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1 Introduction

The observation of neutrino oscillations implies that neutrinos are massive [1]. This requires

the addition of a neutrino mass-generation mechanism to the Standard Model (SM), which

can manifest itself in the form of right-handed neutrinos, Majorana neutrinos, or both.

Adding a right-handed Majorana neutrino (denoted by heavy neutral lepton HNL, or simply

N) gives rise to the so-called Type-1 Seesaw mechanism [2]. An SM neutrino then acquires

a mass inversely proportional to the HNL Majorana mass, providing a natural explanation

for neutrino masses and why they are so small compared with those of other fermions.

Heavy neutral leptons could generate the observed amount of baryon asymmetry in the

universe through a process known as leptogenesis [3], and an HNL with a mass of the

order of keV would be a valid dark-matter candidate [4]. In fact, the addition of three

HNLs with masses below the electroweak scale, two of which are potentially accessible

by accelerator-based experiments in the range 0.1–90 GeV [5], could address the three
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fundamental questions of the origins of neutrino masses, baryon asymmetry, and dark

matter [6, 7]. Meeting these conditions requires small mixing angles between HNLs and

neutrinos. Mixing requirements are relaxed if all three HNLs can participate in generating

a baryon asymmetry [8, 9], which means however that none of the three HNLs is available

as a dark-matter candidate. Depending on the mixing and mass parameters, the HNL may

decay promptly or be long-lived. In this paper, searches exploiting both prompt-decay and

displaced-decay signatures are reported.

Heavy neutral leptons with masses below 5 GeV can be produced in hadron decays. In

this case, sensitivity to small coupling strengths has been achieved by fixed-target experi-

ments with long decay volumes and by high-intensity collider experiments [10–21]. Higher

HNL masses can only be directly accessed through the decays of W , Z or H bosons, and

indirectly through precision tests of the SM. Within some assumptions about the relative

HNL mixing angles to the different neutrino flavours, experiments sensitive for processes

such as µ → eγ or µ → eee can provide indirect constraints which are competitive with

direct searches for HNL masses above 30 GeV [22]. An analysis with the DELPHI ex-

periment at LEP1 using ∼106 neutrinos from Z boson decays provided the best direct

constraints prior to the LHC in the HNL mass range 2–75 GeV [23]. At hadron colliders,

HNLs are better sought in W rather than Z boson decays due to trigger requirements and

the higher production cross section. The CMS Collaboration presented results [24] which

explore HNL masses in the range 1–1200 GeV and mixing to muon and electron neutrinos,

using a signature of W boson decays into three prompt leptons with lepton-number vio-

lation (LNV) similar to the prompt signature presented in this search. The high rate of

W boson production at the LHC, combined with the capability of the ATLAS and CMS

experiments to reconstruct displaced vertices in their inner detectors, permits HNLs with

longer lifetimes to be accessed in regions of the parameter space that are beyond the LEP

constraints and allowed by cosmological constraints [25–29].

The present search relies on two distinct experimental signatures designed to probe

both short and long HNL lifetimes. These select orthogonal sets of data taken in 2015–2016

with all ATLAS subsystems fully operational for proton–proton (pp) collisions at 13 TeV

centre-of-mass energy. The dataset used in this analysis corresponds to an integrated lu-

minosity of 36.1 fb−1 for the prompt signature and 32.9 fb−1 for the displaced signature.

The uncertainty in the integrated luminosity is 2.1%, derived from the calibration of the

luminosity scale using x-y beam-separation scans, following a methodology similar to that

detailed in ref. [30], and using the LUCID-2 detector for the baseline luminosity measure-

ments [31].

The prompt signature features three leptons originating from the interaction point,

either two muons and an electron or two electrons and a muon, with same-flavour leptons

of the same charge. This latter requirement is important for rejecting the large backgrounds

from prompt SM processes. The displaced signature features a prompt muon accompanied

by a vertex significantly displaced from the interaction point, formed by either two muons

or a muon and an electron. The prompt lepton (expected to originate from a W boson

decay) is essential for ensuring an efficient triggering of such events and the displaced

dilepton decay is very characteristic, rendering this signature virtually background-free.

– 2 –
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(a) (b)

(c) (d)

(e)

Figure 1. Feynman diagrams for N production and decay in the channels which this search

is sensitive to: (a) µ mixing, µe decay, LNC (probed by displaced signature); (b) µ mixing, µµ

decay, LNC (probed by displaced signature); (c) µ mixing, µe decay, LNV (probed by prompt and

displaced signatures); (d) µ mixing, µµ decay, LNV (probed by displaced signature); (e) e mixing,

eµ decay, LNV (probed by prompt signature). Analogous processes involving the decay of the

charge-conjugate W− boson are also included in the search, but omitted in this figure.

– 3 –
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The selection of a prompt muon and a displaced leptonic decay is chosen for the first search

of this type because requiring lepton objects (favouring muons as they are less readily

affected by misidentification of other objects than electrons) considerably reduces QCD

backgrounds, even though the same signature with a prompt electron and/or a displaced

semileptonic decay can also be exploited at the LHC [25–27].

The results of this search are interpreted in a model postulating a single right-handed

Majorana neutrino N produced in leptonic W boson decays, with just two parameters:

mass (mN ) and coupling strength (|U |2). The heavy neutrino N is allowed to mix exclu-

sively with either νµ or νe and to decay leptonically in a scenario with either lepton-number

conservation (LNC) or LNV, as illustrated in figure 1. The Majorana nature of N results in

equal mixing to neutrinos and anti-neutrinos and the possibility for the process to violate

the lepton number (although LNV is not guaranteed [32]), as shown in figures 1c, 1d and 1e.

The range 5 < mN < 50 GeV is explored using the prompt signature assuming LNV. The

range 4.5 < mN < 10 GeV, corresponding to decay lengths of the order mm−cm, is probed

down to lower |U |2 values using the displaced signature with HNL mixing to νµ without

any assumption regarding LNC or LNV, as depicted in figures 1a, 1b, 1c and 1d.

2 HNL modelling

This section details N production via mixing with an electron or muon neutrino originating

from an on-shell W boson decay, as well as its leptonic decays via the same mixing, as

illustrated in figure 1. The generation and simulation of Monte Carlo (MC) signal and

background events is presented at the end of the section.

2.1 HNL production

The branching ratio of W boson decays into an N and a charged lepton, B(W → `N),

is proportional to the mixing matrix squared, or coupling strength, denoted by |U |2 =∑
` |U`|2, where the terms U` are the matrix elements for N mixing to the different neutrino

flavours. The signatures considered in this search are sensitive to mixing to either νµ or νe
and can thus only constrain |Uµ|2 or |Ue|2 (or potentially |U |2 in the case where either of

them is dominant).

The cross section times branching ratio for W boson production and decay into N and

a charged lepton ` can then be expressed as [33]:

σ(pp→W ) · B(W → `N) = σ(pp→W ) · B(W → `ν) · |U |2
(

1−
m2
N

m2
W

)2(
1 +

m2
N

2m2
W

)
.

(2.1)

The product of the cross section for W boson production in 13 TeV pp collisions σ(pp→
W ) and the branching ratio for leptonic W boson decay into a single lepton flavor B(W →
`ν) (for ` = µ or e) is taken from the ATLAS measurement in ref. [34] to be 20.6± 0.6 nb.

2.2 HNL decay

For this search, partial widths are calculated for all HNL decay channels including leptons

and quarks. The calculations consider charged- and neutral-current-mediated interactions
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as well as QCD loop corrections, which are all described in ref. [35]. The HNL lifetime τN
has a strong dependence on the coupling strength |U |2 and also the mass mN due to phase-

space effects. For a given |U |2 and mN , the total width Γ =
∑

i Γi
(
mN , |U |2

)
is computed,

and the mean lifetime is obtained as τN = ~/Γ. In the relevant range 4.5 ≤ mN ≤ 50 GeV,

the result agrees within 2% with the following parameterisations given in ref. [36]: τNµ =

(4.49 · 10−12 s)|U |−2(mN/1 GeV)−5.19 and τNe = (4.15 · 10−12 s)|U |−2(mN/1 GeV)−5.17 for

dominant mixing to νµ and νe, respectively. These relationships, however, assume no LNV

decays. If LNV is allowed, twice as many decay channels are allowed, and τN is reduced by

a factor of 2. More elaborate models do not necessarily allow for LNV [32] and thus may or

may not contain this factor of 2. To account for this model dependence, both interpretations

are considered in the case of the displaced signature, which is not limited to LNV processes.

Leptonic HNL decay branching ratios are determined from the partial decay widths

relative to the total width. In the mass range 4.5–50 GeV, they have almost no mass depen-

dence and yield B(N → ``ν`) = 0.060 and B(N → ``′ν`′) = 0.106 for dominant mixing to

a given lepton species ` = µ or e (` 6= `′, including both charges). The difference between

decays into leptons of the same flavour and different flavour is due to interference between

decays through W and Z boson mediators, which is only present in the same-flavour case.

This calculation and calculations found in the literature [5, 36, 37] can yield up to 5% rela-

tive differences, mainly due to different treatments of QCD corrections. This 5% difference

is considered as a relative theoretical systematic uncertainty in the branching ratio.

2.3 Event generation and simulation

The signal MC samples were generated with a model of W boson production in 13 TeV

pp collisions, with the W exclusively decaying into a muon or electron and an HNL

(W → µN or W → eN). Separate signal samples are generated for multiple choices

of the HNL mass, mN = 4.5 GeV, 5 GeV, 7.5 GeV, 10 GeV, 12.5 GeV, 15 GeV, 20 GeV,

30 GeV or 50 GeV, and the mean proper decay length, cτ = 0.001 mm, 0.01 mm, 0.1 mm,

1 mm, 10 mm or 100 mm, with ∼ 50000 events per sample. The N decay modes correspond

to the diagrams shown in figure 1. This model is implemented in Pythia8 [38] (v8.210),

using the NNPDF2.3 LO [39] parton distribution function (PDF) set and the A14 set of

tuned parameters (tune) [40].

Background processes were generated using Powheg-Box [41–43] with the next-to-

leading order (NLO) CT10 PDF set [44] for top-quark pair (tt̄) (using v2 in r3026) and

single top-quark (using r2856) production, in combination with Pythia [45] (v6.428, for

parton showering) using the CTEQ6L1 PDF set [46] and Perugia 2012 tune [47]. Mad-

Graph5 aMC@NLO [48] (v2.2.2.p6) with the NNPDF2.3 LO PDF set and A14 tune was

used for tt̄W and tt̄Z, while Sherpa [49] (v2.2.1) with the NNPDF2.3 LO PDF set was used

for WW , ZZ, WZ, W+jets, Z+jets and tribosons. The purely leptonic decays of dibosons

were generated using Powheg-Box v2 (r2819) with NLO CT10 PDF set in combination

with Pythia8 using the CTEQ6L1 PDF set with AZNLO tune [50]. Together with the

Pythia8, Powheg-Box and MadGraph5 event generators, EvtGen [51] (v1.2.0) was

used for b- and c-hadron decays. Also, together with Powheg-Box in processes involving

– 5 –
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t-quarks, Tauola [52] (v27feb06) was used for τ -lepton decays and Photos [53] (v2.09)

was used for QED corrections.

For the generation of tt̄ events, the top-quark mass was set to 172.5 GeV. The sam-

ple is normalised using the next-to-next-to-leading-order (NNLO) cross section, including

soft-gluon resummation to next-to-next-to-leading-logarithm (NNLL) [54–60]. For events

containing a W or Z boson with associated jets simulated using Sherpa, matrix elements

were generated with up to two additional parton emissions at NLO accuracy and up to

four additional parton emissions at LO accuracy using COMIX [61] and OpenLoops [62]

and merged with the Sherpa parton shower [63] according to the ME+PS@NLO prescrip-

tion [64]. Diboson processes with one of the bosons decaying hadronically and the other lep-

tonically are calculated for up to one (ZZ) or zero (WW , WZ) additional partons at NLO

and up to three additional partons at LO using COMIX and OpenLoops, and merged with

the Sherpa parton shower according to the ME+PS@NLO prescription. Matrix elements

of triboson processes containing two or more charged leptons were generated with Sherpa

including off-shell contributions with up to one additional real emission at LO accuracy [65].

The generated events were processed through a full simulation of the ATLAS detector

geometry and response [66] using the Geant4 [67] toolkit. The simulation includes multiple

pp interactions per bunch crossing (pile-up), as well as the effect on the detector response

due to interactions from bunch crossings before or after the one containing the hard inter-

action. Pile-up was simulated with the soft processes of Pythia8 using the A2 tune [40]

and the MSTW2008LO PDF [68]. Per-event weights were applied to the simulated events

to reproduce the distribution of the average number of interactions per bunch crossing as

measured in data.

3 The ATLAS detector

The ATLAS experiment [69–71] at the LHC is a multipurpose particle detector with a

forward-backward symmetric cylindrical geometry and a nearly 4π coverage in solid angle.1

The detector consists of several layers of subdetectors. From the interaction point (IP) out-

wards there is an inner tracking detector (ID), electromagnetic and hadronic calorimeters,

and a muon spectrometer (MS).

The ID extends from a cylindrical radius of about 33 to 1100 mm and to |z| of about

3100 mm, and is immersed in a 2 T axial magnetic field. It provides tracking for charged

particles within the pseudorapidity region |η| < 2.5. At small radii, silicon pixel layers and

stereo pairs of silicon microstrip detectors provide high-resolution position measurements.

The pixel system consists of four barrel layers, and three forward discs on either side of

the IP. The barrel pixel layers are positioned at radii of 33.3, 50.5, 88.5 and 122.5 mm.

The silicon microstrip tracker (SCT) comprises four double layers in the barrel and nine

1ATLAS uses a right-handed coordinate system with its origin at the nominal IP in the centre of the

detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC

ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being

the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as

η = − ln tan(θ/2). Angular distance is measured in units of ∆R =
√

(∆η)2 + (∆φ)2.

– 6 –
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forward discs on either side. The radial position of the innermost (outermost) SCT barrel

layer is 299 mm (514 mm). The final component of the ID, the transition-radiation tracker

(TRT), is positioned at larger radii, with coverage up to |η| = 2.0.

The electromagnetic calorimeter is based on lead absorbers and liquid argon and pro-

vides coverage for |η| < 3.2. Hadronic calorimetry uses steel absorbers and scintillator

tiles in the region |η| < 1.7, and copper absorbers with liquid argon in the endcaps

(1.5 < |η| < 3.2). A forward hadronic calorimeter using copper and tungsten absorbers

with liquid argon completes the calorimeter coverage up to |η| = 4.9.

The MS is the outermost ATLAS subdetector. It is designed to detect muons in the

pseudorapidity region up to |η| = 2.7, and to provide momentum measurements with a

relative resolution better than 3% over a wide pT range and up to 10% at pT ≈ 1 TeV.

The MS consists of one barrel (|η| < 1.05) and two endcap sections (1.05 < |η| < 2.7).

A system of three large superconducting air-core toroidal magnets, each with eight coils,

provides a magnetic field with a bending integral of about 2.5 Tm in the barrel and up

to 6 Tm in the endcaps. Resistive plate chambers (three doublet layers for |η| < 1.05)

and thin gap chambers (one triplet layer followed by two doublets for 1.0 < |η| < 2.4)

provide triggering capability to the detector as well as (η, φ) position measurements with

typical spatial resolution of 5−10 mm. A precise momentum measurement for muons with

pseudorapidity up to |η| = 2.7 is provided by three layers of monitored drift tube chambers

(MDT). For |η| > 2, the inner layer is instrumented with a quadruplet of cathode strip

chambers (CSC) instead of MDTs. The single-hit resolution in the bending plane for the

MDT and the CSC is about 80 µm and 60 µm, respectively. The muon chambers are

aligned with a precision between 30 µm and 60 µm.

A two-level trigger system is used to select events [72]. The first-level trigger is imple-

mented in custom electronics and uses information from the muon trigger chambers and

the calorimeters. This is followed by a software-based high-level trigger system, which runs

reconstruction algorithms similar to those used in offline reconstruction. Combined, the

two levels reduce the 40 MHz bunch-crossing rate to approximately 1 kHz of events saved

for further analysis.

4 Prompt-trilepton signature

The prompt-lepton search for HNLs is conducted in two channels: W± → µ±µ±e∓νe
(muon channel) and W± → e±e±µ∓νµ (electron channel). It considers the case where the

vertex displacement is small enough that an ID track can be reconstructed with standard

ATLAS tracking algorithms. The standard reconstruction of tracks in the ID is optimised

for charged particles that originate from the beam spot, the region where the proton beams

intersect. This set-up restricts the detection for decay products of particles whose decay

vertex is significantly displaced from the beam spot, especially for transverse displacements

greater than approximately 20 mm [73]. By requiring the final state to have three isolated

leptons and no opposite-charge same-flavour lepton pairs, background events from Drell-

Yan pair production, W+jets and tt̄ could be rejected.

– 7 –
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4.1 Trigger and preselection (prompt signature)

Events are required to have a primary vertex defined as the reconstructed vertex with

the largest sum of squared track transverse momenta. For the muon channel, events are

selected with a dimuon trigger with transverse momentum pT thresholds of 18 and 8 GeV

for events recorded in 2015 and of 22 and 8 GeV for events recorded in 2016. For the

electron channel, events are selected with a logical OR between single-electron triggers

with different transverse energy thresholds and different electron identification criteria:

either 24 GeV (“medium”), 60 GeV (“medium”) or 120 GeV (“loose”) for the 2015 dataset

and either 26 GeV (“tight”), 60 GeV (“medium”) or 140 GeV (“loose”) for the 2016 dataset.

The different identification criteria “loose”, “medium” and “tight” are defined in ref. [74].

A further trigger match requirement is imposed between the reconstructed leptons and the

corresponding triggers.

Muon candidates are reconstructed from tracks in the MS, matched with tracks found

in the ID within |η| < 2.5. Electron candidates are reconstructed from energy deposits

(clusters) in the electromagnetic calorimeter which are associated with a reconstructed

track in the ID, within the fiducial region of |η| < 2.47, where η is the pseudorapidity of

the calorimeter energy deposit associated with the electron candidate. Electron candidates

within the transition region between the barrel and endcap electromagnetic calorimeters,

1.37 < |η| < 1.52, are excluded. Muons are required to have a pT of at least 4 GeV, while

the lowest pT threshold for electrons is 4.5 GeV for 2016 data and 7 GeV for 2015 data.

Both the muon and electron candidates are required to satisfy “loose” sets of identification

criteria [74, 75] while for the electron channel the electron that passed the single-electron

trigger needs to satisfy “tight” identification criteria for events in the dataset collected in

2016. The highest-pT (leading) lepton is required to pass a transverse impact parameter

significance requirement, d0/σ(d0) < 3 for muons and < 5 for electrons, where the impact

parameter d0 is the transverse distance between the primary vertex and the point of closest

approach of the lepton trajectory. For other leptons, no such requirement is imposed to

allow for a slight displacement of leptons from HNLs. The leading lepton is also required

to have |∆z0 sin(θ)| < 0.5 mm while < 1 mm is required for the remaining leptons, where

∆z0 is the distance along the beam direction between the primary vertex and the point

of closest approach of the lepton trajectory. To reduce the contribution from non-prompt

leptons (e.g. from semileptonic b- or c-hadron decays), photon conversions and hadrons,

“loose” calorimeter and track isolation criteria as defined in refs. [74, 75] are applied to

lepton candidates, with a 99% efficiency. Scale factors are applied to simulated lepton

distributions to take into account the small differences in reconstruction, identification,

isolation, and trigger efficiencies between MC simulation and data. Energy/momentum

scale and resolution corrections are also applied to leptons [76].

Jets are reconstructed from energy deposits in the calorimeter using the anti-kt al-

gorithm [77] with a radius parameter value of R = 0.4. A multivariate technique (Jet

Vertex Tagger) [78] is applied in order to identify and select jets originating from the hard-

scatter interaction, at a working point corresponding to a 92% efficiency for identifying such

jets and allowing an observed fake rate of 2% from pile-up jets. Jets are also calibrated

– 8 –
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using energy- and η-dependent corrections [79]. Only jets with a transverse momentum

pT > 20 GeV and |η| < 4.5 are considered in the following. In order to identify jets con-

taining b-hadrons (referred to as b-jets in the following), the MV2c10 algorithm is used,

which combines impact parameter information with the explicit identification of secondary

and tertiary vertices within the jet into a multivariate discriminant [80]. Operating points

are defined by a single threshold in the range of the discriminant output values and are

chosen to provide a specific b-jet efficiency in simulated tt̄ events. The working point used

in this analysis has an efficiency of 77% for b-jet tagging. It has rejection factors of 6, 22,

and 134 against c-jets, hadronic decays of τ -leptons, and jets from light quarks or gluons,

respectively. A scale factor is applied to account for b-jet tagging efficiency differences

between MC simulation and data [81].

The magnitude of the missing transverse momentum, Emiss
T [82], is reconstructed from

the negative vector sum of transverse momenta of reconstructed and calibrated particles

and jets. The reconstructed particles are electrons, photons, τ -leptons and muons. Addi-

tionally, there is a second contribution calculated from ID tracks that are matched to the

primary vertex and not associated with any of the selected objects (soft objects).

To avoid assigning a single detector response to more than one reconstructed object,

a sequential overlap-removal procedure is adopted. Jets are removed if found to be within

∆R = 0.2 of an electron or muon track, unless they satisfy the b-tagging requirements.

In the electron channel, jets are not removed if their pT is at least 20% higher than that

of the electron. In the muon channel, a jet is not removed if it has at least three tracks

originating from the primary vertex. Electrons or muons within a sliding-size cone around

the remaining jets, defined as ∆R = min{0.04 + 10 GeV/pT(`), 0.4}, are rejected. Muons

that can be matched to an energy deposit in the calorimeter (calorimeter-tagged muons)

are removed if they share tracks with an electron. Electrons are then removed if they share

tracks with one of the remaining muons.

4.2 Reconstruction and selection (prompt signature)

All selected events are required to contain leptons which must satisfy flavour and charge

requirements, such that the event consists of exactly µ±µ±e∓ in the muon channel and

e±e±µ∓ for the electron channel. Furthermore, a requirement is imposed on the three-

lepton invariant mass constructed from the three final-state leptons: 40 < m(`, `, `′) <

90 GeV. Its distribution for signal events is centred below the mass of the W boson, as the

neutrino escapes undetected.

If the mass of the HNL is smaller than half the mass of the W boson, the leading

lepton will generally originate from the W boson decay and the other leptons from the

N decay. Accordingly, the dilepton invariant mass m(`, `′) is determined as the invariant

mass of the eµ combination which excludes the leading e or µ in the electron and muon

channels, respectively. Its distribution is centred below the mass of the HNL.

In the muon channel, both the higher-pT and lower-pT (subleading) muons are required

to have pT > 23 GeV and pT > 14 GeV, respectively. In the electron channel, the leading

and subleading electrons are required to have a transverse momentum pT > 27 GeV and

pT > 10 GeV, respectively. Additionally, to reject the large number of Z+jets background

– 9 –
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Muon channel Electron channel

exactly µ±µ±e∓ signature exactly e±e±µ∓ signature

pT(µ) > 4 GeV

pT(e) > 7 GeV (2015), 4.5 GeV (2016)

leading muon pT > 23 GeV leading electron pT > 27 GeV

subleading muon pT > 14 GeV subleading electron pT > 10 GeV

m(e, e) < 78 GeV

40 < m(`, `, `′) < 90 GeV

b-jet veto

Emiss
T < 60 GeV

Table 1. Signal region selection criteria for the prompt trilepton analysis.

Channel mN = 5GeV mN = 10GeV mN = 20GeV mN = 30GeV mN = 50GeV

cτ = 1mm cτ = 1mm cτ = 0.1mm cτ = 10µm cτ = 1µm

Muon (0.6±0.1)% (1.8±0.2)% (6.8±0.4)% (8.8±0.5)% (9.9±0.5)%

Electron (0.3±0.1)% (1.8±0.2)% (6.9±0.4)% (7.9±0.5)% (5.1±0.3)%

Table 2. Prompt-trilepton signal efficiencies for muon and electron channels after applying all

selection criteria. The uncertainties are statistical only.

events that contain electrons with a misidentified charge, the invariant mass of the electrons

must satisfy m(e, e) < 78 GeV. In both channels, the events must not have b-tagged jets

and the Emiss
T value must be less than 60 GeV. A summary of the signal region selection

criteria is given in table 1.

The impact of the final event selection on the efficiency for the signal samples is shown

in table 2. The selection efficiency is defined as the fraction of generated events that

were reconstructed and satisfied the selection criteria for the muon and electron channel

(pp→W (µ)N(→ µeν) or pp→W (e)N(→ eµν)). The black triangles in figure 2 show the

typical dependence of the final selection efficiency in the muon channel on the mean proper

decay length of the HNL. The efficiency is constant for mean decay length up to about

0.1 mm, beyond which it decreases due to a sharp reduction in the efficiency of the standard

tracking algorithm. This illustrates the complementarity with the displaced-vertex search

described in section 5.

4.3 Backgrounds and signal extraction (prompt signature)

The SM backgrounds that can lead to the same signature as the one from the prompt heavy

neutral lepton are a mixture of prompt real leptons and non-prompt leptons and leptons

from pile-up. These backgrounds can be split into two broad categories, irreducible and

reducible types. The irreducible background is composed of exactly three leptons, where
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Figure 2. HNL search event selection efficiency as a function of mean proper decay length evaluated

from simulation. The efficiency for the prompt signature in the muon channel is shown for an HNL

mass of 10 GeV, while the efficiencies for the displaced signature are shown for four different HNL

masses. Error bars represent MC statistical uncertainties.

the only SM sources are diboson and triboson events as well as tt̄V (V = W,Z). These

backgrounds are negligible due to the small cross section of these processes in this selection.

Reducible background events contain what is referred to as fake leptons. In the case

of electrons, these include contributions from semileptonic decays of b- and c-hadrons,

photon conversions and jets with large electromagnetic energy (from hadronisation into

π0’s or from early showering in the calorimeter). In the case of muons, they can originate

from semileptonic decays of b- and c-hadrons, from charged hadron decays in the tracking

volume, or from punch-through particles emerging from high-energy hadronic showers. A

large fraction of such events originates from W+jets and multijets events, in the following

referred to as multi-fake events. This background is determined from data.

Other subdominant contributions with two or more real leptons such as Z+jets, single-

top-quark, diboson (WW , WZ and ZZ) and triboson events with hadronic decays are

evaluated with simulation. The dominant tt̄ background is derived from CRs in data, with

shape extracted from MC simulation as described below.

To properly describe the backgrounds, a simultaneous binned maximum-likelihood fit

is performed in three control regions (CR) and the signal region (SR). Normalisation factors

are obtained for the most dominant MC background tt̄ (µtt̄) and the multi-fake background

(µmf).

As described in section 4.2, the SR is defined by selecting events with four criteria:

0) Same-charge and same-flavour (SCSF) lepton pairs, 1) 40 < m(`, `, `′) < 90 GeV, 2) A

b-jet veto and 3) Emiss
T < 60 GeV. The three CRs used are obtained by inverting one of

the requirements of the SR definition (CR-1, CR-2 and CR-3). The maximum-likelihood

fit uses the pT distribution of the third lepton for the three CRs, which provides good

separation of the different background sources, while the m(`, `′) distribution is used for

the SR, as it provides good separation of the background from the various signal models.

An overview of the criteria is given in table 3.
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Criterion Signal region Control region Fit

distribution

0 exactly one SCSF lepton pair m(`,`′)

1 40 <m(`,`,`′)< 90 GeV m(`,`,`′)≤ 40GeV ||m(`,`,`′)≥ 90GeV pT(`′)

2 b-jet veto at least one b-jet pT(`′)

3 Emiss
T < 60GeV Emiss

T ≥ 60GeV pT(`′)

Table 3. Signal and control region selection criteria for the prompt HNL analysis and the corre-

sponding distribution used in the binned maximum-likelihood fit in the SR (criterion 0) and the

three CRs (criteria 1–3). In addition, estimation regions corresponding to the SR and the three

CRs are defined by requiring all leptons to have the same charge. Criteria 0–3 are all used for the

SR. Only one of them is inverted to define the corresponding CR.

Three estimation regions (ER) are constructed the same way as the CRs except that

all three leptons should have the same charge. In addition, a fourth estimation region is

defined with only the requirement of all leptons having the same charge (and the rest of

the SR requirements). Additionally, isolation requirements on the leptons are loosened

in all ERs to increase the number of events in data and also the number of fake leptons.

The shape and initial normalisation of the multi-fake background are measured in these

estimation regions as the difference between the data and the simulated backgrounds that

contain two or more prompt real leptons. The third-lepton pT distribution is used for the

three estimation regions corresponding to the three CRs, while the m(`, `′) distribution

is used for the estimation region corresponding to the SR. The resulting statistical uncer-

tainty dominates the multi-fake background uncertainties and is propagated as a bin-by-bin

systematic uncertainty in the final maximum-likelihood fit.

A simultaneous binned maximum-likelihood fit is performed to data in order to ob-

tain normalisation factors for the dominant tt̄ background (µtt̄) and the derived multi-fake

background (µmf). A value µtt̄ = 1.0 would imply no normalisation change relative to

the MC prediction, while µmf = 1.0 would imply the same normalisation of the multi-fake

background as was determined in the estimation regions. Table 4 shows the resulting nor-

malisation factors from a fit under the background-only hypothesis using only the control

regions CR-1 to CR-3, as well as using these same three control regions together with the

signal region. The statistical uncertainty associated with multi-fakes in the control regions

for the electron channel is large, giving enough freedom for the fit to estimate the normal-

isation factor. After adding the signal region, the total statistical uncertainty is smaller

because more data are added, constraining the normalisation factor. In the muon channel,

the statistical uncertainty is lower, reducing the impact of adding the signal region.

The total uncertainty in the expected signal yield is presented for the different signal

points in table 5 using the post-fit systematic uncertainties. The relative statistical uncer-

tainty arising from the limited number of events in the MC samples and in the CRs for

the multi-fake background estimation is shown in parentheses. Systematic uncertainties do

not have a large impact on the signal yield except for the lowest masses. The most promi-

nent systematic uncertainties are related to the variation of the pT resolution correction of

– 12 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
5

Channel Fit configuration µmf µtt̄

Muon
only CRs 0.97(38) 0.90(14)

CRs + SR 1.48(34) 0.88(13)

Electron
only CRs 0.42(92) 1.02(16)

CRs + SR 0.81(28) 0.99(15)

Table 4. Normalisation factors obtained for multi-fake µmf and tt̄ µtt̄ in different fit regions after

the background-only fit. Shown are full post-fit uncertainties of the normalisation factors taking

into account all statistical and systematic uncertainties.

Channel mN = 5GeV mN = 10GeV mN = 20GeV mN = 30GeV mN = 50GeV

cτ = 1mm cτ = 1mm cτ = 0.1mm cτ = 10µm cτ = 1µm

Muon 19% (15%) 8.1% (6.7%) 4.2% (4.1%) 4.3% (3.9%) 3.5% (3.3%)

Electron 14% (14%) 7.8% (7.0%) 4.8% (4.1%) 4.6% (3.6%) 4.7% (3.6%)

Table 5. Prompt-trilepton relative uncertainty of signal yields for muon and electron channels

after applying the selection criteria. Uncertainties correspond to those obtained after the fit. Un-

certainties associated to the limited number of events in the MC samples and in the CRs for the

multi-fake background estimation are shown in parentheses.

muon tracks in the MS and ID, the variation of the energy scale calibration of electrons,

and calibration variations of the jet energy resolution and scale.

For all simulated backgrounds, systematic uncertainties related to the reconstruction

and identification of leptons and jets as well as the missing transverse momentum are

applied. Uncertainties associated with charged leptons arise from the trigger selection, the

object reconstruction, the identification, and the isolation criteria, as well as the lepton

momentum scale and resolution [74, 75]. Uncertainties associated with jets arise from the

jet reconstruction and identification efficiencies related to the jet energy scale (JES) and

jet energy resolution, and from the Jet Vertex Tagger efficiency [79]. The JES-related

uncertainties contain 23 components which are treated as statistically independent and

uncorrelated. Some of these components are related to jet flavour, pile-up corrections,

η dependence and high-pT jets. The uncertainties associated with Emiss
T are propagated

from the uncertainties in the reconstruction of leptons and jets since they are used for the

Emiss
T calculation. Uncertainties due to soft objects are also considered [82]. Additional

cross-section uncertainties of the various backgrounds estimated in MC simulation are

considered. The systematic uncertainties of the backgrounds are smaller than the statistical

uncertainty in the phase space selected by this prompt HNL analysis. The most prominent

systematic uncertainties are related to the identification of the analysis objects, namely

(relative uncertainty in parentheses) calibration variations of the jet energy resolution and

scale (6%), jet pseudorapidity inter-calibration (5%) and efficiency scale factor of b-jet

tagging (2%) [81]. Other systematic uncertainties such as the variation of the pT resolution

correction of muon tracks in the MS and ID and the variation of the energy scale for
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Figure 3. Third-lepton pT distributions in the control regions CR-1 (left), CR-2 (middle) and

CR-3 (right) for the prompt HNL analysis in the muon channel, showing post-fit background-only

hypothesis including all the uncertainties and normalised in both CRs+SR. The total uncertainty

in the background is shown as dashed regions.

the calibration of electrons [76] account for systematic effects smaller than ∼1%. A 50%

systematic uncertainty is also applied to the yield of Z+jets events, accounting for possible

mismodelling of non-prompt leptons in the simulation.

Systematic uncertainties are parameterised by nuisance parameters with Gaussian con-

straints in the likelihood fit. These nuisance parameters are shared between all samples,

while statistical uncertainties are modelled using Gamma distributions. The statistical

uncertainty of the total MC-based background is treated with a single nuisance parameter

for each bin in the likelihood [83, 84].

The third-lepton pT distributions for each control region using the post-fit normali-

sation factors as measured in control and signal regions combined are shown in figures 3

and 4 for the muon and electron channels, respectively. The number of multi-fake events

in the electron channel is about a third of the ones in the muon channel. When performing

the CR-only fit, this is reduced further by a factor of about two, yielding a large uncer-

tainty in the electron channel µmf CR-only result. The invariant mass distributions of the

second and third leptons in the signal region for the signal-plus-background post-fit are

shown in figure 5. This variable provides a good signal and background separation as most

signal mass points concentrate in the first three bins, also allowing for distinction between

different signal mass values.

The difference between data and the multi-fake estimate in the lowest bin of CR-3 (see

figure 3, right) is responsible for a change of µmf by 1.3σ when including the SR in the fit

for the muon channel (see table 4). This was found to be anti-correlated with the statistical

uncertainty parameterisations of MC and multi-fake backgrounds in the lowest bin of CR-3,

as a consequence of a statistical fluctuation of data in the low-pT spectrum of this region.

Further checks were conducted, including a p-value test in the signal region using normal-

isation factors as measured in the CRs. The p-values are determined without taking into

account the fit parameters associated with statistical uncertainty in the SR and found to be

7.2% for the muon channel and 13.2% for the electron channel. As this lies above the usual

rejection level of 5%, the test is considered satisfactory. Upon using the background-only

hypothesis normalised in both CRs and SR very good compatibility was found.
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Figure 4. Third-lepton pT distributions in the control regions CR-1 (left), CR-2 (middle) and CR-

3 (right) for the prompt HNL analysis in the electron channel, showing post-fit background-only

hypothesis including all the uncertainties and normalised in both CRs+SR. The total uncertainty

in the background is shown as dashed regions.

Figure 5. Data-to-prediction comparison of dilepton invariant mass distributions in the signal

regions for the prompt signature in the muon (left) and electron (right) channels. The prediction

including its uncertainty is post-fit. The total uncertainty in the background is shown as dashed

regions. Signal yields, overlaid as lines, correspond to observed 95% confidence-level exclusion limits

for different mass scenarios: for the muon channel, the signals have (mN , cτ , |U |2) values of (5 GeV,

4.5 mm, 7.1 ×10−5), (10 GeV, 2.7 ×10−1 mm, 3.2 ×10−5), (20 GeV, 2.1 ×10−2 mm, 1.1 ×10−5),

(30 GeV, 2.2 ×10−3 mm, 1.3 ×10−5) and (50 GeV, 8.2 ×10−5 mm, 2.5 ×10−5); for the electron

channel, the signals have (mN , cτ , |U |2) values of (5 GeV, 1.6 mm, 1.9 ×10−4), (10 GeV, 2.1 ×10−1

mm, 4.1 ×10−5), (20 GeV, 1.6 ×10−2 mm, 1.4 ×10−5), (30 GeV, 1.9 ×10−3 mm, 1.5 ×10−5) and

(50 GeV, 5.4 ×10−5 mm, 3.8 ×10−5).
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For this search, two models are compared with the data: the background-only model

describing the SM processes and a signal-plus-background model in which the signal under

investigation is added to the SM background. First, a discovery hypothesis test is performed

in which a rejection of the background-only model given the observed data is examined.

Afterwards, the signal strength in the signal-plus-background model is fixed to different

values and the CLS [85] method is used to exclude various signal strengths. Exclusion

limits on the signal-strength fit parameter translate directly into limits on |U |2. A signal

with a given mixing angle is considered excluded once the p-value for the CLS =CLs+b/CLb

value is below 0.05 and therefore corresponds to a 95% confidence-level exclusion limit. An

overview of different signal shapes in the SR is shown in figure 5 for which the signal yield

corresponds to a 95% confidence-level exclusion limit for each mass point. The exclusion

limits in |Uµ|2 and |Ue|2 for the different signal hypotheses are shown in figure 6 together

with those obtained from the displaced HNL search. The expected limits are determined

using the results of a CR-only fit as input to the limit extraction procedure. The offset

by almost 1σ from the expected limit for the muon channel shown in figure 6 originates

from the use of central values for the statistical uncertainty Gamma distributions in the

SR for the Asimov dataset. In figure 5, scaled (post-fit) Gamma nuisance parameters are

used for the statistical uncertainty parameters, which largely dominate over systematic

uncertainties. For the electron channel, the post-fit statistical uncertainty parameters

deviate less from their central value as µmf has more freedom in the CRs, and consequently

a general offset is not observed. The deviation for the muon channel is a consequence of

the aforementioned µmf constraint in the lowest bin of CR-3.

5 Displaced-vertex signature

For mN . 20 GeV, as the HNL lifetime gets longer for lower masses and coupling strengths,

the searches relying on standard prompt objects, as defined above, become highly ineffi-

cient. The signature of a displaced vertex (DV) is needed to explore these complementary

regions of the parameter space. Another advantage of this approach is that the requirement

of a DV detached from the primary pp interaction by 4 mm or more in the transverse plane

eliminates the vast majority of SM backgrounds. In addition to probing lower masses and

coupling strengths, this allows the requirement of same-charge same-flavour leptons to be

removed and thus the search to be performed without relying on LNV.

Searches for long-lived neutral particles using DV signatures conducted so far by the

ATLAS [86–93] and CMS [94–100] Collaborations considered the new particles to be high-

pT decay products of other massive particles, with relatively large branching ratios. None

of these provided any relevant sensitivity to HNLs due to high-pT requirements or to the

requirement that two displaced vertices must be reconstructed in the same event. It was

noted [25–27] that HNLs from W boson decays produce a distinct signature which had not

yet been probed at the LHC: a prompt lepton from the W boson and a DV formed with

tracks of relatively low pT, among which there is at least one belonging to a lepton.
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5.1 Trigger and preselection (displaced signature)

The displaced signature explored in this search comprises a prompt and isolated muon

accompanied by a DV formed by either two muons or a muon and an electron. A prompt

lepton from the W boson decay is essential for triggering the event. The single-muon

trigger with a pT threshold of 26 GeV is used.

Displaced vertices in the ID can be reconstructed at radial distances up to the first

SCT layer at ∼300 mm due to the application of a large-radius tracking (LRT) algorithm

optimised for tracks with large unsigned transverse impact parameters relative to the pri-

mary vertex (d0) [101]. Large-radius tracking is computationally intensive and is therefore

not performed on the entirety of the dataset but rather on a subset of events preselected

according to a specific set of criteria which must rely on the standard track-reconstruction

algorithm. In this analysis, this preselection requires the presence of at least two muons

with |η| < 2.5 and is applied to the 2016 dataset, corresponding to an integrated luminosity

of 32.9 fb−1. One muon, meant to originate from an on-shell W boson decay, is required to

have an ID track matched to an MS track segment, have pT > 28 GeV, and satisfy “loose”

isolation and identification criteria as defined in ref. [75]. Another muon, which targets a

displaced muon from an HNL decay, is required to satisfy a “loose” isolation criterion and

have pT > 5 GeV; it must have an MS track which either has no matched track in the ID or,

if it has a matched track, must have either d0 > 0.1 mm, or d0 < 0.1 mm and χ2/dof > 5

for the MS-ID track matching, as defined in ref. [75]. The χ2/dof selection is added to

recover tracks which have relatively low d0 values but still correspond to a displaced muon.

For instance, it could be that, during standard reconstruction, the MS track from a muon

is incorrectly matched to an unrelated ID track.

5.2 Reconstruction and selection (displaced signature)

Large-radius tracking is performed on the dataset which satisfies the preselection, producing

an extended collection of tracks. Using these new tracks, muon and electron candidates

are reconstructed as described in section 4.1. Displaced-vertex candidates are also formed

using this extended track collection. The following additional requirements are imposed

on the tracks to be considered as seeds of the vertex reconstruction algorithm: they must

have pT > 1 GeV, d0 > 2 mm, at least two SCT hits, and at least one TRT hit or two

pixel hits. The vertex reconstruction algorithm described in ref. [90] is used, based on the

incompatibility graph method and iteratively merging all two-track vertices which are found

within 1 mm distance from each other. For an HNL decay length of the order of a cm, the

DV reconstruction efficiency (including the track reconstruction efficiency) is about 20%,

as studied in ref. [102].

The event selection requires the presence of at least one DV which satisfies the prop-

erties described below. The DV must be within the fiducial volume defined as 4 < rDV <

300 mm, where rDV is the distance to the beam axis. Since TRT hits do not have a well

defined z coordinate, the upper bound on rDV ensures that tracks have a sufficient number

of SCT hits for high-quality track and DV reconstruction. Then the DV is required to be

formed by exactly two tracks with opposite charges in order to be identified as decay prod-
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ucts of a neutral particle. A cosmic-ray veto,
√

(
∑
η)2 + (π −∆φ)2 > 0.04 (in which the

sum
∑
η and difference ∆φ refer to the two tracks forming the DV), is applied to eliminate

high-mass vertices from a single cosmic-ray muon which is reconstructed as two back-to-

back muons. The DV must be formed by at least one tight muon and an additional tight

lepton (either muon or electron), with a “tight” identification identical to the standard

one [74, 75] except that it does not impose a minimum number of pixel hits such as to be

efficient for DVs originating beyond the first pixel layer. Given a reconstructed track orig-

inating from the HNL decay, tight-lepton reconstruction efficiencies are around 70% and

50% for muons and electrons, respectively. Finally, a requirement is applied on the DV in-

variant mass mDV as defined by m2
DV = (

∑
Ei)

2−(
∑
~pi)

2, where the sum runs over the two

tracks forming the vertex. The requirement is chosen to be mDV > 4 GeV as a compromise

between keeping good signal efficiencies for HNL masses of 5 GeV and above, and rejecting

low-mass backgrounds from material interactions and decays of metastable SM particles.

The overall signal efficiency, defined as the fraction of generated signal events that were

reconstructed and satisfied the selection criteria, depends on the HNL mass and lifetime

and is typically (1–2)% in the regions probed by the displaced HNL search. Signal losses

are largely dominated by inefficiencies for displaced tracks and DV reconstruction. For a

given HNL mass, the efficiency for any value of the mean proper decay length cτ is obtained

from the simulated samples generated with cτ = 1, 10, 100 mm. To evaluate the efficiency

for a given value of cτ , each reconstructed event is weighted so that the generated event

sample is distributed according to exp(−ttrue/τ), where ttrue is the true proper decay time.

The resulting efficiencies are shown in figure 2. The efficiencies evaluated with this method

agree with those from the fully simulated MC samples with cτ of 1, 10 and 100 mm within

statistical uncertainties. Efficiencies increase with increasing mN due to the requirement

on the reconstructed vertex mass mDV > 4 GeV and due to the fact that the decay leptons

have larger momenta. The search is not sensitive to values of cτ lower than 0.1 mm or higher

than 1000 mm due to the requirement of a DV in the fiducial volume 4 < rDV < 300 mm.

Relevant systematic uncertainties that can affect the signal efficiencies (with rela-

tive magnitude in between parentheses) include uncertainties in the efficiencies for the

prompt-lepton reconstruction and identification (1%), displaced track and DV reconstruc-

tion (15%), displaced-lepton identification (5%), as well as uncertainties in the modelling

of lepton kinematic distributions and individual decay branching ratios (10%), in the mod-

elling of multiple pp interactions in the bunch crossing (10%), and due to MC statistical

uncertainties (10%). To evaluate the dominant 15% uncertainty due to the modelling of

displaced tracks and DV reconstruction, a sample of K0
S mesons is selected from two-pion

vertices in the invariant mass window 488–508 MeV. The rate of K0
S reconstruction is pa-

rameterised as a function of the sum of the pT of the two tracks (
∑
pT ) and the radial

distance (rDV ). In each window of
∑
pT and rDV , the efficiency is obtained by dividing

the event yield by the expected exponentially falling distance distribution, and a weight

is computed as the ratio between measured and simulated efficiencies. These weights are

normalised to be equal to one at small radii and then used to reweight the DV efficiencies

in the signal samples, and a relative difference of 15% is found as the maximum effect in the

final selection efficiency. In addition, uncertainties in the W boson production cross section
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(3%) and the integrated luminosity (2.2%) are taken into account for the interpretation.

The total systematic uncertainty, with all contributions added in quadrature, is 24%.

5.3 Backgrounds (displaced signature)

Possible background sources which can result in two-track DVs include hadronic inter-

actions in material, decays of metastable particles such as bottom, charm, and strange

hadrons, accidental crossings of charged particles produced in the collisions, and cosmic-

ray muons which either cross a charged particle from the collision or are reconstructed as

two back-to-back muons. All of these are reduced by over an order of magnitude when

requiring a prompt muon in the same event, and all except cosmic-ray muons are signifi-

cantly reduced when requiring both tracks to be matched to objects satisfying tight lepton

identification. No backgrounds from single cosmic-ray muons reconstructed as two back-

to-back muons remain after applying the cosmic-ray veto described in section 5.2. Other

backgrounds can arise in processes such as dijets and W+jets. These are processes with

large cross sections combined with a very low probability to produce a DV satisfying the

selection criteria, making these backgrounds extremely difficult to reproduce in simulations

due to the large numbers of events which need to be simulated. Therefore, they are studied

and evaluated in a fully data-driven manner using suitable control regions.

A study of the different types of background sources was performed using a control sam-

ple of events which fail the requirement of a prompt muon with a matched track in the ID,

which is part of the preselection (section 5.1). This control sample has undergone LRT and

thus consists of events collected by a variety of different triggers and preselections. With the

requirement of at least one DV, this sample contains 12 times more events than the sample

of events passing the preselection. Sub-categories are defined for DVs containing no recon-

structed lepton (0-lepton) and only one reconstructed lepton (1-lepton), as requiring two

leptons (2-lepton) would lead to an insufficient number of events for this study. For mDV <

2.5 GeV, more events with 0-lepton and 1-lepton DVs are observed in the high-density ma-

terial region as compared to the low-density region (as expected from hadronic interactions

in material). Likewise, more opposite-charge events are observed than same-charge events

(as expected from metastable particle decays). This shows that these two types of back-

grounds contribute at low mass. Above mDV = 2.5 GeV, the mDV distributions fall quickly

and coincide within 5% regardless of the DV being in a high-density or low-density material

region, regardless of the tracks being same-charge or opposite-charge, and regardless of the

number of tight leptons identified in the DV. The conclusion of this study is that, in the

signal region (mDV > 4 GeV), backgrounds from hadronic interactions and metastable par-

ticle decays provide a contribution of less than 5% relative to other sources of background.

Using the same control sample as above with two muons identified in the DV, peaks in

the mDV distribution are observed at the mass value of the J/ψ and ψ(2S) mesons (3.1 GeV

and 3.7 GeV, respectively). These peaks correspond to decay distances in the range 4–

40 mm, consistent with the decays of b-hadrons into J/ψ and ψ(2S). From integrating fits

to these two peaks in the region mDV > 4 GeV, taking into account the fact that this sample

is statistically enhanced relative to the samples used in the search as well as fit uncertainties,

a contribution of less than 0.005 background events from J/ψ and ψ(2S) decays is estimated
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Leptons in DV Same-charge DV Opposite-charge DV Opposite-charge DV estimated

2 0 0 (signal region) < 2.3 at 90% CL

1 (µ) 83 89 82.4±9.0

1 (e) 28 35 27.8±5.3

0 169254 168037

Table 6. Observed number of events in the control and validation regions used for evaluating the

backgrounds in the displaced HNL signature, including all sources of background except for single

cosmic-ray muons reconstructed as back-to-back muons and metastable particles. Transfer factors

to translate the number of 0-lepton DVs to 2-lepton DVs are obtained using a same-charge DV

control sample. Validation is performed using 1-lepton DVs. The number of events in the signal

and validation regions is also indicated.

in the signal region. No contributions from the very short-lived Υ meson are expected due

to the fact that the probability for them to result in displaced decays is negligible, and

indeed no two-muon DVs are found for mDV > 3.85 GeV in the control sample.

The number of background events in the signal region, which requires opposite-charge

DVs, is estimated using a control region of same-charge DVs, all other requirements being

the same. This is done by applying a transfer factor from 0-lepton DVs to 2-lepton DVs

obtained in the same-charge control region. This provides an unbiased estimate of all

backgrounds remaining after the selection for which the ratio of 2-lepton background DVs

to 0-lepton background DVs does not depend on the DV charge configuration. While this

is the case for accidental crossings including those involving cosmic-ray muons, it does not

include single cosmic-ray muons reconstructed as back-to-back muons nor decays of neutral

hadrons which are either metastable or produced in material interactions, which can be

neglected in the mDV > 4 GeV region as discussed above. The validity of the method is

verified by performing the estimate on a validation sample of 1-lepton DVs. The numbers

of events observed in the control regions are reported in table 6. The estimated numbers

of events in the 1-lepton DV validation region for electron and muon are compatible with

the observed numbers within statistical uncertainties. From a 90% confidence-level limit

of 2.3 background events with 2-lepton DVs in the same-charge DV control region (where

0 are observed), an upper limit of 2.3 × 168037/169254 ∼ 2.3 is obtained for the 2-lepton

DVs in the signal region (where 0 are observed).

6 Results

Observations in the signal regions are consistent with background expectations in both the

prompt and displaced signatures described in sections 4 and 5, respectively. For a given

HNL mass and lifetime, the selection efficiency is obtained from MC simulations, and

the uncertainty in the efficiency is evaluated. Combining this information with the event

yield obtained from the integrated luminosity of 36.1 fb−1 and 32.9 fb−1 for the prompt

and displaced analyses, respectively, and the HNL production cross section and branching

ratio (eq. (2.1)), a set of choices of HNL coupling strengths (|U |2) and masses (mN ) are
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HNL mass for the prompt signature (the region above the black line is excluded) and the displaced

signature (the region enclosed by the red line is excluded). The solid lines show limits assuming

lepton-number violation (LNV) for 50% of the decays and the long-dashed line shows the limit in

the case of lepton-number conservation (LNC). The dotted lines show expected limits and the bands

indicate the ranges of expected limits obtained within 1σ and 2σ of the median limit, reflecting

uncertainties in signal and background yields.

excluded at the 95% confidence level. Calculations of confidence intervals and hypothesis

testing are performed using a frequentist method with the CLS formalism as implemented

in RooStats [103]. The exclusion limits are shown in figure 6, in the cases of dominant

mixing to νµ (top) and νe (bottom), for the cases of LNV (both signatures, solid lines) and

LNC (displaced signature, long-dashed line).

Limits from the prompt signature cover the mass range 5–50 GeV. In the mass range

20–30 GeV, the regions in |Uµ|2 and |Ue|2 above 1.4× 10−5 are excluded, a reach which is

limited by the integrated luminosity of the analysed data, as well as the selection efficiency

and the signal-to-background ratio. At higher masses, the sensitivity decreases due to a

kinematic suppression of HNL production from the W boson decay. For masses below
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20 GeV, the long decay path causes large efficiency losses. This is the region where the

displaced signature becomes more sensitive.

Limits from the displaced signature cover the mass range 4.5–10 GeV, in which they

exclude coupling strengths down to |Uµ|2 ∼ 2×10−6 (1.5×10−6) assuming LNV (LNC). For

comparison, the best previous constraints on |Uµ|2 in this mass range were obtained with

the DELPHI experiment at LEP1 [23], excluding values down to ∼ 1.5× 10−5. The limit

contour of the displaced signature takes the shape of an oblique ellipse which approximately

corresponds to HNL proper decay lengths in the range 1–30 mm. It is also limited from

below by the product of integrated luminosity and efficiency. The interpretation with LNV

provides weaker limits because the search is sensitive to long lifetimes and, for a given

coupling strength, the lifetime is reduced by a factor of two when LNV decays are allowed.

7 Conclusions

A search for heavy neutral leptons (HNLs) produced in leptonic decays of on-shell W bosons

has been performed using data recorded by the ATLAS detector at the LHC in proton–

proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated lumi-

nosity of up to 36.1 fb−1, using two distinct signatures. The prompt signature requires three

prompt leptons (either muons or electrons) with no same-flavour opposite-charge configu-

ration. It probes mean HNL proper decay lengths of 1 mm or less, with the assumption of

lepton-number violation. The displaced signature, explored for the first time at the LHC,

features a prompt muon accompanied by a vertex displaced in the radial direction by 4–

300 mm from the beam line containing two opposite-charge leptons (either two muons or a

muon and an electron) with a reconstructed vertex mass mDV > 4 GeV. It does not require

lepton-number violation and probes longer lifetimes, corresponding to lower masses.

Observations are consistent with background expectations and results of the search

are presented as exclusion contours in the HNL coupling strength versus mass plane in a

model postulating a single HNL mixing either to muon or electron neutrinos. The prompt

signature excludes coupling strengths above 4 × 10−5 in the mass range 10–50 GeV, with

a most stringent limit of 1.1 × 10−5 for a mass of 20 GeV. In the case of mixing to muon

neutrinos, the displaced signature excludes coupling strengths down to 2×10−6 (1.5×10−6)

at best in the mass range 4.5–10 GeV assuming lepton-number violation (conservation),

surpassing the best previous constraints using on-shell Z boson decays at LEP1 by one

order of magnitude.

A notable characteristic of the displaced signature is that backgrounds fall off sharply

with the vertex mass. Heavy neutral leptons with smaller coupling strengths (longer life-

times) at higher masses can be probed by increasing the W boson yield at higher luminosi-

ties. Also, even though this was not done in this work, it is possible to probe long-lived

HNL mixing to the electron flavour, and also to consider their semileptonic decays.

– 22 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
5

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff

from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Aus-

tralia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and

FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST

and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR,

Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France;

SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong

SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;

CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT,

Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR;

MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa;
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S. Caron119, E. Carquin147b, S. Carrá46, J.W.S. Carter167, M.P. Casado14,e, A.F. Casha167,

D.W. Casper171, R. Castelijn120, F.L. Castillo174, V. Castillo Gimenez174, N.F. Castro140a,140e,

A. Catinaccio36, J.R. Catmore134, A. Cattai36, J. Caudron24, V. Cavaliere29, E. Cavallaro14,

D. Cavalli68a, M. Cavalli-Sforza14, V. Cavasinni71a,71b, E. Celebi12b, F. Ceradini74a,74b,

L. Cerda Alberich174, K. Cerny130, A.S. Cerqueira80a, A. Cerri156, L. Cerrito73a,73b, F. Cerutti18,

A. Cervelli23b,23a, S.A. Cetin12b, D. Chakraborty121, S.K. Chan59, W.S. Chan120, W.Y. Chan90,

J.D. Chapman32, B. Chargeishvili159b, D.G. Charlton21, T.P. Charman92, C.C. Chau34, S. Che126,

A. Chegwidden106, S. Chekanov6, S.V. Chekulaev168a, G.A. Chelkov79,aw, M.A. Chelstowska36,

B. Chen78, C. Chen60a, C.H. Chen78, H. Chen29, J. Chen60a, J. Chen39, S. Chen137, S.J. Chen15c,

X. Chen15b,av, Y. Chen82, Y-H. Chen46, H.C. Cheng63a, H.J. Cheng15a,15d, A. Cheplakov79,

E. Cheremushkina123, R. Cherkaoui El Moursli35e, E. Cheu7, K. Cheung64, T.J.A. Chevalérias145,

L. Chevalier145, V. Chiarella51, G. Chiarelli71a, G. Chiodini67a, A.S. Chisholm36,21, A. Chitan27b,

I. Chiu163, Y.H. Chiu176, M.V. Chizhov79, K. Choi65, A.R. Chomont72a,72b, S. Chouridou162,

Y.S. Chow120, M.C. Chu63a, J. Chudoba141, A.J. Chuinard103, J.J. Chwastowski84, L. Chytka130,

K.M. Ciesla84, D. Cinca47, V. Cindro91, I.A. Cioară27b, A. Ciocio18, F. Cirotto69a,69b,
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M. Dumancic180, A.E. Dumitriu27b, A.K. Duncan57, M. Dunford61a, A. Duperrin101,
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M. Gouighri35b, D. Goujdami35c, A.G. Goussiou148, N. Govender33b,a, C. Goy5, E. Gozani160,

I. Grabowska-Bold83a, E.C. Graham90, J. Gramling171, E. Gramstad134, S. Grancagnolo19,

M. Grandi156, V. Gratchev138, P.M. Gravila27f , F.G. Gravili67a,67b, C. Gray57, H.M. Gray18,

C. Grefe24, K. Gregersen96, I.M. Gregor46, P. Grenier153, K. Grevtsov46, N.A. Grieser128,

J. Griffiths8, A.A. Grillo146, K. Grimm31,k, S. Grinstein14,x, J.-F. Grivaz132, S. Groh99,

E. Gross180, J. Grosse-Knetter53, Z.J. Grout94, C. Grud105, A. Grummer118, L. Guan105,

W. Guan181, J. Guenther36, A. Guerguichon132, F. Guescini115, D. Guest171, R. Gugel52,

T. Guillemin5, S. Guindon36, U. Gul57, J. Guo60c, W. Guo105, Y. Guo60a,s, Z. Guo101,

R. Gupta46, S. Gurbuz12c, G. Gustavino128, P. Gutierrez128, C. Gutschow94, C. Guyot145,

M.P. Guzik83a, C. Gwenlan135, C.B. Gwilliam90, A. Haas124, C. Haber18, H.K. Hadavand8,
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D. Moreno22, M. Moreno Llácer36, C. Moreno Martinez14, P. Morettini55b, M. Morgenstern120,

S. Morgenstern48, D. Mori152, M. Morii59, M. Morinaga179, V. Morisbak134, A.K. Morley36,

G. Mornacchi36, A.P. Morris94, L. Morvaj155, P. Moschovakos36, B. Moser120, M. Mosidze159b,

T. Moskalets145, H.J. Moss149, J. Moss31,m, K. Motohashi165, E. Mountricha36, E.J.W. Moyse102,

S. Muanza101, J. Mueller139, R.S.P. Mueller114, D. Muenstermann89, G.A. Mullier96,

J.L. Munoz Martinez14, F.J. Munoz Sanchez100, P. Murin28b, W.J. Murray178,144,
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E. Torrence131, H. Torres48, E. Torró Pastor148, C. Tosciri135, J. Toth101,ab, D.R. Tovey149,

A. Traeet17, C.J. Treado124, T. Trefzger177, F. Tresoldi156, A. Tricoli29, I.M. Trigger168a,

S. Trincaz-Duvoid136, W. Trischuk167, B. Trocmé58, A. Trofymov132, C. Troncon68a,
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(IN2P3), Villeurbanne; France
98 Departamento de F́ısica Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid;

Spain
99 Institut für Physik, Universität Mainz, Mainz; Germany

100 School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom
101 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France
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