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 The Annals of Probability
 1997, Vol. 25, No. 2, 812-854

 BROWNIAN EXCURSIONS, CRITICAL RANDOM GRAPHS
 AND THE MULTIPLICATIVE COALESCENT'

 BY DAVID ALDOUS

 University of California, Berkeley

 Let (Bt(s), 0 < s < oo) be reflecting inhomogeneous Brownian motion
 with drift t - s at time s, started with Bt(O) = 0. Consider the random
 graph 9(n, n-1+tn-4/3), whose largest components have size of order n2/3.
 Normalizing by n-2/3, the asymptotic joint distribution of component sizes
 is the same as the joint distribution of excursion lengths of Bt (Corollary
 2). The dynamics of merging of components as t increases are abstracted
 to define the multiplicative coalescent process. The states of this process

 are vectors x of nonnegative real cluster sizes (xi), and clusters with sizes
 xi and xj merge at rate xixj. The multiplicative coalescent is shown to
 be a Feller process on 12. The random graph limit specifies the standard
 multiplicative coalescent, which starts from infinitesimally small clusters

 at time -oo; the existence of such a process is not obvious.

 1. Introduction.

 1. 1. A stochastic process. We start by describing more carefully the sto-
 chastic process mentioned in the abstract. For readers with a background in
 random graphs, we should emphasize that this process is a comparatively sim-
 ple instance of the kind of process that the modern martingale-based theory
 of stochastic calculus, treated in, for example, [26, 27] or [25], is designed to
 study. Conversely, for readers with a background in modern process theory, we
 should emphasize that our results open up challenging problems in rederiving,
 via process techniques, existing random graph asymptotics formulas.

 Fix -oo < t < oo. Let (W(s), 0 < s < oo) be standard Brownian motion.
 Then

 (1) Wt(s)=W(s)+ts- S2, s>O

 defines the (inhomogeneous) Brownian motion with drift t - s at time s. We
 wish to study this process restricted to the range [0, oo) by reflection at 0.
 As the inhomogeneous analog of the classical "Levy presentation of reflecting
 Brownian motion" ([27], I.14), this reflecting process Bt may be constructed
 via

 (2) Bt(s) = Wt(s) - min Wt(s), s > 0.
 O<s'<s

 Received December 1995; revised August 1996.
 1Research supported by NSF Grant DMS-92-24857.
 AMS 1991 subject classifications. 60C05, 60J50.
 Key words and phrases. Brownian motion, Brownian excursion, Markov process, random

 graph, critical point, stochastic coalescent, stochastic coagulation, weak convergence.

 812

This content downloaded from 108.226.241.26 on Sat, 24 Feb 2018 21:22:12 UTC
All use subject to http://about.jstor.org/terms



 RANDOM GRAPHS AND MULTIPLICATIVE COALESCENT 813

 Now append a point process of "marks" of intensity Bt(s) at time s. Informally,

 (3) P(some mark during [s, s + ds]IBt(u), u < s) = Bt(s) ds.

 Precisely, the number Nt(s) of marks in [0, s] is characterized as the counting

 process for which

 Nt(s) - j B'(u) du is a martingale,

 though we shall use the more intuitive "infinitesimal" notation. An excursion

 y of Bt is a time interval [1(y), r(-y)] such that Bt(l(y)) = Bt(r(y)) = 0 and
 Bt(s) > 0 on 1(y) < s < r(y). The excursion has length Ijy = r(y) - 1(y) and
 contains some number ,t(y) > 0 of marks. Write Ft for the set of excursions
 of Bt. A stochastic calculus calculation (Lemma 25, which like other such
 calculations is deferred to Section 5) implies that we can order excursions by

 length, that is, write Ft = {yj, j > 1} so that the lengths I yjI are decreasing.
 This in turn specifies a joint distribution

 ((ej 1,( i-)), j >l)
 of lengths and mark counts of excursions.

 1.2. Critical random graphs. The random graph model c(n, P(edge) =
 p(n)) and its variants are perhaps the most studied model in probabilistic
 combinatorics, and the n -> oo asymptotics of component sizes are a classical
 object of study. A fundamental result going back to Erdos and Renyi [11, 12]
 says that when p(n) = a/n for fixed 0 < a < oo, then the following hold.

 1. For a < 1, the largest component size is 0(log n).
 2. For a > 1, the largest component has size 0(n), while the second largest

 component size is 0(log n).
 3. For a = 1, the largest and second largest components both have size 0(n2/3).

 Much attention has been paid to "the emergence of the giant component"
 as p(n) increases through 1/n; see [7] for results up to 1984 and [16] and [19]
 for references to subsequent work. The following folk theorem is implicit in
 this recent work, though apparently it has never been proved explicitly in the
 form we state. Define the number of surplus edges in a component as

 surplus = (number of edges) - (number of vertices - 1) > 0.

 Fix -oo < t < oo.

 FOLK THEOREM 1. Let Ct (1) > Ct(2) > ... be the ordered component sizes

 of 9(n, n-1 + tn-4/3), and let ont(j) be the surplus of the corresponding com-
 ponent. Then as n -+ oo,

 (n2/3(Cn(j) ont(j)), j > 1) d ((Ct(j), ot(j))' j > 1) = (Ct, ot), SaY,

 for some limit (Ct, cut) with 0 < Ct(j) < 00 and 0 < o.t(j) < o0 a.s. for each
 j > 1.
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 814 D. ALDOUS

 (For the moment regard "convergence" as convergence with respect to prod-
 uct topology, that is, convergence of initial segments of arbitrary fixed length.)
 It is well known that the n-4/3 scaling is "correct" for the emergence of the
 giant component, in that

 Ct(1) d 0 as t - -0oo,

 Ct(l) d o? but Ct(2) -d 0 as t -- +oo.

 Our main result, Theorem 3, has the following corollary. Define 12i to be the set

 of infinite sequences x = (xl, x2,...) with xl > x2 > > 0 and Ti x? < oo,
 and give 12 the natural metric d(x, y) = YEi(xi - yi)2. We may regard the
 finite sequence Ct = (Ct(j), j > 1) as a random element of 12 by appending
 entries of size zero.

 COROLLARY 2. Folk Theorem 1 is true, and the convergence n-2/3Ct > dCt

 holds with respect to the 12 topology. Moreover the limit ((Ct(j), art(j)), j 1

 is distributed as the sequence ((I yjI, /ut(yj)), j > 1) of lengths and mark-counts
 of excursions of Bt.

 We now start to describe how this result arises.

 1.3. The breadth-first walk. We first describe a deterministic construction,
 illustrated in Figure 1. Consider a graph on vertices {1, 2, ..., n}. We shall
 specify the breadth-first ordering (v(1), ..., v(n)) of the vertices, and an as-
 sociated integer-valued sequence (z(i); 0 < i < n) we shall call breadth-first
 walk. The first of these notions is of course a well-known algorithmic proce-

 dure. In brief: order components el, 42 ... so that the smallest-labeled vertex
 w1, w2, . . . in each component has w1 < w2 < ... (and call wj the root of ej);
 within each component, order by levels (equal distance from root); within each
 level, use the original order of labels.

 We now elaborate this construction. Given {v(1),..., v(i)}, define the neigh-

 bor set Xi to be the set of vertices outside {v(1), . . ., v(i)} which are neighbors
 of some vertex inside {v(1), . . ., v(i)}. We can also define the set of children of

 v(i) to be the set Xi \,I1i-1. Order the components ei as described above, and
 consider the first component el. Define v(1) = w1 and let v(2), . . ., v(1?+ j1 1)
 be the neighbors of v(1), in increasing order. Inductively for i = 2, . . ., I e 1, list
 the children (if any) of v(i) in increasing order as v(i?+ I i 1), . . ., v(i+IXi ).
 After exhausting the first component, we set v(14l I + 1) = w2, the root of the
 second component. List the children of w2 as v(lell + 2), v(1&ll + 3), ... and
 continue the induction through the second component. Repeat for subsequent
 components.

 Write c(i) = I,'i \ Xi-, I for the number of children of v(i). Now define
 breadth-first walk via

 (4) z(O) = 0; z(i)-z(i-1) = c(i)-1, i = 1,..,n.
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 An equivalent definition is provided by (5) below. Write

 OAi = I-ell + + lveil

 ;-'(i) = min{j: ;(j) > i}

 so that p-1(i) is the index of the component containing v(i). We assert

 (5) z(i) = 1Vil - r1m(i), i = 1, 2, ... , n.

 To verify by induction that (5) and (4) are equivalent, we need to show

 lxi- lxi-i = c(i)-1 ?+ 1(i) - -(i -1), i = 2, 3, ... , n.
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 816 D. ALDOUS

 Suppose v(i-1) is not the last vertex in its component. Then p1(i) = ;`(i- )
 and because v(i) E Xi-, we have d1i I - IdIVi_1I = c(i) - 1. If on the other
 hand v(i - 1) is the last vertex in its component, then ;-'(i) = 1 + ;-1(i - 1)

 and, because j.A/i_1I = 0, we have l1i/I - I.47i_1I = c(i), as required.
 Because J.7i I = 0 only if v(i) is the last vertex of its component, (5) implies

 (6) z(M(j)) = -i; z(i) > -j for all ;(j) < i < ;(j + 1).
 It follows that we can reconstruct component sizes and indices from the walk
 via

 ;(j) = min{i: z(i) =-i},

 (7) lei = ;(i- 4(j- 1
 ;-'(i)= 1 - min z(j).

 j<i-1

 Our first main result says what happens when we apply this construction
 to the near-critical random graph.

 THEOREM 3. Let (Zt (i), 0 < i < n) be the breadth-first walk associated
 with 9(n, n-1 + tn-4/3). Rescale by defining

 zt (s) = n-1/3Zt (n2/3Sj).

 Then Ztn d Wt as n -x oc.

 Interpret Zt(Ln2/3sJ) as Zt(n) for s > n1/3. Recall that convergence of
 processes on the infinite interval 0 < s < oo (see, e.g., [13]) is "uniform on
 finite intervals" rather than uniform over the infinite interval. We in fact
 need an extension (31) of Theorem 3 in which surplus edges are indicated as
 "marks" on the breadth-first walk. This (easy) extension in stated and proved
 in Section 2.2.

 The proof of Theorem 3 (Section 2.1) uses standard methodology from sto-
 chastic process theory (the functional CLT for continuous-time martingales)
 but does not require any nontrivial facts about random graphs. Essentially,
 one just has to compute first-order asymptotics for the conditional mean and
 variance of increments of Zt (); see (20) and (21). Details of how Corollary 2
 follows are given in Section 2.3 but should be intuitively clear from property (6)
 of breadth-first walk. The point is that component sizes are coded as lengths
 of path segments above past minima; these converge to lengths of excursions
 of Wt above past minima, which are just lengths of excursions of Bt above 0.

 Martin-Lof [22] and Spencer [28] have independently given results relat-
 ing to random graphs and Brownian-type processes which may be viewed as
 aspects of Theorem 3; see Section 6.

 1.4. A nonuniform random graph model. It turns out that the "component
 size" part of Corollary 2 can be extended to a nonuniform random graph model.
 This extension, Proposition 4, will be proved in Section 3 by modifying where
 needed the proofs of Theorem 3 and Corollary 2.
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 For a positive real vector x = (x1, . . ., xn) and q > 0, define a random graph
 )Y'(x, q) on vertices {1, 2, ..., n} as follows. Each pair (i, j) of vertices is an
 edge with probability 1 - exp(-qxixj), independently for distinct pairs.

 Interpret xi as the size of vertex i, and therefore say a component v of
 Y'(x, q) has size C = E xi. Given x, define

 cr= E , r > 1,

 x* = maxi xi.

 PROPOSITION 4. For each n, let x(n) be a finite positive vector and let q(n) >
 0. Let (C(n)(j); j > 1) be the ordered component sizes of yt'(X(n), q(n)). Suppose
 that, as n oo,

 (n)

 (8) U -+ 1

 (n) (9) q()_t

 (n)

 (10) -0
 (n)

 for some -oc < t < oo. Then

 (C(n)(j); i > 1) (C'(j); i > 1)

 with respect to the 12 topology defined in Section 1.2, where (Ct(j); j > 1) are
 the ordered excursion lengths of Bt.

 Discussion. We have built the scaling into the hypotheses rather than the
 conclusion. For any constant a > 0, the component sizes of )Y'(ax, a-2q) are a
 times the component sizes of tY'(x, q), so we can always assume (8) by scaling,
 and then (9) is the "essential" hypothesis. Note that after scaling, the classical
 model 9(n, n-1 + tn-4/3) corresponds to the case

 (11) ~Xn) - -2/3 ) = -1/3, (n) = (n) /3

 Assuming (8), hypothesis (10) is equivalent to (dropping the n's) x 3/oU3 O, 0
 that is, the requirement that the contribution to oi from individual terms be
 asymptotically negligible. Clearly some such asymptotic negligibility condition
 is necessary, to eliminate cases (x(n), q(n)) = (x, q) Vn, but it is not clear
 whether (10) itself is necessary.

 Since 03 < X*(o2, hypotheses (8) and (10) imply

 (12) -+ 0.
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 818 D. ALDOUS

 Then

 maxqxixj < qx*-- 72
 I, J

 -o(i '72 )

 >0 by(10),(12).

 So under the hypotheses of Proposition 4, the individual edge probabilities

 tend to zero and are asymptotic to qxixj.

 1.5. The multiplicative coalescent. There is a natural process describing

 Y/"(x, q) as q varies, which we now describe with somewhat different notation.

 Fix x E 12. For each pair i < j, create an exponential (rate 1) r.v. (jj, inde-
 pendent for different pairs. Given t, consider the graph where there exists an

 edge (i, j) iff (ij < txixj; this is a construction of Yt'(x, t), simultaneously for
 all 0 < t < oo. Let Xi(x, t) be the size of the ith largest component of this
 YX(x, t), and let

 (13) X(x, t) = (Xi (x, t), i > 1).

 Picture the typical state y = (yi) as a collection of "clusters" of sizes Yl, Y2,.
 For an initial vector x of finite length, X(x, t) is a continuous-time finite-state

 (the state space depending on the initial x) Markov chain whose dynamics are
 described by the following:

 (14) each pair of clusters of sizes (x, y) merges at rate xy into a
 cluster of size x + y.

 The construction (13) makes sense for an infinite initial vector x, if we allow
 individual cluster sizes to be infinite. In Section 4.2 we shall prove that the
 natural state space for this process is 12, in the following sense.

 PROPOSITION 5. For each x E 12 the construction (13) yields a Markov pro-
 cess (X(x, t); t > 0) on 1X. This process has the Feller property: for each t,

 if x(n) -- x then X(X(n), t) d X(X, t).

 In other words, there is a well-defined continuous-time Markov process on
 12 whose dynamics are informally described by (14). We call this process the
 multiplicative coalescent and write it as X(t). See Section 6.4 for some back-
 ground on general stochastic coalescence models. Note that there exists a "con-
 stant" version of the multiplicative coalescent

 (15) X(t)= (y,0, ,0,.. .), -oo < t < oo

 for constant y > 0. Corollary 2 and the Feller property imply (see Corollary
 24) there exists a process (X*(t); -oo < t < oo), the standard multiplicative
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 RANDOM GRAPHS AND MULTIPLICATIVE COALESCENT 819

 coalescent, such that for each t we have X(t) =d Ct, where Ct is the asymptotic
 joint distribution of rescaled component sizes (equivalently: the distribution
 of excursion lengths of Bt) appearing in Folk Theorem 1 and Corollary 2. In

 a companion paper [4], it is shown the constant process, the standard process
 and certain processes derived from the standard process are (up to scaling
 and mixtures) the only versions of the multiplicative coalescent which exist
 for time -oo < t < oc. The basic idea is. that, for a nonconstant version
 (X(t); -oc < t < o0), the distribution of X(O) is by construction just the vector
 of component sizes of Y'(X(-n), n), so to prove it is the standard version it
 suffices to verify the hypotheses of Proposition 4, and this can be done via
 stochastic calculus.

 Intuitively, a typical state for the multiplicative coalescent is an unordered

 collection of cluster sizes. The convention of defining the multiplicative coales-
 cent as an l1-valued process by using the decreasing ordering was intended
 as the most elementary way to specify an explicit state space. But, as will be
 discussed in Section 3.3, there are advantages in using the more sophisticated
 notion of size-biased random order. The representation in terms of Bt shows
 that for each t the standard multiplicative coalescent X*(t) has infinite total
 size, so that our 12 set-up is not just generalization for its own sake.

 1.6. Summary. In case this introduction seems disjointed, we summarize
 the three main points.

 i. Theorem 3 and Corollary 2 link the excursion lengths of Bt to the asymp-
 totic component sizes in the near critical random graph process.

 ii. The multiplicative coalescent process is defined, and shown (Proposition
 5) to be a Feller process. As an immediate consequence of this and point (1), we
 deduce the existence of the standard multiplicative coalescent on -00 < t < 00.

 iii. Proposition 4 extends point (1) to certain nonuniform random graph mod-

 els; this extension is a key ingredient in the proof in [4] that the standard
 process is essentially the only version of the multiplicative coalescent which

 starts at time -oo with infinitesimally small clusters.

 One could give much more discussion of background material and known
 results, but it is time to start proving the new results, so we defer further
 discussion until Section 6.

 2. Weak convergence arguments.

 2.1. Proof of Theorem 3. We start with a technical point. Recall from Sec-
 tion 1.3 the construction of breadth-first walk (z(i), 0 < i < n) in the de-
 terministic setting. We need to interpolate between integer times, and one
 always available way to do this is via z(s) = z([sJ). Motivated by our later
 extension to the nonuniform case, we make a slightly different definition
 which is tailored to our specific setting. Take independent uniform (0, 1) r.v.'s

This content downloaded from 108.226.241.26 on Sat, 24 Feb 2018 21:22:12 UTC
All use subject to http://about.jstor.org/terms



 820 D. ALDOUS

 (Ui,j 1 < i < n, 1 < j < c(i)) and then for each i set

 (16) z(i - 1 + u) = z(i - 1) - u + E 1(uiX> 0 < u < 1.

 So z(i) = z(i - 1) - 1 + c(i) as required.
 Here is a mental picture of the construction. After step i - 1 we have

 a list (v(1), ..., v(j)) of length j = i - 1 + IXi-11 consisting of vertices
 {v(1), ..., v(i - 1)} and their neighbors. In Section 1.3 we envisaged adding
 the children of v(i) to this list at time i, but now we envisage adding them at
 uniform random times over [i - 1, i].

 We shall prove Theorem 3 for Z (s) defined using this interpolation, with
 the rescaling

 (17) zt (S) = n-1/3 zt(n2/3S)

 This obviously implies the stated form of the theorem.
 To ease the notation, let us drop the superscript t from random variables.

 We may write (by general theory; we calculate explicit expressions later in
 Lemma 6)

 (18) Zn = Mn + Aw

 where Mn(O) is a martingale and An(n) is a continuous, bounded variation
 process. Then write

 (19) M2 = Qn + B

 where Qn(.) is a martingale and Bn is a continuous increasing process. (All
 these processes start with value 0 at s = 0.) We shall show that as n xo
 with sO fixed,

 (20) n- sup An(s) + n-1s2/2 -n- 0,
 s<n2/3 SO

 (21) n-2/3 Bn(n 2/3So) 3.- So,

 (22) n-2/3 E sup IMn(s) - Mn(s-) 12_ 0.
 s<n2/3 SO

 Rescaling as at (17) to define An, Mn, Bn, these assertions become

 supIAn (s)-P(s) -+p 0 where p(s) st-82/2,
 s<so

 -t ~~~~~~~~Bn (so) >-p so,

 E sup I Mn(s) - Mn(s-)I12_ 0.
 s<so
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 The latter two conditions are the hypotheses of the functional CLT for
 continuous-time martingales [e.g., [13] Theorem 7.1.4(b)], whose conclusion is
 Mn d W, standard Brownian motion. Then the former condition implies

 Zn = Mn + An -+d W + p() = W,

 which is Theorem 3.

 By construction, the jumps of Zn(.), and hence of Mn(.), have size exactly 1,
 and so (22) is obvious. So the issue is to prove (20) and (21). We now calculate
 the explicit form of the decompositions (18) and (19). Following (7), write

 (23) nl(i) = 1 - min Zn(u)
 u<i-1

 LEMMA 6.
 u

 An(u) = f (an(s) - 1) ds,
 u

 B(n) = an(s) ds

 where

 an(s) = (n--'-(-l)l - Zn(s)) p(n)
 n(S) = (n - s - SIJ - (s - [sJ)p(n)'

 PROOF. From the definition of Zn as a process with drift -1 and with
 jumps +1 when a new edge appears, it is clear that the formulas for An and
 Bn hold for an(s) defined by

 an(s) ds = P(some new edge appears during [s, s + ds]IZn(u), u < s).

 An elementary calculation shows that if an event occurs with probability p(n)
 and, conditionally on occurrence, it occurs at a random time uniform on (0, 1),
 then

 P(event occurs during [s, s + ds] I does not occur before s)

 (24) p(n)
 - ~~ds.
 1-sp(n)

 So by construction of breadth-first walk,

 (25) an(s) = (n - vn(s)) 1-(s-[sJ )p(n)

 where vn(s) is the number of vertices at time s which are ineligible to be
 children of v( [si). When we start looking for children of v(i) at time i - 1, the
 number of ineligible vertices is

 vn(i - 1) = i - 1+ ? i-iI + (p1(i)0- -(i 1)),

 where the final term takes care of v(i) itself. By (5) we can rewrite this as

 (26) Vn(i-1) = i-1 + ? n1(i) + Zn(i-1).
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 822 D. ALDOUS

 So at time i - 1 + u (for 0 < u < 1) the number ineligible is

 Vn(i- 1 +U) i i1 +Vn 1(i) + Zn(i -1) + E 1(Uj j<u)

 =(i-1 + u) + ?n1(i) + Zn(i-1 + u)

 by our interpolation convention. In other words, vn(s) = s + n-( [si) + Zn(s),
 establishing Lemma 6. 21

 The expressions for An and Bn in Lemma 6 allow us to rewrite (21) as

 n-2/3An(n2/3s) O- 0,

 which is plainly weaker than (20). So it suffices to verify (20). Consider a' (s)
 defined as "an without the denominator." That is,

 a'n(s) = (n-s - n([sl) -Zn(s))p(n).

 It is straightforward to see that la' (s) -an(S)l = 0(1/n), uniformly in s. Now

 a', (s) -1 = s ? ~n1([s1) ? Zn(s))( ? 1/) 1
 n( n )( ni/3

 and this leads to the bound (for n1/3 > ltl)

 (27) |a'(s) -1+_ t St _<_2__sl)+1Zn(S)1

 Integrating over s and using (23),

 An 2-_2 St s2t < 4smaxu<| jZn(u) + (s\

 So the proof of (20) reduces to proving

 n-2/3 sup 1Zn(s)1 ->p 0
 s<n2/3 SO

 In fact we shall prove the stronger result

 (28) n-1/3 sup IZn(s)I is stochastically bounded as n -? oo.
 s<n2/3sO

 This requires a routine argument using truncation and the martingale op-
 tional sampling theorem. Fix a large constant K and define

 T= min{s: IZn(s)I > Kn1/3

 Tn = min(Tn, son2/3).
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 RANDOM GRAPHS AND MULTIPLICATIVE COALESCENT 823

 Then

 EMn(Tn) = EBn(Tn) by the optional sampling theorem
 rTn

 = EJ an(s)ds

 < -sOn np(n) ds by (25)
 Jo 1- (s -[sD)p(n)

 < 2son 2/3,

 the final inequality for n sufficiently large. Then

 ElZn(Tn)l < ElMn(Tn)l + EIAn(Tn)l

 < (2s0)1 2n13 ? E lan(s) - 11 ds.

 Using (27) and (23),

 Tn sn2/3

 E 0lan(S) -11 ds < E a' lX(s) -an(S) I ds

 sn2/3 t St n1
 + JO I - _t3 ? | ds + (son2/3)4

 This leads to a bound for large n:

 ElZn(Tn)l < anl/3 + 4soK,

 where a depends on (so, t) but not on (n, K). Then

 P( sup IZn(s)l > Kn1/3 = P(lZn(Tn)l > Kn1/3) < a + 4s3
 s<son2lK/K n/13

 establishing (28).

 2.2. Surplus edges. Along with the breadth-first walk (Zt(s); 0 < s < n),
 we may associate with S9(n, n-1 +tn-4/3) a counting process (Nt(s); 0 < s < n)
 which increases by 1 at each occurrence of an excess edge. To analyze this
 process, recall that (26) gave an expression for the number vn (i -1) of ineligible
 vertices when we start looking for children of v(i). Of these, i vertices (that is,
 v(1), .. ., v(i)) cannot have edges to v(i), and the remaining vn(i-1)-i vertices
 are candidates for having an excess edge to v(i). Each of these candidates will
 have an excess edge with probability p(n) = n-1 + tn-4/3. Representing each
 excess edge as a "mark" at a uniform random time on [i - 1, i], then the
 counting process Nt has rate (i.e., conditional intensity)

 (29) p(n) (v n(Ls) - [s]).
 1(s -[LsDp(n)
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 (This rate is in fact a slight overcount, but we argue later that the error is
 asymptotically negligible.) Using (23) and (26) this rate becomes

 1-(s - LsJ)p(n) kn'(LS u<[sJ fl\(Un
 Now rescale the counting process via

 Nt (s) = Nt (n213S).

 The rate for this rescaled process, in terms of the rescaled walk Zt, is the
 rate in (30) multiplied by n2/3 x nl/3 = n, and since np(n) -+ 1 the rate is
 asymptotic to

 2 (s) -mUisn Z' (u).

 However, by Theorem 3 this process converges to Wt(s) - min,<8 Wt(u) =
 Bt(s). By routine weak convergence theory, such convergence of rates is
 enough to extend Theorem 3 to give joint convergence of processes:

 (31) (ZS(S), Nnt(S); S > 0) -?d (Wt(s), Nt(s); s > 0)
 for Nt defined at (3).

 Equation (29) slightly overestimates the chance that a vertex v(i) has two
 or more surplus edges, but even this overestimated chance that some one of
 the first 0(n2/3) vertices has two or more excess edges must tend to zero,
 otherwise the limit Nt in (31) would have multiple coincident points.

 2.3. Proof of Corollary 2. We shall prove the part of Corollary 2 dealing
 with component sizes; the full result incorporating component surpluses is
 just the same argument, invoking the joint convergence (31).

 Recall that the reflecting process Bt is derived from Wt via (2); excursions
 of Bt above 0 are excursions of Wt above its past minimum. There are two
 issues in deducing Corollary 2 from Theorem 3. The first is to check that
 excursions of the limit process are matched by excursions of the breadth-first
 walks (representing components of the random graph); the second is to check
 that no components of size f(n2/3) are overlooked by virtue of their positions
 in the walk going off to +oo.

 The first issue is mostly handled by the following deterministic lemma,
 whose straightforward proof we omit.

 LEMMA 7. Suppose f: [0, x0) -+ R is continuous. Let 4r be the set of non-
 empty intervals e = (1, r) such that

 f (r) = f (l) = min f (s), f(s)> f(l) for l <s <r.
 s<l

 Suppose that, for intervals el, e2 E 4' with 11 < 12 we have

 (32) f (li) > f (12).
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 Suppose also that the complement of UeE(l, r) has Lebesgue measure zero. Let
 P = {(1, r - 1): (1, r) E }. Now let f n -> f uniformly on bounded intervals.
 Suppose (tn i, i > 1) satisfy the following:

 (i) O = tn, l tn, 2 `< tn, 3 ..and IiMi,oc tn i = x0;
 (ii) fn(tn ,) = minu<t ni fn(U);

 (iii) maxi: tn,i <SO(fn(tn,) - fn(tn,i)) i > 0 as n > o, for each so < 0.

 Write ~ (n) = {tn i, tn, i+1 - tn, ); i > 1}. Then #(n) > as n -x 00.

 Here and below, we regard and 0(n) as point processes on [0, x) x (0, x),
 and convergence is the natural notion of vague convergence of counting mea-
 sures on [0, 00) x (0, 00); see, for example, [17].

 Define -y(n, i) by: v(y(n, i)) is the last vertex in the i - 1st component of
 the random graph encountered by breadth-first walk. Let Cn, i be the size of
 this ith component.

 LEMMA 8. Let J(??) be the point process with points

 {(1(y), jyj), y an excursion of Bt}.

 Let ,(n) be the point process with points {(n2%y(n, i), n223C 2 ):i>1}.Then
 (n) >d 1(??) as n -x00.

 PROOF. Using (2), (?) is just the H of Lemma 7 applied to Wt, and writing
 t,n i-n-2/3y(n, i), the ,(n) in Lemma 8 is just the ,(n) in Lemma 7 applied to

 Zn. Theorem 3 gave Zn __*d Wt, and by the Skorohod representation theorem
 ([27], II.86.1) it is enough to verify the hypotheses of Lemma 7. It is standard
 that the hypotheses on f hold a.s. for Brownian motion W, and hence they
 hold a.s. for Wt by the absolute continuity given by the Cameron-Martin-
 Girsanov theory. Conditions (i)-(iii) follow from construction of breadth-first
 walk [recall (6)]. E

 The subject of Corollary 2 is the decreasing ordering of {n-2/3Cni, i > 1},
 that is, of the second coordinates of the points in ,(n). To deduce Corollary 2
 from Lemma 8 requires some extra work. Consider

 T(y) = min{s: Wt(s) =-y}

 Tn(y) = min{i: Zn(i) -Lyn1/3J }.

 Note that by step Tn(y) the breadth-first walk has encountered all ver-
 tices labeled {1, 2, ..., Lyn1/3J} in the original labeling. Theorem 3 implies
 in-213Tn(Y) d T(y). Since- T(y) -> 00 as y -x00, we have established a
 restricted version of Corollary 2 in which we consider only excursions of

 Bt starting before TY0 and components whose minimal vertex label (in the
 original labeling) are less than or equal to yon113, for some fixed yo. Now
 Corollary 2 itself will follow from the next lemma.
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 LEMMA 9. Let p(n, y, 8) be the chance that S9(n, n-1 + tn-4/3) contains a
 component of size greater than or equal to 8n2/3 which does not contain any
 vertex i with 1 < i < yn113. Then

 lim lim sup p(n, y, 8) = 0 for all 8 > 0.

 PROOF. Fix 8 > 0. For an interval I, define q(n, I) to be the mean number
 of components of size greater than or equal to 8n2/3 whose minimal vertex
 is in n1/3I. Conditional on component sizes, the labels {1, 2, ..., n} of the
 vertices of the random graph are in random order. For a component having

 size vn2/3, write Xn = n-1/3 (label of minimal vertex). Then Xn d exponential
 (rate v), implying P(Xn > y) - (e-vY/(l - e-v))P(Xn < 1). By summing over
 components,

 limsup q(n,[yoo)) < sup evy e-8
 n q(n, [O,1])- ~V>81 - e-v 1 - e

 Because p(n, y, 8) < q(n, [y, oo)), it suffices to prove

 (33) sup q(n, [0, 1]) < oo.
 n

 However, results in the random graphs literature imply SUpn q(n, [0, oo)) < 00.
 [Boris Pittel (personal communication) observes that this follows from bounds

 on the numbers of tree components, unicyclic components and complex com-
 ponents given in [19], Theorem 2 and Lemma 2.1]. So by quoting that result,
 we finish the proof of Corollary 2. Note that for the analogous part of the
 proof of Proposition 4, the nonuniform case, we will need a novel argument

 (see Section 3.4) and that argument could be used here to make our proof of
 Corollary 2 independent of existing random graphs results.

 3. The nonuniform case. In this section we give the proof of Proposi-

 tion 4. The proof follows the general lines of the proofs of Theorem 3 and Corol-
 lary 2, with modified definitions and extra technical lemmas where needed.

 3.1. Breadth-first walk. In Section 1.3 we defined the breadth-first walk
 for an arbitrary deterministic unweighted graph. In the current "weighted"
 setting, it is more convenient to give a simultaneous construction of the ran-

 dom graph )/"(x = {x1, ..., xn}, q) and its interpolated walk z(u) analogous
 to (16). Figure 2 illustrates part of the construction. For each ordered pair

 (i, j), i # j let Ujj have exponential (qxj) distribution, independent over
 pairs. Choose v(1) by size-biased sampling; that is, vertex v is chosen with

 probability proportional to xv. Let {v: Uv(l), < xv(l)} be the set of children of
 v(1), and order these children as v(2), v(3), . .. so that Uv(l), v(i) is increasing.
 Start the walk z(.) with z(O) = 0 and let

 z(u) = -u + E Xvl(u1(1) u) 0 < u <Xx(l)
 u
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 FIG. 2.

 So

 Z(XV(l)) =-XV(1) + xv.
 v child of v(1)

 Inductively, write Ti-1 = jZi-_l xv(j). If v(i) is in the same component as v(l),
 then the set

 {v 'f{v(1),..., v(i - 1)}: v is a child of one of {v(1), .. ., v(i - 1)}}

 consists of v(i), ..., v(l(i)) for some 1(i) > i. Let the children of v(i) be {v fZ
 {v(1),.. ., v(l(i))}: UV()v < xv(i)}, and order them as v(l(i)+ 1), v(l(i)+ 2), ...
 such that UV(i) is increasing. Set

 (34) z(ri-1 + u) = z(ri-1)-u? + E Xv 1(U'(i))<U)q 0 < u < XV(i).
 v child of v(i)

 After exhausting the component containing v(1), choose the next vertex by
 size-biased sampling; that is, each available vertex v is chosen with probability
 proportional to xv. Continue.

 This construction yields a forest on the vertices {1, .. ., n}, an ordering
 v(), ... ., v(n) of the vertices and a walk (z(u); 0 < u < Ev xv). Add extra
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 edges (i, j) for each pair such that i < j < 1(i) and Uv(i) v(j) < Xv(i It is easy
 to check that the resulting random graph is Y'(x, q). Briefly, for any pair of

 vertices (i, j), one (say i) appears first in the ordering, and then (i, j) is an
 edge iff Ui j < xi, which happens with probability 1 - exp(-qxjxi). Note also
 that by construction, the ordering (v(i)) is the size-biased random ordering
 (see Section 3.3) of the vertices.

 In Figure 2 the weight of vertex v(i) is given below the label v(i). A helpful

 way to think about the construction, illustrated in Figure 2, is to picture the
 successive vertices v(i) occupying successive intervals of the "time" axis, the

 length of the interval for v being the weight xv. During this time interval
 we "search for" children of v(i), and any such child v(j) causes a jump in

 z(.) of size xv(j) The time of this jump is the birth time ,3(j) of v(j), which
 in this case [i.e., provided v(j) is not the first vertex of its component] is

 /3(j) = Ti-1 + UV(i), v(j). These jumps are superimposed on a constant drift of
 rate -1. If v(j) is the first vertex of its component, its birth time is the start

 of its time interval: 83(i) = tj-l
 The relationship between the walk and the graph is less simple than in the

 uniform case. In the uniform case we could reconstruct the graph (up to vertex
 labels) from the walk, but this is not true in the nonuniform case, because it is
 not clear from the walk where one vertex's time interval ends and the next

 one's begins. In particular, the relationship between the walk and the compo-
 nents is less simple than (7). But we do have an analog of (6): a component

 consists of vertices {v(i), v(i + 1), . . ., v(j)}, and the walk z(.) satisfies

 Z(Ti) = Z(i-1) - Xv(i), z(u) > z(j) on 7i- < u < Tj.
 Note that by construction, the order in which the components appear in the

 breadth-first walk is also size-biased order.

 3.2. Asymptotics. We now apply the construction above to y(x(n), q(n))

 satisfying the hypotheses of Proposition 4. Write

 Zn(s), O<S <EXv
 v

 for the breadth-first walk. Rescale to define

 (n)

 Zn(S) = O2() Zn(s).

 We use the same decompositions Zn = Mn + An; M2= Qn + Bn as at (18) and
 (19), and analogous to (20)-(22) we seek to show that for fixed so,

 (n) q (n) U2~ Ar(s)2 - n -n (35) sup ?n() (q(n)o.~n) 1)s -* 0,
 (n) S<SO n
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 (n)

 (36) n (SO) + So,
 U3

 (n)

 (37) Un) E sup I Mn(s) -Mn (s-)I2_- 0.
 () S<SA

 Then exactly as before we deduce the analog of Theorem 3.

 PROPOSITION 10. Zn -d W.

 Since the maximum jump is x*, property (37) is immediate from hypotheses
 (8) and (10). Using hypotheses (8), (9) and (12), we see that (35) and (36) reduce
 to

 (38) sup A() 25 -ts -+P 0,
 S<SO (n) 2

 (39) Bn(S)?) +p SO.
 2n)

 The rest of Section 3.2 is devoted to proving (38) and (39) and hence Proposi-
 tion 10. Here are the explivit forms of An B, analogous to Lemma 6. To ease
 notation we shall mostly onit the superscripts n.

 LEMMA 11.

 dAn(s) = -ds + q(o2 - Q2(S) - Q2(s)) ds,

 dBn(S) = q(o-3 - Q3(S) -Q3(s)) ds,

 where, for Ti-1 < s < Tig

 Q2(s) = 2 X>1j, Q3(s) X 3
 j<i j<i

 Q2(s)= X v(i) Q3(s)= Xv(j).
 j>i, f3(j)<s j>i, f3(j)<s

 PROOF. The proof follows the proof of Lemma C but is simpler; the set of
 ineligible vertices at s is exactly {j: ,3(j) < s}. O

 Because S2 - ts = fos(u - t) du, showing (38) redLces to showing

 sup ld(u)I -+p 0,
 U<SO

 where

 d(u) =-1+ q(o(2 - Q2(U) - Q2(U)) + (U - t)
 U2
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 Using hypotheses (8), (9) and (12) this convergence follows from Lemmas 12
 and 13 below. Similarly, (39) reduces to showing

 Q3(so) + Q3(sO) 0
 3

 (r2

 Since Q3(sO) < x.Q2(so) and Q3(SO) < x*Q2(sO), this convergence also follows
 from Lemma 12 and 13, using hypothesis (10).

 LEMMA 12. We have SUpN<80 Q2(u)/o-2 2 0

 LEMMA 13. We have

 sup -Q2(u)-u -+p 0.
 U<So OJ3

 We will see that Lemma 12 reduces to the analog of (28). Lemma 13 is
 trivial in the uniform setting, and so will require a new argument.

 PROOF OF LEMMA 12. Q2(s) < x*Q1(s), where for Ti-1 < s < Ti,

 Q1(s) = E Xv(
 j>i, f3(j)<s

 So by hypothesis (10) it is enough to prove

 1
 -sup Q1(s) is stochastically bounded as n -+ oo.
 U2 S<So

 We assert

 (40) Q1(s) = Z(s) - (i- s) - (Z( -1)- XV(,)) i-1 < s < Ti,

 where v(,u) is the first vertex of the component containing v(i). Indeed, (40)

 is true instantaneously after ,/i-l, when both sides are zero. Traversing the
 component, when vertex v(j) occurs as a child of some v(i), both sides increase
 by xv(j)g while at times s = 7i-1' both sides decrease by xV(i)9 and at other
 times, both sides stay unchanged. This verifies (40). Using hypothesis (10)
 again, proving the lemma reduces to proving

 - sup IZ(s)I is stochastically bounded as n -+ oo.
 0U2 S<So

 This can be established by following the proof of (28); we omit details.

 PROOF OF LEMMA 13. We exploit the fact that the (v(i)) are in size-biased
 order. Introduce an artificial time parameter 0, let (Ti) be independent with
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 exponential (xi) distribution and consider

 D1(0) = Xjl(T <0) - 0u20,

 D2(0) = xl(Tj<0) - 03 0,

 DO(O) =-D2(0)-D1(O).
 0'3

 Ordering vertices i according to the (increasing) values of Ti gives the size-
 biased ordering. So the process

 (r2 Q2(Ti)-Ti, i>O)
 (r3

 is distributed as the process (DO(6i), i > 0), where

 Oi = min{0: T1 < 0 for exactly i different j's}.

 So the quantity featured in Lemma 13 can be rewritten as

 (41) D(so) = sup{1Do(0)I: D1()+ ?o-20 < so}.

 For u = 1,2 the process DJ(6) is a supermartingale, and so by a maximal
 inequality ([27], Lemma 2.54.5), for 8 > 0

 P( sup IDu(0')I > 3s) < 3EIDu(0)I < 3(IED(0)I + lvarDJ(O)).

 Now

 IED2(0)I =-ED2(0)

 = x xj(xjO - 1 + exp(-x 0))

 < Xj (x jo)212
 . j

 =o2 of4/2,

 varD2(0) = Ex4P(T1 < O)P(Tj> 0)
 I

 <Ex5(xj0)

 - 06f5.

 Similarly

 (42) IED1(O)l < 02oY3/2; varD1(0) < Oo3.
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 Combining these bounds,

 8 0`2 020-6?4 U20//22o112 02 UT3 1212
 5P Sup IDo(O')l > 6 <- 5 + + 01/23/2 3 01<0 / o3 2 1 2

 Setting 0 = 2so/lo2 and using the bounds o4 < x*fo3, u5 < x*o-3, the bound
 becomes

 / 1/2x 1/2
 O(X* 2X*O3 U.3

 ?(-+ ~/2 +(2 (X21/2)

 and this approaches 0 using (8), (10) and (12). So in view of (41) it is enough

 to show that, for 0 = 2so/o2,

 P(D1(0) + o20 < so)-* 0.
 This follows from Chebyshev's inequality and (42).

 3.3. Size-biased ordering for random sequences in 12. Central to this paper
 is the notion of convergence of random unordered sets of positive numbers,
 where the index sets are not fixed. In this section we discuss representations
 of unordered sets which permit discussion of convergence. In particular, a
 general result on convergence of size-biased orderings (Proposition 15) will
 enable us to complete the proof of Proposition 4 in Section 3.4.

 For a countable index set F, write l+(F) for the set of sequences x = (xy; y E
 F) such that each xz, > 0 and E x2 < o. Recall that 12 denotes the set of
 sequences x = (xi; i = 1, 2, . . .) such that x > x2... > 0 and E x2 < x.
 Give 12 the natural metric d(x, y) = - yi)2. Writing ord: 12+(F) -*
 for the decreasing ordering map, it is elementary that

 (43) d2(ordx, ordy) < E(xy - Yb(- )2
 y

 for any bijection b between the index sets of x and y, a fact we will use without
 explicit mention in Section 4.

 Given a random collection Y = {Y,: y E F} in 12+(F), where F may depend on
 the realization, the most elementary way to represent Y without mentioning
 F is to use ord Y to create a random element of 12. However, an alternative, in
 some ways more elegant and mathematically natural, is to use the notion of
 size-biased order. As well as being classical in statistical sampling theory, size-
 biasing in the 11 setting has been prominent in recent mathematical work in
 probabilistic combinatorics; see [24] for an extensive list of references. Given
 Y = {Y,: y e F} with each Y, > 0, construct r.v.'s (n,) such that, conditional

 on Y, the (%,) are independent and {, has exponential (Yr) distribution. These
 define a random linear ordering on F. That is, yi j Y2 iff 5Yi < 5Y2* In the 11
 case, that is, when E, Y < oo a.s., this coincides with the elementary notion
 of size-biased order; there is a first element y(i) such that

 P(y(1) = yIY) =
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 However, the ordering makes sense without any 11 assumption, although (as
 with the ordering of the positive rationals) there will be no first element in
 the ordering. Consider the following construction. For 0 < a < oo define

 (44) S(a)= E Y ,,
 ey: (<a

 Note that

 E(S(a)IY) = , Y ,(1 - exp(-aY )) < a E y2.
 Y Y

 So if Y E 12 (F) then we have S(a) < oo a.s. So we can define SI, = 5(6,) < 00
 and finally define the size-biased point process (SBPP) associated with Y to
 be the set S = {(S,, Y,,): y E F}. Thus S is a random element of X,, the space
 of configurations of points on [0, oo) x (0, oo), with only finitely many points

 in each compact rectangle [0, so] x [8, 1/8]. Note that . depends only on the
 ordering, rather than the actual values, of the a's. Clearly S has the properties

 (45) if(s, y) E S then Y s,
 JY : (S , Y')E _-, s/<SJ

 (46) max{y: (s, y) E S for some s > sO} -p 0 as so - oo.
 Writing iT for the "project onto the y-axis" map,

 (47) 1T({(S , YY)}) = {Y,

 we can recover ordY from S via ordY = ord iT(S).
 We now turn to notions of convergence. On 12 , convergence x(n) x shall

 mean convergence with respect to the metric d, except when we explicitly

 write X(n) - prod x to indicate convergence in the product topology: limn x(n
 xi V i. The set .# has its own natural topology: pointwise convergence, uniform
 over compact subsets. These deterministic notions extend in the usual way to
 notions of convergence in distribution for random elements of the spaces (see,
 e.g., [17] for discussion of convergence in distribution for point processes).

 The following straightforward lemma provides a connection between these
 modes of convergence in distribution.

 LEMMA 14. Let y(n) E 12 (Fn) for each 1 < n < oo, and let 5(n) be the
 associated SBPP. The following are equivalent:

 (a) ord y(n) d ordY(0?);

 (b) ord y(n) dprod ord Y(??) and

 (48) lim lim suPP E (Y(n))2 > )=0 for each e> 0;
 (C,0 n (n) Y

 ()() d *(-o), and (48) holds.
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 We need a subtle variation of these ideas. Suppose we know d(n) d
 but we do not know that =(?) is the SBPP of some Y(??), and we do not know
 (48). Can we still deduce that the assertions of Lemma 14 hold, by imposing
 only conditions on

 PROPOSITION 15. Let y(n) E 12(Fn) for each 1 < n < oo, and let s(n) be

 the associated SBPP. Suppose S(n) d ' where S(?) is a point process
 satisfying (45) and (46) and

 (49) sup{s: (s, y) E ( for some y} = oo a.s.

 Then Y(??) = ord g('(0@)) is in lX, and ordy(n) d ordY(N).

 The following three examples show that none of the three conditions (45),

 (46) and (49) can be removed.

 1. Let y(n) consist of a fixed y E 12 with Ei yi = oo, together with n2 terms of
 size 1/n. Here only (45) fails.

 2. Let y(n) consist of n terms of size 1. Here only (46) fails.
 3. Let y(n) consist of n2 terms of size 1/n. Here (?) is empty, so (45) and (46)

 are vacuously satisfied, and only (49) fails.

 PROOF OF PROPOSITION 15. We shall make several uses of the following

 technical device. If Qn is some positive real-valued function of y(n), then we
 may assume that one of the two cases

 Qn -p ??; (Qn) is tight

 holds, because by considering subsequences the general case can be viewed as
 a mixture of these cases.

 First assume a boundedness condition:

 (50) K sup max y(n) < 00.
 n VY

 Suppose

 (51) (n) = j](y(n))2 -*p 00.

 From the definition of S(n)(a) we have, for fixed A > 0,

 E(S(n)(A/0(n))jy(n)) = y(n) (1- exp(-Y(n)A/cu(n))).
 r

 Since E Y(n)(Y(n)/ur(n))2 < K/5r(n) -*p 0 by (50) and (51), we have

 (S(n)(Ak/7(n))y(n)) -kA 0.O
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 Furthermore,

 var(S(n)(A/f(n) ) Iy(n)) = E(y(n))2(l - exp(- y(n) A/cr(n))) exp(- y(n) A/CJ(n)
 y

 < KE(S(n)(A/0r(n))jy(n))

 p KA.

 Using Chebyshev's inequality, it is easy to deduce that, for arbitrary ran-
 dom Tnm

 S(n) O..~~~(n) (52) S(n)n) -->p CC iff Tn pCC.n ?

 Now fix 1 > 8 > 0, let Bn be the set {Y(n): 8 < y(n) < 8-1} and write IBnI

 for its cardinality. Let Tn k be the kth smallest element of {f ,,: 8 < Y(n) < 1}.
 If (-(n)/IBnl) is tight, then IBnl -p oo, and Tn,k = O(1/IBnI) for fixed k, so
 (rn k5f(n)) is tight. Then by (52) (S(n)(7n- k), n > 1) is tight. However, the

 I,(n)> convergence -,(n) d ''(??) implies that (??) has an infinite number of points
 in [0, oo) x [8, 8-1], contradicting hypothesis (46). So we may suppose the other

 case 5-(n)/IBnI ->p oc, but in this case 7Tn1n) p 00, so S(n)(Tn,1) --*p oo, and
 so &'(?) has no points in [0, oo) x [8, -1]. This must hold for each 8 > 0, so
 ^(?) is empty, contradicting (49). This means (51) must be false, and so we
 may assume the other case, that (o-(n)) is tight. Since

 ES(n)(a )jy(n)) < a -(y(n))2 = a o(n)
 y

 we see that, for fixed a, the sequence (S(n)(a), n > 1) is tight. Together with
 the hypothesis (n) *d 7 this implies ordY(n) -prodY(?)=ord17(+(?)),
 and that Y(??) is in 12. Passing to a subsequence, we may assume

 lim limL{(Y((n))2: y(n) < 1/k} = k--+oo nf/l<lll=O
 exists, where limits are in distribution. The convergence ordy(n) dprody(??)
 then implies S(n)(a) -*d S(??)(a) + a& where S(??) is defined in terms of Y(??)
 as at (44). However, the convergence ^(n) > ? and hypothesis (45) on
 (??) show that &r = 0. In other words, (48) holds, and the conclusion follows
 from Lemma 14.

 This establishes the proposition under the boundedness assumption (50),
 and the general case follows using a truncation argument; we omit the de-
 tails. L

 3.4. Proof of Proposition 4. We shall apply Proposition 15 to the compo-

 nent sizes y(n) Of 7t'(x(n), q(n)). Let (Yu ), u = 1, 2, .. .) be the component
 ,sizes of K(x(n), q(n)), in the order of appearance in breadth-first walk. Write

 S(n) U y(n). Let (n) be the point process on [0, oo) x (0, oo) with points sUt-1 j=1 e
 at (SU'21, yu7)) U = 1, 2,.... Proposition 10 showed Zn --*d Wt. Repeating
 the argument for Lemma 8 shows (n) *d ? where (?) is the point
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 process with points {(l(y), IyD), y an excursion of Bt}. Standard qualitative
 properties of Brownian motion establish properties (45) and (49). We observed
 in Section 3.1 that components appeared in size-biased order in the breadth-
 first walk. To apply Proposition 15, the only further hypothesis which needs

 checking is (46), which is a consequence of Lemma 25. The conclusion of the
 proposition now establishes Proposition 4.

 Proposition 15 and Lemma 14 imply that excursions of Bt appear in size-
 biased order, a fact we record as follows.

 COROLLARY 16. The point process {(l(y), IyI)} consisting of left end points
 and lengths of excursions y of Bt is distributed as the size-biased point process

 {(SY, I I)} associated with {IyI }

 4. Analysis of the multiplicative coalescent.

 4.1. Preliminaries. Say x E 12 is finite length if xi = 0 ultimately. For
 finite-length x, the process X(t) constructed in (13) as the decreasing ordered
 component sizes of X(x, t) can clearly be regarded as a 12,-valued Markov
 process, which we now call the multiplicative coalescent. [The Markov property
 is a simple consequence of the "memoryless" property for the exponential r.v.'s

 (6ij)]. In the next section we shall prove Proposition 5, which asserts that for
 any x E 12 this construction of X(t) yields a 12-valued process possessing the
 Feller property.

 When X(0) = x is finite length, the dynamics (14) of the multiplicative
 coalescent can be expressed in martingale form as follows. Let x(i+j) be the
 configuration obtained from x by merging the ith and jth clusters, that is,

 x(i+J) = (xi, ..., xU1, xi ? Xj, x>, ..., xi_1, xi+ ..., xj1, xj+l,...) for some
 u. Write Y(t) = u{X(u); u < t}. Then

 (53) E(Ag(X(t))jY7(t)) = EE Xi(t)Xj(t)(g(X(L+A)(t)) - g(X(t))) dt
 i j>i

 for all g: 12, - R (for all g because there are only finitely many possible
 states). Of course, our infinitesimal notation E(AY(t)jY(t)) = A(t) dt is just
 an intuitive way of expressing the rigorous assertion that M(t) = Y(t) -

 fo A(s) ds is a local martingale; similarly the notation var(AY(t)IY(t)) =
 B(t)dt means that M2(t) - fotB(s)ds is a local martingale. Following a
 paradigm in modern stochastic process theory, one could seek to define the
 multiplicative coalescent via such a martingale characterization, but that
 requires technical discussion of the class of g's where the formula should
 hold. Our "constructive" definition of the multiplicative coalescent finesses
 that issue, but requires us to give ad hoc justifications of uses of (53) in the
 infinite-length setting.

 4.2. Proof of Proposition 5. X(t) denotes the multiplicative coalescent

 started from some initial state x, and S(t) = i X?(t). When we wish to
 indicate explicitly the initial state we write X(x, t) and S(x, t).
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 Our proof involves coupling arguments to bound the effect on X(x, t) of
 changing x, and martingale arguments to bound the effect of changing t. We
 start with a deterministic coupling lemma. Recall that d denotes distance
 in 12

 LEMMA 17. Let G be a graph with vertex weights (xia). Let G be a subgraph
 of G (that is, each edge of G is an edge of G) with vertex weights xi < xi. Let
 a and a be the decreasing orderings of the component sizes of G and G. Then

 2d (, a) < E -? - La?
 i i

 provided Ei a> < oo.

 PROOF. By considering different components of G separately and using
 (43), it is enough to treat the case where G is a single component. Then,

 writing a = >i

 d2(d,a)= ( -al)2+ Ea?.
 i>2

 We need to prove this is less than or equal to -2 - >I>1ai, and after rearrang-
 ing we need to prove

 -2 _ (a - al)22> a?2Ea.
 i>2

 The left side increases with a, and since a > a =i_E ai, it is enough to prove

 a2 - (a -a,)2 > a2 ?2Ea?,.
 i>2

 But this holds because the left side equals a2 + 2 Ei>2 a1ai, and a1 > ai for
 i>2. L

 The construction (13) of f(x, t) [and hence X(x, t)] in terms of (6ij; 1 < i <
 j < oo) works simultaneously for all x. When we want to exploit a joint distri-
 bution (X(x, t), X(x, t)) arising in this way, we call it the 6-coupling. Lemma
 17 often enables us to bound 12-distances for the multiplicative coalescent in
 terms of the real-valued r.v.'s S(t). In particular, see the corollary.

 COROLLARY 18.

 (a) If t1 < t2 then d2(X(t1), X(t2)) < S(t2) - S(t1) on {S(tl) < oo}.
 (b) If xi < xi Vi then the a coupling satisfies d2(X(x, t), X(x, t)) < S(x, t)-

 S(x, t) on {S(x, t) < oo}.
 (c) For X E 12 write X(k) - (X1, ..., Xk). For the a-coupling, S(x(k), t) t

 S(x, t) < oo and X(x(k), t) -+ X(x, t) on {S(x, t) < oo}.
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 A formally different use of the same idea is where we have a collection

 y = (ye; a E A) and a subcollection y = (ya; a E A C A). In this setting
 we can construct 7K(ord y, t) jointly with 7K(ord y, t) by using the same family

 (6{a ,p; a, 8 E A). Call this the subgraph coupling.
 We now turn to martingale estimates. The full form of Lemma 19 will be

 used in later sections, but for now we need only the submartingale assertion

 for use in Lemma 20. Because a merge of clusters of sizes xi and xj causes
 an increase in S of size (xi + xj)2 - X? - X2 = 2xixj, (53) specializes to

 E(Af (S(t))lY(t))

 (54) = E Xi(t)Xj(t)(f(S(t) + 2Xi(t)Xj(t)) - f(S(t))) dt.
 i j>i

 LEMMA 19. If x = X(O) has finite length then the process Y(t) = t+(1/S(t))
 is a submartingale. In fact

 (55) E(AY(t)Is(t)) = (LXi(t) + A(t)) dt,

 where

 O< A(t) <2(L Xi(t))2
 0 ~~~S3(t)

 Moreover,

 (56) var(AY(t)IY(t)) < 2( I(t dt.
 S4(t)

 PROOF. Because

 1 1 -2xy

 s + 2xy s s(s + 2xy)'

 applying (54) gives E(AY(t) I (t)) = (1 - Q) dt where

 Q = E2XS(( (t)+ Xi(t)x ()X.(t)X1(t)
 E S)(S(t?2Xt(t)X Xt)

 Q <E ~(S2(t)

 ,<j S(t)S(t) 2Xi2(t) - S(t)(S(t) ? 2X)(t)X1(t)))

 = 2X?(t) XY. ix20x2t( t2X(t)+X(t) Y S2(t) Y<j I S2(t)(S(t) ? 2Xi(t)X1(t))~
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 This establishes (55). Similarly, var(AY(t)IF(t)) equals dt times

 E E X(t)X(t) S(t)(S(t) + 2Xi(t)Xjt)

 and (56) follows. D-

 LEMMA 20. For x E 12

 P(S(x, t) > s) - S'(x, 0)' s > S(x, 0).

 PROOF. First assume x is finite length. Write b = S(x, 0) and S(t) =
 S(x, t). From the submartingale property of Y(t) t + (1/S(t)) (Lemma 19),

 1

 't+E ~(St))

 b- s S(t) s 1 (1 1
 5 \S(t) s,t
 1 t11\

 < t + -+ ( )(()<s s b sPSt)<s

 because S(t) is increasing and S(0) = b. Rearranging gives the stated inequal-
 ity. If x is not finite length, consider [as in Corollary 18(c)] x(k) = (x1, . . ., Xk).
 Since S(x(k), t) t S(x, t) < oc, the inequality extends from x(k) to x. rw

 REMARK. The final "extension by truncation" argument finds similar uses
 later.

 For the remainder of Section 4.2, we fix t > 0 and study X(x, t) as the initial
 state x varies.

 LEMMA 21. For Z E 12 and u > 0, let (Vj) be the decreasing ordering of
 the component sizes of the random graph on vertices {0; 1, 2, .. .} with vertex
 weights {u; zl, Z2, .. .} for which

 P((O, i) is an edge) = 1 - exp(-tuzi), i > 1

 independently as i varies. Then E > j V2 < o0.

 PROOF. Write Ai for the event that (0, i) is an edge. Then

 EV = u2 + 2uZ ZilAi + E ZiZjlAinA 1(j/i) + E>Zz
 i>1 i>_ j>1 i>

 and so

 ET Vj < U2+ 2 t2 EZ + t2D2 z2z2 + Z2 < X
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 We can now show that for any x E 1 we have S(x, t) < oc a.s. and hence

 X(x, t) is 12 -valued. Write x[k] = (Xk, Xk+1,...) and consider the subgraph
 coupling of the random graphs f(x[k], t). Lemma 20 implies P(S(x[k], t) <
 oo) > 1 - tZi>k x2 and hence P(S(x[k], t) < oc for some k) = 1. Lemma 21
 shows

 if S(x[i], t) < oc then S(x[j-'], t) < oc a.s.

 and so by backwards induction for j = k, k- 1, . . ., 1 we have S(x, t) < 00 a.s.

 We now start to prove the Feller property by recording a "Fatou-like" lemma.

 LEMMA 22. Suppose x(n) -* x in 1X. Then, in the (-coupling,

 (57) lim inf S(X(n), t) > S(x, t) a.s.
 nf-* oo

 To prove X(X(n), t) -+d X(X, t) it suffices to prove there is some coupling for
 which

 (58) lim P(S(x(n), t) - S(x, t) > E) = 0 for all 8 > 0.
 nf-* oo

 PROOF. Let A7(n) (resp. A..) be the indicator of the event "vertices i and
 j are in the same component of f(x(n), t)" [resp. Y7(x, t)]. Then, in the 6-
 coupling,

 (59) liminf A(ijn) > A a.s.,

 because if i and j are in the same component of Y(x, t), then they are linked
 by a finite path, each of whose edges (k, 1) has kl < tXkX1. The only way (59)
 can fail is if kl = tXkXl for some edge, which has probability zero. Now let
 e(n) be the class of modified components C of y(X(n), t), where i and j are in
 the same modified component if they are in the same com)ponent of 7f(X(n), t)
 and are also in the same component of Yf(x, t). Write B(ij for the indicator of

 the event "i and j are in the same modified component." Using (59),

 B(n) < Aj; lim BVj = Aij a.s.
 So for fixed k,

 noc CEen iEC, i<k / E ce iEC,k a<.

 where e is the set of components of Y(x, t). Since x(n) - x, we get

 limLX =n a.s.
 noc Cet(n) iEC, i<k i)CEe (iEC Xi)<a.

 Letting k -o,

 cc0 Ce(n) i jEC i
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 Since the modified components are a refinement of the original components of

 y./(X(n), t),
 2

 E(EXin) < S(X(n), t)
 CEe(n) i EC

 and we have established (57). Now if (58) holds for some coupling, then, in view
 of (57), it must hold for the (-coupling and then (by a standard subsequence

 argument) we may suppose S(X(n), t) -? S(x, t) a.s. Now it is routine to see
 that, for y(n), y in 12, to prove ordY(n) ordY a.s. in 1, it suffices to prove

 (n) a.s.,

 (60)

 lim inf yi(n) > yi a.s. v i.
 n-+oo

 Thus the desired convergence X(X(n), t) -? X(x, t) a.s. will hold provided we
 verify (60) for

 (n)
 y = size of component containing j in f(X(n), t),

 if j is the smallest labeled vertex in that component, and y(j) = 0 if not.
 J

 [Define yj similarly in terms of Y'(x, t)]. However, this is clear from (59),
 applied to each i in the component of Y'(x, t) containing j. D-

 The next lemma gives the key estimate we shall use in verifying (58).

 LEMMA 23. Let (zi, 1 < i < n) be strictly positive vertex weights, and let
 1 < m < n. Consider the bipartite random graph 0 on vertices {1, 2, .. ., m} u
 {m + 1, ..., n} defined by: for each pair (i, j) with 1 < i < m < j < n, the edge

 (i, j) is present with probability 1 - exp(-tzizj), independently for different
 pairs. Write a,1 = XL1 z?, a2 = Z7=m+1 z?. Let (Zi) be the sizes of components
 of f. Then

 Ep( Zi? > a, + ?) < (2t(al + ?) + (t(al + ?)) )2 > 0.

 PROOF. For m < k < n let Ak be the subgraph of 0 on vertices {1,..., k}

 and let Qk be the sum of squares of component sizes of 9k* SO Qm = a,. Let
 Ai, 1 < i < m be the events that (i, m + 1) is an edge of 0. Then

 m m m

 Qm+j - Qm = 2 E ZiZm+llAi + E >E ZiZjlAinA 1(joi)
 i=l i=1 j=1

 and so
 m m m

 E(Qm+l - Qm) < 2t ZiZ2 +1 + t2z2 +1 ZE ZZj1
 i=l i=1 j=1

 < (2tQm + t2QQ2m )z2
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 Similarly,

 E(Qk?l - QkVl4k) < (2tQk+ t2Q2)Z2k?l m < k < n.

 In other words,

 k-1

 Mk- Qk - a1 - L(2tQj + t2Q2)Z+l, m < k < n
 j=1

 is a supermartingale with Mm = 0. Given 8> 0, set T = min{k: Qk > a ?, .
 Then EMmin(T, n) < 0 by the optional sampling theorem. So

 E(Qmin(T, n) - a,) < (2t(a1 + ?) + (t(al + 8))2)a2.

 But Qmin(T,n) - a, > 8 on {Qn > a1 + 8}, establishing the lemma. D-

 To complete the proof of the Feller property, we need to prove (58). Let

 X(n) x in 1. Write X(l k) for the decreasing ordering of {xi, i > 1} U
 {xin, i >} k. Consider the subgraph coupling of (x(nt), t) and 'f(x, t). We
 assert

 (61) lim lim sup P(S(x(n' k), t) - S(X, t) > 8) = 0 for all 8 > 0.
 k-oc no

 The point is that we can construct y$'(X(n, k), t) from )f(x, t) and 7f (y(nf k), t),
 where Y(,k) = ((n), ) where y(n k) = (X(), i > k), via the procedure of Lemma 23. Now Lemma 23

 extends by truncation to infinite graphs, and implies

 8P(S(X(n' k) t) - S(X, t) > 81S(X, t), S(y(n), t))

 < (2t(S(x, t) + 8) + t2(S(X, t) + 8)2)S(y(' k), t).

 Now we know S(x, t) < oc a.s. Furthermore, because X(n) is convergent in 12

 S(y( I k), 0) =Ei>(xk() satisfies limk lim supn S(y(nk) 0) = 0 and so Lemm
 20 implies

 lim Jim sup P(S(y(n k), t) > s) = O for all s > O.
 k-oo no

 These estimates imply (61). Now write z(n,k) for the decreasing ordering of

 {xi, 1 < i < k}u{xin, i( > k}. In the subgraph coupling we have S(Z(n' k), t) <
 S(X(n' k), t) and so by (61),

 (62) lim lim sup P(S(z(n k), t) - S(X, t)> 8) = 0 for all 8 > 0.
 k-oo no f

 Now fix 8 > 0. For given k, for all sufficiently large n we have x(n)X(jn)t <
 z(n, k) (n, k)

 (t + 8) V i, j and therefore in the c-coupling we have

 S(X(n), t) < S(Z(nk), t + 6) for all sufficiently large n.

 Combined with (62) with t + 8, we have constructed a coupling for which

 lim P(S(x(n),t)- S(x,t?+)> ?) =0 forall ? >O.
 n--*oo
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 But Lemma 20 implies that as 8 4 0 we have S(x, 8) 4I S(x, 0) a.s. Applying
 this to x = X(t) shows

 S(t +?) -* S(t) a.s. as 8 ,0

 and (58) follows.

 4.3. The standard multiplicative coalescent.

 COROLLARY 24. There exists a version of the multiplicative coalescent
 (X*(t); -oc < t < oc), the standard multiplicative coalescent, such that for
 each t we have X*(t) =d Ct, where Ct is the joint distribution of rescaled
 component sizes or of excursion lengths appearing in Folk Theorem 1 and
 Corollary 2.

 PROOF. Fix t1 < t2. Consider the "classical" setting (11) of Proposition 4,

 and let C(n) and C(n) be the component sizes obtained with q(n) = n1/3 + t1
 and with q(n) = n1/3 + t2. Then Ct2 is the distribution at time t2 of the mul- (n)
 tiplicative coalescent started at time t1 with distribution Ct1 . Proposition 4
 asserts that C(n) > d Ctz with respect to the 12 topology. The Feller property
 then verifies that, if we start a multiplicative coalescent at time t1 with distri-
 bution Cti, then the distribution at time t2 is Ct2. The Kolmogorov extension
 theorem now yields the existence of X*.

 5. Stochastic calculus computations with Bt. We shall study what
 routine stochastic calculus reveals about certain questions concerning Bt and
 the process Nt of marks. The work in this section is independent of results in
 earlier sections, except that (i) Lemma 25, or rather the weaker fact that only
 finitely many excursions are longer than 8 > 0, was used in Section 3.4 in the
 proof of Proposition 4, and (ii) the proof of Proposition 27 uses Corollary 16.

 5.1. Excursion lengths. We set up our theory of the multiplicative coales-
 cent as an 12-valued process, so it is nice to have a simple direct argument
 that the limit process in Corollary 2 is indeed in 12.

 LEMMA 25. Let Ft be the set of excursions of Bt, and let I y be the length of
 excursion -y. Then E ZY,t I-y2 < 00.

 PROOF. For an excursion y = (1, r),

 y12 =2 (r - u) du.

 So, writing Hu = min{s > 0: Bt(u + s) = 0},

 L112==2j Hudu.
 Y
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 So we need to prove f? EHU du < oc. We first claim

 E(HulBt(u)) < -,(u u > max(O, t),

 because, for fixed u, the process (Bt(u + s), s > 0) can be coupled with re-

 flecting Brownian motion (B(s), s > 0) with constant drift -(u - t), started

 at the same position Bt(u), in such a way that Bt(u + s) < B(s) for all s. And
 for B started at x, the mean hitting time to 0 equals x/(u - t).

 Using (2), it is easy to show that EBt(r) < oc for each r. Taking r >
 max(O, t + 1) we have, for all 0 < u < r,

 EHU < -u +EHT < EBt(r)+r < oo.

 So it suffices to prove that for some r,

 00 Etu
 (63) j 7du <0 0.

 Using (2) and invariance of Brownian motion W under time reversal,

 Bt(s) =d SUp (W(U) + (t - s)u + U2)
 O<u<s

 < sup (W(u) + (t - 1s)u) by convexity
 O<u<s

 < sup (W(u)+ (t- s)u).
 O<u<oo

 Assuming s > 2t, the final quantity has an exponential (s - 2t) distribution,
 and so EBt(s) < 1/(s - 2t), establishing (63).

 REMARK. A more elaborate argument (Vlada Limic, personal communica-

 tion) shows EBt(u) - 1/(2u) and 2uBt(u) d exponential (1) as u -* oo.

 5.2. The excursion length measure. Associated with Bt is an (inhomoge-
 neous) excursion law, analogous to the Ito excursion law for Brownian motion.
 In particular there is a sigma-finite excursion length measure pt,(.), whose
 most intuitive interpretation is as follows. Write Ht = min{u > 0: Bt(v + u) =
 0}. Then

 (64) limb-' P(Ht > s I Bt(v) = b) = pt(s, ??)

 Clearly pt = pt-V, so it suffices to consider pt, that is, excursions starting at
 v = 0. Recall the "marks" process defined at (3) for the measure pt restricted to
 excursions with exactly I marks. Write pt(.; 1). Lemma 26 below gives formulas
 for the densities of these measures in terms of Brownian excursion W* of
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 length 1. Write

 I = j W*(u) du,

 (65) a, = E', I > 0O
 (I(0) = Eexp(0I), 0 > 0o

 Ft(s) = 1((s - t)3 + t3).

 LEMMA 26. We have

 (66) dp(s) = (2T)-12s-3/2 exp(-Ft(s))($(s312)
 ds()=

 (67) d (s; 1) = (2ir)-112 exp(-Ft (s))s3(l-1)/2

 PROOF. The Cameron-Martin-Girsanov formula ([26], JV.38.5) says that
 the density of Wt with respect to W, on the set of paths (W(u), 0 < u < s), is

 exp(j y(u) dW(u) - 1 7 2(u) du),

 where y(u) = t - u is the drift. On the set of excursions of length s, we have

 2 0fs y2(U) du = Ft(s) and fos y(u) dW(u) = fos W(u) du = Is, say, and so the
 density becomes

 exp(-Ft(s)) exp(Is).

 Moreover, conditional on the excursion (W(u), 0 < u < s), the number of

 marks during the excursion has Poisson(Is) distribution, and so the corre-
 sponding density on paths with exactly I marks is

 exp(-Ft(s))(Is)'/l!.

 For Brownian motion itself, the excursion length has density (2r)-1/2s-3/2,
 and so

 dp? (s) = (2r)-1/2s-3/2 exp(-Ft(s))E exp (| W(u) du)

 dp,(s; I) = (2s)-1/2s-3/2 exp(-Ft(s))E( W(u) du) /1!

 where W is Brownian excursion of length s. Now (66) and (67) follow from the

 Brownian scaling property fos W(u) du =d s3/2f ' W*(u) du.

 5.3. The size-biased property. In the random graph c9(n, n-1 + tn-4/3) we
 have an obvious size-biasing relationship between the size Cn[1] of the com-
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 ponent containing vertex 1 and the mean number [mj(c), say] of components
 of size c:

 (68) P(C.[1] = c) = -m.(c).
 n

 There must be some analogous identity in the Brownian world, and here it is.
 Write q1t for the mean occupation measure for excursion lengths of Bt:

 t(-) = El{y E Ft: y' E .}1.

 PROPOSITION 27. We have (dqjt/dp')(s) = s-1, 0 < s < oC).

 Though it is natural to seek to prove this from (68) and a weak convergence
 argument, we do not see any such simple argument. Rather than start novel
 weak convergence arguments, we shall combine stochastic calculus arguments
 with the size-biased order result for excursions of Bt, Corollary 16.

 PROOF OF PROPOSITION 27. Write L(u) for local time at 0 for Bt. Con-
 structing Bt from Wt as in (2), we may define

 L(u)=- min Wt(s)
 o<s<u

 (here and below we omit explicit dependence on t). Write Q(8, s) = number of
 excursions of Bt with length > 8 which begin before s. Then

 (69) Q(8') -* L(s) a.s. as 8 { 0,

 where n(8) = j??(27T)-1/2x-3/2 dx = (2/ -)1/2 8-1/2. This is standard for Brown-
 ian motion ([271, equation II.37.9) and extends to Bt by absolute continuity.
 Now consider the total number M(8) of excursions of Bt with length > 8. For
 reflecting Brownian motion with constant drift -u, the mean intensity per
 unit time of excursions of length I is u(2rT)-1/21-3/2 exp(-u21/2). Routine but
 tediuas arguments, basaed an the ariakg of (6g9 rn the canstant drift case and
 comparison arguments, verify that

 (70) M() 1 a.s. as 8 > 0,
 m(8)

 where
 00 00 00

 m(O)= j j u(2r)-<12j-3/2exp(-u21/2)dl du= (27)-1<21-52 dl.

 Now consider the set { yj: y E Ft} of all excursion lengths of Bt. Apply the
 size-biasing construction of Section 3.3; that is, introduce (%.) such that the
 conditional distribution of (, given jyj is exponential (lyl), and set

 S(x)= E Lyl.
 Y: 6Y<x

This content downloaded from 108.226.241.26 on Sat, 24 Feb 2018 21:22:12 UTC
All use subject to http://about.jstor.org/terms



 RANDOM GRAPHS AND MULTIPLICATIVE COALESCENT 847

 From (70) and the definition of the c's, it is not hard to show that as 8 > 0,

 (71) I{y: 1y) > 8, (, < x}l J (1 - exp(-xl))(2v)-1/21-5/2 dl - xn(8) a.s.

 Now (L-l(x), 0 < x < oc) is a pure jump process whose jump sizes are the
 excursion lengths of Bt, in the order that excursions occur. The size biasing
 property in Corollary 16 is that (S(x); 0 < x < oc) is also a pure-jump process

 whose jump sizes are the excursion lengths of Bt, in the order that excursions
 occur. So these two processes are random time changes of each other; that is,

 (L-1(x), 0 < X < ??) =d (S(0(X)); 0 < x < oc) for some random increasing
 continuous function 0. But now (69) and (71) identify 0(x) = x, and so

 (72) (L-1(x), 0 < x < o?) =d (S(X); 0 < X < 00).

 By definition of the c's, as x 4I 0,

 b

 x-1EI{y: 6., < x, a < Jyj < b}Il -b yt(dy),

 while the interpretation of the excursion length measure p0 as the rate of
 excursions with respect to local time implies that, as x 4 0,

 x-1EI{y: 1(y) < L-1(x), a < Jyj < b}l -* p(a, b).

 But the left sides are equal by (72), and the equality of the right sides is the
 assertion of the proposition. D-

 In an attempt to downplay the abstract aspects of excursion theory, we have
 not said what is really going on in terms of the space U (in the notation of [26],

 Section VI.47) of excursion functions f. Our measure p0 on excursion lengths
 is induced from a certain measure p0 on U, whose density with respect to the
 Ito measure on U can be obtained from the argument for Lemma 26. Writing

 t for the mean occupation measure on U for excursions of Bt, the proof of
 Proposition 27 shows

 dfit ifI dpot(f) 1f

 where If I is the length of excursion f . Since the distribution of the number of
 marks during an excursion f depends only on f (i.e., not on the starting time
 of the excursion) we may deduce the analogous size-biasing relationship for
 the joint distribution of lengths and number of marks in excursions, which we
 state as follows. Let pt(., m) be as in Lemma 26, and let q,t(., m) be the mean
 number of excursions of Bt with Iyl E * and with exactly m marks.

 COROLLARY 28. We have

 dpo,(., m)
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 As an application, write

 Mt(l) = number of excursions of Bt with I marks,

 Qt(l) = total length of excursions of Bt with I marks.

 Then

 (73) EM'(l) = qt(ds, 1) =j s-1p (ds, I) < oo, 1 > 2,

 00 00

 (74) EQt(l) =] sq,t(ds, l) =]r (ds,l) < oo, I > 1,

 where in each case the first equality is by definition of qft and the second by
 Corollary 28. See Section 6.2 for discussion of the random graph asymptotics
 interpretation.

 5.4. t -oo -0 asymptotics. Fix t < 0. For Brownian motion with constant
 drift t, the excursion length measure vt analogous to (64) is

 vt(ds) = (27r)-1/2s-3/2 exp(-t2s/2) ds.

 By coupling with Bt, it is easy to see that pt is stochastically smaller than vt;
 that is,

 (75) t (x, oc) < vt (x, oo), x > 0.

 On the other hand, in equation (66) we have 1(s3/2) > 1 and so

 (76) tp(ds) > (2r)-1/2S-3/2 e-Ft(s) ds = vt(ds) exp( -

 Consider the sum of rth powers of excursion lengths of Bt:

 Sr(t) = E lylr, r > 2.
 YEFt

 Write qrt( ) for the mean number of excursions y of Bt with y I E . Then
 00

 ESr(t) = j srqt(ds)
 00

 = f sr-1pt(ds) by Corollary 28
 00

 k sr-1 vt(ds) as t -- -oo using (75) and (76)

 (77) = t3-2r(2r - 5)!! after a brief calculation,

 where for m odd, m!! = m(m - 2)(m - 4)... 1 and (-1)!! 1. The lower bound
 in the - is justified by changing variables in (76) to du - t2 ds and applying
 dominated convergence.
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 Finally, we can bound the maximal excursion length X*(t) maxr,EFt ly by
 a similar argument, as follows.

 P(X*(t) > s) < El{y: lyi > s}l
 00

 = | t(du)

 =]~ |u1pt(du) by Corollary 28

 < s-1 t (s, oo)

 < s-lvt(s, oo) by (75)

 00 t2uN
 <(2qr)-112S-512 |exp(- 2 )du

 = (2r)/2s-5/22 exp(- t2s)

 A crude consequence is

 (78) P(X*(t) > ltl-2+H) = o(exp(-ltl,/2)) as t -x-.

 REMARK. From (77) with r = 2, we have ItIES2(t) -_ 1 as t -oc, and it
 is not hard to improve this to t10S2(t) -*p 1. Analysis of the standard multi-
 plicative coalescent in [4] gives the stronger result:

 t 0 as t-oc
 S92 (t)p

 but this seems hard to deduce from the definition of S2(t) in terms of Bt.

 6. Further discussion.

 6.1. Methodological discussion. Of course the point of this paper is to
 exhibit the connection between critical random graphs and Brownian-type
 processes, a connection not visible in the voluminous literature on either
 subject. Whether this connection will reveal anything essentially new about
 distributional asymptotics of random graphs is uncertain. The underlying
 methodology-what the author terms the weak convergence paradigm-is to
 separate the issue of convergence to some well-defined limit process from the
 issue of doing explicit calculations, so that one can seek to do the calcula-
 tions in the continuous world. In Section 6.2, we outline how the calculations
 we have done with excursions of Bt relate to random graph asymptotics. Re-
 deriving certain other known results, for example (80), provides an interest-
 ing challenge for stochastic calculus. Weak convergence arguments typically
 have some robustness under changes in model, as our proof of Proposition 4
 shows; it is less clear whether the generating function arguments employed
 in the random graphs literature can so naturally be extended to the setting
 of Proposition 4. Of course the weak convergence approach has countervailing
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 disadvantages: Theorem 3 is tied to p(n) = n-1 + tn-4/3 rather than a wider
 range of p(n); one loses error bounds in n; and imposing an artificial "time"

 structure obscures symmetry properties (e.g., size-biasing, Section 5.3) of the
 underlying random graph.

 This paper continues a line of work which identifies limits in probabilis-

 tic combinatorics with Brownian-type processes (random trees with Brownian
 excursion [1, 2]; random mappings with Brownian bridge [5]). But these pre-
 vious results (based on "depth-first search") are not used here, and indeed
 the weak convergence arguments in this paper are technically rather easier.
 Pitman [23] discusses a similar kind of problem-numbers of excursions con-
 taining j marks-for a different process (Brownian and Bessel processes and
 bridges, with a rate 1 process of marks). Pitman and Yor [24] give combinato-
 rial interpretations of ranked excursion lengths of different processes.

 6.2. Formulas for random graph asymptotics. Carrying through the weak
 convergence program of obtaining formulas for random graph asymptotics
 from Theorem 3 requires verifications of technical side conditions, and this
 is not the place to start such technicalities. But let us give one example of
 how our stochastic calculus formulas match those in the random graphs liter-
 ature. Write Mt (1), Qt (l) for the number and the total size of components of
 9(n, n - + tn-4/3) with surplus 1. Then Theorem 3, and verification of further
 tightness and integrability conditions, would imply

 Mt (I) d MtEMt (Mt (Z) EMt(l),

 n-2/3Qt/ Qt (l) n-213 EQt (1) - EQt(l),
 where Mt(l) and Qt(l) were defined above (73). Lemmas 2.2 and 2.3 of [19]
 contain formulas for the asymptotics of EMn(l) and n-2/3EQn(l). These agree
 with our stochastic calculus formulas (73) and (74), except that our constant

 a, defined by (65) is replaced by l!Vy, where yV is defined by

 (79) yi = lim C(k, k + I - 1)/k

 where C(k, k + I - 1) is the number of connected graphs with k labeled vertices

 and k + I - 1 edges. The implicit identity a, = l!yj touches upon a large set of
 ideas: see Section 6.5, problem (6).

 6.3. Epidemic models. The number of vertices at successive heights in a
 random component evolve essentially as a classical epidemic model. Martin-
 Lof [22] proves a result in the epidemic setting which roughly translates to
 the fact that rescaled breadth-first walk in the first component, conditioned on
 reaching height 8 > 0, subsequently evolves as Bt until returning to zero. In
 principle one could seek to prove Theorem 3 by "stringing together" this fact
 forosuccessive components, but this is technically complicated due to the u-
 finite measure on excursion lengths. Carrying through the weak convergence

 argument by first showing Ztn d WI and then defining the reflecting process
 Bt via (2) avoids these technical complications.
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 6.4. General stochastic coalescent processes. The multiplicative coalescent
 may be viewed as the special case K(x, y) = xy of the "general rate" coalescent
 scheme with the following dynamics.

 Each pair of clusters of sizes (x, y) merges at rate K(x, y)

 into a cluster of size x + y.

 It turns out there is an extensive scientific literature on coalescence, mostly

 for integer-valued cluster sizes. A survey will be given elsewhere [3], but here
 are some highlights. Work through the 1960's emphasized the deterministic
 first-order approximation (Smoluchowski coagulation equation) in which the

 concentrations cj(t) of size j clusters are assumed to satisfy the differential
 equations

 dycj(t) = 1 , K(i, j - i)ci (t)cj (t)-c j(t) , K(j, i)ci(t), j = 1, 2.
 i=1~~~~~~~~~=

 The survey by Drake [10] has 250 references. The general stochastic model
 was introduced by Marcus [21] and studied by Lushnikov [20] as a model
 for gelation. Van Dongen and Ernst [31, 30] and references therein indicate
 subsequent work from a statistical physics viewpoint. The case K(x, y) = xy
 is essentially the classic random graphs process, and the case K(x, y) = 1
 is essentially Kingman's coalescent [9, 18], but other cases have not been
 considered from a rigorous viewpoint until very recently. Evans and Pitman
 [14] discuss foundational issues and the Feller property (in 11, rather than the
 12 setting of this paper) for general rate kernels K, and study the additive
 case K(x, y) = x + y.

 6.5. Open problems. We collect some problems explicitly or implicitly men-
 tioned, plus some further problems.

 (1) The growth of percolation clusters in the usual bond percolation model

 on the d-dimensional lattice, near the critical point, is loosely analogous to (but
 much harder to analyze than) the near critical behavior of the random graph
 process. See [8] for the latest results. It is unclear whether any continuous-
 space limit process, analogous to the multiplicative coalescent, might be an-
 ticipated in that context.

 (2) Find exact necessary and sufficient conditions in Proposition 4. It is
 clear that by truncating away a few large cluster sizes one can weaken (10),
 but we have not tried to discover how far this idea can be pushed.

 (3) Is there an explicit construction of the entire standard multiplicative
 coalescent in terms of familiar stochastic processes, avoiding any weak con-
 vergence argument? In other words, our results imply that there exists a two-
 parameter process (Bt(s), 0 < s < oc, -oo < t < oo) which for fixed t is
 distributed as Bt and whose excursion lengths evolve as the multiplicative co-
 alescent. But we do not know how to directly define such a process. Janson [15]
 'describes the two-parameter point process giving the times t and component
 sizes where multicyclic components arise; we would like Janson's process to
 be included in a two-parameter process description. Using (1) and (2) with the
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 same W for each t definitely does not work; we need the excursions to merge in

 a much more complicated way. It seems intuitive that for a fixed pair t1 < t2
 one cannot define a bivariate Markov process ((Btl(s), Bt2(s)), 0 < s < oc)
 such that the joint distribution of the excursion lengths is the distribution of
 (X(t1), X(t2)). Specifically, if the construction of Zt is made simultaneously
 for t = t1 and t2, then Theorem 3 has a bivariate version which leads to a joint
 distribution ((Btl(s), Bt2(s)), 0 < s < oc), but the joint process is not Markov
 because coalescence of clusters between t1 and t2 leads to excursions of Btl
 becoming embedded within earlier (in terms of s) excursions of Bt2, which is
 incompatible with the Markov property.

 (4) Our proofs of the size-biasing properties of excursions of Bt (Corollary
 16 and Proposition 27) rely ultimately on weak convergence from the random
 graphs setting. Can these be proved directly via stochastic calculus on Bt?

 (5) Our results enable many random graphs results to be reformulated as
 results about Bt: can one find stochastic calculus proofs? For example ([16],
 Theorem 4): let M(l) be the number of excursions of Bt containing exactly 1
 marks. Then, for t = 0,

 (80) P(M(2) = m, M(l) = 0 V I > 2) = (8)m \/(2 )

 (6) Elucidate the implicit identity a, = l!yi [recall (79) and (65) for defini-
 tions]. Briefly, asymptotics of C(k, k + 1 - 1) have been studied in detail in the
 combinatorics literature (for references see [7], page 114; [16], page 262; [19],
 page 735). Distributional properties of I have been studied by probabilists: see

 [29] for references and rederivation of formulas for the moments (a,). In [29]
 it is noted that the classical depth-first search 1 - 1 correspondence between
 walk excursions and planar trees identifies I as the rescaled limit of the sum

 of heights of all vertices in a random planar tree. But directly identifying (a,)
 with (l!yi) seems more subtle, and we do not see any explanation more sim-
 ple than the following, which is (roughly speaking) implicit in the argument
 for Theorem 3. Apply the breadth-first walk construction of this paper to the
 random connected graph on k vertices and k + 1 - 1 edges; the rescaled walk
 converges to Brownian excursion; the vertices with extra edges asymptotically
 appear as the process of "marks" analogous to Nt. The convergence of walks
 holds because the spanning tree induced by breadth-first walk is asymptoti-
 cally like the uniform random labeled unordered tree, and (analogous to the
 general results of [2]) one expects a Brownian excursion limit for this and
 other simply generated families of random trees (the particular case of planar
 trees being obvious by another 1 - 1 correspondence): Spencer [28] elaborates
 this argument.

 (7) Implicit in Section 5.4 is the following idea. For large negative t, the
 sizes of the longer excursions of Bt, that is, the asymptotic rescaled sizes
 of the larger components of c9(n, n-1 + tn-4/3), are approximately like the
 positions s of the right-most points in an inhomogeneous Poisson process of
 rate (2V)-1/2s-5/2 exp(-t2s/2). This idea is also folklore in random graphs,
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 and indeed can be viewed as a consequence of general facts about the tail of
 the distribution of total population in a just subcritical branching process. It
 would be interesting to use the modern Stein-Chen machinery [6] to obtain
 explicit bounds on the error in this Poisson process approximation.

 (8) From formulas in [22] one may derive complicated expressions for the
 marginal distribution Bt(s) (Vlada Limic, personal communication). Can one

 obtain expressions for, for example, the distribution of sups,o Bt(s)?

 Acknowledgments. I thank Joel Spencer for the suggestion to abstract
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 going discussions about coalescent processes and references to the statistical
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