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NDR functional theory

Natural determinant reference functional theory
Jason M. Yu,1 Jeffrey Tsai,1 Ahmadreza Rajabi,1 Dmitrij Rappoport,1 and Filipp Furche1, a)

University of California Irvine, Department of Chemistry, 1102 Natural Sciences II, Irvine, CA 92697-2025,

USA

(Dated: 12 December 2023)

The natural determinant reference (NDR) or principal natural determinant is the Slater determinant comprised of the

N most strongly occupied natural orbitals of an N-electron state of interest. Unlike the Kohn-Sham (KS) determinant,

which yields the exact ground-state density, the NDR only yields the best idempotent approximation to the inter-

acting one-particle reduced density matrix (1-RDM), but it is well-defined in common atom-centered basis sets and

representation-invariant. We show that the under-determination problem of prior attempts to define a ground-state

energy functional of the NDR are overcome in a grand-canonical ensemble framework at the zero-temperature limit.

The resulting grand potential functional of the NDR ensemble affords the variational determination of the ground state

energy, its NDR (ensemble), and of select ionization potentials and electron affinities. NDR functional theory can be

viewed as an “exactification” of orbital optimization and empirical generalized KS methods. NDR functionals depend-

ing on the noninteracting Hamiltonian do not require troublesome KS-inversion or optimized effective potentials.

I. INTRODUCTION

A central proposition of density functional theory (DFT)

is that the ground state state of a quantum many-body sys-

tem generated by a local multiplicative one-body potential v

is uniquely determined by its real-space one-body density ρ .1

In their seminal paper1, Hohenberg and Kohn (HK) argue that

the density is special because all observables coming from

a local multiplicative one-body potential are explicit density

functionals, and the remaining parts of the ground state energy

are “universal” functionals of ρ , i.e., they do not depend on v.

Unlike the many-body wavefunction, whose complexity in-

creases factorially with the particle number N, the dimension-

ality of the one-body density is independent of N; moreover,

the domain of admissible ρ is relatively simple2, obviating

the N-representability problem of other reduced-dimensional

state descriptors3,4.

Despite, or perhaps precisely because of, the intuitive ap-

peal of the density and the revolutionary impact of DFT in

computational electronic structure theory, it is pertinent to ask

whether the real-space density is as special as suggested by

HK. For nearly all practical purposes, accurate ground-state

energies are far more important than densities, and the den-

sities obtained from many modern density functionals can be

surprisingly inaccurate5,6. Moreover, the HK theorem does

not hold for the vast majority of finite basis sets presently in

use, including virtually all atom-centered basis sets7,8. While

this issue does not affect explicit functionals of the density, it

has confounded the development and widespread use of func-

tionals depending on the Kohn-Sham (KS) potential9–11 vs,

including KS inversion12–14 and the large class of “orbital de-

pendent” functionals found on higher rungs of Jacob’s Lad-

der of density functionals15. Among the suggested remedies,

the use of large real-space grids16 or regularization methods17

is mostly impractical or undesirable, whereas generalized KS

(GKS) approaches are very practical but somewhat ill-defined:

a)Electronic mail: filipp.furche@uci.edu

In its current use, the term GKS refers to minimization an en-

ergy functional with respect to the noninteracting one-particle

reduced density matrix (1-RDM), or, equivalently, the occu-

pied GKS orbitals, rather than the density18. While this is

less of a concern for functionals depending explicitly on the

GKS 1-RDM only, it does not address the problem of how

vs can reliably be obtained for vs-dependent functionals9,19.

DFT is fundamentally representation-variant, since the den-

sity and the notion of a local potential are tied to the real-space

basis, whereas “no meaningful distinction between local and

nonlocal operators”8 is possible in most other finite basis set

representations. This problem has also limited the scope of

systematic or ab initio DFT which aims to numerically con-

struct accurate density functionals by constrained search20–24.

We propose to address these limitations by choosing a

representation-invariant quantity rather than the density as a

reduced-dimensional state variable. At the same time, we also

aim to preserve other aspects of DFT that have been key for

its success, namely, the powerful concept of mapping an inter-

acting to a noninteracting problem25 with an intuitive physical

meaning, the ground-breaking constrained search concept2,26,

and not least the possibility to construct “almost universal”

energy functionals using model systems, exact constraints,

and physical insight, an approach pioneered and perfected by

Perdew and co-workers27. The 1-RDM may seem an obvious

candidate for such a state variable28, and 1-RDM theory29–33

is indeed representation-invariant. However, the 1-RDM of an

interacting state cannot be (directly) obtained from an effec-

tive one-particle Hamiltonian29, at least at zero temperature
34). This complicates the construction of 1-RDM functionals,

and it re-introduces the basis-set convergence problem affect-

ing correlated wavefunction methods; for example, the natural

occupation numbers of the 1-RDM of He atom exhibit a slow

1/(l +1/2)4 decrease with orbital angular momentum l35.

A state variable satisfying the requirement of representa-

tion invariance while retaining the computational efficiency

and conceptual simplicity of an effective noninteracting sys-

tem is the best noninteracting approximation to the 1-RDM. If

we denote the interacting 1-RDM by γ , its best noninteracting

approximation γs (in the absence of degeneracies, see below)

is idempotent but minimizes the error in the 2- or Frobenius
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norm

∥γ − γs∥=
√

⟨(γ − γs)†(γ − γs)⟩. (1)

This idea is by no means new; an independent particle model

based on γs was already proposed in 1964 by Kutzelnigg and

Smith36 and named, rather unfortunately, the “best density ap-

proximation”. The Slater determinant (SD) whose 1-RDM

is γs coincides with the “principal natural determinant” |Φ0⟩,
i.e., the SD constructed from the N most strongly occupied

natural orbitals (NOs). We will henceforth refer to |Φ0⟩ as the

natural determinant reference (NDR), to emphasize its mean-

ing as a zero-order approximation to the interacting many-

body state37–39. The best noninteracting 1-RDM has also

been proposed as a state descriptor in the context of cumulant

functionary40,41 and 1-RDM theory42.

We review the definition and key properties of the NDR in

Sec. II. Existing pure-state constrained-search definitions of

NDR energy functionals and their limitations are discussed in

Sec. III. The formalism is generalized to grand-canonical en-

sembles with real particle number in Sec. IV; importantly, this

leads to a unique definition of the noninteracting Hamiltonian.

A set of effective one-particle equations to find the NDR and

the exact ground-state energy is presented in Sec. V, and the

physical meaning of the NDR orbitals and their energies is

established. NDR functional approximations are discussed in

VI, and conclusions are presented in Sec. VII.

Throughout this paper, atomic (Hartree) units are em-

ployed. Indices i, j, . . . denote occupied spin orbitals, or

strongly occupied NOs, a,b, . . . denote virtual orbitals, or

weakly occupied NOs, and p,q, . . . denote general orbitals.

Many-electron density operators are denoted by ϒ̂, and one-

body order reduced density matrices (1-RDMs) γ , respec-

tively. The Hilbert space of normalizable N-electron states

is E(N), and the direct product of all E(N) is the Fock space

F . The subsets of non-interacting states or SDs are Es and Fs.

Dirac bra-ket notation is used where practical; ⟨·⟩ denotes the

trace operation on E(1)×E(1), whereas ⟨·⟩F is the trace on

F × F . Operators on F (“second quantized”) are generally

denoted by a hat.

II. NDR THEORY

A. Natural Determinants

Consider a normalized N-electron state |Ψ⟩ ∈ E(N) with

1-RDM γ[Ψ] = ⟨Ψ|γ̂|Ψ⟩. The eigenstates of γ[Ψ], denoted

{|ϕp⟩}, are the NOs of |Ψ⟩, and the corresponding eigenvalues

{νp} are the natural occupation numbers (NONs),

γ[Ψ] |ϕp⟩= νp |ϕp⟩ . (2)

Here and in the following, the dependence of the NOs and

NONs is implied; moreover, the NOs and NONs are indexed

such that the sequence (νp)p∈N is nonincreasing. Since |Ψ⟩

is a Fermion state3, νp ∈ [0,1], and the normalization of |Ψ⟩

implies

⟨γ⟩= ∑
p

νp = N. (3)

The Fermi NON

νF =
νN +νN+1

2
(4)

cannot be zero, since the rank of γ[Ψ] is at least N (Ref. 3).

On the other hand, Eq. (3) requires that νF < 1. If νF = νN ,

then γ[Ψ] has a degeneracy at the Fermi NON. We say that

νF is k-fold degenerate if νN is k-fold degenerate. Moreover,

NOs with occupation numbers greater than or equal to νF are

“strongly occupied”, and correspondingly NOs with occupa-

tion numbers less than νF are “weakly occupied” for the pur-

poses of this paper.

The NOs form an orthonormal basis of E(1), and we will

denote the corresponding electron creation and annihilation

operators {ĉ†
p} and {ĉp}. Natural determinants (NDs) {|Φn⟩}

are all possible N-electron SDs which can be constructed from

the NOs; see Theorem A.1 for other equivalent definitions.

The NDs form an orthonormal basis of E(N). Moreover, ev-

ery ND is an eigenstate of every NON operator n̂p = ĉ†
pĉp,

n̂p |Φn⟩= np,n |Φn⟩ ; (5)

however, the corresponding NONs np,n are either 1 or 0, re-

flecting the fact that NDs are noninteracting.

To further classify the NDs, we introduce the selfadjoint

operator

Ŝ[Ψ] = ⟨γ̂γ[Ψ]⟩= ∑
p

n̂pνp. (6)

The expectation value of Ŝ[Ψ] for any state |Ξ⟩ ∈ E(N) equals

the (Frobenius) inner product of the 1-RDMs of |Ψ⟩ and |Ξ⟩,

⟨Ξ|Ŝ[Ψ]|Ξ⟩= ⟨Ψ|Ŝ[Ξ]|Ψ⟩= ⟨γ[Ξ]γ[Ψ]⟩= ⟨γ[Ξ]|γ[Ψ]⟩ , (7)

where the Hermitian property of density matrices has been

used. Thus, the expectation value of Ŝ[Ψ] measures the “over-

lap” of a state Ξ’s 1-RDM with the 1-RDM of |Ψ⟩. In partic-

ular, for a SD |Φ⟩,

⟨Φ|Ŝ[Ψ]|Φ⟩= N − c[Ψ]/2−∥γ[Ψ]− γ[Φ]∥2; (8)

c[Ψ] = ⟨γ[Ψ]− γ2[Ψ]⟩ ≥ 0 quantifies the nonidempotency of

the 1-RDM of |Ψ⟩ and has been proposed as a measure of

correlation43,44. Since neither N nor c[Ψ] depend on Φ, Eq.

(8) means that, for given Ψ, ⟨Φ|Ŝ[Ψ]|Φ⟩ measures the squared

deviation of the 1-RDMs γ[Ψ] and γ[Φ]: The larger the over-

lap ⟨Φ|Ŝ[Ψ]|Φ⟩, the smaller the error ∥γ[Ψ]− γ[Φ]∥ in the 2-

norm. Moreover, it follows from Eq. (5) that all NDs are

eigenstates of Ŝ[Ψ] with eigenvalues

sn = ⟨γ[Φn]|γ[Ψ]⟩= ∑
p

np,nνp. (9)
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B. Natural Determinant Reference

The ND reference (NDR) or principal natural determinant

|Φ0⟩ is the ND constructed from N (most) strongly occupied

NOs of |Ψ⟩, i.e., N NOs with the largest NONs. Equivalently,

the NDR is the SD which maximizes the overlap of its 1-RDM

with γ[Ψ], i.e.,

Φ0 = arg max
Φ∈Es(N)

⟨Φ|Ŝ[Ψ]|Φ⟩ , (10)

where Es(N) is the set of all N-electron SDs. It follows that

γ[Φ0] ≡ γ0 is the best idempotent approximation to γ[Ψ]; see

also Theorem A.2.

In the absence of degeneracies of γ[Ψ] at the Fermi NON,

the maximum eigenvalue s0 = ⟨Φ0|Ŝ[Ψ]|Φ0⟩ is nondegener-

ate, and thus the NDR is unique up to a (physically irrelevant)

global phase. If s0 is degenerate, then the NDR is unique only

up to a unitary transformation within the eigenspace of s0. In

this case, it is necessary to consider an equal-weight ensemble

of all degenerate NDRs, see Sec. IV.

The NDs are also eigenstates of the operator Ŝ[Φ0]. The

eigenvalues are N for |Φ0⟩, N −1 for single excitations out of

|Φ0⟩, . . . , and 0 for N-fold excitations. Since

⟨Ψ|Ŝ[Φ]|Ψ⟩= ⟨Φ|Ŝ[Ψ]|Φ⟩ , (11)

the NDR is the SD which maximizes ⟨Ψ|Ŝ[Φ]|Ψ⟩ and thus

minimizes the average excitation rank of Ψ45. This property

of the NDR has been used to generate minimum-rank repre-

sentations of wavefunctions and other quantities37.

C. Iso-NDR States

The previous section introduced a map from an arbitrary

N-electron state |Ψ⟩ ∈ E(N) to its NDR,

f : Φ0 = arg max
Φ∈Es(N)

⟨Φ|Ŝ[Ψ]|Φ⟩ . (12)

f [Ψ] is surjective, since every SD is the NDR of at least one

state |Ψ⟩, namely, itself. However, f [Ψ] is not injective, be-

cause more than one N-electron state can have the same NDR.

The set of states sharing the same NDR Φ,

S [Φ] = {|Ψ⟩ ∈ E(N)| f [Ψ] = |Φ⟩}, (13)

is nonempty, and every state |Ψ⟩ ∈ E(N) belongs to at least

one such set.

III. PURE-STATE NDR ENERGY FUNCTIONALS

A. Definition by Constrained Search

NDs have found relatively limited use in applications be-

cause they are conventionally constructed from a many-

electron state |Ψ⟩ which must be known in the first place. We

aim to bypass this requirement by defining an energy func-

tional which is variationally minimized by the ground-state

NDR for a given external potential.

We consider many-electron Hamiltonians of the form

Ĥ = T̂ +V̂ee +V̂ ext, (14)

with T̂ and V̂ee denoting the operators associated with the elec-

tron kinetic energy and electron-electron interaction; V̂ ext is

a general one-body operator which may be nonlocal. In the

spirit of Levy-Lieb constrained search2,26, we first find the

lowest energy expectation value on S [Φ] for a given SD Φ,

E[Φ] = inf
Ψ∈S [Φ]

⟨Ψ|Ĥ|Ψ⟩ . (15)

Since every N-electron state has at least one NDR, the energy

of a nondegenerate ground state can then be obtained from

minimization of the ground-state energy E[Φ] as a functional

of Φ,

E0 = min
Φ∈Es(N)

E[Φ]. (16)

The above functionals were previously proposed in similar

form by Taube42. However, this approach has several draw-

backs. Firstly, although the S [Φ] has a well-defined finite

basis-set equivalent, its definition is not particularly explicit,

making it difficult to implement the constraint. Even if this

(somewhat technical) problem can be overcome, secondly,

the constraint Ψ ∈ S [Φ] does not completely determine V̂ ext.

This can be shown, e.g., by noting that the 1-RDMs of differ-

ent Ψ ∈ S [Φ] generally differ, as long as they commute with

γ0, and the eigenspaces belonging to their N most strongly

occupied NOs are identical. Since there is a one-to-one corre-

spondence between the 1-RDM and V̂ ext,29 (including in finite

basis sets) the members of S [Φ] do not generally come from

the same V̂ ext. The same conclusion can be reached by ex-

plicitly counting the number of independent (real) constraints,

which amounts to Nd + 1, where d is the dimension of the

one-particle basis.

The under-determination of V̂ ext in the pure-state formal-

ism also implies that, although the ground-state energy can, in

principle, be obtained by minimizing E[Φ], there is no unique

noninteracting Hamiltonian. As such, pure-state NDR theory

violates a central requirement of Sec. I, and represents a step

backwards compared to KS-DFT.

An analogous difficulty arises in orbital optimization (OO)

methods, where some energy functional is made stationary

with respect to a set of reference orbitals. Although it is often

possible to “optimize” the energy functional by varying the

orbitals, there is generally no unique definition of the nonin-

teracting Hamiltonian, which is particularly confounding for

approximate energy functionals depending not merely on the

orbitals but also their energies.
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IV. ENSEMBLE NDR ENERGY FUNCTIONALS

A. Natural Determinant Reference Ensemble

The difficulties of the pure-state NDR formalism are over-

come by generalizing it to ensembles or “mixed states” with

real particle number P = N + kδ , where δ ∈ [0,1), and k ∈ N

is a degeneracy index. Consider such an arbitrary particle

number ensemble at zero temperature with density matrix

ϒ̂ ∈ F ×F , with F denoting the Fock space. ϒ̂ has a 1-RDM

γ[ϒ̂] = ⟨ϒ̂γ̂⟩F , whose eigenstates and eigenvalues define the

NOs and NONs as in Eq. (2). All ensembles are normalized

according to ⟨ϒ̂⟩F = 1, whereas the number operator expecta-

tion value is ⟨N̂ϒ̂⟩F = P

The NDR ensemble (NDRE) is defined as the noninteract-

ing P-particle ensemble ϒ̂s which maximizes the overlap of its

1-RDM with γ[ϒ̂]. Writing Fs(P) for the set of all noninter-

acting P-particle ensembles,

f : ϒ̂s = arg max
Λ̂∈Fs(P)

⟨Ŝ[ϒ̂]Λ̂⟩F , (17)

where Ŝ[ϒ̂] extends the definition (6) to ensembles,

Ŝ[ϒ̂] = ⟨γ̂γ[ϒ̂]⟩= ∑
p

n̂pνp. (18)

This maximization is conveniently carried out by maximizing

the functional

Σ[ϒ̂s,ν ] = ⟨ϒ̂sŜ[ϒ̂]⟩−ν ⟨ϒ̂sN̂⟩F ; (19)

the Lagrange multiplier ν enforces the particle number con-

straint ⟨ϒ̂s⟩F = P. In analogy with statistical mechanics (see,

e.g., Refs. 46 and 47), the necessary condition for a maximum

of Σ yields

ϒ̂s(ν) = Θδ (Ŝ[ϒ̂]−νN̂); (20)

Θδ denotes the Heaviside step distribution with Θδ (0) = δ .

Since Ŝ and N̂ are one-body operators, so is ϒ̂s. Choosing the

NOs of γ[ϒ̂] as a one-particle basis, one arrives at

ϒ̂s(ν) = ∑
p

np(ν) n̂p, (21)

with the NDRE one-particle occupation numbers

np(ν) = Θδ (νp −ν) =







1, νp < ν
δ , νp = ν
0, νp > ν

. (22)

Imposing the particle number constraint determines ν as a

function of P = N + kδ , which generalizes the Fermi occu-

pation number (4),

ν(P) = νF =

{

νN+1−νN

2
, δ = 0

νN+1, 0 < δ < 1
. (23)

B. Constrained Search

In analogy to Sec. II C, we define the set of iso-NDRE

ensembles as

S [ϒ̂s] = {ϒ̂ ∈ F | f [ϒ̂] = ϒ̂s}. (24)

ϒ̂s and all members of S [ϒ̂s] have the same particle number

P as by definition. The ensemble version of the ground-state

energy functional (15) is thus

E[ϒ̂s] = inf
ϒ̂∈S [ϒ̂s]

⟨Ĥϒ̂⟩F . (25)

The ground ensemble grand potential Ω0(µ) as a function of

the chemical potential µ is the minimum of the grand potential

functional

Ω[ϒ̂s,µ] = E[ϒ̂s]−µ ⟨N̂ϒ̂s⟩F ; (26)

µ can be chosen to constrain the particle number of ϒ̂s to P.

The ground-state energy as a function of P is the Legendre

transform

E0(P) = Ω0(µ)+µP, (27)

and thus

µ =
dE0(P)

dP
(28)

is indeed the chemical potential of the physical ground en-

semble. The necessary condition for a minimum of Ω[ϒ̂s,µ]
yields

ϒ̂s(µ) = Θδ (F̂ [ϒ̂s]−µN̂), (29)

where the selfadjoint effective one-particle Hamiltonian is the

functional derivative

F̂ [ϒ̂s] =
δE[ϒ̂s]

δ ϒ̂s

(30)

at the minimum.

In the pure-state case with fixed integer particle number,

γs is rank N and determined by N(d − N) parameters, cor-

responding to number-conserving “orbital rotations” between

occupied and unoccupied orbitals. These parameters simply

amount to the Brillouin-Löwdin conditions45,48–50, i.e., the

occupied-virtual block of the effective one-particle Hamilto-

nian must be zero in the basis of NOs or, equivalently, NDR

orbitals. However, the occupied-occupied and virtual-virtual

blocks, and in particular the eigenvalues, of F̂ remain un-

determined, as discussed in Sec. III. In the ensemble con-

strained search, the NDRE must be specified for arbitrary par-

ticle number P, and can have any rank between 1 and d. Thus,

the NDRE constraint is more stringent than the pure-state

NDR Brillouin-Löwdin conditions, and it fully determines the

effective noninteracting one-particle Hamiltonian F̂ [ϒ̂s]. In-

deed, Eq. (30) encompasses the Brillouin-Löwdin conditions

and Janak’s Theorem51, as shown below.
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V. EFFECTIVE SINGLE-PARTICLE EQUATIONS

A. NDRE Grand Potential Minimization

It is convenient to write the ground-state energy func-

tional as a functional of the noninteracting NDRE 1-RDM

γs = γ[ϒs],

E[γs] = EHF[γs]+EVC[γs], (31)

where EHF[γs] is the HF energy functional and the remainder

EVC[γs] accounts for correlation.

To minimize the grand potential functional Ω[ϒ̂s,µ] with

respect to γs, we consider the Lagrangian

L[{|φp⟩},{np},ϵ,µ,κ] = Ω[{|φp⟩},{np},µ]

−∑
pq

εqp (⟨φp|φq⟩−δpq)

−∑
p

κp(np −n2
p).

(32)

The Hermitian Lagrange multiplier ϵ enforces orthonormal-

ity of the orbitals. We further add the inequality constraint

np − n2
p ≥ 0 using κ; to allow for the possibility of noninte-

ger occupation, we merely require κp ≥ 0, and thus only the

weaker (Karush-Kuhn-Tucker52) conditions

κp(np −n2
p) = 0 (33)

are imposed. Stationarity with respect to the {|φp⟩} produces

the effective single-particle equations

F [γs] |φp⟩np = ∑
q

|φq⟩εqp, (34)

with the effective one-particle Hamiltonian is, in agreement

with Eq. (30),

F [γs] =
δE[γs]

δγs

= T +Vne +V HX[γs]+V VC[γs]. (35)

VHX is the sum of the Hartree and nonlocal exchange poten-

tials, and VVC = δEVC[γs]/δγs is the VC potential. The self-

adjointness of F [γs] and ε leads to the Brillouin-Löwdin con-

dition

(np −nq)
[

F [γs]
]

pq
= 0, (36)

i.e., the matrix elements of F between orbitals with differ-

ent occupation numbers must vanish. Further, we choose any

orbitals with identical occupation numbers such that F [γs] is

diagonal, i.e., εqp = δqpnpεp. This leads to the “canonical”

NDRE single-particle equations

F [γs] |φp⟩= εp |φp⟩ (37)

with orbital energies {εp}. The canonical NDRE orbitals

{|φp⟩} generally differ from the NOs {|ϕp⟩}.

The Euler-Lagrange equations for the occupation numbers

are

∂E[γs]

∂np

−µ −κp(1−2np) = 0. (38)

Choosing the lowest possible value of µ , and noting that Eq.

(35) amounts to Janak’s Theorem

∂E[γs]

∂np

= εp, (39)

we arrive at

εp =







µ −κp, np = 1

µ, np = δ
µ +κp, np = 0

. (40)

Since κp ≥ 0 (dual feasibility) is a necessary condition for

a minimum, all orbitals with noninteger occupation numbers

are degenerate with orbital energy µ , whereas fully occupied

(np = 1) orbitals must have lower, and unoccupied (np = 0)

orbitals must have higher energies. The Aufbau principle is

thus a necessary condition for a minimum of the grand poten-

tial under suitable constraints.

B. Physical Interpretation

The NDRE 1-RDM is by construction the closest nonin-

teracting P-particle approximation to the interacting 1-RDM

within the 2-norm. In this sense, one-particle properties ob-

tained from the NDR are close, but generally not equal to,

their interacting equivalents.

Moreover, the canonical NDRE orbital energies have an ap-

pealing interpretation in terms of electron removal and ad-

dition energies: It follows from Eqs. (28) and (40) that the

energies of the highest occupied (H) and the lowest unoccu-

pied (L) NDRE orbitals equal the negatives of the exact (first)

ionization potentials I and electron affinities A at integer par-

ticle number. This result is analogous to GKS, but not KS

theory53–55. An important consequence is that the NDR gap

εL − εH = A− I (41)

equals the fundamental gap of the interacting system, whereas

the KS gap is well known to differ due to derivative disconti-

nuities of the (local) exchange-correlation potential56.

Perdew and Levy have argued that higher stationary points

of the exact DFT energy functional correspond to exact ex-

cited state energies57. If an analogous argument can be made

for the NDRE energy functional, then NDRE orbital energies

below εH and above εL would correspond to certain higher

ionization potentials and electron affinities.

VI. APPROXIMATE FUNCTIONALS

A. Adiabatic Connection

In analogy to adiabatic connection DFT (ACDFT),58,59, the

constrained-search definition of the ground-state energy as a

functional of the NDRE ϒ̂s can be extended to scaled electron-

electron interactions αV̂ee,

Eα [ϒ̂s] = inf
ϒ̂∈S [ϒ̂s]

⟨(T̂ +αV̂ee +V̂ ext)ϒ̂⟩F . (42)
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The Hellmann-Feynman theorem yields

dEα [ϒ̂s]

dα
= ⟨ϒ̂αV̂ee⟩F , (43)

where ϒ̂α is the P-particle ensemble which infimizes Eα [ϒ̂s].
The “adiabatic connection formula” for the ground-state VC

energy functional follows by coupling strength integration,

EVC[ϒ̂s] =
∫ 1

0
dα ⟨(ϒ̂α − ϒ̂s)V̂ee⟩F . (44)

The DFT analog of Eq. (44) has been used widely to derive

orbital- and explicitly KS potential-dependent functionals.60

Compared to the DFT case, the variational minimization of

such functionals is relatively straightforward in the NDRE

context, because the functionals are well-defined in general

finite basis sets. Thus, “functional selfconsistency”9,19, i.e.,

an exact implementation of Eq. (30), is achievable without

having to resort to large real-space grids or regularization.

B. Uniform Electron Gas and Semilocal Functionals

For the uniform electron gas, V̂ ext is a constant, and thus

the one-electron potential correlation energy vanishes. As a

result, the NDRE correlation energy functional is obviously

“universal” in the uniform limit; it coincides with the local

density approximation, evaluated at the NDR density, which

equals the interacting density in the uniform case.

An immediate conclusion is that approximate NDRE func-

tionals can (and probably should61) be made exact in the uni-

form limit. However, to meaningfully apply such functionals

to nonuniform systems, approximations for the interacting 1-

RDM may be needed. In a first step, the difference between

the interacting and noninteracting densities could be obtained

from existing semilocal correlation hole models62–64by re-

moving the correlation sum rule constraint. Moreover, the

NOs of the uniform electron gas are identical to the NDRE

orbitals, and their NONs are accurately known functions of

the noninteracting orbital energies65.

C. GKS

From the present perspective, the NDRE single-particle

equations constitute one possible “exactification” of the (em-

pirical) GKS scheme. Existing density functionals depending

explicitly on the GKS density matrix such as meta-GGA or

(local) hybrid functionals are among the most accurate and

widely used DFAs; these functionals can also be viewed as

crude NDR functional approximations.

D. Orbital Optimization

NDR theory may also be viewed as an “exactification” of

OO methods66–68. Despite its intuitive appeal, straightfor-

ward OO of HF-based energy functionals suffers from over-

determination69. The NDRE constraint fixes the extra de-

grees of freedom introduced by orbital optimization and thus

NDRE functionals do not have this issue. Indeed, correlated

wavefunction methods with well-defined grand-canonical ex-

tensions could be used in conjunction with the NDRE adia-

batic connection without much extra effort compared to exist-

ing OO schemes.

VII. CONCLUSIONS

With relatively minor modifications, DFT can be liberated

from its real-space shackles. While adherents of the locality

principle will consider this work heresy, the present results

suggest that weakening the exact density requirement of DFT

to a best noninteracting 1-RDM requirement has many advan-

tages. Chemists, in particular, have long used off-diagonal

elements of the 1-RDM as approximate measures of chemical

bond orders (“overlap populations”). Since only noninteract-

ing quantities are needed to obtain the ground-state energy, the

basis-set requirements are modest, at least for explicit NDR

energy functionals.

The grand-canonical version of NDR functional theory

leads to a well-defined noninteracting Hamiltonian whose or-

bital energies are ionization potentials and electron affini-

ties. Therefore, NDR functional theory partly satisfies the

conditions Bartlett has put forward for an “exact correlated

orbital theory” (COT)70, at least for the frontier orbitals;

the NDR noninteracting Hamiltonian is selfadjoint and ob-

tained as a functional derivative, whereas the COT effective

Hamiltonian is defined by (nonunitary) similarity transforma-

tion. NDR functional theory provides a particularly attractive

framework for further development of higher-rung “potential-

dependent” functionals, because it does not require optimized

effective potentials. Although the NDRE energy functional is

not explicitly known for two-electron systems, it has a well-

defined noninteracting N-electron limit, and thus is amenable

to extrapolation using “weakly correlated” approaches such

as RPA71 or coupled cluster theory72. This may be con-

trasted with the 1-RDM energy functional, which is explic-

itly known for two-electron systems73–75, but no useful non-

interacting N-electron limit, or the 2-RDM energy functional,

which is explicitly known for all systems, but its domain is

pathological4,76. Another appealing aspect of NDRE func-

tionals is that a wealth of exact constraints and techniques un-

derlying the success of DFT can be carried over with relatively

few modifications, especially in the GKS realm.
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Appendix A: Natural Determinants

Theorem A.1. Given an N-electron state |Ψ⟩ with NOs

{|ϕp⟩}, let |Φn⟩ be a ND of |Ψ⟩, i.e., a SD constructed from N

NOs. Then the following statements are equivalent:

(i) The 1-RDM of |Φn⟩ is

γ[Φn] = ∑
p

nn,p |ϕp⟩⟨ϕp| , (A1)

where N occupation numbers nn,p are equal to 1 and all

others are zero.

(ii) The 1-RDMs γ[Ψ] and γ[Φn] commute.

(iii) (Brillouin-Löwdin condition)45

⟨Ψ|ĉ†
i ĉa|Ψ⟩= 0, (A2)

where {|ϕi⟩} are occupied in |Φn⟩ and {|ϕa⟩} are not

occupied.

Proof. The equivalence of (i) and (ii) is elementary. For the

proof of (iii) see Ref. 45.

Theorem A.2. Let |Φ0⟩ be the NDR of |Ψ⟩, i.e., the ND con-

structed from the N most strongly occupied natural orbitals of

|Ψ⟩. The following statements are equivalent:

(i) The sequence of NONs of |Φ0⟩, (n0,p)p∈N, is nonincreas-

ing.

(ii) ⟨γ[Φ]|γ[Ψ]⟩ ≤ ⟨γ[Φ0]|γ[Ψ]⟩= ∑
N
p=1 νp = s0 .

(iii) |Φ0⟩ minimizes ∥γ[Ψ]− γ[Φ]∥ for fixed Ψ. Thus, γ[Φ0]
is the best idempotent approximation to γ[Ψ].

(iv) |Φ0⟩ minimizes the particle and hole number expectation

values as functionals of a reference determinant.

Proof. The proof of equivalence of (i) and (ii) is well docu-

mented in the literature, see, e.g., Refs. 78 and 79. It is only

sketched here. γ[Ψ] and γ[Φn] have a shared set of eigenvec-

tors, therefore we obtain for the Frobenius inner product

⟨γ[Φn]|γ[Ψ]⟩= ∑
p

np,nνp = sn. (A3)

This value is maximized if (n0,p)p∈N are nonincreasing (si-

multaneous ordered spectral decomposition), therefore sn ≤
s0. The equivalence of (ii) and (iii) is given by Eqs. (7) and

(8). To prove the equivalence of (ii) and (iv), define the par-

ticle and hole expectation values as N′
n = N −⟨Ψ|Ŝ[Φn]|Ψ⟩=

N − sn. With these definitions, we obtain N′
n ≤ N′

0 = N −
s0.
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