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ABSTRACT OF THE DISSERTATION

Semiparametric Modeling for Genome-Wide Association Studies and Repeated
Measurements

by

Zijian Huang

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, August 2015

Dr. Shujie Ma , Chairperson

In recent years, advanced technologies have enabled people to collect complex data and

the analysis of such data can be challenging. My dissertation focuses on developing new

methodologies and computational algorithms in non- and semi- parametric regression mod-

els to analyze complex and large scaled data. Chapter 1 introduces commonly used semi-

parametric models and their properties. Chapter 2 reviews B-splines approximation to

the nonparametric functions. Chapter 3 provides an overview of methodologies including

generalized estimating equations and mixed models, which are used to analyze correlated

data.

In chapter 4, we propose a flexible generalized semiparametric model for repeated

measurements by combining generalized partially linear single index model with varying

coefficient model. The proposed model is a useful analytic tool to explore dynamic patterns

which naturally exist in longitudinal data and also to study possible nonlinear relationships

between the response and covariates. We then employ the quadratic inference function and

develop an estimation procedure to estimate unknown regression parameters and nonpara-
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metric functions. To select variables and estimate parameters simultaneously, we further

obtain penalized estimators. Moreover, we establish theoretical properties of the parametric

and nonparametric estimators. Both simulations and an empirical example are presented

to illustrate the use of the proposed model.

In chapter 5, we propose a semiparametric model in genome-wide association stud-

ies (GWAS). The use of linear mixed models (LMMs) in GWAS is now widely accepted

because LMMs have been shown to be capable of correcting for several forms of confound-

ing due to genetic relatedness of sampled data. On the other hand, gene and environment

(G × E) interactions play a pivotal role in determining the risk of human diseases. Con-

ventional parametric models such as LMMs may not reflect the underlying nonlinear G ×

E interactions, which will result in serious bias. Therefore, we propose a semiparametric

mixed model to investigate important gene-disease associations in the context of possible

nonlinear G × E interactions in GWAS. We further propose a profile maximum likelihood

estimation procedure to estimate the parameters and nonparametric functions, and apply

the restricted maximum likelihood estimation method to estimate the variance components.

For these profile parameter and nonparametric function estimators, asymptotic consistency

and normality are established. Moreover, the Rao-score-type test procedure is developed

and a multiple testing process is employed to identify the important genetic factors. Both

simulation studies and an empirical example are presented to illustrate the use of our pro-

posed model and methods.
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Chapter 1

Semiparametric Regression Models

1.1 Introduction

Regression analysis is a statistical process for estimating the relationships among

variables. For example, the relationship between a response variable Y and an explanatory

variable X for n data points (Xi, Yi), i = 1, ..., n can be modeled through a function m as

Yi = m(Xi) + εi,

where εi is the error term.

In parametric approaches, m is fully described by a finite set of parameters with

some model assumptions, linearity being among the most convenient. Although their prop-

erties are well established, parametric models have many limitations in applications. Be-

sides, misspecification of the data generation mechanism could lead to large bias in predic-

tion. On the other hand, the nonparametric approach makes no assumption on the spec-

ification of the model and provides a versatile method to explore the features of function
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m. However, this approach may not incorporate some prior information and the resulting

estimator of m tends to incur larger variance. In addition, the standard nonparametric

method is practically impotent in the presence of high-dimensional covariates.

Consequently, many different semiparametric regression methods have been pro-

posed and developed. They offer more flexibility than standard parametric regressions

and overcome the curse of dimensionality in nonparametric regressions. The most popular

semiparametric models are single-index, partially linear, and varying coefficient models.

1.2 Single-Index Model

1.2.1 Introduction

Index models play an important role in econometrics. An index is a summary of

different variables into one variable such as the price index, the growth index, and the cost-

of-living index. By summarizing all the information contained in several variables into one

“single index” term one can greatly reduce the dimensionality, and thereby, achieve greater

estimation precision. Models based on such an index are known as single-index models.

They relax some of the restrictive assumptions of familiar parametric models. Moreover,

they are often easy to compute, and their results are easy to interpret.

Let Y be a scalar random variable and X be a d × 1 random vector. In a single-

index model, the conditional mean function E(Y |X = x) has the form

E(Y |X) = m(X) = g{vβ(X)}, (1.1)

where β is an unknown coefficients vector, vβ(X) is an index function, and g is an arbitrary
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smooth function. Usually, the general index function vβ(X) is replaced by the linear index

XTβ, where β is a d × 1 constant vector. The inferential problem is to estimate β and g

from observations of (Y,X).

Model (1.1) contains many widely used parametric models as special cases. If g

is the identity function, Model (1.1) is a linear model. If g is the cumulative normal or

logistic distribution function, Model (1.1) is a binary probit or logit model. When g is

unknown, Model (1.1) provides a specification that is more flexible than parametric models

and retains many of the desirable features of the parametric models.

1.2.2 Identification

Before estimation for β and g can be considered, restrictions must be imposed to

ensure their identification. That is, β and g must be uniquely determined by the population

distribution of (Y,X).

Suppose that E(Y |X = x) satisfies Model (1.1) and X is a d-dimensional random

variable. Then β and g are identified if the following conditions hold:

(a) g is differentiable and not constant on the support of XTβ.

(b) The components of X are continuously distributed random variables.

(c) The support of X is not contained in any proper linear subspace of Rd.

(d) The first component of β: β1 = 1 or the Euclidean norm of β: ‖ β ‖= 1.

3



1.2.3 Estimation

When estimating a single-index model, one must take into account that the func-

tional form of the link function is unknown. Thus, both the index and the link function

have to be estimated. Let

ε = m(X)− Y = E(Y |X)− Y

be the deviation of Y from its conditional expectation with respect to X. Considering a

single-index model given as

Y = g(XTβ) + ε,

the goal is to find the estimators for β and g(.). As β is inside the nonparametric link, the

challenge is to find an appropriate estimator for β that reaches the
√
n-rate of convergence.

Two essentially different approaches exist for this purpose: one is an iterative approximation

of β by semiparametric least squares or pseudo maximum likelihood estimation, the other

approach is estimating β directly through the average derivative of the regression function.

In both cases, the estimation procedures can be summarized as:

(a) estimate β by β̂;

(b) compute index values η̂ = XTβ̂;

(c) estimate the link function g(.) by using a univariate nonparametric method

for the regression of Y on η̂.

In summary, single-index models achieve dimension reduction and avoid the curse

of dimensionality because the index XTβ aggregates the dimension of X. This dimension-

reduction feature gives them a considerable advantage over nonparametric methods. More-

over, in terms of rate of convergence in probability, single-index models are as accurate as

4



the parametric model for estimating β. They are also as accurate as the one dimensional

nonparametric mean regression for estimating g. In applications where X is multidimen-

sional, the single-index structure is plausible.

1.3 Generalized Partially Linear Model

1.3.1 Generalized linear model

Nelder and Wedderburn (1972) introduced the term generalized linear models

(GLM). The essential feature of the GLM is that the expectation µ = E(Y |X) of Y is

a monotone function G of the index η = XTβ, which means

E(Y |X) = G(XTβ)←→ µ = G(η).

Function G is called the link function.

In the GLM framework, the distribution of Y is a member of the exponential

family. A distribution is said to be a member of the exponential family if its probability or

density function has the structure

f(y, θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}

with some specific functions a(.), b(.) and c(.). These functions differ for the distinct Y

distributions. The primary interest is to estimate the parameter θ. McCullagh and Nelder

(1989) called θ the canonical parameter and φ the nuisance parameter.

5



1.3.2 Quasi-likelihood estimation for GLM

Assuming the distribution of Y is a member of the exponential family, it can be

derived that

E(Y ) = µ = b′(θ),

Var(Y ) = V (µ)a(φ) = b′′(θ)a(φ).

The expectation of Y only depends on θ, whereas the variance of Y depends on θ and φ.

Consider independent observations Y1, ..., Yn with µi = G(x′iβ) and Var(Yi) =

a(φ)V (µi). Define

Uj =

n∑
i=1

[
yi − µi

a(φ)V (µi)

∂µi
∂βj

]
and

Q(β; y) =
n∑
i=1

∫ µi

yi

yi − t
a(φ)V (t)

dt.

Uj is called the quasi-score function and Q is the quasi likelihood. The equations Uj = 0,

j = 1, ..., p are quasi-likelihood estimation equations. In matrix form, there is

U(β; y) = D′V −1(y − µ)/a(φ),

where D is the n×p matrix with (i, j)th entry ∂µi/∂βj , V is the n×n diagonal matrix with

ith diagonal entry V (µi), y = (y1, ..., yn), and µ = (µ1, ..., µn). One can find the value β̂QL

that maximizes Q(β; y) by setting U(β̂QL; y) = 0 and solving for β̂QL.

The quasi-likelihood technique is used for estimating regression coefficients without

fully specifying the distribution of the observed data. As a result, it provides a more flexible

approach than the maximum-likelihood approach.
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1.3.3 Generalized partially linear model

A partially linear model (PLM) consists of two additive components: a linear and

a nonparametric part as

E(Y |U, T ) = UTβ +m(T ),

where β = (β1, ..., βp)
T is a finite dimensional parameter and m(.) is a smooth function.

The vector U typically covers continuous variables that are known to influence the index in

a linear way, as well as categorical variables. The vector T contains continuous explanatory

variables that are to be modeled in a nonparametric way. This model can be extended to

the generalized partially linear model (GPLM) as

E(Y |U, T ) = G{UTβ +m(T )},

where G(.) is a known link function.

1.3.4 Estimation algorithm for PLM and GPLM

Considering PLM, the goal is to find β andm(.) in the following structural equation

Y = UTβ +m(T ) + ε,

where ε denotes the error term with zero mean and finite variance. Taking expectations

conditioned on T , i.e.

E(Y |T ) = E(UTβ|T ) + E{m(T )|T}+ E(ε|T ),

one can obtain

Y − E(Y |T ) = {U − E(U |T )}Tβ + ε− E(ε|T ). (1.2)
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There are two alternative approaches to estimate β and m(.). The first approach

is a backfitting approach. Subtract UTβ from Y to get

E{Y − UTβ|T} = m(T ). (1.3)

Estimate the parametric coefficient β by least squares regression of Y on U . Plugging UTβ̂

into (1.3) yields a classic nonparametric regression problem, so non-parametric estimators

may be employed to estimate the values of m̂(T ). The alternative approach is based on

(1.2). Y −E(Y |T ) and U −E(U |T ) in equation (1.2) can be replaced by Y − Ŷ and U − Û ,

where Ŷ and Û are the empirical counterparts of E(Y |T ) and E(U |T ). Then the standard

linear regression can be applied to estimate β. Consequently, m(.) can be estimated by the

nonparametric regression of Y −UTβ̂ on T . Under regularity conditions, β̂ can be shown to

be
√
n-consistent for β and asymptotically normal, and there exists a consistent estimator of

its limiting covariance matrix. In addition, m(.) can be estimated with the usual univariate

rate of convergence.

In order to estimate the GPLM, consider the same distributional assumptions for

Y as in the GLM. As a result, there is an option between two cases: (a) the distribution

of Y belongs to the exponential family, or (b) the first two (conditional) moments of Y are

specified in order to use the quasi-likelihood function. To summarize, the estimation of the

GPLM will be based on

E(Y |U, T ) = µ = G(η) = G{UTβ +m(T )},

V ar(Y |U, T ) = a(φ)V (µ),

where the nuisance parameter φ is the dispersion parameter. The profile-likelihood method

can be used to estimate β and m(.). This method starts from keeping β fixed and estimates
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a least favorable nonparametric function mβ(.) in dependence of the fixed β. The resulting

estimate for mβ(.) is then used to construct the profile likelihood for β. Consequently,

the resulting β̂ is estimated at
√
n rate, it has an asymptotic normal distribution and is

asymptotically efficient. The nonparametric function m(.) can be estimated consistently by

m̂(.) = m̂β̂(.).

1.4 Varying Coefficient Model

Varying coefficient models are important tools to explore the dynamic pattern in

many scientific areas, such as economics, finance, etc. They are natural extensions of classi-

cal parametric models with good interpretability and are becoming more and more popular

in data analysis. Due to their flexibility and interpretability, in the past ten years, the vary-

ing coefficient models have experienced deep and exciting developments on methodological,

theoretical, and applied sides.

Considering multivariate predictor variables containing a scalar U and a vector

X = (x1, .., xp)
T, the varying coefficient models have the form as

E(y|U,X) = m(U,X) = XTa(U),

where a(U) = (a1(U), .., ap(U))T is the unknown functional coefficient. Therefore, they

allow the coefficients to vary smoothly over the group stratified by U , ultimately permit-

ting nonlinear interactions between U and X. To estimate a(.), one can use kernel-local

polynomial smoothing, polynomial spline or smoothing spline. In my research, I adopt a

B-spline approximation technique.

The varying coefficient models can be extended to the exponential family of condi-

9



tional distributions. Via the canonical link function G(.), the generalized varying coefficient

model is

E(y|U,X) = G(m(U,X)) = G{XTa(U)}.
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Chapter 2

B-splines Approximation

2.1 Introduction

The term B-spline is an abbreviation for basis spline. It is a spline function that

has minimal support with respect to a given degree, smoothness, and domain partition.

Any spline function of a given degree can be expressed as a linear combination of B-splines

of that degree. Consequently, a spline function is a piecewise polynomial function. The

places where the pieces meet are known as knots. The key property of spline functions is

that they are continuous at the knots.

B-splines provide a better curve fit than other interpolation methods. They pos-

sess a variation-diminishing property, which means that increasing the order of a B-spline

function does not create oscillation in the entire curve. Moreover, they have local support

such that a portion of the B-spline curve may be modified without affecting the shape of the

whole curve. They also maintain the smoothness and continuity of higher-order derivatives.

B-splines approximate the value of a function using control point values. Consider
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the following B-spline approximation:

P (t) =
n+1∑
i=1

Ni,k(t)Pi, where tmin ≤ t ≤ tmax.

There are n + 1 control points: P1, P2, ..., Pn+1. The Ni,k(t) basis functions are of order k

(degree k − 1). k must be at least 2 (linear) and can be no more than n + 1 (the number

of control points). A knot vector (t1, t2, ..., tk+(n+1)) must be specified. It is necessary that

ti ≤ ti+1. Ni,k(t) depends only on the value of k and the values in the knot vector. Ni,k(t)

is defined recursively as:

Ni,1(t) =


1, ti ≤ t < ti+1

0, otherwise

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t
ti+k − ti+1

Ni+1,k−1(t).

There are several things that one should understand regarding these equations. Each Ni,k(t)

depends only on the k + 1 knot values from ti to ti+k. Ni,k(t) = 0 for t < ti or t ≥ ti+k, so

Pi only influences the curve for ti ≤ t < ti+k.

2.2 Knot Vector

The knot vector subdivides a domain into sub-regions or knot intervals. There are

uniform, non-uniform, and open knot vectors.

For uniform knot vectors, ti+1 − ti = constant, ∀i. For non-uniform knot vectors,

the only constraint is ti ≤ ti+1, ∀i. For open knot vectors, there are k equal knot values at
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each end:

ti = t1, i ≤ k

ti ≤ ti+1, k < i < n+ 2

ti = tk+(n+1), i ≥ n+ 2.

Repetition of a knot value has the effect of drawing the curve closer to a specific

control point. If a knot value is repeated k − 1 times, the B-spline curve will pass through

the associated control point. Therefore, in the case of an open B-spline (constructed from

an open knot vector), the first and last control points will be interpolated. The shapes

of the basis functions are determined entirely by the relative spacing between the knots.

Scaling (t̃i = αti,∀i) or translating (t̃i = ti + δt,∀i) the knot vector has no effect on the

shapes of the basis functions.

2.3 B-spline Basis Functions: Important Properties

Assume that a B-spline curve C(u) of degree p is defined by n + 1 control points

and a knot vector U = (u0, u1, ..., um) with the first p + 1 and last p + 1 knots being

“clamped” (i.e., u0 = u1 = ... = up and um−p = um−p+1 = ... = um). Spline basis functions

N0,p(u), N1,p(u), ..., Nn,p(u) are defined as

Ni,0(u) =


1, ui ≤ u < ui+1

0, otherwise

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u).

This set of basis functions has the following properties:
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1. Ni,p(u) is a polynomial function in u of degree p.

2. Nonnegativity: for all i, p and u, Ni,p(u) is non-negative.

3. Local Support: Ni,p(u) is a non-zero polynomial on [ui, ui+p+1). If u is outside

the interval [ui, ui+p+1), Ni,p(u) = 0.

4. On any span [ui, ui+1), at most p+ 1 basis functions of degree p are non-zero,

namely: Ni−p,p(u), Ni−p+2,p(u), ..., Ni,p(u).

5. Partition of Unity: The sum of all non-zero basis functions of degree p on span

[ui, ui+1) is 1.

6. If the number of the knots is m + 1, the degree of basis function is p, and the

number of degree p basis functions is n+ 1, then the equation m = n+ p+ 1 holds.

7. Basis function Ni,p(u) is a composite curve of degree p polynomials with joining

points at knots in [ui, ui+p+1).

8. At a knot of multiplicity k, basis function Ni,p(u) is Cp−k continuous.

2.4 B-spline Curves: Important Properties

1. The B-spline curve C(u) is a piecewise curve with each component a curve of

degree p.

2. C(u) passes through the two end control points P0 and Pn.

3. Strong Convex Hull Property: The B-spline curve is contained in the convex

hull of its control points.

4. Local Modification Scheme: Changing the position of control point Pi only

affects the curve C(u) on interval [ui, ui+p+1). Therefore, the curve can be modified locally
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without changing the shape in a global way. Moreover, if fine-tuning curve shape is required,

one can insert more knots so that the affected area could be restricted to a very narrow

region.

5. C(u) is Cp−k continuous at a knot of multiplicity k.
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Chapter 3

GEE and Mixed Effects Model for

Correlated Data

3.1 Introduction

The data observed are likely to be correlated in many cases. The most common

instances are repeated observations over time, either in the form of panel studies or time-

series of cross-sections. The widely used approaches to analyze correlated data include

mixed effects regression models (MRM) and generalized estimating equation (GEE) models.

The primary distinction between these two approaches is that MRM are full-

likelihood methods and GEE models are based on quasi-likelihood estimation. The advan-

tages of the GEE models are that (a) they are computationally easier than full-likelihood

methods, and (b) they can be generalized easily to a wide variety of outcome measures with

quite different distributional forms.
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3.2 Generalized Estimating Equation Models

3.2.1 Introduction

Generalized linear models (GLM) have received widespread use in cross-sectional

analyses as we saw in Chapter 1. Liang and Zeger (1986) extended the GLM approach to

correlated data in the context of repeated observations over time.

Consider observation on a dependent variable Yit and k covariates Xit, where i

indexes the N units of analysis (cases or clusters), i = 1, 2, ..., N and t indexes the T time

points (or repeated measurements), t = 1, 2, ..., T . Let Yi = (Yi1, Yi2, ..., YiT ) denote the

corresponding column vector of observations on the outcome variable, and Xi indicate the

T × k matrix of covariates of observation i. Define a function h to specify the relationship

between Yi and Xi: E(Yi) = µi = h(Xiβ), where β is a k × 1 vector of parameters. The

quasi-likelihood estimate of β is the solution to a set of k quasi-score differential equations:

Uk(β) =

N∑
i

D′iV
−1
i (Yi − µi) = 0, (3.1)

where Di = ∂µi/∂β, and Vi is the variance of Yi.

In the cross-sectional case (i.e., T = 1), Vi can be specified as a function g of

the mean (i.e.,Vi = g(µi)
φ ). For cases where T > 1, some provision must be made for the

dependence across t. Liang and Zeger’s (1986) solution was to specify a T ×T matrix Ri(α)

of the working correlations across t for a given Yi. While Ri(α) can vary across cases, it

is assumed to be fully specified by the vector of unknown parameters α. This correlation

matrix then enters the variance term of equation (3.1):

Vi =
(Ai)

1/2Ri(α)(Ai)
1/2

φ
, (3.2)

17



where Ai are T ×T diagonal matrices with g(µit) as the tth diagonal element. Substitution

of (3.2) into (3.1) yields the GEE estimator.

Since Vi is the function of both α and β, estimation is typically accomplished by an

iterative procedure. Liang and Zeger (1986) noted that (3.1) can be expressed as a function

of β alone by substituting
√
N -consistent estimates of α and φ into (3.1). One can solve

for β using the fisher score and calculate standardized residuals to consistently estimate α

and φ. These two steps are iterated until the estimates reach convergence.

The GEE model has a number of attractive properties for applied researchers.

Assuming that the model for µ is correctly specified, GEE estimates of β (β̂GEE) will be

consistent in N . Moreover,
√
N(β̂GEE − β) is asymptotically multivariate normal, and

the covariance matrix of the estimates can be consistently estimated. Most importantly,

the asymptotic consistency of β̂GEE holds even when the working correlation structure is

misspecified.

An additional advantage of the GEE approach is the broad range of options avail-

able for specifying the within-cluster correlation structure. Fitzmaurice, Laird and Rot-

nitzky (1993) discussed four common specifications of the working correlation matrix Ri(α):

1. Ri(α) = I, a T × T identity matrix. This working independence assumption is

equivalent to assuming no intra-cluster correlation.

2. Ri(α) = α for off diagonal elements, an exchangeable correlation structure.

Values of Yi are assumed to covary equally across all observations within a cluster. In this

specification, α is a scalar, which is estimated by the model.

3. Ri(α) = α|t−s| for element in row s and column t, an autoregressive specification.
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As is typically the case in AR models, |α| ≤ 1.0. Higher-order autoregressive specifications

are also available.

4. Ri(α) = αst for element in row s and column t, an unstructured correlation

structure. In this context, α is a T × T matrix containing the T (T−1)
2 unique pairwise

correlations for all possible combinations of time points.

In addition to these, a number of other specifications of the working correlation

matrix are possible, including stationary and nonstationary models for varying orders. Al-

ternatively, the researcher may specify Ri(α) explicitly; this option is valuable for testing

the robustness of estimates to the correlation specification.

3.2.2 Quadratic inference function

GEEs enable one to estimate regression parameters consistently in longitudinal

data analysis even when the correlation structure is misspecified. However, under such mis-

specification, the estimators of the regression parameters can be inefficient. The method

of quadratic inference functions (QIF) does not involve direct estimation of the correlation

parameters, and thus remains optimal even if the working correlation structure is misspec-

ified. The idea is to represent the inverse of the working correlation matrix by a linear

combination of basis matrices. Under misspecified working assumptions, their estimators

are more efficient than the ones from GEEs.

In QIF, R−1 is modeled by the class of matrices

m∑
i=1

aiMi, (3.3)

where M1, ...,Mm are known matrices, and a1, ..., am are unknown constants. This is a
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sufficiently rich class that accommodates the most commonly used correlation structures.

For example, suppose R(α) has 1 on the diagonal and α everywhere off the diag-

onal. Then R−1 can be written as a0M0 + a1M1, where M0 is the identity matrix, and M1

has 0 on the diagonal and 1 off the diagonal. Here a0 = −(n− 2)α+ 1/k1 and a1 = α/k1,

where k1 = (n − 1)α2 − (n − 2)α − 1 and n is the dimension of R. Note that this is not a

unique linear representation of R−1; M1 can also be the rank-1 matrix with 1 everywhere.

Substituting (3.3) into (3.1) gives the following class of estimating functions:

N∑
i=1

µ̇′iA
−1/2
i (a1M1 + ...+ amMm)A

−1/2
i (yi − µi), (3.4)

where µ̇i is the derivative of µi with respect to regression parameters β, and Ai is the

diagonal marginal covariance matrix for the ith cluster. QIF approach proceeds as follows.

Based on the form of the quasi-score, one can define the ‘extended score’ gN to be

gN (β) =
1

N

N∑
i=1

gi(β) =
1

N


∑N

i=1(µ̇)′A
− 1

2
i M1A

− 1
2

i (yi − µi)

...∑N
i=1(µ̇)′A

− 1
2

i MmA
− 1

2
i (yi − µi)

 . (3.5)

Therefore, the estimating function (3.4) is a linear combination of elements of the extended

score vector (3.5).

Based on the extended scores gN , quadratic inference function is defined as

QN (β) = g′NC
−1
N gN ,

where CN = (1/N2)
∑N

i=1 gi(β)g′i(β). The quadratic inference function estimator β̂ is then

defined to be

β̂ = arg min
β
QN (β).
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The corresponding estimating equation for β is

Q̇N (β) = 2ġ′NC
−1
N gN − g′NC−1

N ĊNC
−1
N gN = 0, (3.6)

where ĊN is a three-dimensional array (∂CN/∂β1, ..., ∂CN/∂βq), ġN is an mq × q matrix

{∂gN/∂β}, and g′NC
−1
N ĊNC

−1
N gN is a q × 1 vector

{g′NC−1
N (∂CN/∂βi)C

−1
N gN : i = 1, ..., q}.

To solve equation (3.6), Newton-Raphson algorithm is implemented, which requires the

second derivative of QN in β:

Q̈N (β) = 2ġ′NC
−1
N ġN +RN ,

where

RN = 2g̈′C−1
N g − 4ġ′NC

−1
N Ċ−1

N gN + 2g′NC
−1
N C−1

N ĊNC
−1
N gN − g′NC−1

N C̈NC
−1
N gN .

Here C̈N is a four-dimensional array {∂2CN/∂βi∂βj : i, j = 1, ..., q}, and g′NC
−1
N C̈NC

′
NgN

is a q× q matrix {g′NC
−1
N (∂2CN/∂βi∂βj)C

−1
N gN : i, j = 1, ..., q}. Asymptotically Q̈N (β) can

be approximately by 2ġ′NC
−1
N ġN since RN is op(1). The Newton-Raphson method iterates

the following relationship to convergence:

β̂(j+1) = β̂(j) − Q̈−1
N (β̂(j))Q̇N (β̂(j)).

The optimality of the QIF estimator is easily established.
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3.3 Mixed Effects Model

3.3.1 Introduction

The term mixed model refers to the use of both fixed and random effects in the

same analysis. It is particularly useful in settings where repeated measurements are made

on the same statistical units (longitudinal study), or where measurements are made on

clusters of related statistical units. Fixed effects have levels that are of primary interest

and would be used again if the experiment is repeated. The levels of random effects are

assumed to be randomly selected from an infinite population of possible levels.

3.3.2 Linear mixed model in genome-wide association study

A genome-wide association study (GWAS) is a powerful tool to investigate the

associations between genes and a disease. Traditional approaches in GWAS assume that

individuals sharing the same population background are unrelated. However, this inde-

pendence assumption is always violated in the real world due to the genetic relatedness in

study samples, which puts conventional statistical tests at the risk of spurious associations.

Consequently, mixed models are widely used in GWAS as promising statistical methods

to account for the hidden relatedness resulting from genealogy. Consider the following

standard linear mixed model used in GWAS

y = Wα+ xβ + Zu+ ε, (3.7)

u ∼ MVNm(0, λτ−1K),

ε ∼ MVNn(0, τ−1In),
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where n is the number of individuals, and m is the number of groups. y is an n× 1 vector

of quantitative traits, W = (w1, w2, ..., wc) is an n × c matrix of covariates (fixed effects)

including a column vector of 1, α is a c × 1 vector of corresponding coefficients including

the intercept, x is an n× 1 vector of marker genotypes, β is the effect size of the marker, Z

is an n×m loading matrix, u is an m× 1 vector of random effects, and ε is an n× 1 vector

of errors. τ−1 is the variance of the residual errors, λ is the ratio between the two variance

components, K is a known m×m relatedness matrix, In is the n× n identity matrix, and

MVN denotes multivariate normal distribution.

3.3.3 Restricted maximum likelihood estimation

Restricted maximum likelihood estimation (REML) is a way to estimate the vari-

ance components. In contrast to maximum likelihood estimation (MLE), REML can pro-

duce unbiased estimates of variance and covariance parameters. After estimation of random

effects parameters, one can compute generalized least squares estimates of the fixed effects

parameters.

The log-likelihood and log-restricted likelihood functions for the standard linear

mixed model (3.7) are

l(λ, τ, α, β) =
n

2
log(τ)− n

2
log(2π)− 1

2
log|H| − 1

2
τ(y −Wα− xβ)TH−1(y −Wα− xβ)

and

lr(λ, τ) =
n− c− 1

2
log(τ)− n− c− 1

2
log(2π) +

1

2
log|(W,x)T(W,x)|

−1

2
log|H| − 1

2
log|(W,x)TH−1(W,x)| − 1

2
τyTPxy,
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where

G = ZKZT ,H = λG + In,

Px = H−1 −H−1(W,x)((W,x)TH−1(W,x))−1(W,x)TH−1.

If λ is known, the log-likelihood is maximized at:

(
α̂

β̂

)
= ((W,x)TH−1(W,x))−1(W,x)TH−1y,

τ̂ =
n

(y −Wα̂− xβ̂)TH−1(y −Wα̂− xβ̂)
=

n

yTPxy
.

Similarly, the log-restricted likelihood is maximized at

τ̂ =
n− c− 1

yTPxy
.

Therefore, finding MLEs and REML estimates is equivalent to optimizing the following

target functions with respect to λ:

l(λ) =
n

2
log(

n

2π
)− n

2
− 1

2
log|H| − n

2
log(yTPxy),

lr(λ) =
n− c− 1

2
log(

n− c− 1

2π
)− n− c− 1

2
+

1

2
log|(W,x)T(W,x)|

−1

2
log|H| − 1

2
log|(W,x)TH−1(W,x)| − n− c− 1

2
log(yTPxy).

After λ̂ is obtained, one can then get α̂, β̂ and τ̂ .

In Chapter 5, we propose a semiparametric mixed model to study the gene-disease

associations in the context of possible nonlinear gene and environment interactions in

GWAS. REML is then employed to estimate the variance components.
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Chapter 4

Parameter Estimation for A

Generalized Semiparametric Model

with Repeated Measurements

4.1 Introduction

In the last three decades, advanced computing and telecommunication technologies

have enabled researchers to collect data effectively and accurately. Hence, it is not surprising

that the collected data can be complex and the analysis of such data is challenging. For

example, in the regression context, the response variable can be discrete with repeated

measurements, the relationship between the mean of the response variable and covariates

can be non-linear, and the coefficients of explanatory variables can be dynamic. This

motivates us to propose a model that can simultaneously account for these characteristics.
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To take into account discrete responses and nonlinearity, Carroll (1997) proposed

generalized partially linear single-index models (GPLSIM). These models encompass sev-

eral important models, e.g., single-index models (Brillinger (1983); Horowitz (1998), Cui

(2011)), generalized linear models (McCullagh and Nelder (1989)), partially linear models

(Speckman (1998); Hardle (2000)), generalized partially linear models (Boente (2006)), and

partially linear single-index models (Yu and Ruppert (2002); Xia and Hardle (2006); Ma

and Zhu (2013)). The above references mainly focus on parameter estimation. Recently,

researchers have employed penalized procedures (e.g., LASSO by Tibshirani (1996); SCAD

by Fan and Li (2001)) to simultaneously select variables and estimate parameters for those

models (e.g., Xie and Huang (2009); Liang (2010); Zhang (2010); Zeng (2012)).

Although the GPLSIM has played an important role in data analysis, it does

not allow regression coefficients to be dynamic. To this end, Cleveland (1991) and Hastie

(1993) proposed varying coefficient models, which have been applied in diverse fields, such

as biological science, economics, finance, medicine, and social science. Further extensions

to broad models are developed; see, for example, generalized varying coefficient models

(Cai (2000)), semi-varying coefficient models (Zhang (2002)), survival models (Fan (2006)

) and the newly proposed varying index coefficient model (Ma and Song (2014)). It is also

noteworthy that an analog to the varying coefficient structure has been studied in the field

of time series (e.g., see Chen and Tsay (1993); Cai (2000)). An excellent review paper on

varying coefficient models can be found in Fan and Zhang (2008).

To better understand the performance of a response variable for each individual

subject, a number of GPLSIMs as well as varying coefficient models have been extended
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to take into account repeated measurements (or longitudinal data or clustered data). Ac-

cordingly, various parameter estimation and model selection procedures are proposed (e.g.,

see Lin and Ying (2001); Davis, C. S. (2002); Diggle (2002); Huang (2002); Fan and Huang

(2005); Lin and Carroll (2006); Ma (2012); Xu and Zhu (2012)). To obtain parameter

estimation in repeated measurements, one needs to incorporate the correlation structure.

Among available approaches, Qu and Li (2006) employed quadratic inference function (QIF)

in Qu (2000) to directly incorporate correlations into their varying coefficient models with-

out estimating nuisance parameters associated with correlations. Recently, Zhou and Qu

(2012) adopted the QIF approach to obtain estimation and selection of correlation structure.

In this chapter, we introduce a generalized semiparametric model for repeated

measurements by combining the GPLSIM with varying coefficient models. The proposed

model is a useful analytic tool to investigate dynamic patterns of slope functions with some

covariate such as time which naturally exist in longitudinal data as well as to capture

possible nonlinear relationships between the response and covariates. Moreover, it contains

many existing known parametric and nonparametric models as special cases, and thus it can

be used for different types of data. Since each of GPLSIM and varying coefficient models

has its own special feature, it is not surprising that obtaining parameter estimators and

their theoretical properties become more challenging. For the sake of estimation, we first

approximate the nonparametric function and coefficient functions by their corresponding

linear combinations of spline basis functions. We then propose a profile-QIF procedure to

obtain parameter estimates. It is worth noting that the profile procedure induces a single

objective function of the parameters, which allows us to consider the penalization method
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for variable estimations and selections. The resulting penalized estimators of the nonzero

coefficients are asymptotically normal and have the oracle property.

The rest of this chapter is organized as follows. Section 2 introduces the model

structure and notation. Section 3 presents the estimation procedure, and demonstrates the

consistency and asymptotic normality of parametric estimators as well as the consistency of

nonparametric estimators. Section 4 proposes penalized estimators and shows their oracle

properties. Simulation studies and an empirical example are presented in Section 5. We

conclude this approach with discussions in Section 6, and technical proofs are relegated in

the Appendix A.

4.2 A Generalized Semiparametric Model

To introduce the generalized semiparametric model by unifying partially linear

single-index and varying coefficient models with repeated measurements, the j-th repeated

observation for the i-th subject (or experimental unit) is denoted as (Yij , Xij , Zij , Tij) for

1 ≤ i ≤ n and 1 ≤ j ≤ mi, where Yij is the response variable and it is independent of

other subjects, Xij = (Xij,1, . . . , Xij,p)
T and Zij = (Zij,1, . . . , Zij,d)

T are p-dimensional and

d -dimensional vectors of covariates, respectively, and Tij represents a single predictor. Let

Cij =
(
XT
ij , Z

T
ij , Tij

)T
be the collection of covariates for the j-th observation of the i-th

subject. We then consider the marginal model and assume that E (Yij |Cij ) = µij , where

the marginal mean µij depends on Cij through a known monotonic and differentiable link
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function ϑ. This leads to the predictor function

ηij = ϑ(µij) = g
(
XT
ijβ
)

+
∑d1

l=1
αl (Tij)Zij,l +

∑d

l=d1+1
αlZij,l, j = 1, . . . ,mi, i = 1, ..., n,

(4.1)

where β = (β1, . . . , βp)
T is a p-dimensional index parameter, αl (·), l = 1, ..., d1, are unknown

smooth functions, αl, l = d1 + 1, ..., d are coefficients, and g (·) is an unknown differentiable

function of Uij (β) = XT
ijβ. For identifiability, we assume that β belongs to the parameter

space:

Θ = {β : ‖β‖ = 1, β1 > 0,β ∈ Rp} , (4.2)

where ‖·‖ denotes the Euclidean norm of any vector ζ = (ζ1, . . . , ζs)
T ∈ Rs such that

‖ζ‖ = (|ζ1|2 + · · ·+ |ζs|2)1/2.

Model (4.1) contains many existing models as special cases. When αl (Tij) = αl

for 1 ≤ l ≤ d1, αl are unknown constants, and mi = 1 for i = 1, · · · , n, it leads to a

generalized partially linear single-index model (Carroll (1997)); when g
(
XT
ijβ
)

= 0, it

yields a semiparametric varying-coefficient partially linear model (Fan and Huang (2005));

when p = 1 and αl (Tij) = αl for 1 ≤ l ≤ d1, it results to a generalized partially linear

model (Hardle (2000)); when g
(
XT
ijβ
)

= 0 and αl = 0 for l = d1 + 1, · · · , d, it gives a

generalized varying coefficient model (Hastie (1993) and Cai (2000)). It is worth noting

that model (4.1) is different from the varying index coefficient model proposed by Ma and

Song (2014), since the latter aims to assess nonlinear interaction effects of index variables

with other covariates on the response in the cross-sectional data setting.
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4.3 Parameter Estimates

4.3.1 The approximation of predictor function

In this subsection, we approximate the unknown functions g (·) and αl (·) in (4.1)

by B-splines described as follows. Based on the given knots, we define the sets of q-th order

B-spline basis functions

B1 (u) = {B1,J (u) : 1 ≤ J ≤ N + q}T

and

B2 (t) = {B2,J (t) : 1 ≤ J ≤ N + q}T

(see de Boor (2001)), where N is the number of interior knots with the distance be-

tween neighboring knots satisfying the conditions given in Zhou (1998). Then, the un-

known function g in (4.1) can be approximated by a linear combination of the B-spline

functions such that g (u) ≈
∑N+q

J=1 γJ,0B1,J (u) = B1 (u)T γ0 with a set of coefficients

γ0 = (γ1,0, . . . , γN+q,0)T. Analogously, αl (t) in (4.1) can be approximated by αl (t) ≈∑N+q
J=1 γJ,lB2,J (t) = B2 (t)T γl, where γl = (γ1,l, . . . , γN+q,l)

T. Accordingly, we obtain an

approximation of the predictor function ηij , which is

η̃ij =
∑N+q

J=1
γJ,0B1,J

(
XT
ijβ
)

+
∑d1

l=1

∑N+q

J=1
γJ,lB2,J (Tij)Zij,l +

∑d

l=d1+1
αlZij,l. (4.3)

From the above equation, we propose a two-step estimation procedure to estimate para-

metric and nonparametric components in the following two subsections, respectively.

30



4.3.2 The profile QIF estimators of parametric vectors

Let Yi = (Yi1, . . . , Yimi)
T and µi (γ,β,α) = (µi1 (γ,β,α) , . . . , µimi (γ,β,α))T.

Denote µ̃i (γ,β,α) = (µ̃i1 (γ,β,α) , . . . , µ̃imi (γ,β,α))T , where µ̃ij ( γ,α,β) = ϑ−1 (η̃ij),

α = (αd1+1, . . . , αd)
T is a d2 × 1 vector, γ =

(
γT

0 , . . . ,γ
T
d1

)T
is a (1 + d1) Jn × 1 vector, and

Jn = N + q. For given β and α, the quasi-likelihood estimator of γ is the solution of the

following estimating equations,

∑n

i=1
µ̃′i (γ,β,α) V−1

i (Yi − µ̃i (γ,β,α)) = 0, (4.4)

where µ̃′i (γ,β,α) =
[(
µ̃′i1, . . . , µ̃

′
imi

)]
(1+d1)Jn×mi

, µ̃′ij = ∂µ̃ij/∂ γ for j = 1, · · · ,mi, and Vi

is the mi ×mi covariance matrix of Yi. Since Vi is often unknown in practice, we adopt

the approach in Liang and Zeger (1986) and assume that Vi = A
1/2
i Ri (ς) A

1/2
i /φ, where

Ri (ς) is the working correlation matrix of Yi, ς is a vector of nuisance parameters, and Ai

is an mi×mi diagonal matrix with the marginal variance of Yij as its j-th diagonal element.

However, the working correlation structure may be misspecified. Hence, we further apply

the quadratic inference function (QIF) in Qu (2000) to efficiently incorporate the within-

cluster correlation structure. For the sake of simplicity, we assume that cluster sizes are

equal, i.e., mi = m < ∞, and let R be a common working correlation matrix. When the

cluster sizes are unequal, our estimation procedure given below can be modified via the

same technique proposed by Xue (2010). Following the QIF approach, the inverse of R can

be approximated by a linear combination of κ basis matrices, i.e.,

R−1 ≈ a1M1 + · · ·+ aκMκ, (4.5)
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where M1 = I (the identity matrix) and Mk are known symmetric basis matrices for

1 ≤ k ≤ κ.

We next construct the QIF to obtain parameter estimators. To this end, consider

the estimating function of γ, for the given β and α:

φ̃n (γ,β,α) = n−1
∑n

i=1
φ̃in ( γ,β,α) =

{
φ̃n,1 (γ,β,α)T , . . . , φ̃n,κ (γ,β,α)T

}T

= n−1



∑n
i=1 Qi (β)T ∆̃i (γ,β,α) A

−1/2
i M1A

−1/2
i (Yi − µ̃i (γ,β,α))

...∑n
i=1 Qi (β)T ∆̃i (γ,β,α) A

−1/2
i MκA

−1/2
i (Yi − µ̃i (γ,β,α))


κJn(1+d1)×1

,

(4.6)

where ∆̃i (γ,β,α) = diag (ν̃i1 (γ,β,α) , . . . , ν̃im (γ,β,α)), ν̃ij(γ,β,α) = ∂µ̃ij(γ,β,α)/∂η̃ij ,

Qi (β) =
(
Qi1 (β)T , . . . , Qimi (β)T

)T
, and

Qij (β) =
[
B1 (Uij (β))T ,

{
B2 (Tij)

T Zij,l : 1 ≤ l ≤ d1

}]T

Jn(1+d1)×1
.

Then, define the QIF to be

Q̃n (γ,β,α) = φ̃n (γ,β,α)T C̃n (γ,β,α)−1 φ̃n (γ,β,α) , (4.7)

where C̃n (γ,β,α) = n−2
∑n

i=1 φ̃in (γ,β,α) φ̃in (γ,β,α)T. Accordingly, the QIF estimator

of γ is

γ̃ (β,α) =

[{
γ̃0 (β,α)T , . . . , γ̃d1 (β,α)T

}T
]

= arg min
γ∈R(1+d1)Jn

Q̃n (γ,β,α) .
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As a result, the QIF estimators of g (·), g′ (·) (the first derivative of g), and αl (·) are

g̃ (u;β,α) = B1 (u)T γ̃0 (β,α)

α̃l (t; β,α) = B2 (t)T γ̃l (β,α)

g̃′ (u;β,α) = B′1 (u)T γ̃0 (β,α)

where B′1 (u) is the first derivative of B1 (u). By replacing g (·) and αl (·) with g̃ (·;β,α)

and α̃l (·;β,α) in (4.3), we obtain

η̂ij (β,α) = g̃
(
XT
ijβ;β,α

)
+
∑d1

l=1
α̃l (Tij ; β,α)Zij,l +

∑d

l=d1+1
αlZij,l. (4.8)

Before estimating β and α, we use the assumptions of ||β|| = 1 and β1 > 0 in

(4.2) to reform the space of β given below, which ensures identifiability.{((
1−

∑p

s=2
β2
s

)1/2
, β2, . . . , βp

)T

:
∑p

s=2
β2
s < 1

}
.

Denote η̂i (β,α) = {η̂i1 (β,α) , . . . , η̂im (β,α)}T and its gradient with respect to
(
βT
−1, αT

)T
by D̂i (β,α) = ∇η̂i ( β,α) =

{
∂η̂i1(β,α)

∂
(
β T

−1,αT
)T , . . . , ∂η̂im(β,α)

∂
(
βT

−1,αT
)T
}T

m×(p−1+d2)

, where β−1 =

(β2, . . . , βp)
T. Consider the profiled estimating function of (β,α),

ψ∗n (β,α)

= n−1
∑n

i=1
ψin (β,α) =

{
ψn,1 (β,α)T , . . . , ψn,κ (β,α)T

}T

= n−1



∑n
i=1 D̂T

i (β,α) ∆i (β,α) A
−1/2
i M1A

−1/2
i (Yi − µ̂i (β,α))

...∑n
i=1 D̂T

i (β,α) ∆i (β,α) A
−1/2
i MκA

−1/2
i (Yi − µ̂i (β,α))


κ(p−1+d2)×1

,

where µ̂i (β,α) = {µ̂i1 (β,α) , . . . , µ̂im (β,α)}T, µ̂ij (β,α) = ϑ−1 {η̂ij (β,α)}, ∆i (β,α) =

Diag(ν̂ij(β,α)), and ν̂ij(β,α) = ∂µ̂ij(β,α)/∂η̂ij . Then, the profiled QIF estimator of
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(
βT
−1,α

T
)T

is (
β̂

T

−1, α̂
T
)T

= arg min
(β−1,α)

Q∗n (β,α) ,

where

Q∗n (β,α) = ψ∗n ( β,α)T Ψ∗n (β,α)−1 ψ∗n (β,α) , (4.9)

and Ψ∗n (β,α) = n−2
∑n

i=1 ψ
∗
n (β,α)T ψ∗n (β,α). Using the fact that β1 =

√
1−

∥∥β−1

∥∥2
,

we also obtain the estimator β̂1. The detailed procedure for computing β̂ and α̂ is given in

Section 5.5.

To study the asymptotic properties of the parametric estimators, we need to in-

troduce a few quantities evaluated at the true parameter values. To this end, let β0 =(
β0

1 ,β
0T
−1

)T
and α0 be the true parameter vectors, β0

−1 =
(
β0

2 , . . . , β
0
p

)T
, and J0=

∂β0

∂β(1)

given below be the Jacobian matrix of size p× (p− 1).

J0 =

 −β0T
−1/

√
1−

∥∥β0
−1

∥∥2

Ip−1


p×(p−1)

.

For 1 ≤ s ≤ p and 0 ≤ l ≤ d1, let ξs,l = (ξs,1,l, . . . , ξs,N+q,l)
T be a Jn × 1 vector of

parameters. Let ξs=
{(
ξT
s,0, . . . , ξ

T
s,d1

)T}
(1+d1)Jn×1

. For 1 ≤ s ≤ p, we further define

ωn,s
(
β0,α0, ξs

)
= n−1

∑n

i=1


Qi

(
β0
)T

∆iΛ1∆i

{
Xij,s −Qi

(
β0
)T
ξs

}
...

Qi

(
β0
)T

∆iΛκ∆i

{
Xij,s −Qi

(
β0
)T
ξs

}


κJn(1+d1)×1

and

Ξn
(
β0,α0

)
=

1

n2

n∑
i=1


Qi

(
β0
)T

∆iΓ1,1∆iQi

(
β0
)
· · · Qi

(
β0
)T

∆iΓ1,κ∆iQi

(
β0
)

...
. . .

...

Qi

(
β0
)T

∆iΓκ,1∆iQi

(
β0
)
· · · Qi

(
β0
)T

∆iΓκ,κ∆iQi

(
β0
)

 ,
(4.10)
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with dimension κJn (1 + d1)× κJn (1 + d1), where Λk = A
−1/2
i MkA

−1/2
i , Γk,k′ = ΛkViΛk′

for 1 ≤ k, k′ ≤ κ, and ∆i, Vi, and Λk are evaluated at (β0,α0). Then, we obtain the

estimate of ξs,

ξ̂s = arg minξs∈R(1+d1)Jn

{
ωn,s

(
β0,α0, ξs

)T
Ξn
(
β0,α0

)−1
ωn,s

(
β0,α0, ξs

)}
. (4.11)

In addition, replace Xij,s and ξs in ωn,s
(
β0,α0, ξs

)
by Zij,l and τ l, respectively, which

yields ωn,l
(
β0,α0, τ l

)
for d1 + 1 ≤ l ≤ d. Adapting (4.11), we obtain the estimate τ̂ l.

Define X̂ij,s = Xij,s − Qij
(
β0
)T
ξ̂s, X̂ij =

(
X̂ij,1, . . . , X̂ij,p

)T
, Ẑij,l = Zij,l −

Qij
(
β0
)T
τ̂ l, and Ẑ

(2)
ij =

(
Ẑij,d1+1, . . . , Ẑij,d

)T
. In Lemma 10 of Appendix, we demonstrate

that

∂η̂ij
(
β0,α0

)
∂
(
βT
−1, α

T
)T =

{
g̃′
(
XT
ijβ

0;β0, α0
)
X̂T
ijJ

0, Ẑ
(2)T
ij

}T
{1 + op (1)} .

Accordingly,

D̂i

(
β0,α0

)
=

[{
g̃′
(
XT
i1β

0;β0,α0
)
X̂i1, . . . , g̃

′ (XT
imβ

0;β0,α0
)
X̂im

}T
J0,
(
Ẑ

(2)
i1 , . . . , Ẑ

(2)
im

)
T

]
×{1 + op (1)}

Define Dij

(
β0,α0

)
=
{
g′
(
XT
ijβ

0
)
X̂T
ijJ

0,Ẑ
(2)T
ij

}T
,

ψ̇n
(
β0,α0

)
= E



DT
i ∆i

(
β0,α0

)
Λ1∆i

(
β0,α0

)
Di

...

DT
i ∆i

(
β0,α0

)
Λκ∆i

(
β0,α0

)
Di


and
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Ψn

(
β0,α0

)

= E



DT
i ∆i

(
β0,α0

)
Γ1,1∆i

(
β0,α0

)
Di · · · DT

i ∆i

(
β0,α0

)
Γ1,κ∆i

(
β0,α0

)
Di

...
. . .

...

DT
i ∆i

(
β0,α0

)
Γκ,1∆i

(
β0,α0

)
Di · · · DT

i ∆i

(
β0,α0

)
Γκ,κ∆i

(
β0,α0

)
Di


,

where Di = Di

(
β0,α0

)
=
(
Di1

(
β0,α0

)
, . . . , Dim

(
β0,α0

))T
. Then, the asymptotic prop-

erties of parametric estimators are given below.

Theorem 1 Assume that Conditions (C1)-(C5) in the Appendix hold, N4n−1 = o (1), and

N−4r+2n = o (1) with r > 3/2 in Condition (C2). Then, we have

∥∥∥∥(β̂T

−1, α̂
T
)T
−
(
β0T
−1 ,α

0T
)T∥∥∥∥ = op (1) ,

and, as n→∞,

√
n
(

Σ(1)
n

)1/2
((
β̂
T

−1, α̂
T
)T
−
(
β0T
−1,α

0T
)T)→ N (0, Ip−1+d2) ,

where Σ
(1)
n = ψ̇n

(
β0,α0

)T
Ψn

(
β0,α0

)
ψ̇n
(
β0,α0

)
and Ia denotes the identity matrix with

dimension a× a.

Let Υ =

 Jp×(p−1) 0p×d2

0d2×(p−1) Id2×d2

. The above theorem, together with the multivariate delta-

method, establishes the asymptotic normality of parametric estimators,

√
nΣ1/2

n

((
β̂

T
, α̂T

)T
−
(
β0T,α0T

)T)→ N (0, Ip+d2) ,

as n→∞, where Σn = ΥΣ
(1)
n ΥT. It is also worth noting that the resulting estimators are

not semiparametric efficient since we assume that the true correlation structure is unknown

and the working correlation may be misspecified.
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4.3.3 The QIF estimator of nonparametric functions

After obtaining the parametric estimators
(
β̂

T
, α̂T

)T
, we replace

(
βT,αT

) T
by(

β̂
T
, α̂T

)T
in Q̃n (γ,α,β) of (4.7). This allows us to find the estimator

γ̂ =
(
γ̂T

0 , . . . , γ̂
T
d1

)T
= arg min

γ∈R(1+d1)Jn
Q̃n

(
γ,β̂, α̂

)
.

Accordingly, the estimators of nonparametric functions g (·) and αl (·) are ĝ (u) = B1 (u)T γ̂0

and α̂l (t) = B2 (t)T γ̂l, respectively. Next we present the L2 convergence rates of ĝ and α̂l.

With a slight abuse of notation in using ‖·‖, let ‖φ‖ =
{∫
S φ (t)2 dt

}1/2
be the L2 norm of

any square integrable real-valued function φ (t) on its support S.

Theorem 2 Assume that N4n−1 = o (1) and N−2−2rn = o (1) with r > 3/2 in Condition

(C2). Then, under Conditions (C1)-(C5), we have ‖ĝ (·)− g (·)‖ = Op

(√
N/n+N−r

)
and ‖α̂l (·)− αl (·)‖ = Op

(√
N/n+N−r

)
.

The optimal order requirements in the above theorem are achieved when the num-

ber of interior knots N is chosen to be N � n1/(2r+1). As a result, the estimators ĝ and α̂l of

the nonparametric functions g and αl have the optimal convergence rate Op
(
N−r/(2r+1)

)
.

4.4 Penalized-QIF Estimation

4.4.1 Penalized estimators

In data analysis, the true model is often unknown. Hence, researchers have em-

ployed the penalized approach to simultaneously select relevant variables and estimate

unknown parameters for partially linear single-index models (see, e.g., Xie and Huang
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(2009); Liang (2010)) and varying coefficients models (see, e.g., Li and Liang (2008)).

This motivates us to propose a penalized QIF method for the proposed generalized semi-

parametric model. Without loss of generality, we assume that the correct model in (4.1)

has the true regression coefficients β0 =
(
β0T

(1),β
0T
(2)

)T
and α0 =

(
α0T

(1),α
0T
(2)

)T
, where

β0
(1) =

[
β0

1 ,

{(
β0

(1),−1

)
(p1−1)×1

}T
]T

is the p1×1 vector of non-zeros, β0
(2) is the (p− p1)×1

vector of zeros, α0
(1) is the d20 × 1 vector of non-zeros and α0

(2) is the (d2 − d20)× 1 vector

of zeros. Their corresponding covariates are given as

Xij =

[{(
X

(1)
ij

)
p1×1

}T

,

{(
X

(2)
ij

)
(p−p1)×1

}T
]T

,

Z
(2)
ij =

[{(
Z

(21)
ij

)
d20×1

}T

,

{(
Z

(22)
ij

)
(d2−d20)×1

}T
]T

To find the penalized parametric estimators, we propose the penalized-QIF,

L∗n (β,α) =
1

2
Q∗n (β,α) + n

∑p

s=2
pλn1 (|βs|) + n

∑d

l=d1+1
pλn2 (|αl|) , (4.12)

where Q∗n ( β,α) is the unpenalized objective function defined in (4.9) and pλn (·) is a

penalty function with a regularization parameter λn. There are various penalty functions

available in the literature, such as the L1 and L2 penalties, which yield the LASSO-type

in Tibshirani (1996) and ridge-type estimators in Goldstein and Smith (1974), respectively.

Here, we consider the smoothly clipped absolute deviation (SCAD) penalty proposed by

Fan and Li (2001), whose first derivative is defined as

p′λ (θ) = λ

{
I (θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I (θ > λ)

}
,

where pλ (0) = 0, a = 3.7, and (t)+ = tI (t > 0). By minimizing L∗n (β,α), we obtain the

penalized-QIF estimators β̂
PQIF

−1 =

((
β̂

PQIF

(1),−1

)T
,
(
β̂

PQIF

(2)

)T
)T

of β−1 =

((
β(1),−1

)T
,βT

(2)

)T
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and α̂PQIF =

((
α̂PQIF

(1)

)T
,
(
α̂PQIF

(2)

)T
)T

of α =
(
αT

(1),α
T
(2)

)T
.

To study asymptotic properties of penalized estimators, we follow the same ap-

proach for obtaining X̂ij and Ẑ
(2)
ij in Section 5.2 to get X̂

(1)
ij and Ẑ

(21)
ij . Let D1i

(
β0

(1)

)
=(

D1,i1

(
β0

(1)

)
, . . . , D1,im

(
β0

(1)

))T
and ∆1i

(
β0

(1), α
0
(1)

)
= Diag(ν̂1,ij(β

0
(1), α

0
(1))), where

D1,ij

(
β0

(1)

)
=

{
g′
(
β0T

(1)X
(1)
ij

)
X̂

(1)T
ij J0

1, Ẑ
(21)T
ij

}T
,

µ̂1,ij

(
β0

(1), α
0
(1)

)
= ϑ−1

{
η̂1,ij

(
β0

(1), α
0
(1)

)}
,

ν̂1,ij(β
0
(1), α

0
(1)) = ∂µ̂1,ij(β

0
(1), α

0
(1))/∂η̂1,ij(β

0
(1), α

0
(1)),

η̂1,ij(β
0
(1), α

0
(1)) = g̃

(
β0T

(1)X
(1)
ij

)
+
∑d1

l=1
α̃l (Tij)Zij,l + α0T

(1)Z
(21)
ij ,

and

J0
1 =

 −β0T
(1),−1/

√
1−

∥∥∥β0
(1),−1

∥∥∥2

Id10−1

 .

In addition, let ψ̇n1

(
β0

(1),α
0
(1)

)
and Ψn1

(
β0

(1),α
0
(1)

)
be defined in the same manner as

ψ̇n
(
β0,α0

)
and Ψn

(
β0,α0

)
in Section 5.2 by replacing their Di

(
β0
)

and ∆i

(
β0,α0

)
with D1i

(
β0

(1)

)
and ∆1i

(
β0

(1), α
0
(1)

)
, respectively. Then, we establish the following oracle

properties of the penalized estimators.

Theorem 3 Assume that N4n−1 = o (1), N−4r+2n = o (1) with r > 3/2 in Condition (C2),

and the tuning parameters satisfy λn1 → 0, λn2 → 0, n1/2λn1 → ∞ and n1/2λn2 → ∞.

Then, under Conditions (C1)-(C5), the penalized estimators satisfy:

(1) (sparsity) P

({(
β̂
PQIF

(2)

)T
,
(
α̂PQIF

(2)

)T}T

= 0

)
→ 1; and (2) (asymptotic normality)

√
n
(

Σ
(1)
n1

)1/2
{{(

β̂
PQIF

(1),−1

)T
,
(
α̂PQIF

(1)

)T}T

−
(
β0T

(1),−1,α
0T
(1)

)T}
→ N

(
0, I(p1+d20−1)

)
,
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where Σ
(1)
n1 = ψ̇n1

(
β0

(1),α
0
(1)

)T
Ψn1

(
β0

(1),α
0
(1)

)
ψ̇n1

(
β0

(1),α
0
(1)

)
.

Let Υ1=

 J0
1p1×(p1−1) 0p1×d20

0d20×(p1−1) Id20×d20

. The above theorem, together with the multivariate

delta-method, leads to the asymptotic normality of penalized parametric estimators,

√
nΣ

1/2
n1

({(
β̂

PQIF

(1)

)T
,
(
α̂PQIF

(1)

)T
}T

−
(
β0T

(1),α
0T
(1)

)T
)
→ N (0, Ip1+d20), as n → ∞, where

Σn1 = Υ1Σ
(1)
n1 ΥT

1 .

We next study the asymptotic properties of the penalized nonparametric estima-

tors. To this end, assume that αl (·) ≡ 0 for (d10 + 1) ≤ l ≤ d1 in the true model. By the

density assumption of Tij in Condition (C1) of the Appendix, we obtain that α̃l (·) = 0 if

and only if E
{
α̃l (Tij)

2
}

= 0. In addition, αl (t) ≈ α̃l (t) = B2 (t)T γl. This motivates us to

consider the empirical L2 norm as a metric, that is, ‖α̃l‖ = ‖γl‖Wn =
(
γT
l Wnγl

)1/2
, where

Wn = n−1
T

∑n
i=1

∑m
j=1B2 (Tij)B2 (Tij)

T and nT = nm. Using this metric and replacing

(β,α) in Qn (γ,β,α) by its
√
n consistent estimator (β̂

∗
, α̂∗) (e.g., (β̂PQIF, α̂PQIF)), we

adopt Wang (2007) group-penalized approach and propose the following penalized-QIF for

spline coefficients,

Ln (γ) =
1

2
Qn

(
γ,β̂

∗
, α̂∗

)
+ n

∑d1

l=1
pλn3 (‖γl‖Wn) . (4.13)

The resulting penalized estimator of γ is

γ̂PQIF =

{(
γ̂PQIF
l

)T
, 0 ≤ l ≤ d1

}T

= arg min
γ

(Ln ( γ)) .

Subsequently, we obtain the estimators of g (u) and αl (t), ĝ
PQIF (u) = B1 (u)T γ̂PQIF

0 and

α̂PQIF
l (t) = B2 (t)T γ̂PQIF

l . Then, we demonstrate the following asymptotic properties of

nonparametric estimators.
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Theorem 4 Assume that λn3 → 0 and λn3n
r/(2r+1) →∞ with r > 3/2 in Condition (C2).

Then, under Conditions (C1)-(C5), γ̂PQIF satisfies (1) (sparsity) P (γ̂PQIF
l = 0) → 1 for

d10 + 1 ≤ l ≤ d1; and (2) (L2 rate of convergence)
∥∥ĝPQIF (·)− g (·)

∥∥ = Op
(
N−r/(2r+1)

)
and

∥∥∥α̂PQIF
l (·)− αl (·)

∥∥∥ = Op
(
N−r/(2r+1)

)
for 1 ≤ l ≤ d10, where N � n1/(2r+1).

Theorem 4 indicates that, under some regularity conditions, the penalized-QIF estimator

has the same optimal convergence rate as the unpenalized estimator. In addition, the

penalized procedure is able to correctly select relevant B-spline coefficients with probability

approaching 1.

4.4.2 Estimation algorithm

The algorithm for obtaining unpenalized estimators is a special case of the proce-

dure to calculate penalized estimators. Hence, we only focus on the penalized estimates.

To this end, we consider three possible scenarios: (i.) β and α are penalized, while γ is

unpenalized; (ii.) β and α are unpenalized, but γ is penalized; (iii.) β, α, and γ are pe-

nalized. In the first scenario, let
(
β̂
i
,α̂i
)

and γ̂i be the i-th iterative estimators of (β,α)

and γ, respectively. For given
(
β̂
i
,α̂i
)

, we employ (4.7) to obtain the estimator γ̂i+1 of γ

at the (i+ 1)th step. That is,

γ̂i+1 = γ̂i − ¨̃
Qn

(
γ̂i,β̂

i
,α̂i
)−1 ˙̃

Qn

(
γ̂i,β̂

i
,α̂i
)
, (4.14)

where
˙̃
Qn (γ,β,α) = ∂Q̃n (γ,β,α) /∂γ and

¨̃
Qn (γ,β,α) = ∂2Q̃n (γ,β,α) /∂γ∂γT.

Based on γ̂i+1, we next obtain the (i + 1)-th iterative estimators of (β,α). To

this end, we use the fact that (β,α) is a function of γ and then denote Q∗n (β, α) in (4.9)
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as Q∗n

(
β̂
i
,α̂i, γ̂i+1

)
and its associated component D̂i (β,α) results to

D̂i

(
β̂
i
,α̂i, γ̂i+1

)
=

[{
B′1

(
XT
i1β̂

i
)T
γ̂i+1

0 X̂i1, . . . , B
′
1

(
XT
imβ̂

i
)T
γ̂i+1

0 X̂im

}T

J0,
(
Ẑ

(2)
i1 , . . . , Ẑ

(2)
im

)
T

]
.

For the sake of simplicity, let θ =
(
βT
−1,α

T
)T

, and denote Q̇∗n (β,α,γ̂) = ∂Q∗n (β,α, γ̂) /∂θ

and Q̈∗n (β,α,γ̂) = ∂Q∗n (β,α,γ̂) /∂θ∂θT.

To obtain the penalized estimate of θ, we adopt the approach of Fan and Li (2001)

and obtain the locally quadratic approximation of 2L∗n
(
βi+1,αi+1,γ̂i+1

)
in (4.12) as follows:

Q∗n

(
β̂
i
,α̂i, γ̂i+1

)
+ Q̇∗n

(
β̂
i
,α̂i, γ̂i+1

)T (
θi+1 − θ̂

i
)

+2−1
(
θi+1 − θ̂

i
)T

Q̈∗n

(
β̂
i
,α̂i, γ̂i+1

)(
θi+1 − θ̂

i
)T

+2n
∑p

s=2
pλn1

(∣∣∣β̂is∣∣∣)+ n
(
βi+1
−1

)T
Φλn1

(
β̂
i

−1

)
βi+1
−1 − n

(
β̂
i

−1

)T
Φλn1

(
β̂
i

−1

)
β̂
i

−1

+2n
∑d

l=d1+1
pλn2

(∣∣α̂il∣∣)+ n
(
αi+1

)T
Φλn2

(
α̂i
)
αi+1 − n

(
α̂i
)T

Φλn2

(
α̂i
)
α̂i,

where

Φλn1

(
β−1

)
= diag

{
p′λn1

(|β2|) / |β2| , . . . , p′λn1
(|βp|) / |βp|

}
,

Φλn2 (α) = diag
{
p′λn2

(|αd1+1|) / |αd1+1| , . . . , p′λn2
(|αd|) / |αd|

}
.

Minimizing the above function with respect to θi+1, we obtain that

θ̂
i+1

= θ̂
i
−
{
Q̈∗n

(
β̂
i
,α̂i,γ̂i+1

)
+ 2nΦ

(
θ̂
i
)}−1 {

Q̇∗n

(
β̂
i
,α̂i, γ̂i+1

)
+ 2nΦ

(
θ̂
i
)
θ̂
i
}
, (4.15)

where Φ (θ) =

 Φλn1

(
β(1)

)
0(p−1)×d2

0d2×(p−1) Φλn2 (α)

. Subsequently, β̂i+1
1 =

(
1−

∥∥∥β̂i+1

−1

∥∥∥2
)1/2

. If

the i-th iterative penalized estimate β̂is is close to zero (i.e., |β̂is| < ε∗1 for a small threshold
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value ε∗1), we set β̂i+1
s = 0. The iteration is stopped at the (i+ 1)th step if

∥∥∥θ̂i+1
− θ̂

i
∥∥∥ < δ∗1

and
∥∥∥γ̂i+1 − γ̂i

∥∥∥ < δ∗1 for a small threshold value δ∗1 . Accordingly, the penalized estimates

of β and α are β̂
PQIF

= β̂
i+1

and α̂PQIF = α̂i+1. It is noteworthy that unpenalized QIF

estimators β̂, α̂, and γ̂ can be obtained iteratively from equations (4.14) and (4.15) by

setting Φ(θ̂
i
) = 0 in (4.15).

In the second scenario, we can show that the unpenalized QIF estimators β̂ and

α̂ are
√
n - consistent. Hence, we use them to replace β̂

∗
and α̂∗ in equation (4.13), and

then employ the same techniques as those used for obtaining equation (4.15) to yield the

penalized estimator γ̂PQIF,i+1 at the (i+ 1)th step given below.

γ̂PQIF,i+1 = γ̂PQIF,i −
{
Q̈n

(
γ̂PQIF,i,β̂

QIF
, α̂QIF

)
+ 2nΦλn3

(
γ̂PQIF,i

)}−1
×{

Q̇n

(
γ̂PQIF,i,β̂

QIF
,α̂ QIF

)
+ 2nΦλn3

(
γ̂PQIF,i

)
γ̂PQIF,i

}
, (4.16)

where

Φλn3
(γ) = diag

{
p′λn3

(‖γ1‖Wn) / ‖γ1‖Wn , . . . , p
′
λn3

(∥∥γp∥∥Wn

)
/
∥∥γp∥∥Wn

}
.

If the i-th iterative penalized estimator γ̂PQIF,i is close to zero (i.e.,
∥∥∥γ̂PQIF,i

∥∥∥
Wn

< ε∗2 for

a small threshold value ε∗2), we set γ̂PQIF,i+1 = 0. The iteration stops when

∥∥∥γ̂PQIF,i+1 − γ̂PQIF,i
∥∥∥ < δ∗2

for a small threshold value δ∗2 , which leads to γ̂PQIF = γ̂PQIF,i+1.

In the third scenario, we are able to demonstrate that the penalized estimators,

β̂
PQIF

and α̂PQIF, obtained from the first scenario are consistent. Thus, we substitute β̂
∗
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and α̂∗ in equation (4.13) with these estimators. Afterwards, we adopt the same proce-

dure as given in equation (4.16) by replacing its β̂
QIF

and α̂QIF with β̂
PQIF

and α̂PQIF,

respectively, to obtain γ̂PQIF.

To facilitate computations, we recommend using the unpenalized estimators as

initial estimators in the iterative equations, (4.14), (4.15), and (4.16). It is worth noting that

the tuning parameters are unknown in those equations, and we adapt Wang (2007)’s BIC

criterion to choose the tuning parameters λn1, λn2 and λn3 in the penalized-QIF procedure.

They are

BIC (λn1, λn2) = L∗n
(
β̂,α̂

)
+ log (n)×

(
p̂1 − 1 + d̂21

)
and

BIC (λn3) = Ln (γ̂) + log (n)×
{
Jn

(
1 + d̂10

)}
,

where d̂21 and p̂1 are the number of nonzero components in α̂PQIF and β̂
PQIF

, and d̂10 is

the number of nonzero estimated functions α̂PQIF
l (·). Accordingly,

(
λ̂n1, λ̂n2

)
= arg min

(λn1,λn2)
BIC (λn1, λn2)

and λ̂n3 = arg minλn3BIC(λn3). In our numerical studies given below, we use cubic splines

with q = 4 to estimate nonparametric functions. In addition, the number of interior knots is

set at N =
[
n1/(2q+1)

]
+1, which is of the optimal order and [a] denotes the greatest integer

less than or equal to a. In the empirical implementations, we use the minimal and maximal

values of XT
ij β̂ and Tij as the two boundary points to generate B-spline basis functions

B1,J (u) and B2,J (t), respectively.
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4.5 Numerical Examples

4.5.1 Simulation studies

In this subsection, we conduct two Monte Carlo studies to evaluate the finite

sample performance of the proposed estimators. The first two example focuse on scenario (i)

β and α are penalized, while γ used for computing nonparametric functions is unpenalized.

In contrast, the third example addresses scenario (ii) β and α are unpenalized, but γ is

penalized.

Example 1. Within each cluster, the correlated binary responses Yij are gener-

ated from a marginal logit model,

logitP (Yij = 1 |Xij , Zij , Tij ) = g
(
XT
ijβ

0
)

+
∑2

l=1
αl (Tij)Zij,l +

∑6

l=3
α0
l Zij,l, (4.17)

where g (U) = 0.5 cos(2πU), α1 (T ) = 0.1 cos(2πT ), α2 (T ) = 0.1 sin(2πT ),

β0= 1√
22

(3, 3, 2, 0, 0, 0, 0)T , α0= (α3, α4,α5, α6)T = (−0.5, 0, 0, 0.4)T, j = 1, . . . , 5, i =

1, . . . , n, and n = 200 and 500. We then use the algorithm in [15] to generate correlated

binary responses with an exchangeable correlation structure and the correlation parameter

is 0.3 within each cluster. Furthermore, covariates Xij = (Xij,1 . . . , Xij,7)T are indepen-

dently generated from uniform[0, 1], Tij are randomly simulated from uniform[0, 1], and

(Zij,1 . . . , Zij,6)T are independently generated from N
(
0, 0.52

)
. To assess the robustness of

covariance setting, we consider three different working correlation structures: independent

(IND), exchangeable (EX), and AR(1), although the data are simulated from the exchange-

able setting.

To examine the selection performance of parametric components, we conduct 200
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realizations and report the proportions of parameters correctly fitted (C), overfitted (O),

and underfitted (U) as well as the average of true positives (TP), i.e., the average number of

covariates being correctly selected from all possible candidates, and the average number of

false positives (FP), i.e., the average number of covariates being incorrectly selected from all

possible candidates. To evaluate the estimation accuracy, we compare the SCAD-penalized

QIF (PQIF) estimate with the ORACLE estimate obtained by assuming that we know the

zero components in β0 and α0. The assessment measure is the median of squared errors

(MSE) defined as the median of
∥∥∥β̂PQIF

(k) − β0
∥∥∥2

and the median of
∥∥∥α̂PQIF

(k) −α0
∥∥∥2

in 200

realizations, where β̂
PQIF

(k) and α̂PQIF
(k) are the PQIF estimates of β0 and α0 calculated in

the kth realization.

Table 4.1: Variable selection and estimation results for β0 with the exchangeable (EX),
AR(1), and independent (IND) working correlation structures in Example 1. The sym-
bols C, O, and U denote the proportion of correct fitting, overfitting, and underfitting,
respectively. The TP and FP denote the average number of true positives and false posi-
tives, respectively. The columns PQIF and ORACLE report the median of squared errors
(MSEs) of the penalized and oracle estimates.

Variable selection and parameter estimation

n C O U TP FP PQIF ORACLE

EX 0.800 0.120 0.080 2.920 0.190 0.0209 0.0184
200 AR(1) 0.745 0.140 0.115 2.885 0.190 0.0231 0.0184

IND 0.720 0.175 0.105 2.895 0.265 0.0302 0.0182

EX 1.000 0.000 0.000 3.000 0.000 0.0062 0.0062
500 AR(1) 1.000 0.000 0.000 3.000 0.000 0.0062 0.0062

IND 0.995 0.005 0.000 3.000 0.005 0.0063 0.0063

Tables 4.1 and 4.2 report variable selection and estimation results for β0 and α0,

respectively. Both tables show that the proportions of correctly fitted models increase

and the proportions of overfitted and underfitted models decrease when the sample size
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Table 4.2: Variable selection and estimation results for α0 with the exchangeable (EX),
AR(1), and independent (IND) working correlation structures in Example 1. The symbols
C, O, and U denote the proportion of correct fitting, overfitting, and underfitting, respec-
tively. The TP and FP denote the average numbers of true positives and false positives,
respectively. The columns PQIF and ORACLE report the median of squared errors (MSEs)
of the penalized and oracle estimates.

Variable selection and parameter estimate

n C O U TP FP PQIF ORACLE

EX 0.805 0.055 0.140 1.895 0.095 0.0285 0.0228
200 AR(1) 0.795 0.050 0.155 1.895 0.105 0.0291 0.0224

IND 0.765 0.090 0.145 1.920 0.160 0.0274 0.0224

EX 0.980 0.014 0.006 1.990 0.014 0.0103 0.0103
500 AR(1) 0.970 0.020 0.010 1.995 0.025 0.0107 0.0101

IND 0.955 0.020 0.025 1.985 0.030 0.0108 0.0105

becomes larger. In addition, the number of true positives is closer to the correct number of

nonzero parameters and the number of false positives decreases to zero, as the sample size

increases. Moreover, the difference between the PQIF and ORACLE estimates measured

by MSE becomes negligible as the sample size increases. The above findings support the

theoretical results. It is noteworthy that the three working correlation structures yield

similar performance, although EX is the correct structure. This indicates that the PQIF

estimators are robust even though the working correlation is mis-specified.

To evaluate the performance of the estimates of the nonparametric functions, we

next define the integrated squared error (ISE) of the estimated functions ĝ, α̂1 and α̂2, given

as

ISE (ĝ) = (nm)−1
∑n

i=1

∑m

j=1

{
ĝ
(
XT
ij β̂

PQIF
)
− g

(
XT
ijβ

0
)}2

,

ISE (α̂l) = (nm)−1
∑n

i=1

∑m

j=1
{α̂l (Tij)− αl (Tij)}2 , l = 1, 2.

When n = 200, the averages of the ISEs for ĝ, α̂1, and α̂2 across 200 realizations are
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0.100, 0.207 and 0.215, respectively. As the sample size increases to 500, the corresponding

averages of the ISEs decrease to 0.02, 0.048 and 0.048, which corroborates the theoretical

results in Theorem 2.

Example 2. This example addresses the case where the covariates are correlated

and some are discrete. To this end, we generate the response observations using model

(4.17) with the same true parameters, nonparametric functions, and distribution of variable

Tij as those given in Example 1. In addition, the covariates (Zij,1 . . . , Zij,7)T are simulated

from a multivariate normal distribution with mean zero, marginal variance 0.52, and AR(1)

correlation matrix with autocorrelation coefficient 0.3, while the covariate Zij,8 is gener-

ated from Bernoulli(0.5). Moreover, the covariates (Xij,1 . . . , Xij,7)T are simulated from

the same distribution as that of (Zij,1 . . . , Zij,7)T. To assess the robustness of estimates

against the working correlation, we consider three different working correlation structures:

independent (IND), exchangeable (EX), and AR(1), whereas the data are simulated from

the exchangeable setting.

Table 4.3: Variable selection and estimation results for β0 and α0 with the exchangeable
(EX), AR(1), and independent (IND) working correlation structures in Example 2. The
symbols C, O, and U denote the proportion of correct fitting, overfitting, and underfitting,
respectively. The TP and FP denote the average number of true positives and false positives,
respectively. The columns PQIF and ORACLE report the median of squared errors (MSEs)
of the penalized and oracle estimates.

Variable selection and parameter estimation

C O U TP FP PQIF ORACLE

EX 0.975 0.002 0.023 2.973 0.009 0.0108 0.0104
β0 AR(1) 0.970 0.005 0.025 2.973 0.015 0.0136 0.0128

IND 0.960 0.015 0.025 2.973 0.045 0.0170 0.0155

EX 0.910 0.080 0.010 1.991 0.109 0.0132 0.0126
α0 AR(1) 0.905 0.085 0.010 1.986 0.120 0.0145 0.0137

IND 0.900 0.085 0.015 1.982 0.127 0.0168 0.0141
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Tables 4.3 presents variable selection and estimation results for β0 and α0 with

n = 500 in 200 realizations. They indicate that the proportions of correctly fitted models

are closer to one and the proportions of overfitted and underfitted models are closer to

zero. In addition, the number of true positives is closer to the correct number of nonzero

parameters and the number of false positives is small. Moreover, the MSE values of the

PQIF and ORACLE estimates are similar, which confirms our theoretical results.

Example 3. In this example, within each cluster, the correlated binary responses

Yij are generated from a marginal logit model,

logitP (Yij = 1 |Xij , Zij , Tij ) = g
(
XT
ijβ

0
)

+
∑5

l=1
αl (Tij)Zij,l +

∑7

l=6
α0
l Zij,l,

where g (U) = 0.5 cos(2πU), α1 (T ) = 0.7 cos(2πT ), α2 (T ) = 0.7 sin(2πT ), αl (·) = 0 for

3 ≤ l ≤ 5, β0= 1√
22

(3, 3, 2)T, α0= (α6, α7)T = (−0.5, 0.4)T, j = 1, . . . , 5, i = 1, . . . , n, and

n = 200 and 500. In addition, the binary responses are generated from an exchangeable

correlation structure with the correlation parameter 0.15. Moreover, covariates Xij , Tij and

Zij are independently simulated from the same distributions as given in Example 1.

Table 4.4: Variable selection and estimation results for the varying coefficient functions
αl(T ) with the exchangeable (EX), AR(1), and independent (IND) working correlation
structures in Example 3. The symbols C, O, and U denote the proportion of correct-fitting,
over-fitting, and under-fitting, respectively. The TP and FP denote the average of true
positives and the average of false positives.

Variable selection and estimation

n C O U TP FP

EX 0.525 0.280 0.195 1.809 0.418
200 AR(1) 0.510 0.290 0.200 1.785 0.425

IND 0.495 0.290 0.215 1.755 0.427

EX 0.955 0.010 0.035 1.955 0.010
500 AR(1) 0.945 0.000 0.055 1.945 0.000

IND 0.955 0.015 0.030 1.955 0.015
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To assess the selection performance for varying coefficient components, we conduct

200 realizations. Table 4.4 reports the selection and estimation results for the varying co-

efficients with covariates (Zij,1, . . . , Zij,5)T. It shows that the proportions of correct fittings

are close to 1 (above 95%) for all the three correlation structures for n = 500, while they

are relatively low for n = 200. The high proportion of correct fitting in the large sample

size corroborates the model selection consistency established in Theorem 4. In addition,

the number of true positives gets closer to 2, and the number of false positives decreases to

zero, as the sample size n increases.

Table 4.5: The average MSEs of the parameter estimates for β = (β1, β2, β3)T and α =
(α6, α7)T. and the empirical coverage probabilities (CP) of the 95% confidence intervals for
parameters (β1, β2, β3) and (α6, α7) based on 200 realizations in Example 3.

MSE CP

n β α β1 β2 β3 α6 α7

EX 0.0168 0.0267 0.855 0.865 0.835 0.915 0.935
200 AR(1) 0.0170 0.0269 0.855 0.825 0.865 0.915 0.925

IND 0.0171 0.0271 0.865 0.865 0.860 0.910 0.940

EX 0.0047 0.0073 0.955 0.935 0.925 0.920 0.940
500 AR(1) 0.0050 0.0078 0.955 0.920 0.920 0.915 0.945

IND 0.0051 0.0078 0.960 0.935 0.925 0.920 0.950

In addition to varying coefficient components, we next study the performance of

parametric components. Table 4.5 shows the MSEs of the parameter estimates and the

empirical coverage probabilities of the 95% confidence intervals for the parametric com-

ponents. All three working correlation structures result in similar average MSE values for

both parameter estimates of β and α. Furthermore, the MSE values decrease as n increases,

which confirms the consistency property of the parameter estimates. Moreover, the empir-

ical coverage probabilities get closer to the nominal coverage level of 95% as n increases,
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which corroborates the asymptotic normality of the parameter estimators. Next, we assess

the overall model fitting. To this end, we define the model error (ME) as the average of the

squared difference of the estimated and true conditional means of Yij . Figure 4.1 depicts

the boxplots of the model errors by comparing the PQIF and oracle (OR) estimates, where

OR is computed by assuming the true model is known a priori. It is not surprising that the

model errors of the oracle estimates are smaller than those of the PQIF estimates. As the

sample size gets large, however, the model errors of PQIF and OR are very similar. It is

also noteworthy that the model errors are small even though n = 200, which demonstrates

the accuracy of PQIF estimates.
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Figure 4.1: Boxplots of the model errors calculated from the PQIF and oracle (OR) esti-
mates with the EX, AR(1) and IND working correlation structures for n = 200 (top panel)
and n = 500 (bottom panel).
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Remark. To study the performance of the proposed estimation and selection methods in

scenario (iii), we generate data from the following model:

logitP (Yij = 1 |Xij , Zij , Tij ) = g
(
XT
ijβ

0
)

+
∑5

l=1
αl (Tij)Zij,l +

∑9

l=6
α0
l Zij,l,

where β0= 1√
22

(3, 3, 2, 0, 0, 0, 0)T, α0= (α6, α7, α8, α9)T = (−0.5, 0, 0, 0.4)T, and αl (T ) are

defined as Example 2 for 1 ≤ l ≤ 5. In addition, covariates Xij , Tij and Zij are indepen-

dently simulated from the same distributions as given in Example 2, and Yij have the same

correlation structure as given in Example 2. Since Monte Carlo results show similar findings

as those in Examples 1 and 2, we do not present them here.

4.5.2 Empirical example

Following Klein (1984), we consider a data set from the Wisconsin epidemiologic

study of diabetic retinopathy (WESDR). The aim of this study is to investigate the risk

factors for diabetic retinopathy. The response is a binary variable indicating the presence

of diabetic retinopathy in each of two eyes from 720 individuals in the study. In addition,

the data set contains 13 risk factors including: eye refractive error, eye intraocular pres-

sure, age at diabetes diagnosis (years), duration of diabetes (years), glycosylated hemoglobin

level, systolic blood pressure, diastolic blood pressure, body mass index, pulse rate (beats/30

seconds), sex (male=1, female=2), proteinuria (absent=0, present=1), doses of insulin per

day taken by the patient, and type of county of residence (urban=1, rural=2).

Based on a preliminary fitting of the data to a logistic linear regression model,

we found that there exist significant interaction effects between the logarithm of diabetes’

duration, respectively, with glycosylated hemoglobin level, systolic blood pressure, and dias-
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tolic blood pressure, where the logarithmic transformation of diabetes duration is used to

amend its right skewness. This motivates us to consider Zij,1 = glycosylated hemoglobin

level, Zij,2 = systolic blood pressure, and Zij,3 = diastolic blood pressure as the covariates

associated with their corresponding varying coefficients αl (Tij) (l = 1, 2, 3), where Tij =

logarithm of diabetes duration. We then assign the rest of the continuous variables to be

index covariates such that Xij,1 = age at diagnosis of diabetes , Xij,2 = body mass index ,

Xij,3 = eye refractive error, Xij,4 = eye intraocular pressure, and Xij,5 = pulse rate. The

remaining categorical variables, Zij,4 = sex, Zij,5 = proteinuria, Zij,6 = doses of insulin,

and Zij,7 = type of county of residence, are used as the covariates in the linear part with

constant coefficients. As a result, we fit the data with the following equation,

ηij = logit(µij) = g (Xij,1β1 + · · ·+Xij,5β5) +
∑3

l=1
αl (Tij)Zij,l +

∑7

l=4
αlZij,l, (4.18)

where j = 1, 2, i = 1, ..., 720. It is worth noting that we only consider IND and EX

correlation structures since there are two repeated measurements for each subject and the

results are the same for EX and AR(1) structures. In addition, all continuous variables are

centered and standardized for parameter estimation.

By applying the penalized-QIF method in Section 4.4.1, two index variables (Xij,1 =

age at diabetes diagnosis and Xij,2 = body mass index ) and one linear variable (Zij,5 = pro-

teinuria) are selected under the IND and EX working correlation structures. Table 4.6

presents the parameter estimates (EST) and their standard errors (SE) for the selected

variables. The resulting Wald test statistics show that these variables are significant at the

5% level. Furthermore, the estimated coefficient of proteinuri (0.307 in IND and 0.311 in

EX) indicates that the presence of diabetic retinopathy is approximately exp (0.31) = 1.35
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times as frequent among proteinuri than among no-proteinuri, after adjusting for the other

variables in the model.

Table 4.6: The PQIF estimates (EST) and their associated standard errors (SE) of regres-
sion coefficients for the selected variables, respectively, under the IND and EX working
correlation structures for the Wisconsin epidemiologic study.

β1 β2 α5

IND EST 0.303 0.953 0.307
SD 0.132 0.042 0.099

EX EST 0.447 0.894 0.311
SD 0.151 0.075 0.103

Next, we plot the estimated index functions ĝ (·) against the variables of age at

diabetes diagnosis and body mass index, respectively, by setting the rest of their correspond-

ing index components to zero. Figure 4.2 depicts the estimated functions ĝ (·) under the

IND and EX working correlation structures. The function ĝ (·) displays a quadratic pattern

over the body mass index, which is consistent with the findings of Barnhart (1998) and Lian

(2013). For example, under the EX structure, the value of ĝ (·) above 0 indicates that the

presence of diabetic retinopathy is higher when body mass index lies between 2.854 and

6.397 than in the tail regions (i.e., 2.042 to 2.854 and 6.397 to 7.228). It is interesting

to note that ĝ (·) also exhibits a quadratic pattern across the variable of age at diabetes

diagnosis, and the value of ĝ (·) above 0 shows that the presence of diabetic retinopathy is

higher when age ranges between 5.1 and 25.1 than in the tail regions (i.e., 0.4 to 5.1 and

25.1 to 29.9). Accordingly, it is not surprising that the plot of ĝ (·) versus the index exhibits

a quadratic shape. In sum, the diabetic retinopathy risk is highest in this study among

people with middle values for body mass and middle values for age at diagnosis of diabetes.
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Figure 4.2: Plots of ĝ (·) against the variables body mass index and age at diabetes diagnosis,
respectively, under the IND and EX working correlation structures using the Wisconsin
epidemiologic study.
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We finally present the graphs of the estimated varying coefficient functions α̂l (·)
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(l = 1, 2, 3) against logarithm of diabetes duration under the EX structure. Since the plots

under the IND structure are similar to those under the EX structure, we omit them. The

varying coefficient functions in Figure 4.3 exhibits strong nonlinear patterns. Specifically,

α̂1 (·) and α̂2 (·) indicate that coefficients are largest when the diabetes duration is shortest,

while α̂3 (·) has the largest coefficient around the middle values of diabetes duration. Con-

sequently, the associated coefficients for the variables glycosylated hemoglobin level, systolic

blood pressure, and diastolic blood pressure are not constant across different durations.

57



Figure 4.3: Plots of α̂l (·), l = 1, 2, 3, against the logarithm of diabetes duration under the
EX working correlation structure using the Wisconsin epidemiologic study.
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4.6 Discussion

In this chapter, we introduce a generalized semiparametric model emerging from

generalized partially linear single-index models and varying coefficient models with repeated

measurements. For model estimation, we propose the profile QIF estimator for the regres-

sion parameters and the QIF spline estimators for the index function and varying coefficient

functions. For model selections, penalized and group penalized estimation procedures are

employed, respectively, for parametric and nonparametric functions. In addition, asymp-

totic consistency is studied for the resulting estimators, and asymptotic normality is further

established for the parametric estimators for conducting statistical inference such as Wald

test. Moreover, we demonstrate the oracle properties of the penalized estimators. Monte

Carlo studies indicate that the proposed estimators perform well.

In practice, there are a few possible approaches to fit the data with model (1).

Based on our limited experience, we propose the following procedures. First, place contin-

uous variables into the single-index component and put discrete variables into either the

varying coefficient component or the linear component. Second, for continuous variables,

plot the estimated mean of the response variable (or the estimated single-index function)

against each of them. If the plots of those variables do not depict the nonlinear pattern,

one can put them into either the varying coefficient component or the linear component.

Third, choose the varying coefficient index, which exhibits possible interaction effects with

those variables assigned in the varying coefficient component.

To extend applications of the proposed generalized semiparametric model, we iden-

tify five future research topics. The first is to generalize the penalized quadratic inference
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function so that one is able to estimate and select the mean components and correlation

components simultaneously. The second is to make inferences by testing the parametric

and nonparametric components. The third is to adapt the approach of Stute (2005) and

then develop a test for assessing the appropriateness of model (1). The fourth is to allow

the nonparametric component to be a non-smooth function. Finally, we propose applying

the proposed model to the areas of quantile regression and survival analysis. We believe

that these efforts would broaden the usefulness of the proposed model.
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Chapter 5

Semiparametric Mixed Model

Analysis for Nonlinear

Gene-environment Interactions in

Genome-wide Association Studies

5.1 Introduction

As we saw in Chapter 3, linear mixed models have demonstrated effectiveness in

accounting for relatedness among samples and in controlling for population stratification.

Consequently, there is an increasing interest in using linear mixed model to investigate

associations between genes and diseases in genome-wide association studies (GWAS).

Kang (2008) proposed the efficient mixed model association (EMMA) methodology
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to account for pairwise relatedness between individuals. They applied the properties of

singular value decomposition and estimated the variance components by maximizing the

restricted likelihood function. Their strategy greatly improves the efficiency of mixed model

method. However, when thousands of individuals are involved in GWAS, EMMA becomes

computationally intractable due to the heavy computational burden in the estimation of

variance parameters.

To make GWAS using linear mixed models possible for large data sets, two so-

phisticated approximate approaches have been suggested. Zhang (2010) used population

parameters previously determined (P3D), which performed each test by simply using the

pre-estimated variance components from the null model without estimating them repeat-

edly. Kang (2010) used a slightly different strategy; to test individual SNPs, they kept the

heritability estimated from the null model fixed. They avoided estimating variance com-

ponents repeatedly in this way. Their approach is implemented in the EMMA eXpedited

(EMMAX) software. Both of these two approximations greatly reduce the computing time

and maintain the statistical power at the same time.

On the other hand, environmental factors affect human health in important ways.

It has been increasingly accepted that most human diseases are the result of a combination

of genetic and environmental factors. Moreover, gene and environment (G × E) interactions

play a pivotal role in the risk of developing human diseases, such as obesity (Hebebrand

and Hinney (2009)), heart disease (Talmud (2007)), diabetes (Grarup and Andersen (2007)),

and cancer (Song (2011)). Study of G × E interactions via statistical modeling is very im-

portant to improve the accuracy and precision when assessing genetic and environmental
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influences. Traditional analysis assumes linear G × E interactions, where the interaction

effect is typically modeled as a product term. However, such modeling may not reflect

the true nonlinear interactions between gene and environment, which could lead to a large

estimation bias. To overcome this limitation, different non- and semi- parametric modeling

methods have been proposed and developed. Such models include: profile likelihood-based

semiparametric model in Chatterjee (2005) and Chen (2012); semiparametric model with

Tukey’s form of interaction in Maity (2009); a generalized likelihood ratio test for nonpara-

metric effects in Wei (2011); and semiparametric Bayesian analysis in Lobach (2011) and

Ahn (2013).

In this chapter, we aim to explore possible nonlinear G × E interactions to identify

the genetic associations by considering hidden relatedness of the observations. From Zhou

and Stephens (2012), a standard linear mixed model for GWAS can be written as

Y = Tα+ zγ + ξ + ε, (5.1)

where Y is the phenotype of interest, T are covariates, z is the SNP of interest, α is a vector

of weights for the covariates, γ is the coefficient for the test SNP, ξ is a vector for unknown

random polygenic effects, and ε is a vector of errors. ξ˜MVN(0, λσ2K), ε˜MVN(0, σ2I),

where K is the kinship matrix calculated from either a set of genetic markers or pedigrees,

I is the identity matrix, σ2 is the variance of the residual errors, λ is the ratio between the

two variance components, and MVN denotes multivariate normal distribution.

Considering the interplay of genetic and environmental factors, as mentioned in

Saidou (2014), we may employ a parametric mixed model with both main and interaction
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effects given as

Y = Tα+ Xβ + zγ + zXβ1 + ξ + ε, (5.2)

where β are the effects of environmental factors, and β1 are the effects for G × E interaction.

By simple calculation, (5.2) can be written as

Y = Tα+ Xβ + z(γ + Xβ1) + ξ + ε.

Thus the contribution of the genetic factor z to the variation of Y is restricted to a linear

function of X. However, this restriction can be easily violated due to the underlying non-

linear pattern of the relationship between the response and explanatory variables. To allow

for nonlinear G × E interactions, we can replace the coefficient of z with a smooth nonlinear

function, which is of a linear combination of X. Moreover, we can impose a nonlinear struc-

ture on the environmental term. Hence, we propose a partially linear single-index coefficient

mixed model as

Y = Tα+m0(Xβ) +m1(Xβ)z + ξ + ε, (5.3)

where ξ and ε are independent of (z,X,T). m0(.) and m1(.) are unknown smooth nonpara-

metric functions with no specific functional form, so that model (5.3) can flexibly capture

dynamic change patterns of the coefficient and intercept functions. We can assess whether

a genetic marker is associated with the phenotype by testing m1(.) = 0. Considering single-

marker regression methods, we test each SNP and then apply a multiple testing correction

procedure to select significant SNPs.

For estimation, we first approximate the nonparametric functions m0(.) and m1(.)

by B-spline basis functions, then estimate parameters β and α by a profile maximum-

likelihood method. To estimate the variance component λ and σ2, a profile restricted
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maximum likelihood method is proposed. Moreover, we develop a score test for inferences

on the coefficient function m1(.), which enables us to identify important genetic factors

by testing m1(.) = 0. The proposed testing procedure is easy to implement and fast to

compute with the p-values or critical values obtained from the asymptotic distributions of

the test statistics. In addition, it provides a useful inferential tool to identify genetic risk

factors in my proposed model, which is more flexible than linear mixed models.

The proposed estimation procedure in model (5.3) is briefly described as follows.

Assume λ is known, for given β and α, we approximate the intercept function m0(.) and

coefficient function m1(.) by B-spline functions with coefficients obtained by maximizing a

log-likelihood function. Thus the resulting estimators of m0(.) and m1(.) are functions of

β and α. Estimation of the parameters β and α is achieved by replacing the true functions

m0(.) and m1(.) with their spline estimators in the objective function. However, λ is un-

known in reality; it can be estimated by maximizing the log-restricted likelihood function

for given β and α. Finally, we propose a Newton-Raphson algorithm to estimate parameters

β and α, nonparametric functions ml(.), λ and σ2. Asymptotic normalities and consistency

for estimators of both the parameters and nonparametric functions are established. When

the data set consists of thousands of individuals, the estimation procedure becomes compu-

tationally intractable due to the heavy computational burden in the estimation of variance

parameters. As described in Kang (2010), for most genetic association studies in humans,

the effect of any given locus on the trait is very small, therefore, we only need to estimate

the variance parameters once and globally apply them to each marker. Such strategy can

markedly increase the speed of computations without decreasing the power of hypothesis
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testing.

The rest of this chapter is organized as follows. Section 2 introduces the profile

log-likelihood estimation and presents the asymptotic properties of the proposed estimators.

Section 3 develops score tests for nonparametric coefficient functions. Section 4 introduces

the estimation of variance components through restricted likelihood. Section 5 proposes the

computational algorithm. Section 6 evaluates the performance of the proposed estimation

and inference procedures via simulation studies. Also we illustrate the proposed model and

method through the analysis of the Framingham study to investigate gene associations with

systolic blood pressure. All technical proofs are provided in Appendix B.

5.2 Estimation of Parameters and Nonparametric Functions

For the ith subject, let Yi be a quantitative trait, Zi = (Zi1, Zi2)T be a 2×1 vector,

where Zi1 = 1 and Zi2 is the genetic factor, Xi = (Xi1, . . . , Xid1)T be a d1 × 1 vector of

environmental factors, Ti = (Ti1, ..., Tid2)T be a d2 × 1 vector of covariates, then we have

the following proposed semiparametric model as

Yi = TT
i α+

∑2

`=1
m`(X

T
i β)Zi` + ξi + εi, (5.4)

where α = (α1, ..., αd2)T are regression coefficients for Ti, β = (β1, ..., βd1)T are coefficient

parameters for Xi, and ml(.) denotes an unknown smooth nonparametric function. ξ =

(ξ1, . . . , ξn)T is an n× 1 vector for the polygenic effects, ξ˜MVNn

(
0,λσ2K

)
, in which K is

an n × n marker-based kinship matrix. ε = (ε1, . . . , εn)T ˜MVNn

(
0,σ2In

)
, in which In is
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the identity matrix. ξi and εi are independent of (ZiXi,Ti).

Denote Ui (β) = XT
i β, we assume that Ui (β) is distributed on a compact interval

[a, b]. Without loss of generality, one can let [a, b] = [0, 1]. We estimate the unknown

functions m` (·) by B-spline functions. To this end, let N = Nn be the number of interior

knots. Divide [0, 1] into (N + 1) subintervals: Ij = [ξj , ξj+1) for j = 0, . . . , N − 1 and

IN = [ξN , 1], where (ξj)
N
j=1 is a sequence of interior knots that is given as

ξ−(q−1) = · · · = 0 = ξ0 < ξ1 < · · · < ξN < 1 = ξN+1 = · · · = ξN+q.

For 0 ≤ j ≤ Nn, let hj = ξj+1 − ξj be the distance between neighboring knots and

let h = max0≤j≤Nn hj . Following Zhou (1998), to study the asymptotic properties for

the spline estimator of m` (·), we assume that max0≤j≤Nn−1 |hj+1 − hj | = o
(
N−1

)
and

h/min0≤j≤Nn hj ≤ M , where M > 0 is a predetermined constant. Such an assumption

assures that M−1 < Nnh < M , which is necessary for numerical implementation. Further-

more, define the q-th order normalized B-spline basis as B (u) = {Bj (u) : 1 ≤ j ≤ Jn}T( see

de Boor (2001)), where Jn = N+q. Let Hn = H(q−2)
n be the space spanned by B (u). Thus,

there exists γ` = (γ1`, . . . , γJn`)
T such that m0

` (u) =
∑Jn

j=1Bj (u) γj` = B (u)T γ` ∈ Hn,

and under suitable smoothness assumptions, m` (u) can be well approximated by m0
` (u).

Correspondingly,
∑2

`=1m`(X
T
i β)Zi` can be approximated by

∑2

`=1
m0
` (X

T
i β)Zi` =

∑2

`=1
B
(
XT
i β
)T
γ`Zi` = Qi (β)T γ,

where γ =
(
γT

1 , γ
T
2

)T
and Qi (β) =

[{
B
(
XT
i β
)T
Zi1, B

(
XT
i β
)T
Zi2

}T
]

2Jn×1

.
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5.2.1 Profile estimation of parameters β and α and nonparametric func-

tions m` (·).

Let Y = (Y1, . . . , Yn)T, Q (β) =
[
{Q1 (β) , . . . ,Qn (β)}T

]
n×2Jn

and

T =
[
(T1, . . . ,Tn)T

]
n×d2

.

For given β and α, the estimates of γ, λ and σ2 can be obtained by maximizing the following

log-likelihood function:

Ln
(
γ, β, α,λ, σ2

)
= −n

2
log
(
σ2
)
− n

2
log (2π)− 1

2
log |H|

−1

2
σ−2 (Y −Tα−Q (β) γ)T H−1 (Y −Tα−Q (β) γ) , (5.5)

where H =λK + In. By assuming λ is known, the log-likelihood (5.5) is maximized at

γ̃ (β, α) =
{

Q (β)T H−1Q (β)
}−1 {

Q (β)T H−1 (Y −Tα)
}
.

To proceed estimation of β and α, to ensure identifiability we exclude the first component

β1 of β by letting β1 =
√

1− ‖β−1‖22, where β−1 = (β2, . . . , βd1)T, and reformulate the

parameter space of β as follows:{(√
1− ‖β−1‖22, β2, . . . , βd1

)T

: ‖β−1‖22 < 1

}
.

Replacing γ with γ̃ (β, α) in the objective function (5.5), β−1 and α are obtained by maxi-

mizing

L∗n
(
β, α, σ2

)
= −n

2
log
(
σ2
)
− n

2
log (2π)− 1

2
log |H| (5.6)

−1

2
σ−2 (Y −Tα−Q (β) γ̃ (β, α))T H−1 (Y −Tα−Q (β) γ̃ (β, α)) .
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The estimators of θ−1 =
(
βT
−1, α

T
)T

are given as θ̂−1 =
(
β̂T
−1, α̂

T
)T

= arg max(β−1,α){
L∗n
(
β, α, σ2

)}
. Thus β̂1 =

√
1−

∥∥∥β̂−1

∥∥∥2

2
, β̂ =

(
β̂1, β̂

T
−1

)T
. After we obtain the estimator

β̂ and α̂, the final estimators of the spline coefficients are given as

γ̂ =
{
γ̂T

1 , γ̂
T
2

}T
= γ̃(β̂, α̂) = arg max

γ

{
Ln

(
γ, β̂, α̂,λ, σ2

)}
,

and the `th nonparametric function m` (u) is estimated by

m̂` (u) = m̃`

(
u, β̂, α̂

)
= B (u)T γ̂` =

∑Jn

j=1
Bj (u) γ̂j`.

In practice, λ is unknown. We propose a profile REML estimation procedure to estimate λ

and σ2. For these profile estimators, asymptotic consistency and normality are established.

5.2.2 Inference for the profile estimation

Consider the more general model as

Yi = TT
i α+

∑p

`=1
m`(X

T
i β)Zi` + ξi + εi, (5.7)

where Zi1 = 1, (Zi2, ..., Zip) are genetic factors for subject i, then our proposed model is a

special case with p = 2. Let J (β) = ∂β/∂βT
−1 be the Jacobian matrix of size d1 × (d1 − 1),

which is

J (β) =

 −βT
−1/
√

1− ‖β−1‖22

Id1−1


d1×(d1−1)

.

Assume that the true parameters of β and α are β0 and α0 respectively, and the true

parameter of θ−1 is θ0
−1. Let J = J

(
β0
)
. For any scalar or vector ξi, define

ProjMn

(
ξT
i

)
= Qi

(
β0
)T {

Q
(
β0
)T

H−1Q
(
β0
)}−1

Q
(
β0
)T

H−1ξ,
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where ξ =
(
ξT

1 , . . . , ξ
T
n

)T
. It can be proved that

Qi

(
β0
)T {

∂
(
γ̃(β0, α0)− γ

)
/∂θT

−1

}
= −Qi

(
β0
)T {

Q
(
β0
)T

H−1Q
(
β0
)}−1

Q
(
β0
)T

H−1
(∑p

`=1
m̃′`(X

T
i β

0)Zi`X
T
i J,TT

i

)n
i=1

+Op

(
n−1/2J1/2

n + J−r+1
n

)
= −ProjMn

(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)
+Op

(
n−1/2J1/2

n + J−r+1
n

)
,

∂
{

TT
i α

0+Qi

(
β0
)T
γ̃
(
β0, α0

)}
/∂θT

−1

=
(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)
− ProjMn

(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)
+Op

(
n−1/2J1/2

n + J−r+1
n

)
=

(∑p

`=1
m′`(X

T
i β

0)Zi`X̂
T
i J,T̂T

i

)
+Op

(
n−1/2J1/2

n + J−r+1
n

)
,

where for any scalar or vector ξi, define ξ̂T
i = ξT

i −ProjMn

(
ξT
i

)
. Let

Φ (β) =
[
diag

{∑p

`=1
m′`(X

T
1 β)Z1`, . . . ,

∑p

`=1
m′`(X

T
nβ)Zn`

}]
n×n

.

Thus

∂
{
Tα0 + Q

(
β0
)
γ̃
(
β0, α0

)}
/∂θT

−1 =
(
Φ
(
β0
)
X̂J,T̂

)
+Op

(
n−1/2J1/2

n + J−r+1
n

)
,

where X̂ =
(
X̂1, . . . , X̂n

)T
and T̂ =

(
T̂1, . . . , T̂n

)T
. Let ei = ξi + εi and e = (e1, . . . , en)T.

Now define the space M as a collection of functions with finite L2 norm on [0, 1]×Rp by

M =
{
ψ (u,x) =

∑p

`=1
g` (u)x`, Eg` (U)2 <∞

}
,

where x = (x1, . . . , xp)
T. For any vector ξ = (ξ1, . . . , ξn)T, let

ProjM (ξi) = Ψ∗
(
Ui
(
β0
)
,Xi

)
=
∑p

`=1
g∗`
(
Ui
(
β0
))
Xi` ∈M
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be defined as the minimizer of

E
{(
ξ −Ψ

(
β0
))T

H−1
(
ξ −Ψ

(
β0
))}

,

where Ψ
(
β0
)

=
{

Ψ∗
(
U1

(
β0
)
,X1

)
, . . . ,Ψ∗

(
Un
(
β0
)
,Xn

)}T
, and let ξ̃i = ξi−ProjM (ξi).

Denote X̃i =
(
X̃i1, . . . , X̃ip

)T
, X̃ =

(
X̃1, . . . , X̃n

)T
, T̃i =

(
T̃i1, . . . , T̃id2

)T
and T̃ =(

T̃1, . . . , T̃n

)T
. Let m = (

∑p
l=1ml(X

T
1 β

0)Z1l, ...
∑p

l=1ml(X
T
nβ

0)Znl)
T, it can be proved

that

∂L∗n
(
β0, α0, σ2

)
/∂θT

−1 = σ−2
(
Y −Tα0 −m

)T
H−1

(
Φ
(
β0
)
X̃J,T̃

)
+ op

(
n1/2

)
,

∂L∗n
(
β0, α0, σ2

)
/∂θ−1∂θ

T
−1 = σ−2

(
Φ
(
β0
)
X̃J,T̃

)T
H−1

(
Φ
(
β0
)
X̃J,T̃

)
+ op (n) .

Let r with r > 3/2 be the smoothness order of the coefficient functions m` (u) as given in

Condition (C2) in Appendix B. Let m′` (u) be the first order derivative of m` (u), we have

the following theorems, such that asymptotic consistency and normality are established for

these profile parameter and nonparametric function estimators. Details of the theorems are

given in Appendix B.

Theorem 5 Under Conditions (C1)-(C6) in Appendix B, max
{
n1/(2r+2), n1/(4r−2)

}
<<

Jn << n1/4, we have (i) (consistency)
∥∥∥θ̂−1 − θ0

−1

∥∥∥
2

= Op
(
n−1/2

)
; and (ii) (asymptotic

normality)

θ̂−1 − θ0
−1 =

[(
Φ
(
β0
)
X̃J,T̃

)T
H−1

(
Φ
(
β0
)
X̃J,T̃

)]−1

×[
eTH−1

(
Φ
(
β0
)
X̃J,T̃

)]
+ op

(
n−1/2

)
.

Moreover Σ
−1/2
n

(
θ̂−1 − θ0

−1

)
d→ N

(
0, I((d1−1)+d2)×((d1−1)+d2)

)
, as n→∞, where

Σn = σ2

[(
Φ
(
β0
)
X̃J,T̃

)T
H−1

(
Φ
(
β0
)
X̃J,T̃

)]−1

. (5.8)

76



Both consistency and asymptotic normality of β̂ follow directly from Theorem 5

with an application of the multivariate delta-method. Thus we obtain

(
JΣn,11J

T
)−1/2

(
β̂ − β0

)
d→ N (0, Id1×d1) , n→∞,

where Σn,11 is the submatrix of Σn formed by the first d1− 1 rows and first d1− 1 columns

of Σn. Define

B (u) =


B1 (u) · · · BJn (u) 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 B1 (u) · · · BJn (u)


p×pJn

.

Theorem 6 Under Conditions (C1)-(C6) in Appendix B, max
{
n1/(2r+2), n1/(4r−2)

}
<<

Jn << n1/4, we have (i) consistency |m̂` (u)−m` (u)| = Op

(√
Jn/n+ J−rn

)
uniformly in

u ∈ [0, 1]; and (ii) as n→∞, (asymptotic normality) for 1 ≤ ` ≤ p,

σ−1
`n (u) [m̂` (u)− E {m̂` (u) |Z,X,T}]→ N (0, 1) ,

where

σ2
`n (u) = eT` B (u)

{
Q (β)T H−1Q (β)

}−1
B (u) e`, (5.9)

and e` is the p-dimensional vector with “1” as its `th element and “0” as other elements.

Remark. Under the order assumption for the number of B-spline basis functions

Jn in Theorems 5 and 6, the optimal order for the number of interior knots such that

N = Jn−q � n1/(2r+1) can be achieved by the proposed profile estimation procedure. Then

the uniform convergence rate for |m̂` (u)−m` (u)| is Op

(
J
−r/(2r+1)
n

)
.
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5.3 Hypothesis tests

Applying the profile estimation method described in Section 5.2, we propose the

Rao-score-type hypothesis test to check the significance of genetic factor Z2 by setting up

the null and alternative hypotheses as H0 : m2(.) = 0 versus H1 : m2(.) 6= 0. Since each

nonparametric function m2(u) ≈ B (u)T γ2, the null and alternative hypotheses can be

written as H0 : γ2 = 0Jn versus H1 : γ2 6= 0Jn . Let γ̂N =
{(
γ̂N

1

)T
,
(
γ̂N

2

)T}T
be the

maximizer of Ln

(
γ, β̂, α̂,λ, σ2

)
given in (5.5) under H0, thus γ̂N

2 = 0. Let

Qi,(1) (β) =
[
B
(
XT
i β
)]
Jn×1

,

Qi,(2) (β) =
[
B
(
XT
i β
)
Zi2
]
Jn×1

,

Q(1) (β) =
[{

Q1,(1) (β) , . . . ,Qn,(1) (β)
}T
]
n×Jn

,

Q(2) (β) =
[{

Q1,(2) (β) , . . . ,Qn,(2) (β)
}T
]
n×Jn

.

Define the score function as

s2n

(
γ̂N,β̂, α̂

)
= ∂Ln(γ̂N,β̂, α̂,λ, σ2)σ2/∂γ2

= Q(2)

(
β̂
)T

H−1
(
Y −Tα̂−Q(1)

(
β̂
)
γ̂N

1

)
,

Ωn = Q
(
β0
)T

H−1Q
(
β0
)

=

 Ωn,11 Ωn,12

Ωn,21 Ωn,22

 ,

where Ωn,kk′ = Q(k)

(
β0
)T

H−1Q(k′)

(
β0
)
, for k, k′ = 1, 2.

Define the test statistic

Tn = σ−2s2n

(
γ̂N,β̂, α̂

)T
Ω22
n s2n

(
γ̂N,β̂, α̂

)
, (5.10)

where Ω22
n =

(
Ωn,22 −Ωn,21Ω

−1
n,11Ωn,12

)−1
.
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Theorem 7 Under Conditions (C1)-(C6) in Appendix B, and n1/2r << Jn << n1/4, we

have under H0, as n→∞,

{2Jn}−1/2 {Tn − Jn} → N (0,1) .

We can also extend this theorem to the more general case where several genetic factors

are involved together as in model (5.7) in section 5.2.2. Details of the theorem is given in

Appendix B.

Remark. Note that Tn defined in (5.10) contains population parameters, there-

fore, we cannot use it directly as a test statistic. To carry out the Rao-score-type hypothesis

test, we instead use T̂n as the test statistic. T̂n has the same form as Tn with Ωn,kk′ re-

placed by its consistent estimate Q(k)

(
β̂
)T

H−1Q(k′)

(
β̂
)

and σ2 replaced by consistent

estimate σ̂2. For implementation, the critical value of the test statistic is calculated from

the chi-square distribution with 2Jn degrees of freedom.

5.4 Estimation of Variance Components

In Sections 5.2 and 5.3, we assume that λ is known when we estimate and make

inference of the mean parameters. In this section, We propose a profile restricted max-

imum likelihood (REML) method to estimate λ. Denote Ỹ= Y −Tα̂, Q = Q
(
β̂
)

and

PQ = H−1−H−1Q
(
QTH−1Q

)−1
QTH−1. For given β̂ and α̂, the log-restricted likelihood
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function for estimating
(
λ, σ2

)
is given as

Lr
(
λ, σ2

)
= −1

2
log |H| − 1

2
log
∣∣QTH−1Q

∣∣− 1

2σ2

(
Ỹ−Qγ̂

)T
H−1

(
Ỹ−Qγ̂

)
− n− 2Jn

2
log σ2

= −1

2
log |H| − 1

2
log
∣∣QTH−1Q

∣∣− 1

2σ2
ỸTPQỸ − n− 2Jn

2
log σ2. (5.11)

Thus for given λ, by maximizing (5.11) we obtain the estimator for σ2 as

σ̃2 (λ) = (n− 2Jn)−1
(
ỸTPQỸ

)
.

Replacing σ2 by σ̃2 (λ) in (5.11), we have

L∗r (λ) = −1

2
log |H| − 1

2
log
∣∣QTH−1Q

∣∣− n− 2Jn
2

log
(
ỸTPQỸ

)
+ constant. (5.12)

Then the estimate λ̂ of λ is obtained by maximizing the objective function (5.12). Thus σ2

is estimated by

σ̂2 = σ̃2 (λ) = (n− 2Jn)−1
(
ỸTP̂QỸ

)
, (5.13)

where P̂Q is defined in the same way as PQ with λ replaced by λ̂. The objective func-

tion (5.12) requires determinant and inverse of H which is an n × n matrix, and thus the

computation can be demanding when the sample size is large. We use eigenvalue decom-

position to handle the kinship matrix K, so that it can be decomposed as K = Φ∆ΦT,

where ∆ =diag(δ1, . . . , δn) is a diagonal matrix with eigenvalues and Φ is an n × n ma-

trix consisting of eigenvectors. It can be derived that log |H| =
∑n

i=1 log (δiλ+ 1) and

H−1 = Φ (∆λ+ I)−1ΦT. Let q2Jn×n= (q1, . . . ,qn) = QTΦ. Thus, we have

QTH−1Q=QTΦ (∆λ+ I)
−1

ΦTQ = a (∆λ+ I)−1aT =
∑n

i=1
(δiλ+ 1)−1 qiq

T
i ,

which is a 2Jn × 2Jn matrix.
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5.5 Computational Algorithm

We propose the Newton-Raphson algorithm to estimate parameters β and α, non-

parametric functions m` (·), λ and σ2. Let λ̂(k) and σ̂2,(k) be the k-th iterative estimate of λ

and σ2. The (k + 1)-th estimates β̂
(k+1)
−1 and α̂(k+1) of β−1 and α are obtained by maximiz-

ing the objective function (5.6) with σ2 and H replaced by σ̂2,(k) and Ĥ(k) = λ̂(k)K + In,

and β̂
(k+1)
1 =

√
1−

∥∥∥β̂(k+1)
−1

∥∥∥2

2
. Then β̂(k+1) =

(
β̂

(k+1)
1 , β̂

(k+1)T
−1

)T
. The (k + 1)-th estimate

γ̂(k+1) of γ is given as

γ̂(k+1) =

{
Q
(
β̂(k+1)

)T (
Ĥ(k)

)−1
Q
(
β̂(k+1)

)}−1{
Q
(
β̂(k+1)

)T (
Ĥ(k)

)−1 (
Y −Tα̂(k+1)

)}
.

The (k + 1)-th estimate λ̂(k+1) of λ is obtained by maximizing the objective function

(5.12) and σ̂2,(k+1) is from (5.13) with β and α replaced by β̂(k+1) and α̂(k+1). Let

θ̂(k) =
(
β̂(k)T, α̂(k)T

)T
. The iteration is stopped at the (k + 1)th step if

∥∥∥θ̂(k+1) − θ̂(k)
∥∥∥ < δ

and
∣∣∣λ̂(k+1) − λ̂(k)

∣∣∣ < δ for some small threshold value δ. The initial estimates of β and α

are obtained by letting H = In.

The nonparametric functions m` (·) are approximated by cubic spline (q = 4) with

the number of interior knots N selected by minimizing the BIC criterion on the range

1 ≤ N ≤
[
n1/2r

]
given as

BIC (N) = −2Ln

(
γ̂,β̂,α̂,λ̂, σ̂2

)
+ p (N + q) (log n) .

Then one selects the optimal number of interior knots N̂ =argminNBIC(N). Commonly,

the nonparametric functions are assumed to have the second order smoothness such that

r = 2.

81



5.6 Numerical Examples

5.6.1 Simulation studies

Example 1. In this example, we wish to show the normality properties for the

proposed estimators. We generate responses Yi from the following model given as

Yi = m0(XT
i β

0) +
∑3

`=1
m`(X

T
i β

0)Zi` + TT
i α

0+ξi + εi, (5.14)

where i = 1, . . . , 500, Xi = (Xik, 1 ≤ k ≤ 3)T are simulated environmental effects, which are

generated from independent uniform distributions on [0, 1], Ti = (Tis, 1 ≤ s ≤ 3)T are co-

variates generated from the multivariate normal distribution with mean 0, marginal variance

1, and an AR-1 correlation matrix with autocorrelation coefficient 0.5, and Zi` (1 ≤ ` ≤ 3)

are simulated genetic factors, which have three possible genotype categories represented by

AA, Aa and aa and coded as 2, 1, and 0 with frequency
{
P 2
A, 2PA (1− PA) , (1− PA)2

}
,

with PA = 0.5 which is the allele frequency for allele A. We use the empirical centered

value of Zi` to generate Yi. The error terms ξ = (ξ1, . . . , ξn)T ˜MVNn

(
0,λσ2K

)
and

ε = (ε1, . . . , εn)T˜MVNn

(
0,σ2I

)
, where σ2 = 0.5, λ = 1 and K is an n × n AR-1 correla-

tion matrix with autocorrelation coefficient 0.5. We let β0= (3, 2, 1) /
√

14, α0= (2, 1,−1),

m0(u) = 1 + 5 sin (πu), and m`(u) = c × sin (2πu) for 1 ≤ ` ≤ 3, where c ranges from 0 to

0.5 with increment 0.1. We generate 200 simulated samples.

We compare the performance of the proposed estimators for β0, α0 and m` (·) , 0 ≤

` ≤ 3, by estimating the correlation matrix H with the method given in Section 5.4 and by

assuming H = In so that correlations between subjects are ignored. We obtain very small

sample bias for the estimates obtained by the estimated H and by letting H = In. For
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example, for c = 0.5, we obtain sample bias as 0.0051, −0.0047 and 0.0021 for estimates

of β by the estimated H and 0.0089, −0.0058 and −0.0020 by letting H = In. It confirms

that the resulting estimators are unbiased estimators even if H is misspecified. Tables 5.1

and 5.2 report the empirical standard errors (ESE) and the mean squared errors (MSE)

×10−2 defined as the sample mean of
∥∥∥β̂ − β0

∥∥∥2

2
and

∥∥α̂− α0
∥∥2

2
among 200 replications

by the estimated H and by assuming H = In for c = (0.5, 0.4, 0.3, 0.2, 0.1). We observe

that the ESE and MSE values of the estimates obtained by the estimated H are smaller

than the corresponding values of the estimates obtained by H = In for all cases. This result

demonstrates that the former estimators are more efficient and accurate than the latter ones.

By ignoring possible correlations, the estimators may lose some efficiency. To evaluate the

performance of the estimated nonparametric functions m` (·) for 0 ≤ l ≤ 3, we define the

mean integrated squared error (MISE) as the average of

ISE (m̂`) = n−1
∑n

i=1

{
m̂`

(
XT
i β̂
)
−m`(X

T
i β

0)
}2
,

for 0 ≤ l ≤ 3 among the 200 replications. Table 5.3 reports the MISEs for the spline

estimates m̂` (·) for 0 ≤ l ≤ 3 and c = (0.5, 0.4, 0.3, 0.2, 0.1) by using the estimated H

and by assuming H = In. It shows that the MISE values for the estimates obtained by the

estimated H are smaller than those values for the estimates obtained by H = In. To evaluate

the asymptotic normality results for the parameter estimators as established in Theorem

5, Table 5.4 and Table 5.5 report the average asymptotic standard errors (ASE) calculated

based on (5.8) and empirical coverage probabilities of the 95% confidence intervals for the

estimates of β0 and α0 by using the proposed method with the estimated H. The empirical

coverage probabilities are close to the nomimal confidence level 95% for most of the cases.
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Comparing the ASEs with the ESEs reported in Table 5.1 and Table 5.2, we observe that

values are very close for the corresponding cases, suggesting that the asymptotic covariance

matrix is correctly derived. Moreover, Table 5.6 shows the average estimated values and

the empirical standard errors for the variance components λ and σ2. The average estimated

values are close to the true values for all cases, which indicates that the proposed estimation

procedure for variance components given in Section 5.4 performs well.

Table 5.1: The empirical standard errors (ESE) and the mean squared errors (MSE) ×10−2

for the estimates of β0 among 200 replications by the estimated H and by assuming H = In
for c = (0.5, 0.4, 0.3, 0.2, 0.1).

Estimation by using the estimated H Estimation by assuming H = In
ESE MSE ESE MSE

c β0
1 β0

2 β0
3 β0

1 β0
2 β0

3

0.5 0.0066 0.0086 0.0105 0.0226 0.0080 0.0107 0.0128 0.0342
0.4 0.0070 0.0101 0.0123 0.0302 0.0085 0.0118 0.0141 0.0409
0.3 0.0066 0.0096 0.0111 0.0260 0.0076 0.0110 0.0128 0.0344
0.2 0.0065 0.0097 0.0109 0.0255 0.0075 0.0113 0.0126 0.0342
0.1 0.0076 0.0103 0.0109 0.0282 0.0088 0.0117 0.0129 0.0382
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Table 5.2: The empirical standard errors (ESE) and the mean squared errors (MSE) ×10−2

for the estimates of α0 among 200 replications by the estimated H and by assuming H = In
for c = (0.5, 0.4, 0.3, 0.2, 0.1).

Estimation by using the estimated H Estimation by assuming H = In
ESE MSE ESE MSE

c α0
1 α0

2 α0
3 α0

1 α0
2 α0

3

0.5 0.0409 0.0539 0.0444 0.6569 0.0504 0.0603 0.0510 0.8858
0.4 0.0458 0.0536 0.0442 0.6956 0.0541 0.0590 0.0536 0.9361
0.3 0.0452 0.0519 0.0490 0.7135 0.0517 0.0602 0.0561 0.9416
0.2 0.0450 0.0467 0.0453 0.6262 0.0530 0.0549 0.0504 0.8377
0.1 0.0441 0.0453 0.0455 0.6038 0.0512 0.0492 0.0540 0.7933

Table 5.3: The MISEs for the spline estimates m̂` (·) of m` (·) for 0 ≤ l ≤ 3 and c =
(0.5, 0.4, 0.3, 0.2, 0.1) by using the estimated H and by assuming H = In.

MISE by using the estimated H Estimation by assuming H = In
c m0 (·) m1 (·) m2 (·) m3 (·) m0 (·) m1 (·) m2 (·) m3 (·)

0.5 0.0210 0.0181 0.0201 0.0211 0.0245 0.0245 0.0261 0.0281
0.4 0.0230 0.0208 0.0191 0.0192 0.0269 0.0282 0.0257 0.0255
0.3 0.0227 0.0193 0.0176 0.0178 0.0264 0.0274 0.0244 0.0242
0.2 0.0216 0.0174 0.0185 0.0169 0.0252 0.0243 0.0250 0.0238
0.1 0.0194 0.0181 0.0167 0.0174 0.0237 0.0247 0.0229 0.0225

Table 5.4: The average asymptotic standard errors (ASE) calculated from (5.8) and empir-
ical coverage probabilities (CP) of 95% confidence intervals based on 200 replications for

the estimates of β0 =
(
β0

1 , β
0
2 , β

0
3

)T
.

β0
1 β0

2 β0
3

c ASE CP ASE CP ASE CP

0.5 0.0066 0.950 0.0094 0.965 0.0110 0.960
0.4 0.0067 0.930 0.0095 0.935 0.0110 0.940
0.3 0.0067 0.945 0.0095 0.940 0.0111 0.945
0.2 0.0067 0.945 0.0095 0.950 0.0111 0.945
0.1 0.0068 0.915 0.0096 0.915 0.0112 0.955
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Table 5.5: The average asymptotic standard errors (ASE) calculated from (5.8) and empir-
ical coverage probabilities (CP) of 95% confidence intervals based on 200 replications for

the estimates of α0 =
(
α0

1, α
0
2, α

0
3

)T
.

α0
1 α0

2 α0
3

c ASE CP ASE CP ASE CP

0.5 0.0448 0.955 0.0500 0.930 0.0448 0.950
0.4 0.0445 0.935 0.0500 0.945 0.0447 0.940
0.3 0.0446 0.960 0.0500 0.940 0.0446 0.920
0.2 0.0444 0.950 0.0499 0.965 0.0446 0.945
0.1 0.0445 0.950 0.0499 0.965 0.0448 0.925

Table 5.6: The sample mean (Mean) and sample standard error (SE) of the estimates λ̂
and σ̂2 based on 200 replications for c = (0.5, 0.4, 0.3, 0.2, 0.1).

c 0.5 0.4 0.3 0.2 0.1 0

λ Mean 1.0621 1.0012 1.0878 1.0791 1.0503 1.0545
SE 0.2853 0.2904 0.3036 0.2909 0.2775 0.2791

σ2 Mean 0.4940 0.4955 0.4887 0.4868 0.4899 0.4940
SE 0.0519 0.0536 0.0535 0.0517 0.0519 0.0569

Next we perform the score test as described in Section 5.3 for testing H0 : m`(·) =

0, for ` = 1, 2, 3 versus H1 : m`(·) 6= 0 for some ` ∈ (1, 2, 3) for c = (0.5, 0.4, 0.3, 0.2, 0.1, 0).

Figure 5.1 shows the plot of the power function against the c value at type I error 0.05. We

observe that when c = 0, the empirical power size is 0.065 which is close to the type I error.

Moreover, the power increases rapidly to 1 as the c value increases, which demostrates that

the proposed score test is a powerful test. For visualization of the actual function estimates,

Figure 5.2 shows the estimated curves m̂`(·) (solid lines) against index, ` = 0, 1, the true

functions m`(·) (dashed lines), and the upper and lower 95% pointwise confidence intervals

(upper and lower solid lines) for c = 0.5, n = 500. We can observe that the proposed
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Figure 5.1: Plot of the power function against the c value.
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Figure 5.2: Plots of the estimated curves m̂`(·) (solid lines) against index, ` = 0, 1, the true
functions m`(·) (dashed lines), and the upper and lower 95% pointwise confidence intervals
(upper and lower solid lines) for c = 0.5, n = 500.
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Example 2. In this example, we wish to compare the score test performance in the proposed

model with a parametric linear mixed model by assuming that the main effect of X as well

as the interaction effects with Z are linear, and a semiparametric mixed model by assuming

the main effect m0(.) of X is nonlinear but the interaction effects with Z are linear.

Suppose the proposed semiparametric mixed model with nonlinear interaction ef-

fects (SPNLMM) is given as

Yi = m0(XT
i β

0) +m1(XT
i β

0)Zi + TT
i α

0 + ξi + εi, (5.15)

the parametric linear mixed model (LMM) is given as

Yi = a0 +
3∑

k=1

bkXik + (d+
3∑

k=1

dkXik)Zi + TT
i α

0 + ξi + εi, (5.16)
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and the semiparametric mixed model with linear interaction effects (SPLMM) is given as

Yi = m0(XT
i β

0) + (d+
3∑

k=1

dkXik)Zi + TT
i α

0 + ξi + εi. (5.17)

First, we generate responses Yi from model (5.15) where i = 1, ..., n, n = 2191, Xi =

(Xik, 1 ≤ k ≤ 3)T are simulated environmental effects, which are generated from indepen-

dent uniform distributions on [0,1], Ti = (Tis, 1 ≤ s ≤ 3)T are covariates generated from

the multivariate normal distribution with mean 0, marginal variance 1, and an AR-1 cor-

relation matrix with autocorrelation coefficient 0.5. Zi are simulated genetic factors, which

have three possible genotype categories represented by AA, Aa and aa , and coded as 1, 0

and -1 with allele frequency 0.5. We use the empirical centered value of Zi to generate Yi.

The error terms ξ = (ξ1, ..., ξn)T ∼ MVNn(0, λσ2K) and ε = (ε1, ..., εn)T ∼ MVNn(0, σ2I),

where σ2 = 0.5, λ = 1 and K is a 2191 × 2191 correlation matrix calculated from the real

SNPs in 22 chromosomes. We let β0 = (3, 2, 1)/
√

14, α0 = (2, 1,−1), m0(u) = 1+5 sin(πu)

and m1(u) = c× sin(2πu), where c ranges from 0 to 0.5 with increment 0.1. 200 simulated

samples are generated.

Then we perform the score test as described in Section 5.3 for testing H0 : m1(·) =

0 versus H1 : m1(·) 6= 0 for c = (0, 0.1, 0.2, 0.3, 0.4, 0.5) in model (5.15). Meanwhile, we

perform the score test for testing H0 : d, dk = 0 for k = 1, 2, 3 versus H1 : d 6= 0, or dk 6= 0

for some k = 1, 2, 3 in model (5.16) and model (5.17). Note that model (5.16) by assuming a

linear main effect is misspecified, but the semiparametric model (5.17) is correctly specified

under the null hypothesis H0. Score tests are performed by assuming model (5.16) and

model (5.17) as the alternative models, respectively. The critical value for both tests is

calculated from the chi-square distribution with 4 degrees of freedom at significance level
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0.05.

Table 5.7 reports the powers of the score tests for these three models SPNLMM,

LMM and SPLMM for c = (0, 0.1, 0.2, 0.3, 0.4, 0.5) with 200 simulated samples. Clearly

we observe that for SPNLMM model, the power size at c = 0 (H0 is true) is close to the

nominal significance level 0.05, which confirms the asymptotic null distribution of the test

statistic. The power increases to 1 rapidly as c increases. The results illustrate that the

proposed score test is a powerful test. For the LMM model, the power is much larger than

0.05 when c = 0, since the model is misspecified under H0. For the SPLMM model, the

power is around 0.05 when c = 0, since the model is correctly specified under H0, so that

the score test works well under H0. For both of these two misspecified models under H1, the

power increases very slowly as the value of c increases. This result indicates that when the

actual nonlinear interaction effect is misspecified, the score test will become less powerful.

We also evaluate the performance of the proposed model when the true underlying

interactions are linear. First, we generate Yi from model (5.16) with α0 = (2, 1,−1), a0 = 0,

(b1, b2, b3) = (3, 2, 1)/
√

14, d = c× 0.02, (d1, d2, d3) = c× (0.1, 0.2, 0.3), and c changes from

0 to 0.5 with increment 0.1, i = 1, ..., 2191. Table 5.8 reports the powers of the score tests

for models SPNLMM and LMM, where we can see that as c increases, their powers increase

to 1. Moreover, the powers for SPNLMM model are close to those for LMM model. Then,

we generate Yi from model (5.17) with α0 = (2, 1,−1), m0(u) = 1 + 5 sin(πu), d = c× 0.02,

(d1, d2, d3) = c×(0.1, 0.2, 0.3) and c changes from 0 to 0.5 with increment 0.1, i = 1, ..., 2191.

Table 5.9 reports the powers of the score tests for SPNLMM and SPLMM. From table 5.9,

we can see that their powers increase to 1 as c increases, and the powers for SPNLMM
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model are very close to those for SPLMM model. The results indicate that even if the

actual interactions between environment and gene follow a linear structure, the score test

for our proposed model remains powerful.

Table 5.7: Powers of the score tests for the three models SPNLMM, LMM and SPLMM
when the true model is SPNLMM based on 200 replications for different c.

c 0 0.1 0.2 0.3 0.4 0.5

SPNLMM 0.065 0.600 0.995 1.000 1.000 1.000
LMM 0.090 0.100 0.135 0.215 0.325 0.330

SPLMM 0.060 0.080 0.160 0.405 0.620 0.760

Table 5.8: Powers of the score tests for SPNLMM and LMM when the true model is LMM
based on 200 replications for c = (0, 0.1, 0.2, 0.3, 0.4, 0.5).

c 0 0.1 0.2 0.3 0.4 0.5

SPNLMM 0.030 0.135 0.425 0.850 0.980 1.000
LMM 0.065 0.150 0.440 0.885 0.990 1.000

Table 5.9: Powers of the score tests for SPNLMM and SPLMM when the true model is
SPLMM based on 200 replications for c = (0, 0.1, 0.2, 0.3, 0.4, 0.5).

c 0 0.1 0.2 0.3 0.4 0.5

SPNLMM 0.060 0.155 0.480 0.825 0.990 1.000
SPLMM 0.030 0.110 0.475 0.885 1.000 1.000

Example 3. Besides power, to appropriately evaluate the efficiency of the score test, false

discovery rates (FDR) should be considered as well. In this simulation study, we wish to

compare both powers and FDR of the score tests among SPNLMM, LMM and SPLMM

models.

91



First, we generate responses Yi from the following model given as

Yi = m0(XT
i β

0) +
5∑
`=1

m`(X
T
i β

0)Zi` + TT
i α

0 + ξi + εi, (5.18)

where i = 1, ..., 2191, Xi = (Xik, 1 ≤ k ≤ 3)T are simulated environmental effects, which

are generated from independent uniform distributions on [0,1], Ti = (Tis, 1 ≤ s ≤ 3)T

are covariates generated from the multivariate normal distribution with mean 0, marginal

variance 1, and an AR-1 correlation matrix with autocorrelation coefficient 0.5, and Zi`(1 ≤

` ≤ 5) are five real SNPs coded as 1, 0, -1 chosen from chromosome 4, denoted by SNP1,

SNP2, SNP3, SNP4 and SNP5. We use the empirical centered value of Zi to generate Yi.

The error terms ξ = (ξ1, ..., ξn)T ∼ MVNn(0, λσ2K) and ε = (ε1, ..., εn)T ∼ MVNn(0, σ2I),

where σ2 = 0.5, λ = 1 and K is a 2191 × 2191 correlation matrix calculated from the real

SNPs in 22 chromosomes. We let β0 = (3, 2, 1)/
√

14, α0 = (2, 1,−1), m0(u) = 1+5 sin(πu),

m1(u) = 0.1 sin(2πu), m2(u) = 0.2 sin(2πu), m3(u) = 0.3 sin(2πu), m4(u) = 0.4 sin(2πu),

and m5(u) = 0.5 sin(2πu). 200 simulated samples are generated.

We test the significance of SNP1, SNP2, SNP3, SNP4, SNP5 and g other SNPs

chosen from chromosome 4 respectively. After obtaining the p-value (pvalue) for each SNP,

we apply the multiple testing correction procedure for GWAS given in Cheverud (2001)

and Nyholt (2004). Therefore, H0 is rejected when pvalue < α = α0/Meff , where α0 is the

overall type I error for the study and we let it be 0.05, and Meff is the Cheverud-Nyholt

estimate of the effective number of tests calculated by Meff = 1+M−1
∑M

j=1

∑M
k=1(1−r2

jk),

where M is the total number of SNPs in the study (i.e., M = 5 + g), and rjk are the

correlation coefficients of these M SNPs. Let g = 2000, 5000, 10000 for comparison. The

detection powers for SNP1, SNP2, SNP3, SNP4 and SNP5 are the proportions of simulation
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runs with pvalue less than α among 200 replications respectively. FDR are calculated using

the times of falsely discovered SNPs divided by the total times of discovered SNPs in 200

replications. Table 5.10 reports the powers and FDR of the score tests for SPNLMM, LMM

and SPLMM models under model (5.18). The result indicates that score test for SPNLMM

has much higher power and much lower FDR than LMM and SPLMM when the underlying

G × E interactions are nonlinear, which confirms the efficiency of our proposed score test.

Moreover, the power of the score test increases as proportion of variance explained by the

SNP increases.

Table 5.10: Powers and false discovery rates (FDR) of the score tests for three models
SPNLMM, LMM and SPLMM estimated based on 200 replications when the true un-
derlying model is semiparametric mixed model with nonlinear G × E interactions for
g = 2000, 5000, 10000. Columns of SNPi shows the power of each SNP, TP shows true
positives and FP shows false positives respectively.

g SNP1 SNP2 SNP3 SNP4 SNP5 FDR TP FP

SPNLMM

2000 0.035 0.505 0.995 1.000 1.000 0.032 3.535 0.115
5000 0.035 0.500 1.000 1.000 1.000 0.030 3.535 0.110
10000 0.030 0.500 1.000 1.000 1.000 0.029 3.530 0.105

LMM

2000 0.000 0.000 0.000 0.000 0.065 0.594 0.065 0.095
5000 0.000 0.000 0.000 0.000 0.035 0.682 0.035 0.075
10000 0.000 0.000 0.000 0.000 0.040 0.636 0.040 0.070

SPLMM

2000 0.000 0.000 0.005 0.005 0.050 0.613 0.060 0.095
5000 0.000 0.000 0.000 0.010 0.045 0.656 0.055 0.105
10000 0.000 0.000 0.005 0.005 0.040 0.655 0.050 0.095

We also evaluate the powers and FDR for SPNLMM model when the underlying

interactions are linear. First, we generate 200 simulated samples from model given as

Yi = a0 +

3∑
k=1

bkXik +

5∑
`=1

(d` +

3∑
k=1

ckXik)Zi` + TT
i α

0 + ξi + εi (5.19)
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with a0 = 0, (b1, b2, b3) = (3, 2, 1)/
√

14, (c1, c2, c3) = (0.1, 0.2, 0.3), α0 = (2, 1,−1), and

(d1, d2, d3, d4, d5) = (0.02, 0.05, 0.08, 0.11, 0.14), i = 1, ..., 2191. Table 5.11 reports the pow-

ers and FDR of the score tests for models SPNLMM and LMM under model (5.19). Then,

generate 200 simulated samples from model given as

Yi = m0(XT
i β

0) +
5∑
`=1

(d` +
3∑

k=1

ckXik)Zi` + TT
i α

0 + ξi + εi (5.20)

with β0 = (3, 2, 1)/
√

14, α0 = (2, 1,−1), m0(u) = 1 + 5 sin(πu), (c1, c2, c3) = (0.1, 0.2, 0.3)

and (d1, d2, d3, d4, d5) = (0.02, 0.05, 0.08, 0.11, 0.14), i = 1, ..., 2191. Table 5.12 reports the

powers and FDR of the score tests for models SPNLMM and SPLMM under model (5.20).

The results indicate that when the true G × E interaction structure is linear, powers in

SPNLMM are slightly lower than those in SPLMM and LMM, FDR in SPNLMM is a little

bit higher than the FDR in SPLMM and LMM, which is reasonable. Since the differences

are not very large, our proposed score test is still efficient. Also, the results suggest that it

is better to explore the pattern of G × E interactions before we conduct hypothesis testing

for gene associations. If nonlinear G × E interactions exist, our proposed model is the

most powerful and efficient approach to test significant genes. If G × E interactions are

approximately linear, it is better to apply LMM or SPLMM.
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Table 5.11: Powers and false discovery rates (FDR) of the score tests for two models
SPNLMM and LMM estimated based on 200 replications when the true underlying model
is linear mixed model for g = 2000, 5000, 10000. Columns of SNPi shows the power of each
SNP, TP shows true positives and FP shows false positives respectively.

g SNP1 SNP2 SNP3 SNP4 SNP5 FDR TP FP

SPNLMM

2000 0.030 0.305 0.715 0.935 0.985 0.043 2.970 0.135
5000 0.035 0.310 0.710 0.925 0.980 0.042 2.960 0.130
10000 0.015 0.285 0.675 0.910 0.945 0.036 2.830 0.105

LMM

2000 0.040 0.420 0.755 0.945 0.995 0.026 3.155 0.085
5000 0.040 0.385 0.740 0.935 0.990 0.024 3.090 0.075
10000 0.035 0.370 0.690 0.915 0.975 0.019 2.985 0.070

Table 5.12: Powers and false discovery rates (FDR) of the score tests for two models
SPNLMM and SPLMM estimated based on 200 replications when the true underlying model
is semiparametric mixed model with linear G × E interactions for g = 2000, 5000, 10000.
Columns of SNPi shows the power of each SNP, TP shows true positives and FP shows
false positives respectively.

g SNP1 SNP2 SNP3 SNP4 SNP5 FDR TP FP

SPNLMM

2000 0.060 0.415 0.815 0.975 0.995 0.024 3.260 0.080
5000 0.070 0.410 0.765 0.970 0.990 0.021 3.205 0.070
10000 0.055 0.380 0.715 0.945 0.990 0.018 3.085 0.055

SPLMM

2000 0.090 0.420 0.845 0.985 0.995 0.021 3.335 0.070
5000 0.085 0.400 0.835 0.980 0.995 0.018 3.295 0.055
10000 0.050 0.385 0.785 0.955 0.990 0.014 3.165 0.040

5.6.2 Empirical example

Research on causes of hypertension has brought tremendous attention due to its

risk of serious health problems, including heart attack and stroke. It is known that hyper-

tension is not only related to genes but also to some environmental factors such as sleeping
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hours (Gottlieb (2006)) and physical activity (Kokkinos (2009)). Therefore, people may

wonder how genetic and environmental factors together influence people’s blood pressure.

Now we illustrate our method using data from the Framingham Heart Study (Dawber

(1951)) to investigate significant genetic factors on systolic blood pressure (SBP) in the

context of possible nonlinear G × E interactions. Let X1 = sleeping hours per day, X2 =

hours of light activity per day, and X3 = hours of moderate activity per day be the envi-

ronmental factors. SBP is used as the response variable and SNPs located in chromosome

1 are considered as the genetic factors. The three possible allele combinations are coded as

Z = (1, 0,−1). After eliminating SNPs departure from Hardy-Weinberg equilibrim, there

are 31042 SNPs remaining in our study. In addition to genotypes, sleeping hour and activ-

ity hours, we use other 3 covariates as the linear part in the semiparametric mixed model,

which are T1 = whether work (1=YES, 0=NO), T2 = health condition (1=EXCELLENT,

2=GOOD, 3=FAIR, 4=POOR), T3 = whether live with others (1=YES, 0=NO). After

deleting missing data, 2191 subjects remain in our study. Then a semiparametric mixed

model is fitted as

Yi = m0(XT
i β) +m1(XT

i β)Zi + TT
i α+ ξi + εi, i = 1, ..., 2191, (5.21)

where Xi = (Xi1, ..., Xi3)T, Ti = (Ti1, ..., Ti3)T and Zi are the observed values of the

environmental factors, covariates and genetic factor, respectively, and Yi is the standardized

value of SBP for the i-th subject. When we estimate the parameters and nonparametric

functions in model (5.21), we center and standardize all predictors.

The number of individuals included in this GWAS is huge, and from the results

we get for a few SNPs, the estimated values of λ are very close to each other. Therefore,
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to dramatically reduce the computation time, we apply the strategy in Kang (2010). We

estimate λ once with the method given in section 5.4 and then fix the λ for all the SNPs in

chromosome 1 such that we do not need to estimate the variance component repeatedly. The

same model is fitted for each SNP and after the estimation procedure, we apply the proposed

score test statistic in section 5.3 to test genetic significance by setting up the null hypothesis

H0 : m1(.) = 0 in model (5.21) to obtain the pvalue for each SNP. Then multiple testing

correction procedure for GWAS given in Cheverud (2001) and Nyholt (2004) is applied

such that H0 is rejected when pvalue < α = α0/Meff , where α0 is the overall type I error for

the study and we let it be 0.05, and Meff is the Cheverud-Nyholt estimate of the effective

number of tests calculated by Meff = 1 + M−1
∑M

j=1

∑M
k=1(1 − r2

jk), where M = 31042,

which is the number of SNPs in the study, and rjk are the correlation coefficients of SNPs.

Then we obtain α = 3×10−6. As a result, the only SNP ss66457217 with pvalue = 2.8×10−6

is selected by the procedure. The corresponding gene of this SNP is IGSF3. In addition,

another SNP ss66343404 with pvalue = 6.6× 10−6 can also be considered important to SBP,

the corresponding gene is LPPR5. It has been shown that both IGSF3 and LPPR5 have

positive associations with SBP in medical research.

We then use these two SNPs (Z1=ss66457217, Z2=ss66343404) together to fit the

model given as

Yi = m0(XT
i β) +

2∑
`=1

m`(X
T
i β)Zi` + TT

i α+ ξi + εi, i = 1, ..., 2191 (5.22)

Table 5.13 presents the estimated values (EST) for β and α by the profile log-likelihood

method in section 5.2, the associated standard errors (SE) and the p-values for testing

whether each parameter is zero or not by using the asymptotic normality distribution. We
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observe that all of the index parameters (β1, β2, β3) are significantly different from zero

with p-values much smaller than 0.05. This result indicates that the SBP is highly related

to sleeping hours and physical activity hours, which confirms the finding in the literature

(Gottlieb (2006) and Kokkinos (2009)). The small p-values for the parameters α1 and α2

indicate that work status and health condition are important factors to SBP, p-value for

parameter α3 indicates that whether living with others is slightly significant to SBP.

Table 5.13: The estimated values (EST) for β andα in model (5.22), the associated standard
errors (SE) and the p-values for testing whether the parameters are zero or not in the real
data example.

β1 β2 β3

EST 0.3718 0.6875 0.6238
SE 0.0615 0.0296 0.0333

p-value < 0.001 < 0.001 < 0.001

α1 α2 α3

EST -0.1220 0.1214 -0.0362
SE 0.0212 0.0210 0.0210

p-value < 0.001 < 0.001 0.084

To illustrate the change pattern of the estimated mean curve of SBP with index,

we plot the estimated curve m̂0(.) against the estimated index and sleeping hours. From

Figure 5.3, we can see a nonlinear change pattern between m̂0(.) and index, and sleeping

hours as well. In the beginning, the value of m̂0(.) increases with sleeping hours, then

becomes smooth after about 8 hours. The patterns of m̂0(.) against physical activity hours

per day are similar. Next, we plot the estimated coefficient functions m̂1(.) and m̂2(.) in

Figure 5.4 to illustrate the effect of a genetic factor interacting with the environmental

factors. We also observe nonlinear pattern of the estimated functions m̂1(.) and m̂2(.).
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Figure 5.3: Plots of the estimated function m̂0(.) against the estimated index and sleeping
hours per day.
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Figure 5.4: Plots of the estimated functions m̂1(.) and m̂2(.) against the estimated index.
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Appendix A

Proof of Theorems in Chapter 4

We begin this appendix by introducing necessary notations used in the follow-

ing proofs of theorems. For any positive numbers an and bn, let an � bn denote that

limn→∞ an/bn = c, where c is a positive constant, and let an ∼ bn denote that limn→∞ an/bn =

1. In addition, let C(r) (S) =
{
φ
∣∣φ(r) ∈ C (S)

}
be the set of the r-th order smooth

functions φ on the support S. For any vector ζ = (ζ1, . . . , ζs)
T ∈ Rs, denote ‖ζ‖∞ =

max (|ζ1|+ · · ·+ |ζs|), and for any symmetric matrix A, denote its Lr norm as ‖A‖r =

maxζ∈Rs,ζ 6=0 ‖Aζ‖r ‖ζ‖
−1
r . Moreover, for any matrix A = (Aij)

s,t
i=1,j=1, denote ‖A‖∞ =

max1≤i≤s
∑t

j=1 |Aij | and A⊗2 = AAT. To develop the theoretical results of the proposed

estimators, we next present the following technical conditions.

A.1 Regularity Conditions

(C1) The density function fβT
Xij

(
βTxij

)
of random variable βTXij is bounded away from

0 on the support of βTXij for β in a neighborhood of β0, and the density function
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fTij (t) of random variable Tij is bounded away from 0 on the support of Tij .

(C2) The true functions g (u) and αl (t) satisfy g (u) ∈ C(r) (SU ) and αl (t) ∈ C(r) (ST ) for

l = 1, · · · , d1 and given integer r > 3/2, where SU and ST are the compact support

sets of Uij
(
β0
)

and Tij , respectively. In addition, the order of spline functions satisfies

q ≥ r.

(C3) The eigenvalues of Mk, 1 ≤ k ≤ κ are bounded away from 0 and infinity. Let

Γ =
(
Γk,k′

)κ
k,k′=1

=
(
Γj,j′,k,k′

)m,κ
j,j′=1,k,k′=1

. For any 1 ≤ j ≤ m, and any given vector

a = (ak)
κ
k=1 ∈ Rκ, there exist constants 0 < cΓ < CΓ < ∞, such that cΓ

∑κ
k=1 a

2
k ≤∑κ

k,k′=1 akak′Γj,j,k,k′ ≤ CΓ
∑κ

k=1 a
2
k.

(C4) The eigenvalues of E
(

(1, Z
(1)T
ij )T(1, Z

(1)T
ij )

∣∣Uij(β0) = u, Tij = t
)

are uniformly bounded

away from 0 and ∞ for all u∈SU and t∈ST , where Z
(1)
ij = (Zij,1, . . . , Zij,d1)T.

(C5) The eigenvalues of ψ̇n
(
β0,α0

)
and Ψn

(
β0,α0

)
are bounded away from 0 and infinity.

Conditions (C1) and (C2), which are given in [58], are typical assumptions in the

nonparametric smoothing literature. Conditions (C3)-(C5) are needed for the convergence

rates of the parametric and nonparametric estimators as well as the existence of asymptotic

variances of the parametric estimators. It is worth noting that Condition (C1) ensures that

the density functions are bounded away from 0 in their supports. In practice, we do not

know the true support, and we may use the minimum and maximum as the bounded values

of the support. In addition, the parameter estimators and their asymptotic properties may

not be valid in the case that Conditions (C2)-(C5) are not satisfied.
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A.2 Proofs of Theorems 1 and 2

Before proving both theorems, we demonstrate the three lemmas given below.

Lemma 8 Under Conditions (C1) and (C4), for any a ∈ RJn, there exist constants 0 <

c1 < C1 <∞ such that for ∀β ∈ Θ and for sufficiently large n,

c1N
−1 ‖a‖2 ≤ aTE

{
Qi (β)T Qi (β)

}
a ≤ C1N

−1 ‖a‖2 , (A.1)

and

max
1≤J,J ′≤N+q

∣∣∣n−1
∑n

i=1
B1,J (Ui (β))TB1,J ′ (Ui (β))− E

{
B1,J (Ui (β))TB1,J ′ (Ui (β))

}∣∣∣
= Oa.s.

{√
(log n) / (nN)

}
,

max
1≤J,J ′≤N+q

∣∣∣n−1
∑n

i=1
B2,J (Ti)

TB2,J ′ (Ti)− E
{
B2,J (Ti)

TB2,J ′ (Ti)
}∣∣∣

= Oa.s.

{√
(log n) / (nN)

}
, (A.2)

where

BJ (Ui (β)) =
[
{B1,J (Ui1 (β)) , . . . , B1,J (Uim (β))}T

]
m×1

,

B2,J (Ti) =
[
{B2,J (Ti1) , . . . , B2,J (Tim)}T

]
m×1

.

Proof. By Theorem 5.4.2 of deVore and Lorentz (1993) and Condition (C1), we

have that, for sufficiently large n and for any α = (α1, . . . αJn)T∈RJn , there exist constants

0 < c∗1 < C∗1 <∞ and 0 < c∗2 < C∗2 <∞ such that

c∗1N
−1
∑Jn

J=1
α2
J ≤ E

{∑Jn

J=1
αJB1,J(Uij(β

0))

}2

≤ C∗1N−1
∑Jn

J=1
α2
J and (A.3)

c∗2N
−1
∑Jn

J=1
α2
J ≤ E

{∑Jn

J=1
αJB2,J (Tij)

}2

≤ C∗2N−1
∑Jn

J=1
α2
J . (A.4)
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In addition, Condition (C4) implies that, for any ϑ= (ϑ0, ϑ1, . . . ϑd1)T∈Rd1+1, there exist

constants 0 < c∗3 < C∗3 <∞ such that

c∗3
∑d1

l=0
ϑ2
l ≤ E{(ϑ0 +

∑d1

l=1
ϑlZij,l)

2|Uij(β0), Tij} ≤ C∗3
∑d1

l=0
ϑ2
l . (A.5)

Let a = (aJ,l : 1 ≤ J ≤ Jn, 0 ≤ l ≤ d1). After algebraic simplification, we have

aTE
{

Qi

(
β0
)T

Qi

(
β0
)}

a

=
∑m

j=1
aTE

{
Qij

(
β0
)
Qij

(
β0
)T}

a

=
∑m

j=1
E[{
∑Jn

J=1
aJ,0B1,J(Uij(β

0))}+
∑d1

l=1
{
∑Jn

J=1
aJ,lB2,J (Tij)}Zij,l]2

≤
∑m

j=1
C∗3 [E{

∑Jn

J=1
aJ,0B1,J(Uij(β

0))}2 +
∑d1

l=1
E{
∑Jn

J=1
aJ,lB2,J (Tij)}2]

≤
∑m

j=1
C∗3{C∗1N−1

∑Jn

J=1
α2
J + C∗1N

−1
∑d1

l=1

∑Jn

J=1
a2
J,l},

where the first inequality of the above equation follows from (A.5) and the second inequality

follows from (A.3) and (A.4). By letting C1 = mC∗3C
∗
1 , we then obtain that

aTE
{

Qi

(
β0
)T

Qi

(
β0
)}

a ≤C1N
−1 ‖a‖2 .

Applying a similar approach, we can show that

aTE
{

Qi

(
β0
)T

Qi

(
β0
)}

a ≥c1N
−1 ‖a‖2 .

This completes the proof of (A.1), and the result of (A.2) can be obtained by Bernstein’s

inequality from [2].

Lemma 9 Under Conditions (C1)-(C4), we have

(1)
∣∣g̃ (u,β0,α0

)
− g (u)

∣∣ = Op

(√
N/n+N−r

)
and

∣∣g̃′ (u, β0,α0
)
− g′ (u)

∣∣ =

Op

(√
N3/n+N−r+1

)
uniformly in u ∈ SU ;
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(2) |α̃l
(
t,β0,α0

)
− αl (t) | = Op

(√
N/n+N−r

)
and

∣∣α̃′l (t,β0,α0
)
− α′l (t)

∣∣ =

Op

(√
N3/n+N−r+1

)
uniformly in t ∈ ST , for 1 ≤ l ≤ d1.

Proof. For the sake of simplicity and with a slight abuse of notations, we denote

γ̃ =
(
γ̃T

0 , . . . , γ̃
T
d1

)T
= γ̃

(
β0,α0

)
, φ̃0

n =

{(
φ̃0
n,1

)T
, . . . ,

(
φ̃0
n,κ

)T
}T

= φ̃n
(
γ0,β0,α0

)
, and

C̃0
n = C̃n

(
γ0,β0,α0

)
. According to the result on page 149 of [12], for g and αl satisfying

Condition (C2), there exists γ0
l ∈ RJn such that

sup
u∈SU

∣∣g (u)− g0 (u)
∣∣ = O

(
N−r

)
and sup

t∈ST

∣∣αl (t)− α0
l (t)

∣∣ = O
(
N−r

)
, (A.6)

where g0 (u) = B1 (u)T γ0
0 and α0

l (t) = B2 (t)T γ0
l . Let γ0 =

(
γ0T

0 , . . . ,γ0T
d1

) T
, and we then

show that
∥∥γ̃ − γ0

∥∥
∞ = oa.s. (1). By the same arguments as given in [39], we know that

the global minimum for Q̃n
(
γ,β0,α0

)
given in (4.7) exists. As a result, we only need to

demonstrate that the minimizer γ̃ remains inside of Sγ0 , where Sγ0 is any neighborhood

of γ0.

Let

%̃n
(
γ,β0,α0

)
=

∥∥∥∥n−1
{
EC̃n

(
γ,β0 ,α0

)}−1/2 {
Eφ̃n

(
γ,β0,α0

)}∥∥∥∥ ;

it is noteworthy that %̃n
(
γ,β0,α0

)
is a continuous function in γ. By (A.1) and (A.6), we

have ∥∥∥ECn (γ0,β0 ,α0
)1/2∥∥∥

2
� κ

∥∥∥∥[E {Qi

(
β0
)T

Qi

(
β0
)}]1/2

∥∥∥∥
2

� N−1/2

and
∥∥Eφn (γ,β0,α0

)∥∥
2

= O
(
N−r−1/2

)
. Therefore,

%n
(
γ,β0,α0

)
≤
∥∥∥ECn (γ0,β0 ,α0

)1/2∥∥∥−1

2

∥∥Eφn (γ,β0,α0
)∥∥

2
= O

(
N1/2N−r−1/2

)
= o (1) .
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Assume that γ̃ ∈ SCγ0 , where SCγ0 is complement of Sγ0 . Then, there exists a constant

0 < C <∞, such that

%̃n
(
γ̃,β0 ,α0

)
=

∥∥∥∥n−1
{
EC̃n

(
γ̃,β0,α0

)}−1/2 {
Eφ̃n

(
γ̃,β0,α0

)}∥∥∥∥ > C. (A.7)

Since γ̃ is the minimizer of Q̃n
(
γ,β0,α0

)
, we have that

∥∥∥n−1C̃n
(
γ̃,β0,α0

)−1/2
φ̃n
(
γ̃,β0,α0

)∥∥∥ ≤ ∥∥∥n−1C̃n
(
γ0,β0 ,α0

)−1/2
φ̃n
(
γ0 ,β0,α0

)∥∥∥ .
By the strong law of large numbers, we further obtain

∥∥∥n−1C̃n
(
γ0,β0,α0

)−1/2
φ̃n
(
γ0,β0,α0

)∥∥∥
→

∥∥∥∥n−1
(
EC̃0

n

)−1/2 (
Eφ̃0

n

)∥∥∥∥ = o (1) ,

almost surely. Thus,
∥∥∥n−1C̃n

(
γ̃,β0,α0

)−1/2
φ̃n
(
γ̃,β0,α0

)∥∥∥ = o (1). Recall that

φ̃n
(
γ,β0,α0

)
= n−1

∑n

i=1
φ̃in
(
γ,β0,α0

)
as given in (4.6). It is also worth noting that φ̃in

(
γ,β0,α0

)
is a continuous function of γ,

and, for all γ ∈ SCγ0 , there exists 0 < C∗ <∞ such that

||φ̃n
(
γ,β0,α0

)
||

≤ n−1{
∑n

i=1
φ̃in (γ,β0,α0)Tφ̃in (γ,β0,α0)}1/2

≤ C∗n−1(nκJn(1 + d1))1/2.

Then, by the uniform law of large numbers, we have

sup
γ∈SCγ0

||φ̃n
(
γ,β0,α0

)
− Eφ̃n

(
γ,β0,α0

)
|| = oa.s. (1) .

108



This, together with the continuous mapping theorem, leads to

∣∣∣n−1C̃n
(
γ̃ ,β0,α0

)−1/2
φ̃n
(
γ̃,β0,α0

)
− %̃n

(
γ̃,β0,α0

)∣∣∣ = oa.s. (1) ,

which contradicts with (B.14). Consequently, γ̃ remains inside of S γ0 .

Using the above result and the Taylor expansion, we have

γ̃ − γ0 = −
{
∂2Q̃n

(
γ0,β0,α0

)
/∂γ∂γT

}−1 {
∂Q̃n

(
γ0 ,β0,α0

)
/∂γ

}
(1 + op (1)) .

Let

Ωn =


Ωn,1

...

Ωn,κ

 = n−1
∑n

i=1


Qi

(
β0
)T

∆iΛ1∆iQi

(
β0
)

...

Qi

(
β0
)T

∆iΛκ∆iQi

(
β0
)


κJn(1+d1)×Jn(1+d1)

and

Ξn = n−2
∑n

i=1


Qi

(
β0
)T

∆iΓ1,1∆iQi

(
β0
)
· · · Qi

(
β0
)T

∆iΓ1,κ∆iQi

(
β0
)

...
. . .

...

Qi

(
β0
)T

∆iΓκ,1∆iQi

(
β0
)
· · · Qi

(
β0
)T

∆iΓκ,κ∆iQi

(
β0
)


with dimension κJn (1 + d1)× κJn (1 + d1). By (A.6) and the weak law of large numbers,

we have Cn
(
γ0,β0,α0

)
= Ξn (1 + op (1)). Thus,

∂Qn
(
γ0,β0, α0

)
/∂γ=2

{
∂φn

(
γ0,β0,α0

)T
/∂γ

}
Ξ−1
n φn

(
γ0,β0,α0

)
(1 + op (1))

= −2ΩT
nΞ−1

n φ0
n (1 + op (1)) and

∂2Qn
(
γ0,β0,α0

)
/∂γ∂γT = 2ΩT

nΞ−1
n Ωn (1 + op (1)) . (A.8)

As a result,

γ̃ − γ0 =
(
n−1ΩT

nΞ−1
n Ωn

)−1 (
n−1ΩT

nΞ−1
n φ0

n

)
(1 + op (1)) . (A.9)
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By (A.1), (A.2) and Condition (C3), it can be shown that, with probability approaching

1, ‖nΞn‖2 � N−1 and sup1≤k≤κ ‖Ωn,k‖2 � N−1, and thus
∥∥n−1Ξ−1

n

∥∥
2
� N . Moreover, by

(A.1),

∥∥∥E (Ωn)TE (Ωn)
∥∥∥

2
=

∥∥∥∥∑κ

k=1
E
{

Qi

(
β0
)T

∆iΛk∆iQi

(
β0
)}⊗2

∥∥∥∥
2

� κ
∥∥∥E {Qi

(
β0
)T

Qi

(
β0
)}∥∥∥2

2
� N−2.

This, together with (A.2), implies that, with probability approaching 1,
∥∥ΩT

nΩn

∥∥
2
� N−2.

Accordingly, with probability approaching 1,

∥∥n−1ΩT
nΞ−1

n Ωn

∥∥
2
� N

∥∥ΩT
nΩn

∥∥
2
� N−1 and

∥∥∥(n−1ΩT
nΞ−1

n Ωn

)−1
∥∥∥

2
� N. (A.10)

Next, let µi = (µi1, . . . , µim)T. By ( 4.6), φ0
n,k can be decomposed into φ0

n,k,e +

φ0
n,k,µ, where

φ0
n,k,e = n−1

∑n

i=1
Qi

(
β0
)T

∆̃i

(
γ0,β0,α0

)
Λk (Yi − µi) ,

φ0
n,k,µ = n−1

∑n

i=1
Qi

(
β0
)T

∆̃i

(
γ0,β0,α0

)
Λk
{
µi − µ̃i

(
γ0 ,β0,α0

)}
.

Denote φ0
n,e =

{(
φ0
n,1,e

)T
, . . . ,

(
φ0
n,κ,e

)T}T
and φ0

n,µ =
{(
φ0
n,1,µ

)T
, . . . ,

(
φ0
n,κ,µ

)T}T
. Ac-

cordingly, γ̃ − γ0 =
(
γ̃e + γ̃µ

)
(1 + op (1)), where γ̃e =

(
n−1ΩT

nΞ−1
n Ωn

)−1 (
n−1ΩT

nΞ−1
n φ0

n,e

)
and

γ̃µ =
(
n−1ΩT

nΞ−1
n Ωn

)−1 (
n−1ΩT

nΞ−1
n φ0

n,µ

)
. Let C =

(
CT
ij , 1 ≤ j ≤ m, 1 ≤ i ≤ n

)T
. Then,

for any vector a ∈RJn(1+d1) with ‖a‖ = 1, E
(
aTγ̃e

)
= 0, and (A.10) leads to

E
{(

aTγ̃e
)2 |C} � aT

(
ΩT
nΞ−1

n Ωn

)−1
a � Nn−1.
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Thus, by the weak law of large numbers,
∣∣aTγ̃e

∣∣ = Op
(
N1/2n−1/2

)
. Furthermore, with

probability approaching 1, there exists a constant 0 < C <∞, such that

∣∣aTγ̃µ
∣∣ ≤ C

∥∥∥(n−1ΩT
nΞ−1

n Ωn

)−1
∥∥∥

2

∥∥n−1Ξ−1
n

∥∥
2

sup
1≤k≤κ

‖Ωn,k‖2
∥∥E {Qij (β0

)}∥∥O (N−r)
= O

(
N−r

)
.

The above results imply
∣∣aT

(
γ̃ − γ0

)∣∣ = Op
(
N1/2n−1/2 +N−r

)
. This, in conjunction

with (A.6), ensures that
∣∣g̃ (u,β0,α0

)
− g (u)

∣∣ = Op
(
N1/2n−1/2 +N−r

)
uniformly for

every u ∈ SU and
∣∣α̃l (t,β0 , α0

)
− αl (t)

∣∣ = Op
(
N1/2n−1/2 +N−r

)
uniformly for every

t ∈ ST .

To show the second part of the lemma, we employ the results on page 116 of Davis

C. S. (2002) and obtain that g̃′
(
u,β0,α0

)
= B∗1 (u)T D1γ̃0

(
β0,α0

)
and α̃′l

(
t, β0,α0

)
=

B∗2 (t)T D1γ̃l
(
β0,α0

)
, where B∗1 (u) =

{
B∗1,J (u) : 1 ≤ J ≤ N + q − 1

}T
is the (q − 1)-th

order B-spline basis, and

D1 =
[
(q − 1)

{(
−D,0(Jn−1)

)
+
(

0(Jn−1),D
)}]

(Jn−1)×Jn
, D =diag(d1, . . . , dN+q−1), dJ =

(ξq−1+J − ξJ)−1 for 1 ≤ J ≤ N+q−1, and 0(Jn−1) is the (N − 1) dimensional vector with “0

” elements, and B∗2 (t) is defined in the same way. It is easy to prove that ‖D1‖∞ = O (N).

Applying similar techniques to those used in the proofs for g̃
(
u,β0,α0

)
and α̃l

(
t,β0,α0

)
,

we have that
∣∣g̃′ (u,β0 ,α0

)
− g′ (u)

∣∣ = Op

(√
N3/n+N−r+1

)
uniformly in u ∈ SU and∣∣α̃′l (t,β0,α0

)
− α′l (t)

∣∣ = Op

(√
N3/n+N−r+1

)
uniformly in t ∈ ST , for 1 ≤ l ≤ d1, which

completes the proof.

Lemma 10 Under Conditions (C1)-(C4), we have that

∂η̂ij
(
β0, α0

)
∂
(
βT
−1, α

T
)T =

{
g̃′
(
XT
ijβ

0,β0 , α0
)
X̂T
ijJ

0, Ẑ
(2)T
ij

}T
+Op

(
N−r+1 +N3/2n−1/2

)
.
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Proof. By (4.8), we obtain

∂η̂ij
(
β0,α0

)
∂
(
βT
−1,α

T
)T =

 g̃′
(
XT
ijβ

0 ,β0,α0
)
X̂T
ijJ

0 +
{
Qij (β)T (∂γ̃ (β,α) /∂ βT

−1

)}T

Z
(2)
ij +

{
Qij (β)T

(
∂γ̃ (β,α) /∂α

T
)}T

 .
From (A.9), it can be shown that

Qij
(
β0
)T (

∂γ̃
(
β0,α0

)
/∂βT

−1

)
= −Qij

(
β0
)T (

n−1ΩT
nΞ−1

n Ωn

)−1 (
n−1ΩT

nΞ−1
n

)
×

n−1
∑n

i=1
Qi

(
β0
)T

∆iΛk∆i

{
g0′ (Uij (β0

))
Xij , 1 ≤ j ≤ m

}T
J0 +

Op

(
N1/2n−1/2 +N−r

)
= −

{
Qij

(
β0
)T
η̂s, 1 ≤ s ≤ p

}
J0 +Op

(
N1/2n−1/2 +N−r

)
,

where g0′ (Uij (β0
))

= B′1
(
Uij
(
β0
))T

γ0
0 and

ζ̂s =
(
n−1ΩT

nΞ−1
n Ωn

)−1 (
n−1ΩT

nΞ−1
n

)
×

n−1
∑n

i=1
Qi

(
β0
)T

∆iΛk∆i

{
g0′ (Uij (β0

))
Xij,s, 1 ≤ j ≤ m

}T
.

Furthermore, by Lemma 11, we have that

Qij
(
β0
)T
ζ̂s = g̃′

(
XT
ijβ

0,β0,α0
)
Qij

(
β0
)T
ϑ̂s +Op

(
N−r+1 +N3/2n−1/2

)
,

where

ϑ̂s =
(
n−1ΩT

nΞ−1
n Ωn

)−1 (
n−1ΩT

nΞ−1
n

)
n−1

∑n

i=1
Qi

(
β0
)T

∆iΛk∆iXi·,s, (A.11)

and Xi·,s = {Xij,s, 1 ≤ j ≤ m}T. Thus,

Qij
(
β0
)T (

∂γ̃
(
β0,α0

)
/∂β

T

−1

)
= −g̃′

(
XT
ijβ

0,β0,α0
){
Qij

(
β0
)T
ϑ̂s : 1 ≤ s ≤ p

}
J0 +Op

(
N−r+1 +N3/2n−1/2

)
.
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Analogously, we can demonstrate that

Qij
(
β0
)T (

∂γ̃
(
β0,α0

)
/∂α

T
)

= −
{
Qij

(
β0
)T
η̂l : d1 + 1 ≤ l ≤ d

}
+Op

(
N−r+1 +N3/2n−1/2

)
.

Accordingly,

∂η̂ij
(
β0, α0

)
∂
(
βT
−1, α

T
)T =

{
g̃′
(
XT
ijβ

0,β0 , α0
)
X̂T
ijJ

0, Ẑ
(2)T
ij

}T
+Op

(
N−r+1 +N3/2n−1/2

)
,

which completes the proof.

Proof of Theorem 5. Let θ̂ =
(
β̂

T

−1, α̂
T
)T

and θ0 =
(
β0T
−1,α

0T
)T

. Let S(θ0)

be any open set that include θ0. We use the same technique given in the proofs of Lemma

A.2 to show that θ̂ remains inside of S(θ0), so that ||θ̂ − θ0|| = oa.s.(1). In the following,

we demonstrate the asymptotic normality of θ̂. By the Taylor expansion, we have

θ̂ − θ0 = −
{
∂2Q∗n

(
β0,α0

)
/∂θ∂θT

}−1 {
∂Q∗n

(
β0, α0

)
/∂θ

}
{1 + op (1)} .

Define ψ̇∗n (β,α) =
{
ψ̇∗n,1 (β,α) , . . . , ψ̇∗n,κ (β,α)

}T
, where

ψ̇∗n,k (β,α) = n−1
∑n

i=1
D̂T
i (β,α) ∆i (β,α) Λk∆i (β,α) D̂i (β,α) .

By the definition of Q∗n
(
β0, α0

)
given in (4.9), it can be shown that

∂Q∗n
(
β0,α0

)
/∂θ = −2ψ̇∗n

(
β0,α0

)T
Ψ∗n
(
β0,α0

)−1
ψ∗n
(
β0,α0

)
+Op

(
n−1

)
and

∂2Q∗n
(
β0,α0

)
/∂θ∂θT = 2ψ̇∗n

(
β0,α0

) T
Ψ∗n
(
β0,α0

)−1
ψ̇∗n
(
β0,α0

)
+ op (1) .

By Lemmas 11 and 10, we have that

ψ̇∗n
(
β0,α0

)
= ψ̇n

(
β0,α0

)
+Op

(
N3/2n−1/2 +N−r+1

)
and (A.12)

nΨ∗n
(
β0,α0

)
= Ψn

(
β0,α0

)
+Op

(
N3/2n−1/2 +N−r+1

)
. (A.13)

113



The above results imply that

∂2Q∗n
(
β0,α0

)
/∂θ∂θT=2n ψ̇n

(
β0,α0

)T
Ψn

(
β0,α0

)−1
ψ̇n
(
β0 ,α0

)
+ op (n) . (A.14)

We next define ψn (β,α) =
{
ψn,1 (β,α)T , . . . , ψn,κ (β,α)T

}T
, where

ψn,k (β,α) = n−1
∑n

i=1
DT
i (β,α) ∆i (β,α) Λk∆i (β,α) (Yi − µi) .

Then, for N4n−1 = o (1), N−4r+2n = o (1) with r > 3/2, and 1 ≤ k ≤ κ, we employ Lemma

11 and obtain

ψ∗n,k
(
β0,α0

)
− ψn,k

(
β0,α0

)
= n−1

∑n

i=1

{
D̂T
i (β,α)−DT

i (β,α)
}

∆i (β,α) Λk (Yi − µ̂i ( β,α))

+n−1
∑n

i=1
DT
i ( β,α) ∆i (β,α) Λk (µi (β,α)− µ̂i (β,α))

= Op

(
N3/2n−1/2 +N−r+1

)
Op

(
n−1/2 +N1/2n−1/2 +N−r

)
+Op

(
n−1/2

)
Op

(
N1/2n−1/2 +N−r

)
= op

(
n−1/2

)
. (A.15)

By (A.12), (A.13) and (A.15),

∂Q∗n
(
β0,α0

)
/∂θ = −2nψ̇n

(
β0,α0

)T
Ψn

(
β0,α0

)−1
ψn
(
β0,α0

)
+ op

(
n1/2

)
. (A.16)

This, together with (A.14), leads to

θ̂ − θ0 =
{˜̇
ψn
(
β0,α0

)T
Ψ̃n

(
β0,α0

)−1 ˜̇
ψn
(
β0,α0

)}−1

×{˜̇
ψn
(
β0 , α0

)T
Ψ̃n

(
β0,α0

)−1
ψ̃n
(
β0,α0

)}
+ op

(
n−1/2

)
.

By the Lindeberg-Feller Central Limit Theorem and Condition (C5), we then obtain the

asymptotic normality of θ̂ − θ0 presented in Theorem 5.
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Proof of Theorem 2. Applying Lemma 11 and the fact that

∥∥∥∥(β̂T
, α̂T

)T
−
(
β0T,α0T

)T∥∥∥∥ = Op

(
n−1/2

)
,

we are able to prove this theorem straightforwardly.

A.3 Proof of Theorem 3

We consider the three steps given below to show the oracle properties of the PQIF

estimators.

Step I: Find the convergence rate of

{(
β̂

PQIF

−1

)T
,
(
α̂PQIF

)T
}T

. Let β̃−1 =

β0
−1 + n−1/2v−1 =

(
β̃2, . . . , β̃p

)T
, β̃1 =

√
1−

∥∥∥β̃−1

∥∥∥2
, β̃ =

(
β̃1, β̃

T

−1

)T
, and α̃ = α0 +

n−1/2w = (α̃d1+1, . . . , α̃d)
T, where v =

(
v1,v

T
−1

)T
= (v1, . . . , vp)

T, w = (wd1+1, . . . , wd)
T,

and ‖v‖2 = ‖w‖2 = C for some positive constant C. Denote θ̃ =
(
β̃

T

−1, α̃
T
)T

, θ =(
βT
−1,α

T
)T

, Q̇∗n (β,α) = ∂Q∗n (β,α) /∂θ and Q̈∗n (β,α) = ∂2Q∗n (β,α) /∂θ∂θT. Then,

Q∗n

(
β̃, α̃

)
−Q∗n

(
β0,α0

)
=
(
θ̃ − θ0

)T
Q̇∗n
(
β0,α0

)
+

1

2

(
θ̃ − θ0

)T
Q̈∗n (β∗,α∗)

(
θ̃ − θ0

)
,

(A.17)

for some
(
β∗T,α∗T

)T
that lies between

(
β0T,α0T

)T
and

(
β̃

T
, α̃T

)T
. By (A.14) and (A.16),

we have, with probability approaching 1,

(
θ̃ − θ0

)T
Q̈∗n (β∗,α∗)

(
θ̃ − θ0

)
=

(
θ̃ − θ0

)T
Q̈∗n
(
β0,α0

) (
θ̃ − θ0

)
+O

(
C3n−1/2

)
� 2n

(
θ̃ − θ0

)T
ψ̇n
(
β0,α0

)T
Ψn

(
β0,α0

)−1
ψ̇n
(
β0, α0

) (
θ̃ − θ0

)
+ o

(
C2
)

+O
(
C3n−1/2

)
� C2 +O

(
C3n−1/2

)
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and
(
θ̃ − θ0

) T
Q̇∗n
(
β0,α0

)
= Op (C).

Next, let

an = max
2≤s≤p

{∣∣p′λn1

(∣∣β0
s

∣∣)∣∣ , β0
s 6= 0

}
bn = max

2≤s≤p

{∣∣p′′λn1

(∣∣β0
s

∣∣)∣∣ , β0
s 6= 0

}
cn = max

d1+1≤l≤d

{∣∣p′λn2

(∣∣α0
l

∣∣)∣∣ , α0
l 6= 0

}
dn = max

d1+1≤l≤d

{∣∣p′′λn2

(∣∣α0
l

∣∣)∣∣ , α0
l 6= 0

}
.

Under the assumptions that λn1 → 0 and λn2 → 0, we have that an = 0 and cn = 0. From

the Taylor expansion and the Cauchy-Schwarz inequality, as n→∞, we further have that

−

{
n

p∑
s=2

pλn1

(∣∣∣β̃s∣∣∣)− n p∑
s=2

pλn1

(∣∣β0
s

∣∣)}−
n

d∑
l=d1+1

pλn2 (|α̃l|)− n
d∑

l=d1+1

pλn2

(∣∣α0
l

∣∣)
≤ −n

p1∑
s=2

{
pλn1

(∣∣∣β̃s∣∣∣)− pλn1

(∣∣β0
s

∣∣)}− n d1+d20∑
l=d1+1

{
pλn2 (|α̃l|)− pλn2

(∣∣α0
l

∣∣)}
≤ n

(
n−1/2√p1an ‖v−1‖2 + n−1bn ‖v−1‖22 + n−1/2

√
d20cn ‖w‖2 + n−1dn ‖w‖22

)
≤ C2 (bn + dn) . (A.18)

When bn → 0, dn → 0, and C is sufficiently large, the second term on the right-hand side

of (A.17) dominates its first term and (A.18). Accordingly, for any give ν > 0, there exists

a large constant C̃ such that,

P

{
inf
V12
L∗n
(
β0 + n−1/2v, α0 + n−1/2w

)
> L∗n

(
β0,α0

)}
≥ 1− ν,

as n → ∞, where V12 =
{(

vT,wT
)T

: ‖v‖ = C̃ and ‖w‖ = C̃
}

. Consequently, the rate of

convergence of

{(
β̂

PQIF

−1

)T
,
(
α̂PQIF

)T
}T

is Op
(
n−1/2

)
.
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Step II: Demonstrate the sparsity of

{(
β̂

PQIF

−1

)T
,
(
α̂PQIF

)T
}T

. Assume that

β(1) =

{
β1,
(
β(1),−1

)T
}T

andα(1) satisfy
∥∥∥β(1) − β0

(1)

∥∥∥ = Op
(
n−1/2

)
and

∥∥∥ α(1) −α0
(1)

∥∥∥ =

Op
(
n−1/2

)
, respectively. We then show, with probability tending to 1, that

L∗n


 β(1)

0

 ,

 α(1)

0


 = min

C
L∗n


 β(1)

β(2)

 ,

 α(1)

α(2)


 , (A.19)

as n→∞, where C =
{

( βT
(2), α

T
(2))

T :
∥∥∥ β(2)

∥∥∥ ≤ C∗n−1/2 and
∥∥α(2)

∥∥ ≤ C∗n−1/2
}

and C∗

is a positive constant.

When βs 6= 0, one has ∂L∗n (β,α) /∂βs = ∂Q∗n (β,α) /∂βs + np′λn1
(|βs|) sgn (βs).

By (A.16), it can be shown that ∂Q∗n (β,α) /∂βs = Op
(
n1/2

)
. Thus,

∂L∗n (β,α) /∂βs = nλn1

{
λ−1
n1n

−1/2 + λ−1
n1 p
′
λn1

(|βs|) sgn (βs)
}
.

Using the fact that lim infn→∞ lim infβs→0+ λ
−1
n1 p
′
λn1

(|βs|) > 0 and n−1/2λ−1
n1 → 0, we further

obtain ∂L∗n (β,α) /∂βs > 0 for βs > 0 and ∂L∗n (β,α) /∂βs < 0 for βs < 0. Analogously, we

can demonstrate that ∂L∗n (β,α) /∂αl > 0 for αl > 0 and ∂L∗n (β, α) /∂αl < 0 for αl < 0.

Consequently, the minimum of L∗n (β,α) is attained at β(2) = 0 and α(2) = 0, which proves

(A.19). This, together with the result of Step I, implies that, with probability tending to 1,

β̂
PQIF

(2) = 0 and α̂PQIF
(2) = 0, as n→∞. This completes the proof of part (i) in Theorem 3.

Step III: Demonstrate the asymptotic normality of β̂
PQIF

(1),−1 and α̂PQIF
(1) . Define

Rλn1 =
{
p′λn1

(∣∣β0
2

∣∣) sgn
(
β0

2

)
, . . . , p′λn1

(∣∣β0
p1

∣∣) sgn
(
β0
p1

)}T
,

Σλn1 = diag
{
p′′λn1

(∣∣β0
2

∣∣) , . . . , p′′λn1

(∣∣β0
p1

∣∣)} ,
Rλn2 =

{
p′λn2

(∣∣α0
d1+1

∣∣) sgn
(
α0
d1+1

)
, . . . , p′λn2

(∣∣α0
d1+d20

∣∣) sgn
(
α0
d1+d20

)}T
, and

Σλn2 = diag
{
p′′λn2

(∣∣α0
d1+1

∣∣) , . . . , p′′λn2

(∣∣α0
d1+d20

∣∣)} . (A.20)

117



By (A.19), with probability tending to 1, β̂
PQIF

(1),−1 and α̂PQIF
(1) are obtained by minimizing

L∗n
(
β(1) ,α(1)

)
=

1

2
Q∗n

(
β(1),α(1)

)
+ n

∑p1

s=2
pλn1 (|βs|) + n

∑d1+d20

l=d1+1
pλn2 (|αl|) ,

where Q∗n

(
β(1), α(1)

)
is defined similar to Q∗n (β,α) by using their nonzero components.

We then have

0 =

 ∂L∗n
(
β̂

PQIF

(1) ,α̂PQIF
(1)

)
/∂β(1),−1

∂L∗n
(
β̂

PQIF

(1) ,α̂PQIF
(1)

)
/∂α(1)



=
1

2
Q̇∗n

(
β̂

PQIF

(1) ,α̂PQIF
(1)

)
+ n

 Rλn1

Rλn2

+ nΣλ

 β̂
PQIF

(1),−1 − β0
(1),−1

α̂PQIF
(1) −α0

(1)

+Op (1) ,

where Σλ =

 Σλn1 0

0T Σλn2

. Subsequently, applying similar techniques to those used the

proof of Theorem 5, we obtain that

√
n
(

Σ
(1)
n1

)−1/2 (
Σ

(1)
n1 + Σλ

)
 β̂

PQIF

(1),−1 − β0
(1),−1

α̂PQIF
(1) −α0

(1)

+
(

Σ
(1)
n1 + Σλ

)−1

 Rλn1

Rλn2




→ N
(
0, I(p1+d20)

)
.

Finally, under the assumptions that λn1 → 0 and λn2 → 0, and the fact that
√
nΣλ =

√
nRλn1 =

√
nRλn2 = 0, we complete the proof of part (ii) in Theorem 3.

A.4 Proof of Theorem 4

Assume that the true parameters
(
β0,α0

)
in model (4.1) are known. Then, the

resulting penalized estimator of γ, γ̃PQIF =

{(
γ̃PQIF
l

)T
, 0 ≤ l ≤ d1 + 1

}T

, is obtained by
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minimizing the following penalized-QIF:

Ln (γ) =
1

2
Qn
(
γ,β0,α0

)
+ n

∑d1

l=1
pλn3 (‖ γl‖) .

Define g̃PQIF (u) = B1 (u)T γ̃PQIF
0 and α̃PQIF

l (t) = B2 (t)T γ̃PQIF
l . In the following, we will

show the convergence rate for g̃PQIF (·) and α̃PQIF
l (·) as well as demonstrate the sparsity of

γ̃PQIF.

Let γ̃ = γ0+%̃nv =
{

(γ̃l)
T , 0 ≤ l ≤ d1 + 1

}T
, where v =

{
( vl)

T , 0 ≤ l ≤ d1 + 1
}T

,

vl = (v1,l, . . . , vN+q,l)
T, and ‖v‖ = C for some positive constant C. In addition, let

Q̇n
(
γ,β0,α0

)
= ∂Q∗n (β,α) /∂γ and Q̈n

(
γ,β0,α0

)
= ∂2Q∗n (β,α) /∂γ∂γT . Then, we

obtain

Qn
(
γ̃,β0,α0

)
−Qn

(
γ0,β0, α0

)
=

(
γ̃ − γ0

)T
Q̇n
(
γ0,β0,α0

)
+

1

2

(
γ̃ − γ0

)T
Q̈n
(
γ∗,β0,α0

) (
γ̃ − γ0

)
, (A.21)

where γ∗ lies between γ̃ and γ0. By (A.8) and (A.10), with probability approaching 1,

(
γ̃ − γ0

)T
Q̈n
(
γ∗,β0, α0

) (
γ̃ − γ0

)
� 2

(
γ̃ − γ0

)T
ΩT
nΞ−1

n Ωn

(
γ̃ − γ0

)
+O

(
nC3%̃3

n

)
� C2%̃2

n

(
nN−1

)
+ nC3%̃3

n.

Furthermore, by the weak law of large numbers and (A.6), there exist constants 0 < C1 <∞

and 0 < C2 <∞ such that

(
γ̃ − γ0

)T
Q̇n
(
γ0,β0,α0

)
≤ C%̃n

∥∥∥Q̇n (γ0,β0,α0
)∥∥∥

≤ 2CC1n%̃n
∥∥φ0

n

∥∥ ≤ 2CC1C2n%̃n

(
n−1/2 +N−r−1/2

)
.

Accordingly, by the assumption N � n1/(2r+1) and taking %̃n =
√
Nn−r/(2r+1), we obtain,
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with probability approaching 1, that

(
γ̃ − γ0

)T
Q̈n
(
γ∗,β0, α0

) (
γ̃ − γ0

)
� C2N

and
(
γ̃ − γ0

)T
Q̇n
(
γ0 ,β0,α0

)
= O (CN).

Next, let

ãn = max
1≤l≤d1

{∣∣p′λn3

(∥∥γ0
l

∥∥)∣∣ ,γ0
l 6= 0

}
b̃n = max

1≤l≤d1

{∣∣p′′λn3

(∥∥γ0
l

∥∥)∣∣ , γ0
l 6= 0

}
.

Under the assumptions that λn3 → 0, we have that ãn = 0. By the Taylor expansion and

the Cauchy-Schwarz inequality, as n→∞, we further have that

−
{
n
∑d1

l=1
pλn3 (‖γ̃l‖Wn)− n

∑d1

l=1
pλn3

(∥∥ γ0
l

∥∥
Wn

)}
≤ −n

∑d10

l=1

{
pλn3 (‖γ̃l‖Wn)− pλn3

(∥∥γ0
l

∥∥
Wn

)}
≤ nb̃n

∑d10

l=1

∥∥ γ̃l − γ0
l

∥∥2

Wn
� nb̃nC2%̃2

nN
−1 = C2b̃nN. (A.22)

When b̃n → 0 and C is sufficiently large, the second term on the right-hand side of (A.21)

dominates its first term and ( A.22). Thus, for any given ν > 0, there exists a large constant

C such that,

P

{
inf
V
Ln
(
γ0 + %̃nv

)
> Ln

(
γ0
)}
≥ 1− ν,

as n→∞, where V = {v : ‖v‖ = C}. As a result,
∥∥∥γ̃PQIF − γ0

∥∥∥ = Op (%̃n), which leads to

∥∥g̃PQIF (·)− g (·)
∥∥ � N−1/2

∥∥∥γ̃PQIF
0 − γ0

0

∥∥∥ = Op

(
N−r/(2r+1)

)
and

∥∥∥α̃PQIF
l (·)− αl (·)

∥∥∥ � N−1/2
∥∥∥γ̃PQIF

l − γ0
l

∥∥∥ = Op
(
N−r/(2r+1)

)
.
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Finally, let γ =

{(
γT

(1)

)
(d10+1)×1

,
(
γT

(2)

)
(d1−d10)×1

}T

. We then show that, with

probability tending to 1,

Ln
{(
γT

(1),γ
T
(2)

)T
}

= min
C
Ln
{(
γT

(1),0
T
)T
}
,

as n → ∞, where C =
{∥∥∥ γ(2)

∥∥∥ ≤ C∗%n} and C∗ is a positive constant. When ‖γl‖ 6= 0,

there exists a constant 0 < c <∞ such that, with probability approaching 1,

∂Ln (γ) /∂ γl = ∂Qn
(
γ,β0, α0

)
/∂γl + np′λn3

(‖γl‖Wn) ‖γl‖
−1
Wn Wnγl

� ∂Qn
(
γ,β0,α0

)
/∂γl + cN−1np′λn3

(‖γl‖Wn)γl

= ∂Qn
(
γ,β0,α0

)
/∂γl + cn2r/(2r+1)p′λn3

(‖γl‖Wn)γl.

By (A.8), it can be shown that ∂Qn
(
γ,β0,α0

)
/∂γl = Op

(
nr/(2r+1)

)
. As a result,

∂Ln (γ) /∂γl = n2r/(2r+1)λn3

{
λ−1
n3n

−r/(2r+1) + λ−1
n3 p
′
λn3

(‖γl‖Wn)γl

}
.

Using the fact that λ−1
n3n

−r/(2r+1) → 0 and lim infn→∞ lim inf‖γl‖Wn
→0+ λ

−1
n3 p
′
λn3

(‖γl‖Wn) >

0, we further obtain ∂Ln (γ) /∂γJ,l > 0 for γJ,l > 0 and ∂Ln (γ) /∂γJ,l < 0 for γJ,l < 0.

Consequently, the minimum of ∂Ln (γ) is attained at γl = 0 for (d10 + 1) ≤ l ≤ d1. This

implies, with probability tending to 1, γ̃PQIF
l = 0 for (d10 + 1) ≤ l ≤ d1. Subsequently,

using the fact that

∥∥∥∥∥
{(
β̂

PQIF
)T

,
(
α̂PQIF

)T
}T

−
(
β0T,α0T

)T∥∥∥∥∥ = Op
(
n−1/2

)
and those

assumptions given in Theorem 4, the above results of convergence rate and sparsity can

be applied to the penalized estimators γ̂PQIF, ĝPQIF (·), and α̂PQIF
l (·). This completes the

proof.
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Appendix B

Proof of Theorems in Chapter 5

We begin this appendix by presenting some notation that will be used in the proofs

of theorems. For any positive numbers an and bn, let an � bn denote that limn→∞ an/bn = c,

where c is a positive constant, and let an ∼ bn denote that limn→∞ an/bn = 1. Denote the

space of the r-th order smooth functions φ as C(r) ([0, 1]) =
{
φ
∣∣φ(r) ∈ [0, 1]

}
. For any vector

ζ = (ζ1, . . . , ζs)
T ∈ Rs, denote ‖ζ‖∞ = max (|ζ1|+ · · ·+ |ζs|). For any symmetric matrix A,

denote its Lr norm as ‖A‖r = maxζ∈Rs,ζ 6=0 ‖Aζ‖r ‖ζ‖
−1
r . For any matrix A = (Aij)

s,t
i=1,j=1,

denote ‖A‖∞ = max1≤i≤s
∑t

j=1 |Aij | and A⊗2 = AAT. To develop the theoretical results

of the proposed estimators, we next present the following technical conditions.

B.1 Regularity Conditions

(C1) The density function fβTXij

(
βTxij

)
of random variable βTXij is bounded away from

0 on Sβ for β in a neighborhood of β0 and satisfies the Lipschitz condition of order 1 on

Sβ, where Sβ =
{
βTxij ; xij∈S

}
and S is a compact support set of Xij . Without loss

122



of generality, we assume Sβ = [0, 1]. Similarly, the density function fTij (t) of random

variable Tij is bounded away from 0 on [0, 1] and satisfies the Lipschitz condition of

order 1 on [0, 1].

(C2) The coefficient functions m` (u) satisfy m` (u) ∈ C(r) ([0, 1]) for given integer r > 3/2.

Spline order satisfies q ≥ r.

(C3) The eigenvalues of E
(
ZijZ

T
ij |Tij = t

)
are uniformly bounded away from 0 and∞ for

all t∈[0, 1].

(C4) The eigenvalues of
˜̇
ψn
(
β0, α0

)
and Ψ̃n

(
β0, α0

)
are bounded away from 0 and infinity.

(C5) The eigenvalues of H are bounded.

(C6) h` (u) ∈ C(1) ([0, 1]) .

B.2 Proofs of Theorems 5 and 6

By maximizing the log-likelihood function, we have

γ̃(β0, α0) =
{
Q(β0)TH−1Q(β0)

}−1 {
Q(β0)TH−1(Y −Tα0)

}
.

γ̃(β0, α0) can be decomposed into γ̃ = γ̃m + γ̃e, where

γ̃m(β0, α0) =
{
Q(β0)TH−1Q(β0)

}−1
Q(β0)TH−1m

γ̃e(β
0, α0) =

{
Q(β0)TH−1Q(β0)

}−1
Q(β0)TH−1(Y −Tα0 −m) (B.1)

Define Ω̂n(β) = n−1Q(β)TH−1Q(β). Under condition (C5), it can be proved by Theorem

5.4.2 of [14] and Berstein’s inequality in [2] that for large enough n and with probability

123



tending to 1, there are constants 0 < cR ≤ CR <∞ such that

cRJn ≤
∥∥∥Ω̂n (β)−1

∥∥∥
2
≤ CRJn, (B.2)

and by the above result and [13], we have
∥∥∥Ω̂n (β)−1

∥∥∥
∞

= Op (Jn) for ∀β ∈ Θ. The first

lemma below presents the convergence rates of m̃`

(
u, β0, α0

)
and m̃′`

(
u, β0, α0

)
to m` (u)

and m′` (u) given the true parameters β0 and α0. The results will be used in the proof of

Theorem 5.

Lemma 11 Under Conditions (C1)-(C5), and Jn →∞ and J3
nn
−1 = o (1), we have

(1)
∣∣m̃`

(
u, β0, α0

)
−m` (u)

∣∣ = Op

(√
Jn/n+ J−rn

)
and

∣∣m̃′` (u, β0, α0
)
−m′` (u)

∣∣ =

Op

(√
J3
n/n+ J−r+1

n

)
uniformly in u ∈ [0, 1], and

(2) for 1 ≤ ` ≤ p, σ−1
`n (u)

[
m̃`

(
u, β0, α0

)
− E {m` (u) |Z,X,T}

]
→ N (0, 1), where

σ2
`n (u) is defined in (5.9).

Proof. Let

γ̃e(β
0, α0) =

{
γ̃1,e(β

0, α0)T, ..., γ̃p,e(β
0, α0)T

}T
,

γ̃m(β0, α0) =
{
γ̃1,m(β0, α0)T, ..., γ̃p,m(β0, α0)T

}T
,

Thus

m̃l(u, β
0, α0) = m̃l,e(u, β

0, α0) + m̃l,m(u, β0, α0) (B.3)

where

m̃l,e(u, β
0, α0) = B (u)T γ̃l,e(β

0, α0) = eT
` B (u) γ̃e(β

0, α0),

m̃l,m(u, β0, α0) = B (u)T γ̃l,m(β0, α0) = eT
` B (u) γ̃m(β0, α0) (B.4)
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According to the result on page 149 of [12], for m` satisfying Condition (C2), there is a

function m0
` (u) = B (u)T γ0

` ∈ Hn such that

supu∈[0,1]

∣∣m0
` (u)−m` (u)

∣∣ = O
(
J−rn

)
. (B.5)

By Berstein’s inequality in Bosq(1998), it can be proved that
∥∥n−1Q(β0)TH−11n

∥∥
∞ =

Op(J
−1
n ). Thus by, for every u ∈ [0, 1],

∣∣m̃`,m

(
u, β0, α0

)
−m0

`

(
u, β0, α0

)∣∣
=

∣∣∣n−1eT
` B (u) Ω̂n

(
β0
)−1

Q(β0)TH−1
{
m−Q(β0)γ0

}∣∣∣
≤

∣∣∣∣∑Jn

j=1
Bs(u)

∣∣∣∣ ∥∥∥Ω̂n

(
β0
)−1
∥∥∥
∞

∥∥n−1Q(β0)TH−11n
∥∥
∞O(J−rn )

= Op(Jn)Op(J
−1
n )O(J−rn ) = Op(J

−r
n ) (B.6)

Moreover, for every u ∈ [0, 1], by, with probability approaching 1,

E
{
m̃l,e(u, β

0, α0)|X,T,Z
}2

= n−2eT
` B(u)Ω̂n

(
β0
)−1

Q(β0)TH−1E(eeT|X,T,Z)H−1Q(β0)Ω̂n

(
β0
)−1

B(u)Te`

= n−1σ2eT
` B(u)Ω̂n

(
β0
)−1

B(u)Te`

≤ n−1σ2
∥∥B(u)Te`

∥∥2

2

∥∥∥Ω̂n

(
β0
)−1
∥∥∥
∞

= Op(Jn/n) (B.7)

Thus by the weak law of large numbers, we have for every u ∈ [0, 1], m̃l,e(u, β
0, α0) =

Op(J
−1/2
n n−1/2). Therefore, we have for every 1 ≤ ` ≤ p,

∣∣m̃`

(
u, β0, α0

)
−m0

`

(
u, β0, α0

)∣∣ =

Op

(√
Jn/n+ J−rn

)
uniformly in u ∈ [0, 1]. According to de Boor (2001, page 116),

m̃′`
(
u, β0, α0

)
= Bq−1 (u)T D1γ̃`

(
β0, α0

)
,
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where Bq−1 (u) = {Bj,q−1 (u) : 2 ≤ j ≤ Jn}T is the (q − 1)-th order normalized B-spline ba-

sis, and D1 =



−1
ξ1−ξ2−q

1
ξ1−ξ2−q

0 · · · 0

0 −1
ξ2−ξ3−q

1
ξ2−ξ3−q

· · · 0

...
...

. . .
. . .

...

0 0 · · · −1
ξN+q−1−ξN

1
ξN+q−1−ξN


(Jn−1)×Jn

. Similarly,

m̃′`
(
u, β0, α0

)
can be written as m̃′`,m

(
u, β0, α0

)
+ m̃′`,e

(
u, β0, α0

)
, where m̃′`,m

(
u, β0, α0

)
=

Bq−1 (u)T D1γ̃`,m
(
β0, α0

)
and m̃′`,e

(
u, β0, α0

)
= Bq−1 (u)T D1γ̃`,e

(
β0, α0

)
. It is easy to

prove that ‖D1‖∞ = O (Jn). Following similar reasoning as the proof for m̃`

(
u, β0, α0

)
,

one can prove that

m̃′`
(
u, β0, α0

)
−m′` (u) = Op

(
J3/2
n n−1/2 + J−r+1

n

)
,

uniformly for every u ∈ [0, 1].

Lemma 12 Under Conditions (C1)-(C6), for r > 3/2, n−1J4
n = o (1), nJ−2r−2

n = o (1)

and nJ−4r+2
n = o (1), we have

∂L∗n
(
β0, α0, σ2

)
/∂θT−1 = σ−2

(
Y −Tα0 −m

)T
H−1

(
Φ
(
β0
)
X̃J,T̃

)
+ op

(
n1/2

)
.

Proof. By Taylor expansion,

Qi

(
β0
)T {

γ̃
(
β0, α0

)
− γ0

}
= Qi

(
β0
)T {

γ̂e(β
0, α0) + γ̂m(β0, α0)

}
+Op

(√
Jn/n+ J−rn

)
,

(B.8)

where

γ̂m(β0, α0) =
{
Q(β0)TH−1Q(β0)

}−1
Q(β0)TH−1(m−Q(β0)γ0)

γ̂e(β
0, α0) =

{
Q(β0)TH−1Q(β0)

}−1
Q(β0)TH−1(Y −Tα0 −m) (B.9)
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By the weak law of large numbers, it can be proved that

Qi

(
β0
)T {

∂γ̂e(β
0, α0)/∂θT

−1

}
= −Qi

(
β0
)T {

Q(β0)TH−1Q(β0)
}−1

Q(β0)TH−1
(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)n
i=1

+Op

(
n−1/2J1/2

n

)
= −ProjMn

(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)
+Op

(
n−1/2J1/2

n

)
.

Moreover,

∥∥∥Qi

(
β0
)T {

∂γ̂m(β0, α0)/∂θT
−1

}∥∥∥
∞

≤
∑Jn,p

j=1,`=1

∣∣Qj`,i (β0
)∣∣ ∥∥∥Ω̂n

(
β0
)−1
∥∥∥
∞

∥∥n−1Q(β0)TH−11n
∥∥
∞O

(
J−r+1
n

)
= Op (Jn)Op

(
J−1
n

)
O
(
J−r+1
n

)
= Op

(
J−r+1
n

)
. (B.10)

Therefore, we have

Qi

(
β0
)T {

∂
(
γ̃(β0, α0)− γ

)
/∂θT

−1

}
= −ProjMn

(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)
+Op

(
n−1/2J1/2

n + J−r+1
n

)
,

By B-spline properties and Condition (C6), it can be proved that

∣∣∣ProjMn

(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)
− ProjM

(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)∣∣∣
= Op

(
n−1/2J1/2

n + J−1
n

)
.
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Then we have

∂
{

TT
i α

0+Qi

(
β0
)T
γ̃
(
β0, α0

)}
/∂θT

−1

=
(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)
− ProjM

(∑p

`=1
m′`(X

T
i β

0)Zi`X
T
i J,TT

i

)
+Op

(
n−1/2J1/2

n + J−r+1
n + J−1

n

)
=

(∑p

`=1
m′`(X

T
i β

0)Zi`X̃
T
i J,T̃T

i

)
+Op

(
n−1/2J1/2

n + J−r+1
n + J−1

n

)
=

(
Φ(β0)X̃J,T̃

)
+Op

(
n−1/2J1/2

n + J−r+1
n + J−1

n

)
. (B.11)

By (B.8), (B.10) and (B.11) and Lemma 11, for r > 3/2, n−1J4
n = o (1), nJ−2r−2

n = o (1)

and nJ−4r+2
n = o (1),

∂L∗n(β0, α0, σ2)/∂θ−1

= σ−2
[
(Y −Tα0 −m)T +Op

(
n−1/2J1/2

n + J−rn

)]
H−1 ×

[(
Φ
(
β0
)
X̃J,T̃

)
+Op

(
n−1/2J1/2

n + J−1
n + J−r+1

n

)]
= σ−2(Y −Tα0 −m)TH−1

(
Φ
(
β0
)
X̃J,T̃

)
+Op

(
n−1/2J1/2

n + J−1
n + J−r+1

n

){
Op

(
n1/2

)
+Op

(
n1/2J1/2

n + nJ−rn

)}
= σ−2(Y −Tα0 −m)TH−1

(
Φ
(
β0
)
X̃J,T̃

)
+ op

(
n1/2

)
.

Proof of Theorem 5. The consistency of the parametric estimator θ̂−1 can be

proved following similar arguments as in Lemma 11, and thus omitted. By Lemma 12, it is

straightforward to prove that

∂L∗n
(
β0, α0, σ2

)
/∂θ−1∂θ

T
−1 = σ−2

(
Φ
(
β0
)
X̃J,T̃

)T
H−1

(
Φ
(
β0
)
X̃J,T̃

)
+ op (n) .
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Thus by Taylor expansion, Lemma 12 and the above result, we have

θ̂−1 − θ0
−1 =

{
∂L∗n(β0, α0, σ2)/∂θ−1∂θ

T
−1

}−1 {
∂L∗n(β0, α0, σ2)/∂θ−1

}
+ op

(
n−1/2

)
=

[(
Φ
(
β0
)
X̃J,T̃

)T
H−1

(
Φ
(
β0
)
X̃J,T̃

)]−1

×[
eTH−1

(
Φ
(
β0
)
X̃J,T̃

)]
+ op

(
n−1/2

)
.

Theorem 5 can be proved by Lindeberg-Feller Central Limit Theorem.

Proof of Theorem 6. The results in Theorem 6 follow from
∥∥∥θ̂ − θ0

∥∥∥
2

=

Op
(
n−1/2

)
and Lemma 11.

B.3 Proof of Theorem 7

Consider the general case, to test whether genetic factors Z`, 2 ≤ ` ≤ p, are impor-

tant to the phenotype. We set up the null and alternative hypotheses as H0 : m`(·) = 0, for

` = 2, . . . , p versus H1 : m`(·) 6= 0 for some ` ∈ (2, . . . , p). Since each nonparametric function

m`(u) ≈ B (u)T γ`, the null and alternative hypotheses can be written as H0 : γ` = 0Jn , for

` = 2, . . . , p versus H1 : γ` 6= 0 for some ` ∈ (2, . . . , p). Let γ̂N =
{(
γ̂N

1

)T
, . . . ,

(
γ̂N
p

)T}T
be

the maximizer of Ln

(
γ, β̂, α̂,λ, σ2

)
given in (5.5) under H0. Thus γ̂N

` = 0, for ` = 2, . . . , p.

Let γ̂N
(2) =

{(
γ̂N
`

)T
: 2 ≤ ` ≤ p

}T
and γ(2) =

(
γT
` : 2 ≤ ` ≤ p

)T
. Let

Qi,(1) (β) =
[
B
(
XT
i β
)
Zi1
]
Jn×1

Qi,(2) (β) =

[{
B
(
XT
i β
)T
Zi2, . . . , B

(
XT
i β
)T
Zip

}T
]
Jn(p−1)×1

Q(1) (β) =
[{

Q1,(1) (β) , . . . ,Qn,(1) (β)
}T
]
n×Jn

Q(2) (β) =
[{

Q1,(2) (β) , . . . ,Qn,(2) (β)
}T
]
n×Jn(p−1)

.
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Define the score function as

s2n

(
γ̂N,β̂, α̂

)
= ∂Ln(γ̂N,β̂, α̂,λ, σ2)σ2/∂γ(2)

= Q(2)

(
β̂
)T

H−1
(
Y −Tα̂−Q(1)

(
β̂
)
γ̂N

1

)
.

Define

Ωn = Q
(
β0
)T

H−1Q
(
β0
)

=

 Ωn,11 Ωn,12

Ωn,21 Ωn,22

 ,

where Ωn,kk′ = Q(k)

(
β0
)T

H−1Q(k′)

(
β0
)
, for k, k′ = 1, 2. Define the test statistic

Tn = σ−2s2n

(
γ̂N,β̂, α̂

)T
Ω22
n s2n

(
γ̂N,β̂, α̂

)
, (B.12)

where Ω22
n =

(
Ωn,22 −Ωn,21Ω

−1
n,11Ωn,12

)−1
.

Then we have under Conditions (C1)-(C6) in the Appendix, and n1/2r << Jn <<

n1/4, we have under H0, as n→∞,

{2Jn (p− 1)}−1/2 {Tn − Jn (p− 1)} → N (0,1) .

Proof of Theorem 7. Consider the general case. Let γ̃N =
{(
γ̃N

1

)T
, . . . ,

(
γ̃N
p

)T}T

be the maximizer of Ln(γ, β0, α0) under H0. Thus γ̃N` = 0 for ` = 2, ..., p. Let γ̃N
(2) ={(

γ̃N
`

)T
: 2 ≤ ` ≤ p

}T
. We will show the asymptotic results for γ̃N and s2n

(
γ̃N, β0, α0

)
.

The same asymptotic results for γ̂N and s2n

(
γ̂N,β̂, α̂

)
can be obtained by the fact that∥∥∥θ̂ − θ0

∥∥∥
2

= Op
(
n−1/2

)
. Following the same reasoning as the proof for Theorem 6, it can

be proved that

γ̃N
1 − γ0

1 = Ω−1
n,11Q(1)(β

0)TH−1e +Op
(
J−rn

)
, (B.13)

and ∣∣∣B (u)T (γ̃N
` − γ0

`

)∣∣∣ = Op

(√
Jn/n+ J−rn

)
, (B.14)
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uniformly in u ∈ [0, 1]. Let η0
i (γ) =

∑p
`=1B

(
XT
i β

0
)T
γ`Zi`, η

0(γ) =
(
η0

1(γ), ..., η0
n(γ)

)T
.

Then

s2n

(
γ̃N, β0, α0

)
= ∂Ln(γ̃N, β0, α0)σ2/∂γ(2)

= Q(2)(β
0)TH−1

(
Y −Tα0 −Q(1)(β

0)γ̃N
1 −Q(2)(β

0)γ̃N
(2)

)
= Q(2)(β

0)TH−1
(
Y −Tα0 − η0(γ̃N)

)
.

Let s2n

(
γ̃N, β0, α0

)
= s2n,1 + s2n,2 + s2n,3, where

s2n,1 = Q(2)(β
0)TH−1e,

s2n,2 = Q(2)(β
0)TH−1(m− η0(γ0)),

s2n,3 = Q(2)(β
0)TH−1(η0(γ0)− η0(γ̃N)).

By Berstein’s inequality in [12], it can be proved that

‖s2n,2‖∞ � O
(
J−rn

) ∥∥∥Q(2)

(
β0
)T

H−11n

∥∥∥
∞

= Op
(
nJ−r−1

n

)
.

By (B.13), ∥∥∥s2n,3 + Ωn,21Ω
−1
n,11Q(1)(β

0)TH−1e
∥∥∥
∞

= Op
(
nJ−r−1

n

)
.

Therefore,

∥∥s2n

(
γ̃N, β0, α0

)
− s̃2n

(
γ̃N, β0, α0

)∥∥
∞ = Op

(
nJ−r−1

n

)
+Op (1) , (B.15)

where

s̃2n

(
γ̃N, β0, α0

)
=
{

Q(2)

(
β0
)T

H−1 −Ωn,21Ω
−1
n,11Q(1)

(
β0
)T

H−1
}

e.
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Moreover, E
{
s̃2n

(
γ̃N, β0, α0

)}
= 0 and

var
{
s̃2n

(
γ̃N, β0, α0

)
|Z,X,T

}
= σ2

{
Q(2)

(
β0
)T

H−1 −Ωn,21Ω
−1
n,11Q(1)

(
β0
)T

H−1
}

H

×
{

Q(2)

(
β0
)T

H−1 −Ωn,21Ω
−1
n,11Q(1)

(
β0
)T

H−1
}T

= σ2
{

Q(2)

(
β0
)T −Ωn,21Ω

−1
n,11Q(1)

(
β0
)T}

H−1
{

Q(2)

(
β0
)
−Q(1)

(
β0
)
Ω−1
n,11Ωn,12

}
= σ2(Ωn,22 −Ωn,21Ω

−1
n,11Ωn,12) = σ2(Ω22

n )−1.

Thus, by Lindeberg-Feller Central Limit Theorem, for any a ∈ RJn(p−1) with ‖a‖2 = 1,

aTσ−1(Ω22
n )1/2s̃2n

(
γ̃N, β0, α0

) d→ N (0,1) .

Therefore, σ−2s̃2n

(
γ̃N, β0, α0

)T
Ω22
n s̃2n

(
γ̃N, β0, α0

)
has the asymptotic distribu-

tion as χ2
Jn(p−1), with Jn(p− 1)→∞ as n→∞, and hence,

{2Jn (p− 1)}−1/2
{
σ−2s̃2n

(
γ̃N, β0, α0

)T
Ω22
n s̃2n

(
γ̃N, β0, α0

)
− Jn (p− 1)

}
→ N (0,1) .

By (B.15) and Berstein’s inequality, we have

∣∣∣σ−2s2n

(
γ̃N, β0, α0

)T
Ω22
n s2n

(
γ̃N, β0, α0

)
−

σ−2s̃2n

(
γ̃N, β0, α0

)T
Ω22
n s̃2n

(
γ̃N, β0, α0

)∣∣∣ = Op

(
n1/2J−r+1/2

n

)
.

Thus for n1/2J−rn = o (1), Theorem 7 follows from Slutsky theorem.
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