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Simultaneous estimation of multiple eigenvalues with
short-depth quantum circuit on early fault-tolerant
quantum computers
Zhiyan Ding1 and Lin Lin1,2,3

1Department of Mathematics, University of California, Berkeley, CA 94720, USA
2Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley,
CA 94720, USA

3Challenge Institute of Quantum Computation, University of California, Berkeley, CA 94720, USA

We introduce a multi-modal, multi-level quantum complex exponential least
squares (MM-QCELS) method to simultaneously estimate multiple eigenvalues
of a quantum Hamiltonian on early fault-tolerant quantum computers. Our the-
oretical analysis demonstrates that the algorithm exhibits Heisenberg-limited
scaling in terms of circuit depth and total cost. Notably, the proposed quantum
circuit utilizes just one ancilla qubit, and with appropriate initial state condi-
tions, it achieves significantly shorter circuit depths compared to circuits based
on quantum phase estimation (QPE). Numerical results suggest that compared
to QPE, the circuit depth can be reduced by around two orders of magnitude
under several settings for estimating ground-state and excited-state energies of
certain quantum systems.

1 Introduction
The estimation of ground-state energies and excited-state energies of a Hamiltonian is
a fundamental problem in quantum physics with numerous practical applications, such
as in the design of new materials, drug discovery, and optimization problems. While the
ground-state is often the state of interest for many quantum systems, excited-state energies
also provide crucial information for understanding the electronic and optical properties of
materials. Classical computers are limited in their ability to accurately estimate these
energies for large-scale systems, and quantum computers have the potential to provide a
significant speedup in solving such problems. Therefore, developing efficient and accurate
methods for estimating ground-state and excited-state energies on quantum computers has
become a major area of research in quantum information science.

When estimating multiple eigenvalues on quantum computers, there are two different
strategies to consider. The first method involves preparing a variety of initial states that
approximate different target eigenstates, and then estimating each eigenvalue one by one.
The second method is to prepare a single initial state that has nontrivial overlap with all
eigenstates of interest and estimate the eigenvalues simultaneously. The effectiveness of
each approach depends on the assumptions and qualities of the initial state. This paper
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concerns the second approach. Given a quantum Hamiltonian H ∈ CM×M , we assume
that we can prepare an initial quantum state |ψ⟩ with K dominant modes. Specifically,
let {(λm, |ψm⟩)}Mm=1 denote the eigenvalue and eigenvector pairs of H, and define pm =
|⟨ψm|ψ⟩|2 as the overlap between the initial state and the m-th eigenvector. We assume
that we can choose a set D ⊂ {1, 2, · · · ,M} satisfying |D| = K, and pm = Ω(R(K)) for any
m ∈ D. Here R(K) =

∑
m′∈Dc pm′ is called the residual overlap, and Dc = {1, 2, · · · ,M}\D.

The eigenvalues {λm}m∈D are called the dominant eigenvalues of H with respect to the
initial state |ψ⟩ (or dominant eigenvalues for short), and the associated eigenvectors are
called the dominant eigenvectors (or dominant modes). We assume {λm}m∈D ⊂ [−π, π]
for simplicity. Using an oracle access to the Hamiltonian evolution operators e−itH for any
t ∈ R, we introduce an efficient quantum algorithm to estimate these dominant eigenvalues.
We quantify the efficiency of a quantum algorithm by means of the maximal runtime
denoted by Tmax, and the total runtime Ttotal. Assuming an algorithm needs to run a
set of Hamiltonian evolution operators {exp(−itnH)}Nn=1, then the maximal runtime is
Tmax = max1≤n≤N |tn| and the total runtime is Ttotal =

∑N
n=1 |tn|. Here, Tmax and Ttotal

approximately measure the circuit depth and the total cost of the algorithm, respectively,
in a way that is oblivious to the details in implementing the Hamiltonian evolution operator
e−itH .

Our algorithm satisfies the following properties:

(1) Allow a nonzero residual overlap: R(K) =
∑

m′∈Dc pm′ > 0.

(2) Maintain Heisenberg-limited scaling [11],[41],[42]: To estimate all dominant eigenval-
ues to precision ϵ with probability 1− η, the total cost is O(ϵ−1 poly log(ϵ−1η−1));

(3) Use one ancilla qubit.

(4) Reduce the circuit depth: the maximal runtime can be (much) lower than π/ϵ, es-
pecially when the ratio of residual overlap to the minimum overlap in the dominant
set R(K)/(minm∈D pm) approaches zero.

(5) Use the information of the spectral gap to further reduce maximal runtime: in the
presence of a spectral gap ∆, when ϵ≪ ∆, the maximal runtime can be independent
of ϵ as Õ(∆−1), and in this case, the total runtime is Õ(ϵ−2) (see detail in Remark
2).

Our algorithm is designed to perform only classical postprocessing on the quantum
data that is generated by the Hadamard test circuit, which uses one ancilla qubit. It is
particularly well-suited for early fault-tolerant quantum devices that may be limited in the
number of ancilla qubits and maximal coherence times.

The structure of this paper is organized as follows: In Section 2, we present the main
idea of our method and provide a brief summary of related works. Next, in Section 3,
we describe the main algorithm and provide the complexity results. The proof is included
in the Appendix. Finally, we showcase the efficiency of our algorithm through numerical
examples in Section 4.

2 Main idea and related work
In order to illustrate the main idea of the algorithm, we assume that we can use a quantum
circuit (see Section 3.1) to accurately estimate

⟨ψ| exp(−itH) |ψ⟩ =
M∑

m=1
pm exp(−iλmt) (1)
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for any t ∈ R, where t is drawn from a probability distribution with a symmetric density
a(t), i.e., a(t) ≥ 0, a(t) = a(−t), and ∥a(t)∥L1 =

∫∞
−∞ a(t)dt = 1. In our implementation, to

estimate (1), we first use a classical computer to randomly sample t from distribution a(t).
Then, we execute the Hadamard test circuit (Fig. 2) on a quantum computer multiple
times and average the output of measurement to estimate (1). We emphasize that the
random selection of t plays an important role in improving the efficiency of our algorithm
(see Section 2.1).

Define the Fourier transform of the probability density

F (x) =
∫ ∞

−∞
a(t) exp(ixt) dt , (2)

which is a real-valued even function. As detailed in the following explanation, our approach
requires carefully selecting an appropriate distribution a(t) to ensure that the resulting filter
function F (x) reaches its maximum at x = 0 and decay rapidly as |x| increases. There are
several choices of a(t) such that F (x) concentrates around x = 0. In this paper, we choose
a(t) as the density function of a truncated Gaussian function:

a(t) = 1
Aγ

√
2πT

exp
(
− t2

2T 2

)
1[−γT,γT ](t), for T, γ > 0 , (3)

where the normalization constant Aγ =
∫ γ

−γ
1√
2π

exp
(
− t2

2

)
dt. The selection of a(t) is

guided by the observation that the Fourier transform of a Gaussian function remains a
Gaussian function. More specifically, when γ = ∞, we have F (x) = exp

(
−T 2x2

2

)
, which

attains its maximal value at x = 0 and exponentially decays to zero with respect to T |x|.
In addition, the use of the truncated Gaussian ensures that the maximal runtime never
exceeds γT . We may also use the notation aT (t) = a(t), FT (x) = F (x) to emphasize the
dependence on T .

From this we can define an ideal loss function as

LK

(
{rk}Kk=1, {θk}Kk=1

)
=
∫ ∞

−∞
a(t)

∣∣∣∣∣
M∑

m=1
pm exp(−iλmt)−

K∑
k=1

rk exp(−iθkt)
∣∣∣∣∣
2

dt . (4)

Then we can we estimate the dominant eigenvalues {λm}m∈D by solving the optimization
problem (

{r∗
k}Kk=1, {θ∗

k}Kk=1

)
= arg min

rk∈C,θk∈R
LK

(
{rk}Kk=1, {θk}Kk=1

)
. (5)

Intuitively, if the residual overlap R(K) =
∑

m′∈Dc pm′ is small enough, to minimize
the loss function, {(r∗

k, θ
∗
k)}Kk=1 should be close to {(pm, λm)}m∈D so that the optimizer∑K

k=1 r
∗
k exp(−iθ∗

kt) can eliminate the dominant term
∑

m∈D pm exp(−iλmt). For example,
consider the case K = 1, we can obtain a closed form expression for the r1 variable, and
the optimization problem in Eq. (5) can be rewritten as

r∗
1 =

M∑
m=1

pm

∫ ∞

−∞
a(t) exp(i(θ∗

1 − λm)t) dt, (6)

and

θ∗
1 = arg max

θ∈R

∣∣∣∣∣
M∑

m=1
pm

∫ ∞

−∞
a(t) exp(i(θ − λm)t) dt

∣∣∣∣∣
2

= arg max
θ∈R

∣∣∣∣∣
M∑

m=1
pmF (θ − λm)

∣∣∣∣∣ .
(7)
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Since F (x) is a function that concentrates around x = 0, we expect that θ∗
1 ≈ λm∗ , where

m∗ = arg maxm pm.
In practice, we can only generate an approximate value of ⟨ψ| exp(−itH) |ψ⟩ up to

statistical errors for a finite number of time steps t. As a result, the loss function we use
in our optimization problem is only an approximation of the ideal loss function presented
in Eq. (4). The main objective of this work is to generalize this idea to the estimation of
multiple eigenvalues, and to rigorously implement this idea and control the complexity.

Using the concentration property of F (x), we can demonstrate that the solution of the
optimization problem is within δ/T of the dominant eigenvalues λm. Therefore by choosing
Tmax = δ/ϵ, the parameter δ directly affects the circuit depth, and can be selected to be
arbitrarily small if R(K) is small enough. Additionally, the solution of the optimization
problem presented in Eq. (5) is robust to the measurement noise, which means that we
do not need to generate a large number of data points and samples to construct the
approximated optimization problem. This ensures that the algorithm can achieve the
Heisenberg limit, i.e., Ttotal = O(1/ϵ) (see Section 3.3).

2.1 Related work
If the initial quantum state |ψ⟩ is a precise eigenvector of H with a single dominant eigen-
value, such as λ1, the Hadamard test algorithm is the simplest algorithm for estimating
this eigenvalue with ϵ-accuracy. Given any real number T ̸= 0, we can run the Hadmard
test circuits (Fig. 2) several times to generate an estimate ZT ≈ ⟨ψ1| exp(−iTH) |ψ1⟩ =
exp(−iTλ1). We then define the approximation λ∗

1 = −argZT
T . Because we assume

λ1 ∈ [−π, π], it suffices to choose T = 1 and λ∗
1 can be arbitrarily close to λ1 by in-

creasing the number of measurements. This observation implies that the maximal running
time Tmax = 1 suffices to achieve arbitrary precision when employing the Hadamard test
algorithm. Although the Hadamard test algorithm only utilizes a short circuit depth, it
has several limitations: (1) the initial state |ψ⟩ must be an exact eigenstate, (2) the total
runtime Ttotal does not satisfy the Heisenberg-limited scaling and is Ω(ϵ−2), and (3) it
cannot estimate multiple eigenvalues. The first two limitations can be addressed by using
quantum phase estimation (QPE) and its variants [17, 19, 26, 31, 1, 13, 12]. The textbook
version of QPE [28] uses multiple ancilla qubits to store the phase and relies on inverse
quantum Fourier transform (QFT). However, it can be difficult to employ the textbook
version of QPE for multiple eigenvalue phase estimation due to the difficulty in handling
spurious eigenvalues. In addition, although QPE can start from an imperfect eigenstate
and saturates the Heisenberg-limited scaling, it requires the maximal runtime Tmax at least
π/ϵ to achieve ϵ accuracy [28, Section 5.2.1].

Ref. [9] recently proposed a multiple eigenvalue phase estimation method that satisfies
the Heisenberg limit scaling without any spectral gap assumptions. However, the theoret-
ical analysis assumes that all non-dominant modes vanish [9, Definition 3.1 and Theorem
4.5], i.e., pm′ = 0 for any m′ ∈ Dc. Additionally, it has not yet been demonstrated that
the method satisfies the short-depth property (4) described at the beginning of the paper.

An alternative way to understand the phase estimation problem is to view it as a sparse
Fourier transform problem in classical signal processing. In recent years, the sparse Fourier
transform problem has been extensively studied in both the discrete [38, 3, 40, 8, 2, 16] and
continuous [32, 4, 15] settings. In particular, Ref. [32] concerns the recovery of the Fourier
frequency of a continuous signal in the low noise setting. Our Theorem 1 shares similarities
with [32, Theorem 1.1]. However, in our approach, each data point is generated by running
the Hadamard test once, resulting in significantly higher noise level than that in [32]. Our
optimization based method may also be easier to implement in practice. Very recently,
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Ref. [21] introduces a robust multiple-phase estimation (RMPE) algorithm that can be
considered as an extension of the multi-level robust phase estimation method (RPE) pro-
posed in an earlier work [27]. By leveraging a multi-level signal processing technique [20],
the RMPE algorithm can estimate multiple eigenvalues with Heisenberg-limited scaling
without spectral gap assumptions. Under an additional spectral gap assumption, and with
a different technique called ESPRIT [22] originally developed for super-resolution of sig-
nals and capable of efficiently estimating multiple eigenvalues in polynomial time [36], the
resulting algorithm can satisfy the short-circuit depth property when the residual overlap
R(K)/(minm∈D pm) is small.

Quantum subspace diagonalization (QSD) methods, quantum Krylov methods, and
matrix pencil methods [5, 14, 18, 24, 25, 30, 33, 35, 29] estimates the eigenvalues by
solving certain projected eigenvalue problems or singular value problems, and have been
used to estimate ground-state and excited-state energies in a number of scenarios. Classical
perturbation theories suggest that such projected problems can be highly ill-conditioned
and the solutions are sensitive to noise. However, it has been observed that these methods
can perform better than the pessimistic theoretical predictions. Recently, Ref. [10] provided
a theoretical analysis explaining this phenomenon in the context of quantum subspace
diagonalization methods used for computing the smallest eigenvalue. Nevertheless, the
error of these methods generally increase with respect to the number of data points, which
is related to the dimension of the projected matrix problem. In contrast, the error of
our algorithm decreases with respect to the number of data points, making it much more
robust to measurement noise. It is worth noting that the sharp complexity analysis of
these methods (especially, with respect to the dimension of the projected matrix problem)
remains open.

The loss function (4) utilized in this work is inspired by a recently developed subroutine
called quantum complex exponential least squares (QCELS) [6]. QCELS employs the same
quantum circuit as depicted in Fig. 2 to generate data and uses an optimization-based
approach for estimating a single dominant eigenvalue. Although our method is also based
on solving an optimization problem, it is important for us to emphasize that directly
extending QCELS to estimate multiple eigenvalues does not yield satisfactory results. We
detail the differences in the following:

• QCELS samples the time steps t on a uniform grid as tn = n
N T for 0 ≤ n ≤ N − 1.

In order to satisfy the Heisenberg-limited scaling, Ref. [6] proposed a multi-level
QCELS algorithm that gradually increases the step size τ = T/N as one refines
the estimate to the eigenvalue. However, such an approach can result in aliasing
problems for multiple eigenvalue estimation since it may not be possible to distinguish
exp(−iλm1tn) and exp(−iλm2tn) in the loss function if (λm1 − λm2)T/N = 2πq for
some m1 ̸= m2 and q ∈ Z. To overcome this difficulty, we combine the random
sampling strategy [23, 37] with QCELS and sample tn’s randomly from a probability
density a(t).

• For estimating a single dominant eigenvalue, our method also achieves improved
theoretical results. In Ref. [6], QCELS requires p1 > 0.71 and the circuit depth
satisfies Tmax = δ/ϵ, where δ = Θ(

√
1− p1). By applying our method to the single

eigenvalue estimation problem, our analysis demonstrates that the method works for
any p1 > 0.5, and the constant δ can be improved to δ = Θ(1−p1). This improvement
tightens the bound for the circuit depth. For clarity, the disparities in the constant
dependence can be observed in Fig. 1.
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Hadmard test
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MM-QCELS (this work)

Figure 1: A comparison of the theoretical upper bound of δ = Tmaxϵ for QCELS, QPE-type algorithm,
and MM-QCELS for ground state energy estimation. The Hadamard test is only applicable when p1 = 1
and the theoretical result in [6] requires p1 > 0.71 for QCELS.

• As previously noted, QCELS [6] is formulated as a multi-level algorithm to attain
Heisenberg-limited scaling and mitigate the aliasing problem. In our work, we also
develop MM-QCELS as a multi-level method to help us control the random noise
throughout the entire optimization domain. However, unlike QCELS [6], our ap-
proach can be simplified to solve the optimization problem with suitable parameters
only once to approximate the dominant eigenvalues, resulting in a one-level algo-
rithm. We put detailed discussion in the first comment of Remark 2.

• In the original QCELS [6], it was demonstrated that the maximum runtime can be
further decreased to Tmax = Θ̃(1/(λ2 − λ1)) by initially employing a ground state
filter [23] to enhance p1. Our approach extends this characteristic to the estimation
of multiple eigenvalues without requiring the use of a ground-state filter. This signif-
icantly simplifies the post-processing procedure. See the second comment of Remark
2.

We include a summary of the comparison among various methods for estimating mul-
tiple eigenvalues in Table 1.

3 Main method and informal complexity result
This section begins by presenting a quantum circuit for data generation. Subsequently, we
use these data points to formulate an approximated optimization problem and propose the
main algorithm. Finally, we provide an intuitive complexity analysis for our algorithm,
followed by its rigorous statement.
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Algorithms Requirement
(1) Nonzero (2) Heisenberg (3)Single (4) Short (5) Use

Residual limit ancilla depth gap
QSD type ([5]-[10]) ✓ ? ? ? ?

QEEA [34] ✓ ✗ ✓ ? ?
ESPRIT [36] ? ? ✓ ? ?

Ref. [9] ? ✓ ✓ ? ✗

Ref. [21, Theorem III.5] ✓ ✓ ✓ ✗ ✗

Ref. [21, Theorem IV.2] ✓ ✓ ✓ ✓ ?
MM-QCELS (this work) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of various methods for estimating multiple eigenvalues.

3.1 Generating data from quantum circuit
The quantum circuit used in this paper is the same as that used in the Hadamard test. In
Fig. 2, we may

(1) Set W = I, measure the ancilla qubit and define a random variable Xn such that
Xn = 1 if the outcome is 0 and Xn = −1 if the outcome is 1. Then

E(Xn) = Re (⟨ψ| exp(−itH) |ψ⟩) . (8)

(2) Set W = S† (S is the phase gate), measure the ancilla qubit and define a random
variable Yn such that Yn = 1 if the outcome is 0 and Yn = −1 if the outcome is 1.
Then

E(Yn) = Im (⟨ψ| exp(−itH) |ψ⟩) . (9)

We assume an oracle access to the Hamiltonian evolution operator e−itH for any t ∈ R.
This assumption is not overly restrictive. For instance, if we can approximate e−iτH for
some desired τ > 0 using the Trotter method of a certain order (the choice of τ and the order
of the Trotter splitting is problem dependent and should balance between efficiency and
accuracy), we may express e−itH =

(
e−iτH

)p
e−iτ ′H , where t = pτ+τ ′, p ∈ Z, and |τ ′| < τ .

The cost for implementing e−iτ ′H should be no larger than that of implementing e−iτH . The
Trotter error can be systematically controlled and this is an orthogonal issue to the type
of error considered in this paper (see, e.g., [23, Appendix D] for how to factor such errors
into the analysis). Therefore, throughout the paper, we assume that the implementation
of e−itH for any t ∈ R is exact.

Given a set of time points {tn}Nn=1 drawn from the probability density a(t), we use the
quantum circuit in Fig. 2 to prepare the following data set:

DH = {(tn, Zn)}Nn=1 . (10)

By running the quantum circuit (Fig. 2) for each tn once, we define the output

Zn = Xn + iYn. (11)

Here Xn, Yn are independently generated by the quantum circuit (Fig. 2) with different W
and satisfy (8), (9) respectively. Hence, we have

E(Zn) = ⟨ψ| exp(−itnH) |ψ⟩ , |Zn| ≤ 2 . (12)
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Therefore Zn is an unbiased estimation ⟨ψ| exp(−itnH) |ψ⟩ =
∑M

m=1 pm exp(−iλmtn). We
also note that if we use the above method to prepare the data set in Eq. (10), the maximal
simulation time is Tmax = max1≤n≤N |tn| and the total simulation time is

∑N
n=1 |tn|.

Given tn, we can sample the circuit Ns times such that |Zn − ⟨ψ| exp(−itnH) |ψ⟩| =
O(1/

√
Ns). Most algorithms, including the QCELS algorithm in Ref. [6], require this

repetition step. In this aspect, our algorithm is innovative in that it achieves convergence
with just a single sample per tn, i.e., Ns = 1. For simplicity, we assume Ns = 1 throughout
the paper. Increasing Ns reduces the statistical noise in Zn and can further decrease
the error in the eigenvalue estimate. This also increases Ttotal by a factor of Ns without
affecting Tmax.

Figure 2: Choosing W = I or W = S† (S is the phase gate), the Hadamard test circuit allows us
to estimate the real or the imaginary part of ⟨ψ| exp(−itH)|ψ⟩ on quantum computers. H is the
Hadamard gate. The classical computer provides the evolution time t according to a probability density
a(t), and performs postprocessing on the quantum data for eigenvalue estimation.

Algorithm 1 describes the data generating process.

Algorithm 1 Data generator
1: Preparation: Number of data pairs: N ; probability density: a(t);
2: n← 1;
3: while n ≤ N do
4: Generate a random variable tn with the probability density a(t).
5: Run the quantum circuit (Figure 2) with t = tn and W = I to obtain Xn.
6: Run the quantum circuit (Figure 2) with t = tn and W = S† to obtain Yn.
7: Zn ← Xn + iYn.
8: n← n+ 1
9: end while

10: Output: {(tn, Zn)}Nn=1

3.2 Main algorithm
After generating the data set, we define the numerical loss function (referred to as the loss
function for short) as

LK

(
{rk}Kk=1, {θk}Kk=1

)
= 1
N

N∑
n=1

∣∣∣∣∣Zn −
K∑

k=1
rk exp(−iθktn)

∣∣∣∣∣
2

(13)
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and the optimization problem(
{r∗

k}Kk=1, {θ∗
k}Kk=1

)
= arg min

rk∈C,θk∈R
LK

(
{rk}Kk=1, {θk}Kk=1

)
. (14)

Compared to the ideal loss function described in Eq. (4), the current loss function is con-
siderably noisier. Define the expectation error En = Zn−

∑M
m=1 pm exp(−iλmtn). We note

that |En| is bounded by 3 but not small since Zn is generated by running the quantum
circuit only once. On the other hand, the expectation of En is zero and {En}Nn=1 are inde-
pendent. This implies

∣∣∣ 1
N

∑N
n=1En

∣∣∣ = O
(
1/
√
N
)
. Define the vector r = (r1, r2, . . . , rK)

and θ = (θ1, θ2, . . . , θK), and plug this into (13), we have

arg min
r,θ

LK (r,θ)

= arg min
r,θ

1
N

N∑
n=1

∣∣∣∣∣Zn −
K∑

k=1
rk exp(−iθktn)

∣∣∣∣∣
2

= arg min
r,θ

1
N

N∑
n=1

∣∣∣∣∣
M∑

m=1
pm exp(−iλmtn)−

K∑
k=1

rk exp(−iθktn)
∣∣∣∣∣
2

− 2
N

N∑
n=1

Re
〈
En,

K∑
k=1

rk exp(−iθktn)
〉

≈ arg min
r,θ

∫ ∞

−∞
a(t)

∣∣∣∣∣
M∑

m=1
pm exp(−iλmt)−

K∑
k=1

rk exp(−iθkt)
∣∣∣∣∣
2

dt

= arg min
r,θ

LK (r,θ) ,

(15)

where ⟨a, b⟩ = a ·b for any a, b ∈ C. In the second equality, we omit terms that are indepen-
dent of (r,θ). In the approximation step, we use 2

N

∑N
n=1 Re

〈
En,

∑K
k=1 rk exp(−iθktn)

〉
≈

0 when N ≫ 1. While the loss function LK may not converge to the ideal loss function
as N approaches infinity due to the statistical noise in Zn, we find that the optimization
problem in Eq. (14) can still yield a solution that approaches that in Eq. (5) with the ideal
loss.

After formulating the loss function (13) and the optimization problem (14), we are ready
to introduce our main algorithm. Inspired by the multi-level QCELS [6], the algorithm
contains two steps:

• Step 1: Choose a relative small T0. Set T = T0, a(t) = aT0(t) and solve the op-
timization problem (14) to give a rough estimation for each dominant eigenvalues
{λm}m∈D.

• Step 2: Gradually increase T so that:

1. The solution with Tj gives a good initial guess for the optimization problem
with Tj+1.

2. The total running time still satisfies the Heisenberg-limit.

The detailed algorithm is summarized in Algorithm 2, which is referred to as the multi-
modal, multi-level quantum complex exponential least squares (MM-QCELS) algorithm.
We note that the optimization problems (16) in Algorithm 2 have the technical constraint
∥r∥1 ≤ 1. This constraint is natural since each rk should approximate some pmk

, and
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the sum of the absolute value thus should exceed 1. This constraint is added to simplify
the complexity analysis for a uniform upper bound of the expectation error (see Lemma 8
in Appendix E for detail). In practice, we find that the performance of the algorithm is
independent of this constraint (see the numerical tests in Section 4).

Algorithm 2 Multi-modal, multi-level quantum complex exponential least squares
(MM-QCELS)

1: Preparation: Number of data pairs: {Nj}lj=0; number of iterations: l; sequence of time
steps: {Tj}lj=0; sequence of probability distributions {aTj (t)}lj=0; number of dominant
eigenvalues: K

2: Running:
3: k ← 1; ▷ Step 1 starts
4: while k ≤ K do
5: λmin,k ← −π; λmax,k ← π; ▷ [λmin,k, λmax,k] is the estimation interval.
6: k ← k + 1
7: end while
8: j ← 0;
9: while j ≤ l do

10: Generate a data set {(tn, Zn)}Nj

n=1 using Algorithm 1 with aTj (t).
11: Define the loss function LK(r, θ) in Eq. (13).
12: Minimizing loss function:

(r∗,θ∗)← arg min
∥r∥1≤1,θk∈[λmin,k,λmax,k]

LK (r,θ) . (16)

13: λmin,k ← θ∗
k −

π
Tj

; λmax,k ← θ∗
k + π

Tj
▷ Shrink the search interval.

14: j ← j + 1
15: end while ▷ Step 2 ends
16: Output: {(r∗,θ∗)}Kk=1

3.3 Complexity analysis of Algorithm 2
In this section, we study the complexity of Algorithm 2. First, the cost of the algorithm
depends on a number of parameters used throughout the analysis, including

1. The minimal dominant overlap:

p
(K)
min = min

m∈D
pm ; (17)

2. The minimal dominant spectral gap:

∆(K)
λ = min

m,m′∈D,m ̸=m′
|λm′ − λm| ; (18)

3. The residual overlap:
R(K) =

∑
m′∈Dc

pm′ . (19)

Now, we are ready to introduce the complexity result of Algorithm 2, which is summa-
rized in the following theorem.
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Theorem 1. Given the failure probability 0 < η < 1/2, error ϵ > 0, and any ζ > 0.
Assume p

(K)
min > 3R(K) and define q = Θ(R(K)/p

(K)
min). In Algorithm 2, we choose the

following parameters:

• Set γ = Θ
(
log

(
1/min

{
p

(K)
minq,

(
p

(K)
min

) (
p

(K)
min − 3R(K)

)}))
.

• For Step 1, set

T0 = Θ̃
((

∆(K)
λ

)−1
log(q−1)

)
, N0 = Θ̃

(
T 2

0

(
p

(K)
min

(
p

(K)
min − 3R(K)

))−2
poly log(η−1)

)
.

(20)

• For Step 2, set l = max{⌈log2 (q/(ϵT0))⌉ , 1}, Tj = 2jT0, and

Nj = Θ̃
((
p

(K)
min

)−4
q−2−ζ poly log(log(ζ−1)η−1)

)
(21)

for 1 ≤ j ≤ l.

This gives

Tmax = δ

ϵ
, Ttotal = Θ̃

 1(
p

(K)
min

)4
δ1+ζϵ

poly log(log(ζ−1)δ−1η−1)

 . (22)

where δ = Θ̃
(
q log(q−1)

)
. In the above equations, the constant in Θ̃ depends at most

polynomially on log
(
(p(K)

min(p(K)
min − 3R(K)))−1K

)
. Then with probability 1 − η , for any

m ∈ D, there exists a unique 1 ≤ km ≤ K such that

|λm − θ∗
km
| ≤ ϵ . (23)

Here, ζ can be chosen arbitrarily close to 0 and the constant in Θ̃ depends on ζ.

We put the proof of the above theorem in the Appendix. To provide a clear exposition
of the core concept, we first present the intuitive idea of the proof in Appendix B. The key
step in our proof is to demonstrate that solving the ideal optimization problem (5) could
yield a precise approximation to dominant eigenvalues with a short maximal running time.
The rigorous proof of the theorem is then given in Appendix C. In particular, we rigorously
bound the approximation error in (15), and optimizing the numerical loss function (13)
gives us an accurate approximation of dominant eigenvalues with low cost.

Remark 2. The results of Theorem 1 can be extended as follows:

1. In the above theorem, we could relax the condition that T0 = Θ̃((∆K
λ )−1 log(q−1).

To be more precise, if we are given a lower bound ∆low for ∆K
λ , we could set T0 =

Θ̃((∆low)−1 log(q−1)), and the result of the theorem still holds.

2. In Theorem 1 and Algorithm 2, we utilize a sequence of Tn to approximate the domi-
nant eigenvalues. This is due to a technical consideration in our theoretical analysis.
Specifically, in order to ensure the feasibility of optimization problem (16), our proof
requires that the random discrepancy between (16) and the ideal optimization problem
(5) remains uniformly small when θk ∈ [λmin,k, λmax,k] (see Appendix C Lemma 4
for detail). Achieving this requires a uniform bound for infinitely many continuous
random variables, which necessitates constraining λmax,k − λmin,k to be sufficiently
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small, thus guaranteeing the manageability of random noise with a reasonable number
of samples. Detailed information can be found in Appendix E.
In practical calculations, Algorithm 2 may be simplified into a one-level algorithm
by directly choosing sufficiently large values for Tmax and N . Moreover, if we op-
timize our function only over a finite number of grid intervals such that θk ∈
−π + kϵ, 0 ≤ k < 2π

ϵ , it is theoretically possible to show that by minimizing (16) once
with Tmax = Θ̃ (q/ϵ) and N = Θ̃(q−2−o(1)), we can achieve ϵ-accuracy for all domi-
nant eigenvalues. This approach also offers benefits such as short circuit depth and
Heisenberg-limited scaling.

3. When a spectral gap exists between the dominant eigenvalues and the non-dominant
ones (represented as ∆λ), it may be feasible to further reduce the maximum runtime
to Tmax = Θ̃(1/min{∆λ,∆

(K)
λ }). The reason is given in the first point of Remark 3.

4 Numerical results
In this section, we numerically demonstrate the efficiency of our method using two different
models. In Section 4.1, we compare the performance of Algorithm 2 with QPE (textbook
version [28]) for a transverse-field Ising model. In Section 4.2, we compare the performance
of Algorithm 2 with QPE for a Hubbard model. In both cases, we assume there are two
dominant eigenvalues (λ1, λ2), meaning K = 2. We share the code on Github (https:
//github.com/zhiyanding/MM-QCELS).

In our numerical experiments, we normalize the spectrum of the original Hamiltonian
H so that the eigenvalues belong to [−π/4, π/4]. Given a Hamiltonian H, we use the
normalized Hamiltonian in the experiment:

H̃ = πH

4∥H∥2
. (24)

Recall that the textbook version of QPE [28] relies on a quantum circuit that involves the
inverse Quantum Fourier Transform (QFT). This circuit serves to encode the information
of approximate eigenvalues using the ancilla register. By measuring the ancilla qubits, we
could acquire an output θ that closely approximates λk, one of the eigenvalues of Hamil-
tonian H. To find an approximation to the smallest eigenvalue, we repeat the quantum
circuit for N times and defines the approximation θ∗

1 = min1≤n≤N θn, where θn is the
output of n-th repetition. The analysis of this method can be found in e.g., [23, Section
I.A]. However, QPE can also produce spurious eigenvalues which lead to failures, and it is
not straightforward to generalize the procedure above for estimating multiple eigenvalues.

Consequently, in our experiment, we first utilize QPE to estimate the smallest eigen-
value λ1 and measure the error accordingly. We then use Algorithm 2 to estimate the two
dominant eigenvalues and measure the error by (assuming θ∗

1 ≤ θ∗
2)

error = max{|θ∗
1 − λ1|, |θ∗

2 − λ2|}. (25)

For simplicity, in this section, Algorithm 2 is implemented without the constraint ∥r∥1 < 1
in (16). While QPE’s error is gauged based on a single eigenvalue, the error of Algorithm
2 is evaluated using the maximum error across two eigenvalues. This testing design intrin-
sically gives QPE a head start. Even with this bias, we demonstrate that Algorithm 2 can
outperform QPE.
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4.1 Ising model
Consider the one-dimensional transverse field Ising model (TFIM) model defined on L sites
with periodic boundary conditions:

H = −
(

L−1∑
i=1

ZiZi+1 + ZLZ1

)
− g

L∑
i=1

Xi (26)

where g is the coupling coefficient, Zi, Xi are Pauli operators for the i-th site and the
dimension of H is 2L. We choose L = 8, g = 4. In the test, we set p1 = p2 = 0.4. In
Algorithm 2, the parameters are set to be K = 2, T0 = 2(λ2−λ1)−1, N0 = 3× 103, Nj≥1 =
2× 103 and γ = 1. An illustrative example, Fig 3 demonstrates the landscape of the loss
function in Eq. (13). As T increases, the landscape of the loss function becomes increasingly
complex. However, the value of the loss function around the true eigenvalues decreases
significantly, which also leads to a reduction in run-to-run variation of the optimizer. As a
result, the optimizer concentrates more tightly around the true eigenvalues.

We apply Algorithm 2 and QPE to estimate the dominant eigenvalues (λ1, λ2) of the
normalized Hamiltonian H̃ according to Eq. (24). We then run Algorithm 2 (with K =
2, T0 = 2(λ2−λ1)−1, N0 = 3×103, Nj≥1 = 2×103 and γ = 1) to compute the error of both
λ1 and λ2. We also run QPE 10 times only to estimate λ1. The comparison of the results
is shown in Fig. 4. We find that the errors of both QPE and Algorithm 2 are proportional
to the inverse of the maximal evolution time (Tmax). But the constant factor δ = Tϵ of
Algorithm 2 is much smaller than that of QPE. Fig. 4 shows that Algorithm 2 reduces the
maximal evolution time by two orders of magnitude. The error of QPE is observed to scale
as 6π/T . Moreover, the total evolution time (Ttotal) of Algorithm 2 is also slightly smaller
than that of QPE.

According to Theorem 1, accurate estimation of the dominant eigenvalues with a short
circuit depth using MM-QCELS depends on two critical factors: the appropriate selection
of the parameter K and the fulfillment of the condition R(K)/p

(K)
min ≪ 1. We would like to

emphasize that these criteria are necessary for addressing worst-case scenarios. However,
in practical implementations, even if a slightly larger value of K is chosen and the ratio
R(K)/p

(K)
min approximates 1, Algorithm 2 is still possible to produce a precise approximation

of the dominant eigenvalues with short circuit depth. In Appendix A, we test these two
cases and demonstrate the robustness of MM-QCELS to the choice of parameters.

4.2 Hubbard model
Consider the one-dimensional Hubbard model defined on L spinful sites with open bound-
ary conditions

H = −t
L−1∑
j=1

∑
σ∈{↑,↓}

c†
j,σcj+1,σ + U

L∑
j=1

(
nj,↑ −

1
2

)(
nj,↓ −

1
2

)
.

Here cj,σ(c†
j,σ) denotes the fermionic annihilation (creation) operator on the site j with

spin σ. ⟨·, ·⟩ denotes sites that are adjacent to each other. nj,σ = c†
j,σcj,σ is the number

operator.
We choose L = 4, 8, t = 1, U = 10. To implement Algorithm 2 and QPE, we again

normalizeH according to Eq. (24) and choose overlap p1 = 0.4, p2 = 0.4. We run Algorithm
2 (with K = 2, T0 = 10(λ2 − λ1)−1, N0 = 4 × 104, Nj≥1 = 2 × 103, γ = 1), and QPE 10
times to compare the errors (using Eq. (25) for Algorithm 2 and only estimating the error
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Figure 3: The landscape of the loss function L (13) from the TFIM model at time Tl with p1 = 0.4,
p2 = 0.4, K = 2, T0 = 2(λ2 − λ1)−1, N0 = 3× 103, Nj≥1 = 2× 103, γ = 1. We run the experiment
ten times and plot the positions of ten minimizers θ∗ using star (θ∗

1) and triangle (θ∗
2) points. The

landscape of the loss function is calculated using the data from the last experiment. The blue solid
line stands for LK(r∗, θ1, θ

∗
2) (the variable is θ1), and the blue square is the true eigenvalue λ1. The

orange dash–dotted stands for LK(r∗, θ∗
1 , θ2) (the variable is θ2), and the orange filled circle is the true

eigenvalue λ2. When T is large, the minimizer of the loss function concentrates around the dominant
eigenvalues λ1 and λ2.
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Figure 4: QPE vs Algorithm 2 in TFIM model with 8 sites. p1 = p2 = 0.4. Left: Depth (Tmax);
Right: Cost (Ttotal). For Algorithm 2, we choose K = 2, T0 = 2(λ2 − λ1)−1, N0 = 3 × 103, Nj≥1 =
2× 103, γ = 1. l, Tj are chosen according to Theorem 1. Both methods have the error scales linearly
in 1/Tmax. The constant factor δ = Tϵ of Algorithm 2 is much smaller than that of QPE.

of λ1 for QPE). The results are shown in Fig. 5 (4 sites) and Fig. 6 (8 sites). In both cases,
it can be seen that the maximal evolution time of Algorithm 2 is almost two orders of
magnitude smaller than that of QPE. The total cost of the two methods are comparable.
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Figure 5: QPE vs Algorithm 2 in Hubbard model with 4 sites. p1 = p2 = 0.4. Left: Depth (Tmax);
Right: Cost (Ttotal). For Algorithm 2, we choose K = 2, T0 = 10(λ2 − λ1)−1, N0 = 4× 104, Nj≥1 =
2× 103. l, Tj are chosen according to Theorem 1. Compared with QPE, to achieve the same accuracy,
Algorithm 2 requires a much smaller circuit depth.
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Figure 6: QPE vs Algorithm 2 in Hubbard model with 8 sites. p1 = p2 = 0.4. Left: Depth (Tmax);
Right: Cost (Ttotal). For Algorithm 2, we choose K = 2, T0 = 10(λ2 − λ1)−1, N0 = 4× 104, Nj≥1 =
2× 103, γ = 1. l, Tj are chosen according to Theorem 1 with ϵ′ = 0. Compared with QPE, to achieve
the same accuracy, Algorithm 2 requires a much smaller circuit depth.

5 Discussion
In this paper, we have developed a new algorithm to simultaneously estimate multi-
ple eigenvalues using a simple circuit. This optimization-based approach, called multi-
modal, multi-level quantum complex exponential least squares (MM-QCELS) saturates
the Heisenberg-limited scaling, and achieves a relatively short maximal running time when
the residual overlap (denoted by R(K)) is small. With a proper initial state, this algorithm
can be used to efficiently estimate ground-state and excited-state energies of a quantum
many-body Hamiltonian on early fault-tolerant quantum computers.

There are a number of directions to extend this work and to strengthen the analysis.

1. If the initial state has significant high energy contributions, it can be implicitly fil-
tered using the circuit in Fig. 2 [23], or explicitly filtered using quantum eigenvalue
transformation of unitary matrices (QETU) [7] to satisfy the condition of small resid-
ual overlap. Similar to the discussion in Ref. [6], this does not necessarily require
a large spectral gap between the dominant eigenvalues and the non-dominant ones,
and a relative overlap condition (which is a property of the initial state rather than
the Hamiltonian) could suffice.

2. Our complexity analysis depends the minimal dominant spectral gap ∆(K)
λ . This

is a necessary condition, since the simulation time should be long enough in order
to separate the eigenvalues. If two or more eigenvalues are nearly degenerate (i.e.,
the distance is less than ϵ), we may combine them and view these nearly degenerate
eigenvalues as a single eigenvalue. The MM-QCELS method can still be applied
without changes. However, compared to the result in Theorem 1, there may not be
a one-to-one correspondence between the estimated eigenvalues θk and the dominant
eigenvalues λmk

.

3. Due to the complex energy landscape of the loss function, if we use a grid search to
find the global minima, the cost of solving the optimization problem in Eq. (14) on
a classical computer may scale exponentially in K in the worst case. On the other
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hand, the signal processing method in [32, 21] can scale polynomially in K, but the
implementation can be much more complicated than ours. Therefore it is desirable
to improve our algorithm (e.g., using a robust initialization strategy) to reduce the
cost on the classical post-processing step for large K.

4. While Algorithm 2 is formulated as a multi-level optimization problem, as discussed
in Remark 2, solving (14) with sufficiently large values of T and N once may be
enough to approximate the dominant eigenvalues. This approach differs from the
signal processing-based method discussed in [21], which requires multi-level signal
processing.
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The appendix is organized as follows:

Appendix A.We give two extra numerical tests to demonstrate the robustness of MM-
QCELS in relation to parameter selection.

Appendix B.We give an intuitive proof for Theorem 1 in this section.

Appendix C.We give a rigorous proof for Theorem 1 in this section.

Appendix D.We give the proof of Proposition 5, which is a key in the proof of Theorem 1.

Appendix E.We provide some other technical estimations used for our proof.

A Additional numerical experiments
In this section, we numerically demonstrate the robustness of Algorithm 2 using the one-
dimensional transverse field Ising model (TFIM) model with L = 8, g = 4, as defined in
Section 4.1. We also normalize the spectrum of the original Hamiltonian H using (24).

In our first test, we set p1 = 0.7, p2 = 0.2, and pk = 1/2540 for 3 ≤ k ≤ 256 (so that∑
k pk = 1). Therefore according to Theorem 1, we should choose K = 1 or K = 2. We

apply Algorithm 2 (with K = 2, 3, 41,T0 = 10(λ2 − λ1)−1, N0 = 3 × 103, Nj≥1 = 2 × 103

and γ = 1) to estimate (λ1, λ2) and compute the maximal error (25). We also run QPE 10
times only to estimate λ1. The comparison of the results is shown in Fig. 7. Surprisingly,
although R(K)/p

(K)
min ≫ 1 when we choose K = 3, 4, meaning that it does not satisfy the

condition of Theorem 1, Algorithm 2 still estimates (λ1.λ2) accurately with short circuit
depth (Tmax). Moreover, the total evolution time (Ttotal) of Algorithm 2 is similar to that
of QPE. One intuitive explanation for this phenomenon can be derived from the proof of
Theorem 1 in Appendix B. When K > 2, aiming to reach the global minimum leads us
to anticipate the existence of a unique pair (k1, k2) ∈ {1, 2, · · · ,K}⊗2 with the property
that θ∗

k1
≈ λ1 and θ∗

k2
≈ λ2. Then, analogous to the derivation of (37), we can show

|θ∗
k1
− λ1| = O

(
R(K)

p1T

)
and T |θ∗

k2
− λ2| = O

(
R(K)

p2T

)
. These equalities imply that, even if

a wrong choice of K is chosen, as long as R(K)/p1 ≪ 1 and R(K)/p2 ≪ 1 hold true, an
accurate estimation of the dominant eigenvalues can still be obtained with relatively short
circuit depth.

The second test in this section focuses on studying the effect of small p(K)
min (orR(K)/p

(K)
min ≈

1). We construct the initial state with p1 = 0.21, p2 = 0.6 and set K = 2. In this set-
ting, we have R(K)/p

(K)
min = 0.19/0.21 ≈ 1. We apply Algorithm 2 (with K = 2,T0 =

10(λ2 − λ1)−1, N0 = 3× 103, Nj≥1 = 2× 103 and γ = 1) to estimate (λ1, λ2) and compute
the maximal error (25). We also run QPE 10 times to estimate λ1 only. The results
is summarized in Fig. 8. Interestingly, although Theorem 1 requires R(K)/p

(K)
min ≪ 1 to

achieve short circuit depth, MM-QCELS still demonstrates superior performance in circuit
depth compared to QPE in this case. Intuitively, this phenomenon finds its explanation
through reasoning analogous to the first point raised in Remark 3. To be more specific,
for any given δ > 0 and a small enough ϵ, when T ≥ δ/ϵ≫ ∆−1

λ , where ∆λ is the spectral
gap between the dominant eigenvalues and the non-dominant ones, we can establish that

1The output of the algorithm comprises K pairs of approximated eigenvalues and corresponding weights
denoted as (ri, θ⋆

i )K
i=1. From this set, we identify the two approximated eigenvalues with the greatest

absolute weights, considering them to be the approximated dominant eigenvalues.
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|θ∗
k − λmk

| ≤ ϵ. Here, θ∗
k is the solution to the ideal loss function (4). Furthermore, we

can select the number of data points as N = Θ̃(δ−2−o(1)) to effectively control the ran-
dom measurement error. This approach ultimately enables us to attain Heisenberg-limited
scaling and a short circuit depth.
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Figure 7: QPE vs Algorithm 2 in TFIM model with 8 sites. p1 = 0, 7, p2 = 0.2, pk = 1/2540 for
k ≥ 3. Left: Depth (Tmax); Right: Cost (Ttotal). For Algorithm 2, we choose K = 2, 3, 4, T0 =
10(λ2 − λ1)−1, N0 = 3× 103, Nj≥1 = 2× 103, γ = 1. l, Tj are chosen according to Theorem 1. Both
methods have the error scales linearly in 1/Tmax. The constant factor δ = Tϵ of Algorithm 2 is much
smaller than that of QPE.
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Figure 8: QPE vs Algorithm 2 in TFIM model with 8 sites. p1 = 0, 21, p2 = 0.6. Left: Depth (Tmax);
Right: Cost (Ttotal). For Algorithm 2, we choose K = 2, T0 = 10(λ2 − λ1)−1, N0 = 3× 103, Nj≥1 =
2× 103, γ = 1. l, Tj are chosen according to Theorem 1. Both methods have the error scales linearly
in 1/Tmax. The constant factor δ = Tϵ of Algorithm 2 is much smaller than that of QPE.

B An intuitive proof of Theorem 1
In this section, we first give an informal derivation to show that by solving the optimization
problem, it is possible to find an accurate approximation to dominant eigenvalues with a
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short maximal running time. For simplicity, in the inituitive proof, we only consider the
case when

1. The minimal dominant spectral gap ∆(K)
λ is much larger than the precision ϵ: ∆(K)

λ ≫
ϵ;

2. The modes in D are dominant: p(K)
min > CR(K) for some constant C > 0;

3. The maximal runtime is sufficient for resolving the dominant eigenvalues: Tmax ≥
C ′/∆(K)

λ for some constant C ′>0.

Here, p(K)
min is defined in (17), ∆(K)

λ is defined in (18), and R(K) is defined in (19).
For now we only focus on the ideal loss function, which can be rewritten as

LK (r,θ) = r†U (θ) r−
(
V † (θ) r + r†V (θ)

)
+W. (27)

Here U (θ) ∈ CK×K , V (θ) ∈ C(K), and W ∈ R are defined as

Uk1,k2 = F (θk1 − θk2), Vk =
M∑

m=1
pmF (θk − λm), W =

∫ ∞

−∞
a(t)

∣∣∣∣∣
M∑

m=1
pm exp (−iλmt)

∣∣∣∣∣
2

dt

for 1 ≤ k, k1, k2 ≤ K. For simplicity, in this intuitive analysis we also neglect the difference
between the truncated Gaussian distribution and the Gaussian distribution, i.e.,

F (x) =
∫ ∞

−∞
a(t) exp(ixt) dt ≈ exp(−T 2x2/2) . (28)

Denote D = {m1,m2, . . . ,mK}, where m1 < m2 < · · · < mK . Without loss of general-
ity, assume the minimizer satisfies θ∗

1 ≤ θ∗
2 ≤ · · · ≤ θ∗

K . We first claim (without giving the
proof here) that when T = Ω

(
1/∆(K)

λ

)
,

|λmk
− θ∗

k| ≤
∆(K)

λ

4 , ∀1 ≤ k ≤ K . (29)

In other words, each θ∗
k approximates a unique dominant eigenvalue up to a constant

proportional to the minimal dominant spectral gap. The next step is to refine the eigenvalue
estimate to the target precision ϵ.

When T = Ω
(
1/∆(K)

λ

)
, the matrix U is approximately the identity matrix, and Vk ≈

pmk
F (θk − λmk

). This gives

LK (r,θ) ≈
K∑

k=1

|rk|2 − 2Re(pmk
rk)F (θk − λmk

)− 2
∑

m′∈Dc

Re(pm′rk)F (θk − λm′)

+W .

(30)
Hence conceptually, we can solve for each pair (rk, θk), 1 ≤ k ≤ K independently as

(r∗
k, θ

∗
k) = arg min

r,θ
|r|2 − 2Re(pmk

r)F (θ − λmk
)− 2

∑
m′∈Dc

Re(pm′r)F (θ − λm′) . (31)

Consider the minimization problem on the right-hand side with fixed k. Noticing that this
new loss function is quadratic in r, we obtain that

θ∗
k = arg max

θ
pmk

F (θ − λmk
) +

∑
m′∈Dc

pm′F (θ − λm′) (32)
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Plugging θ = λmk
in the right-hand side, we obtain

pmk
F (θ∗

k − λmk
) +

∑
m′∈Dc

pm′F (θ∗
k − λm′) ≥ pmk

+
∑

m′∈Dc

pm′F (λmk
− λm′) . (33)

Using the Gaussian approximation F (x) = exp(−T 2x2/2), we have

∣∣F ′(x)
∣∣ = T 2 |x| exp(−T 2x2/2) ≤

(
sup
z∈R

z exp(−z2/2)
)
T = Θ(T ) ,

where we view T |x| as z in the inequality. This implies F (x) is a O(T )-Lipschitz function.
Combining this with (33), we obtain

exp
(
−T

2(θ∗
k − λmk

)2

2

)
− 1

≥
∑

m′∈Dc

pm′

pmk

(F (λmk
− λm′)− F (θ∗

k − λm′))

≥− R(K)

pmk

min{O(|T (θ∗
k − λmk

)|), 1}.

(34)

where we use 0 ≤ F ≤ 1 and F is a O(T )-Lipschitz function in the last inequality. From

(34), we first have exp
(
−T 2(θ∗

k−λmk
)2

2

)
≥ 1− R(K)

pmk
, which implies

T |θ∗
k − λmk

| = O

√R(K)

pmk

 . (35)

When R(K) is sufficiently small, combining Eqs. (34) and (35), we further obtain

1− T 2(θ∗
k − λmk

)
4 ≥ exp

(
−T

2(θ∗
k − λmk

)2

2

)
≥ 1− R(K)

pmk

O(|T (θ∗
k − λmk

)|) . (36)

This implies

T |θ∗
k − λmk

| = O
(
R(K)

pmk

)
. (37)

In summary, to obtain |θ∗
k − λmk

| ≤ ϵ for all 1 ≤ k ≤ K, we can set

T = Θ
(
R(K)

p
(K)
minϵ

)
. (38)

This implies the depth constant of maximal running time Tmax = Θ
(

R(K)

p
(K)
minϵ

)
is much

smaller than π
ϵ when R(K)/p

(K)
min is close to 0.

We remark that when K = 1, there is only one dominant mode mk, and pmk
= 1−R(K)

by definition. In this case, the result in Eq. (35) is comparable to the estimate in Ref. [6] for
the QCELS method. The analysis in this work provides a tighter bound of the maximal
runtime (or the circuit depth). Specifically, Eq. (37) provides a quadratic improvement
with respect to the preconstant R(K) for estimating a single dominant eigenvalue, and the
same conclusion holds for estimating multiple eigenvalues.
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Remark 3. 1. When a spectral gap exists between the dominant eigenvalues and the
non-dominant ones (represented as ∆λ), we can further reduce the maximum runtime
to Tmax = Θ̃(1/min{∆λ,∆

(K)
λ }). This reduction can be derived in a similar manner

to the previous intuitive analysis. Specifically, referring to equation (34), when T is
sufficiently large to ensure

∣∣∣θ(K) − λmk

∣∣∣ ≤ ∆λ
2 , we have∣∣∣F (λmk

− λm′)− F (θ(K) − λm′)
∣∣∣ = O(exp(−T 2∆2

λ/8)) .

Following a similar derivation to (35)-(37), we obtain the following expression:

T |θ∗
k − λmk

| = O
(

exp(−T 2∆2
λ/8)

pmk

)
,

This implies that Tmax = Θ̃(1/min{∆λ,∆
(K)
λ }) is sufficient to ensure ϵ-accuracy.

However, in this scenario, while Tmax logarithmically depends on the desired precision
ϵ, the number of data points needs to increase to N = Ω(ϵ−2) to adequately control
the random noise. This is similar in flavor to the result in [39] as well as in QCELS
[6] for estimating a single dominant eigenvalue.

2. The rigorous proof of Theorem 1 follows a slightly different path from the previous
intuitive derivation. The numerical loss function (13) admits a similar quadratic
expansion as in Eq. (27) with noisy coefficients U(θ), V (θ), and W . Due to the
presence of noise and off-diagonal entries in U , the perfect separation assumed in
(31) no longer holds, and the analysis of the independent optimization problem cannot
be directly applied to show that θ∗

k is close to λmk
. To overcome this difficulty, we

adopt the idea of separation and decompose the numerical loss function after bounding
the noise. By comparing the resulting loss function with LK ({pm}m∈D, {λm}m∈D),
we demonstrate that exp

(
−T 2(θ∗

k−λmk
)2

2

)
− 1 = O(q) and |θ∗

k − λmk
| = O(q/T ),

where q = Θ(R(K)/p
(K)
min). This implies, to obtain ϵ-accuracy, the maximal running

time Tmax = γT = δ/ϵ, where δ = Θ̃
(
q log(q−1)

)
.

C Rigorous proof of Theorem 1
To prove Theorem 1, we first rewrite the optimization problem (14) as

arg min
r,θ

LK (r,θ)

= arg min
r,θ

1
N

N∑
n=1

∣∣∣∣∣
M∑

m=1
pm exp(−iλmtn)−

K∑
k=1

rk exp(−iθktn)
∣∣∣∣∣
2

− 2
N

N∑
n=1

Re
(〈

En,
K∑

k=1
rk exp(−iθktn)

〉)

= arg min
r,θ

∫ ∞

−∞
a(t)

∣∣∣∣∣
M∑

m=1
pm exp(−iλmt)−

K∑
k=1

rk exp(−iθkt)
∣∣∣∣∣
2

dt+ Ep,r + Er,r + Er,Z

(39)
where we omit term 1

N

∑N
n=1 |En|2 in the first equality and pmpm′ exp(i(λm−λm′)t) terms

in the second equality because they do not affect the solution of the optimization problem.
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Here

Ep,r(r,θ) = 2Re
(

M∑
m=1

K∑
k=1

pmrk

(
1
N

N∑
n=1

exp(i(θk − λm)tn)− F (θk − λm)
))

,

Er,r(r,θ) = 2Re

 K∑
k1 ̸=k2

rk1rk2

(
1
N

N∑
n=1

exp(i(θk2 − θk1)tn)− F (θk2 − θk1)
) ,

Er,Z(r,θ) = −2Re
(

K∑
k=1

rk

(
1
N

N∑
n=1

En exp(iθktn)
))

.

(40)

Roughly speaking, when N ≫ 1, we have the expectation error |Ep,r|, |Er,r|, |Er,Z | =
O(1/

√
N) (see Appendix E for detail).

The proof contains two steps: 1. Find initial estimation intervals for the dominant
eigenvalues (using T0, N0); 2. In the correct estimation intervals, find more accurate ap-
proximations of the dominant eigenvalues (from Tj to Tj+1). Now, we introduce a lemma
and a proposition to control the complexity of these two steps respectively.

Let E(r,θ) = Ep,r(r,θ)+Er,r(r,θ)+Er,Z(r,θ). We use the following lemma to control
the complexity of the first step:

Lemma 4. Given 0 < q < 1 such that q = Ω(R(K)/p
(K)
min), where p(K)

min and R(K) are defined
in (17) and (19), we assume p(K)

min > 3R(K). Define

(r∗,θ∗) = arg min
∥r∥1≤1,θk∈[−π,π]

LK (r,θ) ,

where LK is defined in (13). If

γ = Θ
(
log

(
1/min

{
p

(K)
minq,

(
p

(K)
min

) (
p

(K)
min − 3R(K)

)}))
,

T = Ω
((

∆(K)
λ

)−1
log

((
p

(K)
min

)−1
max

{(
p

(K)
min − 3R(K)

)−1
,
(
p

(K)
min

)−1
q−2

}))
,

|E| = O
(

min
{(
p

(K)
min

)2
q2, p

(K)
min

(
p

(K)
min − 3R(K)

)})
,

(41)

then, for each m ∈ D, there must exist a unique 1 ≤ km ≤ K such that∣∣λm − θ∗
km

∣∣ ≤ q

T
,

∣∣pm − r∗
km

∣∣ ≤ qpm . (42)

Lemma 4 constitutes a key element in the remaining part of the proof. According
to Lemma 4, when the expectation error is small enough, the error of refined dominant
eigenvalue estimation is bounded by q/T , where q is a fixed (maybe small) constant and
T is the maximal runtime. Combining this lemma with Lemma 8 by setting q = 1, we can

demonstrate that when T0 = Ω
((

∆(K)
λ

)−1
)

and N0 = Ω(T 2
0 ), solving the optimization

problem gives us a reasonable approximation to the refined dominant eigenvalues, meaning:
for each m ∈ D, there must exist a unique 1 ≤ km ≤ K such that

∣∣∣λm − θ∗
km

∣∣∣ = O
(
∆(K)

λ

)
.

Proof of Lemma 4. First, we define

F ∗(x) = exp
(
−T

2x2

2

)
=
∫ ∞

−∞

1√
2πT

exp
(
− x2

2T 2

)
exp(ixt) dt .
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Notice

LK (r,θ) =
∫ ∞

−∞

1√
2πT

exp
(
− t2

2T 2

) ∣∣∣∣∣
M∑

m=1
pm exp(−iλmt)−

K∑
k=1

rk exp(−iθkt)
∣∣∣∣∣
2

dt

+ Ep,r + Er,r + Er,Z + EF ,

where EF =
∫∞

−∞

(
a(t)− 1√

2πT
exp

(
− t2

2T 2

)) ∣∣∣∑M
m=1 pm exp(−iλmt)−

∑K
k=1 rk exp(−iθkt)

∣∣∣2 dt.
Using the tail bound of a Gaussian and the choice of γ (41), we have

|EF | = O
(
exp(−γ2/2)

)
= O

(
min

{(
p

(K)
minq

)2
,
(
p

(K)
min − 3R(K)

)
p

(K)
min

})
. (43)

Notice

LK

(
{pm}m∈D , {λm}m∈D

)
≤
∫ ∞

−∞
a(t)

∣∣∣∣∣ ∑
m∈Dc

pm exp(−iλmt)
∣∣∣∣∣
2

dt+ Ê + ÊF

≤
∫ ∞

−∞
a(t)

∣∣∣∣∣
M∑

m=1
pm exp(−iλmt)−

∑
m∈D

pm exp(−iλmt)
∣∣∣∣∣
2

dt+ Ê + ÊF

≤(R(K))2 + Ê + ÊF ,

(44)

where we Ê = E
(
{pm}m∈D , {λm}m∈D

)
, and ÊF = EF

(
{pm}m∈D , {λm}m∈D

)
.

We separate the proof into two steps. In the first step, we show that for each m ∈ D,
there must exist a unique 1 ≤ km ≤ K such that

∣∣λm − θ∗
km

∣∣ ≤ ∆(K)
λ

4 . (45)

In the second step, we further improve the bound in (45).
Step 1: Show each θ∗

k should be close to one λm for m ∈ D.
Suppose there exists m∗ ∈ D such that for any 1 ≤ k ≤ K,

|λm∗ − θ∗
k| >

∆(K)
λ

4 .

Then, let E∗ = E (r∗,θ∗) and E∗
F = EF (r∗,θ∗),

LK (r∗,θ∗)

=
∫ ∞

−∞
a(t)

∣∣∣∣∣∣
 ∑

m∈D,m ̸=m∗
pm exp(−iλmt)−

K∑
k=1

r∗
k exp(−iθ∗

kt)

+
∑

m∈Dc

pm exp(−iλmt)


+pm∗ exp(−iλm∗t)|2 dt+ E∗ + E∗

F

≥p2
m∗ − 2pm∗RK − 16 exp

−
(
T∆(K)

λ

)2

16

+ E∗ + E∗
F

>
(
R(K)

)2
+ Ê + ÊF

≥LK

(
{pm}m∈D , {λm}m∈D

)
.
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In the second inequality, we use pm∗ > 3R(K), (41), and (43). In the first inequality, we
use the decaying property of F (x) to obtain∣∣∣∣∣∣
∫ ∞

−∞
a(t)

 ∑
m∈D,m ̸=m∗

pm exp(−iλmt)−
K∑

k=1
r∗

k exp(−iθ∗
kt)

 pm∗ exp(−iλm∗t) dt

∣∣∣∣∣∣ ≤ 8 exp

−
(
T∆(K)

λ

)2

16

 ,

∣∣∣∣∣
∫ ∞

−∞
a(t)

( ∑
m∈Dc

pm exp(−iλmt)
)
pm∗ exp(−iλm∗t) dt

∣∣∣∣∣ ≤ pm∗R(K)

where we use |λm−λm∗ | > ∆(K)
λ /2, |θ∗

k−λm∗ | > ∆(K)
λ /4. This contradicts the assumption

that
(
{r∗

k}Kk=1, {θ∗
k}Kk=1

)
is the minimization point. Thus, (45) is true for all 1 ≤ k ≤ K.

Step 2: Improve the upper bound.
Define

F∗ =
∫ ∞

−∞

1√
2πT

exp
(
− x2

2T 2

) ∣∣∣∣∣ ∑
m∈D

pm exp (−iλmt)− r∗
km

exp
(
−iθ∗

km
t
)∣∣∣∣∣

2

dt .

We have
LK (r∗,θ∗)

=
∫ ∞

−∞
a(t)

∣∣∣∣∣
(∑

m∈D
pm exp(−iλmt)− r∗

km
exp(−iθ∗

km
t)
)

+
∑

m∈Dc

pm exp(−iλmt)
∣∣∣∣∣
2

+ E∗ + E∗
F

≥F∗ − 2(F∗)1/2R(K) +
∫ ∞

−∞
a(t)

∣∣∣∣∣ ∑
m∈Dc

pm exp(−iλmt)
∣∣∣∣∣
2

dt+ E∗ + E∗
F

Noticing that (r∗,θ∗) is the minimum point and comparing the above inequality with the
second inequality of (44), we have

F∗ − 2(F∗)1/2R(K) ≤
∣∣∣Ê − E∗

∣∣∣+ ∣∣∣ÊF − E∗
F

∣∣∣ (46)

Using (41) and conditions of Theorem 1, we have
∣∣∣Ê∣∣∣ , |E∗| ,

∣∣∣ÊF

∣∣∣ , |E∗
F | = O

((
p

(K)
minq

)2
)

.
This implies

F∗ − 2(F∗)1/2R(K) = O
((
p

(K)
minq

)2
)
,

Since q = Ω(R(K)/p
(K)
min), we further have F∗ = O

((
p

(K)
minq

)2
)

.

Using (45),
∑

k |r∗
k| ≤ 1, and exp

(
−(∆(K)

λ T )2/8
)

= O
((
p

(K)
minq

)2
)

, we can show

∑
m,m′∈D,m̸=m′

∣∣∣∣∣
∫ ∞

−∞

1√
2πT

exp
(
− x2

2T 2

) (
pm exp (−iλmt)− r∗

km
exp

(
−iθ∗

km
t
))

·
(
pm′ exp (−iλm′t)− r∗

km′ exp
(
−iθ∗

km′ t
))

dt
∣∣∣

≤
∑

m,m′∈D,m ̸=m′

pmpm′ exp
(
−T

2(λm − λm′)2

2

)
+ pmr

∗
km′ exp

(
−
T 2(λm − θ∗

km′ )
2

2

)

+ r∗
km
pm′ exp

(
−
T 2(θ∗

km
− λm′)2

2

)
+ r∗

km
r∗

km′ exp
(
−
T 2(λm − θ∗

km′ )
2

2

)

≤4 exp
(
−

(∆(K)
λ T )2

8

)
= O

((
p

(K)
minq

)2
)
.

(47)
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Expanding F∗, we find that

F∗ ≥
∑

m∈D

∫ ∞

−∞

1√
2πT

exp
(
− t2

2T 2

) ∣∣pm exp (−iλmt)− r∗
km

exp
(
−iθ∗

km
t
)∣∣2 dt

− 2
∑

m,m′∈D,m ̸=m′

∣∣∣∣∣
∫ ∞

−∞

1√
2πT

exp
(
− x2

2T 2

)(
pm exp (−iλmt)− r∗

km
exp

(
−iθ∗

km
t
))

·
(
pm′ exp (−iλm′t)− r∗

km′ exp
(
−iθ∗

km′ t
))

dt
∣∣∣ .

(48)
By utilizing the bound F∗ = O

((
p

(K)
minq

)2
)

and (47), we can infer from (48) that

∑
m∈D

∫ ∞

−∞

1√
2πT

exp
(
− t2

2T 2

) ∣∣pm exp (−iλmt)− r∗
km

exp
(
−iθ∗

km
t
)∣∣2 dt = O

((
p

(K)
minq

)2
)
.

(49)
This implies∑

m∈D
p2

m

(
1− exp

(
−T 2 (θ∗

km
− λm

)2))

≤
∑

m∈D

∫ ∞

−∞

1√
2πT

exp
(
− t2

2T 2

) ∣∣pm exp
(
i
(
θ∗

km
− λm

)
t
)
− r∗

km

∣∣2 dt

=
∑

m∈D

∫ ∞

−∞

1√
2πT

exp
(
− t2

2T 2

) ∣∣pm exp (−iλmt)− r∗
km

exp
(
−iθ∗

km
t
)∣∣2 dt

=O
((
p

(K)
minq

)2
)
.

Because pm ≥ p(K)
min for m ∈ D, we obtain that, for each k, 1− exp

(
−T 2

(
λm − θ∗

km

)2
)

=

O
(
q2), which implies the first inequality of (42). For the second inequality of (42), (49)

also implies ∣∣∣pm exp
(
−T 2 (θ∗

km
− λm

)2
/2
)
− r∗

km

∣∣∣2 = O
((
p

(K)
minq

)2
)

Because
∣∣∣∣exp

(
−T 2

(
θ∗

km
− λm

)2
/2
)
− 1

∣∣∣∣ = O
(
q2), we have |pm − r∗

km
| ≤ qpm. This

concludes the proof of the second inequality of (42).

The following proposition controls the complexity of the second step of the algorithm:

Proposition 5. Given failure probability 0 < η < 1/2, any small constant ζ > 0, 0 < q <

1 such that q = Θ(R(K)/p
(K)
min), and given a sequence of rough intervals {Ik}Kk=1 ⊂ R, we

assume 1. |Ik| ≤ 4π/T ; 2. for any m ∈ D, there exists a unique 1 ≤ km ≤ K such that
λm ∈ Ikm; 3. p(K)

min > 3R(K). Define
(r∗,θ∗) = arg min

∥r∥1≤1,θk∈Ik

LK (r,θ) ,

where LK is defined in (13). If

γ = Θ
(

log
((
p

(K)
min

)−1
q−1

))
,

T = Ω
((

∆(K)
λ

)−1
log

((
p

(K)
min

)−1
q−1

))
,

N = Θ
(
γ2
(
p

(K)
min

)−4
q−(2+ζ)polylog

(
K log(ζ−1)

(
p

(K)
min

)−1
η−1

))
,

(50)
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then with probability 1− η,

|λm − θ∗
km
| ≤ q

T
, |pm − r∗

km
| ≤ qpm . (51)

We give the proof of Proposition 5 in Appendix D. Here, we emphasize that Proposition
5 can not be directly proved by combining Lemma 4 and Lemma 8. According to Lemma
4, to obtain the accuracy q/T , we need the expectation error |E| = O(q2). According
to Lemma 8, to guarantee |E| = O(q2), we need to choose N = Ω(q−4), which is worse
than the scaling of N with respect to q−1 in the proposition. This means that to achieve
the correct scaling of N with respect to q−1, we need to bound the expectation error in a
different way to obtain the sharp estimation.

Now, we are ready to use Lemma 4 and Proposition 5 to prove Theorems 1.

Proof of Theorem 1. First, according to the definition of T0, we have T0 = Θ̃((∆λ
K)−1 log(q−1)).

Combining (20) with Lemma 4 and Lemma 8 (by setting q = 1 in Lemma 4 and ρ =
πT0 and ξ = Θ

((
p

(K)
min − 3R(K)

)
p

(K)
min

)
in Lemma 8 (59)), after step 1, with probability

1 − η/(l + 1), we obtain that, for every m ∈ D, there exists an unique 1 ≤ km ≤ K such
that

|λm − θ∗
km
| ≤ 1

T0
< min

{
∆(K)

λ

4 ,
π

T0

}
, |pm − r∗

km
| ≤ pm . (52)

Thus, with probability 1 − η/(l + 1), after step 1, Ikm = [λmin,km , λmax,km ] satisfies the
condition of Proposition 5 with T = T1.

Next, for j = 1 in step 2, using Proposition 5 by setting T = T1, we obtain that, with
probability 1− η/(l + 1),

|λm − θ∗
km
| ≤ q

T1
<

π

T1
, |pm − r∗

km
| ≤ qpm . (53)

This implies that, after step 2 with j = 1, with probability 1 − 2η/(l + 1), Ikm =
[λmin,km , λmax,km ] satisfies the condition of Proposition 5 with T = T2. Using this re-
cursively, we finally obtain that, when j = l, with probability 1− η, we have

|λm − θ∗
km
| ≤ q

Tl
< ϵ, |pm − r∗

km
| ≤ qpm .

which implies (23).
Finally, using the choices of γ, l, Tl and Nl, we obtain

Tmax = Tlγ = Θ

q
ϵ

log

 1
min

{
p

(K)
minq,

(
p

(K)
min

) (
p

(K)
min − 3R(K)

)}
 = δ

ϵ

and

Ttotal = Θ̃

 1(
p

(K)
min

)4
q1+ζϵ

poly log(log(ζ−1)η−1)

 = Θ̃

poly log(log(ζ−1)δ−1η−1)(
p

(K)
min

)4
δ1+ζϵ

 ,

where δ = Θ̃
(
q log(q−1)

)
.
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D Proof of Proposition 5
In this section, we prove Proposition 5. The proof idea is similar to [6, Appendix B.2]. We
first give a rough complexity result that has a O(q−4) scaling in N . Then, we consider the
difference of the expectation error more carefully and improve this scaling to O(q−2−o(1))
using an iteration argument.

Applying Eq. (59) from Lemma 8 in Appendix E to bound the expectation error E(r,θ),
we obtain the following lemma:

Lemma 6. Given failure probability 0 < η < 1/2, any small constant ζ > 0, 0 < q < 1
such that q = Ω(R(K)/p

(K)
min), and given a sequence of rough interval {Ik}Kk=1 ⊂ R, we

assume 1. |Ik| ≤ 4π/T ; 2. for any m ∈ D, there exists a unique 1 ≤ km ≤ K such that
λm ∈ Ikm; 3. p(K)

min > 3R(K). Define

(r∗,θ∗) = arg min
∥r∥≤1,θk∈Ik

LK (r,θ) ,

where LK is defined in (13). If

γ = Ω
(

log
((
p

(K)
min

)−1
q−1

))
,

T = Ω
((

∆(K)
λ

)−1
log

((
p

(K)
min

)−1
q−1

))
,

N = Ω
(
γ2
(
p

(K)
min

)−4
q−4polylog

(
K
(
p

(K)
min

)−1
q−1η−1

))
,

(54)

then with probability 1− η,∣∣λm − θ∗
km

∣∣ ≤ q

T
, |pm − r∗

km
| ≤ qpm . (55)

Proof of Lemma 6. According to the second equality of (54), we have

|Ik| ≤
4π
T
≤

∆(K)
λ

4 ,

which implies that for all m ∈ D

∣∣λm − θ∗
km

∣∣ ≤ ∆(K)
λ

4 . (56)

Using (54) and Lemma 8 (59) by setting ξ = O
((
p

(K)
minq

)2
)

, we can conclude that with

probability 1 − η, |E| = O
((
p

(K)
minq

)2
)

. Finally, since we have obtained a rough bound
(56), we can use the same argument as the second step in the proof of Lemma 4 to prove
(55).

Next, in order to improve the scaling O(q−4) in (54). We propose a different approach
to bound the error terms. Instead of bounding E(r∗,θ∗) and E({pm}, {λm}) separately,
we aim to bound the difference between these two error terms. Intuitively, when (r∗

km
, θ∗

km
)

and (pm, λm) are close to each other, the two error terms are likely to cancel each other
out when we compare the difference between L(r∗,θ∗) and L({pm}, {λm}). This intu-
ition is supported by Lemma 8 (60). Assuming that we already have

∣∣∣θ∗
km
− λm

∣∣∣ < q
T
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and |rkm − pm| ≤ qpm, then it is sufficient to choose N = Ω̃
(
q2ξ−2) to ensure that

|E(r∗,θ∗)− E({pm}, {λm})| ≥ ξ with high probability. This requirement, compared with
the second inequality of (54), reduces the blow-up rate to O(q−2) as q → 0, which matches
the condition in Proposition 5. However, the above calculation is assuming

∣∣∣θ∗
km
− λm

∣∣∣ < q
T

and |rkm − pm| ≤ qpm, which is unknown to us in advance. To overcome this difficulty, we
need to use an iteration argument to obtain the desired order. This is summarized in the
following lemma:

Lemma 7. Given failure probability 0 < η < 1/2, an integer S > 1, any small constant
ζ > 0, a sequence of rough interval {Ik}Kk=1 ⊂ R, and a decreasing sequence {qs}Ss=0 with
0 < q0 ≤ 1 and qS = Ω(R(K)/p

(K)
min), we assume 1. |Ik| ≤ 4π/T ; 2. for any m ∈ D, there

exists a unique 1 ≤ km ≤ K such that λm ∈ Ikm; 3. p
(K)
min > 3R(K); 4. (54) holds with

q = q0. If

γ = Ω
(

log
((
p

(K)
min

)−1
q−1

S

))
,

T = Ω
((

∆(K)
λ

)−1
log

((
p

(K)
min

)−1
q−1

S

))
,

N = Ω
(

max
0≤s≤S−1

{(
p

(K)
min

)−4
q−4

s+1q
2
spolylog

(
KQ

(
p

(K)
min

)−1
q−1

s+1qsη
−1
)})

,

(57)

then with probability 1− η,∣∣λm − θ∗
km

∣∣ ≤ qS

T
, |pm − r∗

km
| ≤ qSpm . (58)

Proof of Lemma 7. By utilizing Lemma 6 in conjunction with (54), we can demonstrate
that with probability 1− η/(2Q),∣∣λm − θ∗

km

∣∣ ≤ q0
T
,
∣∣pm − r∗

km

∣∣ ≤ q0pm .

Using these inequalities with Lemma 8 (60), where we have ρ = q0, ξ =
(
p

(K)
minq1

)2
q−1

0 , we

obtain that with probability 1−η/Q,
∣∣∣Ê − E∗

∣∣∣ , ∣∣∣ÊF

∣∣∣ , |E∗
F | = O

((
p

(K)
minq1

)2
)

. Then, simi-

lar to the second step in the proof of Lemma 4 (plugging the bound of
∣∣∣Ê − E∗

∣∣∣ , ∣∣∣ÊF

∣∣∣ , |E∗
F |

into (46)), we can show that with probability 1− η/Q,∣∣λm − θ∗
km

∣∣ ≤ q1
T
,
∣∣pm − r∗

km

∣∣ ≤ q1pm .

Next, similar to previous argument, using these inequalities with Lemma 8 (60), where we
have ρ = q1, ξ =

(
p

(K)
minq2

)2
q−1

1 , we obtain that with probability 1−3η/(2Q),
∣∣∣Ê − E∗

∣∣∣ , ∣∣∣ÊF

∣∣∣ , |E∗
F | =

O
((
p

(K)
minq2

)2
)

. This further implies, with probability 1− 2η/Q,

∣∣λm − θ∗
km

∣∣ ≤ q2
T
,
∣∣pm − r∗

km

∣∣ ≤ q2pm .

Doing this repeatedly, we finally obtain (58).

Finally, we are ready to prove the proposition 5:

Proof of Proposition 5. Using the given q from the conditions of the proposition, we con-

struct a decreasing positive sequence {qs}Ss=0 with qs = q
2−(1/2)s

2−(1/2)S . With this choice, we
have q−4

s+1q
2
s = q

− 4
2−(1/2)S .

Setting ζ = (1/2)S−1 > 4
2−(1/2)S − 2 and using Lemma 7 (58), we prove (51).
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E Bound of the expectation error
In this section, we bound the expectation error. Recall the definition in (40),

Ep,r (r,θ) = 2Re
(

M∑
m=1

K∑
k=1

pmrk

(
1
N

N∑
n=1

exp(i(θk − λm)tn)− F (θk − λm)
))

,

Er,r (r,θ) = 2Re

 K∑
k1 ̸=k2

rk1rk2

(
1
N

N∑
n=1

exp(i(θk2 − θk1)tn)− F (θk2 − θk1)
) ,

Er,Z (r,θ) = −2Re
(

K∑
k=1

rk

(
1
N

N∑
n=1

En exp(iθktn)
))

.

Intuitively, when N ≫ 1, we have |Ep,r|, |Er,r|, |Er,Z | = O(1/
√
N) for fixed r,θ. However,

this result does not directly apply to the optimization problem because the range of (r,θ)
is always an infinite set. To overcome this difficulty, we notice that the Lipschitz constant
of the function exp(iθt) is bounded by T if t ≤ T . First, we use Hoeffding’s inequality to
obtain a uniform bound for these expectation errors with a finite number of (r,θ) points.
Then, we extend this bound to all other points using the Lipschitz continuity property of
exp(iθt). Specifically, we have the following result that gives a uniform bound for these
expectation errors:

Lemma 8. Define Ep,r, Er,r, Er,Z as above. Assume a(t) is defined as (3), then

• Given 0 < η < 1/2 and a sequence of interval {Ik}Kk=1 on R, we define ρ =
maxk{T |Ik|/2}, if

N = Ω
(
max{γ2ρ2, 1}ξ−2polylog(Kξ−1η−1)

)
,

then
P
(

sup
∥r∥1≤1,θk∈Ik

|Ep,r (r,θ) | ≥ ξ
)
≤ η

P
(

sup
∥r∥1≤1,θk∈Ik

|Er,r (r,θ) | ≥ ξ
)
≤ η

P
(

sup
∥r∥1≤1,θk∈Ik

|EZ (r,θ) | ≥ ξ
)
≤ η

. (59)

• Denote D = {m1, . . . ,mK}. Given 0 < η < 1/2, a sequence of intervals {Ik}Kk=1 on
R, and a sequence of discs {Rk}Kk=1 on C, we assume: 1. λmk

∈ Ik; 2. pmk
∈ Rk.

Define ρ = maxk{T |Ik|/2, radius(Rk)/pmk
}. If

N = Ω
(
max{γ2ρ2, 1}ξ−2polylog(Kξ−1η−1)

)
,

then
P
(

sup
rk∈Rk,θk∈Ik

|Ep,r (r,θ)− Ep,r({(pmk
, λmk

)}Kk=1)| ≥ ρξ
)
≤ η

P
(

sup
rk∈Rk,θk∈Ik

|Er,r (r,θ)− Er,r({(pmk
, λmk

)}Kk=1)| ≥ ρξ
)
≤ η

P
(

sup
rk∈Rk,θk∈Ik

|EZ (r,θ)− EZ({(pmk
, λmk

)}Kk=1)| ≥ ρξ
)
≤ η

(60)
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Proof of Lemma 8. We start by proving (59). We will only prove the inequalities for Ep,r,
but note that the other two can be shown similarly. Define

G(θ) = 1
N

N∑
n=1

(
M∑

m=1
pm exp(i(θ − λm)tn)

)
−
(

M∑
m=1

pmF (θ − λm)
)
.

For the truncated filter, since tn ≤ γT , we have

|G(θ1)−G(θ2)| ≤ γT |θ1 − θ2| ,

which implies G is a γT -Lipschitz function. Because |F (θ − λm)| ≤ 1, using Hoeffding’s
inequality, for fixed θ, we have

P (|G(θ)| ≥ ξ) ≤ 4 exp
(
−Nξ

2

32

)
.

Combining this with the fact that G is a γT -Lipschitz function, we have

P
(

sup
θ∈Ik

|G(θ)| ≥ ξ + γTϵ

)
≤ 8ρ
Tϵ

exp
(
−Nξ

2

32

)
.

Choosing ϵ = ρ

T
√

N
, ξ = 4

√
2√

N
log1/2(8

√
NK/η),

P
(

sup
θ∈Ik

|G(θ)| ≥
(
4
√

2 log1/2(8
√
NK/η) + γρ

) 1√
N

)
≤ η

K
,

which implies the first inequality of (59) using
∑
|rk| ≤ 1.

We proceed to prove (60). As before, we only show the proof of the first inequality in
(60). Fixed 1 ≤ k ≤ K, when rk ∈ Rk and θk ∈ Ik, we have

rkG(θk)− pmk
G(λmk

) = (rk − pmk
)G(θk) + pmk

(G(θk)−G(λmk
)) .

For the first term, we have |rk − pmk
| ≤ 2ρpmk

and

P
(

sup
θk∈Ik

|G(θk)| ≥ ξ/2
)
≤ η

2K ,

according to the previous proof. This implies

P
(

sup
rk∈Rk,θk∈Ik

K∑
k=1
|rk − pmk

| |G(θk)| ≥ ρξ/2
)
≤ η

2 . (61)

For the second term, we first notice that∣∣∣∣∣
M∑

m=1
pm exp(i(θk − λm)tn)−

M∑
m=1

pm exp(i(λmk
− λm)tn)

∣∣∣∣∣ ≤ γT |θk − λmk
| ≤ 2ρ

and G(θ) is a γT -Lipschitz function. Then, similar to before, we have

P
(

sup
θk∈Ik

K∑
k=1
|G(θk)−G(λmk

)| ≥ ρξ/2
)
≤ η

2K .

Since
∑

k pmk
≤ 1, we have

P
(

sup
rk∈Rk,θk∈Ik

K∑
k=1
|pk(G(θk)−G(λmk

))| ≥ ρξ/2
)
≤ η

2 .

Combining this inequality with (61), we prove the first inequality of (60).
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