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Abstract
Oral mucosal pathologies comprise an array of diseases with worldwide prevalence and medical relevance. Affecting a 
confined space with crucial physiological and social functions, oral pathologies can be mutilating and drastically reduce 
quality of life. Despite their relevance, treatment for these diseases is often far from curative and remains vastly understudied. 
While multiple factors are involved in the pathogenesis of oral mucosal pathologies, the host’s immune system plays a major 
role in the development, maintenance, and resolution of these diseases. Consequently, a precise understanding of immuno-
logical mechanisms implicated in oral mucosal pathologies is critical (1) to identify accurate, mechanistic biomarkers of 
clinical outcomes; (2) to develop targeted immunotherapeutic strategies; and (3) to individualize prevention and treatment 
approaches. Here, we review key elements of the immune system’s role in oral mucosal pathologies that hold promise to 
overcome limitations in current diagnostic and therapeutic approaches. We emphasize recent and ongoing multiomic and 
single-cell approaches that enable an integrative view of these pathophysiological processes and thereby provide unifying 
and clinically relevant biological signatures.

Keywords Multiomics · Oral pathology · Immunology · Cytomics · Transcriptomics · Proteomics · Metabolomics · 
Microbiome · Mass cytometry

Introduction

Oral mucosal pathology is a large but understudied 
field that has important implications for the health and 
quality of life of billions of people worldwide. The most 
common pathologies affecting the oral mucosa fall under 
three categories, including (1) benign, precancerous, and 
malignant neoplasms (e.g., fibromas, leukoplakias, and 
squamous cell carcinoma), (2) bacterial, fungal, and viral 
infectious diseases (e.g., periodontitis, candidiasis, and 
herpes simplex virus), and (3) autoimmune disorders (e.g., 
oral lichen planus, recurrent aphthous stomatitis, pemphigus 
vulgaris, and mucous membrane pemphigoid). Oral 
pathologies affect a carefully designed barrier of the human 
body between a strongly bacterially colonized environment 
of the oral cavity and the bordering, highly vascularized and 
multifunctional mucosa. The mucosal integrity is crucial for 
central human functions such as food intake, taste, speech, 
breathing, and esthetics, making disability in this area truly 
crippling to quality of life. The localization and functionality 
of the mucosa as a barrier at the interface of contrasting 
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environments imply a strong presence and involvement of 
the host’s immune system in the pathophysiology of most 
oral mucosal pathologies. An integrated examination of the 
immune system’s complex role in health and pathology of 
the oral mucosa is essential to advance the management of 
oral diseases.

Recently, advances in high-throughput transcriptomic, 
proteomic, metabolomic, and cytomic technologies have 
enabled the characterization of the complexity of localized 
and systemic diseases [1–5]. In this review, we focus on 
the interplay between oral pathology triggers and the 
host’s immune response mechanisms in the development, 
maintenance, progression, and resolution of pathological 
processes in the oral cavity. Importantly, we highlight recent 
technological advances that allow a multiomic assessment 
of immunological events involved in oral pathologies 
and the improvement of clinical care towards targeted 
immunotherapies and diagnostics.

Immune involvement in oral pathologies

The mucosa of the oral cavity represents an important physi-
ological barrier of the human body and, therefore, demon-
strates a high level of immune cell presence along its surface 
under healthy conditions. In consequence, emerging oral 
pathologies show a particularly strong immune involve-
ment. The deployed functional defense mechanisms on one 
hand and failure, dysfunction, or hyperfunction of the host’s 
immune response on the other determine the development 

and maintenance of pathological states. In the following 
paragraphs, we elucidate the elemental role of immune cells 
in the most common neoplastic, infectious, and autoimmune 
diseases of the oral cavity (Fig. 1) and demonstrate how the 
immune system’s involvement in oral pathologies can be 
leveraged to enhance early detection, prevention, treatment, 
and resolution of these diseases.

Neoplasms

Neoplasms or abnormal growths of tissue can occur any-
where in the body, but the oral mucosa is particularly prone 
to neoplastic processes, either from genetic, reactive, envi-
ronmental, or unknown triggers. Oral cavity cancer, most 
commonly squamous cell carcinoma, accounts for approxi-
mately 2% of all cancer diagnoses [6, 7]. In many patients, 
oral cavity squamous cell carcinoma (OSCC) is associated 
with alcohol and tobacco use, a small but increasing num-
ber of cases is driven by human papilloma virus (HPV)[8], 
and a third category of patients have no known risk factors. 
Pathogenetically, the chronic insult by carcinogens leads 
to the development of precancerous and dysplastic lesions 
that develop into malignancies. Mutagenesis is also driven 
by chronic inflammation in the context of bacterial or viral 
infection [9], which is demonstrated by the strong associa-
tion between persistent inflammation in chronic periodon-
titis and OSCC [10]. As these carcinogenic influences act 
on the oral cavity as a whole (field cancerization theory), 
cancer recurrence and metastasis, as well as synchronous 
or asynchronous secondary malignancies represent difficult 
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Fig. 1  Immune involvement at the mucosal barrier. Immune cells are 
heavily involved in diseases of the oral mucosa. In neoplastic malig-
nancies (left) such as oral cavity squamous cell carcinoma (OSCC), 
tumor invasion results in a pronounced immune reaction in the sur-
rounding tissue. Abundance and composition of anti-tumor immune 
infiltrates in the tumor microenvironment, including tumor-associ-
ated macrophages (TAM) and tumor-infiltrating lymphocytes (TIL), 
as well as levels of immunosuppressive myeloid-derived suppressor 
cells (MDSCs) and regulatory T cells, represent prognostically rel-
evant markers. In infectious diseases (middle), such as chronic peri-

odontitis, the activation of immune cells, such as neutrophils and 
monocytes, by dysbiotic bacteria leads to a pronounced localized 
immune response resulting in the destruction of soft tissue and bone. 
Autoimmune diseases of the oral mucosa (right), such as pemphigus 
vulgaris, are characterized by autoreactive immune cells and autoan-
tibodies targeting adhesive junctions in the oral mucosa. By disrupt-
ing the epithelial integrity, the inflammatory process leads to chronic 
blistering and painful ulcers and increases the mucosal susceptibility 
to bacterial infection and tissue destruction
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clinical challenges and contribute to the poor prognosis 
(50–60% 5-year survival rate) of OSCC [11–13]. Current 
treatment regimes, primarily relying on surgical removal 
of the tumor in combination with adjuvant radiation and 
chemotherapy for higher tumor stages, leave room for opti-
mization to improve outcomes, personalize treatment, and 
increase quality of life.

Despite many efforts to identify biological determinants 
of disease evolution in OSCC, existing predictive tools in 
patient surveillance and treatment are limited. To bridge this 
knowledge gap, understanding immune cell-mediated mech-
anisms is a high-yield approach due to the important role of 
the immune system in the development, progression, and 
metastasis of OSCC at the local and systemic levels. Locally 
within the tumor microenvironment, the mutual influence of 
innate and adaptive immune cells and cancer cells is a key 
determinant of tumorigenesis and the response to treatment 
[14, 15]. On the other hand, systemic immune dysfunction, 
such as immunodeficiencies and immunosuppressive treat-
ment, increase the risk for many malignancies, including 
OSCC, particularly with HPV-driven pathogenesis [16, 17]. 
A better understanding of immune mechanisms and involve-
ment, both detrimental and beneficial, in the pathogenesis 
of OSCC can be leveraged to improve early detection, pre-
diction of outcomes, and treatment optimization strategies.

For instance, a proteomic analysis of saliva comparing 
patients with OSCC to healthy individuals identified 
significant differences in the abundance of molecules 
related to the acute inflammatory response and regulation 
of humoral immune responses (e.g., complement factors, 
serotransferrin, and fibrinogen) [18]. These salivary 
diagnostics can be useful in improving early detection 
protocols, as well as for tumor surveillance after initial 
treatment. For example, towards early detection and risk 
stratification, antibody positivity against HPV16 oncogenic 
proteins E6/E7 in the plasma years before diagnosis is highly 
associated with the development of HPV-positive OSCC 
[19]. For tumor surveillance, salivary levels of HPV DNA 
after surgical tumor removal have demonstrated remarkable 
accuracy for the prediction of OSCC recurrence [20, 21].

An analysis of the immune infiltrates at the tumor inva-
sive front represents a promising path to predict outcomes 
more accurately than current tumor classification systems: 
expression of T cell subset markers and their distribution 
in and around the tumor can be useful in developing an 
immune scoring system that differentiates patients based on 
their survival [22]. In addition to the importance of histo-
logical examination of tumor tissue to quantify the immune 
involvement in OSCC, systemic-scale analyses reveal dis-
tinct immune changes that occur in patients with OSCC. 
Peripheral blood immune signatures are strongly tilted 
towards a state of immunosuppression, and multiple studies 
have found an increase in peripheral regulatory  CD4+ T cells 

and myeloid-derived suppressor cells in patients with OSCC 
[23, 24]. These patterns of immunosuppression also recur 
in proteomic analyses of saliva samples that show increased 
concentrations of immunosuppressive IL-10 and IL-13 [25]. 
Suppression of anti-tumoral immune responses mechanisti-
cally should result in a worse prognosis, and indeed evi-
dence suggests that regulatory T cells could play a role in the 
recurrence of OSCC [26]. However, the potential of these 
distinct immune signatures to predict clinical outcomes and 
treatment response has only been partially exploited.

As for many other cancers, immunotherapies are increas-
ingly incorporated into clinical protocols as adjuvant or neo-
adjuvant treatment options. Immune checkpoint inhibitors, 
such as PD-1/PD-L1 or CTLA-4 inhibitors, leverage the 
host’s antitumoral immune response by redirecting existing 
immune defense mechanisms against tumor cells. Similarly, 
the discovery of regulatory immune receptors on tumor-
fighting T cells or monocyte-derived suppressor cells, such 
as Vista, Tim-3, and Lag [27–29], has extended the reper-
toire of immunomodulatory protein targets. However, treat-
ment success is highly variable and not all patients benefit 
from immune checkpoint inhibitor therapy [30]. This incon-
sistent treatment response may be partially explained by the 
fact that PD-1/PD-L1 expression is highly variable and mod-
ulated by inflammatory and hypoxic conditions in the tumor 
microenvironment [31, 32]. However, expression of PD-1/
PD-L1 alone represents an insufficient predictor of treatment 
success [33]. In-depth functional and phenotypic analysis of 
the abundant immune populations (e.g., cytotoxic  CD8+ T 
cells [34] and tumor-associated macrophages [35, 36]) at the 
tumor invasive front of OSCC can help identify how immune 
presence influences the response to immunotherapies [37, 
38]. With a wider spectrum of available immunotherapies, 
including checkpoint inhibitors or growth-factor receptor 
antibodies, patient stratification approaches based on tumor 
phenotype and immune microenvironment are necessary to 
tailor the best treatment to each individual patient [39].

Infections

Of the up to 700 species of microbes present in the oral 
cavity, including bacteria, fungi, viruses, and protozoa, the 
bacterial colonies are best characterized and have many 
implications for oral and systemic health. The diversity of 
bacterial species reflects the presence of multiple biological 
niches with varying conditions, from hard tissues on which 
the bacteria are arranged in biofilms to mucosal surfaces, 
from aerobic to (more pathologically) anaerobic environ-
ments (e.g., in deepening periodontal pockets under accu-
mulated calculus) [40, 41]. This strong bacterial presence 
holds the pathogenetic potential for widespread diseases of 
the oral cavity. One of the most pertinent oral mucosal infec-
tions is periodontitis, which manifests as either a localized 
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or generalized, acute or chronic process. In chronic peri-
odontitis, inflammation triggered by bacteria, such as the 
gram-negative, facultative anaerobe Porphyromonas gin-
givalis, ultimately causes breakdown of connective tissue 
and alveolar bone around the teeth. Despite the initiation 
by bacteria, it is mainly the host’s inflammatory immune 
response that determines the destructive character of the 
disease [42]. Bacterial virulence factors, e.g., lipopolysac-
charide (LPS), directly activate the host’s immune cells 
via Toll-like receptor (TLR) 2 and TLR4 on the surface of 
innate immune cells, leading to release of pro-inflammatory 
mediators resulting in the characteristic tissue destruction. 
Chronic periodontitis is highly prevalent, affecting 46% of 
the U.S. population [43], and it is epidemiologically associ-
ated with many other systemic conditions. In the case of 
cardiovascular disease, periodontal bacteria can exacerbate 
these conditions by translocating into the bloodstream and 
directly promoting the formation of atherosclerotic plaques 
through innate and adaptive immune mechanisms [44, 45]. 
Furthermore, immune cells activated locally by bacteria at 
the gingival sulcus circulate systemically and contribute to 
adverse pregnancy outcomes (preterm birth, preeclampsia), 
diabetes, Alzheimer’s disease, and some cancers. [46–52] To 
date, bacterial diseases of the mouth are often refractory to 
available treatments, particularly in the case of periodontitis, 
leading to continued insult to the mouth and body from a 
prolonged, infected state.

In chronic lesions of periodontitis, disease progres-
sion towards tissue destruction and bone loss is driven by 
complex interactions between periodontal bacteria and the 
host’s proinflammatory immune response. The release of 
cytokines such as receptor activator of nuclear factor kB 
ligand (RANK-L), interleukin (IL)-1β, IL-6, tumor necrosis 
factor (TNF)-ɑ, and prostaglandin  E2a as well as increased 
proteolytic enzyme expression (e.g., of matrix metallo-
peptidase-13) by activated immune cells are immunological 
hallmarks of the disease [53]. Additionally, increased reac-
tive oxygen species released by activated neutrophils and 
reduced antioxidative compensation, both locally and sys-
temically, crucially contribute to periodontal pathogenesis 
[54]. In proteomic analyses of blood and gingival crevicular 
fluid, these factors can aid in the surveillance and predic-
tion of periodontitis progression [55]. Similarly, phenotypic 
and functional analyses of the immune infiltrates at gingi-
val lesions have increased our knowledge of the underlying 
pathomechanisms in periodontitis. Plasma cells represent 
one of the most predominant immune cell subsets in peri-
odontitis and have been demonstrated to exert an important 
role in the initiation of osteoclastogenesis [56–58]. To deter-
mine the effectiveness of different treatment approaches, 
tracking the dynamic evolution of the disease over time is of 
crucial importance. A transcriptomic longitudinal study of 
periodontitis in a primate model identified gene expression 

patterns in the gingival tissue that demarcated phases of ini-
tiation, progression, or remission in chronic periodontitis 
[59]. Therefore, temporal resolution can unveil biomarkers 
for disease resolution or treatment success. Of particular 
interest are systemic immune shifts that can indicate the 
outcome of current, suboptimal treatment approaches, which 
mainly consist of scaling, root planing, and potentially local 
antibiotic treatment, or trials of innovative, novel therapeu-
tics [60]. By capturing single-cell immune activation at a 
system level, peripheral blood signatures of active chronic 
periodontitis and disease remission can be recorded (Fig. 2). 
A recent study using suspension mass cytometry, i.e., 
cytometry by time-of-flight mass spectrometry (CyTOF), 
analysis of peripheral blood in patients with periodontitis 
showed heightened innate immune signaling in response to 
P. gingivalis-LPS and IL-2, 4, and 6, while adaptive immune 
branches showed marked inhibition of JAK/STAT signaling 
pathways, changes which were found to be reversible after 
standard treatment [61]. Such high-dimensional approaches 
can point towards hallmarks of localized inflammation, 
mechanistic links to systemic disease, and biomarkers for 
patient surveillance after treatment.

Autoimmune conditions

Autoimmune diseases of the oral cavity are less prevalent 
than neoplastic and infectious diseases, but they cause 
marked reduction in quality of life, and their treatment 
options are often limited [62]. Oral lichen planus, recurrent 
aphthous stomatitis, pemphigus vulgaris, and mucous mem-
brane pemphigoid are among the most frequently occurring 
autoimmune pathologies that affect the oral mucosa, and all 
suffer from incomplete understanding and/or lack of treat-
ment options. Curative treatments for these diseases are 
often non-existent, and symptomatic management is typi-
cally achieved with blunt immunosuppressive treatments, 
such as topical steroids, and avoidance of exacerbating life-
style factors, such as stress or dietary triggers [63].

One of the most common of these disorders, oral lichen 
planus, is a  CD8+ T cell-mediated inflammatory condi-
tion with no known cause or cure [64, 65]. Activation of 
cytotoxic  CD8+ T cell and T helper cells through anti-
gens presented on basal keratinocytes trigger a cascade of 
cytokine release (e.g., TNF-α for the recruitment of other 
inflammatory immune cell subsets), cytotoxicity against 
keratinocytes (e.g., via granzyme B and Fas-ligand), and 
destruction of vital tissue structure (e.g., by matrix metallo-
proteinases) [66]. On a transcriptomic level, RNA-sequenc-
ing has allowed for identification of the dysregulated genes 
in oral lichen planus, which are mostly involved in T cell 
activation and the Wnt signaling pathway in keratinocytes 
[67]. Another highly prevalent disease, recurrent aphthous 
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stomatitis, resembles oral lichen planus in its T cell-medi-
ated inflammatory pathophysiology and episodically affects 
up to 20% of the population [68, 69].

Alternatively, autoreactive B cell subsets and antibody-
releasing plasma cells can take center stage in autoimmune 
diseases: in oral pemphigus vulgaris, IgG autoantibodies are 
directed against members of the cadherin class of cell–cell 
adhesion molecules (e.g., desmoglein 1 and 3) and induce 
the formation of blisters by activating p38, MAPK, and 
mTOR signaling in keratinocytes, prompting cytoskeleton 
collapse and disrupting intercellular junctions [70]. Anal-
ysis of the transcriptome of pemphigus vulgaris lesions 
showed an IL-17A–dominated immune signature, and fur-
ther analyses confirmed an increase in Th17 immune cells 
which contribute to the induction of desmoglein-specific 
autoantibody production by B cells [71, 72]. Despite the 
well-characterized pathophysiology of pemphigus vulgaris, 
corticosteroids still represent the most commonly used ther-
apy for symptomatic management, while the development of 
targeted immune therapies is still in the early stages [73, 74], 
including promising results by targeting Bruton’s tyrosine 
kinase in autoreactive B cells with novel small molecule 
inhibitors [75]. Finally, mucous membrane pemphigoid, a 
similarly presenting blistering disease affecting the skin and 
mucous membranes, is also characterized by autoantibodies 

attacking epithelial structures, but the antigen targets differ 
from those in pemphigus vulgaris and are more variable, 
as they can include intracellular (BPAg1), transmembrane 
(BPAg2, integrins), or extracellular (collagen VII) proteins 
[76, 77]. Beyond the involvement of autoantibodies, little is 
known about the pathophysiological mechanisms of blister 
formation in mucous membrane pemphigoid, and targeted 
treatments are lacking [78].

High‑parameter omics to identify diagnostic 
and therapeutic predictive biomarkers

Oral mucosal pathologies are a heterogeneous group of 
diseases, ranging from rare to highly prevalent conditions 
that have serious consequences to health and survival. For 
example, they can promote tumorigenesis towards the devel-
opment of OSCC, exacerbate other diseases throughout the 
body, or cause chronic pain and functional restrictions. 
Despite these devastating consequences, they achieve rela-
tively little notice in research and science. In recent years, 
the development of high-dimensional and single-cell tech-
nologies has enabled the assessment of cytomic, proteomic, 
transcriptomic, and metabolomic alterations with unprec-
edented resolution (Table 1). Application of these emerg-
ing omic technologies, routinely utilized to investigate other 

Fig. 2  Systemic immune profiling in longitudinal studies using sus-
pension mass cytometry (CyTOF). Using CyTOF, systemic immune 
signatures can be profiled in a longitudinal study design, e.g., before 
and after treatment. In a streamlined workflow, collected blood sam-
ples are barcoded for batch processing, stained with antibodies for 
phenotypic and functional markers and analyzed using CyTOF. The 

acquired single-cell data can be visualized and interpreted using clus-
tering algorithms, and machine learning approaches can produce and 
validate reliable predictive models. In the end, the most predictive 
individual features are derived as biomarkers for disease, treatment 
success, or outcome
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malignant, infectious, or auto-immune disease processes, 
is urgently needed to develop an integrative view of com-
plex pathophysiological processes underlying oral mucosal 
pathologies [95].

CyTOF is a powerful analytic platform for the 
assessment of whole system’s immune alterations in 
neoplastic, infectious, and autoimmune oral pathologies. 
CyTOF, in contrast to conventional fluorescence-based 
flow cytometry, uses metal isotope-conjugated antibodies 
to measure over 50 parameters without significant 
spectral overlap on a single-cell level. Our previous 
work on chronic periodontitis illustrates the use of 
CyTOF to quantify over 800 immune cell phenotypic and 
functional features for an in-depth characterization of 
systemic immune perturbations in patients with chronic 
periodontitis before and after conventional treatment 
[61]. This longitudinal, prospective analysis identified an 
exaggerated proinflammatory response to P. gingivalis-
derived LPS in neutrophils and monocytes as a main 
characteristic of systemic inflammation. Importantly, the 
differences between controls and patients with chronic 
periodontitis identified by a cell-signaling elastic net 
algorithm (csEN) markedly diminished after total-mouth 

disinfection treatment. In studies with larger cohorts, these 
findings should be tested for their generalizability, and 
cytomic immune profiling should be used to measure the 
success of new targeted treatment options.

Complementing the multiplex analysis of circulating 
immune cells with CyTOF, high-dimensional imaging 
technologies have emerged and combine cell-level proteomic 
data with spatial information about the in  situ location 
of single cells. Imaging mass cytometry (IMC) [87], 
multiplexed ion beam imaging by time of flight (MIBI-TOF) 
[88], or co-detection by indexing (CODEX/PhenoCycler) 
[89, 96] allow the simultaneous detection of up to 60 protein 
markers for phenotype and function in tissues. With refined 
deep-learning cell segmentation algorithms, raw images 
can be converted into single-cell data for downstream 
analysis that might comprise supervised manual clustering, 
unsupervised clustering approaches, and spatial arithmetics 
such as neighborhood or distance-to-border analyses (Fig. 3) 
[97–99]. Additionally, these platforms can enable the 
simultaneous detection of protein and mRNA (RNAscope) 
targets, as recently demonstrated by Schulz et al. for the 
tumor microenvironment of breast cancer and melanoma 
[100, 101].

Table 1  Overview: characteristics of existing omic methods. Tran-
scriptomics, proteomics, metabolomics, and (spatial) cytomics 
capture biology at different levels of cellular function. While omic 
methods differ in their advantages and disadvantages, integrative 

multiomic studies can strengthen and empower the information con-
tent from each omic by describing biologically and clinically relevant 
interomic interconnectivity 

Omic Transcriptomics Proteomics Metabolomics Cytomics Spa�al cytomics
Most common 
technologies

Single cell RNAseq [79]
Bulk RNAseq [80]
Microarrays [81]

An�body-[82] or 
aptamer-based [83]
detec�on
MALDI-TOF [84]

Mass spectrometry
[85]

Mul�plex flow 
cytometry
Mass cytometry [86]

Imaging mass 
cytometry [87]
MIBI-TOF [88]
CODEX [89]

Analytes RNA transcripts 
(microRNA, messenger 
RNA, long non-coding 
RNA)

Soluble proteins Molecules from cell 
metabolism

Protein expression 
in single cells

Protein expression (in 
situ)

Inves�gated 
specimen

Lysed single cells/bulk 
cells

Body fluids (e.g., 
saliva, plasma, 
gingival crevicular 
fluid [90])

Body fluids (e.g., 
saliva [91], plasma, 
gingival crevicular 
fluid)

Cell suspensions 
(e.g., whole blood
[61], PBMCs)

FFPE �ssue or fresh 
frozen �ssue (e.g., 
oral mucosal 
biopsies)

Advantages In-depth informa�on 
about gene expression 
on a single cell level

Easy transla�on to 
clinical biomarker, 
sample accessibility, 

Agnos�c 
measurement of 
cellular func�on, 
downstream 
knowledge about 
cellular ac�vity

Proteomic readout 
of cell phenotype 
and func�on, 
interpretable single 
cell informa�on

Interpreta�on of cell 
distribu�on in its 
spa�al context, 
interpretable single 
cell informa�on

Disadvantages mRNA instability, 
pos�ranscrip�onal 
modifica�ons

Need for valida�on 
of an�gen capture, 
no interpretability on 
a single cell level

Need for valida�on/
cura�on of puta�ve 
metabolites, sensi�ve 
to environmental 
varia�ons

Sensi�ve to sample 
processing, limited 
number of markers 
measured per cell

Sensi�ve to sample 
processing,
compara�vely few
markers, variable 
spa�al resolu�on

Number of 
analytes

Untargeted or targeted, 
tens of thousands of 
gene transcripts

Up to 7,000 proteins
[92]

Untargeted, 220,000 
analytes documented 
in the human 
metabolome database 
[93]

Up to 50 proteins Up to 60 proteins [94]
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While cytomic approaches (i.e., single-cell proteomics) 
aim to measure protein expression within individual cells, 
bulk proteomic assays enable the detection of soluble pro-
teins in bodily fluids. Proteomic assays are often performed 
in serum or plasma allowing the identification of peripheral-
blood proteomic signatures that can ultimately guide clinical 
decisions, for example, by differentiating between metastatic 
head and neck squamous cell carcinoma and primary squa-
mous cell lung cancer [102]. However, proteomic assays are 
readily amenable to the analysis of other compartments, such 
as gingival crevicular fluid [103] or saliva [104, 105]. These 
oral compartments are of particular interest in studies of 
oral pathologies as they provide non-invasive liquid biop-
sies that contain biologically relevant proteomic markers, 
often at higher concentrations than in the circulation. Recent 
advances in multiplex proteomics allow the simultaneous 
detection of thousands of proteins using modern antibody-
based (proximity extension assay, Olink) or aptamer-based 
(Somalogic) platforms from a small biological sample size 
(< 100 µl), overcoming previous constraints of limited simul-
taneous detection capabilities [82, 83]. The gingival crevicu-
lar fluid proteome holds important prognostic information 
for periodontitis progression [90], and the salivary proteome 
has been targeted in the search for OSCC biomarkers, yield-
ing promising candidate biomarkers, such as elevated inter-
leukin levels (IL-6 and IL-8), tumor antigens (CA125 and 
CD44), and functional proteins (Ki67 and MMP9) [106]. Hu 
et al. found a set of five proteomic salivary markers (M2BP, 
MRP14, CD59, catalase, and profilin) that identified patients 
with OSCC with an AUC of 93% [107]. Although limited in 

sample size, these studies offer promising proof-of-concept 
information for the use of proteomic analyses of salivary 
proteins to detect OSCC. Further studies will be needed to 
validate the findings and to integrate them with metabolomic 
and cytomic data.

In contrast to cytomic and proteomic platforms that pro-
vide a targeted analysis of pre-selected protein analytes, 
RNA sequencing (RNAseq) platforms offer agnostic detec-
tion of over 20,000 gene transcripts in bulk analysis of 
pooled (bulk RNAseq) or single cells (scRNAseq). A scR-
NAseq analysis of head and neck squamous cell carcinoma 
by Puram et al. described distinct transcriptional patterns in 
the epithelial-to-mesenchymal transition of tumor cells that 
are linked to nodal metastasis and histological tumor grade 
[108]. In other malignancies, scRNAseq not only helps elu-
cidate key hallmarks of tumor pathogenesis and progression 
[109] but also optimize therapeutic strategies [110]. RNAseq 
approaches are also commonly utilized to characterize tran-
scriptomic dysregulations in autoimmune diseases. In rare 
diseases such as pemphigus vulgaris, scRNAseq analysis can 
be a rewarding first approach to guide follow-up, targeted 
investigations. For example, a bulk RNAseq approach that 
was recently employed to study the dysregulated periph-
eral immune system of patients with pemphigus vulgaris 
unveiled that B cells express increased levels of IL-1β, 
IL-23, and IL-12 and that different treatment approaches 
correct these dysregulations differently [111]. Transcrip-
tomic technologies have also evolved to enable spatial reso-
lution of gene expression patterns in tissues. Spatial tran-
scriptomic platforms using next-generation sequencing offer 

Fig. 3  Spatial single-cell immunome studies on the horizon. Imag-
ing mass cytometry (IMC) allows single-cell proteomics with up to 
50 markers of fresh-frozen or formalin-fixed paraffin-embedded tissue 
slices. Pixel by pixel, the stained tissue is ablated using a UV laser 

and analyzed using mass spectrometry by time of flight. The raw 
images of marker intensities can be segmented using various cell seg-
mentation techniques to produce single-cell data, which can be ana-
lyzed using existing bioinformatics tools for cytomic datasets
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untargeted mRNA detection and can measure hundreds or 
thousands of genes per pixel [112, 113]. However, a techni-
cal limitation of most existing spatial RNAseq approaches 
is the requirement of fresh frozen tissue as these techniques 
are generally incompatible with formalin-fixed paraffin-
embedded tissue.

In addition to proteomic and transcriptomic assays, untar-
geted mass spectrometry analyses of salivary metabolites have 
been an active field of research in the search for prognostic 
biomarkers in oral mucosal pathologies. In periodontitis, the 
metabolites cadaverine and hydrocinnamate positively correlate 
with the area of active inflammation, whereas uric acid and 
ethanolamine indicate resolution of inflammation [91]. Some 
of the identified metabolites in periodontitis are also predictive 
of OSCC suggesting a pathophysiological link and emphasizing 
the mutagenic potential of chronic inflammation [114–116]. 
Ultimately, metabolomic markers can point towards altered 
cellular biology and functionality in OSCC and can be used to 

predict overall survival [117] or response to treatment, such as 
chemotherapy [118].

Integrated, multiomic modeling to identify 
new biological crosstalk and improve 
biomarker discovery

Capturing multiple high-dimensional and/or single-cell modali-
ties in a multiomic approach allows the integration of multiple 
biological layers into a unified biological representation of the 
investigated scientific question (Fig. 4). A multiomic approach 
also enables analysis of inter-omic crosstalk, which can be use-
ful for confirming the validity of identified biological processes 
when observed in multiple data layers. However, the integra-
tion of multiple high-dimensional omic data layers poses cer-
tain statistical challenges, including differences in omic data 
layer dimensions, and information content. Emerging machine 

Fig. 4  Towards integration of multiomic data layers to improve clas-
sification of oral pathologies and outcomes. Integrative studies of 
transcriptomic, proteomic, and cytomic biology that contribute to oral 
mucosal pathologies will be instrumental in defining predictive mod-
els of disease mechanism, treatment success, and outcomes. Using 

machine learning approaches to analyze the individual data layers and 
combining the predictive power of interlinked biological features will 
advance the discovery of diagnostic biomarkers and novel immuno-
therapeutic targets and enable improved patient risk stratification and 
treatment monitoring
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learning approaches have recently been developed that provide 
elegant solutions to concatenate multiomic information about 
gene expression, protein abundance, single-cell signaling activ-
ity, and phenotype as well as metabolism [119]. The timing in 
which the datasets are combined (early-fusion vs. late-fusion) 
and the applied regularization and penalization differ between 
analysis approaches. A commonly used approach is based on 
stacked generalization in which predictive models are built on 
each of the individual data layers before incorporating the most 
predictive features from each omic dataset into one overarching 
model [1, 3, 120]. Establishing predictive models for each data 
layer prior to combining them into an integrated model using 
stacked generalization can increase the predictive power, as this 
approach can account for feature intercorrelation within data 
layers and differences in the number of measurements between 
data layers. Subsequently, a post hoc correlation network analy-
sis of selected model features can reveal relationships between 
features from different data layers and inform about biologi-
cal cross-talks. Future challenges in computational analyses of 
multiomic data that are particularly relevant to complex, cross-
tissue analyses of oral mucosal pathologies include the inte-
gration of spatial information such as cell–cell or cell-stroma 
interactions and the optimization of objective feature selection 
algorithms to aid in the biological interpretation of multivariate 
models and facilitate the biomarker discovery process.

Conclusions

Patients with neoplastic, infectious, and autoimmune oral 
mucosal pathologies currently face limited and insufficient 
clinical treatment options. Recent proteomic, cytomic, and tran-
scriptomic approaches provide promising avenues to elucidate 
mechanisms of pathogenesis and allowed for discovery of clini-
cally relevant predictive biomarkers in distinct immune compart-
ments. However, the implementation of single-cell and spatial 
omic technologies to study oral mucosal pathologies is still in 
its infancy. Future studies that integrate multiple omic modali-
ties are needed to provide a comprehensive characterization of 
the immunological compartments that interact and contribute 
to disease development and resolution. Ultimately, large-scale 
multiomic studies in diverse patient populations will be neces-
sary to identify and validate robust and biologically plausible 
signatures of clinical outcomes for the targeted development 
of novel (immuno)therapeutics to improve and personalize the 
treatment of patients with oral mucosal pathologies.
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