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Abstract
Purpose of Review  Peripheral Artery Disease (PAD), a condition affecting millions of patients, is often underdiagnosed due to a 
lack of symptoms in the early stages and management can be complex given differences in genetic and phenotypic characteristics. 
This review aims to provide readers with an update on the utility of machine learning (ML) in the management of PAD.
Recent Findings  Recent research leveraging electronic health record (EHR) data and ML algorithms have demonstrated 
significant advances in the potential use of automated systems, namely artificial intelligence (AI), to accurately identify 
patients who might benefit from further PAD screening. Additionally, deep learning algorithms can be used on imaging data 
to assist in PAD diagnosis and automate clinical risk stratification.
ML models can predict major adverse cardiovascular events (MACE) and major adverse limb events (MALE) with 
considerable accuracy, with many studies also demonstrating the ability to more accurately risk stratify patients for deleterious 
outcomes after surgical intervention. These predictions can assist physicians in developing more patient-centric treatment 
plans and allow for earlier, more aggressive management of modifiable risk-factors in high-risk patients. The use of proteomic 
biomarkers in ML models offers a valuable addition to traditional screening and stratification paradigms, though clinical 
utility may be limited by cost and accessibility.
Summary  The application of AI to the care of PAD patients may enable earlier diagnosis and more accurate risk stratification, 
leveraging readily available EHR and imaging data, and there is a burgeoning interest in incorporating biological data for 
further refinement. Thus, the promise of precision PAD care grows closer. Future research should focus on validating these 
models via real-world integration into clinical practice and prospective evaluation of the impact of this new care paradigm.

Keywords  Artificial intelligence · Machine learning · Peripheral artery disease · Phenotyping · Risk stratification

Introduction

Peripheral artery disease (PAD), defined here, is a condition 
that reduces blood flow to the limbs due to narrowed arteries 
from plaque buildup and affects over 8 million people in the 
United States alone. While patients with PAD can experi-
ence leg pain with exercise (claudication), in the beginning 
stage it is often asymptomatic, which makes it difficult to 
diagnose and can delay treatment. If left untreated, the dis-
ease can advance to critical limb ischemia requiring ampu-
tation and is also associated with poor cardiovascular out-
comes such as strokes, myocardial ischemia, and death. Risk 
factors for PAD include age > 50, Black race and chronic 
diseases such as diabetes, heart disease or kidney disease 
[1]. Early diagnosis and treatment of the disease is criti-
cal to improve quality of life and limb and cardiovascular 
outcomes.
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Because PAD presents without noticeable symptoms in 
the early stage, it often remains underdiagnosed until later 
stages when symptoms arise. Some societies such as the 
American Heart Association (AHA) and American College 
of Cardiology (ACC) recommend that only populations at 
risk should be screened for the disease, while others such as 
the United States Preventative Task Force (USPSTF) rec-
ognize that there is a lack of evidence for screening at all in 
the asymptomatic patient population [2]. However, targeted 
screening leading to earlier diagnosis of PAD could allow 
physicians to more optimally medically manage patients, 
resulting in a larger impact on patient longevity and quality 
of life.

Machine learning (ML) is a branch of artificial intelli-
gence (AI) which focuses on developing computer models 
that can “learn” from data and automate decision making 
with little human involvement. By analyzing large data sets, 
data scientists can develop computer-based models that cal-
culate disease risk using complex mathematics and poten-
tially make recommendations without needing intervention 
from humans. In recent years, ML and AI have been used in 
the fields of oncology, neurology, and many others to assist 
physicians in disease diagnosis and in clinical decision mak-
ing [3] [4]. A benefit of ML for medical data analysis is that 
it can highlight non-linear relationships that might not other-
wise be evident. Additionally, it exponentially increases effi-
ciency by analyzing large data sets in short periods of time.

In this review paper we will discuss the use of ML in the 
screening, early diagnosis, and risk stratification of PAD. 
We begin by exploring how ML can analyze different data 
types commonly used to diagnose the condition such as the 
electronic health records (EHR), imaging and proteomics 
data. We will then discuss how ML can be leveraged for 
patient risk stratification. We will specifically review its use 
within the lens of outcome prediction, subtype clustering, 
and imaging.

Early Diagnosis

The utilization of machine learning models for clinical deci-
sion support offers an opportunity to screen for and diagnose 
patients with PAD earlier in the disease process. PAD often 
has an atypical clinical presentation and can be clinically 
silent in patients with comorbidities or risk factors like 
diabetes. This clinical complexity may lead to disparities 
between the severity of stenosis and a patient’s symptom 
burden or functional capacity, thereby affecting management 
and interventional outcomes. ML approaches can identify 
predictive variables within these nonlinear relationships to 
identify PAD [5]. Current models have analyzed electronic 
health record data including clinical notes, proteomics, and 
imaging to optimize diagnosis.

Electronic Health Record Data

A wide array of data is stored in the EHR that can be utilized 
by ML algorithms to detect PAD status. This includes 
patient demographics, clinical risk factors like hypertension 
and coronary artery disease (CAD), physiological variables 
like blood pressure and ankle brachial index (ABI) values, 
and medications. Sonderman et al. combined these data 
including blood pressure, pulse pressure, history of smoking, 
and total cholesterol to high-density lipoprotein cholesterol 
ratio to assess individualized risk for PAD using an ML 
model and logistic regression (LR) techniques [6]. Their 
goal was to develop a model that could identify patients 
who should be screened for PAD with an ABI test. Using 
data from 1,089 patients, their model achieved 64% accuracy 
and an area under the curve (AUC), a measure of model 
discrimination, of 0.68 in a validation cohort [6]. Compared 
to age-based ABI screening alone, which achieved an 
AUC of 0.62, their model demonstrated somewhat better 
performance in identifying patients suitable for ABI 
screening. Deep learning (DL) models utilizing multiple 
neural networks capable of accounting for the sequence and 
timing of clinical events in a patient’s history can achieve 
superior discrimination performance in identifying those 
who should be screened for PAD. Compared to traditional 
risk score models and ML models, a deep learning model 
using time-series data on the entirety of the EHR built by 
Ghanzouri et al. achieved an average AUC of 0.96 for PAD 
detection [7]. Models like these offer the capability of using 
the vast EHR to summarize risk of PAD in complex patients, 
which can improve the efficiency in identifying who exactly 
should be screened with ABI testing.

Imaging Data

Imaging modalities have shown promise in aiding in the 
diagnosis of PAD by evaluating anatomic characteristics. 
However, the analysis of these data is complicated by 
variations in imaging interpretation. Specifically, point-
of-care duplex ultrasound (DUS) arterial spectral Doppler 
data have often been challenging to interpret due to wide 
inter-observer variations. As an alternative, Normahani 
and colleagues introduced the idea of using ML models 
to analyze DUS to aid the diagnosis of PAD [8]. In a 
study of 305 patients with diabetes mellitus from which 
590 waveform images were sampled at the ankle vessels, 
investigators reconstructed waveform signals and extracted 
time and time–frequency domain features including peak 
value and signal to noise ratio [8]. DL models using long 
short-term memory networks (LSTM) were then used 
to classify raw signals as PAD or no-PAD, while logistic 
regression (LR) and support vector machines (SVM) were 
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used for classification of extracted features [8]. Their 
final model used a combination of DL and LR modeling 
and achieved an accuracy of 88% and AUC of 0.93 in 
discriminating PAD status [8]. Additionally, this model 
offered the benefits of standardization and reduced variation 
in data interpretation compared to point-of-care DUS [8]. 
Luo and colleagues have automated waveform classification 
of lower extremity arterial doppler (LEAD) ultrasound 
studies with the assistance of ML models [9]. They aimed 
to detect disease presence while assessing PAD in multiple 
levels: aortoiliac disease vs femoropopliteal disease vs tibial 
vessel disease and achieved accuracy of 88.2%, 90.1%, and 
90.5%, respectively [9].

Contrast-enhanced magnetic resonance imaging (CE-
MRI) is another imaging modality that can assess PAD 
status by analyzing the textural properties of skeletal calf 
muscles, as blood circulation and perfusion are impaired in 
PAD patients. Khagi and colleagues designed a ML model 
to extract textural features including homogeneity, contrast, 
and boundaries from CE-MRIs [10]. The study included 20 
matched controls and 36 PAD patients, who were further 
subcategorized based on 6-min graded treadmill completion 
status and history of diabetes. To train their models they 
used SVM, LR and extreme gradient boosting (XGB) [9]. 
They found that an ensemble model that combined multiple 
algorithms and a technique to reduce the number of redun-
dant features achieved 94% accuracy and an AUC of 0.94 
when discerning PAD cases from controls compared to LR, 
SVM, and XGB alone, the latter of which achieved AUCs 
of 0.69, 0.79, and 0.9, respectively.

Recent imaging analyses have also focused on indirectly 
detecting early stages of PAD through identification of 
atherosclerosis. Mueller and colleagues leveraged the fact 
that subtle changes in vascular structures like those in the 
eyes are often representative of earlier stages of PAD [11]. 
They analyzed color fundus photography (CFP) images with 
deep attention-based Multiple Instance Learning (MIL) and 
developed a model that achieved 83.7% accuracy and an 
AUC of 0.89 when distinguishing patients with PAD from 
controls. Additionally, to minimize invasive data collection 
and improve cost efficiency, other imaging modalities have 
also been coupled with ML algorithms and have been found 
to be efficacious in aiding PAD diagnosis. Shahrbabak and 
colleagues developed DL models to analyze non-invasive 
brachial and tibial arterial pulse volume recordings (PVR) 
and arterial BP waveforms to detect and measure PAD 
severity [12]. They found that compared to ABI alone which 
achieved an AUC of ≤ 0.59, DL-enabled PVR waveform 
analysis and DL-enabled Arterial BP waveform analysis 
achieved AUCs of ≥ 0.89 and ≥ 0.96, respectively [12]. Thus, 
the addition of DL analysis to already collected minimally 
invasive imaging data can be another way to improve 
detection of PAD.

Proteomics Data

Biomarker data in addition to clinical risk factors offer 
an additional layer of assistance in assessing PAD 
functional severity and prognosis. ML analysis of data in 
patients undergoing invasive peripheral angiography who 
were enrolled in the Catheter Sampled Blood Archive in 
Cardiovascular Diseases (CASABLANCA) study has 
been shown to provide reliable scoring strategies for 
diagnosing obstructive PAD [13]. Scoring was based on 
a patient's history of hypertension as a clinical variable 
and 6 biomarkers: midkine, kidney injury molecule-1, 
interleukin-23, follicle-stimulating hormone, angiopoietin-1, 
and eotaxin-1 [13]. By dividing the scaled score into 
5 categories, researchers correlated higher scores with 
increasing stenosis severity. Using this approach, ML models 
produced a cross-validated AUC of 0.84 for detecting PAD. 
Additionally, given a 4.3-year follow-up, elevated scores 
were noted to predict shorter times to revascularization, 
providing prognostic information for clinicians. While 
the above approach highlights advances in proteomics 
and personalized medicine, its generalizability may be 
limited as most medical centers are unlikely to routinely 
collect these specified biomarkers. With this in mind, 
Sonnenschein and colleagues ​focused on clinical variables 
and routinely available biomarkers including complete 
blood counts, electrolytes, iron studies, and lipid panels 
[14]. They employed a random forest (RF) model using 
these data to identify PAD patients with stable and unstable 
forms of disease, defined as Fontaine Class I/II and III/IV, 
respectively. They found that their ML-generated scores 
for PAD status significantly correlated with patient ABI 
measurements (R = -0.38, p = 0.007). The group argued that 
such a tool could help clinicians determine which patients 
should receive additional imaging, including invasive 
diagnostics and more intensive management of PAD.

Other Novel Data

Other novel data and ML approaches to PAD detection 
include work from Al-Ramini and colleagues. Al-Ramini 
et al. have used ML models to integrate laboratory-based 
gait biomechanics data for classifying PAD status since 
PAD affects muscle structure and function [15]. Their 
neural network ML model, utilizing gait variables, achieved 
an accuracy of 89% when tested on a retrospective dataset 
of 227 patients previously diagnosed with PAD and 43 
healthy controls. The real-world application of this ML 
model in analyzing gait signatures could facilitate earlier 
identification of PAD in patients and monitor disease 
progression, especially if implemented in continuous 
monitoring devices.
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A summary of studies mentioned above can be found in 
Table 1.

Risk Stratification

While clinical symptoms may only manifest in the lower 
extremities, PAD can be a marker of systemic disease and 
has been proven to be a predictor of coronary artery disease 
severity [16]. Furthermore, the diagnosis of PAD confers a 
greater long-term risk of overall cardiovascular mortality 
than myocardial infarction, resulting in some groups calling 
for PAD to be considered a coronary heart disease equivalent 
[17]. Thus, developing models that can predict severity 
of disease in individual PAD patients can help clinicians 
identify which patients may need higher intensity care.

MACCE

Ross and colleagues used ML to analyze both structured 
and unstructured EHR-data from patients with a diagnosis 
of PAD at two tertiary medical centers to predict patients 
at high risk of MACCE at the time of diagnosis [18]. Spe-
cifically, using patients with PAD who went on to develop 
MACCE after diagnosis as positive cases and those who 
did not have MACCE as negative cases, they were able to 
develop a predictive model using data only from the time the 
patient entered the health system to the time of PAD diag-
nosis [18]. This approach would allow clinicians to identify 
prognosis at the time of PAD diagnosis. The group’s best 
performing model, a RF model, utilized 957 variables and 
achieved an AUC of 0.81. Subsequent sensitivity analy-
sis of the model revealed that unstructured text data and 
International Classification of Disease/Current Procedural 

Table 1   Summary of recent machine learning models developed to screen and diagnose peripheral artery disease

CNN convolutional neural network; LASSO least absolute shrinkage and selection operator; LEAD lower extremity arterial duplex; LR logistic 
regression; NN neural network; NR not reported; PAD peripheral artery disease; RF random forest

Author Goal Optimal model AUC​

Sonderman et al. [6] Estimation of the presence of PAD, as defined by 
ABI < 0.90, in patients without prior ABI testing in 
their electronic records

RF and LR 0.72

Ghanzouri et al. [7] Classification of PAD using both classical machine learn-
ing and deep learning algorithms and electronic health 
record data

Deep Learning 0.96

Normahani et al. [8] Utility of ML techniques for the diagnosis of PAD from 
Doppler arterial spectral waveforms sampled at the 
level of the ankle in patients with diabetes

LR 0.93

Luo et al. [9] To recognize and differentiate LEAD and carotid duplex 
ultrasound signals and waveforms and for the decisions 
regarding classifying the level and severity of athero-
sclerotic disease with AI techniques

Carotid – Random Forest
LEAD – Hierarchical neural network

NR

Khagi et al. [10] To detect the heterogeneity in the muscle pattern among 
PAD patients and matched controls using calf muscles 
contrast-enhanced MRI (CE-MRI) scans

Maximum Relevance Minimum Redundancy + RF 0.94

Mueller et al. [11] To capture retinal imaging biomarkers on CFP images Deep attention-based Multiple Instance Learning 
(MIL) model

0.89

Shahrbabak et al. [12] To investigate the feasibility of PAD diagnosis based on 
the analysis of non-invasive arterial pulse waveforms 
called pulse volume recording (PVR) signals

Deep Learning 0.90

McCarthy et al. [13] To identify clinical and biomarker predictors of clinically 
significant PAD in an at‐risk population of subjects 
enrolled in the Catheter Sampled Blood Archive in 
Cardiovascular Diseases study undergoing peripheral 
angiography

LASSO + LR 0.85

Sonnenschein et al. [14] To establish a general workflow to identify discrimina-
tive multi-dimensional markers for potential clinical 
diagnostics of vascular intervention

RF NR

Al-Ramini et al. [15] ML models on gait features to distinguish individuals 
with PAD from healthy older individuals without PAD

NN and RF NR
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Terminology coding data significantly contributed to the 
accuracy of the model. Earlier identification of these high-
risk patients could allow for more targeted and aggressive 
medical intervention [17].

MALE

Amputation rates are of special interest in the manage-
ment of PAD and can be considered a component of major 
adverse limb events (MALE). Austin et al. evaluated the 
performance of different ML models in the analysis of clini-
cal and socioeconomic data in a cohort of 88,898 Medicare 
patients with newly diagnosed PAD and diabetes mellitus to 
identify variables most associated with risk of lower extrem-
ity amputation and mortality at 1-year [19]. An RF model 
significantly outperformed LR in terms of model prediction 
error rate for each outcome (30% v. 65%). This group did not 
report an AUC for the RF model and the goal was largely to 
demonstrate the advantages of an ML model like RF over 
traditional LR models in prediction tasks.

Tsarapatsani used a large cohort of hypertensive patients 
in the German epidemiologic trial on ankle-brachial index 
(getABI) to predict the need for revascularization and/or 
amputation at 7-years using only 12 clinical and laboratory 
features [20]. Their optimal model, an RF model, achieved 
an AUC of 0.73. As such this model might best be used in 
the primary care setting in identifying hypertensive patients 
who have the highest risk of long-term MALE for more 
aggressive medical management of modifiable risk factors 
or earlier referral to vascular specialists for treatment as soon 
as symptoms arise.

Using data from 255 patients with intermittent claudica-
tion, Rhavindran and colleagues trained a LASSO model to 
predict the risk of PAD's progression to critical limb threat-
ening ischemia (CLTI) at 2- and 5-years, MACE at 5-years, 
MALE at 5 years, and the risk of 2 or more revascularization 
procedures within 5 years [21]. Given the small sample size 
they used bootstrapping to resample observations from a 
single data set, expanding their sample to 10,000 patients. 
Their prediction model produced AUCs for individualized 
outcomes ranging from 0.83–0.89. Of note, their models 
uniquely incorporated compliance with initial treatment 
strategy (best medical therapy, supervised exercise therapy, 
and endovascular intervention) as a feature of the LASSO 
model.

Given the proclivity for patients with PAD to undergo 
endovascular or open surgical interventions, there have 
been a variety of models developed to predict outcomes 
following procedures. Cox et  al. utilized the American 
College of Surgeons National Surgical Quality Improvement 
Program (NSQIP) database to identify a cohort of 14,444 
cases of patients undergoing lower extremity endovascular 
intervention for PAD [22]. Using the data from this cohort 

they developed an RF model to predict 30-day amputation 
rates following endovascular interventions, achieving an 
AUC of 0.81. Liu and colleagues performed a retrospective 
study using random survival forest (RSF) prediction model 
to predict rates of amputation-free survival (AFS) following 
successful inpatient revascularization for PAD [23]. The 
optimal model achieved AUCs of 0.82, 0.8, and 0.79 for 
predicting AFS at 1-, 3-, and 5-years post-revascularization, 
respectively [23]. This group compared their model to the 
GermanVasc score, a previously published ML model 
that predicts AFS at 5-years and found that their model 
outperformed the GermanVasc (c-index 0.78 v. 0.73, 
respectively) [24]. A limitation of this study, however, was 
sample size (n = 1260) and data source (single institution), 
which may hinder generalizability as institutional practice 
patterns may have undue influence on the model [24].

More recently, Li et al. used the Society for Vascular 
Surgery Vascular Quality Initiative (VQI) database to publish 
a series of papers predicting MALE and mortality at 1-year 
in patients undergoing infrainguinal bypass, suprainguinal 
bypass, and endovascular therapy (EVT) for PAD [25–27]. 
These studies are unique in several ways. They compared the 
performance of several models using preoperative features 
and found the XGB algorithm to have the most robust 
performance across multiple outcome prediction models 
used to predict 1-year MALE after infrainguinal bypass 
(AUC 0.94), suprainguinal bypass (AUC 0.92), and EVT 
(AUC 0.94). Additionally, following identification of XGB 
as the optimal algorithm in predicting the primary outcome 
using preoperative features, additional models were made 
incorporating intra-operative (procedural) features and 
post-operative features in an additive stepwise approach. 
The addition of intra-operative data to the models did not 
significantly alter performance, while the addition of post-
operative features improved performance, resulting in AUCs 
of 0.96, 0.98, and 0.98, for patients undergoing infrainguinal 
bypass, suprainguinal bypass, and EVT, respectively. The 
group argued that the creation of models at each phase 
of a patient’s care would allow for maximum opportunity 
to mitigate adverse events and even offered a clinical 
workflow decision matrix utilizing the model output at each 
phase of care to guide decision-making. They provided 
a framework on the best way to implement these models 
clinically, suggesting using the pre-op model to identify 
high risk patients for interventions and consideration of 
further optimization or a different surgical approach. For 
example, for patients identified as high-risk for 1-year 
MALE or mortality via the intraoperative prediction model 
they suggested admission to higher levels of care for closer 
monitoring of these patients. Strategies for close follow-up, 
multidisciplinary post-operative care and rehabilitation 
were suggested for patients identified as high-risk by the 
postoperative model. Furthermore, this group made their 
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model code publicly available via GitHub with suggestions 
for implementation at other centers participating in VQI 
and the staff required to do so. Finally, these models also 
maintained performance with respect to age, race, ethnicity, 
and rurality subgroups, complying with calls to develop 
models that demonstrate “fairness” [28].

The use of biomarkers in ML have also been shown to 
be useful in MALE prediction. Li and colleagues recruited 
a cohort of PAD and non-PAD patients and then performed 
propensity-matching to achieve a final cohort of 270 patients 
for model development [29]. They collected clinical data and 
levels of 37 proteins at the onset of the study, identifying 
6 that were differentially expressed between the matched 
cohorts and then observed the groups for MALE over 
2 years. They then used these 6 biomarkers as input features 
to train a RF model, achieving 2-year MALE prediction 
AUC of 0.86. They then recruited an additional cohort of 
189 patients with PAD and 88 patients without PAD for 
prospective model validation. With this validation cohort, 
the model achieved an AUC of 0.84 for predicting 2-year 
MALE. Like their previous studies, this group discussed 
real-world application of their results, suggesting use of 
these biomarkers as a way for general practitioners to screen 
for PAD, then following confirmation of diagnosis by ABI, 
use of the model to identify those at high-risk for 2-year 
MALE.

Short Term Mortality, Readmission, Acute Renal Failure

Zhang and colleagues used the National Inpatient Sample 
database (NIS) to predict risk of in-hospital mortality in 
patients admitted with a primary diagnosis of PAD [30]. 
They used in-hospital data from a cohort of 150,921 
patients and developed four ML models using RF, XGB, 
light gradient boosting, and LR algorithms. The XGB model 
demonstrated the highest AUC of 0.85, though performance 
across all models evaluated did not differ significantly 
with AUCs ranging from 0.83–0.85 [30]. The three most 
critical features for model performance were the number of 
diagnoses, procedures accrued during the hospitalization, 
and patient age. Cox et al. using the previously discussed 
NSQIP cohort of patients undergoing lower extremity 
endovascular intervention for PAD developed RF models 
to predict 30-day procedure mortality, as well as 30-day 
unplanned readmission [31]. AUC for 30-day mortality was 
0.75 while the model for 30-day unplanned readmission 
demonstrated lower performance with AUC of 0.68 [31]. 
Using the same data and citing the commonality of contrast 
induced nephropathy following endovascular interventions, 
they also developed an RF model to predict 30-day acute 
renal failure in patients with AUC of 0.81 [32].

Advanced Phenotyping

Unsupervised Learning

Unsupervised learning is a subclass of ML that uses unla-
beled data to find patterns across data points and as such can 
be used to identify patients with shared prognoses. Zhang 
and colleagues used an unsupervised ML algorithm, spe-
cifically k-means clustering, to identify two novel clusters 
of patients with lower extremity PAD in a cohort of 460 
patients based on baseline patient clinical characteristics at 
initial visit for PAD [33]. Patients in cluster 1 were noted 
to have significantly higher age, body mass index (BMI), 
neutrophil levels, prevalence of smoking, hypertension, and 
diabetes. Subsequent analysis of PAD specific 1-year out-
comes showed that patients in cluster 1 had significantly 
lower ABIs, more severe claudication symptoms, higher 
Rutherford classification, and higher rates of tissue loss and 
amputation. Thus, the authors distinguished the two clus-
ters as severe (cluster 1) and mild (cluster 2) PAD subtypes. 
The baseline variables identified as significantly different 
between the two groups were then used to develop a pre-
dictive model to identify patients belonging to the severe 
subtype with a reported AUC of 0.76. Such a model could 
be used to prospectively guide patient care, depending on 
what cluster a patient is most closely related to on initial 
evaluation.

Left untreated PAD can progress to chronic limb 
threatening ischemia (CLTI). Using one of the more novel 
applications of cluster modeling, McGinigle and colleagues 
used their institutional data for patients undergoing open 
and/or endovascular treatment of CLTI to develop a 
classification system for 1-year mortality, akin to tumor, 
node, metastasis (TNM) staging in cancer patients [34]. To 
accomplish this, the team abstracted patient demographics, 
presence and severity of comorbidities, Wound Ischemia 
foot Infection (WIfI) scores, and anatomic patterns of PAD 
from patient charts via manual chart review and natural 
language processing. These data were subsequently used 
in a supervised latent Dirichlet allocation (sLDA) topic 
model algorithm to cluster patients into “stages'' based on 
rates of 1-year mortality. Stage I, II, and III corresponded 
to 1-year mortality rates of 7.6%, 13.8%, and 18.9%. The 
authors argued that this robust staging system could help 
clinicians and patients develop a more patient-centered 
approach to CLTI management. However, generalizability 
of this model is limited by the sample size (n = 285), its 
retrospective nature, and single institution origin. The same 
group performed a subsequent study to develop a supervised 
clustering model using data from the Project of Ex Vivo 
Vein Graft Engineering via Transfection (PREVENT) III 
clinical trial [35]. Using the primary composite outcome 
of 1-year CLTI-free survival, their model was able to sort 
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patients undergoing infrainguinal bypass into 3 distinct 
stages with decreasing rates of CLTI-free survival (82.3% 
v. 61.1% v. 53.4%). However, it is important to note that 
this group was not able to validate this cluster model in a 
real-world cohort of patients and acknowledged that external 
validation would be required to confirm their findings.

A summary of the above studies is detailed in Table 2.

Conclusions

Our review highlights the potential of ML to serve as a 
valuable tool for supporting physicians in their clinical 
decision-making. Current research shows that ML models 
could allow for more effective screening and earlier 
diagnosis of PAD using data types such as the EHR, 
imaging, and proteomics. ML models can also improve 
risk stratification. Models developed using algorithms 
such as LASSO, XGB and RF have the potential to assist 
physicians in accurately predicting the progression of 

PAD or risk of MACCE across diverse patient groups. 
Utilization of such models early in the diagnosis process 
could allow for better management of comorbidities prior 
to PAD treatment.

While ML has the capability to more accurately and 
efficiently diagnose and classify PAD, therefore potentially 
improving patient outcomes while reducing cost of care, 
its use currently has limitations. Some models could be 
difficult to implement in everyday practice such as those 
using proteomics data, and additional research is needed 
to improve ML generalizability. Additional studies will be 
required to implement such ML models in clinical workflows 
and demonstrate their usefulness in patient care. Regardless 
of the model used or how it is used, AI and ML-based PAD 
care will likely still require physician or human oversight to 
prevent potential errors in the near term.

Overall, ML/AI has the potential to revolutionize PAD 
diagnosis, prognosis and treatment, however, further studies 
are essential to address current limitations and successfully 
implement these tools into clinical practice.

Table 2   Summary of recent machine learning models used in peripheral artery disease risk stratification

CLTI chronic limb threatening ischemia; LASSO least absolute shrinkage and selection operator; NA not applicable; NR not reported; PAD 
peripheral artery disease; RF random forest; sLDA supervised latent Dirichlet allocation; XGB extreme gradient boosting

Author Goal Optimal model AUC​

Ross et al. [18] Prediction of MACCE after PAD diagnosis RF 0.81
Austin et al. [19] 1-year Lower-Extremity Amputation Risk RF NR
Tsarapatsani et al. [20] Predict need for amputation and/or revascularization in patients with hyperten-

sion
RF 0.73

Rhavindran et al. [21] Predict risk of progression to CLTI at 2- and 5-years, MACE at 5-years, 
MALE at 5-years, and risk of 2 + revascularization procedures in 2 years

LASSO 0.83–0.89

Cox et al. [22] Predict 30-day amputation risk after endovascular intervention RF 0.81
Liu et al. [23] Predict rates of amputation-free survival following successful inpatient revas-

cularization at 1, 3, and 5 years
Random Survival 

Forest
0.82 (1-year), 0.8 

(3-year), 0.79 
(5-year)

Li et al. [25] Prediction of 1-year MALE in patients undergoing endovascular intervention XGB 0.94 – 0.98
Li et al. [26] Prediction of 1-year MALE in patients undergoing infrainguinal bypass XGB 0.94 – 0.96
Li et al. [27] Prediction of 1-year MALE in patients undergoing suprainguinal bypass XGB 0.92 – 0.98
Li et al. [29] Prediction of 2-year MALE in patients with PAD RF 0.84
Zhang D et al. [30] Prediction of in-hospital mortality in patients admitted for PAD XGB  0.85
Cox et al. [31] Prediction of 30-day procedure-related mortality and 30-day unplanned read-

mission following endovascular intervention
RF 0.75 (Mortality)

0.68 (Unplanned 
readmission)

Cox et al. [32] Prediction of 30-day acute renal failure after endovascular intervention RF 0.81
Zhang et al. [33] Creation of a PAD subtype using unsupervised learning and neutrophil-related 

biomarkers
K-means clustering NA

McGinigle et al. [34] Create TNM-like staging for patients with CLTI based on risk of 1-year mor-
tality using unsupervised learning

sLDA NA

Chung et al. [35] Use topic model cluster analysis to risk stratify patients with CLTI by 1-year 
CLTI-free survival

sLDA NA



194	 Current Cardiovascular Risk Reports (2024) 18:187–195

Key References

•	 Ghanzouri, I., Amal, S., Ho, V. et al. Performance and 
usability testing of an automated tool for detection of 
peripheral artery disease using electronic health records. 
Sci Rep 12, 13364 (2022). https://​doi.​org/​10.​1038/​
s41598-​022-​17180-5

•	 Cox M, Reid N, Panagides JC, Di Capua J, DeCarlo C, 
Dua A, Kalva S, Kalpathy-Cramer J, Daye D (2022) 
Interpretable Machine Learning for the Prediction of 
Amputation Risk Following Lower Extremity Infrain-
guinal Endovascular Interventions for Peripheral Arterial 
Disease. Cardiovasc Intervent Radiol 45:633–640

•	 McGinigle KL, Freeman NLB, Marston WA, Farber A, 
Conte MS, Kosorok MR, Kalbaugh CA (2021) Precision 
Medicine Enables More TNM-Like Staging in Patients 
With Chronic Limb Threatening Ischemia. Front Cardio-
vasc Med 8:709904

Author Contribution  SP, ST, IM wrote the main manuscript draft. LK 
revised the manuscript critically for important intellectual content. 
EGR developed the concept for the manuscript, revised it for criti-
cally important intellectual content and approved the final version. All 
authors agree to be accountable for all aspects of the work.

Funding  Dr. Ross received funding from the National Insti-
tutes of Health (National Heart, Lung, and Blood Institute 
(NHLBI) (K01HL148639-05), National Institute of Aging (NIA) 
(1R01AG084343-01)), and the Doris Duke Clinical Scientist Devel-
opment Award (2021188).

Data Availability  No datasets were generated or analysed during the 
current study.

Declarations 

Conflict of Interest  The authors declare no competing interests.

Human and Animal Rights and Informed Consent  This article does not 
contain any studies with human or animal subjects performed by any 
of the authors.

Disclaimer  The views expressed in this material are those of the 
authors, and do not reflect the official policy or position of the U.S. 
Government, the Department of Defense, the Department of the Navy, 
or Naval Medical Center San Diego.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Horváth L, Németh N, Fehér G, Kívés Z, Endrei D, Boncz I. 
Epidemiology of peripheral artery disease: Narrative review. Life 
(Basel). 2022;12(7):1041. https://​doi.​org/​10.​3390/​life1​20710​41.

	 2.	 Guirguis-Blake JM, Evans CV, Redmond N, et al. Screening for 
Peripheral Artery Disease Using the Ankle-Brachial Index: An 
Updated Systematic Review for the U.S. Preventive Services Task 
Force [Internet]. Rockville (MD): Agency for Healthcare Research 
and Quality (US); 2018 Jul. (Evidence Synthesis, No. 165.) 1, 
Introduction.

	 3.	 Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, 
Waddell N. Deep learning in cancer diagnosis, prognosis and 
treatment selection. Genome Med. 2021;13(1):152. https://​doi.​
org/​10.​1186/​s13073-​021-​00968-x.

	 4.	 Maddury S. Automated Huntington's disease prognosis via bio-
medical signals and shallow machine learning. ArXiv [Preprint]. 
2023 Feb 8:arXiv:​2302.​03605​v2.

	 5.	 Qutrio Baloch Z, Raza SA, Pathak R, Marone L, Ali A. Machine 
learning confirms nonlinear relationship between severity of 
peripheral arterial disease, functional limitation and symptom 
severity. Diagnostics (Basel). 2020;10(8):515. https://​doi.​org/​10.​
3390/​diagn​ostic​s1008​0515.

	 6.	 Sonderman M, Aday AW, Farber-Eger E, Mai Q, Freiberg MS, 
Liebovitz DM, Greenland P, McDermott MM, Beckman JA, 
Wells Q. Identifying patients with peripheral artery disease using 
the electronic health record: A pragmatic approach. JACC Adv. 
2023;2(7):100566. https://​doi.​org/​10.​1016/j.​jacadv.​2023.​100566.

	 7.	 Ghanzouri I, Amal S, Ho V, et al. Performance and usability test-
ing of an automated tool for detection of peripheral artery disease 
using electronic health records. Sci Rep. 2022;12:13364. https://​
doi.​org/​10.​1038/​s41598-​022-​17180-5.

	 8.	 Normahani P, Sounderajah V, Mandic D, Jaffer U. Machine 
learning-based classification of arterial spectral waveforms for the 
diagnosis of peripheral artery disease in the context of diabetes: 
A proof-of-concept study. Vasc Med. 2022;27(5):450–6. https://​
doi.​org/​10.​1177/​13588​63X22​11051​13.

	 9.	 Luo X, Ara L, Ding H, Rollins D, Motaganahalli R, Sawchuk AP. 
Computational methods to automate the initial interpretation of 
lower extremity arterial Doppler and duplex carotid ultrasound 
studies. J Vasc Surg. 2021;74(3):988-996.e1. https://​doi.​org/​10.​
1016/j.​jvs.​2021.​02.​050.

	10.	 Khagi B, Befsova T, Short CM, Taylor A, Nambi V, Ballantyne 
CM, Bismuth J, Shah DJ, Brunner G. A machine learning-based 
approach to identify peripheral artery disease using texture fea-
tures from contrast-enhanced magnetic resonance imaging. Magn 
Reson Imaging. 2024;106:31–42. https://​doi.​org/​10.​1016/j.​mri.​
2023.​11.​014.

	11.	 Mueller S, Wintergerst MWM, Falahat P, Holz FG, Schaefer 
C, Schahab N, Finger RP, Schultz T. Multiple instance learning 
detects peripheral arterial disease from high-resolution color fun-
dus photography. Sci Rep. 2022;12(1):1389. https://​doi.​org/​10.​
1038/​s41598-​022-​05169-z.

	12.	 Shahrbabak SM, Kim S, Youn BD, Cheng HM, Chen CH, Muk-
kamala R, Hahn JO. Peripheral artery disease diagnosis based 
on deep learning-enabled analysis of non-invasive arterial pulse 
waveforms. Comput Biol Med. 2024;168:107813. https://​doi.​org/​
10.​1016/j.​compb​iomed.​2023.​107813.

	13.	 McCarthy CP, Ibrahim NE, van Kimmenade RRJ, Gaggin HK, 
Simon ML, Gandhi P, Kelly N, Motiwala SR, Mukai R, Magaret 
CA, Barnes G, Rhyne RF, Garasic JM, Januzzi JL Jr. A clinical 

https://doi.org/10.1038/s41598-022-17180-5
https://doi.org/10.1038/s41598-022-17180-5
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life12071041
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1186/s13073-021-00968-x
http://arxiv.org/abs/2302.03605v2
https://doi.org/10.3390/diagnostics10080515
https://doi.org/10.3390/diagnostics10080515
https://doi.org/10.1016/j.jacadv.2023.100566
https://doi.org/10.1038/s41598-022-17180-5
https://doi.org/10.1038/s41598-022-17180-5
https://doi.org/10.1177/1358863X221105113
https://doi.org/10.1177/1358863X221105113
https://doi.org/10.1016/j.jvs.2021.02.050
https://doi.org/10.1016/j.jvs.2021.02.050
https://doi.org/10.1016/j.mri.2023.11.014
https://doi.org/10.1016/j.mri.2023.11.014
https://doi.org/10.1038/s41598-022-05169-z
https://doi.org/10.1038/s41598-022-05169-z
https://doi.org/10.1016/j.compbiomed.2023.107813
https://doi.org/10.1016/j.compbiomed.2023.107813


195Current Cardiovascular Risk Reports (2024) 18:187–195	

and proteomics approach to predict the presence of obstructive 
peripheral arterial disease: From the Catheter Sampled Blood 
Archive in Cardiovascular Diseases (CASABLANCA) Study. Clin 
Cardiol. 2018;41(7):903–9. https://​doi.​org/​10.​1002/​clc.​22939.

	14.	 Sonnenschein K, Stojanović SD, Dickel N, Fiedler J, Bauersachs 
J, Thum T, Kunz M, Tongers J. Artificial intelligence identifies 
an urgent need for peripheral vascular intervention by multiplex-
ing standard clinical parameters. Biomedicines. 2021;9(10):1456. 
https://​doi.​org/​10.​3390/​biome​dicin​es910​1456.

	15.	 Al-Ramini A, Hassan M, Fallahtafti F, Takallou MA, Rahman H, 
Qolomany B, Pipinos II, Alsaleem F, Myers SA. Machine learn-
ing-based peripheral artery disease identification using laboratory-
based gait data. Sensors (Basel). 2022;22(19):7432. https://​doi.​
org/​10.​3390/​s2219​7432.

	16.	 Kim EK, Song PS, Yang JH, et al. Peripheral artery disease in 
Korean patients undergoing percutaneous coronary intervention: 
prevalence and association with coronary artery disease severity. 
J Korean Med Sci. 2013;28:87–92.

	17.	 Subherwal S, Patel MR, Kober L, Peterson ED, Bhatt DL, Gisla-
son GH, Olsen A-MS, Jones WS, Torp-Pedersen C, Fosbol EL. 
Peripheral artery disease is a coronary heart disease risk equiva-
lent among both men and women: results from a nationwide study. 
Eur J Prev Cardiol. 2015;22:317–25.

	18.	 Ross EG, Jung K, Dudley JT, Li L, Leeper NJ, Shah NH. Predict-
ing future cardiovascular events in patients with peripheral artery 
disease using electronic health record data. Circ Cardiovasc Qual 
Outcomes. 2019;12:e004741.

	19.	 Austin AM, Ramkumar N, Gladders B, Barnes JA, Eid MA, 
Moore KO, Feinberg MW, Creager MA, Bonaca M, Goodney PP. 
Using a cohort study of diabetes and peripheral artery disease 
to compare logistic regression and machine learning via random 
forest modeling. BMC Med Res Methodol. 2022;22:300.

	20.	 Tsarapatsani K, Sakellarios AI, Tsakanikas VD, Trampisch HJ, 
Rudolf H, Tachos N, Kleber ME, Marz W, Fotiadis DI. Machine 
learning models predict the need of amputation and/or periph-
eral artery revascularization in hypertensive patients within 
7-years follow-up. Annu Int Conf IEEE Eng Med Biol Soc. 
2023;2023:1–4.

	21.	 Ravindhran B, Prosser J, Lim A, et  al. Tailored risk assess-
ment and forecasting in intermittent claudication. BJS Open. 
2024;8:166.

	22.	 Cox M, Reid N, Panagides JC, Di Capua J, DeCarlo C, Dua A, 
Kalva S, Kalpathy-Cramer J, Daye D. Interpretable machine learn-
ing for the prediction of amputation risk following lower extrem-
ity infrainguinal endovascular interventions for peripheral arterial 
disease. Cardiovasc Intervent Radiol. 2022;45:633–40.

	23.	 Liu Y, Xue J, Jiang J. Application of machine learning algorithms 
in electronic medical records to predict amputation-free survival 
after first revascularization in patients with peripheral artery dis-
ease. Int J Cardiol. 2023;383:175–84.

	24.	 Kreutzburg T, Peters F, Kuchenbecker J, Marschall U, Lee R, Kris-
ton L, Debus ES, Behrendt C-A. Editor’s choice - the Germanvasc 

score: a pragmatic risk score predicts five year amputation free 
survival in patients with peripheral arterial occlusive disease. Eur 
J Vasc Endovasc Surg. 2021;61:248–56.

	25.	 Li B, Eisenberg N, Beaton D, et al. Using machine learning to 
predict outcomes following suprainguinal bypass. J Vasc Surg. 
2024;79:593-608.e8.

	26.	 Li B, Eisenberg N, Beaton D, et al. Using machine learning 
(XGBoost) to predict outcomes after infrainguinal bypass for 
peripheral artery disease. Ann Surg. 2024;279:705–13.

	27.	 Li B, Warren BE, Eisenberg N, et al. Machine learning to predict 
outcomes of endovascular intervention for patients with PAD. 
JAMA Netw Open. 2024;7:e242350.

	28.	 Thomasian NM, Eickhoff C, Adashi EY. Advancing health 
equity with artificial intelligence. J Public Health Policy. 
2021;42:602–11.

	29	 Li B, Shaikh F, Zamzam A, Syed MH, Abdin R, Qadura M. A 
machine learning algorithm for peripheral artery disease progno-
sis using biomarker data. iScience. 2024;27:109081.

	30.	 Zhang D, Li Y, Kalbaugh CA, Shi L, Divers J, Islam S, Annex 
BH. Machine learning approach to predict in-hospital mortality in 
patients admitted for peripheral artery disease in the United States. 
J Am Heart Assoc. 2022;11:e026987.

	31.	 Cox M, Panagides JC, Tabari A, Kalva S, Kalpathy-Cramer J, 
Daye D. Risk stratification with explainable machine learning for 
30-day procedure-related mortality and 30-day unplanned read-
mission in patients with peripheral arterial disease. PLoS One. 
2022;17:e0277507.

	32.	 Cox M, Panagides JC, Di Capua J, Dua A, Kalva S, Kalpathy-
Cramer J, Daye D. An interpretable machine learning model for 
the prevention of contrast-induced nephropathy in patients under-
going lower extremity endovascular interventions for peripheral 
arterial disease. Clin Imaging. 2023;101:1–7.

	33.	 Zhang L, Ma Y, Li Q, Long Z, Zhang J, Zhang Z, Qin X. Con-
struction of a novel lower-extremity peripheral artery disease sub-
type prediction model using unsupervised machine learning and 
neutrophil-related biomarkers. Heliyon. 2024;10:e24189.

	34.	 McGinigle KL, Freeman NLB, Marston WA, Farber A, Conte 
MS, Kosorok MR, Kalbaugh CA. Precision medicine enables 
more TNM-like staging in patients with chronic limb threatening 
ischemia. Front Cardiovasc Med. 2021;8:709904.

	35.	 Chung J, Freeman NLB, Kosorok MR, Marston WA, Conte MS, 
McGinigle KL. Analysis of a machine learning-based risk stratifi-
cation scheme for chronic limb-threatening ischemia. JAMA Netw 
Open. 2022;5:e223424.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/clc.22939
https://doi.org/10.3390/biomedicines9101456
https://doi.org/10.3390/s22197432
https://doi.org/10.3390/s22197432

	Machine Learning in Vascular Medicine: Optimizing Clinical Strategies for Peripheral Artery Disease
	Abstract
	Purpose of Review 
	Recent Findings 
	Summary 

	Introduction
	Early Diagnosis
	Electronic Health Record Data
	Imaging Data
	Proteomics Data
	Other Novel Data

	Risk Stratification
	MACCE
	MALE
	Short Term Mortality, Readmission, Acute Renal Failure

	Advanced Phenotyping
	Unsupervised Learning


	Conclusions
	Key References
	References




