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Comparisons of prototype- and exemplar-based neural network models of 
categorization using the GECLE framework  

 
Toshihiko Matsuka (matsuka@psychology.rutgsers.edu) 

RUMBA, Rutgers University – Newark  
101 Warren St., Smith Hall 327, Newark, NJ 07102 USA  

 
Abstract 

In the present study, GECLE (Matsuka, 2003) was used as a 
general modeling framework to systematically compare the 
plausibility of two prominent assumptions about internal 
representations of neural network (NN) models of human 
category learning.  In particular, exemplar-model friendly 
Medin and Schaffer’s 5/4 stimulus set (1978) was used for 
comparing prototype- and exemplar-based NN models.  The 
results indicate that some prototype-based models performed 
as good as or better than an exemplar-based model in 
replicating the empirical classification profile.  In addition, a 
phenomenon called A2 advantage  (i.e., people tend to 
categorize the less “prototypical” stimulus A2 more 
accurately than more “prototypical” stimulus A1) reported in 
empirical studies (e.g., Medin & Schaffer 1978) was also 
successfully reproduced by these prototype-based NN models.   

Introduction 
There have been an increasing number of studies debating 
how stimuli are internally represented in human cognition 
during the last few decades (e.g., Minda & Smith 2002; 
Nosofsky & Zaki 2002).  Most of these debates have been 
based on quantitative models of categorization, and only a 
few have considered representational aspects of adaptive, 
network, or learning models of categorization.  Several 
studies (Matsuka, 2002; Matsuka, Corter, & Markman, 
2003) have compared exemplar-based (EB) and prototype-
based (PB) adaptive network models of categorization, but 
there has been no systematic comparison of specific 
assumptions in EB and PB modeling. Although these 
comparative studies provided information on the models’ 
capabilities for reproducing human-like categorization 
learning, they did not necessarily provide information that 
can lead to specific understanding of the nature of human 
category learning.  That is because model-to-model 
comparisons are not informative for testing the plausibility 
of each specific assumption, rather such model comparisons 
are essentially omnibus tests collectively comparing all 
variations in assumptions at once.  In other words, it has 
been difficult to use the results of these previous 
comparative studies to understand which specific 
assumptions are supported by the empirical data.  Therefore, 
it seems desirable to make systematic comparisons between 
competing model assumptions using a general modeling 
framework that allows us to manipulate and test one or a 
limited number of model assumptions at a time. 

In the present study, a generalized exploratory modeling 
approach for human category learning is introduced.  Then, 
using this general framework two assumptions about how 
categories are internally represented, namely prototypes and 
exemplars, are compared in a systematic fashion. 

GECLE 
GECLE (for Generalized Exploratory models of Category 
LEarning) is a general and flexible exploratory approach for 
modeling human category learning, that is capable of 
modeling human category learning with many variants using 
different model assumptions (Matsuka, 2003). This general 
modeling framework allows model assumptions to be 
manipulated separately and independently.  For example, 
one can manipulate assumptions about how stimuli are 
internally represented (e.g. exemplars vs. prototypes), or 
about how people selectively pay attention to input feature 
dimensions (e.g., paying attention to dimensions 
independently or not).   

The GECLE model uses the Mahalanobis distances (in the 
quadratic form) between the internally represented reference 
points (RP: corresponding to either exemplars or 
prototypes) and the input stimuli as the measure of 
similarity between them.  Thus, unlike other neural network 
models of category learning, GECLE does not necessarily 
assume that attention is allocated independently dimension-
by-dimension.  Rather, it assumes that humans in some 
cases might pay attention to correlations among feature 
dimensions.  This allows GECLE to model processes 
interpretable as dimensionality reduction or mental rotation 
in the perception and learning of stimuli.  Such processes 
may increase the interpretability of stimuli in categorization 
tasks. Another motivation for using the Mahalanobis 
distance is that the capability for paying attention to 
correlations among feature dimensions may be necessary for 
classification tasks defined on integral stimuli.   

In the GECLE framework, the attention parameters 
(which are the diagonal and off-diagonal elements of the 
covariance matrices) can be considered as shape and 
orientation parameters for receptive fields or attention 
coverage areas of the reference points.  It should be noted, 
however, that one can constrain GECLE to incorporate the  
“dimensional attention processes” assumption (i.e., attention 
is allocated independently on a dimension-by-dimension 
basis) by forcing the off-diagonal entries in the covariance 
matrices to be equal to zero. 

Another unique feature of GECLE’s attention mechanism 
is that it allows each reference point to have uniquely 
shaped and oriented attention coverage area, which is 
referred to as “local attention coverage structure” (Matsuka 
2003).  Again, one can impose a restriction on the model’s 
attention mechanism by fixing all covariance matrices to be 
the same, which may be called “global attention coverage 
structure”. Many NN models of category learning, 
ALCOVE (Kruschke, 1992) for example, incorporate the 
global attention coverage structure.   
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The local attention coverage structure model is complex, 
but may plausibly model attention processes in human 
category learning. For example, it allows models to be 
sensitive to one particular feature dimension when the input 
stimulus is compared with a particular reference point that is 
highly associated with category X, while the same feature 
dimension receives little or no attention when compared 
with another reference point associated with category Y.  
Thus the local attention coverage structure causes models to 
learn and be sensitive to within-cluster or within-category 
feature configurations, while the global attention coverage 
structure essentially stretches or shrinks input feature 
dimensions in a consistent manner for all RP receptive fields 
and all categories. 

Another way of interpreting GECLE’s capabilities for 
paying attention to correlations among feature dimensions 
and having local attention coverage structures is that the 
model learns to define what the feature dimensions are for 
each RP and to allocate attention to those dimensions 
independently.  In contrast, for almost all previous adaptive 
models of category learning, the definition of the feature 
dimensions is static and supplied by individuals who use the 
models. 

Some studies showed that humans learn much better in 
“filtration” tasks, in which information from only one 
dimension is required for (perfect) categorization, than in 
“condensation” tasks, in which information from two 
dimensions is required (e.g., Gottwald & Garner, 1975). 
This finding has been used as evidence that people pay 
attention to each dimension independently, rather than 
dependently (i.e., paying attention to correlations). Thus, a 
model paying attention to correlations or having diagonal 
attention coverage, as GECLE does, may not replicate 
filtration advantage.  However, Matsuka (2003, 2004) 
successfully replicated the filtration advantage using a 
prototype based correlation-attentive GECLE with local 
attention coverage structure.  He suggested that for a 
prototype based GECLE, the condensation stimuli require a 
stricter correspondence or synchronization between 
prototype search (i.e., shifting centroids of prototypes) and 
psychological scaling of the two feature dimensions (i.e., 
attention processes) as compared with the filtration stimuli.  
This is because the “correct” prototypes and “correct” 
scaling are defined by two dimensions in the condensation 
stimuli as compared to one dimension in the filtration 
stimuli. 

In its natural form, the GECLE may be considered as a 
model using prototype internal representation, because it 
tries to learn to locate its reference points at the centers of 
each category cluster.  However, with proper user-defined 
parameter settings, it can behave like a model with an 
exemplar-based internal representation. 

Quantitative Descriptions (Algorithm) 
The feedforward and learning algorithms of the GECLE are 
typical for implementation of the Generalized Radial Basis 
Function (Haykin, 1999; Poggio & Girosi, 1989, 1990).  
GECLE uses the following function to calculate the 
distances or similarity between internally represented 
reference points and input stimuli: 
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where xn is an I-ruple vector representing an input stimulus 
consisted of I feature dimensions presented at time n, rj, also 
an I-ruple vector, that corresponds to the centroids of 
reference point j, expressing its characteristics, and Σj

-1 is 
the inverse of the covariance matrix, which defines the 
shape and orientation of the attention coverage area of 
reference point j.  For a model with global attention 
coverage structure, there is only one global Σ -1 for all 
reference points.   

The psychological similarity measures Dj(x,r) cause some 
activations in internal “hidden” units or reference points 
(i.e., exemplars or prototypes).  The activation of “hidden” 
basis unit j, or hj, is obtained by any differentiable nonlinear 
activation transfer function (ATF), or  
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given that its first derivative G’(⋅) exists.  An exponential 
function, exp(-cDj(x,r)), is an example of an ATF.  The ATF 
must be a differentiable function, because GECLE uses a 
gradient method for learning, where the partial derivatives 
are used for updating the learnable parameters.  However, it 
is possible to eliminate this restriction by incorporating a 
form of derivative-free learning algorithm such as stochastic 
learning (Matsuka & Corter 2004).  

The activations of hidden units are then fed forward to 
output nodes.  The activation of the kth output node, Ok, is 
calculated by summing the weighted activations of all 
hidden units connected to the output node, or  
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where wkj is the association weight between output node k 
and reference point j. The probability that a particular 
stimulus is classified as category Ck, denoted as P(C), is 
assumed equal to the activity of category k relative to the 
summed activations of all categories, where the activations 
are first transformed by the exponential function (Kruschke, 
1992)  
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φ is a real-value mapping constant that controls the 
“decisiveness” of classification responses. 

GECLE uses the gradient method to update parameters.  
The error function is defined as the sum of squared 
differences between targeted and predicted output values 
(i.e., L2 norm), or 
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Then the following functions are used to update parameters. 
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where ηw is the learning rate for the association weights. 
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where G’(⋅) is a derivative of G(⋅).  Equation 7 can be 
considered as a function that locates or defines prototypes of 
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stimuli.  For the exemplar-based modeling η r must be set to 
zero to maintain the static nature of reference points. 
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For models with global attention coverage structure, 

Equation 8 should be summed over both k and j.  

Hierarchy of Constraints on Attention Parameters  
There is a hierarchy of constraints that one can impose on 
the attention parameters Σ-1 to manipulate GECLE’s 
attention mechanisms.  There are two levels of uniqueness 
of Σ-1 (global and local attention coverage structure), in each 
of which there are three levels of constraints on entries in Σ. 
The following is a list of six possible levels of restriction.  
Note that regardless of the types of restriction, the entries 
(sim) in Σj are assumed and constrained to satisfy the 
following conditions: sii ≥ 0 & |sim| ≤  MIN(sii, smm).      
 
Global Attention Coverage Structures   
A. Global Pure Radial (GPR): Constraints on Σj: sii = s, for 
all i: sim = 0, for all i ≠ m; Σj = Σ, for all reference points j.   
B. Global Uncorrelated Non-radial (GUN):  Constraints on 
Σj: sim = 0, for all i ≠ m; Σj = Σ, for all reference points j. 
C. Global Correlated Non-radial (GCN): Constraints on Σj: 
Σj = Σ, for all reference points j. 
 
Local Attention Coverage Structures   

D. Local Pure Radial (LPR): Constraints on Σj: sii = s, for 
all i; sim = 0, for all i ≠ m.   
E. Local Uncorrelated Non-radial (LUN):  Constraints on 
Σj: sim = 0, for all i ≠ m. 
F. Local Correlated Non-radial (LCN): Constraints on Σj: 
none. 

 

 
Figure 1. Six types of attention structures in the GECLE 
framework. Clockwise from top left. GRP, GUN, GCN, 
LCN, LUN, and LRP. 

Simulations 
In this section, three simulation studies were conducted to 
compare adaptive network models of category learning 
utilizing prototypes or exemplar internal representations 
using the GECLE framework. Here, a classical category 
learning study (Medin & Schaffer 1978) was replicated with 
several variants of GECLE.  Simulation 1 reports the 
predictions by several GECLE models based on “optimal” 
parameter values.  In Simulation 2, the general tendencies in 
some key aspects associated with the stimulus set were 

investigated with the same GECLE models used in 
Simulation 1.  The plausibility of prototype models was 
further investigated using two variants of prototype-based 
GECLE in Simulation 3. 

Simulation 1 
In Simulation 1, I simulated category learning using the 
well-known Medin and Schaffer’s 5/4 stimulus set (1978).  
Table 1 shows the schematic representation of the stimulus 
set.  Eight different GECLE-based models were involved in 
the present simulation study. Among them there were seven 
prototype-based models (PB) with 2,3,4,5,6,7, or 8 
prototypes and one exemplar-based model (EB) with all 9 
unique exemplars. The global attention structure with 
dimensional attentional processes (i.e., GUN) was used for 
all eight models.  They were run in a simulated training 
procedure to learn the correct classification responses for 
the training set. The models were run for 100 blocks of 
training, where each block consisted of a complete set of the 
training instances.  The final parameter values used for each 
model were chosen by a simulated annealing method to 
minimize the objective function (i.e., sum of squared error: 
SSE) in reproducing the classification profile reported in the 
original Medin & Schaffer’s work (1978). There are a total 
of 50 simulated subjects in each condition.   

The following one-parameter exponential activation 
transfer function was used for the models: 

( )),(exp rxDch jj ⋅−=   

One of the main interests of the present simulation study 
was how well the eight models could reproduce observed 
classification profile reported in Medin & Schaffer (1978).  
The other related interest was how well each model 
performs on stimuli A1 and A2 (see Table 1).  These two 
stimuli have been considered to be very important and 
diagnostic, because PB and EB tend to give different 
predictions for these particular stimuli (e.g., Nosofsky & 
Zaki, 2002). Specifically, EB models are used to explain 
empirical results that show that humans are better able to 
categorize less “prototypical” A2 than more “prototypical” 
A1 (e.g., Medin & Schaffer 1978).  Moreover, simulation 
studies (e.g., Nosofsky & Zaki 2002) indicate that EB gives 
a better fit for differential performance on these particular 
stimuli. 
 
Table 1. Stimulus set used in Simulation 1 
 

Training Set  Transfer Set 
 Cat D1 D2 D3 D4  D1 D2 D3 D4 

A1 A 1 1 1 0  1 0 0 1 
A2 A 1 0 1 0  1 1 1 1 
A3 A 1 0 1 1  0 1 0 1 
A4 A 1 1 0 1  0 0 1 1 
A5 A 0 1 1 1  1 0 0 0 
B1 B 1 1 0 0  0 0 1 0 
B2 B 0 1 1 0  0 1 0 0 
B3 B 0 0 0 1      
B4 B 0 0 0 0      
 
Results: Table 2 shows two fit indices for the eight models, 
namely SSE as an absolute fit index, and SSE multiplied by 
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the number of learnable parameters (NLP) as a (crude) 
relative fit index that may account for the model 
complexity.  A pure prototype model (here a pure prototype 
is defined as a model that has as many RPs as the number of 
categories) performed worst before and after controlling for 
the model complexities.  In addition, it failed to show the 
A2 advantage. Rather as in many previous studies, it 
predicted that A1 was easier than A2.  However, other PB 
models performed well; PB8 resulted in the best absolute fit, 
and PB5 resulted in the best relative fit.   

When the PB models are compared with the EB model, 
some PBs fit the observed profile better than EB, 
particularly after controlling for the model complexities.  
More interestingly, as the EB model, almost all PBs were 
able to predict the A2 advantage (Table 2, last column).  

Although, this Medin and Schaffer 5/4 stimulus set has 
been used as evidence supporting exemplar-based models 
and undermining prototype-based models, the results of the 
present simulation study appear to show no competitive 
advantage of the exemplar-based model.  Instead, some PB 
models were able to reproduce the observed classification 
profile and the A2 advantage equally successfully with 
smaller numbers of learnable parameters. 

  
Table 2. Results of simulation 1 
 

Model NLP NRP SSE SSE x NLP A2-A1 
PB2 16 2 0.1438 2.301 -5.633 
PB3 22 3 0.0694 1.527 3.643 
PB4 28 4 0.0361 1.011 5.444 
PB5 34 5 0.0250 0.850 9.046 
PB6 40 6 0.0215 0.860 2.663 
PB7 46 7 0.0193 0.888 4.314 
PB8 52 8 0.0182 0.946 3.273 
EB9 58* 9 0.0201 1.166 8.011 

NLP: Number of Learnable Parameters 
NRP: Number of Reference Points (e.g. prototype or exemplar) 
* Location parameters for exemplar were static & not subject for 
learning, but assumed that optimized locations were learned when 
the exemplars were created. 
 
Discussion of Simulation 1: All GECLE models that were 
capable of learning to locate the reference points were 
interpreted as prototype-based models in the present 
simulation study.  However, it might not have been a 
sensible interpretation for some of those models, 
particularly for models with larger numbers of prototypes 
(e.g., PB5 ~ PB8). That is, it does not seem logical to create 
eight prototypes from only nine unique stimuli.  Rather, 
there may be better interpretations for these models. Two 
possible alternative interpretations are discussed below. 

First, it might be more sensible to interpret PB GECLE 
with larger numbers of prototype as models utilizing 
“fuzzy” or modular prototypes (or simply modules) as the 
reference points (RP) in a combinatorial fashion: it tries to 
create and memorize modules (defined by or being 
prototypes of subsets of stimuli belonging to a particular 
category) that summarize characteristics of particular 
feature dimensions more correctly than the other feature 
dimensions for a particular category, and uses combinations 
of the module activations triggered by similarities between 

the modules and input stimuli for categorizing.  This 
combinatorial coding seems to be a very efficient use of 
limited mental resources for categorizing virtually unlimited 
number of unique instances.  

Alternatively, those models that were interpreted as 
prototype-based GECLE with many prototypes might have 
been utilizing RPs that were more sensible to be interpreted 
as probabilistic, partial, or erroneous exemplars, instead.  
That is, although the models might have tried to store 
correct exemplars in their memory, the process was not fully 
completed because of the limited mental resources, resulting 
in imprecise exemplars memorization, in which a particular 
feature of a particular exemplar was more correctly 
memorized than other features. Then, these imprecise 
exemplars were utilized for categorizing the stimuli.   
 

 
Figure 2.  Predicted classification profiles by two best 
prototype based GECLE models (i.e., PB8-GUN: lowest 
absolute fit; PB5-GUN: lowest relative fit). 
 

 
Figure 3.  Predicted classification profiles by exemplar 
based GECLE model (i.e., EB9-GUN). 

Simulation 2 
Simulation 2 is a replication of Simulation 1 with 10,000 
randomly chosen parameter configurations to investigate 
general tendencies in the A2 advantage by the same eight 
models used in Simulation 1.  Here, the 10,000 simulated 
subjects with randomly assigned parameter values were 
trained to classify the 5/4 stimulus set. The ranges of 
parameters were [0.1 10] for c and φ, [0.001 1] for the three 
learning rates.  
 
Results & discussion: Table 4 summarizes the results of 
Stimulation 2.  In short, the A2 advantage was observed in 
almost all PB and EB models, indicating that the results of 
Simulation 1 are reasonably generalizable in this regard.  
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More interestingly, the EB model showed lesser 
magnitude of the A2 advantage than several PBs. This was 
mainly because EB9 learned to produce network output 
activations correctly with many parameter configurations 
(i.e., minimizing the error defined as Equation 5 perfectly) 
since the model was supplied the correct locations of all 
unique stimulus exemplars from the beginning of the 
training. This in turn, resulted in very small differences in 
classification responses for Stimuli A1 and A2, because the 
activations triggered by Stimulus A1 and A2 for the output 
nodes were almost identical (i.e., L2 was minimized).  This 
implies that any EB-based GECLE or any EB-based model 
such as ALCOVE would find this learning task (here, 
learning task does not correspond to categorization, but L2 
minimization, i.e., Eq. 5) easy because it can satisfactorily 
complete the task with virtually any parameter settings 
inasmuch as the locations of exemplars were well defined. 
Although this may be true if the condition of correctly 
memorizing exemplars is met, there is no guarantee for 
satisfying the condition in real human cognition. But, more 
likely, the condition would not be tenable for some people 
(i.e., some memorize exemplars more correctly and/or faster 
than other individuals).  This difference in memorization 
ability may be one of the factors creating individual 
differences in category learning.  This aspect of exemplar 
type modeling alone does not invalidate the assumption of 
exemplar-type internal representation, but it does suggest 
that exemplar-based (computational) models of 
categorization could be benefited from integrating an 
algorithm or quantitative explanation of how people learn 
and memorize exemplars. 

On the contrary, exemplar theorists may argue that the 
upper limits of the randomly selected learning rate 
parameters (or the number of training epochs) were set 
unrealistically high.  Although this argument is likely valid 
and thus the interpretation of the results may require some 
caution, it is still true that exemplar model may need to have 
learning algorithm for exemplar initialization, maintenance, 
and memorization. 

 
Table 4. Results of Simulation study 2: Differences in 
classification accuracies for A2 and A1.  (numbers of 
observed cases shown in parentheses). 
 
Model Overall Classification Accuracy (CA) in training 

  100� CA >90% 90� CA >80% 
PB2 1.011 -8.725(117) -8.178(162) 
PB3 2.184 0.056(250) 0.539(295) 
PB4 2.521 0.331(556) 1.261(369) 
PB5 3.071 0.885(905) 3.007(342) 
PB6 2.711 0.661(1212) 3.816(365) 
PB7 2.962 0.342(1690) 4.029(367) 
PB8 2.446 0.330(2037) 2.885(393) 
EB9 0.050 0.014(7660) 0.087(837) 

Note: Observed classification accuracy for the training set is 0.85 

Simulation 3 
Simulations 1 and 2 showed that the pure prototype model, 
PB-2, accounted poorly for phenomena associated with the 

Medin and Schaffer’s stimuli. However, these results might 
have resulted from incorrect assumptions about the 
prototype modeling.  For example, I assumed that the 
locations of prototypes were continuously updated 
throughout the training, but in reality, people may quickly 
identify prototypes which may be less likely to be updated 
unless absolutely necessary.  Another possible explanation 
is that people may have a uniquely shaped activation area 
for each prototype and/or pay attention to correlation among 
feature dimensions.  For example, Matsuka (2003 & 2004) 
showed that there may be an interaction between types of 
internal mental representation and types of attention 
mechanism: the prototype-based model performed better 
when it incorporated unique attention structure with the 
capability of paying attention to dimensional correlations; 
whereas the exemplar-based model performed better with 
global attention structure with independent dimensional 
attention processes (i.e., no attention to correlations).  

In the present simulation study, pure prototype modeling 
was reinvestigated using two variants of the original PB2 
GECLE.  The first one, SPB-2 is a static version of PB-2.  
That is SPB-2 is identical to PB2 appeared in Simulations 1 
and 2, but the locations of prototypes were supplied from 
the beginning of the training and the learning rate for RPs 
was set to zero.  Thus, this model resembles EB-based 
GECLE (except that RPs were prototypes) in that the 
locations of RPs were static.  The second one, CPB2, is 
PB2-GECLE with the most complex attention mechanism, 
namely LCN (see Figure 1, lower right panel), having a 
unique receptive field for each prototype and the capability 
of paying attention to correlation. 

For SPB2, the prototype for each category was created by 
averaging the feature values of each dimension of every 
object in a particular category, thus [0.8 0.6 0.8 0.6] for 
Category A and [0.25 0.5 0.25 0.25] for Category B.  The 
rest of the procedures of the present simulation study follow 
those of Simulations 1 and 2. 
 
Table 5a. Simulation 3: Results based on optimal 
parameters 

 
Model NLP NRP SSE SSE x NLP A2-A1 
SPB2 16 2 0.1972 3.155 -9.208 
CPB2 32 2 0.0377 1.206 11.130 

 
Table 5b. Simulation 3: A2 advantage based on randomly 
drawn parameters. 

 
Model Overall Classification Accuracy (CA) in training 

  100� CA >90% 90� CA >80% 
SPB2 -2.346 -3.740 (2263) -4.535(1920) 
CPB2 2.931 -0.814(2215) 5.964(1505) 

 
Results & discussion:  A great decrease in SSE was 
obtained for CPB2 as compared with the original PB2, and 
after controlling for the model complexity by the simple 
linear adjustment (i.e., SSE x NLP) it performed nearly as 
good as EB9 (1.206 vs.1.166).  In addition, unlike PB2, 
CPB2 was able to replicate the A2 advantage, and it was 
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shown to be generalizable to some extent in the second part 
of the present simulation study using the randomly drawn 
parameters (Table 5b).  In contrast SPB2 performed worse 
than PB2 for replicating the observed classification profile.  
Moreover, SPB2 consistently failed to replicate the A2 
advantage in the randomized simulation study.  

Discussion on Simulations  
Medin and Schaffer’s 5/4 stimulus (1978) has been used as 
a benchmarking stimulus set for computational models of 
categorization and category learning, usually favoring 
exemplar models (e.g. Matsuka et al. 2003; Minda & Smith 
2002; Nosofsky & Zaki, 2003).  However, the results of the 
present simulation studies showed that several GECLE 
models with prototype internal representation performed as 
good as or better than the exemplar-based GELCLE.  One 
type of those successful prototype-based GECLE was the 
model that created and utilized multiple modular prototypes 
for categorization. The modular prototype is a prototype 
defined by subsets of stimuli belonging to a particular 
category that summarize characteristics of particular feature 
dimensions more correctly than the other feature dimensions 
for the particular category (however, the modular prototypes 
may be interpreted as imprecise exemplars).  The other type 
of the successful prototype-based GECLE was the one with 
uniquely shaped and oriented attention coverage areas and 
with the capability of paying attention to correlations among 
feature dimensions. 

There are at least few concerns associated with the 
present simulation studies.  First one, as discussed in 
Simulation 1, is that as the number of GECLE’s reference 
points (RP) increases, it become philosophically difficult 
within the cognitive science paradigm to interpret what 
these RP are representing (e.g., modular prototypes vs. 
imprecise exemplars).  The other concern is the way the 
numbers of learnable parameters were counted for the 
exemplar-based GECLE (see notes on Table 2).  That is, in 
the present simulation studies, the location parameters of the 
exemplars were counted as learnable parameters.  On one 
hand, the locations of exemplars may be learnable, because 
they are initialized at the “optimal” location without error.  
On the other hand, they may not be learnable, because they 
reside in static locations.     

Conclusions 
Generalized Exploratory model of human Category 
LEarning (GECLE) is a flexible and general framework for 
modeling human category learning that is capable of 
manipulating a limited number of assumptions 
independently and systematically.  In the present study, the 
plausibility of two different assumptions about internal 
representation was investigated with GECLE using 
exemplar-model-friendly Medin & Schaffer 5/4 stimulus set 
(1978).  The results of simulations showed no competitive 
advantage of previously favored exemplar-based modeling.  
Rather, they appeared to suggest some prototype models 
performed better than an exemplar model.  In addition, the 
exploratory nature of GECLE yielded new plausible 

prototype-based adaptive models of category learning with 
different structures and model assumptions. 

Although, several models were examined in some depth 
in the present research, the results were based only on a 
simulation of one empirical study.  More simulation studies 
with several other stimulus sets should help identify models 
or assumptions with descriptive validities more accurately.  
In addition, measurements of several different cognitive 
processes associated with category learning, such as, 
attention allocation should be collected in empirical studies, 
in order to restrict model parameters and to better 
differentiate among models. 
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