75

A.1 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Complex Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . 76

A.3 Linear Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.4 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.5 Soft Threshold Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B Autoregressive Markov Models 79

C Matrix Regularization 82

D Compressive Sensing 83

D.1 The ISTA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ix



List of Figures

1.1 Example multi-antenna transmitter (BS, gNB) and single-antenna user equip-

ment (UE) and relevant system values. . . . . . . . . . . . . . . . . . . . . 2

1.2 (a) LTE resource blocks with CSI-RS locations. (b) 5G NR resource blocks

with DM-RS locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Venn diagram highlighting different aspects of domain knowledge in CNN-

based CSI compressive feedback, relevant convolutional networks, and our

contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Abstract schematic for an autoencoder operating on CSI matrices H. The

encoder learns a latent representation, Z, while the decoder learns to recon-
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Chapter 1

Introduction

This dissertation details work in improving the accuracy and efficiency of deep learning

methods for MIMO channel state information estimation. This chapter provides the neces-

sary background to understand the contributions of the dissertation. Section 1.1 provides

an overview of the MIMO channel and the importance of CSI estimation in MIMO-based

communications networks. Section 1.2 discusses the pilot reference signals used in CSI es-

timation. Section 1.3 discusses MIMO channel models and introduces the primary channel

model used in this work, the COST2100 model. Section 1.4 discusses prior work in com-

pressive sensing for CSI estimation. Boldface lowercase (uppercase) letters indicate vectors

(matrices). Unless otherwise specified, the norm ‖ · ‖ indicates the Frobenius norm. Super-

scripts T (H) indicate the transpose (Hermitian transpose).

1.1 MIMO Channel Overview

In this work, we consider a MIMO channel with a multiple antennas (NB � 1) at

the transmitter (gNodeB or gNB) servicing a single user equipment (UE) with a single an-

tenna. Under orthogonal frequency division multiplexing (OFDM) with Nf subcarriers, the

1
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Figure 1.1: Example multi-antenna transmitter (BS, gNB) and single-antenna user equipment (UE)
and relevant system values.

Table 1.1: MIMO system variables considered in this work.

Symbol Dimension Description

yd,m C1 Received downlink symbol on m-th subcarrier

hd,m CNb×1 Downlink channel on m-th subcarrier

H̄d CNf×Nb Downlink CSI (spatial-frequency domain)

wt,m CNb×1 Transmitter precoding vector for m-th subcarrier

xd,m C1 Trasmitted symbol on m-th subcarrier

nd,m C1 Downlink noise on m-th subcarrier

H̃d CNf×Nb Downlink CSI (angular-delay domain)

Hd CRd×Nb Truncated downlink CSI (angular-delay domain)

received symbols on the m-th subcarrier for the downlink at the receiver are given as

yd,m = hHd,mwt,mxd,m + nd,m.

where the individual system values are defined in Table 1.1, and a representative system

model is viewable in Figure 1.1. The resulting downlink and uplink channel state information

(CSI) matrices are given as

H̄d =

[
hd,1 . . . hd,Nf

]H
∈ CNf×Nb .

To achieve near-capacity transmission rates, the transmitter needs access to an appropriate

2



estimate of H̄d [7]. Such estimates enable the use of linear precoding techniques (e.g., con-

jugate beamforming or zero-forcing beamforming) to realize appreciable spectral and power

efficiency gains [8]. Downlink CSI estimation can be performed in time division duplex

(TDD) by using uplink pilots due to channel reciprocity [9–11]. In contrast, frequency do-

main duplex (FDD) does not admit channel reciprocity due to frequency-selective channels,

meaning CSI estimates must be acquired at the UE using pilot signals, and these estimates

must be compressed then fed back to the BS.

1.2 Practical Pilot-based Channel Estimation in 4G/5G Net-

works

To estimate the downlink CSI in wireless networks, transmitters allocate pilot reference

signals. To preserve spectral resources, pilots are restricted to a limited number of spatial-

frequency positions, and the allocation of these pilots is defined in the 3GPP technical stan-

dards, TS 36.211 for 4G/LTE networks [12] and TS 38.211 for 5G/NR networks [13]. In

these two standards, the pilots are called CSI reference signals (CSI-RS) or demodulation

reference signals (DM-RS), respectively. Figure 1.2 shows valid placements of CSI-RS/DM-

RS in the time-frequency resource grid as defined by TS 36.211 and TS 38.211.

Figure 1.2: (a) LTE resource blocks with CSI-RS locations. (b) 5G NR resource blocks with DM-RS
locations.
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For the UE to estimate the downlink channel state at the known pilot locations, the UE

can use a straightforward least-squares estimator. Denote the pilot matrix X ∈ CMb×τ where

τ is a given number of timeslots that is less than the coherence interval of the channel. The

received signal at the UE (ypilots ∈ C1×τ ) based on the transmitted pilots is,

ypilots = hpilotsX + n, (1.1)

where hpilots ∈ C1×Mb is the pilot matrix for a subset of the transmitter antennas such that

Mb < Nb and n ∼ CN (0, σ2I) is additive complex Gaussian noise. Pilot estimation based

on ypilots and X is straightforward using the least-squares solution,

ĥpilots = ypilotsX
H(XXH)−1. (1.2)

While many works using deep learning for CSI estimation do not address pilot estimation

explicitly (i.e., they assume perfect CSI at the UE), a few such works have incorporated pilot

estimation into the CSI feedback problem. These works typically apply deep learning to ei-

ther A) improve upon the least-squares estimator of (1.2) or B) design the pilot matrix, X. In

[14], the authors propose a fully-connected network (FCN) which performs pilot allocation

and coarse CSI estimation followed by a CNN-based attention layer for refining the estimate,

and they demonstrate the efficacy of the proposed network compared to the MMSE estimator

as well as other neural estimators. In [15], the authors propose to incorporate a trainable pilot

design as a portion of an end-to-end model that directly maps pilots at the UE into feedback

bits and then feeds those received bits at the BS into a precoding matrix, thereby avoiding

explicit CSI estimation.

In this dissertation (namely, in Chapter 4), we propose an estimator of the truncated delay

domain CSI (see Section 2.2.1 of Chapter 2) based on the sparse frequency domain pilots

(i.e., ĥpilots of equation (1.2) above).
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1.3 Geometric Stochastic Channel Models (GSCMs)

Ideally, the datasets used for the CSI estimation task would be derived from measurement

campaigns (e.g., see [16–18]). However, the financial and labor costs of acquiring these

datasets can be prohibitive in certain situations. In such situations, researchers use geometric

stochastic channel models (GSCMs), models which are so called since they consider the

geometry of scatterers in the wireless environment and the stochastic nature of the channel.

Simulations based on GSCMs are advantageous to researchers for a a few reasons:

(1) Simulations permit the generation a large quantities of data in a (relatively) short pe-

riod of time.

(2) Simulations enable the adjustment of parameters of the communications system (e.g.,

carrier frequency, UE mobility, subcarrier spacing).

GSCMs consider the problem of modeling the wireless channels at two different scales.

At a small-scale, the focus is on the modeling of “scatterers,” objects in the environment

which reflect electromagnetic waves in several random directions. Examples of scatterers in

an outdoor environment are buildings, balconies, cars, and trees, while examples of scatters

in an indoor environment are walls, furniture, and people. Due to the presence of many scat-

terers, electromagnetic waves transmitted from a BS arrive at UEs along multiple paths at

different delays, and accordingly, the scatterers are often referred to as multipath compo-

nents (MPCs). From the UE’s perspective, the MPCs are often grouped together in specific

delay regions, and each such grouping of MPCs is referred to as a cluster. In GSCMs, mod-

eling is done at a cluster-level, capturing the diverse effects of many MPCs that are present in

typical real-world wireless channels. Modeled clusters are typically parameterized by three

values: delay, direction of departure (DoD), and direction of arrival (DoA).

While the modeling of MPCs and clusters is vital, also vital is ensuring that the results

of the GSCM-based simulations are statistically consistent with the measured channel data.

This consistency is ensured by selecting large-scale parameters (LSPs), examples of which
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are the delay spread and the angular spread. In designing GSCMs, the goal is to balance the

fidelity of cluster behavior (based on delay, DoD, DoA) and of LSPs when compared to

measured channel data. In practice, researchers implement GSCMs based on two different

modeling approaches: system-level modeling or cluster-level modeling.

In system-level modeling, the interaction(s) between the BS and the UE(s) is first defined

by choosing LSPs. This selection of LSPs is done by sampling from probability distributions.

Based on the LSPs, the clusters and MPCs for each BS/UE interaction is defined.

While some well-known channel models, such as the 3GPP Spatial Channel Model

(SCM) [19] and WINNER II [20], adopt the system-level approach, this modeling approach

has some salient limitations. First, system-level models do not lend themselves well to

high-mobility scenarios, as the LSPs are likely to change as the position of UEs change

substantially. Second, system-level models make the addition of new LSPs (e.g., inter-link

correlation) to a given interaction.

In contrast with system-level models, cluster-level models begin with cluster/MPC defi-

nition then move on to LSPs. First, a large number of clusters are defined by sampling from

a chosen probability distribution. Then, the location(s) of UE(s) is (are) defined, and the

scattering of each cluster is calculated based on the “visibility” of UEs with respect to the

clusters. Finally, the LSPs are synthesized by sampling from a given probability distribution.

The cluster-level approach addresses both of the issues associated with system-level ap-

proaches. Simulating time-varying channels with high mobility is straightforward since it

involves recalculating UE visibility and LSPs, and layering new LSPs into the model is sim-

ple since it is the last step of the simulation.

For all CSI tests, we mainly rely on a cluster-level GSCM, the COST2100 channel model,

[21]. We use two datasets with a single base station (gNB) and a single user equipment (UE)

in the following scenarios:

(1) Indoor channels using a 5.3GHz downlink at 0.001 m/s UE velocity, served by a gNB

at center of a 20m×20m coverage area.
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Table 1.2: Parameters used for COST2100 simulations for both Indoor and Outdoor datasets.

Symbol Value Description

Nb 32 Number of antennas at gNB
Nf 1024 Number of subcarriers for OFDM link
Rd 32 Number of delay elements kept after truncation
N 106 Total number of samples per dataset
T 10 Number of timeslots
δ 40 ms Feedback delay interval between consecutive CSI timeslots

(2) Outdoor channels using a 300MHz downlink at 0.9 m/s UE velocity served by a gNB

at center of a 400m×400m coverage area.

In both scenarios, we use the parameters listed in Table 1.2.

1.4 Classical CSI Estimation

Works in compressive feedback for CSI estimation in MIMO networks can be placed in

three broad categories. The first category includes works which use direct quantization of

continuous CSI elements to discrete levels. The quantized CSI are encoded and fed back to

the transmitter [22,23]. The second category includes works which use compressive sensing,

a technique which applies a random measurement matrix at the transmitter and the receiver

[24, 25]. Compressive sensing assumes matrices to be encoded and fed back meet certain

sparsity requirements, and compressive sensing algorithms require iterative solvers [26] for

decoding, resulting in undesired latency.

The last category of work in compressive CSI feedback uses deep learning (DL), neural

networks with numerous layers which are trained on large datasets using backpropagation.

We will provide the background knowledge needed for deep learning in Chapter 2, Sec-

tion 2.1.
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1.5 Objective and Contributions

Successful efforts in DL for CSI estimation have typically utilized convolutional neural

networks (CNNs) in an autoencoder structure [1]. Variations on the CNN-based autoencoder

have investigated different network architectures [27], variational training frameworks [28],

and denoising modules [29]. These architectural changes are largely inspired by successful

application of DL in image compression [30–32].

While they can continue to push the state-of-the-art in CSI reconstruction accuracy, ar-

chitectural optimizations may ultimately follow the same trends of fields such as language

modeling, where state-of-the-art performance requires prohibitively massive computational

resources (e.g., [33]). In comparison to the massive resources used in such NLP tasks, the

computational resources available in CSI estimation are much more limited, as these CSI

estimation networks are (partially) deployed on UEs.

Rather than focus solely on architectural optimizations or large compute, this dissertation

details our attempts to use domain knowledge to enhance the performance and the efficiency

of neural networks for CSI estimation. Chapter 2 provides more background information on

DL for CSI estimation as well as our work in power-based normalization, which leverages

CSI sparsity to improve performance. Chapter 3 describes our work in differential encoding,

which exploits temporal coherence of CSI to improve estimation performance while provid-

ing a less complex network than recurrent neural network-based CSI estimation networks.

Chapter 4 describes our work in pilot-based delay domain CSI estimation, where we draw

an explicit link between frequency-domain CSI estimation as defined in 3GPP specifications

and the delay domain CSI used in many DL-based CSI estimation works. Finally in Chap-

ter 5, we present preliminary investigations into reducing the complexity of CSI estimation

networks via direct pilot-based CSI feedback and model re-use. For a visual summary of

these contributions and the respective areas of domain knowledge we leverage, see the Venn

diagram in Figure 1.3)
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Figure 1.3: Venn diagram highlighting different aspects of domain knowledge in CNN-based CSI
compressive feedback, relevant convolutional networks, and our contributions.
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Chapter 2

Deep Learning for CSI Estimation

In this chapter, we will discuss important aspects of successfully applying deep learning

to MIMO CSI estimation. In Section 2.1, we provide a basic overview of deep learning

concepts that are pertinent to the task of CSI estimation. In Section 2.2, we discuss data

pre-processing techniques and the applications of domain knowledge that have enabled deep

learning-based CSI estimation. In Section 2.3, we describe our proposed CSI pre-processing

technique, spherical normalization, which boosts estimation accuracy without significantly

changing the computational complexity of a given estimation algorithm.

2.1 Deep Learning Background

This section provides a brief overview of relevant deep learning concepts employed in

this work, including convolutional neural networks (CNNs), autoencoders, and unsupervised

learning.

Deep learning (DL) is a subset of machine learning (ML), a broad class of algorithms

which use data to “fit” models for prediction or classification tasks. The three predom-

inant learning frameworks are supervised learning, unsupervised learning, and reinforce-

ment learning. In the works proposed, we focus on unsupervised learning, which seeks to

find a compressed representation of the data without labels (see Chapter 14 of [35] for an

10



overview).

Convolutional Neural Networks (CNNs): A neural network is a machine learning al-

gorithm with multiple layers of parameterized linear functions followed nonlinear functions

(typically referred to as ‘activation’ functions). The parameters for these layers can be up-

dated via a stochastic optimizer (e.g., the Adam optimizer [36]), and given enough lay-

ers, such networks can achieve arbitrarily accurate functional approximation [37]. In recent

years, neural networks with convolutional layers have established state-of-the-art perfor-

mance in computer vision tasks such as image classification [38] and segmentation [39].

While the concept of a CNN has been around since at least the early 80’s [40], CNNs did

not see widespread adoption in computer vision until AlexNet [41]. This recent prolifera-

tion of CNNs in computer vision has been enabled by hardware advances such as graphical

processing units (GPUs) and tensor processing units (TPUs) which make parallel training on

large-scale datasets possible.

H Ĥg(Z, θd)f(H, θe)

Encoder Decoder

Z

Figure 2.1: Abstract schematic for an autoencoder operating on CSI matrices H. The encoder learns
a latent representation, Z, while the decoder learns to reconstruct estimates Ĥ.

A common architecture for deep unsupervised learning is the autoencoder (see Fig. 2.1

for a generic example). Trained end-to-end on input data, an autoencoder is comprised of

an encoder and a decoder which jointly learn a compressed latent representation (Z) and an
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estimate of the input (Ĥ). By choosing Z to have lower dimension than the input, the network

is forced to learn a “useful” summary of the input data. The typical objective function for

such a network is the mean squared error (MSE),

argmin
θe,θd

1

N

N∑
i=1

‖Hi − g(f(Hi, ~θe), ~θd)‖2.

We optimize network parameters ~θe, ~θd by backpropagation and a stochastic optimization

algorithm (e.g., stochastic gradient descent or Adam).

The first CNN autoencoder used for the CSI estimation task was CsiNet [1]. Figure 2.2

shows the architecture of CsiNet, where the encoder is deployed at the UE and the decoder

is deployed at the BS. The encoder uses a convolutional layer and a linear layer to find a

compressed representation of the input CSI, and the decoder uses a linear layer to expand

the dimension of the feedback followed by two “refine blocks” and an output convolutional

layer to refine the CSI estimate. After the CsiNet paper, many works attempted to bolster the

performance of CNN autoencoders for CSI estimation by incorporating domain knowledge.

This chapter details several such works, and in Section 2.2.1, we will discuss one such area

of domain knowledge about CSI data: the sparse basis of the CSI data utilized in CsiNet.

Figure 2.2: CsiNet architecture from [1]

Computational Complexity: Given the number of layers and operations involved in

any deep learning algorithm, measuring the computational complexity of these algorithms

is important. Two metrics that are commonly used in deep learning literature are:

(1) Floating point operations (FLOPs): FLOPs provide a measure of the computations
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used by a given layer or mathematical operation in a network. A single FLOP is

defined as any arithmetic operation between floating point numbers (e.g., addition,

multiplication) or any assignment of a floating point value.

(2) Parameters: The number of parameters in a deep learning network determines the

storage cost for inference1. The number of parameters in a typical deep learning model

can be anywhere from millions (e.g., ResNet architectures [42]) to billions (e.g., GPT-

3 [33]).

See Appendix A for a more exhaustive discussion of common layers/operations used in

deep networks and their corresponding computational complexity.

2.2 Data Pre-processing for CSI Data

The success of machine learning tasks relies on proper data pre-processing, a sequence

of transformations used on the input data before fitting a model. In any machine learning

task, data pre-processing is necessary to ensure that the scales of input features are similar.

In deep learning for CSI estimation, three important pre-processing techniques are domain

transformations, truncation, or normalization, and in this section, we will explore the impor-

tant choices in pre-processing that authors have made based on domain knowledge of MIMO

CSI data.

2.2.1 Sparse Basis for CSI

The first type of data pre-processing we consider is a domain transformation, the discrete

Fourier transform in particular. While the spatial-frequency representation H̄ is used for

beamforming at the transmitter, the number of non-zero elements is comparatively large.

Given the dimension of H̄, feeding back entire CSI matrices is impractical. Instead, we

1The size of the dataset will contribute towards the storage cost but only during training/evaluation.
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Figure 2.3: Magnitude of spatial-frequency (H̄), angular-delay (H̃), and truncated angular-delay (H)
representations for a single random channel from the outdoor COST2100 dataset.

seek a compressed representation of a sparse transformation. The sparse representation we

consider is the angular-delay representation of CSI matrices [43]. Denote the unitary inverse

DFT for the spatial (frequency) axis as Fa ∈ CNb×Nb (FH
d ∈ CNf×Nf ), and denote the

spatial-frequency CSI matrix as H̄. The angular-delay domain representation H̃ is given as

H̃ = FH
d H̄Fa.

The delay spread of the resulting H̃ can typically be captured with a small number of delay

elements due to the multipath components. For a simple illustration of this phenomenon, see

Figure 2.4, and for an empirical demonstration of the small delay spread, see Figure 2.5. To

take advantage of the small delay spread, we restrict our attention to the first Rd elements of

H̃, resulting in a truncated angular-delay matrix which we denote as H ∈ C(Rd×Nb) for the

downlink channel state. An illustrative example of this truncation can be seen at the bottom

of Figure 2.3.
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Figure 2.4: Illustration of multipath components and the resulting delay spread due to different arrival
times of each component.[2]
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Figure 2.5: Energy CDF for 5000 CSI samples of 32 antennas and 1024 subcarriers, generated from
COST2100 outdoor models described in Section 1.3. Mean percentage of energy in CSI matrix up to
index is shown with 90% confidence intervals. The index denotes the amount of energy accounted for
up to the corresponding frequency/delay element. The truncated angular-delay CSI contains a mean
energy of 96.2% (c.i. 89.2%, 99.1%), while the truncated frequency-spatial CSI only contains a mean
energy of 3.1% (c.i. 1.2%, 5.4%).
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2.2.2 Bidirectional Reciprocity in FDD Networks

The next type of pre-processing under consideration is a change of coordinates. Specifi-

cally, rather than utilizing a Cartesian representation (i.e., real-imaginary channels), we can

consider a polar representation (i.e., magnitude-phase). As discussed in Section 1.1, the reci-

procity of downlink and uplink channels is weak in FDD wireless networks when compared

to TDD. Despite this, DL CSI estimation techniques have used uplink CSI to improve the

reconstruction accuracy of downlink CSI at gNB. In [44], the authors demonstrate that the

correlation between the magnitude of uplink and downlink CSI elements is strong. To exploit

magnitude reciprocity, they propose DualNet, a CNN autoencoder which learns a feedback

encoding for the downlink CSI magnitude and decodes the feedback with the magnitude of

uplink CSI as side information. The downlink phase is separately quantized and fed back

to gNB via magnitude-dependent phase quantization (MDPQ). The authors demonstrate that

exploiting bidirectional reciprocity can substantially improve CSI estimation accuracy.

2.2.3 Minmax Data Normalization

The last pre-processing technique we discuss is normalization. Typical deep autoen-

coders require normalized data to ensure that the range of the input data matches the range

of the autoencoder’s output function, which is typically chosen as sigmoid or tanh as

pictured in Figure 2.6. To accommodate such output functions, most works in both image

compression and CSI estimation typically apply minmax normalization, where the extrema

(i.e., the minimum and the maximum) of the real and imaginary channels are used to scale

the entire dataset. For the scalar Hn(i, j), the minmax-scaled version of this element is

Hn,minmax(i, j) =
Hn(i, j)−Hmin

Hmax −Hmin
∈ [0, 1],

for n ∈ [1, . . . , N ] given a dataset of N samples and i/j indexing the rows/columns of the

CSI matrices. The resulting samples are cast to the range [0, 1].
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Figure 2.6: Typical activation functions used at the output of convolutional autoencoders.

For image data, minmax normalization results in each image’s color channels scaled to

the range [0, 1]. The resulting distribution for each color channel is typically satisfactory for

image tasks, as the variance is not much smaller than the range of the normalized data (see

Fig. 2.7).

However, for CSI matrices, minmax normalization is applied to the real and imaginary

channels of each element. For typical channel models and parameters, the distribution of

channel elements tends to have much lower variance than that of image data (see Fig. 2.8).

This smaller variance can be explained by the difference in the datasets’ ranges – while the

channels in image data (e.g., ImageNet) assume integer values between [0, 255], the channels

in CSI data (e.g., COST2100) assume floating point values smaller than 10−3.

In Section 2.3, we will detail our proposed method for increasing the variance of CSI

data and demonstrate that this method can improve the estimation accuracy of deep learning

networks for CSI estimation.

2.2.4 Related Works

In image processing, several works have investigated normalization techniques such as

batch normalization [45], instance normalization [46], layer normalization [47], and group
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Figure 2.7: Distribution and variance of minmax-normalized ImageNet color channels (N = 50000)
images.
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Figure 2.8: Distribution and variance of minmax-normalized COST2100 real/imaginary channels
(N = 99000) images.

normalization [48]. These normalization techniques scale the outputs of latent layers in

neural networks, which helps to solve the problem of covariate shift [45] where the mean

and variance changes between subsequent layers of the network.

Other works have studied normalization of the network’s inputs. A number of works have

investigated adaptive normalization techniques for time series estimation tasks [49–51]. In

[52], the authors proposed a trainable input network which learns to shift, scale, and filter

the unnormalized data while training the target network for a time series prediction task.
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2.3 Spherical Normalization

Here, we discuss our work in spherical normalization (Section 2.3) and our optimized

network architecture, CsiNet-Pro (Section 2.3.1) [3].

Rather than apply minmax normalization, which results in a low variance distribution

when applied to highly sparse CSI data, we propose spherical normalization. Before de-

scribing spherical normalization in detail, consider z-score normalization. Given a random

variable, x, with mean µ and standard deviation σ. The z-score normalized version of this

random variable is given as

z =
x− µ
σ

. (2.1)

Assuming x is normally distributed, the resulting random variable, z, is a standard normal

distribution such that z ∼ N (0, 1). Inspired by z-score normalization, we seek a normaliza-

tion scheme which adjusts the range of each channel sample. Under spherical normalization,

each sample in the dataset is scaled by its power. Denote the n-th downlink CSI matrix of

the dataset as Hn
d . The spherically normalized version of the downlink CSI is given as

Ȟn
d =

Hn
d

‖Hn
d‖
. (2.2)

Observe that (2.2) is similar to (2.1) without the mean shift in the numerator2 and with the

power term of each CSI sample rather than the variance of the entire distribution. After

applying (2.2) to each sample, minmax scaling is applied to the entire dataset. The resulting

dataset under spherical normalization can exhibit a larger variance than the same dataset

under minmax scaling (compare Fig. 2.9 with Fig. 2.8).

Beyond desirable properties in the input distribution, spherical normalization also re-

sults in an objective function which is better matched with the evaluation criterion. Neural

2Since the mean of COST2100 data is ≈ 10−10, we can safely ignore this mean shift in spherical normal-
ization.
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Figure 2.9: Distribution and variance of COST2100 real/imaginary channels under spherical normal-
ization (N = 99000) images.

networks for CSI estimation are optimized using the mean-squared error loss,

MSE =
1

N

N∑
k=1

‖Hk − Ĥk‖2, (2.3)

while channel state reconstruction accuracy is measured in terms of normalized mean-squared

error,

NMSE =
1

N

N∑
k=1

‖Hk − Ĥk‖2

‖Hk‖2
. (2.4)

Observe that when the Hk (Ĥk) in (2.3) is replaced with Ȟk ( ˆ̌Hk), we have

1

N

N∑
k=1

‖Ȟk − ˆ̌Hk‖2 =
1

N

N∑
k=1

wwwww Hk

‖Hk‖2
− Ĥk

‖Hk‖2

wwwww
2

=
1

N

N∑
k=1

‖Hk − Ĥk‖2

‖Hk‖2
,

which is equivalent to (2.4). Thus, a neural network optimized with MSE as the loss func-

tion and trained using spherically normalized data is in fact being optimized with respect to

NMSE of the original data.
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2.3.1 CsiNet-Pro

In [3], we proposed a network with larger convolutional kernels and no residual con-

nections called CsiNet-Pro. Large kernels (e.g., (7 × 7) in CsiNet-Pro) allow the network

to capture features corresponding to larger delay spreads than comparatively small kernels

(e.g., (3× 3) in CsiNet [1]). In addition to the compressed feedback of the autoencoder, the

encoder must feedback the power of the CSI matrix, ‖H‖, meaning the number of floating

point elements to feed back increases from r to r + 1. This can be seen in Figure 2.10,

which shows the CsiNet-Pro architecture using spherical normalization, which we refer to as

‘SphNet.’
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Figure 2.10: SphNet – CsiNet-Pro architecture with Spherical Normalization.

2.3.2 Results

Training on spherically normalized data and optimizing with respect to NMSE can yield

better accuracy. Fig. 2.11 demonstrates this improvement for CsiNet and CsiNet-Pro on the

COST2100 dataset. CsiNet and CsiNet-Pro are trained with minmax normalization while

CsiNet-Sph and SphNet are trained with spherical normalization.
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Figure 2.11: Reconstruction error for CsiNet [1] and CsiNet-Pro with and without spherical normal-
ization. SphNet combines CsiNet-Pro with spherical normalization [3].

2.4 Discussion

This chapter has demonstrated the importance of considering unique features of CSI data

when applying deep learning to compressive CSI estimation. Making such considerations

allowed us to improve estimation accuracy without altering the network’s architecture. In

the following chapter, we will again consider a unique characteristic of CSI data, temporal

correlation of consecutive CSI samples, and we will exploit this correlation to reduce the

computational complexity of CSI estimation networks.
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Chapter 3

Temporal Coherence and Differential

Encoding

In this chapter, we consider methods for exploiting temporal correlation between CSI of

subsequent timeslots. The coherence time of a channel is the amount of time that a channel

estimate can be used before that estimate’s SNR falls beneath a given threshold [53]. Within

this window of time (∆t = ti − ti−1), the correlation between CSI matrices Hi and Hi−1 is

high (see Figure 3.1 for an illustrative example).

0 ms 40 ms 80 ms 120 ms 160 ms

t1 t2 t3 t4 t5

Figure 3.1: Ground truth CSI (H) for five timeslots (t1 through t5) on one sample from the validation
set of the outdoor dataset.

Assuming the channel exhibits temporal coherence within a certain window of time, a

reasonably accurate CSI estimate at time ti−1 can be used to estimate the CSI at time ti.
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Generically, we can write this estimator as

H̀i = h(Ĥi−1) (3.1)

where Hi is the CSI matrix at time ti and Ĥi is its estimator. The estimation error under H̀i

is

Ei = Hi − H̀i. (3.2)

Before elaborating on how to use this error term for CSI estimation, we first highlight rele-

vant works in deep learning which exploit temporal correlation.

3.1 Recurrent Neural Networks

Prior work in temporal correlation for CSI estimation utilized state-space methods such

as the Kalman filter [54–56]. Since it relies on explicit state space and noise models, the

Kalman filter’s predictive power in CSI estimation is limited. Furthermore, such work gen-

erally does not propose a method for feedback compression, making comparison with the

following ML methods difficult.

Recent works have leveraged recurrent neural networks (RNNs) to exploit temporal cor-

relation for CSI estimation [4, 57–60]. RNNs include recurrent layers, such as the long

short-term memory (LSTM) cell or the gated recurrent unit (GRU), which are capable of

learning long-term dependencies of a given process through backpropagation [61] and can

be used to predict future states of the process [62].

RNNs have been used extensively in natural language processing (NLP) for machine

translation [63] and sentiment extraction [64]. For such works in NLP, authors have empir-

ically found “stacked” or “deep” RNNs to be effective (e.g., Fig. 3.2), hypothesizing that

having multiple recurrent layers allows the network to extract different semantic timescales
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Figure 3.2: An example of LSTMs used for CSI estimation. (a) “Stacked” LSTM network of depth 3
shown with recurrent connections. (b) Same LSTM network “unrolled” into T timeslots

[64, 65]. Works in CSI estimation have taken cues from this work in NLP, proposing CSI

estimation networks with stacked LSTMs after a sequence of autoencoders [4]. While such

work has demonstrated the utility of RNNs, the computational cost of LSTMs can be pro-

hibitively high. For example, the RNN portion of the network proposed in [4] accounts for

108 additional parameters (see Figure 3.3 for the network architecture used in [4]). Since

channel estimation should not place an undue computational burden on the communications

system, LSTMs can be problematic.

3.2 Differential Encoding

Rather than use RNNs to extract temporal dependencies in CSI data, we proposed a

lightweight network based on the principle of differential encoding. We trained a network to

estimate the error (3.2) under a linear estimator,

H̀i = Ĥi−1W
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Figure 3.3: CsiNet-LSTM architecture from [4]. (a) CsiNet architecture used in each timeslot. (b)
Full CsiNet-LSTM architecture using shared codewords and stacked LSTM cells after CsiNets to
extract temporal correlation between timeslots.

where W ∈ CRb×Rb is the minimum mean squared error (MMSE) estimator,

Hi = Hi−1W + Ei

HH
i−1Hi = HH

i−1Hi−1W +���
��:0

HH
i−1Ei,

where the cancellation of the product HH
i−1Ei is due to the principle of orthogonality (i.e.,

the error terms are orthogonal to the observed data). Denoting the cross correlation matrix

as Ri = E
[
HH
t−iHt

]
, we solve for the MMSE estimator,

W = R−1
0 R1.

In practice, the population correlation matrices are estimated via finite samples of size N ,

R̂k =
1

Ntrain

Ntrain∑
j

HH
i−k(j)Hi(j),
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where Hi(j) is the j-th sample in the training set. The MMSE estimator based on the sample

correlation matrices is written as

Ŵ = R̂−1
0 R̂1.

In Appendix B, we describe the general multivariate autoregressive model which depends on

Ŵ1. However, we can simplify this model to use a scalar coefficient, γ̂ ∈ R, as

γ̂ =
Trace(R̂1)∑Rd

k

∑Nb
l R̂0(k, l)

, (3.3)

where k (l) are the row (column) indices of the correlation matrices. The estimator in this

case is

H̀i = γ̂Ĥi−1. (3.4)

Under the estimator γ, we proposed to encode the error, Et, using a convolutional autoen-

coder, f(Et),

Êi = g(f(Ei, ~θe), ~θd),

where Ei = Hi − γ̂Ĥi−1. The base station has access to the estimators γ̂ and Ĥi−1, and the

resulting CSI estimate at ti is

Ĥi = γ̂Ĥi−1 + Êi (3.5)
1Furthermore, Appendix B discusses this multivariate model for the p-step case, i.e. using p previous

timeslots rather than a single timeslot as described in this section. However, based on experimental results,
models with more than one previous timeslot provided only marginal improvements over the one-step model.
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3.2.1 MarkovNet

In [34], we proposed MarkovNet, a deep differential autoencoder. Each timeslot of

MarkovNet uses an instance of CsiNet-Pro with unique parameters. The network at the

first timeslot (t1) is trained directly on the CSI (i.e., H1). For all subsequent timeslots, ti for

i ≥ 2, we use the MMSE estimator (3.4) to produce an error term Et, and the autoencoder in

each timeslot is trained to produce an error estimate, Êt. The estimated error is added back

per (3.5) to produce a refined estimate.

Encoder (UE)

Decoder (UE+gNB)

H1

Ĥ1

z1

Encoder (UE)

Decoder (UE+gNB)

E2

Ê2

z2

Ĥ2

γ̂

H2

Encoder (UE)

Decoder (UE+gNB)

ET

ÊT

zT

ĤT

HT

γ̂

Figure 3.4: Abstract architecture for MarkovNet. Networks at ti for i ≥ 2 are trained to predict the
estimation error, Ei.

3.3 Results

We compare MarkovNet with CsiNet-LSTM [4] on the indoor and outdoor COST2100

datasets (for details, see Section 1.3). For MarkovNet, we train the network at the first
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timeslot for 1000 epochs. In each subsequent timeslot, we initialize the network using the

weights from the previous timeslot and train for 200 epochs. We use a batch size of 200. We

perform a training/testing split of 75k/25k samples, and we estimate γ̂ using the training set.

To compare the estimation accuracy of each network, we report the NMSE.

3.3.1 Network Comparison

Figure 3.5 shows the NMSE of MarkovNet and CsiNet-LSTM for four different com-

pression ratios. For the indoor network, all instances of MarkovNet achieve lower NMSE

than all instances of CsiNet-LSTM. In the outdoor scenario, each CR for MarkovNet demon-

strates lower NMSE than the corresponding CR for CsiNet-LSTM. Between both channel

scenarios, MarkovNet shows gradual improvement for subsequent timeslots if the CR is

high enough while CsiNet-LSTM only improves gradually in the outdoor environment for

CR= 1
4
. Figure 3.6 shows a random sample from the test set, H, and the estimates produced
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Figure 3.5: NMSE comparison of MarkovNet and CsiNet-LSTM at various compression ratios (CR).

by CsiNet-LSTM and MarkovNet for a CR of 1
4
. This sample contains three “peak” magni-

tude regions. While both networks manage to capture the two larger samples, MarkovNet is

able to recover the small peak magnitude region (green arrow) which CsiNet-LSTM fails to

produce (red arrow).
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H

ĤMarkov

ĤLSTM

Figure 3.6: CSI (H), MarkovNet estimates (ĤMarkov), and CsiNet-LSTM estimates (ĤLSTM) across
five timeslots (T1 through T5) on one outdoor channel sample from the test set, using CR = 1

4 .

3.3.2 Performance under Quantization

To understand the effect of quantization on the network performance, we choose to use

µ-law companding and uniform quantization on the latent feedback elements. We begin by

performing a logarithmic scaling on the feedback elements, x,

f(x) =
sign(x) ln (1 + µ|x|)

ln (1 + µ)
, 0 ≤ |x| ≤ 1. (3.6)

After applying (3.6) to the signal, uniform quantization is applied to yield

x̂ = ∆

⌊
f(x)

∆

⌉
(3.7)

where ∆ = 2−(b−1) for b-bit quantization. Finally, an inverse logarithmic scaling is applied

to quantized signal,

F (x̂) =
sign(x̂) (1 + µ)|x̂| − 1

µ
, −1 ≤ x̂ ≤ 1. (3.8)
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In short, the described µ-law quantization scheme involves applying (3.6), then (3.7), then

(3.8) to each feedback element. Figures 3.7 and 3.8 show the performance of MarkovNet

and CsiNet-LSTM under µ-law quantization where µ = 255.

In the Outdoor scenario, the performance of each network at each compression ratio

does not change substantially for different numbers of quantization bits. In contrast, the

performance for each network/compression ratio in the Indoor scenario drops appreciably

for smaller quantization bits. This is possibly because the non-quantized performance of the

Indoor networks is much better (i.e., -20dB to -17dB) than the performance of the Outdoor

networks (i.e., -12dB to -5dB), and so a small change in accuracy for the Indoor network is

more noticeable than a small change for the Outdoor network. We note that the performance

of either network could potentially benefit from quantization during training, as all the results

in Figures 3.5a and 3.5b are trained with continuous feedback.
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Figure 3.7: NMSE comparison of MarkovNet and CsiNet-LSTM for the Indoor scenario with feed-
back subject to µ-law quantization using fixed step size, ∆ = 2−(b−1), for b bits.

3.3.3 Computational Complexity

The resulting network requires no recurrent layers, resulting in a substantial reduction

in computational complexity. Table 3.1 shows the number of parameters and FLOPs per

timeslot for CsiNet-LSTM, MarkovNet, and CsiNet. The parameter count of MarkovNet
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Figure 3.8: NMSE comparison of MarkovNet and CsiNet-LSTM for the Outdoor scenario with feed-
back subject to µ-law quantization using fixed step size, ∆ = 2−(b−1), for b bits.

is on par with CsiNet, and CsiNet-LSTM requires orders of magnitude more parameters.

While the number of FLOPs for MarkovNet is nearly 10 times smaller than CsiNet-LSTM,

MarkovNet requires 5 to 10 times more FLOPs than CsiNet due to the increased kernel size

of CsiNet-Pro.

Table 3.1: Model size/computational complexity of tested temporal networks (CsiNet-LSTM,
MarkovNet) and comparable non-temporal network (CsiNet). M: million.

Parameters FLOPs
CsiNet-LSTM MarkovNet CsiNet CsiNet-LSTM MarkovNet CsiNet

CR=1/4 132.7 M 2.1 M 2.1 M 412.9 M 44.5 M 7.8 M
CR=1/8 123.2 M 1.1 M 1.1 M 410.8 M 42. 4 M 5.7 M
CR=1/16 118.5 M 0.5 M 0.5 M 409.8 M 41.3 M 4.7 M
CR=1/32 116.1 M 0.3 M 0.3 M 409.2 M 40.8 M 4.1 M
CR=1/64 115.0 M 0.1 M 0.1 M 409.0 M 40.5 M 3.9 M

3.4 Discussion

In this chapter, we described a deep differential encoder which showcased higher es-

timation accuracy than a comparable RNN network while achieving lower computational

complexity. In the sequel, we will augment this differential encoding network with a deep

compressive sensing network. Additionally, we will draw an explicit connection between

the frequency domain pilots as defined in 3GPP protocols and the delay domain CSI which
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many deep learning-based CSI estimation works adopt.
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Chapter 4

Bandwidth Efficient Pilot-based CSI

Feedback

This chapter details an estimator for the UE-side angular-delay domain CSI based on

a limited number of spatial-frequency domain pilots. This scheme adheres to the 3GPP

standards for pilot allocation across time-frequency resources as described in Section 1.2.

Section 4.1 details our proposed pilots-to-delay estimator (P2DE), and Figure 4.1 demon-

strates the operating principle behind P2DE. Appendix C describes off-diagonal regulariza-

tion as a countermeasure for ill-conditioned CSI matrices. Section 4.1.1 explicitly links the

proposed P2DE to the 3GPP placement of CSI-RS/DMRS resource elements and describes

our proposed diagonal pilot pattern which adheres to LTE/NR specifications. Section 4.2

describes an extension of our previously proposed differential encoding network which uses

heterogeneous CNNs for different timeslots. Finally, Section 4.3 presents results for the

P2DE and our propose heterogeneous differential encoding networks.

4.1 Pilots-to-delay Estimator (P2DE)

Denote ηi ∈ CNf as the i-th row of the spatial-frequency matrix H, and denote the

downsampled version of ηi as ηd,i ∈ CMf where Mf << Nf . Thus, the spatial-frequency
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Figure 4.1: Compressive CSI estimation based on linear P2D estimator. First, we use downlink pilots
to generate a sparse, frequency domain CSI estimate of size Mf << Nf . We then apply the P2D
estimator, Q†Nt of (4.5), to establish the truncated delay domain CSI estimate. We train a learnable
encoder, f(x), and decoder, g(x), to compress and decode the feedback, respectively. The gNB
recovers the frequency domain CSI from the decoded delay domain CSI estimate.

CSI, H, and its downsampled counterpart, Hd, can be written as,

H =



η1

η2

...

ηNb


∈ CNb×Nf , Hd =



ηd,1

ηd,2
...

ηd,Nb


∈ CNb×Mf . (4.1)

ηd,i is related to ηi by the downsampling matrix for the i-th antenna port, Pi, as

ηd,i = ηiPi ∀ i ∈ [1, . . . , Nb]. (4.2)

Denote the delay-domain CSI vector, η̃i, which is defined as

η̃iF = ηi, (4.3)
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where F is the CNf×Nf discrete Fourier transform (DFT) matrix. To relate the frequency

domain pilots to the delay domain, we apply the pilot downsampling matrix Pi to both sides

of (4.3),

η̃iFPi = ηiPi

η̃iQi = ηd,i (4.4)

where Qi = FPi ∈ CNf×Mf is the downsampled DFT matrix. Leveraging the sparsity of

CSI data in the delay domain (see Section 2.2.1, Figure 2.3), many works choose to feedback

and compress the truncated delay domain vectors, η̃c,i ∈ CNt . The zero-padded vector η̃i

defined as

η̃i =
[
η̃c,i,0Nf−Nt

]
. (4.5)

Based on 4.4, the delay domain can be related directly to the pilots by taking the pseu-

doinverse,

η̃iQiQ
T
i = ηd,iQ

T
i

η̃i = ηd,iQ
T
i

(
QiQ

T
i

)−1

= ηd,iQ
#
i (4.6)

When the pilot patterns Pi are equidistant and regularly spaced, the P2DE matrices

QiQ
T
i are typically well-conditioned. However, more irregular patterns can result in ill-

conditioned matrices QiQ
T
i , making these matrix inversions unstable. To compensate for

this ill-conditioning, we propose to use off-diagonal regularization (ODIR) to condition the

P2DE matrices. This form of regularization is described in more detail in Appendix C.
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Figure 4.2: (a) LTE Resource Blocks and CSI-RS locations where antenna port pilots are allocated.
(b) Schematic for diagonal pilots with relevant parameters, size of diagonal D and frequency down-
sampling ratio DRf . In this diagram, Nb = 32, D = 4,DRf = 1

8 . The pilot matrix Pj indicates
the downsampling pattern for the j-th element of the diagonal pattern. The number of subframes
necessary to populate (b) is inversely proportional to D.

4.1.1 Diagonal Pilot Allocations for 3GPP Standards

As discussed in Section 1.2, 3GPP specifications describe the allocation of pilots to time-

frequency resources in 4G/LTE [12,66] and 5G/NR [13] radio networks, where the reserved

resource elements are called CSI reference signals (CSI-RS) for the former and demodulation

reference signals (DMRS) for the latter.

In order to connect the P2DE as described in Section 4.1 to the 3GPP specifications, we

must specify the corresponding pilot patterns in the time-frequency grid. In Figure 4.2, we

show an example of our proposed ‘diagonal’ pilot pattern in an LTE network using CSI-RS

locations. We refer to this pattern as diagonal since it is diagonal in the spatial-frequency

domain. The benefit of the diagonal pattern can be understood by considering the time

needed to acquire downsampled CSI matrix, Hd.

Algorithm 4.1 shows the process for acquiring the delay domain P2DE from sparse fre-

quency domain pilots.
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Figure 4.3: (a) 5G NR Resource Blocks and DMRS locations where antenna port pilots are allocated.
(b) Schematic for diagonal pilots with relevant parameters, size of diagonal D and frequency down-
sampling ratio DRf . In this diagram, Nb = 32, D = 4,DRf = 1

8 . The pilot matrix Pj indicates
the downsampling pattern for the j-th element of the diagonal pattern. The number of subframes
necessary to populate (b) is inversely proportional to D.

Algorithm 4.1 Pilots-to-delay Estimator (P2D) for Diagonal Pilot Pattern

1: Input: P2DE Matrices, Q#
c,j, j ∈ {1, . . . , D}

2: Input: Pilot spatial-frequency CSI, Hd ∈ CNb×Mf

3: Initialize: Spatial-delay CSI, H̃τ ∈ CNb×Nt

4: Initialize: Angular-delay CSI estimate, Hτ ∈ CNb×Nt

5: for i = 1, 2, . . . , Nb do
6: # Index for j-th pilot matrix
7: j = ((i− 1) mod D) + 1
8: # Apply P2D to i-th antenna port
9: ηd,i = Hd(i, :)

10: H̃τ (i, :) = ηd,iQ
#
c,j

11: end for
12: # Convert from spatial to angular
13: Hτ = FNbH̃τ

14: Return Hτ
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4.2 Heterogeneous Differential Encoding with P2DE

Chapter 3 introduced the concept of differential encoding for CSI feedback compression.

The delay domain P2DE CSI introduced in this chapter can also be used in the differential

encoding framework. Figure 4.5 showcases the data path when utilizing the P2D estimates

with a differential encoding network.

The prior work proposed a differential encoding network that used an identical autoen-

coder at each timeslot. We refer to such a network as ‘homogeneous.’ In contrast, we can

consider a ‘heterogeneous’ network, where we use different network architectures at differ-

ent timeslots.

In this section, we describe a heterogeneous differential encoder which combines deep

compressive sensing with deep autoencoders.

Figure 4.4: Compressive CSI estimation architectures used in this work. f(x) denotes the encoder,
and g(x) denotes the decoder. Ntotal = NbNt is the size of the real or imaginary channel. Nl is the
number of latent channels in a convolutional layer.
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4.2.1 Iterative Optimization Networks for CS-based CSI Feedback

While CNN autoencoders have been dominant in CSI estimation, recent work from im-

age processing has shown promise in using trainable CS algorithms based on CNNs1. These

works treat iterative CS algorithms as sequential networks by “unrolling” them into discrete

blocks [67, 68]. Investigating unrolled CS algorithms for CSI estimation warrants consid-

eration, as CS algorithms can have guaranteed convergence under mild sparsity conditions

(in contrast with CNNs autoencoder approaches, which do not have such guarantees). Since

CSI data exhibits sparsity in the delay domain, specifying an appropriate compressive sens-

ing approach could provide appreciable performance gains in our differential CSI encoding

architecture.

To exploit the temporal coherence of the MIMO channel, we propose to construct a dif-

ferential encoding network using an unrolled optimization network based on a trainable ver-

sion of the iterative shrinkage-thresholding algorithm (ISTA), called ISTANet+ [68]. See the

top of Figure 4.4 for a diagram of ISTANet+. Denote measurement matrix for the ISTANet+

as

Φ ∈ RNtotalCR×Ntotal . (4.7)

For compressive sensing approaches, the measurement matrix is analogous to the ‘encoder’

of autoencoder approaches, i.e., f(x) = Φx. The ‘decoder’ consists of K iterations of the

following update steps,

r(k) = x(k−1) − ρ(k)Φ>(Φx(k−1) − y) (4.8)

x(k) = r(k) + G(k)
(
H̃(k)

(
soft

(
H(k)(D(k)(r(k)), θ(k)

)))
(4.9)

where y = Φx, x(0) = Rinity, and Rinit = XY(YY>)−1 is the initialization matrix for

1For an overview of conventional compressive sensing solutions as well as the original ISTA algorithm, see
Appendix D
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the training data matrix X = [x1,x2, . . . ,xNtrain ] and the training measurement matrix Y =

[y1,y2, . . . ,yNtrain ]. ‘soft(·)’ denotes the soft threshold function,

soft(x, θ) = sign(x)ReLU(|x| − θ). (4.10)

G(k),D(k),H(k), H̃(k) indicate trainable nonlinear mappings (in this case, CNNs), andH(k), H̃(k)

are subject to the symmetry constraint H(k) ◦ H̃(k) = I2. The rectified linear unit (ReLU) is

given as

ReLU(x) =


x x ≥ 0

0 x < 0

In the proposed differential encoding scheme, we use an instance of ISTANet+ in the first

timeslot, t1, with a large compression ratio such that CRt1 ≥ CRti for all i > 1. This choice

in compression ratio allows us to initialize the network with a high-quality estimate at the

first timeslot. Notably, the training data matrix, X, differs between timeslots. For the first

timeslot, the data vectors xi are vectorized versions of the CSI matrices,

xj = vec
(
H

(j)
τ,1

)
for j ∈ [Ntrain]. (4.11)

However, the data vectors for all other timeslots are vectorized versions of the error matrices,

xj = vec
(
Ē

(j)
i

)
for j ∈ [Ntrain]. (4.12)

Denote the parameters for ISTANet+ in the ti-th timeslot as Θti = {G(k),D(k),H(k), H̃(k), θ(k), ρ(k)}Kk=1.

2Where ◦ denotes the function composition, (f ◦ g)(x) = f(g(x))
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The loss function is a weighted sum of the MSE and the symmetry constraint, i.e.,

L(Θti) = LMSE + αLsym (4.13)

LMSE =
1

NbatchNtotal

Nbatch∑
i=1

‖x(K)
i − xi‖2

2 (4.14)

Lsym =
1

NbatchNtotal

Nbatch∑
i=1

K∑
k=1

‖H̃(k)(H(k)(xi))− xi)‖2
2 (4.15)

where Ntotal = NbNt is the size of the truncated CSI matrix, K is the number of iterations in

ISTANet+, and Nbatch is the batch size used during training. As denoted in equations (4.11)

and (4.12), the vectors xi depend on the timeslot.

4.3 Results

4.3.1 Accuracy of P2DE

We assess the accuracy of the P2DE under values of Mf and D. Fig. 4.6 demonstrates

the accuracy of the P2DE at the UE (i.e., before compression and feedback) for different

frequency downsampling ratios. The P2DE achieves impressive accuracy even under ag-

gressive values of DRf (e.g., better than −30dB at DRf = 1
8
). Additionally, the effect of

increasing the diagonal size, D, is apparent at larger compression ratios (i.e., CR ≥ 1
8
),

where the accuracy of the P2DE to a value as low as −25dB. For smaller compression ratios

(i.e., CR ≤ 1
16

), increasing D has a marginal effect on the accuracy of the P2DE.

We assess the accuracy of the P2DE assuming noise from pilot estimation. To simulate

pilot estimation error, we use additive Gaussian noise,

Ĥd = Hd + Nd

where the elements of Nd, Nd(i, j) ∼ N (0, σ2) for i ∈ [1, 2, . . . , Nb] , j ∈ [1, 2, . . . ,Mf ].
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Ê2
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Ĥτ,T

Hd,T Hτ,T
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Figure 4.5: Diagram of a CSI estimation network using compressed differential feedback based on
the linear P2DE. First, downlink pilots are used to estimate a downsampled frequency domain CSI es-
timate, H̄t ∈ CNb×Mf where Mf << Nf at the t-th timeslot. Then, the P2DE Q#

Nt
of Algorithm 4.1

is applied to estimate H̃t. After P2DE, the learnable transforms ft(x) and gt(x) are used to compress
and decode the feedback, respectively. For t = 1, the encoder/decoder are applied directly to H̃1. In
all subsequent timeslots (t > 1), the differential term Et is compressed and fed back.
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Figure 4.6: P2D estimation performance under different frequency downsampling ratios (DRf =
Mf

Nf
)

and diagonal dimensions (D) for the Outdoor COST2100 dataset. Downsampling is done along the
frequency axis.

To achieve different SNR values for Ĥd, we simply vary the noise variance σ2, and we use

the P2DE at different pilot estimation noise levels. Figure 4.7 shows the accuracy of the

P2DE for different values of σ2.

In addition to varying the pilots estimation SNR, we also showcase the effect of varying

δ (i.e., the ODIR parameter as described in Appendix C). We observe that δ helps the P2DE

achieve better performance under both low-noise and noisy conditions, i.e.,

• Low-noise condition (SNR = −20 dB): The P2DE goes from −8 dB to −22 dB for

δ = 0 and δ = 0.5, respectively.

• Noisy condition (SNR≥ −10 dB): The P2DE goes from−9 dB to−30 dB for δ = 0

and δ = 0.5, respectively.

4.3.2 P2DE Compression Network Comparison

Having assessed the initial accuracy of the P2DE at the UE, we now apply a deep learning

network to compress the output of the P2DE. Figure 4.8 demonstrates the accuracy of IS-

TANet+ [68] for multiple compression ratios (CR) using the P2DE as its input. For progres-
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Figure 4.7: Accuracy of P2DE output, Hτ , assuming noisy pilots, Ĥd. Additive Gaussian noise is
used to model the error inherent in pilot estimation. Here, D = 4,DRf = 1

32 .

sively smaller compression ratios, the accuracy of ISTANet+ remains stable until DRf = 1
32

,

at which point the network’s performance degrades.

1/1 1/4 1/8 1/16 1/32

Frequency Downsample Ratio (DRf )

−14

−12

−10

−8

−6

−4

−2

0

CR=1/4 (D=1)

CR=1/8 (D=1)

CR=1/16 (D=1)

CR=1/4 (D=4)

CR=1/8 (D=4)

CR=1/16 (D=4)

Figure 4.8: Performance of ISTANet+ for multiple compression ratios using P2D estimates with dif-
ferent downsampling ratios (DRf =

Mf

Nf
) for the Outdoor COST2100 dataset. Non-diagonal pattern

(D = 1) is compared with a diagonal pattern of size D = 4. Performance for DRf = 1/1, D = 4 is
omitted since it is equivalent to the DRf = 1, D = 1 case.
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In addition to ISTANet+, we assess the accuracy deep CNN autoencoders using P2DE as

an input. Figure 4.9 shows the accuracy of ISTANet+ compared to ENet [69] and SphNet [3].

The performance of ISTANet+ is better than both ENet and SphNet at larger compression

ratios (CR ∈ [1
4
, 1

8
]), and the performance of ISTANet+ and ENet is comparable at CR = 1

16
.
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Figure 4.9: Performance comparison for different feedback compression networks using P2D es-
timates (DFf = 1/16, D = 4) for Outdoor COST2100 dataset. For all tested networks, we use
Nphase = 4, resulting in an augmented training set with 80k samples.

To assess the accuracy of these networks under quantization, we also conduct an exper-

iment where the latent feedback elements are subjected to µ-law companding and uniform

quantization (as described in Section 3.3). We present these results in Figure 4.10.

4.3.3 Heterogeneous Differential Encoding Networks

Figure 4.11 shows the performance of the proposed heterogeneous differential encoding

networks compared to homogeneous networks. We observe that ENet provides worse ini-

tial performance than ISTANet+ (i.e., at t1) but provides a more improvement in accuracy

than ISTANet+ in subsequent timeslots (i.e., at t2, t3, . . . ). Based on this observation, we

expect the best network configuration to be the heterogeneous network, MN-IE. Figure 4.11

supports this reasoning, as MN-IE achieves better asymptotic performance (i.e., as i for ti

46



1/4 1/8 1/16

Compression Ratio (CR)

−16

−14

−12

−10

−8

−6

−4

−2

0

T
es

t
N

M
S

E
(d

B
)

ISTANet+

1/4 1/8 1/16

Compression Ratio (CR)

−16

−14

−12

−10

−8

−6

−4

−2

0

ENet

1/4 1/8 1/16

Compression Ratio (CR)

−16

−14

−12

−10

−8

−6

−4

−2

0

SphNet

32 bits

8 bits

6 bits

Figure 4.10: Tested networks where feedback is subject to µ-law companding (µ = 255) and uniform
quantization for different numbers of quantization bits. P2DE parameters are D = 4,DRf = 1

16 .

increases) than MN-I.
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Figure 4.11: Compressive CSI estimation using differential encoding and linear P2D estimator (Mf =
128,DRf = 1

8 , D = 4). MarkovNet-ISTA (MN-I), MarkovNet-ENet (MN-E), and MarkovNet-ISTA-
ENet (MN-IE) are tested using two different compression ratios in the first timeslot, CRt1 ∈

[
1
2 ,

1
4

]
.

47



4.3.4 Computational Complexity

We assess the computational complexity (as defined in Chapter 2, Section 2.1) of the

network architectures tested in this work. While ISTANet+ has superior accuracy compared

to the autoencoder networks, we observe that its computational complexity is much higher.

This discrepancy in complexity further motivates the heterogeneous network architecture of

MN-IE. While MN-I uses T copies of ISTANet+, MN-IE uses one copy of ISTANet+ to

provide an initial estimate and T − 1 copies of ENet to compress the differential term.

Table 4.1: Computational complexity of networks used in this work. Bold face in a column indicates
lowest value for given compression ratio. “CR” = compression ratio, “Enc” = encoder, “Dec” =
decoder. FLOPs indicate computation during inference (i.e., not training/back-propagation).

Parameters (M)
FLOPs (M)

Trainable All
CR Enc Dec Enc Dec Enc Dec

ISTANet+

1/2 0.00 0.34 2.10 4.54 2.10 393.78
1/4 0.00 0.34 1.05 2.44 1.05 373.85
1/8 0.00 0.34 0.52 1.39 0.52 363.89
1/16 0.00 0.34 0.26 0.87 0.26 358.91

ENet

1/2 0.55 0.55 0.55 0.55 29.98 29.70
1/4 0.29 0.29 0.29 0.29 29.46 29.18
1/8 0.16 0.16 0.16 0.16 29.20 28.92
1/16 0.09 0.09 0.09 0.09 29.07 28.79

CsiNet Pro

1/2 1.06 1.06 1.06 1.06 12.16 12.16
1/4 0.53 0.53 0.53 0.53 11.11 11.11
1/8 0.27 0.27 0.27 0.27 10.59 10.59
1/16 0.14 0.14 0.14 0.14 10.33 10.33

4.4 Discussion

In this chapter, we presented the P2DE, a linear estimator of delay domain CSI which

uses the frequency domain pilots as specified by 4G and 5G protocols. We demonstrated the

effectiveness of this estimator as an input to a range of deep CNNs, including autoencoders

and deep compressive sensing networks. We also expanded on our work in differential en-

coding, proposing a heterogeneous differential encoder which combines autoencoders and
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deep compressive sensing networks to improve the network’s estimation accuracy.

While this chapter highlighted the effectiveness of deep compressive sensing networks

for CSI compression, such networks can be computationally expensive. In the following

chapter, we will explore some methods for reducing the computational complexity of these

networks.
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Chapter 5

Improving Computational Efficiency

The prior works discussed in this dissertation have leveraged domain knowledge to im-

prove the performance of deep neural networks for CSI compression. In this chapter, we

consider some methods for improving the efficiency of such networks.

In Chapter 4, we considered how to use frequency domain pilots at the UE to estimate the

truncated delay domain. While it is advantageous to acquire the delay domain CSI at the UE

from a sparsity perspective, utilizing the P2DE at the UE creates additional computational

and memory burden. Consider the P2DE estimator as outlined in Algorithm 4.1. The algo-

rithm iterates over the Nb antennas and performs the matrix multiplication ηd,iQ
#
c,j in each

iteration. To run the algorithm, NbMf (Nf − 1) FLOPs are required1, and 2D(MfNf ) pa-

rameters must be stored2. Under the parameters used in Chapter 4 Section 4.3, utilizing the

P2DE at the UE could result in an additional 1.04× 106 FLOPs and 2.62× 105 parameters.

The additional computational burden of the P2DE is summarized in Table 5.1.

Since UEs are typically compute/memory constrained devices (e.g., cell phones, tablets,

IoT devices), it is preferable to reduce any such burden where possible. In this chapter,

we propose two methods to reduce computational complexity at the UE. In Section 5.1, we

1Considering the Mf (Nf − 1) FLOPs involved in matrix multiplication (as discussed in Appendix A.3),
and considering that this matrix multiplication occurs Nb times.

2Considering the matrices Q#
i ∈ CMf×Nf for i ∈ [1, . . . , D].
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Table 5.1: Computational complexity of P2DE for D = 1 (diagonal pattern size), Nf = 1024
(number of subcarriers), and Nb = 32 (number of antennas in uniform linear array).

Mf 32 64 128
FLOPs 1.05 · 106 2.10 · 106 4.19 · 106

Parameters 6.55 · 104 1.31 · 105 2.62 · 105

propose a method to estimate the delay domain CSI at the BS based on compressive sensing

feedback of the frequency domain pilots. In Section 5.2, we propose a method for using a

simple model to estimate subsets of subcarriers in CSI matrices. In Section 5.3, we present

results demonstrating that these methods maintain CSI estimation accuracy while reducing

encoder-side complexity by as much as a factor of 10.

5.1 Direct Pilot-based Feedback

Many works in deep learning based compressive CSI estimation have leveraged delay

domain CSI given its sparsity [1]. Recent work has confirmed the viability of acquiring the

truncated delay domain at the UE under realistic conditions (i.e., using sparse frequency-

domain pilots) [5].

However, the process of acquiring delay domain CSI places additional computational

burden on the UE, and given the computational constraints of typical UEs (e.g., cell phones,

tablets, IoT devices), minimizing the computational burden on the UE should be prioritized.

To reduce the computation performed at the UE, we propose to move the computation of

the delay domain to the BS by compressing and feeding back the frequency domain pilots.

The data flow of this scheme is illustrated in Fig 5.1, where the P2DE (see [5] for full details)

is utilized at the BS rather than the UE.
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Figure 5.1: Compressive CSI estimation based on linear P2D estimator on BS side. First, we use
downlink pilots to generate a sparse, frequency domain CSI estimate of size Mf << Nf . This
downsampled frequency domain CSI estimate is compressive sensing at the UE and fed back to
the BS. At the BS, we apply the P2D estimator, Q#

Nt
[5] to acquire the truncated delay domain

CSI estimate. We train a learnable encoder, f(x), and decoder, g(x), to compress and decode the
feedback, respectively. The BS recovers the frequency domain CSI from the decoded delay domain
CSI estimate.
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5.2 Model Re-use

In order to enjoy the benefits of highly accurate CS networks while reducing network

complexity at the UE, we propose to use a relatively simple CS model on contiguous blocks

of K subcarriers where K ≤ Mf . The operating principle behind this approach is inspired

by block compressive sensing [70], and the concept is shown in Fig. 5.2.

In this work, we study a deep CS network called ISTANet+ [68]. For ISTANet+, the

compression occurs at the UE by a simple matrix multiplication,

f(x) = Φx (5.1)

where Φ is referred to as the measurement matrix and x is the flattened CSI matrix. In

the case of block compressive sensing, the measurement matrix operates of K contiguous

subcarriers across all angular indices, i.e., x ∈ RNK , Φ ∈ RCRK×K where NK = 2KNa

is the dimension of the K subcarriers from the CSI matrix. The decoder of ISTANet+ is

identical to the original paper, the only major differnce being the dimension of the latent 2D

convolutions to accommodate K subcarriers rather than all Mf pilot subcarriers.

To produce a full CSI estimate at the BS, the encoder is run Mf

K
times on adjacent blocks

of subcarriers, producing multiple feedback payloads. At the BS, each of these payloads is

decoded to estimate a block of subcarriers, and the final CSI estimate is simply the concate-

nation of all these decoded payloads.

5.3 Results

To evaluate the effectiveness of direct frequency-domain CSI feedback and of model

re-use, we use CSI data generated by the COST2100 model in an Indoor and an Outdoor

scenario [21]. The parameters used to generate both datasets are given at the end of Chapter 1

Section 1.3. For all tests, we utilize ISTANet+ with spherical normalization [3].
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Figure 5.2: Compressive CSI estimation with model re- use. Rather than compressing the entire input,
Hd, the encoder compresses K contiguous subcarriers from the input, resulting in Mf

K payloads of
feedback (shown in different colors above). Meanwhile at the BS, the decoder recovers each set of K
contiguous subcarriers based on the Mf

K payloads, and the decoded payloads are combined to generate
the full frequency domain estimate.

5.3.1 Accuracy vs. K Subcarriers

Figures 5.3 and 5.4 compare the reused models with frequency domain compression

against the original delay domain model (shown in red in both Figures). We test the networks

usingK ∈ [2, 4, 8, 16, 32, 64, 128] with the requirement thatK < Mf . We observe that in the

Indoor network, there is a gradual increase in NMSE as the number of subcarriers reduces.

In the case of the Outdoor network, the frequency domain-based feedback results in a drop

in NMSE by about 2.5 dB.

5.3.2 Accuracy vs. Network Complexity

In Figures 5.5 and 5.6, we compare the reused models with frequency domain com-

pression against the original model with delay domain compression (shown in red in both

Figures). Both Figures show the performance of the given model vs. a complexity metric,

either log(FLOPs) or the number of model parameters. The complexity of the model varies

with K, which we vary in the same way as described above in Section 5.3.1. Importantly,

each complexity metric is given for the encoder (i.e., the UE-side complexity).
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Figure 5.3: NMSE vs. K subcarriers of shared model architectures (i.e., complexity is w.r.t. FLOPs
and parameters at UE). Outdoor COST2100 model.
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Figure 5.4: NMSE vs. K subcarriers for shared model architectures (i.e., complexity is w.r.t. FLOPs
and parameters at UE). Indoor COST2100 model.
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Figure 5.5: NMSE vs. encoder complexity of shared model architectures (i.e., complexity is w.r.t.
FLOPs and parameters at UE). Outdoor COST2100 model.
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Figure 5.6: NMSE vs. encoder complexity for shared model architectures (i.e., complexity is w.r.t.
FLOPs and parameters at UE). Indoor COST2100 model.
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Figures 5.7 and 5.8 show the same performance and complexity metrics as Figures 5.5

and 5.6 but with respect to the full model complexity (i.e., encoder and decoder, UE-side and

BS-side). When it comes to parameters, we observe trends that are similar to the encoder-

side parameters in both environments. However, the number of FLOPs for the Mf = 128

case is twice that of the the Mf = 64 case since the number of FLOPs of the decoder scales

linearly with Mf .
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Figure 5.7: NMSE vs. complexity of shared model architectures. Left: Complexity w.r.t. FLOPs
of encoder and decoder. Right: Complexity w.r.t. parameters of encoder and decoder.). Outdoor
COST2100 model.

5.4 Discussion

In this chapter, we presented two methods for reducing the complexity of deep learning

based CSI compression networks. We first proposed to move the delay domain estimation to

the BS by compressing and feeding back frequency domain information to directly estimate

the pilots at the UE. We then proposed to use a deep learning model to estimate blocks of

K contiguous subcarriers. We tested a combination of both of these approaches in both the

Indoor and Outdoor COST2100 scenarios, and we demonstrated that these approaches can

reduce the UE-side computational complexity while maintaining or slightly increasing the
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Figure 5.8: NMSE vs. complexity for shared model architectures. Left: Complexity w.r.t. FLOPs
of encoder and decoder. Right: Complexity w.r.t. parameters of encoder and decoder.). Indoor
COST2100 model.

network’s final accuracy.
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Chapter 6

Conclusion

This dissertation investigates techniques to improve the performance and efficiency of

deep neural networks for the task of MIMO CSI estimation. In Chapter 2 we discussed the

importance of data pre-processing techniques, and we showed the efficacy of our proposed

spherical normalization technique. In Chapter 3, we exploited the temporal correlation of

the wireless channel, and we demonstrated the superior performance and efficiency of a deep

differential encoder compared to recurrent neural networks. In Chapter 4, we presented two

main contributions: an accurate estimator of the delay domain CSI based on sparse frequency

domain pilots and a hetergeneous differential encoding network combining deep compres-

sive sensing networks with autoencoders. We showed the accuracy of our pilot-based delay

domain estimator, even under aggressive sparsity and noisy pilot estimates. Furthermore, we

verified the improved performance of heterogeneous networks over homogeneous networks.

Finally in Chapter 5, we proposed a scheme which re-uses a simple model on contiguous

blocks of multiple subcarriers, and we showed that this method can maintain accuracy while

reducing the computational complexity of the network by a factor of 10.

Across all these works, we investigated techniques which exploited domain knowledge

of the wireless channel to improve estimation accuracy and computational efficiency while

better conforming to 3GPP protocols. Further work in CSI compression should take a sim-
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ilar approach by taking advantage of features of the wireless channel, the communications

protocol, or CSI data itself.

6.1 Future Works

In addition to the work discussed in this dissertation, there are important additional di-

rections which future works in deep learning for CSI compression should address. Here,

we discuss a few such directions, including compression bounds for CSI estimation and

networks with trainable codewords.

6.1.1 Rate-distortion Bounds for CSI Feedback

Many works provide results for their proposed CSI feedback networks using the NMSE

at a small number of compression ratios. This approach allows for fair comparison between

comparable networks/algorithms, but it does not answer a more important question: At a

given compression ratio, what is the theoretical distortion limit?

Information theory provides us with a framework to answer this question: the rate-

distortion curve. The rate-distortion of a random variable describes the optimal error that

can be achieved whenever that variable is encoded using a given number of bits.

The challenge with applying rate-distortion theory to MIMO CSI data is the lack of well-

defined distributions for practical channel data. While rate-distortion bounds are known for

well-defined distributions (e.g., univariate or multivariate Gaussian distributions), the same

can not be said for empirical data.

One possible approach to constructing a rate-distortion curve is to estimate the differen-

tial entropy of quantized CSI data. For a CSI matrix, H, assume i.i.d. H(i,j) where i (j)

denotes the row (column) of H. The differential entropy of the (i, j)-th element is

h(H(i,j)) = −
∫
p(H(i, j) = k) log p(H(i,j) = k)dk,
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In practice, the distribution p(H(i,j)) is difficult to obtain. We can instead resort to the

Kozachenko–Leonenko (KL) estimator [71] for each element in H and average over the

elements,

h(H) ≤
Rd∑
i

nT∑
j

ĥ(H(i,j)) = hUB(H), (6.1)

for KL estimator ĥ. Based on Theorem 8.3.1 from Cover [72], for sufficiently small quantiza-

tion interval ∆ = 1
2n

, the entropy of a quantized random variable is related to its differential

entropy as,

H(H∆) = h(H) + n, (6.2)

for n-bit quantization. Thus, the differential entropy estimator admits an estimate for the

entropy of the quantized CSI, Ĥ(H∆) = ĥ(H) + n.

To establish a rate-distortion curve, we can use the estimator outlined above on CSI data

with Gaussian noise, i.e.

Hσ,(i,j) = H(i,j) + v for i.i.d v ∼ N (0, σ2).

Using the corrupted CSI matrices Hσ =
[
Hσ,(i,j)

]
i∈[Rd],j∈[Nb]

, we calculate the bounds

ĥ(H∆
σ ) from (6.1) for different noise levels σ to establish a rate-distortion curve.

6.1.2 Trainable Codewords

In addition to estimating the rate-distortion bounds of CSI data, new works should in-

vestigate techniques for improving the compression efficiency of CSI feedback networks.

Some prior work has investigated feedback quantization in deep learning-based CSI com-

pression. In [73], the authors propose DeepCMC, an autoencoder structure where the con-

tinuous compressed elements are discretized via uniform quantization then encoded using
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context adaptive binary arithmetic coding (CABAC) [74]. Since uniform quantization is

non-differentiable, the authors do not perform true quantization during training and instead

apply uniformly distributed noise to approximate quantization noise [73]. In [75], the authors

propose AnalogDeepCMC, which encodes latent elements as power-normalized complex el-

ements and decodes using maximal ratio combining. The authors also report the achieved

rate of AnalogDeepCMC for different CSI overhead ratios.

Further work into trainable codewords might borrow ideas from deep learning based

image compression. For example, the soft-to-hard vector quantization (SHVQ) framework

[76] could be used to imbue a CSI compression network with quantized codewords. To

describe the framework, we choose a vector dimension, d, by which to partition the latent

space Z = fe(H, θe), and we denote the vectorized version of Z ∈ Rr as Z̃ ∈ Rr/d×d. We

define the d-dimensional codebook of size L as C ∈ Rd×L. The soft assignments of the j-th

latent vector z̃j ∈ Rd (i.e., the j-th row of Z̃) can be written as

φ(z̃j) =

[
exp(−σ‖z̃j − c`‖2)∑L
i=1 exp(−σ‖z̃j − ci‖2)

]
`∈[L]

∈ RL (6.3)

where c` ∈ Rd is the `-th codeword in the code book C. φ(z̃j) of (6.3) is typically referred

to as the softmax function, a differentiable alternative to the max function whose output

resembles a probability mass function. The hyperparameter σ controls the temperature of

the softmax scores, with a lower σ yielding a more uniform distribution and a higher σ

yielding a “peakier” distribution (i.e., as σ → ∞ ⇒ φ(z̃j) → a one-hot vector). Using the

soft assignments, the latent vectors are quantized based on the codebook C ∈ Rd×L,

Q(z̃j,C) = φ(z̃j)C
T . (6.4)

where we refer the Q(z̃j,C) as the ‘SoftQuantize’ function. When applying Q(·) to the r/d

rows of Z̃, we write the SoftQuantize function as a matrix operation, Q(Z̃,C) ∈ Rr/d×d.

The matrix of soft-quantized latent vectors is then reshaped into the original latent vector
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dimension, Ẑ ∈ Rr, and the decoder produces the CSI estimates as Ĥ using Ẑ as an input.

An abstract illustration of an autoencoder using soft quantization can be seen in Figure 6.1.

Q(Z̃,C)

Encoder

H Z

Decoder

ĤẐZ̃

Soft Quantize

Q(Z̃,C) = Cφ(Z̃)

Rr

Rd×r/d

Soft Quantize

Figure 6.1: Abstract architecture for a CSI compression network with the ‘SoftQuantize’ layer
(Q(Z̃)), a continuous, softmax-based relaxation of a d-dimensional quantization of the latent layer Z.

To optimize the network with soft quantization, the loss function can be made to resemble

the canonical rate-distortion function by adding an entropy penalization term,

argmin
θe,θd,C

1

N

N∑
i=1

‖Hi − g(Q(f(Hi, θe),C), θd)‖2 +mβH(φ), (6.5)

where H(φ) = H(p, q) is the crossentropy based on the hard and soft probability estimates p

and q, respectively. Before defining the estimates p and q, we briefly discuss the population

probabilities of the latent codewords. Denote the symbol encoder/decoder pair as E : Rd →

[L]d/D : [L]d → Rd. Denote the distribution of latent variables as Z such that z ∼ Z with the

encoder E(Z) = e . The entropy of Z is given as

H(E(Z)) = −
∑
e∈[L]d

P (E(Z) = e) log2(P (E(Z) = e)).

In practice, the true population probabilities P (E(Z)) are inaccessible, and we must esti-

mate the probability masses via finite sampling over the encoder’s outputs, e(z). The hard
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probability estimate pj of the j-th codeword is

pj =
|{el(zi)|l ∈ [d], i ∈ [N ], el(zi) = j}|

dN
.

The soft assignments of φ admit valid probability masses, qj = φ(z̃), over the codewords.

Using histogram estimates pj and the soft assignments qj , the crossentropy term is written as

H(φ) := H(p, q) = −
L∑
j=1

pj log qj = H(p) +DKL(p‖q),

where DKL(p‖q) = −
∑L

j=1 pj log
(
pj
qj

)
is the Kullback-Liebler (KL) divergence. Due to

the nonnegativity of DKL, H(φ) is an upper bound on H(p), and so the inclusion of H(φ) in

(6.5) is an indirect way of minimizing the entropy of p.
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Appendix A

Computational Complexity of Common
Layers

Based on the measures of computational complexity in Chapter 2 Section 2.1, i.e. FLOPs
and parameters, we provide the corresponding formulas for common layers and operations
used in the networks described in this dissertation. Note that any arithmetic operation (e.g.,
addition, multiplication) or non-linearity consumes a single FLOP, and certain non-linearities
require a single parameter (e.g., the negative slope of a Leaky ReLU).

A.1 Matrix Multiplication
Denote two matrices A ∈ RM×P and B ∈ RP×N . Matrix multiplication between A and

B is denoted as

C = AB ∈ RM×N , cij =
P∑
k=1

aikbkj ∀ i ∈ [1, . . . ,M ], i ∈ [1, . . . , N ].

FLOPs: Each element in C involves P multiplications and P − 1 additions, and C includes
M ×N elements. Thus, the amount of FLOPs involved in matrix multiplication is

FLOPsmatmul = (2P − 1)MN

Parameters: The number of ‘parameters’ in matrix multiplicatiion depends on which
matrix is considered the parameter matrix. If A is the parameter matrix, then the number of
parameters is

Pmatmul = MP.

Alternatively, if B is the parameter matrix, then the number of parameters is

Pmatmul = PN.
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A.2 Complex Matrix Multiplication
Denote two complex matrices A ∈ CM×P and B ∈ CP×N . Complex matrix multiplica-

tion between A and B is denoted as

C = AB ∈ RM×N ,

cij =
P∑
k=1

[Re(aik)Re(bkj)− Im(aik)Im(bkj)]

+ j[Re(aik)Im(bkj) + Im(aik)Re(bkj)]

∀ i ∈ [1, . . . ,M ], i ∈ [1, . . . , N ].

FLOPs: Each element in C involves P complex multiplications and P − 1 complex addi-
tions. Complex multiplication involves 4 (real) multiplications and 2 (real) additions, total-
ing 6 FLOPs total. Complex addition involves 2 (real) additions. Since C includes M × N
complex elements, the amount of FLOPs involved in matrix multiplication is

FLOPsmatmul = (8P − 2)MN

Parameters: The number of parameters in complex matrix multiplication is identical to
real matrix multiplication with a factor of 2. If A is the parameter matrix, then the number
of parameters is

Pmatmul = 2MP.

Alternatively, if B is the parameter matrix, then the number of parameters is

Pmatmul = 2PN.

A.3 Linear Layer
Denote parameter matrix A ∈ RM×N and the input vector b ∈ RN . The output of a

linear layer, o ∈ RM , is given as

o = Ab.

If the linear layer contains a bias term, then an additional column a0 is appended to the end
of the matrix A as

Abias =
[
A a0

]
,

and correspondingly, the input vector is padded with a single one,

bbias =
[
b 1

]
.
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FLOPs: A linear layer has the same number of FLOPs as a matrix-vector multiplication,
i.e.

FLOPslinear = M(N − 1)

Parameters: The size of the matrix A determines the number of parameters in the layer,
i.e.,

Plinear = MN

A.4 Convolutional Layer
In a convolutional layer, the complexity is driven by the number of kernels (Nk), the

height/width of kernel (Hk/Wk), and the channels/height/width of the input data (C/H/W ).
Denote the input data as I ∈ RC×H×W , the kernel as K ∈ RNk×Hk×Wk , and the output image
as O ∈ RNk×H×W . The convolution operation (with no bias term) assigns a value to each
element of the output using the following equation,

O(i, j, k) =
C∑
c=1

Hk∑
h=1

Wk∑
w=1

K(i, j + h, k + w)I

(
c, j + h−

⌊
H

2

⌋
, k + w −

⌊
W

2

⌋)
, (A.1)

where the i, j, k index over the output channels, rows, and columns (respectively). On the
right-hand side of (A.1), the first summation

(∑C
c=1

)
sums over the channels of the input

image while the following two summations
(∑Hk

h=1 /
∑Wk

w=1

)
sum over the height/width of

the kernel. Whenever the height or width indices of I are out of the range [1, . . . , H] or
[1, . . . ,W ], the elements involved in the convolution are determined by the padding (e.g.,
zero padding, reflected padding, etc.).

FLOPs: The number of FLOPs in a convolutional layer is given by the following for-
mula,

FLOPsconv = C ×H ×W ×Nk ×Hk ×Wk

Parameters: The number of parameters in a convolutional layer is given by the following
formula,

Pconv = Nk ×Hk ×Wk

A.5 Soft Threshold Function
The soft threshold function used in ISTANet+ [68] is given in (4.10), replicated below

as,

soft(x, θ) = sign(x)ReLU(|x| − θ),
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where θ is the threshold function.
FLOPs: We consider a single soft threshold to consume one FLOP.
Parameters: The soft threshold function requires one parameter to be stored, θ.
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Appendix B

Autoregressive Markov Models

In Chapter 3 Section 3.2, we introduced a differential encoding network based on an
autoregressive Markov model that was A) one-step and B) scalar. In this appendix, we show
how we can generalize both the number of steps and the dimension of the Markov model.

Recall the truncated delay domain CSI at the t-th timeslot, Ht ∈ CRd×Nb . Rather than the
one-step, scalar model γ̂ ∈ R+ (see (3.5) in Section 3.2), we can derive a p-step, multivariate
predictor. A p-step autoregressive model for Ht can be written generally as a function of p
previous timeslots,

Ĥt = f(Ht−1,Ht−2, . . . ,Ht−p).

Given p prior CSI samples, the mean-square optimal predictor Ĥt is a linear combination of
these the prior CSI samples,

Ĥt = Ht−1W1 + · · ·+ Ht−pWp + Et. (B.1)

Where Wi is the coefficient matrix for the i-th timeslot with dimension CNb×Nb , and Et

is the error term at time t, which is uncorrelated with the CSI samples (i.e. HH
t−iEt = 0 for

all i ∈ [0, . . . , p]). To solve for the matrices Wt−1, . . . ,Wt−p, we first pre-multiply by HH
t−i,

HH
t−iĤt = HH

t−iHt−1W1 + · · ·+ HH
t−iHt−pWp + HH

t−iEt

= HH
t−iHt−1W1 + · · ·+ HH

t−iHt−pWp. (B.2)

Denote the correlation matrix Ri = E[HH
t−iHt]. If temporal coherence between times-

lots is maintained, then we may assume that CSI matrices arise from a stationary process,
implying the following properties:

(1) Ri = E[HH
t−iHt] = E[HH

t Ht+i]

(2) Ri = RH
−i

With these properties in mind, we take the expectation of (B.2), resulting in a linear
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combination of Ri matrices,

E
[
HH
t−iĤt

]
= E

[
HH
t−iHt−1W1

]
+ · · ·+ E

[
HH
t−iHt−pWp

]
Ri+1 = RiW1 + · · ·+ Ri−p+1Wp.

For p CSI samples (i.e., for i ∈ [0, 1, . . . , p−1]), we write a system of p equations, admitting
the following, 

R1

R2

. . .
Rp

 =


R0 RH

1 . . . RH
p−1

R1 R0 . . . RH
p−2

... . . . ...
Rp−1 Rp−2 . . . R0




W1

W2

. . .
Wp

 . (B.3)

Finally, we solve for the coefficient matrices by inverting the Toeplitz matrix,
W1

W2

. . .
Wp

 =


R0 RH

1 . . . RH
p−1

R1 R0 . . . RH
p−2

... . . . ...
Rp−1 Rp−2 . . . R0


−1 

R1

R2

. . .
Rp

 . (B.4)

Thus, the solution to multi-step, multivariate Markov model is a function of the correlation
matrices.

Since the distributions of Hi are not known, we cannot calculate the expectations in
the correlation matrices, Ri. Instead, we estimate the sample correlation matrices with the
training data, i.e.,

R̂i =
1

Ntrain

Ntrain∑
j

Ht−i(j)
HHt(j),

where j indexes over the training data. Now, we write the estimators, Ŵi, with respect to
the sample correlation matrices,


Ŵ1

Ŵ2

. . .

Ŵp

 =


R̂0 R̂H

1 . . . R̂H
p−1

R̂1 R̂0 . . . R̂H
p−2

... . . . ...
R̂p−1 R̂p−2 . . . R̂0


−1 

R̂1

R̂2

. . .

R̂p

 . (B.5)

If a more simple model is desired, then we can construct scalar estimators for each times-
lot. Denote the mean of all elements in the correlation matrix as,

ri = E

[
Rd∑
k

Nb∑
`

R
(k,`)
i

]
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where R
(k,`)
i is the element from the k-th row and `-th column of Ri. The resulting system

of equations for scalar model is given as
γ1

γ2

. . .
γp

 =


r0 r∗1 . . . r∗p−1

r1 r0 . . . r∗p−2
... . . . ...

rp−1 rp−2 . . . r0


−1 

r1

r2

. . .
rp

 . (B.6)

Following the same logic as before, we utilize the sample versions of r̂i,

r̂i =
1

Ntrain

Ntrain∑
j

Rd∑
k

Nb∑
`

R̂
(k,`)
i (j),

which admits the system of equations,
γ̂1

γ̂2

. . .
γ̂p

 =


r̂0 r̂∗1 . . . r̂∗p−1

r̂1 r̂0 . . . r̂∗p−2
... . . . ...

r̂p−1 r̂p−2 . . . r̂0


−1 

r̂1

r̂2

. . .
r̂p

 . (B.7)

For the one-step scalar estimator, we can derive equation (3.3) from Chapter 3 of Section 3.2,

γ̂1 =
r̂1

r̂0

=
Trace(R̂1∑Rd

k

∑Nb
l R̂0(k, l)

.
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Appendix C

Matrix Regularization

In this dissertation, we encounter a few situations where we have a matrix to invert, A,
but the matrix A may be nearly singular. For example, in Section 4.1 of Chapter 4 we had
the pseudoinverse Q#

i = QT
i

(
QiQ

T
i

)−1, where we would denote our matrix to invert as
A = QiQ

T
i .

As another example from Appendix B, we discussed the multivariate, p-step Markov
model for CSI which was a function of the correlation matrices, R̂i. Per equation (B.5), we
denote A as the Toeplitz matrix populated by the R̂i matrices.

In either of the cases described above, the stability of the matrix inverse can be improved
by regularizing the matrix. Here, we briefly describe one method for regularizing nearly
singular matrices, off-diagonal regularization (ODIR).

Denote Aij as the element in the i-th row and j-th column of the matrix A. We select a
non-negative real scaling factor δ ∈ R+ to scale down the off-diagonal elements of R. The
elements of the resulting ODIR matrix, AODIR, are written as

Aij,ODIR =

{
Aij if i = j
Aij
1+δ

if i 6= j.
(C.1)
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Appendix D

Compressive Sensing

Figure D.1: Illustration of sampling/measurement process in compressive sensing [6]. The notation
used here differs slightly from the notation adopted in this appendix (i.e., A and h in the figure
correspond to Φ and x, respectively)

.

In Section 4.2 of Chapter 4, we introduced a heterogeneous differential encoder which
utilized deep compressive sensing networks. This appendix provides a brief overview of the
relevant theory from compressive sensing based on the excellent survey [6].

Given a signal x ∈ RN , denote a random measurement of this signal as

y = Φx

where Φ ∈ RM×N is referred to as the measurement matrix and y ∈ RM is a low-dimensional
measurement (i.e., M << N ). The goal of compressive sensing is to recover the original
signal x based on the low-dimensional measurement y. The least-squares solution to this
problem is given as

min
x̂
‖x̂‖2 subject to ‖y −Φx̂‖2

2 < ε (D.1)

where ε > 0 is some error tolerance. By construction, the matrix Φ has more columns than
rows (i.e., N >> M ), and consequently, the linear system (D.1) is underdetermined. Fur-
thermore, the least-squares solution cannot return a sparse vector, and instead, the recovery
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of x is typically framed as a sparsity-constrained least-squares estimation problem, i.e.

min
x̂
‖x̂‖0 subject to ‖y −Φx̂‖2

2 < ε (D.2)

Under certain constraints, the original signal x can be perfectly reconstructed. However, this

perfect reconstruction requires a combinatoric search over
(
N
s

)
(where s is the number of

non-zero elements in x). Instead, the problem is often relaxed to use the `1 norm,

min
x̂
‖x̂‖1 subject to ‖y −Φx̂‖2

2 < ε, (D.3)

which is referred to as the least absolute shrinkage and selection operation (LASSO).

D.1 The ISTA algorithm
To solve the LASSO, it is possible to use proximal gradient methods from convex opti-

mization [77]. The gradient method that we focus on in this appendix is the iterative shrink-
age threshold algorithm (ISTA), which is the namesake of the ISTANet algorithm discussed
in Section 4.2 of Chapter 4. For the `1 regularized problem, gradient-based methods solve

min {f(x) + λ‖x‖1}

using the iterative steps

xk = arg min
x

{
f(xk−1) + 〈x− xk−1,∇f(xk−1)〉+

1

2tk
‖x− xk−1‖2 + λ‖x‖1

}
= arg min

x

{
1

2tk
‖x− (xk−1 − tk∇f(xk−1))‖2 + λ‖x‖1

}
,

where tk > 0 is the stepsize for the algorithm. Note that the second line is admitted by ignor-
ing the constant terms. The `1 term is separable, and consequently, computing the iteration
xk can be done by solving a one-dimensional minimization problem for each component of
xk,

xk = Tλtk(xk−1 − tk∇f(xk−1)).

Note the shrinkage operator, Tα : Rn → Rn,

Tα(x)i = soft(xi, α) = (|xi| − α)+(xi)

When this gradient method is applied to the compressive sensing problem, we have f(x) :=
‖Φx− y‖, and the resulting iterative algorithm is known as ISTA, where the iterations take
the form,

xk = Tλtk(xk−1 − tkΦT (Φxk−1 − y)) (D.4)
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Figure D.2: Soft-threshold function used in the ISTA algorithm.

These iterations of the ISTA algorithm correspond to the gradient step and the proximal step
of (4.8) and (4.9) for ISTANet+ (see Chapter 4, Section 4.2). Note that ISTANet+ differs
from the vanilla formulation of ISTA in a few key ways, namely:

• Learnable sparse basis: ISTANet+ assumes that the `1 penalty term is imposed on
a sparse transform of the input data (i.e., ‖Ψx‖1). Furthermore, the sparse transform
and its inverse (i.e., Ψ and Ψ−1) are learned using convolutional layers (i.e., G and G̃),
and the ‘soft’ operator is applied to sparse transform.

• Residual connections: ISTANet+ uses the sparse transform and the ‘soft’ operator on
the residual of the estimate rather than the estimate itself.
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