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Error detection on quantum computers improves accuracy of chemical calculations

Miroslav Urbanek,1, ∗ Benjamin Nachman,2 and Wibe A. de Jong1

1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

A major milestone of quantum error correction is to achieve the fault-tolerance threshold beyond
which quantum computers can be made arbitrarily accurate. This requires extraordinary resources
and engineering efforts. We show that even without achieving full fault tolerance, quantum error
detection is already useful on the current generation of quantum hardware. We demonstrate this
experimentally by executing an end-to-end chemical calculation for the hydrogen molecule encoded in
the [[4, 2, 2]] quantum error-detecting code. The encoded calculation with logical qubits significantly
improves the accuracy of the molecular ground-state energy.

I. INTRODUCTION

Quantum computing promises efficient methods for
quantum-chemical calculations that can reach far beyond
the abilities of classical computers [1]. Large-scale calcu-
lations will require an ability to detect and correct errors.
However, near-term devices known as noisy intermediate-
scale quantum (NISQ) computers [2] are not expected to
be fully fault-tolerant. Despite this limitation, they can
still be useful for solving certain problems in physics and
chemistry. In particular, the variational quantum eigen-
solver (VQE) [3, 4] is an algorithm designed to work well
on NISQ computers. It has been experimentally demon-
strated that VQE is able to find the ground state as well
as excited states of small quantum systems encountered
in quantum chemistry and nuclear physics [3, 5–12]. The
performance of NISQ algorithms is currently limited by
gate errors and device noise. Several novel error mitiga-
tion and suppression techniques have been developed to
overcome the imperfections of real devices [13–24].
Quantum error correction (QEC) [25–29] is a theory

developed in the last two decades to address this problem
in a systematic way. An important milestone for QEC
experiments is to achieve the fault-tolerance threshold.
Fault tolerance requires a large number of qubits, long
coherence times, and low gate errors. However, QEC
can still be useful even without achieving fault tolerance
and even with only a small number of qubits [30–32].
QEC can potentially increase coherence times and reduce
error rates in existing devices. There have been efforts to
demonstrate that quantum circuits using QEC codes can
improve accuracy, or at least break even, in comparison
with the original circuits. Previous experiments studied
quantum codes that encode a single logical qubit [33,
34] and also demonstrated necessary improvements in
qubit and gate qualities for QEC [35–37]. There has
also been a growing interest in studying the [[4, 2, 2]]
quantum code [38–42]. Recently, it has been shown that
logical gates encoded in this code can achieve better
fidelities than corresponding physical gates [43]. These
efforts have tested individual steps of QEC protocols
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separately. However, it has never been demonstrated
that an encoded calculation provides a tangible benefit
in practical applications.

In this work we demonstrate that QEC provides an im-
provement in accuracy in an end-to-end quantum-chemical
calculation. We have implemented a two-qubit VQE al-
gorithm for calculating the ground-state energy of the
hydrogen dimer in the [[4, 2, 2]] QEC code [27, 44, 45].
Instead of two physical qubits, the calculation uses two
logical qubits encoded in four physical qubits. The code
facilitates detection of a single bit-flip and phase-flip error
in either of the two logical qubits. Our circuit additionally
uses two ancillary qubits to perform a syndrome measure-
ment during the initial state preparation and to perform
a logical qubit rotation. Analytical simulations predict
that the encoded circuit should outperform the physical
circuit up to a fairly large error rate. We implement both
the two-qubit and the six-qubit circuit on the IBM Q
Experience platform.

II. QUANTUM ALGORITHM

Finding the ground-state energy of the H2 molecule
in the minimal basis is the simplest molecular electronic-
structure problem. It is often used as a benchmark and
allows us to evaluate our approach in comparison to earlier
work [5, 6, 8, 10, 11, 20].

The H2 molecular Hamiltonian can be transformed
into a qubit Hamiltonian using the Jordan–Wigner [46],
Bravyi–Kitaev [47], or another similar transformation.
Here we use the explicit transformation defined in Ref. [8]
that maps the subspace of the Hamiltonian correspond-
ing to two electrons with zero total spin to a two-qubit
Hamiltonian. The transformed Hamiltonian is given by

H = g1 + g2Z1 + g3Z2 + g4Z1Z2 + g5X1X2, (1)

where Xi, Yi, and Zi denote Pauli operators acting on
qubit i and gj are classically-calculated coefficients that
depend on the internuclear separation R. We use values
of gj published in Ref. [8].

The VQE algorithm performs particularly well for this
problem. It is a hybrid quantum-classical algorithm that
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uses a quantum computer to create and measure the prop-
erties of a parametrized trial wavefunction and a classical
computer to optimize the wavefunction parameters. Our
trial wavefunction is the unitary coupled-cluster (UCC)
ansatz [48, 49]. Its realization on quantum computers in
context of quantum chemistry has been studied in Ref.
[3, 5, 10] and in our case is given by

|ψ(θ)〉 = e−iθY1X2/2|Φ〉, (2)

where θ is a parameter and |Φ〉 = |00〉 is the Hartree–Fock
wavefunction. The ansatz energy is given by

E(θ) = g1 + g2〈Z1〉θ + g3〈Z2〉θ + g4〈Z1Z2〉θ + g5〈X1X2〉θ,
(3)

where 〈O〉θ = 〈ψ(θ)|O|ψ(θ)〉. VQE uses a quantum com-
puter to estimate the expectation values included in E(θ)
and a classical optimizer to find the value of θ that min-
imizes E(θ). Since our ansatz depends on a single pa-
rameter only, we sample the full domain of θ and use a
peak-finding routine to minimize E(θ). It is then sufficient
to sample the individual expectation values in Eq. (3) only
once and use the same data with any set of coefficients
gj . A quantum circuit that implements VQE is shown in
the top of Fig. 1.

III. ERROR-DETECTING CODE

Our goal is to compare the performance of a circuit
implemented with physical qubits to a circuit implemented
with logical qubits of the [[4, 2, 2]] code. This code maps
two logical qubits into a subspace of four physical qubits
as

|00〉 = 1√
2

(|0000〉+ |1111〉) ,

|01〉 = 1√
2

(|0011〉+ |1100〉) ,

|10〉 = 1√
2

(|0101〉+ |1010〉) ,

|11〉 = 1√
2

(|0110〉+ |1001〉) ,

(4)

where an overline denotes a logical wavefunction. This
mapping allows for the detection of one single-qubit er-
ror. To implement the circuit, we have to construct the
required logical gates from the set of available physical
gates. Our set of physical gates is limited to arbitrary
single-qubit gates and CNOT gates between any pairs of
physical qubits.
The encoded circuit is shown in the bottom of Fig. 1.

Its first part is a preparation of the initial logical state
|00〉. The circuit uses an ancilla measurement to detect
an error during the preparation [30]. The measurement
outcome zero corresponds to no error while the outcome
one signals an error.
Some logical gates can be implemented easily because

the corresponding physical gates act transversally, i.e.,

they can be implemented with only single-qubit physical
gates. The [[4, 2, 2]] code also facilitates a very simple
implementation of the logical CNOT gates as CNOT12 =
SWAP12 and CNOT 21 = SWAP13, where an overline
denotes a logical gate and SWAPij swaps physical qubits
i and j [43]. We implement SWAPij and therefore the
CNOT gates without performing any physical operation
by relabelling the respective qubits.
The arbitrary-angle rotation of the first logical qubit

R1
y(θ) cannot be implemented transversally. We apply

this gate by entangling the logical qubit with an ancilla
and performing a rotation and a measurement on the
ancilla. The measurement projects the wavefunction onto
a rotated logical state. The rotation circuit applies a
θ-rotation and a −θ-rotation to the |0〉 and |1〉 states of
the first logical qubit, respectively. The complete circuit
performs a θ-rotation because our logical wavefunction is
initially prepared in the |00〉 state. A general gate would
require additional physical gates. Measured value zero
in the ancilla corresponds to a rotation by θ while one
corresponds to a rotation by θ+π. We use both outcomes
to sample the Hamiltonian terms.

Qubits are measured in the computational basis. Expec-
tation value measurements require basis transformations
that are performed with gates Rt. In particular, Rt = I
for the 〈Z1〉θ, 〈Z2〉θ, and 〈Z1Z2〉θ terms as the respec-
tive operators are already diagonal in the computational
basis, and Rt = H for the 〈X1X2〉θ term. We detect a
single bit-flip or a single phase-flip error by calculating
the parity of the measured code qubits.
Our encoded circuit is not fully fault-tolerant. In par-

ticular, not all single-qubit errors in logical rotation R1
y(θ)

can be detected. We can also detect a bit-flip or a phase-
flip, but not both at the same time (see Appendix E for
details).

IV. EXPERIMENT

The algorithm can be summarized as follows. We sam-
ple the 〈Z1〉θ, 〈Z2〉θ, 〈Z1Z2〉θ, and 〈X1X2〉θ terms for
θ ∈ [−π, π) on a quantum computer. The 〈Z1〉θ, 〈Z2〉θ,
and 〈Z1Z2〉θ terms are measured with a single circuit
without any basis transformations. We execute the cir-
cuit with Rt = H to measure the 〈X1X2〉θ term. The
ground-state energy for each internuclear separation R
is then calculated by minimizing E(θ). Unlike classical
variational algorithms, the minimal energy can be lower
than the exact energy due to systematic errors and noise.
We ran both the two-qubit logical circuit and the six-

qubit encoded circuit on the Tokyo chip on IBM Q Ex-
perience. The major errors on this platform are readout
errors [6, 9, 50]. If a qubit is in the |0〉 state, there is
a significant probability of measuring outcome one and
vice versa. The readout errors are asymmetric, i.e., the
probability of measuring zero when a qubit state is |1〉 is
higher than the probability of measuring one when the
state is |0〉. This is mostly due to the readout time being



3

q4 = |0⟩

q3 = |0⟩

q2 = |0⟩

q1 = |0⟩
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H

0 a2 = |0⟩ H Ry(−θ) 0
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Rt

b4

b3

b2

b1

q2 = |0⟩
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Rt

Rt
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b1
Logical circuit

Encoded circuit

Initial state preparation Unitary coupled-cluster exponential Measurement
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FIG. 1. Quantum circuits for the preparation of the UCC ansatz and for the measurement of the expectation values in Eq. (3).
The two-qubit logical circuit is shown above the corresponding six-qubit encoded circuit. Qubits a1 and a2 are ancillas. (a) The
first section of the encoded circuit prepares the |00〉 logical state. Ancilla a1 is used to detect errors during the preparation. (b)
The middle circuit sections apply the UCC exponential. We use ancilla a2 to implement the rotation R1

y(θ). (c) The last circuit
sections measure the expectation values. Gates Rt perform a basis transformation that depends on the measured term.

significant in comparison to the T1 coherence time, so
the qubit can decay from the |1〉 state to the |0〉 state
during the readout. We employed a readout error correc-
tion technique known as unfolding based on a Bayesian
probabilistic model [51]. We first measured and estimated
the probability of each outcome when the qubits were
prepared in each computational basis state. We then used
this probability matrix to iteratively unfold all measured
counts to corresponding true counts (see Appendix C for
details).
The chip contained 20 qubits arranged in a two-

dimensional geometry. There were 72 ways to map
our two-qubit physical circuit and 288 ways to map
our six-qubit encoded circuit to the chip qubits. We
found that the results depended significantly on the cho-
sen qubits and also on the order of the applied gates.
The result variability is illustrated in Fig. 2, where
2A and 2B denote two-qubit mappings (q1, q2) = (1, 6)
and (q1, q2) = (14, 18), and 6A and 6B denote six-
qubit mappings (a1, a2, q1, q2, q3, q4) = (13, 9, 8, 4, 3, 12)
and (a1, a2, q1, q2, q3, q4) = (5, 15, 11, 16, 10, 17). The
〈X1X2〉θ term is the most sensitive term in Eq. (3).
To find an optimal mapping, we measured 〈X1X2〉θ for
θ = −3π/4, −π/2, −π/4, 0, π/4, π/2, and 3π/4, applied
readout error correction, and calculated the L1 distances
between the corrected results and the exact results for
each mapping. We used the mappings with the smallest
distances to run the final circuits. The compiler reordered
gates based on the qubit mapping, so this technique took
into account both the qubit mapping and the gate order
variability.

We executed the final calculations for both the two-
qubit and the six-qubit circuit using the optimal map-
pings (q1, q2) = (13, 18) for the two-qubit circuit and
(a1, a2, q1, q2, q3, q4) = (12, 5, 11, 6, 10, 17) for the six-

qubit circuit. The 〈Z1〉θ, 〈Z2〉θ, 〈Z1Z2〉θ, and 〈X1X2〉θ
terms were obtained for 257 values of θ in the [−π, π]
interval. Each measured value was sampled with 8192
shots. For the encoded six-qubit circuit we postselected
the outcomes based on their ancilla values. In particu-
lar, we measured all six qubits, performed readout error
correction, and discarded outcomes with value one in the
first ancilla and outcomes outside of the code space. Out-
comes with values zero and one in the second ancilla were
processed as samples corresponding to rotations by θ and
θ ± π, respectively. We summed the renormalized counts
of constituent basis states in Eq. (4) to calculate the logi-
cal state counts. The calculated expectation values of the
Hamiltonian terms are shown in Fig. 3. We then used a
peak-finding routine to find θ that minimized the energy
in Eq. (3) for each internuclear separation. The calculated
energy potential curves are shown in Fig. 4. The results
demonstrate that the six-qubit encoded circuit improves
the accuracy of the ground-state energy. The 〈Z1〉θ and
〈Z2〉θ terms contribute to E(θ) the most at small internu-
clear separations R while the 〈X1X2〉θ term is dominant
at large R. The encoded circuit performs better especially
at small R where θ ≈ 0. Both energy potential curves are
slightly inaccurate at large R. These inaccuracies can be
fully explained by errors in 〈X1X2〉θ at θ ≈ −π/2. The
〈X1X2〉θ term is very sensitive to the quality of Hadamard
gates applied before the measurement. Small inaccura-
cies lead to many nonvanishing coefficients in the final
wavefunction. Our results suggest that the [[4, 2, 2]] code
lacks the power to reliably detect errors in the 〈X1X2〉θ
term on this hardware (see Appendix E for details).
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FIG. 2. Variability of results with qubit mapping. (a) Examples of potential energy curves obtained using two random
mappings for each circuit on the 20-qubit Tokyo chip. (b) Chip geometry with highlighted two-qubit mappings 2A and 2B, and
six-qubit mappings 6A and 6B.
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panels show the expectation values and the bottom panels show their differences from the exact values. The spread in values of
neighboring points is due to shot noise.
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UCC parameter θ at the energy minimum.
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V. DISCUSSION

Our encoded circuit requires more physical qubits and
gates than our logical circuit and is therefore more sen-
sitive to errors. However, the gain by using the code
was larger than the loss due to the circuit complexity.
The results show that quantum error detection is already
useful on NISQ devices even without achieving full fault
tolerance. The presented method can be used in addition
to other error mitigation techniques. Our implementa-
tion uses two ancillary qubits with postselection on their
measured outcomes. In principle, it would be possible
to use just one ancilla if we had an ability to perform a
qubit reset. Similarly, the postselection in the rotation
gate would be unnecessary if we had an ability to apply
conditional gates dependent on measurement outcomes.
Some of the previous VQE experiments [5, 6, 8, 10,

11, 20] found the ground-state energy of the H2 molecule
with a comparable or better accuracy. They used tech-
niques like higher qubit states measurement [5], quantum
subspace expansion [8], and noise extrapolation [20] to
mitigate errors. We emphasize that our circuits do not
use any such techniques. Our QEC method demonstrates
that on the same hardware and using the same algorithm,
the encoded circuit results in smaller errors than the
physical circuit. Other error mitigation techniques are
complementary to the presented method.
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Appendix A: Hamiltonian transformation

We use a transformation presented in Ref. [8] to map
the electronic-structure space to qubits. The transformed
space corresponds to a H2 molecule with two electrons
and zero total spin. In particular,

a†1↑a
†
1↓|vac〉 → |00〉,

a†1↑a
†
2↓|vac〉 → |01〉,

a†2↑a
†
1↓|vac〉 → |10〉,

a†2↑a
†
2↓|vac〉 → |11〉,

(A1)
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FIG. 5. Energy potential curves of the H2 molecule calculated
analytically using the VQE algorithm with the depolarizing
noise model. The two-qubit gate error rate is p = 5 %.

where a†is is an operator that creates an electron with
spin s in orbital i and |vac〉 is the vacuum state.

Appendix B: Analytical model

We analyze the effect of noise on the calculated ground-
state energies using the depolarizing noise model. The
noise operation for one qubit is given by [26]

ε(ρ) = (1− p)ρ+ p
I

2 , (B1)

where ρ is the density matrix and p is the probabilistic
error rate. The value of p = 0 corresponds to vanishing
noise and p = 1 corresponds to full noise. We assume that
the noise affects only qubits involved in a particular gate
application. Separate operations are used for one-qubit
gates,

εi(ρ) = (1− p1)ρ+ p1

4
∑
Ei∈Pi

E†i ρEi, (B2)

and for two-qubit gates,

εi,j(ρ) = (1− p2)ρ+ p2

16
∑
Ei∈Pi
Ej∈Pj

E†iE
†
jρEiEj , (B3)

where Pi = {Ii, Xi, Yi, Zi} is the set of the unit matrix
and the Pauli matrices acting on qubit i. The noise oper-
ations above are performed on the density matrix after
each gate application to a respective set of qubits. We
characterize the noise channel with only a single parame-
ter p and use p2 = p and p1 = p/16 since the single-qubit
gates have significantly higher fidelities in hardware. The
comparison of the ground-state energy calculated with
the noisy physical and encoded circuits is shown in Fig. 5.
The energy error as a function of p for a selected internu-
clear separation is shown in Fig. 6. The results show that
the encoded circuit outperforms the physical circuit when
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FIG. 6. Energy error with the depolarizing noise model for
internuclear separation R = 0.75Å. The six-qubit encoded
circuit performs better for error rates up to about 30 %.

the error probability of two-qubit gates is less than about
30 %. This threshold is significantly higher than the error
rates for two-qubit gates on the Tokyo chip which are less
than 5 %. Assuming that the depolarization noise model
is an appropriate error model, the encoded circuit should
produce a better energy estimate.

Appendix C: Readout error correction

Correcting measurements of discrete data for readout
bias has a long history. For example, in high energy
physics experiments, binned differential cross sections
are corrected for detector effects in order to compare
them with predictions from quantum field theory. In that
context, the corrections are called unfolding (sometimes
called deconvolution in other fields) and a variety of tech-
niques have been proposed and are in active use [52, 53].
Quantum readout error correction can be represented as
a binned unfolding where each bin corresponds to one of
the possible 2n configurations, where n is the number of
qubits.
We use an iterative Bayesian unfolding technique [54–

56]. Given a response matrix

Rij = Pr(measure i | truth is j), (C1)

a measured spectrum mi = Pr(measure i) and a prior
truth spectrum t0i = Pr(truth is i), the iterative technique
proceeds according to an equation

tl+1
i =

∑
j

Pr(truth is i |measure j)×mj

=
∑
j

Rjit
l
i∑

k Rjkt
l
k

×mj ,
(C2)

where l is the iteration number. The advantage of Eq. (C2)
over simple matrix inversion is that the result is a prob-
ability (nonnegative and unit measure). We construct
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FIG. 7. Comparison of potential energy curves obtained with
raw measurement outcomes and with outcomes corrected for
readout errors for both the two-qubit and six-qubit circuits.
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FIG. 8. Comparison of potential energy curves obtained with
the six-qubit circuit when ignoring the value of ancilla a1 and
when postselecting only outcomes with a1 being zero.

Rij by preparing 2n calibration circuits where each qubit
computational state is constructed with X gates. The
entries of Rij are the fraction of measurements that qubit
configuration i is observed in configuration j. We use
a uniform distribution as the initial spectrum t0i . The
iterative procedure described in Eq. (C2) is repeated until
convergence. The effect of readout error correction on
potential energy curves is shown in Fig. 7. Comparison of
iterative Bayesian unfolding with other available methods
is discussed in Ref. [51].

Appendix D: Initial state preparation

The encoded circuit uses ancilla a1 to detect an error
during the initial state preparation. Measured value zero
corresponds to no error whereas one corresponds to a
detected error in the state preparation. We therefore
postselect only outcomes with a1 being zero. Fig. 8 shows
the effect of the postselection. About 8% of the samples
were discarded due to the postselection on a1.
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Appendix E: Syndrome measurement

The stabilizers of the [[4, 2, 2]] code are generated by
operators X1X2X3X4 and Z1Z2Z3Z4 [30]. Code words
are eigenvectors of stabilizers with +1 eigenvalue. A sin-
gle bit-flip error in a code word transforms the code word
into an eigenvector of the Z1Z2Z3Z4 stabilizer with −1
eigenvalue. A single phase-flip error transforms it into an
eigenvector of the X1X2X3X4 stabilizer with −1 eigen-
value. To detect both a bit-flip and a phase-flip error, it is
necessary to perform syndrome measurements in the two
bases corresponding to the two stabilizer generators [27].
We do not perform these measurements in our encoded
circuit. Instead, we only measure physical qubits in the
computational basis. The parity of the code qubits then
corresponds to the eigenvalue of one of the generators.
In particular, it corresponds to Z1Z2Z3Z4 when Rt = I
and to X1X2X3X4 when Rt = H. We therefore perform
only one syndrome measurement and detect only a bit-flip
or a phase-flip error. A detection of both errors would
require additional qubits and gates [27] or additional mea-
surements [21]. About 11% and 16% of samples were
discarded due to syndrome measurement when Rt = I
and Rt = H, respectively, for data used in the final fig-

ures. The error rate for the 〈X1X2〉θ term is therefore
significantly higher than for the other Hamiltonian terms.

Appendix F: Qubit mappings

The availability of qubits and their connections has
changed during the data collection. The final data were
collected after a connection between qubits three and
nine was turned off. Additionally, qubit seven was not
available during experiments with the six-qubit circuit.
As a result, there were only 70 and 116 possible mappings
from the abstract qubits to the physical qubits for the
two-qubit and the six-qubit circuits, respectively.
We found it practical to run our circuits for each of

their possible mappings to find optimal mappings. How-
ever, this approach is unfeasible for larger systems. An
alternative method is to estimate the total circuit fidelity
from reported gate fidelities. Although we found accept-
able qubit mappings using this approach, we were never
able to find the best one. The action of gates is highly
nontrivial and cannot be reduced to a single number. A
significant error source is also cross-talk between qubits.
Estimates of the total circuit fidelities therefore have only
a limited reliability. Optimal qubit mapping is an area of
active research [57].
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