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Abstract
Assumptions about factors such as climate in shaping species' realized and poten-
tial distributions underlie much of conservation planning and wildlife management. 
Climate and climatic change lead to shifts in species distributions through both di-
rect and indirect ecological pressures. Distributional shifts may be particularly im-
portant if range overlap is altered between interacting species, or between species 
and protected areas. The cattle family (Bovidae) represents a culturally, economically, 
and ecologically important taxon that occupies many of the world's rangelands. In 
contemporary North America, five wild bovid species inhabit deserts, prairies, moun-
tains, and tundra from Mexico to Greenland. Here, we aim to understand how fu-
ture climate change will modify environmental characteristics associated with North 
American bovid species relative to the distribution of extant protected areas. We fit 
species distribution models for each species to climate, topography, and land cover 
data using observations from a citizen science dataset. We then projected mod-
eled distributions to the end of the 21st century for each bovid species under two 
scenarios of anticipated climate change. Modeling results suggest that suitable hab-
itat will shift inconsistently across species and that such shifts will lead to species-
specific variation in overlap between potential habitat and existing protected areas. 
Furthermore, projected overlap with protected areas was sensitive to the warming 
scenario under consideration, with diminished realized protected area under greater 
warming. Conservation priorities and designation of new protected areas should ac-
count for ecological consequences of climate change.
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1  |  INTRODUC TION

Elevational and latitudinal shifts in species' ranges constitute widely 
documented ecological responses to climate change (Büntgen 
et al.,  2017; Chen et al.,  2011; Williams & Blois, 2018). Through 
both direct (e.g., thermal stress) and indirect (e.g., temperature-
mediated natural enemy activity) mechanisms, climate shapes spe-
cies distributions across local, regional, and global scales (Araújo 
& Luoto, 2007). As ongoing human pressure further shapes con-
temporary species distributions (Faurby & Araújo, 2018; Laliberte 
& Ripple, 2004), identifying factors associated with species pres-
ence and measuring how these factors will change lends insight 
on how potential species distributions may shift in the coming 
decades. Effective conservation planning, therefore, relies on well-
defined forecasts of the change in species distribution (Rodríguez 
et al., 2007). Yet, for many species, the extent to which future dis-
tributions will overlap with existing protected areas remains unre-
solved (IPBES, 2019).

The designation of effective protected areas requires bal-
ancing the immediate needs of imperiled species with anticipated 
conditions decades or centuries into the future. Although the es-
tablishment of protected areas has increased dramatically over the 
past century (Watson et al.,  2014), the density, area, and gover-
nance of protected areas vary considerably across space (Bingham 
et al., 2019; UNEP-WCMW and IUCN, 2021). As conserved spaces 
continue to be planned and adopted, formal analyses of interactions 
among climate and geographical factors governing species distribu-
tions and projected changes in them will aid in the prioritization of 
areas to protect (Monzón et al., 2011; Scridel et al., 2021; Sierra-
Morales et al.,  2021). Biotic interactions may yet further control 
species distributions, especially for herbivores that specialize on 
particular food resources (e.g., Beumer et al., 2019). Thus, effective 
conservation planning will take into account not only future change 
in temperature and precipitation, but also shifts in vegetation distri-
butions and land cover types.

In North America, the mammalian family Bovidae is represented 
by five extant species: bighorn sheep (Ovis canadensis), thinhorn 
sheep (Ovis dalli), North American bison (Bison bison), mountain 
goat (Oreamnos americanus), and muskox (Ovibos moschatus). These 
species constitute a broad-ranging phylogeographic clade that 
survived marked warming at the end of the Pleistocene. Today, 
they occupy deserts, prairies, tundra, and alpine zones across the 
Nearctic (Castelló, 2016). The bovid species of North America accu-
mulated a legacy of hunting, introduced disease, and human devel-
opment, leading to shifts in abundance, migratory propensity, and 
distributions.

Here, we fit and project Ecological Niche Models (ENMs) for 
Nearctic bovid species under two scenarios of anticipated climate 
change generated using occurrence data from a public database of 
species observations. We relate modeled current and future species 
distributions to existing protected areas, with the goals of identifying 
how environmental parameters may shift in the coming decades, and 
how well current protected areas align with modeled distributions. 

We discuss our modeling results in the context of other work on 
conservation and spatial variation in wild bovids.

2  |  METHODS

2.1  |  Species presence data

Species presence data were downloaded from the Global 
Biodiversity Information Facility (GBIF,  2022). This database in-
cludes species presence observations from museum collections, 
university records, and citizen science contributions. Presence data 
were extracted using the ‘rgbif’ library in R v.3.6.1 (Chamberlain 
et al., 2021), with GBIF taxon key associated with each of the five 
North American bovids (O. canadensis, 2441119; O. dalli, 2441118; O. 
americanus, 2441151; O. moschatus, 2441108; and B. bison, 2441176), 
as well as the remaining North American members of Artiodactyla 
(Antilocapra americana, 2440902; Odocoileus hemionus, 2440974; 
Odocoileus virginianus, 2440965; Cervus canadensis, 8600904; Alces 
alces, 4262283; Rangifer tarandus, 5220114; and Dicotyles tajacu, 
2440996). Occurrence data were sent through a cleaning process 
to remove biased, uninformative, or inappropriate observations 
(for a full description of removed observations, see “Biodiversity 
data” in Table  S1). First, points with missing geographic informa-
tion were censored. Next, observations outside of North America 
were removed, as were cases where observation locations did not 
correspond with observation country. Records with no associated 
observation date, and records with observation date prior to 1980, 
were removed. Finally, irrelevant observation locations (e.g., bighorn 
sheep at the Chicago Zoo) were removed.

Data generated through citizen science collection face concerns 
over validity and sampling bias (Beck et al., 2013; Yesson et al., 2007). 
The dataset we used constitutes a set of charismatic, easily identified 
species, in a generally well-sampled geographic region (see Table S1, 
Biodiversity Data). Because presence-only species distribution models 
are sensitive to spatial biases in sampling effort (Phillips et al., 2009), 
we used occurrence data from the full set of North American even-
toed ungulates to generate a sampling bias grid, which was used during 
the background data generation (described below). Furthermore, we 
coarsened the resolution of the predictor dataset to accommodate 
uncertainty in observation location. However, our efforts to control 
for biases in species presence data limit the resolving power of species 
distribution, and we were thus unable to account for the effects of mi-
croclimate (e.g., Lembrechts et al., 2019) in our models, or incorporate 
anticipated fine-scale change in our projections.

2.2  |  Climate, land cover, and topography data

Historical and projected Worldclim v. 2.1 data (Fick & Hijmans, 2017), 
present and future GCAM land cover data (Chen et al., 2020), and 
North America Elevation GRID data (available at https://www.scien​
cebase.gov/catal​og/item/4fb54​95ee4​b04cb​93775​1d6d) were used 

https://www.sciencebase.gov/catalog/item/4fb5495ee4b04cb937751d6d
https://www.sciencebase.gov/catalog/item/4fb5495ee4b04cb937751d6d


    |  3 of 10JOHN and POST

as baseline environmental covariates. All predictors were coarsened 
to 6 × 6 km pixels in an equal-area projection to accommodate spatial 
uncertainty and match the resolution of the coarsest predictor data 
product in species occurrence data using bilinear interpolation.

Current and future climate data were accessed from the Worldclim 
v. 2.1 dataset. We selected data generated from all eight available 
global climate models (GCMs; BCC-CSM2-MR, CanESM5, CNRM-
CM6-1, CNRM-ESM2-1, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, 
and MRI-ESM2-0) under two shared socioeconomic pathways (SSPs; 
SSP2–4.5 and SSP5–8.5) for the period 2081–2100. SSPs were ad-
opted with the CMIP6 models and incorporated socioeconomic growth 
with the previously used representative concentration pathways (Riahi 
et al., 2017). SSP2 reflects a future with moderate development, on 
track with historical growth and inequality, but with reduced depen-
dence on fossil fuels, whereas SSP5 reflects a future with accelerating 
socioeconomic development and reduced global inequality, but with a 
heavy reliance on fossil fuels. SSP2–4.5 predicts about 3°C warming 
by the end of this century, while SSP5–8.5 predicts about 5°C warm-
ing relative to the 1850–1900 average (Tebaldi et al., 2021). Data on 
future conditions were re-centered and transformed according to the 
approach described for historical data above.

Current and future (2081–2100) land use/land cover data were ac-
cessed from the GCAM Demeter land use dataset (Chen et al., 2020). 
GCAM data are reported by cover type on a fractional scale from 0 
to 100, where 100 indicates the pixel is saturated by that type. We 
aggregated each of the GCAM tree cover types into their respective 
biome (PFT4 and 6; 1, 5, and 7; and 2, 3, and 8 representing tropical, 
temperate, and boreal trees, respectively), and PFT15–30 into an 
umbrella category, “Agriculture,” to reduce the size of the candidate 
predictor pool. Thus, from the GCAM data we included 14 vegeta-
tion layers, an agriculture layer, a barren layer, and an urban layer. We 
used the SSP1–2.6 2015 model to index current land cover conditions. 
Because GCAM data are not available for the same CMIP6 models as 
Worldclim, we condensed the five available models of land use futures 
into their respective SSP scenarios (SSP2–4.5 and SSP5–8.5) by taking 
the mean value of each fractional land cover type for each pixel across 
the five available models. The “current” SSP1–2.6 scenario was also 
condensed from the five available models.

To account for topographic constraints on species distribution, 
we included elevation and terrain ruggedness as predictors. Terrain 
ruggedness (TRI) was calculated following standard gdal protocols 
(GDAL/OGR contributors,  2021). Finally, elevation and TRI were 
centered by subtracting the mean layer value from all grid cells 
within each layer. Topography data were treated as static, and there-
fore, the same topography products were used for present and fu-
ture (2081–2100) datasets.

2.3  |  Vector spatial data

Land boundaries of North America were extracted from the 
rnaturalearth::ne_countries() dataset (South, 2017). The periphery 
of the Greenland Inland Ice Sheet was delineated by vectorizing all 

cells classified as “ice” in the raster version of the Circumpolar Arctic 
Vegetation Map (Raynolds et al.,  2019). Protected area bounda-
ries were identified using the World Database of Protected Areas 
(UNEP-WCMW and IUCN, 2021) and filtered to include only poly-
gons with area >100 km2.

2.4  |  Statistical modeling

Complete details on overview, data, model design, assessment, and 
prediction (ODMAP; Zurell et al., 2020) are available in Table  S1. 
MaxEnt v. 3.4.3 models (Phillips et al., 2021) were fit to the pres-
ence and background locations for each bovid species. We used the 
‘SDMtune’ library (Vignali et al., 2020) to fit, evaluate, and generate 
predictions with MaxEnt models. For each species, a MaxEnt model 
was constructed using the following approach: Occurrence records 
were spatially thinned to a radius of 6 km. A bias grid was generated 
using occurrence data from all North American artiodactyl species 
to account for sampling bias in occurrence data (Phillips et al., 2009). 
We assumed that sampling bias was equivalent across Artiodactyla, 
given that they are large, charismatic, and easily identifiable, and 
therefore used one bias grid for the continent. The bias grid was 
calculated by generating a continental raster with 6 × 6 km pixel res-
olution, identifying all pixels containing artiodactyl species occur-
rences, and applying a 2-dimensional kernel density estimator with 
a normal reference bandwidth. Ten thousand background points 
were randomly sampled from the bias grid in lieu of absence data 
for model fitting for each species. Occurrence and background data 
were subdivided into 60% training, 20% validation, and 20% testing 
partitions. Naïve MaxEnt models were fit with training data and spa-
tial cross-validation using the checkerboard1 function in the R pack-
age ENMeval (Kass et al., 2021). To minimize model complexity and 
reduce the likelihood of overfitting, we considered only linear and 
quadratic feature classes (Elith et al., 2011). We assumed no a priori 
knowledge of factors associated with species presence and, there-
fore, included all 19 bioclimatic variables, all topographic covariates, 
and all land cover indices in the naïve models. A data-driven variable 
selection procedure was then employed to remove highly corre-
lated predictor variables, based on a Spearman correlation threshold 
of 0.7 (Vignali et al., 2020). After removing correlated predictors, 
models were optimized for complexity using a genetic algorithm to 
identify the most robust combination of model hyperparameters. 
We considered regularization multipliers between 0.5 (most com-
plex) and 10 (least complex) and linear as well as linear+quadratic 
feature classes. Finally, we removed non-important variables from 
the optimized models to maximize parsimony using a leave-one-out 
jackknife test. We refer to these optimized models with selected 
variables as the “final model” for each species. Final model reports 
were generated for each species (summarized in Figure S1).

Species distributions were predicted using final models and three 
raster stacks: “current” conditions defined by the training data, and 
two future scenarios (SSP2–4.5 and SSP5–8.5), both for the period 
spanning 2081–2100. Because MaxEnt models generate continuous 
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prediction surfaces, model-specific response thresholds were used 
to differentiate between predicted “presence” and “absence.” We 
used two thresholds (Liu et al., 2013): one with equal model sensi-
tivity and specificity (ESS) and one which maximized the sum of sen-
sitivity and specificity (MSS). For each future SSP scenario, model 
consensus was calculated as the sum of the MaxEnt model predic-
tions under each GCM that were above the MSS threshold, based on 
a comparison between the two thresholds under current conditions 
revealing few differences except for a more constrained bison range 
using MSS. Correlative distribution modeling approaches such as 
MaxEnt are limited by uncertainty in future conditions, non-analog 
conditions, and exclusion of endogenous factors that may allow 
species to adapt or tolerate future change (Dawson et al., 2011). 
Uncertainty in climate forecasts was accounted for by composit-
ing modeled species distributions across environmental covariates 
predicted under a suite of GCM models. To account for non-analog 
conditions, we applied a clamping procedure to prevent projecting 
results outside the range of conditions present during model train-
ing. We also generated multivariate environmental similarity sur-
faces (“MESS grids”) and limited predictions to areas with positive 
MESS values (Elith et al., 2010). MESS grids were calculated using 
the R package dismo instantiation of ‘mess()’ with all continuous pre-
dictors in the dataset and are shown in Table S1. We were unable to 
account for species' adaptive potential and thus limit our interpreta-
tion of the results below to anticipated change in distribution of en-
vironmental characteristics associated with bovid species presence, 
rather than distribution of bovid species themselves.

Comparisons among species of land area, range elevation, range 
latitude, and realized protected area were calculated by taking the 
mean value of current and projected data layers grouped by species 
and SSP. Standard errors of mean projected range measurements 
were calculated by treating GCM as a replicate. All analyses were 
performed in R v. 4.1.2 (R Core Team, 2019).

3  |  RESULTS

We accessed 32,999 North American bovid records from GBIF. We 
removed 14,514 observations during data quality checks and 14,927 
during data thinning, leaving 3558 records for model fitting. Within 
the cleaned, thinned dataset, bighorn sheep were represented by 
1915 records, thinhorn sheep by 218 records, mountain goats by 
659 records, muskoxen by 218 records, and North American bison 
by 519 records.

In general, modeled potential habitat shifted in response to pro-
jected climate change in 2081–2100 (Figure 1). Modeled future hab-
itat covered less area under the SSP5–8.5 scenario than under the 
SSP2–4.5 scenario for all species except thinhorn sheep (Table 1). 
Projected change in the surface area of modeled habitat was in-
consistent across species, but with a trend of increasing change at 
higher latitudes (Table 1). For example, over a quarter of modeled 
potential habitat space is expected to be lost for thinhorn sheep by 
2100 regardless of the SSP, while the projected change for bighorn 

sheep is less coherent. The total area of modeled potential habitat 
was never consistently higher under both scenarios for any species 
(although modeled potential habitat increased slightly under SSP2–
4.5 for bighorn sheep and mountain goats).

Projected elevational range shifts were variable among spe-
cies (Table S2-S3). Whereas projections for bighorn sheep featured 
marginal elevational change (current mean elevation  =  1527 m; 
SSP2–4.5 mean elevation  =  1537 ± 5  m; SSP5–8.5 mean eleva-
tion = 1583 ± 7 m), stronger elevational contraction was evident for 
thinhorn sheep (current mean elevation =  826 m; SSP2–4.5 mean 
elevation  =  932 ± 17 m; SSP5–8.5 mean elevation  =  934 ± 44 m). 
Projected latitudinal range shifts were similarly variable among 
species. For example, modeled muskox habitat faces a signifi-
cant northward contraction due to limited available land area 
further north (current mean latitude = 68.1°N; SSP2–4.5 mean lati-
tude = 71.7 ± 0.4°N; SSP5–8.5 mean latitude = 74.5 ± 0.5°N), while 
modeled mountain goat habitat shifts slightly southward (current 
mean latitude =  53.1°N; SSP2–4.5 mean latitude =  52.2 ± 0.4°N; 
SSP5–8.5 mean latitude = 51.8 ± 0.9°N).

Overlap between ENM projections and current protected areas 
varied among species, and future overlap is expected to vary by spe-
cies as well (Figure 2). Whereas habitat of southerly montane species 
with minimal projected range shifts (bighorn sheep and mountain 
goats) is not projected to face a significant change in potential pro-
tected area, habitat of northerly species such as thinhorn sheep and 
muskoxen is projected to face a considerable reduction in potential 
protected area (38.6% and 43.1% of protected area for thinhorn sheep 
and muskoxen, respectively, under SSP2–4.5, and 30.5% and 62.9% 
under SSP5–8.5). Projected loss of potential protected area for bison 
followed a similar pattern (55.3% and 59.3% for SSP2–4.5 and SSP5–
8.5, respectively). For the only obligate Arctic species, muskoxen, 
the projected reduction in potential protected area is considerably 
greater under the SSP5–8.5 scenario than under SSP2–4.5 (nearly 
20% greater reduction in potential protected area under SSP5–8.5).

The proportion of potential species distributions that overlaps 
with protected area and the proportion of protected area that over-
laps with potential distributions reveal different patterns in potential 
protected area among the bovid species (Figure 3). Although approx-
imately proportional loss of protected area relative to potential spe-
cies distributions is projected across the five North American bovid 
species (indicated by overlapping current and projected estimates 
in Figure 3a), the percentage of currently protected area that is pro-
jected to feature environments characterized by bovid presence 
is projected to drop across SSPs for thinhorn sheep, muskox, and 
American bison (indicated by the marked reduction in fraction of 
protected area estimated for these species in Figure 3b).

4  |  DISCUSSION

We identified discordant projections by MaxEnt distribution mod-
els across Nearctic bovids. Inconsistent projections among spe-
cies arose through two processes: unequal response by species to 
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different topographic, land cover, and bioclimatic variables, and 
uneven projected environmental change across space. Projected 
potential habitat shifts in response to anticipated climate change 
are greatest for species at high latitudes, where observed warm-
ing outpaced change at lower latitudes, and is expected to con-
tinue to do so (Post, Steinman, & Mann, 2018; Post et al., 2019). 
Furthermore, for some species, the total area of potential 

protected space is projected to decrease more dramatically under 
the higher emissions scenario, SSP5–8.5. Shifts in climatically suit-
able habitat seem likely for other high latitude species, where ef-
fects of climate change are amplified.

Other species distribution modeling efforts corroborate the im-
portance of human impacts, terrain, and land cover characteristics 
for ungulate distributions (Herrera-Sánchez et al.,  2020; Jenkins 
et al., 2020; Kuemmerle et al., 2012). To our knowledge, this is the 
first study to simultaneously explore future distributions of multiple 
North American bovids in the context of protected areas. However, 
modeling studies that employ different data sources and different 
scales of analysis have uncovered important relationships between 
bovid species and their environment that help contextualize our 
findings.

In a recent study, a MaxEnt model for desert bighorn sheep 
(Ovis canadensis nelsoni) was hindcast to investigate range dy-
namics during the mid-Holocene (Gámez-Brunswick & Rojas-
Soto, 2020). Although this subspecies occupies only a portion of 

F I G U R E  1 Predicted current potential habitat (top subplots) and consensus future potential habitat under future conditions in 2081–2100 
modeled using two SSPs (bottom subplots) for each Nearctic bovid species. For the current plots, predicted potential habitat is indicated 
by pale blue (for the ESS threshold) and pale green (for the MSS threshold). For the consensus plots, the fill value increases in intensity with 
increasing predicted suitability across GCMs (using the MSS threshold). Protected areas indicated by merlot polygons, data from (UNEP-
WCMW and IUCN, 2021).

TA B L E  1 Surface area of modeled species distributions under 
current (1970–2000) and projected future (2081–2100) conditions, 
expressed in millions of km2.

Species Current SSP2–4.5 SSP5–8.5

Bighorn sheep 2.46 2.53 ± 0.04 2.18 ± 0.09

Thinhorn sheep 2.20 1.21 ± 0.04 1.50 ± 0.09

Mountain goat 1.86 1.89 ± 0.04 1.65 ± 0.08

Muskox 5.00 2.77 ± 0.16 1.62 ± 0.21

American bison 3.34 1.22 ± 0.14 1.01 ± 0.18
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the total range of bighorn sheep, the modeled current potential 
distribution of desert bighorn in that study largely mirrors the 
current potential distribution of bighorn sheep across the south-
west United States predicted by our models. Importantly, our 
results suggest that potential habitat extends further northward 
along the American cordillera than either the hindcast model of 
desert bighorn or the actual current distribution of bighorn sheep 
(Brewer et al.,  2014). The predicted presence of bighorn sheep 

through Yukon and Alaska likely relates to the similar life history 
requirements of the closely related thinhorn sheep (Ovis dalli), 
which inhabits these higher latitude regions of the cordillera. 
Indeed, among the selected predictor variables that were shared 
among bighorn and thinhorn sheep MaxEnt models, most univari-
ate response curves were approximately comparable with shifted 
centers. Furthermore, a comparison of the two species' mod-
eled distributions reveals considerable overlap north of British 

F I G U R E  2 Protected area of modeled 
species distributions in millions of km2. 
Squares indicate the land area of modeled 
current distributions that fall within 
protected areas, and boxes illustrate land 
area for modeled future distributions 
within protected areas under projected 
conditions for 2081–2100 under SSP2–4.5 
(purple) and SSP5–8.5 (tan).

F I G U R E  3 Potential protected area 
expressed as a percentage of potential 
species distributions (a) and as a 
percentage of currently protected area 
(b). In a, the proportion is calculated based 
on the percentage of each species, GCM, 
and SSP-specific potential distribution 
that overlaps with protected areas. In b, 
the proportion is calculated based on the 
percentage of currently protected areas 
that overlap with each species, GCM, and 
SSP-specific potential distribution. Black 
dots indicate current potential distribution 
estimates, purple boxes show variation 
in SSP2–4.5 scenarios across GCMs, and 
tan boxes show variation in SSP5–8.5 
scenarios across GCMs.
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Colombia. It is possible that the lack of bighorn sheep at high 
latitudes stems from competitive exclusion by thinhorn sheep, or 
through fine-scale environmental variation that was not evident at 
the scale of our study.

MaxEnt distribution models have also been used to examine 
spatial dynamics of muskoxen at local to regional, but not conti-
nental scales (Beumer et al., 2019; Jenkins et al., 2020; van Beest 
et al., 2021). In those applications, GPS collars and systematic human 
observations were used to identify environmental covariates under-
lying muskox distribution in Northeast Greenland and the Canadian 
Arctic. Across levels of analysis, elevation emerged as an important 
covariate of muskox distribution, following the same tendency of se-
lection toward low elevations we found here (Beumer et al., 2019; 
Jenkins et al.,  2020). Notably, our variable selection and model 
optimization process did not retain the same bioclimatic variables 
that were selected in one study using Worldclim2 data (van Beest 
et al., 2021), but that work included a subset of candidate predictor 
variables, used a coarser covariate resolution (20 km), and the study 
extent was limited to northeast Greenland, as opposed to our 6 km 
analysis of North America.

The results of this modeling study suggest a broader spatial range 
of present potential habitat than is realized for any of these five bovid 
species (Brewer et al., 2014; Côté & Festa-Bianchet, 2003; Cuyler 
et al., 2020; Demarchi & Hartwig, 2004; Meagher, 1986). For exam-
ple, predictions from the muskox model indicate that Southampton 
and Baffin Islands are within the potential distribution of muskox, 
yet that species is not known to live there. Overprediction of actual 
distributions may have resulted from the coarse nature of our pre-
dictor data (6 × 6 km pixels), limiting factors that we were not able 
to account for (e.g., predation, important forage species, or habitat 
fragmentation by non-permeable barriers), or more complex re-
sponses to environmental variables than we allowed in our modeling 
design (such as absolute thermal tolerance thresholds or interactions 
among variables). Thus, the modeling results should be interpreted 
in the context of predicted change in environmental factors associ-
ated with bovid presence, rather than spatial redistribution of bovid 
species themselves.

The predictive ability of species distribution models is limited by 
the extent to which current predictor variables relate to the envi-
ronment at the time of occurrence data collection, and the degree 
to which covariate forecasts represent future conditions. Worldclim 
data are least reliable in mountainous terrain, where fine-scale com-
plexity overwhelms broad geographic variation and in remote areas 
where only sparse meteorological records were available for model 
training (Fick & Hijmans, 2017; Hijmans et al., 2005). Furthermore, 
species distribution forecasts may be sensitive to inconsistent varia-
tion among modeled bioclimatological futures (Cerasoli et al., 2022) 
and uncertainty related to the underlying GCMs (Bedia et al., 2013; 
Foley,  2010). Finally, predicted future distributions rest upon as-
sumptions about future change; for example, GCAM land use data 
incorporates no developments in urbanization through the end of 
the century, and modeled vegetation change stems only from land 
use impacts, as opposed to vegetation response to warming (Chen 

et al., 2020), which is complex (Myers-Smith et al., 2020) and import-
ant for spatial dynamics of large herbivores (Tape et al., 2016).

Our model projections are based on relationships between ob-
servations of bovids and environmental factors where they were 
observed. In reality, drivers of range dynamics in large herbivores 
are complex and unlikely to relate directly to climatological variabil-
ity. Instead, indirect effects of climate such as forage distribution 
and phenology, distribution of competitors and natural enemies, 
and frequency and severity of extreme weather events are likely to 
play important roles in changes in species distributions related to 
climate change (Creel et al., 2005; Parmesan et al., 2000; Ponti & 
Sannolo, 2022; Winnie et al., 2008). Historical relationships among 
humans and megafauna may drive patterns in species distribu-
tion, particularly if species are refugees from human exploitation 
(Cromsigt et al., 2012). The importance of human impacts was ev-
ident for several of the species we investigated; for example, frac-
tional agriculture and urban cover were the second- and third-most 
important variables in the thinhorn sheep model, which revealed 
strong patterns of selection against both cover types. Agriculture 
was the fifth-most important variable in the bison model, which 
showed a weaker pattern of selection against urban cover. While 
agriculture and urban land cover did not emerge as important fac-
tors in other models, it is likely that a more precise land cover data 
product (in terms of both spatial resolution and cover type) would 
reveal significant human effects. For example, the Human Footprint 
Index (1 km resolution) may uncover fine-scale impacts of light and 
infrastructure on current bovid distributions that we could not ex-
plore here (Venter et al., 2016), but a comparable forecast product 
is not currently available. Further, the ability of bovid populations to 
redistribute in future will be limited by not only available destina-
tion space, but also by barriers to movement (McInturff et al., 2020; 
Sawyer et al., 2013).

Conservation planning is sensitive to biases in species distri-
bution models (Wilson et al., 2005), and we emphasize the need to 
incorporate multiple approaches and lines of evidence in planning 
future protected areas. Furthermore, although spatial priorities for 
protected areas increasingly rely on species distribution projec-
tions under climate change, they often ignore human response to 
climate change (Jones et al., 2016; Post & Brodie, 2015). Human in-
fluence on the landscape limits movements by animals, which may 
ultimately lead to the local exclusion of broad-ranging migrants 
(Tucker et al., 2018). Other work on large bovids has emphasized the 
importance of anthropogenic influence on habitat suitability (Epps 
et al.,  2005; Kuemmerle et al., 2010). We were unable to include 
movement barriers and some human impacts on species ranges, 
such as roads and fencing, tourism, and recreation. More precise es-
timates of future suitable habitat for large herbivores will become 
possible as forecasts of anthropogenic change across the landscape 
become clearer.

Most immediately, North American bovids contend with al-
teration of existing suitable habitat (Krausman & Bleich,  2013), 
limitations on movement between seasonal ranges (Courtemanch 
et al., 2017; Stoellinger et al., 2020), and introduction of zoonotic 
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disease (Clifford et al., 2009). These threats are difficult to predict, 
and changes in their distribution and magnitude should be consid-
ered while crafting management and conservation plans. Of the 
protected areas that are already home to wild bovids, those which 
are expected to retain ecological and climatic characteristics that 
are associated with bovid presence may become especially import-
ant in the coming decades. As conservation planners make decisions 
about designation of new protected areas, it will be imperative to 
consider not just the future distribution of Nearctic bovids, but also 
future conditions for ecosystem services and human response to 
change (IPBES, 2019). Protected areas conserve ecosystem func-
tion, culturally important settings, recreational hotspots, and 
natural resources. However, if biodiversity, or the longevity of a 
particular species is the goal, future climatological conditions and 
their implication for the focal species and increased human access 
to remote regions should be a top consideration in the prioritization 
of protected lands.
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