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ABSTRACT OF THE DISSERTATION

Bioinformatic Strategies for Population Precision Health

by

Christa Caggiano

Doctor of Philosophy in Bioinformatics

University of California, Los Angeles, 2023

Professor Noah A. Zaitlen, Chair

Population precision health represents a paradigm shift in healthcare, emphasizing the

need for tailored and personalized approaches to improve health outcomes at a population

level. Population precision health recognizes the heterogeneity within populations and lever-

ages advances in genomics, epigenomics, and clinical data repositories to deliver targeted

interventions and preventive strategies. By integrating genomic and clinical data, popula-

tion precision health aims to identify individuals at increased risk for specific diseases and

tailor interventions based on their unique genetic and environmental profiles. In this work,

I present strategies to address three key challenges of implementing population precision

health. I develop algorithms to non-invasively detect tissue death, which can be used for

disease diagnosis and prevention. I then use these algorithms as the foundation of a scalable

cell-free DNA platform to monitor disease at the population level. Lastly, I employ machine

learning algorithms in a large genetic biobank to identify population-specific genetic and

health risks. Together, this work represents a step toward implementing non-invasive dis-

ease screening and monitoring in diverse groups, which will be a crucial element of deploying

population precision health.
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CHAPTER 1

Introduction

All individuals have their own distinct genetic and environmental histories, that throughout

their lives, will interact to influence their risk for disease. Consequently, a single treatment

or care plan may only be suited to some individuals. For example, patients with breast

cancer that have a mutation in the BRCA gene respond to a drug called a PARP inhibitor

[172]. Breast cancer patients with a mutation in the HER2 gene, on the other hand, do not

To characterize an individual’s risk for disease, clinicians and researchers need to capture

multi-modal information about that individual. This includes bio-molecular measurements,

such as genomic and metabolomic tests, along with data on that individual’s family history,

cultural background, and lifestyle [5]. Innovations in the 21st century have facilitated ob-

taining this data. For example, since the completion of the Human Genome Project in 2003

[66], the cost of sequencing a genome has dramatically decreased, making it increasingly

feasible to capture the entire genome of an individual. Furthermore, with the widespread

adoption of electronic health records (EHRs), healthcare data is rapidly expanding. EHRs

can be used to learn about patient longitudinal trajectories, be linked to pedigrees to learn

how disease risk is transmitted in families, or be used to identify clusters of patients with

similar diseases.

However, there are still significant challenges in the implementation of precision medicine.

To meet the threshold for integration into clinical care, precision treatments must have ro-

bust evidence. While some scenarios exist for which this threshold is met, many diseases

still need more investigation into their genetic and environmental causes. Medicine has long

been biased toward studying European ancestry populations, which can limit this study in
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several ways. Historically, people tended to have children with those in a similar population

or geographic location, meaning that if genetic mutations arose in a population, those muta-

tions may become more common in that population. Cultural and social practices, such as

practices of endogamy and consanguinity [148][167], also affect the rate of genetic mutations

in a population. The study of only European ancestry populations limits the identification

of genetic loci impacting health in diverse populations. Furthermore, populations often have

different environments that modulate disease risk. These differences could be structural.

For example, it is well-documented that racism negatively affects health [7]. Environmental

differences could also relate to lifestyle factors, like diet [75] and exercise, or a person’s ability

and desire to seek healthcare. Thus, to truly enact personalized medicine, more inclusive

research is needed into population-specific disease risks.

While many precision medicine initiatives have focused on genomics data due to its

value in understanding biological mechanisms, this approach has limitations. An individual’s

genome is static, meaning it does not give information on disease risk over time. Genomics

assays also generally cannot learn about lifestyle or structural disease risks. Epigenetics,

or the study of how the environment alters gene function, can be used as an alternative

data source [170]. An individual’s epigenome is dynamic, which means that it can offer

insight into the health of an individual at a moment in time or be probed longitudinally to

monitor changes in a person’s biological state [84]. Crucially, the epigenome can be used to

learn about lifestyle or environmental risk factors, such as air pollution or diet [140]. The

epigenome is also correlated with the populations that an individual belongs to, meaning

that it can be used to interrogate the complex interaction of population, environment, and

genetic risk.

Epigenetics has been used to time disease onset [44], assess survival probability [114][49],

and predict patient responses to medications [95]. However, many current epigenetic tech-

nologies are invasive and expensive [187][100], which reduces their relevance to clinical care.

Additionally, many epigenetic studies only focus on one tissue, which can be limiting in

characterizing how tissues interact with each other to produce disease. Lastly, many epige-
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netic studies have been done with relatively small sample sizes. Larger studies in diverse

cohorts would facilitate a greater understanding of tissue and environmental-specific disease

risks. Therefore, new technologies are needed to implement epigenetic precision medicine on

a large scale.

These limitations highlight the need not just for precision medicine, but also for ini-

tiatives that further precision population health. A population precision health framework

will address population-specific disease risk at scale, with an emphasis on prevention [61][81].

Genomic and epigenomic tools can be used to learn about the mechanism behind population-

specific disease risk, the impact of environmental and sociocultural forces on disease, and

identify opportunities to reduce disease burden. Importantly, population in this context can

mean not only the typical populations characterized by race, ethnicity, or nationality, but

also any community an individual belongs to that impacts their risk for disease [92].

In this thesis, I introduce novel strategies to empower precision population health. First,

I develop statistical algorithms that focus on the use of non-invasive epigenetic data to de-

tect and monitor tissue death, which is a hallmark of disease. This addresses the goal of

developing tests that can monitor the health of many tissues at once, and to identify oppor-

tunities for intervention and prevention. I applied these algorithms to data from pregnant

and amyotrophic lateral sclerosis patients. Next, to deploy these algorithms to a large cohort,

I developed a scalable and inexpensive sequencing technology that can be used to measure

disease-relevant regions of the epigenome. This work aims to meet to the goal of applying

epigenetic screening measures to a large population and to further the study of epigenetic

correlates of disease. Lastly, I performed a study that examined population-specific dis-

ease risks in a large biobank. This study is aligned with the goals of precision medicine by

identifying disease risks affected by both environmental and genetic factors. Together, these

studies advance population precision health initiatives, creating a foundation for future work

that aspires towards personalized solutions to disease.

This work is organized into three chapters. Chapter 5 focuses on algorithms to non-

invasively detect tissue death. Chapter 6 extends this work to develop a scalable cell-free
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DNA platform to monitor disease. Lastly, chapter 7 uses large genetic biobanks for the

identification of population-specific health risks.
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CHAPTER 2

Comprehensive cell type decomposition of circulating

cell-free DNA with CelFiE

2.1 Introduction

Cells die at different rates as a function of disease state, age, environmental exposure, and

behavior [124][116]. A quantifiable indication of cell death could facilitate disease diagnosis

and prognosis, prioritize patients for admission into clinical trials, and improve evaluation

of treatment efficacy and disease progression [76][179][173][20]. Circulating cell-free DNA

(cfDNA) is a promising candidate biomarker as it is released into the blood stream after

cell death [161][88][86]. In healthy individuals, cfDNA in the blood arises from normal cell

turnover, but in individuals with a disease, cfDNA can come from illness-specific cell death

[70]. As a result, cfDNA levels have been shown to be elevated in individuals with cancer,

autoimmune diseases, transplantation responses, and trauma [62][171][181][59]. CfDNA has

also become the clinical standard for noninvasive prenatal testing [122], and many companies

and research groups are sequencing cfDNA to identify the presence of somatic mutations

related to tumors [182][166][153].

To understand what drives the increased presence of cfDNA in people with disease, this

work focuses on the decomposition of cfDNA in blood into its cell types of origin. While each

germline cell has nearly the same DNA sequence, DNA methylation is cell type specific [99],

and there is a rich literature of complex tissue decomposition approaches using DNA methy-

lation [68][69][138][139]. Recent work has attempted to use cfDNA methylation patterns

to decompose tissues of origin for cfDNA [89][120][97][156]. These approaches, however, do
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not address some of the unique challenges of cfDNA. Previous work was designed for ref-

erence and input data from methylation chips, which are high coverage and have relatively

low noise. Since cfDNA is only present in the blood in small amounts, an onerous amount

of blood must be extracted from a patient to get the required amount of input DNA for

methylation chips, which may not be practical for clinical use [134]. Other technologies and

methods focus on sensitive detection of specific tissues or cancer sites [77][94] [151]. While

increasingly powerful, these approaches can not provide biomarker discovery or comprehen-

sive decomposition of constitutive cell types. In this work, we used whole genome bisulfite

sequencing (WGBS) to assess the methylation of cfDNA. Unlike methylation arrays that

target specific genomic locations, WGBS covers the entire genome, typically resulting in

lower coverage per site, and increased noise relative to array data. Thus, WGBS presents

computational challenges for decomposition of methylation data as current computational

methods are ill-equipped to handle such noise in either the reference or input. Previous

methods are also limited by which DNA methylation sites (CpGs) are chosen. Methylation

arrays survey a limited number of CpGs, which may not be maximally informative of cell

type. Some approaches also rely on selecting a set of CpGs designed for a particular dataset

[32][89][97]. While curated site selection is useful for specific biological queries, it can cause

bias when generalized to other settings or diseases. Choosing which sites to include in a de-

composition can substantially influence which cell types are predicted because different sites

are informative for different cell types. Another important limitation of previous cfDNA

decomposition methods is that the results are restricted to the cell types included in the

reference panel. However, as there are many thousands of cell types throughout the body, it

is currently impossible to incorporate them into a reference panel. Thus, the specific choice

of reference cell types will lead to biases in the decomposition results.

In this work, we develop an efficient expectation maximization (EM) algorithm, CelFiE

(CELl Free DNA Estimation via expectation-maximization) for cfDNA decomposition that

allows for low coverage and noisy data and apply it in a range of challenging real world

scenarios. CelFiE can estimate unknown cell types not included in a reference panel and

6



is not dependent on curated input methylation sites. We show in realistic simulations that

CelFiE can accurately estimate known and unknown cell types, even at low coverage and

with relatively few sites, and can detect rare cell types that contribute to only a small

fraction of the total cfDNA. Decomposition of real WGBS complex mixtures demonstrates

that CelFiE is robust to several violations of the model assumptions. Specifically, the real

data contain correlations across regions and between cell types, read counts with heavy-

tailed distributions, and reference samples that are heterogeneous mixtures of many cell

types. Additionally, we develop an approach for unbiased CpG methylation site selection for

use in the decomposition algorithm.

We apply CelFiE to two cfDNA data sets. First, we examined the positive control of

cfDNA extracted from pregnant and nonpregnant women. We observe a significant placental

component in the decomposition estimates only from pregnant women, providing validation

for CelFiE. We then applied CelFiE to cfDNA from amyotrophic lateral sclerosis (ALS)

patients and age matched controls. Currently, there are no established circulating biomarkers

for ALS. As a result, it is difficult to monitor disease progression and efficiently evaluate

treatment response [176]. cfDNA provides an opportunity to measure cell death in ALS

that could fill these gaps. We find a significantly elevated skeletal muscle component in

ALS patients. This novel observation, along with the successful decomposition of cfDNA

from pregnant women, demonstrates that CelFiE has the potential for broad translational

utility in understanding the biology of cell death, and in applications such as quantitative

biomarker discovery, or in the noninvasive monitoring and diagnosis of disease.

2.2 Results

2.2.1 CelFiE Overview

CelFiE estimates the contribution of various cell types to the cfDNA of an individual via

an EM optimization algorithm. The input to CelFiE is WGBS reference data consisting

of T total cell types and WGBS cfDNA samples for N total individuals. Its output is
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the proportion of the reference cell types that make up each individual’s cfDNA, such that

the proportion of all T cell types sums to one for each individual. Notably, an arbitrary

number of cell types can be missing, which addresses potential biases arising from estimating

the proportions of cell types from a restricted reference panel. CelFiE also estimates the

methylation values for each of the cell types included in the reference, which accommodates

the currently noisy and low-coverage reference data sets. These developments are facilitated

by CelFiE’s EM algorithm, which is a flexible framework for parameter estimation, even

when there is missing data. Complete details on CelFiE can be found in Section 2.4.

2.2.2 Evaluation using simulated cfDNA mixtures

We began by simulating cfDNA mixtures informed by realistic sequencing conditions and

comparing the results of CelFiE and other decomposition tools. First, we compared CelFiE

to a least-squares regression optimization method. Least-squares regression is a popular

choice for decomposition problems, but is not guaranteed to produce an estimate of cell type

proportions that sums to one. To compare CelFiE to a constrained optimization method, we

implemented a second optimization method referred to here as the ”projection method.” In

this approach, we computed the projection of the cell-type proportion estimates onto the L1-

ball [45], which constrained the estimates of cell-type proportions to lie on the probability

simplex and thus, sum to one. Furthermore, in our projection approach, we optimize a

binomial log-likelihood that is parameterized by the number of methylated and unmethylated

reads. By accounting for read data, this method is a more direct comparison to CelFiE (see

section 2.4.5 for implementation details).

We also compared CelFiE to a previously published cfDNA decomposition tool, MethAtas

[120]. Unlike CelFiE, which explicitly models WGBS reads, MethAtlas is designed to de-

compose methylation array data. MethAtlas also does not model missing data or estimate

the methylation values for the reference cell types. Briefly, it optimizes ∥Y α−β∥ using non-

negative least squares constrained by α ≥ 0, where Y is a reference matrix of array data, β

is the observed cfDNA methylation measured on an array, and α is the cell type proportions
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vector that is being solved for. While MethAtlas is not designed for low read count data

and thus not directly analogous to CelFiE, it is, to the best of our knowledge, the only other

cfDNA decomposition algorithm that allows the inclusion of arbitrary input sites and does

not restrict to specific cell types in the reference data.

MethAtlas provides a comprehensive reference matrix, composed of 25 tissues and cell

types, over ∼6,000 CpG loci [101]. To ensure a fair comparison, we simulated data that

matched the size of this reference data with 25 cell types and 6000 CpGs. The true methy-

lation proportion of each CpG was drawn independently from a uniform distribution, so

that the methylation of each CpG was between 0% and 100%. The choice of a uniform

distribution allowed for variability across cell types for a given CpG. To characterize the

decomposition performance of CelFiE across both rare and abundant cell types, we defined

the true cell type proportion vector as (1, ... , T )/
(
T+1
2

)
, where T = 25 is the number of cell

types truly in the mixture.

For CelFiE and projection method, the input data were the number of methylated reads

and read depth at each site. The reference read depths were drawn independently from a

Poisson distribution centered at 10, a relatively low sequencing depth for a WGBS experiment

[194]. The number of methylated reads for a given CpG in each of the 25 cell types was drawn

from a binomial distribution, where the probability of success was the true methylation value

in that cell type, and the number of trials was the read depth at that locus. cfDNA read

depths for each CpG were simulated from a Poisson distribution centered at 10, and then

the reads for each CpG were assigned to originate from a cell type based on the cell type

proportion vector for the cfDNA mixture. A read was determined to be either methylated

or unmethylated given the true methylation proportion in that read’s cell type of origin at

that CpG. Since MethAtlas and least-squares regression do not take read counts as input,

we calculated the methylation proportion for a CpG by dividing the methylated reads by

the depth at that locus. While these methods were not designed for read count data, by

doing this we were able to compare MethAtlas, least squares regression, and CelFiE on the

same data. Additionally, to compare the least-squares regression estimates to the proportions
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produced by the other methods, we divided the vector of estimates produced by least-squares

regression by its sum. In total, we performed 50 independent simulations for CelFiE and all

comparison methods. Below, we consider additional simulations from real data, which are

free from the distributional assumptions above.

CelFiE performed better than MethAtlas at these low read depths (Figure 2.1). Per each

simulation, we calculated the Pearson’s correlation between the true cell type proportion

vector and the estimated proportions vector. For MethAtlas, the mean r2 across replicates

was 0.59±0.17, while CelFiE’s mean r2 was 0.96±0.01. As expected, CelFiE also performed

better than linear least-squares regression, which had an mean r2 of 0.73±0.11 (Figure S1A).

CelFiE and the projection optimization method (mean r2=0.95±0.02) performed similarly

under these conditions (Figure S1B). However, a major limitation of our projection opti-

mization method is that, unlike CelFiE, it is unable to estimate missing cell types, which we

discuss further below.

To further characterize the properties of CelFiE, we varied the number of CpGs (100,

1,000 and 10,000), which represented conditions with varying amounts of information about

cell type. We then focused on a single cell type and varied its proportion between 0% and

100%. In total we simulated 10 cell types, where one cell type was fixed. The remaining 9

additional cell type proportions were drawn from an independent uniform distribution and

then normalized so that all proportions sum to one. Data was simulated for 1 individual

with 50 independent simulations.

Performance was assessed by calculating the Pearson’s correlation between the estimated

cell type proportions and the true proportions for 50 replicates. We found that as the

number of sites increased, the ability of CelFiE to accurately decompose the cfDNA mixtures

improved (Figure 2.2A), especially for less abundant cell types. We further characterized

the performance of CelFiE by calculating the correlation between the estimated methylation

proportions of the fixed cell type with the true methylation proportions when the reference

and input data were at 1x, 5x, 10x, or 100x coverage (Figure 2.2B). At the very low depth of

1x, the mean Pearson’s correlation was r2 = 0.45± 0.09, which increased substantially at 5x
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coverage to r2 = 0.83 ± 0.03. As the sequencing depth increased, the correlation continued

to increase.

Next, we examined the performance of CelFiE when two cell types with highly correlated

methylation values were included in the reference panel, since many real cell types share

substantial architecture with each other. We generated simulated methylation proportions

for the two cell types with a Pearson’s correlation between 0 and 1 at 100x depth and ran

CelFiE for mixtures of 1,000 CpG sites. When the cell types are very correlated, we found

that CelFiE is unable to distinguish between the two cell types. As the cell types become

less related, CelFiE improved in its ability to disambiguate the two cell types (Figure S2).

We note, however, that CelFiE accurately estimates the sum of the two cell types, even when

they are perfectly correlated.

2.2.3 Detection of Differences Between Groups

Previous work suggests that a large portion of cfDNA originates from white blood cells

[89]. This implies that a non-haematopoietic cell type of clinical significance may only be

present in a population of interest at a low proportion in the mixture. To assess the ability

of CelFiE to estimate rare cell types, we simulated data to resemble a small case-control

study of 10 total individuals. Five individuals with a low proportion of a single cell-type

(0.1%, 0.5%, 1%, or 5%) were simulated to represent the cases. The remaining 5 individuals

were simulated to have 0% of that cell type, representing the controls. To understand how

CelFiE’s ability to estimate rare cell types changes as a function of sequencing depth, we

simulated input and reference reads at 5x, 10x, 100x, and 1000x coverage for 1000 CpGs.

We ran CelFiE jointly on all 10 individuals to prevent bias and assessed whether CelFiE can

meaningfully discriminate between the two groups.

We plotted the CelFiE estimates for individuals whose cfDNA mixtures do and do not

have that rare cell type (Figure 2.3A-D). We found that as both the depth and the cell-

type proportion increased, CelFiE’s ability to distinguish between the two groups improved.

A grouped t-test was used to assess whether CelFiE is estimating a significant difference
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between the groups. At a depth of 5x, CelFiE was only able to distinguish between the

groups of the most abundant fixed cell type, 5%, with an average estimate of 0.041± 0.018

in the group with the cell type and 2.51×10−3±4.71×10−3 in the group without. Despite the

estimates being slightly underestimated, this difference was significantly different between

the groups (p = 4.8×10−8), suggesting that CelFiE may have utility in detecting differences

between groups even at extremely low depths. As the depth increased to 1000x, CelFiE

significantly differentiated between all four fixed percentages (p < 0.001) and the estimates

became more confident. We found that as we continued to increase the depth, CelFiE

was able to detect arbitrarily small differences between the groups (at 10,000X and 0.01%,

p = 8.32×10−9). In practice, however, the ability of CelFiE to detect these minute differences

is limited by biological and technical constraints, such as the amount of cfDNA in blood or

DNA degraded by bisulfite conversion. Nonetheless, these results demonstrate that CelFiE

can accurately estimate cell types of relatively rare abundance when the read depth is high.

2.2.4 Unknown Cell Types

We then turned to understanding the behavior of CelFiE when estimating unknown cell-

types. To accomplish this, we simulated data with low read counts, creating reference and

cfDNA reads for 1000 CpGs at 10x depth, as in previous simulations. We simulated t = 10

cell types with one unknown cell type excluded from the reference data. We began by

simulating a missing component that was relatively large. Its proportion, αunknown, was

drawn as αunknown ∼ N (0.2, 0.1) and truncated to be between 0 and 1. The remaining cell

type proportions of the known cell types were drawn from a uniform distribution and all

proportions were normalized to sum to 1. We then simulated cfDNA reads for 10, 50, 100,

500, and 1000 individuals. Note that the problem is not identifiable when the number of

individuals is smaller than the number of unknowns. The mean squared error (MSE) was

calculated between the estimated unknown proportion and the true simulated proportion.

As the number of people included in the decomposition was increased, the performance of

CelFiE improved (Figure 2.4A).
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We next considered mixtures with two unknown cell types, one that was relatively

large and one that was relatively small. For each person, the first unknown proportion,

αunknown1, was drawn from αunknown1 ∼ N (0.2, 0.1), and the second unknown was drawn

from αunknown2 ∼ N (0.1, 0.1). The proportions of the remaining cell types were simulated as

above. Since the inferred CelFiE labels are not identified (i.e., CelFiE’s estimated αunknown1

can correspond to either missing reference cell type 1 or 2), we assigned the unknowns by

examining the estimated methylation fractions of each CpG. We estimated the correlation

between the true and unknown methylation fractions and assigned the unknown to the true

cell type with the highest correlation. After assigning the unknowns, we calculated the MSE

between the true proportion and the estimated proportion. Furthermore, we calculated the

Pearson’s correlation between the true and estimated methylation fractions for each un-

known (Figure S3). We observed that more individuals are needed to accurately estimate

the unknown components when an additional unknown was added (Figure 2.4B). We also

noted the presence of outliers in the estimates, which was likely due to differences in the

simulated data that were randomly drawn in each replicate of our experiment.

We next examined how decomposition estimates are biased when there is a missing cell

type, but no unknown is estimated. We generated simulated mixtures as above, for 1000

CpGs and 10 cell types truly in the reference, and for 100 people at 100x depth. CelFiE was

ran twice: once when the missing cell type was the highest tissue in the mixture (∼20%)

and secondly, when the missing cell type was approximately the average of all cell types

contained in the mixture (∼10%). (Figure S5). To measure the bias of the estimates, we

calculated the percent difference, defined as the true cell type proportion minus the estimate,

divided by the true proportion. When the missing cell type was high, the average percent

difference across all tissues was 0.32± 0.86. This meant that on average, without estimating

the unknown, CelFiE produced cell type proportion estimates that were 32% higher than

the truth. Likewise, when the missing cell type was lower, the average percent difference

decreased to 0.21± 0.69, likely because there was less missing signal to be distributed across

the cell types actually estimated. When there was an unknown included in CelFiE, the
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overestimate on average, decreased to −0.02±0.62 and −0.11±0.40, respectively. This result

indicated that the larger the missing cell type, the more biased the cfDNA decomposition

estimates will be without an unknown component, which may demonstrate the utility of

CelFiE.

CelFiE’s ability to accurately estimate unknowns contrasts with previous cfDNA decom-

position methods, which can only estimate proportions of cell types in the reference. This

creates a bias in the decomposition that can be addressed with CelFiE. Specifically, if we

simulate cfDNA mixtures with a cell type excluded from the reference as above and run

MethAtlas, it will produce biased estimates. On average, these estimates had an average

percent difference that was 29±68% larger than the true proportions (excluding the missing

cell type, which was not estimated). We found similar biases in our least squares regression

method, which on average, overestimated by 29±20%, and in our projection method, which

on average, overestimated by 17± 57% (Figure S4). The difference in performance between

CelFiE and comparison methods is more similar at high read depths and when all cell types

are known (Figure S6).

2.2.5 Performance on WGBS cfDNA mixtures

We next considered simulated mixtures made from real WGBS data, which are substantially

more complex and violate several assumptions of the CelFiE algorithm. In particular, the

reference data contain tissues composed of multiple cell types, CpGs are correlated locally

across genomic regions and between cell types, and read counts have heavy-tailed distri-

butions reflecting true biological and technical heterogeneity across sites. Therefore, to

examine how robust CelFiE is to these complications, we used biological replicates for 10

WGBS data sets (small intestine, pancreas, monocytes, stomach, tibial nerve, macrophages,

memory B cells, adipose, neutrophils, and CD4+ T cells), downloaded from the ENCODE

and BLUEPRINT projects [? ][41][50]. In all experiments, we chose to include tissues to

see if their complex cell type mixtures might contribute to decomposition errors. One set

of WGBS biological replicates was assigned to make up the cfDNA mixtures; the other was
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assigned to the reference matrix.

Since roughly 80% of CpG sites in the human genome do not vary between cell types [193],

randomly selected CpGs will contain mostly uninformative loci for cell-type decomposition.

A reference panel that contains too many uninformative CpGs will reduce the performance

of a decomposition algorithm. To demonstrate this, we simulated data for 100, 1000, and

10000 CpGs, where the true methylation values for 10 cell types were drawn from a normal

distribution centered on 0.5. The variance across cell types was chosen to be between 0.01

and 1. The lower the variance, the less informative a CpG would be for cell type status.

A cfDNA mixture for one individual and no missing cell types was simulated. The results

of this experiment indicated that as the variance increased, CelFiE’s ability to decompose

the mixtures also increased (Figure S7). Therefore, to limit uninformative CpGs included

in our analysis, we developed a method for choosing a set of unbiased informative CpGs in

real data, which we called tissue informative markers (TIMs) (Section 2.4.11). We selected

100 TIMs per WGBS sample for use in these simulations, excluding common variants with

a minor allele frequency greater than 1% [6]. Selecting TIMs improved performance in

CelFiE decomposition (Figure S8). Furthermore, because DNA methylation of nearby CpGs

are correlated [103], we combined information from proximal CpG sites 250bp upstream

and downstream of each TIM (Section 2.4.11). These combined TIM regions improved the

decomposition over single CpGs (Figure S9). We simulated cell type proportions 50 times for

100 people, as in Section 2.2.2. The proportion of CD4+ T cells was drawn from a normal

distribution centered around 20% and the proportion of small intestine was centered around

10%. The remaining cell types proportions were drawn per person from a random uniform

distribution.

We first assessed CelFiE’s performance on WGBS samples without any cell type missing

from the reference panel (Figure 2.5A). Despite the complexity of the data, we found that

CelFiE still performed well. The average Pearson’s correlation between the estimated cell

type proportions and true cell type proportions was r2 = 0.83± 0.16. The average Pearson’s

correlation of the estimated methylation values and the true methylation values was similarly
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high, with an average r2 of 0.96±0.01 (Figure S10A). For comparison, we adapted MethAt-

las for whole-genome data. We used our selected TIMs and converted the read counts to

proportions. The Pearson’s correlation between the estimated methylation proportions and

true proportions for MethAtlas was lower than that of CelFiE, 0.43 ± 0.24, which further

illustrated that MethAtlas is not suitable for noisy read count data.

Next, we investigated CelFiE’s ability to estimate mixtures with a substantial unknown

component. We first masked only the most abundant cell type from the reference, the CD4+

T cell sample. Using the same true cell type proportions as in the simulations with no missing

samples, we performed 50 simulations with 100 people (Figure 2.5B). The correlation between

the estimated and true cell type proportions decreased only slightly in the case of no missing

data, r2 = 0.8± 0.16, and we found that the correlation to the true methylation values was

still high, with an average Pearson’s r2 = 0.96 ± 0.01 across all cell types (Figure S10B).

Subsequently, we masked two reference samples, CD4+ T cell and small intestine, from the

reference panel. The true CD4+ T cell proportion was still centered around 20%, while

the small intestine was centered around 10%. We found that CelFiE’s ability to successfully

decompose a complex mixture decreased when there are two missing cell types (Figure 2.5C).

However, the estimated correlation to the true WGBS methylation values remained high,

with an average Pearson’s r2 = 0.95± 0.04 (Figure 2.5C and Figure S10C).

To further validate CelFiE’s ability to estimate missing cell types, we assessed how simi-

lar the learned methylation proportions for the missing cell types are to the true methylation

proportions for CD4+ T cells and small intestine. To do this, we appended the methylation

proportions learned by CelFiE for the two unknown cell types to the matrix of true refer-

ence methylation proportions, including the values for T cells and small intestine that were

originally masked. We calculated a distance matrix for the reference matrix plus unknowns

and used this to perform hierarchical clustering. Figure 2.6 shows that the unknown cell

types were segregated with their true cell type. For the case of one unknown, the unknown

that was truly T cell clusters with the reference T cell sample. Furthermore, the average

Pearson’s correlation between the learned unknown cell type methylation proportions and
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the reference T cell methylation proportions was higher than all other cell types, r2 = 0.95,

suggesting that CelFiE learned the correct cell type for one unknown. For the two unknown

cell types, unknown 1 remained clustered with the reference CD4+ T cell sample and had a

high correlation with the reference CD4+ T cell methylation patterns, r2 = 0.94. Unknown

2 clustered with the reference small intestine sample along with other gastrointestinal tis-

sues. The correlation between the estimated and true small intestine methylation values

was the highest of all pairings, r2 = 0.87. Together with the data presented in Figure 2.5B,

these observations suggest that even with an incomplete reference, CelFiE estimates both

the correct cell type proportion and cell type methylation values.

2.2.6 Application to Pregnancy

To validate CelFiE, we first choose to analyze cfDNA from pregnant and non-pregnant

females since these populations provide a robust example of a verifiable positive and a control

group [168]. Unlike the decomposition of cell types in blood, there is no FACS or similar

existing standard for cfDNA. Nonetheless, we know a priori that non-pregnant women will

not have placenta cfDNA in their bloodstream.

To test CelFiE in pregnant and non-pregnant women, we downloaded publicly available

WGBS cfDNA of 7 pregnant and 8 non-pregnant women [71]. All women were between

11- and 25- weeks gestation at the time of cfDNA extraction. Next, we subset the WGBS

sites to the same TIMs we use in Section 2.2.5 and summed all reads +/- 250 bp around

each TIM (See Methods). Twenty WGBS datasets from the ENCODE and BLUEPRINT

projects were chosen for the reference panel, representing tissues and cell types throughout

the body and blood, along with one unknown category. The decomposition result is the

random restart with the highest log likelihood of 10 total restarts.

CelFiE estimated a high proportion of white blood cells (dendritic cells, eosinophils,

monocytes, neutrophils, etc.), consistent with previous estimates based on cfDNA and our

expectation that blood cells have high rates of cell turnover [120] [127]. CelFiE detected a

small proportion of cfDNA coming from gastrointestinal tissues, such as the small intestine
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or stomach, which may also be due to the relatively high cell shedding in these tissues [185].

We used a single unknown cell type component and we estimated that it is large, with a

mean of 0.31± 0.04 in non-pregnant women and a mean of 0.25± 0.06 in pregnant women

(Figure 2.7A). To better understand which tissues and cell types are driving the unknown

component, we performed hierarchical clustering on the estimated methylation values for

the unknown component with the methylation values for the known cell types contained in

the reference panel (Figure S11). We found that it clustered most closely with endothelial

cells. This suggests that as reference panels improve, there is additional biological insight

that may be gained by using CelFiE.

To evaluate which cell types differ the most between pregnancy states, we performed

grouped two-sample t-tests of inferred cell type proportions. As expected, placenta showed

the greatest difference, ranging from 9.3% to 29.7% (median 11.9%), and 2.9 × 10−16 to

2.1 × 10−2 (median 2.3 × 10−12) in pregnant and non-pregnant women, respectively (two-

sided grouped t-test, p = 4.5 × 10−5). We also found that CelFiE estimated a higher

placental component in the second trimester (median 11.2% in trimester 1 and median

15.3% in trimester 2), concordant with the growth of the placenta throughout pregnancy

(Figure 2.7B). This is also consistent with previous estimates of the proportion of placental

DNA in the cfDNA of pregnant women (median 15.3% in trimester 1/2) [164]. We restricted

statistical tests to the relevant tissue, in this case the placenta, but estimates are provided

for all tissues and cell types in Figure 2.7.

To further validate our method, we compared CelFiE predictions with those from our

WGBS adaption of MethAtlas, least squares regression, and our projection method (Fig-

ure S12A-C). While these methods are not explicitly designed to be ran on WGBS data,

all three methods estimated a higher proportion of placental cfDNA in pregnant women

than in non-pregnant women, as we expected (Table ??). Least squares regression, however,

produced negative estimates, suggesting that this method is unsuitable for real data appli-

cations. Furthermore, all three methods estimated proportions of blood cell types that may

be inconsistent with known cell-type proportions in whole blood. For example, all methods
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estimated a large erythroblast component, on average about 24%. This was higher than

expected since nucleated red blood cells are generally rarer than white blood cells in the

blood [36]. Furthermore, white blood cells, such as neutrophils, have a much higher turnover

rate, making them more likely to appear in cfDNA [115]. While the high proportion of

erythroblasts may indicate the presence of a red blood cell precursor not captured by the

current reference panel, it may also be a consequence of a bias introduced by missing tissues

in the reference panel. For instance, CelFiE ran with an unknown component on the same

data estimated an erythroblast proportion of 0.073± 0.052. When CelFiE was ran without

an unknown component (Figure S12D), the erythroblast proportion increased to 0.29±0.11.

This could suggest that, as seen in Figure S5, decomposition estimates without unknown

components may cause overestimation of other cell types in the mixture.

2.2.7 Application to ALS

Lastly, we examined cfDNA in ALS patients and age-matched controls (Sections 2.4.6 and

2.4.7). ALS patients represented a range of disease severity and onset sites. We first examined

the overall abundance of cfDNA in cases (n=28, mean 297.72 ± 110.57pg/ul) and controls

(n=25, mean 218.78 ± 139.17pg/ul). We observed a significant excess in cases (Figure 2.8A,

p = 5.00× 10−3), but it was unknown what tissue or tissues are responsible for this increase.

To explore possible overrepresented tissues in ALS cfDNA, we applied CelFiE first to a

discovery cohort composed of 8 controls and 8 cases from both the University of Queensland

and UCSF (Figure S13A). As with the pregnancy cfDNA, we confined the WGBS data to

TIM sites and then summed +/- 250 bp around the TIMs. We decomposed all mixtures

using the same reference tissues as Section 2.2.6 and one unknown. We restricted statistical

tests to two biologically relevant tissues for ALS: skeletal muscle and tibial nerve. Notably,

we found a difference in the estimated skeletal muscle proportions, specifically finding an

excess in cases relative to controls (p = 5.02× 10−2) (Figure S14A).

We validated this difference with an independent replication of 8 cases and 8 controls

from University of California San Francisco (UCSF) for which WGBS was performed. As
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expected, we found that the mixture was composed largely of blood cells (Figure S13B), with

the top 5 tissues by proportion being neutrophils, monocytes, macrophages, eosinophils, and

erythroblasts. In addition, CelFiE estimated a large unknown component, with a mean pro-

portion of 0.42±0.11 for ALS cases and 0.30±0.19 for control samples. This large unknown

component did not cluster closely with any cell type or tissue contained in our reference panel

when we applied hierarchical clustering on the CelFiE estimate of the unknown methyla-

tion values (Figure S15), which could indicate that CelFiE captured a substantial signal

not captured by other methods. Furthermore, we replicated the significantly higher skele-

tal muscle component in ALS cases, with a mean muscle proportion of 0.057 ± 0.06, while

CelFiE estimated an average proportion of 8.9× 10−4 ± 1.3× 10−3 in cases (grouped t-test

p = 7.8 × 10−3) (Figure S14B). CelFie ran on the combined data (Figure S13C), estimated

a mean proportion of 0.038± 0.020 in ALS samples and 1.7× 10−3 ± 2.6× 10−3 in controls

(grouped t-test p = 2.4× 10−3) (Figure 2.8B).

Finally, we ran least squares regression, our projection method, and MethAtlas on our

combined ALS cfDNA data (Figure S16). As in Figure S12, we found that these methods

estimated higher proportions of erythroblasts than CelFiE, and that least squares regression

produced negative estimates. We did find, however, that all three methods recapitulated our

finding of a higher proportion of skeletal muscle in ALS patients (Table ??). While these

differences are similar in magnitude to those from CelFiE, they are less significant (least

squares: p = 0.019; projection method: p = 0.026; MethAtlas: p = 0.012), possibly due to

the higher error in these methods.

Together, these results suggest that cfDNA is a promising direction to identify the first

quantitative biomarker for muscle atrophy and death that is a hallmark of ALS.

2.3 Discussion

During disease or increased cell turnover, elevated levels of cfDNA can be detected in the

blood. For example, increases in the amount of cfDNA have been detected in patients with
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multiple types of cancer, autoimmune diseases, as well as acute episodes of myocardial infarc-

tion, trauma, transplantation response, and exercise [165][174][144]. Correspondingly, the

utility of cfDNA as a diagnostic biomarker has been demonstrated in an increasing number of

settings, including prenatal testing [72] and the detection tumor specific mutations [93][132].

Of great interest, however, is that assessments of cfDNA can now also provide information

about cfDNA cellular origin [156][89][120][97]. This type of qualitative and quantitative as-

sessment presents an individualized, unbiased approach to understanding cellular turnover

over time. However, these technologies are nascent, noisy, and expensive.

In this work, we presented an algorithm, CelFiE, to decompose complex cfDNA mixtures

into their cell types of origin. CelFiE can accurately decompose cfDNA mixtures with low

sequencing coverage in both the reference cell types and the patient cfDNA samples. We also

showed that CelFiE could estimate cell type proportions using relatively few sites, and that

its performance improves as more tissue informative sites are selected. This could indicate

CelFiE’s utility in methylation capture panel development, where highly informative sites are

selected and sequenced to high depth [96]. Furthermore, as cohort sizes are expanded, it can

accurately estimate multiple unknown cell types, which reduces bias and increases confidence

in the decomposition. Finally, the EM algorithm underlying CelFiE is computationally

efficient, with iteration cost scaling linearly with the number of samples, CpG sites, and cell

types.

We began by validating CelFiE extensively in simulations. In the context of simulated

low read-count methylation data, CelFiE outperformed linear least squares regression, our

novel L1-projection method, and MethAtlas, another cfDNA decomposition method. Since

these methods are not explicitly designed for this data regime, CelFiE’s improvements may

make it a useful addition to the tools available to cfDNA researchers. To further demonstrate

the accuracy of CelFiE, we applied it to real data from pregnant women. Decomposition

estimates of placenta from pregnant women were significantly different from non-pregnant

women. This provided a natural validation for CelFie, illustrating that it can correctly learn

differences in cfDNA cell type of origin, even in real data sets.
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In our study of ALS patients, we found that cfDNA levels are increased in ALS cases

compared to controls. To understand what cell types are driving this difference, we applied

CelFiE to the cfDNA samples, finding significantly higher skeletal muscle in patients with

ALS. Future work will expand on this result by expanding the cohort size, and by testing for

associations between cell type of origin and disease progression or severity. We may also test

for associations between decomposition estimates and disease onset site. Furthermore, as

cohort sizes expand, we will have the power to estimate multiple unknown categories. These

multiple unknown categories could be used to further subtype ALS cases. We consider

the current results, a promising step forward, especially as ALS currently has no reliable

biomarker. These results also suggest that CelFiE might prove useful for quantifying cell

death in other complex diseases.

The accuracy of CelFiE depends on several factors including read depth, the cell-type

specificity of the sites considered, the abundance of key cell types, and the quantity and

quality of reference data and cfDNA patient samples. Recent technologies for digesting or

capturing specific regions of cfDNA [83], may allow deeper sequencing of informative CpGs.

Selecting such TIM CpGs demonstrated marked improvement in accuracy and could be used

to select sites for capture.

There are a number of areas for improvement. Many of the reference samples used here

were complex mixtures of cell types and could be modeled as such, similar to the recent

approach, FEAST [152], which modeled reference mixtures of microbial communities. More-

over, WGBS simulation results showed a high degree of correlation between replicates, but

we believe modeling inter-person heterogeneity will likely improve the results further in real

cfDNA samples. We currently account for the local correlation of CpG methylation by sum-

ming proximal CpG methylation states, but nearby CpGs may not always convey identical

cell type information. Future work could also focus on modelling the relationship between

cell types and tissues. For example, since cell types are correlated in their methylation pro-

files, it could be interesting to consider a hierarchical model in which the composition can be

considered at different levels of cell type phylogeny [154]. This may help us gain additional
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power to identify samples, particularly highly similar cell types or tissues. Finally, the ad-

dition of non-CpG methylation and cfDNA fragment length may provide additional sources

of information about cell types of origin.

In summary, we present CelFiE, an efficient EM algorithm for decomposing cfDNA mix-

tures into their cell type of origin, even when the data are low count or noisy. CelFiE can

additionally robustly estimate both known and unknown cell types in cfDNA. Overall, our

work demonstrates that CelFiE could be a useful tool for quantifying cell death, applicable

to biomarker discovery and disease monitoring.

2.4 Methods

2.4.1 CelFiE Overview

We assume that we are provided with a bisulfite sequenced reference data set, composed of

T cell types indexed by t, at M CpG sites indexed by m. Bisulfite sequencing produces read

counts from specific cell types that we collect in two T ×M matrices: Y and DY , where, Ytm

and DY
tm are the number of methylated and total reads at CpG m, respectively, in reference

cell type t. Together, these two matrices represent the reference cfDNA data.

We are also provided with cfDNA extracted from N individuals indexed by n. The

bisulfite sequencing read counts of the cfDNA are given in two N ×M matrices X and DX ,

with Xnm and DX
nm giving the number of methylated and total reads at CpG m in the cfDNA

from individual n, respectively. These two matrices represent the sample cfDNA data.

CelFiE takes as input the matrices Y , DY , Xnm, and DX
nm, and then outputs a matrix

α, where αnt is the fraction of the cfDNA in person n that originated from cell type t.

2.4.2 Model

We model the cfDNA as a mixture of DNA from cell types in the reference panel and, poten-

tially, unknown cell types absent from the reference panel. We assume that the individuals
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are independent given the true, unknown methylation proportions of each cell type, and the

individual-specific cell type proportions.

We assume that reference data are drawn from a binomial distribution:

Ytm|DY
tm, βtm

iid∼ Binomial(DY
tm, βtm) (2.1)

where βtm ∈ [0, 1] is the true, unknown proportion of DNA in a cell type that is methylated

at position m. This model assumes no intra-cell type heterogeneity, in the sense that each

cell in a cell type has identical methylation probability.

Next, we model the samples in the cfDNA data. We assume each cfDNA read is drawn

from some cell type t at some marker m, and in turn that its methylation value is drawn

from a Bernoulli distribution governed solely by the methylation proportion in the cell type

of origin:

xnmc|β, Znmc = t
iid∼ Bernoulli(βtm) (2.2)

where xnmc is the methylation status of the c-th read from sample n at position m, and

Znmc = t indicates that t is the cell type of origin for this read. For each person and

methylation site, we define the total number of methylated reads as Xnm :=
∑DX

nm
c=1 xnmc.

This simply sums the methylation status over all reads for each person at each site. In the

special case where DX
nm = 0, we define Xnm = 0.

Finally, we assume that the cell type of origin of each cfDNA molecule is drawn indepen-

dently from some individual-specific multinomial distribution:

Znmc|αn
iid∼ Multinomial(αn1, . . . , αnT ) (2.3)

where αnt is the probability that a read from person n comes from cell type t.
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2.4.3 EM algorithm for one cfDNA sample

For simplicity, we first describe CelFiE in the case where the cfDNA data set contains only

a single person, meaning the decomposition relies almost exclusively on the reference panel.

We then explain how CelFiE can jointly model multiple individuals in the cfDNA data, as

well as how and why this enables the estimation of unknown cell types. Full details of both

algorithm derivations are given in Section ??.

Formally, assume there is only one sample in the cfDNA data (i.e. N = 1). We define

ztmc as a binary indicator for whether read c at CpG m for the single cfDNA individual

originates from cell type t. In relation to Z above, ztmc = 1 if Z1mc = t, and otherwise 0.

That is, Z1mc is a categorical variable, and ztmc indicates which value Z1mc takes.

To calculate the full data likelihood, P (x, z, Y |α, β), we first factorize it into P (x, Y |z, α, β)·

P (z|α, β). This then simplifies into three components:

P (x, z, Y |α, β) = P (x|z, β)P (z|α)P (Y |β) (2.4)

The first component defines the probability of the cfDNA reads, given which cell type

they come from and the methylation proportions of those cell types. The third component

analogously defines the probability of drawing the reference reads. The second component

describes the probability of observing a specific cell type in the cfDNA, which is determined

by the proportion of each cell type in the individual’s cfDNA.

We show in ?? that the resulting log-likelihood is equivalent to:

∑
t,m,c

ztmc [xmc log (βtm) + (1− xmc) log (1− βtm)] +
∑
t,m,c

ztmc logαt

+
∑
t,m

(
Ytm log βtm + (DY

tm − Ytm) log(1− βtm)
)
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For this one-sample section, we drop an index on x and write xmc instead of x1mc. Anal-

ogously, we write Xnm = Xm as the total number of methylated reads at position m (and

DX
nm as DX

m).

To calculate the expected log-likelihood, i.e., the Q function, we must integrate over the

conditional distribution for the missing data, i.e. P (z|x, β, α). Since ztmc is binary and each

read and site is assumed independent, this distribution is the probability that each ztmc is

1. In other words, the probabilities that each read comes from each cell type are sufficient

statistics, and are given by:

P (ztmc = 1|xmc, β, α) =
βxmc
tm (1− βtm)

1−xmcαt∑
k β

xmc
kt (1− βkt)1−xmcαk

=: p̃tmc(α, β) (2.5)

Conceptually, if read c is methylated, this indicates the read is more likely to come from

cell types with high methylation proportion, as βtm is larger (and vice versa if the read is

unmethylated). Regardless the methylation state, however, this equation also says that the

read is likelier to come from more common cell types, as αt is larger.

This final term p̃tmc(α, β), seems complex. However, it actually only depends on the

specific read c through its methylation status, and takes only two values. We can redefine it

in simpler terms, which represents the probability of each cell type for each read depending

on its methylation:

βtmαt∑
k βktαk

=: ptm1(α, β) = p̃tmc(α, β) if xmc = 1 (2.6)

(1− βtm)αt∑
i(1− βkt)αk

=: ptm0(α, β) = p̃tmc(α, β) if xmc = 0

2.4.3.1 E step:

The Q function is defined at iteration i by:
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Qi(β, α) := z|x, α(i), β(i)logP (x, z, y|α, β) (2.7)

where α(i) and β(i) are the parameter estimates of the cell type proportions and methylation

proportions from the last EM step. Let p
(i)
tm := ptm1(α

(i), β(i)), which is the probability that a

methylated read at site m comes from cell type t given the previously estimated parameters

from iteration i. Then Qi is:

Qi(β, α) =
∑
t,m

[(
Ytm + p

(i)
tm1Xm

)
log (βtm) +

(
DY

tm − Ytm + p
(i)
tm0(D

X
m −Xm)

)
log (1− βtm)

]
(2.8)

+
∑
t,m

(
Xmp

(i)
tm1 + (DX

m −Xm)p
(i)
tm0

)
logαt (2.9)

The first line in this equation captures the expected total number of methylated reads

(first term in the sum) and the total number of expected unmethylated reads (second term)

for each cell type and site. Each of these terms combines both the reference and cfDNA

contribution, e.g. the first term combines the total methylated reads from the relevant

reference cell type (Ytm) with the expected number of methylated reads from that cell type

in the cfDNA mixture (p
(i)
tm1Xm).

Complementary to the first line, the second line determines the likelihood of α and does

not depend on β. It captures the likelihood of observing the expected cell type frequencies.

This is given by the sum of the expected methylated and the expected unmethylated reads

over all loci.

2.4.3.2 M step:

To update the estimated cell type proportions, α, we maximize Qi under the constraint that

α is a probability vector, i.e., its entries are non-negative and sum to one. The maximizer
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is:

αt =

∑
m

(
xmp

(i)
tm1 + (DX

m − xm)p
(i)
tm0

)
∑

k,m

(
xmp

(i)
km1 + (DX

m − xm)p
(i)
km0

) (2.10)

The numerator is simply the number of reads expected to originate from each cell type,

which is calculated by adding the expected contributions from the methylated and the un-

methylated reads. The proportions are then obtained by normalizing these numerators to

sum to 1.

The other M step update is for β, the proportion of reads that are methylated at each

site and in each cell type:

βtm =
p
(i)
tm1xm + Ytm

p
(i)
tm0(D

X
m − xm) +DY

tm − Ytm + p
(i)
tm1xm + Ytm

(2.11)

Intuitively, this is the ratio of the expected number of methylated vs total reads from

cell type t at site m. This update is conceptually similar to the α update in the sense that

it matches an estimated proportion to an expected proportion. For αt, this is the expected

proportion of reads deriving from cell type t; for βtm, this is the expected proportion of reads

from cell type t that are methylated at site m.

2.4.4 EM algorithm for multiple cfDNA samples

We now return to allowing N > 1 cfDNA samples. In this setting, α is a matrix, because

each cfDNA sample may have different proportions of each cell type in their cfDNA mixture.

Further, xnmc and Znmc are now 3-dimensional arrays indexed by cfDNA individual n, methy-

lation site m, and sequencing read c, and the binary indicators znmtc are now 4-dimensional,

as they additionally index each cell type.
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The conditional distribution for z at each step of the EM algorithm now becomes:

P (zntmc = 1|xnmc, β, α) =
βxnmc
tm (1− βtm)

1−xnmcαt∑
k β

xnmc
tk (1− βtk)1−xnmcαk

=: p̃ntmc(αn, β) (2.12)

As before, this p̃ term depends on c only through xnmc, and so we simplify terms by

defining p̃ntmc(αn, β) = pntmj(αn, β) if xnmc = j for j = 0, 1.

To simplify the E step, we define the responsibilities by p
(i)
ntmj := pntmj(α

(i)
n , β(i)). For

j = 0, this gives the conditional probability that an unmethylated read from individual n as

sitem comes from cell type t given the current parameter estimates; j = 1 gives the analogous

probability for methylated reads. Since we assume cfDNA individuals are independent given

α and β, the E step is a simple generalization of the one-sample E step that sums over

samples and can be written:

Qi(α, β) =
∑
n,t,m

[(
Ytm + p

(i)
ntm1Xnm

)
log (βtm) +

(
DY

tm − Ytm + p
(i)
ntm0(D

X
nm −Xnm)

)
log (1− βtm)

]
(2.13)

+
∑
n,t,m

(
Xnmp

(i)
ntm1 + (DX

nm −Xnm)p
(i)
ntm0

)
logαnt (2.14)

This Q function can be interpreted identically to the single-sample Q function. The only

difference is that now reference reads are added with expected cfDNA reads for multiple

individuals, and the expectations (p
(i)
ntmj) depend on cfDNA individual n as well as cell type

t, CpG site m, and methylation status j.

Qi additively splits over row of α, therefore, the updates for each αn, are identical to the

single-sample α updates, where αnt replaces αt, Xnm replaces Xm, D
X
nm replaces DX

m, and

p
(i)
ntmj replaces p

(i)
tmj. This means that if we condition on the number of reads coming from

each cell type in person n, the estimates of that person’s cell type proportion do not depend
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on anything else.

For βtm, the M-step again compares the expected number of methylated and unmethy-

lated reads at CpG m from cell type t, where the expectation combines reads from reference

cell type t with the expected number of cfDNA reads from cell type t. The only difference is

that now the expectation combines the expected contributions from multiple cfDNA samples:

βtm =

∑
n p

(i)
ntm1Xnm + Ytm∑

n p
(i)
ntm0(D

X
nm −Xnm) +DY

tm − Ytm +
∑

n p
(i)
ntm1Xnm + Ytm

(2.15)

2.4.4.1 Unknown sources:

It is likely that there are cell types in the cfDNA mixture not contained in the reference data.

To estimate the proportion of an unknown cell type with CelFiE, we append a zero row to

DY and Y , and then run CelFiE as usual. This produces an EM that is mathematically

similar to the STRUCTURE model of mixtures of human populations [137]. Essentially,

CelFiE estimates methylation patterns and abundances for the unknown cell type(s) that

maximize the overall likelihood. To model more than one unknown cell types, additional

rows of zeros are added to DY and Y . Note that if the number of unknown cell types is

greater than the number of individuals, the problem is not identified.

2.4.4.2 Regularization and Missing Data:

Missing observations are allowed in both the reference and the input. It is represented as

a 0 entered in both X/DX or Y /DY . In practice, we add a methylated and unmethylated

pseudocount to every entry of X and Y /DX and DY to stabilize the algorithm and likelihood

in case of cell type/site combinations with very low coverage.
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2.4.4.3 Computational cost

Each iteration of the EM algorithm in CelFiE involves three calculations. First, p
(i)
ntmj is

evaluated for each sample n, cell type t, CpG site m, and methylation status j = 0, 1; each

calculation is independent of the input data dimensions, hence evaluating p(i) is O(NTM).

Second, αnt must be evaluated, which involves summing over M sites for each n and t, giving

overall complexity O(NTM). Finally, updating βtm requires summing over all cfDNA indi-

viduals and the reference cell type data, again giving overall complexity O(NTM). Overall,

this means that CelFiE scales linearly in sample size, number of CpGs, and number of cell

types.

We also note that if multiple references were included, the cost would not multiply–

rather, the cost would increase to O((N +Nref )TM), where Nref is the (maximum) number

of reference samples per cell type.

2.4.5 Other Decomposition Methods

Linear least-squares regression was implemented using the linregress package from SciPy

(v 1.5.2) in Python [180]. We minimized min||Xα − Y ||22 where X was the methylation

proportions of the cfDNA input and Y was the methylation proportions of the reference

matrix. We estimated α, which was the cell-type proportions of the cfDNA mixture. Since

least-squares regression does not return estimates that sum to one, we divided α by its sum.

Projection onto the L1 ball was a implemented in a custom Python script available

at https://github.com/christacaggiano/celfie. There, we optimize a binomial log-

likelihood, where the number of successes is the number of methylated cfDNA reads, the

number of trials is the cfDNA read depths, and the probability of success is the reference

methylation values multiplied by the estimate of cell type proportions for a given iteration.

Maximum likelihood optimization was performed using the L-BFGS algorithm in the SciPy

Minimize package.

MethAtlas was run using code available at https://github.com/nloyfer/meth_atlas
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commit #0223493. It was run using the following command: deconvolve.py -a <reference

path> <ouput directory> <samples path>.

2.4.6 ALS Subjects

ALS patients were recruited jointly from the University of California San Francisco ALS

Center and the University of Queensland ALS clinics under clinician supervision. All partic-

ipants provided informed consent and the study was approved both by the Human Research

Ethics Committee at the University of Queensland (IRB 2018002470) and by the UCSF

Committee on Human Research (IRB 10-05027).

12 cases and 12 controls from San Francisco and 4 cases and 4 controls from Queensland

were included in this study. Controls were from non-related family members or caregivers.

cfDNA was extracted after subjects were at rest for more than 30 minutes to prevent possible

confounding from exercise. We collected 20 mL of whole blood from controls and 10 mL

from cases, to allow for further analyses.

2.4.7 ALS cfDNA Sequencing

Whole blood was collected in PAXgene Blood ccfDNA tubes (Qiagen, Cat. No. 768115)

and centrifuged at 1,900 x g for 10 min at RT to isolate plasma. Plasma was centrifuged

twice at 16,000 x g for 10 min and stored at −80degrees C until cfDNA extraction. Circu-

lating cfDNA was extracted from 4 ml (ALS patients) or 8 ml (controls) of plasma using

the QIAamp Circulating Nucleic Acid kit (Qiagen, Cat. No. 55114). Larger volumes of

control blood were collected to ensure equal amounts of total cell-free DNA (compared to

patients) were analyzed. cfDNA quality and concentration were assessed with an Agilent

2100 Bioanalyzer, using the Agilent High Sensitivity DNA kit (Agilent, Cat. No. 5067-4626).

10 ng of cfDNA were bisulfite-treated and purified using the EZ DNA Methylation-Direct

Kit (Zymo Research Cat. No D5020). Libraries for whole genome bisulfite-sequencing were

generated using Accel-NGS® Methyl-Seq DNA Library Kit (Swift Biosciences, Cat. No.

30024) and Accel-NGS Methyl-Seq Dual Indexing kit (Swift Biosciences, Cat. No. 38096),
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with 8 cycles of indexing PCR. Libraries were quantified by qPCR with the Hyper Library

Quantification kit (Kapa, Cat. No. KR0405) and paired-end sequenced on a NovaSeq 6000

System (Illumina).

ALS cfDNA Data Processing

Our ALS case-control WGBS data (including both the UCSF and UQ data) were processed

according to the ENCODE consortium guidelines [? ]. Quality of the fastq files was as-

sessed using FastQC (v 0.11.9) [3]. All samples had average phred scores ≥ 28. Adapters

were trimmed from the paired end fastq files using TrimGalore (v 0.6.6). Four basepairs

were trimmed from the 5’ direction and 12 base pairs were trimmed from the 3’ direction.

Trimmed fastq files were mapped to a bisulfite converted hg38 genome using the Bismark

(v 0.23.0) implementation of Bowtie2 (v 2.3.5.1). CpG methylation was from a Samtools

(v 1.7) sorted Bismark generated bam file using MethylDackel (v 0.5.0). For this study

we were only interested in CpG methylation, which is largely symmetric. Thus, we com-

bined reads on each strand, using the MethylDackel ”–mergeContext.” option. To stan-

dardize methylation calls across all WGBS data sources, hg38 coordinates were reported

as 0-indexed. All packages were installed using Anaconda (v 4.9.2). For more details, see

https://github.com/christacaggiano/ENCODE_WGBS.

2.4.8 Pregnancy cfDNA Data Processing

Data from pregnant women and non-pregnant controls were taken from Jensen et al. at.

Raw fastq files from were retrieved from dbGaP identifier phs000846. To ensure consistency

across cfDNA samples, data was processed identically to 2.4.7. In the original Jensen et al.

study design, multiple fastq files mapped to one sample. Thus, after methylation calling, we

combined the appropriate methylation bed files into one per individual, for a total of 15 bed

files.
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2.4.9 WGBS Simulation Data

Ten adult (small intestine, pancreas, monocyte, stomach, tibial nerve, macrophage, mem-

ory B cell, adipose, neutrophil and T cell) WGBS bedMethyl files were obtained from the

ENCODE and BLUEPRINT project [? ][50] (Data identifiers described in Supplementary

Table 3). BLUEPRINT data was downloaded as two bigWig files, a methylation signal

bigWig and a coverage of methylation signal bigWig. These files were combined into one

bedgraph-format file using the UCSC bigWigToBedGraph utility.

Each WGBS file had two biological replicates coming from distinct people. All bed file

coordinates were harmonized to hg38 using hgLiftOver [80]. For each tissue or cell type, the

file was restructured to report the number of methylated reads and read depth for each CpG

locus. Coordinates were standardized to be zero-indexed.

2.4.10 WGBS Reference Data

Reference data for the real cfDNA decomposition experiments in 2.2.6 and 2.2.7 were re-

trieved from ENCODE and BLUEPRINT. Twenty tissues and cell types were chosen to

be representative of the many tissues possible in cfDNA. To decrease noise, we combined

two replicates of the tissue when available (see Supplementary Table 3 for individual ac-

cession numbers). As described previously, we mapped all data to hg38, and converted the

coordinates to be 0-indexed.

2.4.11 Site Selection and Summing

2.4.11.1 Tissue informative markers

Only about 20% of autosomal CpGs vary by cell type [193]. Selecting sites that do vary en-

riches for information on tissue of origin and reduces the EM computational burden, which

scales linearly in the number of sites. We propose selecting tissue informative markers (TIMs)

without curation, an approach inspired by ancestry informative markers in population ge-
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netics [85] [146].

After processing (Section 2.4.9) the WGBS files, one replicate per tissue was segregated

into a reference matrix. This reference matrix was used to calculate TIMs. We assess

whether a CpG is a TIM one locus at a time. For each CpG, the distance between the

percent methylation of that cell type and the median percent methylation for that CpG was

calculated. Only CpGs where the median depth was greater than 15 and had no missing

data were considered. The top N (default=100) CpGs with the greatest distance per cell

type were selected. TIMs provide increased accuracy in decomposition, and vastly improve

computation time. We reference cell types to have overlapping TIMs (i.e., one CpG may be

a TIM for both pancreas and liver). We combine proximal CpGs (+/-250bp) around TIMs

to increase confidence in the methylation state for a particular CpG (see Site Combination).

To test the performance of TIMs, we create a complex mixture of ten WGBS samples and

calculate 100 TIMs per sample (for a total of 1,000 CpGS). We compared CelFiE decompo-

sition estimates using 1,000 random summed 500bp regions, 1,080 500bp regions published

in Sun et al [164], and our TIM regions. For the data set of WGBS mixtures, TIMs perform

better than random and better than the Sun et al regions (Figure S8). We believe that TIMs

will be especially desirable for downstream applications, where permuting random WGBS

CpG sites is not feasible, or in the development of a capture panel (see Section 2.3).

2.4.11.2 Site combination

To demonstrate whether summing sites improves CelFiE’s ability to discriminate tissues,

we create complex mixtures of WGBS samples, as in the previous section. We either use

single TIMs, or add all methylated and unmethylated counts for all CpGs +/-250bp around

a TIM. Summing CpGs +/-250 improves the performance of CelFiE (Figure S9).
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2.5 Figures

Figure 2.1: Decomposition of simulated cfDNA mixtures. Decomposition results
by CelFiE (A) and MethAtlas (B). 50 replications for a single simulated individual were
performed, and the estimated mixing proportions were plotted (light blue and dark blue
boxes, respectively). The red dots indicate the true cell type proportion for each simulated
tissue. The center line of the box indicates the mean, the outer edges of the box indicate
the upper and lower quartiles, and the whiskers indicate the maxima and minima of the
distribution.
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Figure 2.2: The performance of CelFiE on simulated mixtures. First, a cell type
is fixed at a proportion between 0% and 100%, and reads are simulated for 100 (light blue
line), 1000 (dark blue line), and 10000 (black line) CpG sites at 10x depth (A). The Pearson’s
correlation between the true and estimated cell type proportion is plotted. Solid lines indicate
the mean and the shading around the line indicates a 95% confidence interval. On (B) the
average Pearson’s correlation between the true methylation values for the fixed tissues and
the CelFiE estimated methylation values for 1000 sites simulated with 1x, 5x, 10x, and 100x
depths (light blue boxes). The center of the boxplot indicates the mean of the distribution,
the edges of the box indicate the upper and and lower quartiles, and edge of the whiskers
indicate the maxima and minima of the distribution. Data is shown for 50 independent
simulations of one individual.
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Figure 2.3: Decomposition sensitivity at low cell type proportions. Cell type propor-
tion estimates for n=5 simulated individuals (dark blue boxes) with a cell type of interest
and n=5 individuals without that cell type (light blue boxes). Cell type proportions are
simulated at (A) 0.1% (two-sided grouped t-test; 5x: n.s., 10x: n.s, 100x: n.s., 1000x:
p=3.5×10−5), (B) 0.5% (two-sided grouped t-test; 5x: n.s., 10x: p=0.013, 100x: 2.1×10−6,
1000x: p=5.7×10−11), (C) 1% (two-sided grouped t-test; 5x: n.s., 10x: p=1.5×10−3, 100x:
2.8 × 10−9, 1000x: p=4.3 × 10−12), or (D) 5% (two-sided grouped t-test; 5x: 4.8 × 10−8,
10x: p=5.4× 10−9, 100x: 1.8× 10−14, 1000x: p < 2.0× 10−16). The true fixed percentage
of the cases is indicated by a red dotted line. Significant differences between the groups are
indicated by * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). The center line of the box
indicates the mean, the outer edges of the box indicate the upper and lower quartiles, and
the whiskers indicate the maxima and minima of the distribution. Data is shown for 50
independent simulations.
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Figure 2.4: Missing data decomposition simulations. Decomposition results for 50
independent simulations of cfDNA mixtures with missing cell types in the reference. We
simulate cfDNA for 10, 50, 100, 500 and 1000 people, and exclude one cell type truly in the
mixture at 20% (light blue) (A) or two cell types (B), one in the mixture at a mean proportion
of 20% (light blue), and the other at 10% (dark blue). We calculate the MSE between the
true unknown proportion and the CelFiE estimate for 50 simulation experiments. The 95%
confidence interval is indicated by the light and dark blue shading.
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Figure 2.5: WGBS simulation decomposition. CelFiE cell type proportion estimates or
a randomly selected individual’s real WGBS cfDNA over 50 simulation experiments. The
blue boxes represent estimates of the true cell type composition (red dots) for 100 individuals
in 50 simulation experiments in the scenario where there are no missing cell types (A), when
CD4+ T cells are a missing cell type (indicated by blue shading) (B) and when CD4+ T cell
and small intestine are both missing (C). The center line of the boxplot indicates the mean,
the outer edges of the box indicate the upper and lower quartiles, and the whiskers indicate
the maxima and minima of the distribution.

Figure 2.6: CelFiE unknown hierarchical clustering. Hierarchical clustering of the
CelFiE methylation proportion estimates for (A) one unknown and (B) 2 unknowns with
the true WGBS methylation proportions. The shaded blue box indicates the unknown
tissue. The light blue, dark blue, and black colors indicate clusters of tissues detected by
the hierarchical clustering algorithm.
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Figure 2.7: CelFiE estimates for pregnant women. Decomposition estimates for cfDNA
derived from pregnant women and non-pregnant controls. (A) CelFiE decomposition esti-
mates for independent samples of n=8 non-pregnant (light blue) and n=7 pregnant women
(dark blue). (B) CelFiE placenta estimates for n=3 pregnant women in the first trimester
and n=4 women in the second trimester. In all cases, the center line of the boxplot indicates
the mean, the outer edges of the box indicate the upper and lower quartiles, and the whiskers
indicate the maxima and minima of the distribution.

41



Figure 2.8: CfDNA concentration and decomposition estimates for ALS patients
and age matched controls. (A) CfDNA concentrations for n=28 independent cases and
n=25 independent controls and (B) CelFiE skeletal muscle estimates for n=16 ALS patients
(light blue) and n=16 controls (dark blue) from both UCSF and University of Queensland.
In both panels, the center line of the boxplot indicates the mean, the outer edges of the box
indicate the upper and lower quartiles, and the whiskers indicate the maxima and minima
of the distribution.
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CHAPTER 3

Non-invasive cell-free DNA biomarker discovery in

amyotrophic lateral sclerosis

3.1 Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized

by the progressive death of motor neurons [63]. There is currently no cure for ALS and it has

an average life expectancy of only 2 to 5 years after diagnosis [162]. A significant challenge

in the study of ALS is its heterogeneity [133]. Patients can vary in their disease onset

site, overall symptoms, and survival time, making the diagnosis and treatment difficult [82].

Significant global research effort has focused on the development of a quantitative biomarker

for ALS, which could reduce the time to diagnosis [159], assist in longitudinal monitoring

[33], and facilitate clinical trials seeking to develop effective ALS treatments [149][175].

While there is currently no biomarker used regularly in the clinic, several candidates have

been proposed. Recent efforts have especially focused on minimally invasive biomarkers,

which can be easily integrated into existing clinical workflows [159]. Neurofilament proteins,

detected in both cerebral spinal fluid and serum, have been shown to be helpful in both

detecting the presence of ALS and in predicting patient prognosis [16][102][54][177][191].

Circulating microRNAs, which can be detected in the blood, are another class of potential

biomarkers [129][111]. In particular, a microRNA enriched in neurons, miR-181, has been

demonstrated to be enriched in ALS patients relative to controls and can predict patient

survival [104].

Our recent work has highlighted plasma cell-free DNA (cfDNA) as an alternative biomarker
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for ALS [24]. CfDNA fragments are released into the blood and originate from dying cells

throughout the body [161][37]. Fragments can be deconvolved into the cell or tissue type

of origin via their DNA methylation patterns [101][119][160], which in the context of an

illness, can be used to learn about cell-specific death in disease [89]. Previously, we ob-

served increased cfDNA originating from skeletal muscle in ALS patients relative to healthy

controls, consistent with muscle atrophy that is characteristic of ALS [24]. However, since

cfDNA originates from both diseased and non-diseased tissues, it has the advantage of learn-

ing about cellular health throughout the body. Recent studies have highlighted the role of

inflammation [113], [67], and the microbiome [18] in ALS, both of which can be effectively

captured by cfDNA [28]. Therefore, cfDNA can be used to learn a multidimensional picture

of disease, beyond a specific neurological context.

Since DNA methylation is cell-type specific [193], it is an ideal modality for understanding

the cellular contributions to cfDNA. In this work, we develop a scalable targeted sequencing

approach, designed to target regions of DNA methylation informative for tissue and disease

status (Fig. 3.1). This capture approach has the benefit of enriching only for methylation

sites that vary between tissues, thus reducing costs relative to whole-genome bisulfite se-

quencing (WGBS). Furthermore, since cfDNA is only present in the blood in low quantities,

we designed a methodology that requires a minimum input of 10ng of DNA, which is less

than other low-cost methylation screening assays like methylation chips.

We apply this technology to two independent cohorts of cfDNA from ALS patients and

age-matched controls, one set of 96 patients from the University of Queensland, Brisbane,

Australia (UQ), and another set of 96 patients from the University of California San Fran-

cisco, San Francisco, United States (UCSF).
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3.2 Results

3.2.1 Cohort characteristics

The two cohorts from UCSF and UQ had substantial phenotypic heterogeneity in the char-

acteristics of the patients, both within a cohort and between the cohorts (Fig. 3.2a-b). The

median age at the time of cfDNA collection was slightly older for the UCSF cohort, although

the age range of patients enrolled in this cohort was larger. There was a greater propor-

tion of male patients at UQ. While the majority of patients in both cohorts were primarily

of European genetic ancestry, there were also patients with Asian, African, and American

continental genetic ancestry in the UCSF cohort.

There was also variation in the clinical characteristics of the ALS patients in the two

cohorts (Fig. 3.2d-f). The median age of diagnosis of ALS patients at UCSF was 65, which

was slightly older than the UQ median age of 58. However, UCSF patients were diagnosed as

young as 26 and old as 83. A main difference between the two cohorts was disease severity.

In general, patients at UCSF had lower ALS Functional Rating Scale-Revised (ALS-FRS-R)

scores at the time of cfDNA collection. The ALS-FRS-R scale qualitatively measures physical

functioning, such that lower scores mean a patient is less able to complete normal daily tasks

[29]. Furthermore, the time since diagnosis was generally longer for UCSF patients. This

indicated that, on average, patients recruited at UCSF had more severe degeneration than

patients from UQ.

Our previous work introduced the concept of tissue informative markers (TIMs) as a

method to identify methylation sites that vary between tissues and cell types. Briefly, a

TIM is a site that is either hyper- or hypo- methylated relative to the average methylation

value of all other tissues at that site (Fig. 3.3a) (See Methods for more details). Based on

tissues identified as present in the cfDNA in our previous work and other recent work, we

selected 19 tissues to identify TIMs (Table 1). Tissue methylomes were obtained from two

public reference consortiums, ENCODE and Blueprint, and included several white blood

cells, large organs, epithelium, and brain. In this work, we use TIMs to prioritize regions of
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the epigenome for capture. We focused on CpG sites, as most non-CpG methylation sites

are not methylated in adult tissues.

TIMs could be any CpG in the genome, however, we applied several filtering criteria to

enrich for sites that would most likely be captured in cfDNA. To ensure that potential TIMs

were commonly observed in cfDNA, we used our previously published WGBS cfDNA data

from ALS patients and controls, along with WGBS cfDNA from pregnant women. We kept

only the TIMs that had at least an average read depth of 10x across both WGBS datasets.

Furthermore, we removed TIMs that overlapped a common SNP (minor allele frequency

¿5%) and TIMs that were less than 500bp from another TIM.

An important property of cfDNA is that their fragmentation patterns are non-random.

cfDNA observed in blood generally are fragments approximately 160bp long, corresponding

to the length of DNA wrapped around nucleosomes. This suggests that cfDNA fragments

are protected from degradation in the blood by the presence of tightly-associated histone

proteins. Since DNA from compacted chromatin is more likely to be protected and methy-

lated, we would expect hypermethylated cfDNA fragments to be likely to be observed in the

blood. As such, we chose to select a greater proportion of TIMs that were hypermethylated

relative to other tissues, with an average of 300 TIMs per tissue (Table 1). Of those 300

TIMs, an average of 150 were hypermethylated and 50 were hypomethylated relative to the

other tissues (Fig. 3.3b).

After quality control (Methods), 5,666 TIMs were selected. TIM sites were distributed

throughout the genome, excluding the Y chromosome. Hypermethylated TIMs were closer

to transcription start sites and CpG Islands than hypomethylated TIMs (Fig. 3.2c). This is

consistent with the requirement that at a hypermethylated TIM, all other tissues at that site

are unmethylated. Unmethylated sites are more likely to be involved in genome regulation.

Likewise, hypomethylated TIMs were more likely to be in intergenic and intronic regions

(Fig. 3.2d). Together, this suggests that hypermethylated and hypomethylated TIMs offer

complementary types of genomic information.
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3.2.2 Capture panel validation

For each of the 5,666 TIMs, both a methylated and unmethylated probe was designed to

bind to and capture both possible states of the targeted CpG. To increase the efficiency of

the capture, probes were designed to target a window of 120bp around the TIM. During

bisulfite conversion, any cytosine base not protected by a methyl group in position 5 is

converted into thymine. Since methylation in humans primarily occurs at CpG sites, this

means that all cytosines on the forward strand would be converted to thymine. Thus,

to capture the unmethylated CpG state, the unmethylated probe was designed with all

guanine bases converted to adenine. For the methylated state, where only cytosines in a

CpG dinucleotide would be protected from the bisulfite treatment, only non-CpG guanine

bases were converted to an adenine.

To ensure that the methylation capture panel protocol could accurately profile the methy-

lation state of the chosen CpGs, we performed several validation experiments. First, we used

universal methylated DNA standards to create mixtures where the CpG sites were methy-

lated 0, 25, 50, and 100% of the time. We then assessed the methylation proportion measured

after capture. We found that the observed methylation was highly concordant with the true

methylation proportion (Fig. 3.3e). Next, to examine how the capture panel might perform

in real-world cfDNA scenarios, we validated the capture panel using sheared genomic DNA

from blood, along with healthy cfDNA samples. The methylation proportions for these sam-

ples were significantly correlated with methylation from white blood cells, as expected given

that healthy cfDNA arises primarily from blood cell turnover. We performed deconvolution

on these samples and confirmed that the majority of cfDNA was originating from neutrophils

and lymphocytes, consistent with published research. Together, these experiments demon-

strate that our approach for targeting TIMs can correctly capture the methylation state of

cfDNA.
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3.2.3 cfDNA capture

cfDNA was extracted from both cohorts. We confirmed our previous finding of elevated

cfDNA in ALS patients relative to controls (Fig. 3.4a) (UQ logistic p-value=2.0x10-2, UCLA

logistic p-value=2.0x10-3). As expected due to the relatively low input cfDNA quantity, we

noted a relatively high deduplication rate after first sequencing UQ samples (average=X).

However, since standard position-based deduplication protocols might be overly conservative

for short cfDNA fragments, to better quantify the true methylation state, we added a unique

molecular identifier (UMI) to UCLA samples for sequencing. We found that UMIs recovered

approximately 20% more reads on average relative to position-based deduplication.

In total, after sequencing, the average on-target coverage of UQ samples was 55.29 reads

per CpG. The average on-target coverage of UCLA samples was 208.75 reads per CpG. For

both cohorts, this was higher per-CpG read coverage than WGBS at an analogous number

of reads (Fig. 4b-c). The average methylation proportion at TIM sites was highly correlated

(Pearson’s R2=0.98) between the two cohorts (Fig. 3.4d), suggesting that even with the

different deduplication strategies, similar methylation profiles were obtained. Similar to the

validation experiments, we observed that hypermethylated TIMs were less methylated in

both cohorts (Fig. S).

3.2.4 Correlation with disease status

To examine the differences between the ALS case and control methylation patterns, we

first performed dimensionality reduction over the captured TIMs using principal component

analysis (PCA). In both the cohorts, cases and controls separated in PC space and PC2

was significantly associated with case/control status in both cohorts (Fig. 3.55a-b) (UQ

logistic p-value: 2.00x10-2, UCLA logistic p-value: 7.40x10-5). This suggested that there

were widespread differences in the cfDNA methylation patterns of ALS cases and controls.

The separation difference between cases and controls in PC space motivated the develop-

ment of a prediction algorithm that integrated information from all targeted CpGs to classify
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ALS cases. A prediction algorithm may have value in assisting in physician diagnosis but

also, the probabilities associated with a binary prediction task can be used to identify ALS

patients who more closely resemble controls, which may have value in understanding disease

severity or progression. To do this prediction, we use Lasso regression, implemented in the

BigStatsR package. Lasso regression is a regularization technique that incorporates feature

selection and regularization to enhance predictive accuracy and model interpretability.

We used methylation proportions as input to the Lasso algorithm, with missing data

imputed using SoftImpute. Non-penalized covariates included age, genetic sex, genetic an-

cestry, sequencing depth, and initial cfDNA concentration. First, we trained the model on

UQ samples only and implemented 10-fold cross-validation to select model parameters. We

then repeated this process for the UCSF data. The within-cohort area under the precision-

recall curve (AUC) for the UQ samples was high, with AUC=0.82. For the UCSF within-

cohort model, the AUC was even higher, AUC=0.98. The higher AUC in the UCSF model

is likely attributed both to the introduction of UMIs to the sequencing for these samples,

which likely decreased noise, and also that this cohort had more severe disease, which could

facilitate differentiation between cases and controls.

The UQ-trained model was then tested on held-out UCSF samples. The model had

a high AUC of 0.88, which was even higher than the accuracy of the within-UQ model.

For the UCSF trained model applied to UQ data, the AUC was lower, 0.74 (Figure 5c).

This difference might be again attributed to the less severe disease present in the UQ ALS

patients. We also calculated area under the precision recall curve (AUPRC) and found

that AUPRC was high in both cohorts, but slightly lower in the UCLA trained model.

Despite differences in performance, overall, the relativley high transferability suggested that

the cfDNA methylation patterns could be used to learn about ALS disease in independent

cohorts.

Lastly, we performed cfDNA deconvolution with CelFiE. CelFiE is a supervised cell-

type decomposition algorithm that is designed to work with methylation read count data

and missing or noisy reference data. As input, CelFiE takes cfDNA read count data, and
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estimates the proportion of the cfDNA mixture originating from the tissues in the reference

dataset, along with a specified number of unknown tissues. We ran CelFiE using the targeted

TIM sites as input, and the set of reference tissues that the TIMs were designed for as the

reference sample. In the UCSF cohort, we confirmed our previous finding of elevated skeletal

muscle cfDNA in ALS patients (logistic p=0.03), with ALS patients having 2.0% of their

cfDNA originating from skeletal muscle, and controls having only 0.8%. In the UQ cohort,

the difference between cases and controls was not significant (p=0.38), although cases, on

average, had slightly more of their cfDNA originating from skeletal muscle, 1.3% versus 1.0%.

As UQ skeletal muscle estimates from ALS patients were closer to the average from UCSF

controls, the difference might be explained by patients with less muscle degeneration in the

UQ cohort.

3.3 Discussion

Here, we present a scalable cfDNA capture protocol that measures the methylation status of

disease and tissue-relevant CpG sites. We applied this capture technology to two independent

cohorts of ALS patients and age-matched controls and examined the correlation with ALS

disease status and progression. We found that cfDNA can significantly predict ALS disease

status in both cohorts and the prediction models are transferable between cohorts. Further-

more, cfDNA tissue of origin deconvolution confirmed skeletal muscle as being elevated in

the cfDNA of ALS patients, which indicated that cfDNA can learn about disease-specific de-

generation. We conclude that cfDNA has the potential to be a clinically relevant biomarker

for ALS, with value in disease diagnosis and quantitative measurement of progression.

One of the key strengths of this work is that cfDNA can provide a comprehensive picture

of a patient’s biological state and is not limited to a specific tissue or context. For exam-

ple, many biomarker candidates for ALS focus on biomolecules obtained from neurological

tissues, like neurofilaments. However, many proposed biomarkers can be found in other

neurodegenerative disorders or even non-neurological conditions. This lack of specificity

makes it difficult to differentiate ALS from other diseases, leading to potential misdiagnosis
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or limited accuracy in disease monitoring. In this work, we show that cfDNA from skeletal

muscle is a specific predictor of ALS disease status, which may not be elevated in other neu-

rological disorders. However, by capturing and quantifying methylation levels at multiple

tissue-informative CpG sites simultaneously, the panel has the potential to also learn about

biological processes occurring in ALS outside of neurodegeneration. In particular, cfDNA is

well-suited to measuring inflammation, which has been of recent interest in ALS pathophys-

iology. Future work with deeper clinical phenotyping could provide additional insight into

how cfDNA relates to inflammatory markers in ALS, providing a complementary avenue for

investigation into disease mechanisms.

cfDNA is also a valuable biomarker candidate because it is non-invasive. Many biomarker

candidates require invasive procedures, such as cerebrospinal fluid (CSF) or muscle biopsies,

which can be burdensome, costly, and carry associated risks. Furthermore, the protocol

presented here was designed for low DNA input, which also has the advantage of not re-

quiring copious amounts of blood for patients. The assay could be easily integrated into

existing clinical workflows, using discarded patient samples already collected during care.

Furthermore, the low cost of capture relative to whole-genome sequencing makes it a viable

candidate for implementation in the clinic, especially for longitudinal monitoring.

Several considerations should be taken into account when interpreting the results of this

study. Firstly, the sample size used for panel evaluation might limit the generalizability of

the findings. ALS is an extremely heterogeneous disease and it is likely that all potential

subtypes of the disease were not well represented. Furthermore, both cohorts were of primar-

ily European ancestry. To ensure the robustness and reliability of the panel’s performance,

further validation on larger and more diverse cohorts is warranted.

Next, while methylation capture arrays allow for a more cost-effective and focused analy-

sis over relevant CpG sites, targeted capture also limits the coverage of the genome. This has

the potential to miss important methylation changes occurring outside the targeted regions.

Additionally, since we relied on published tissue methylation data sets that are low coverage

and inherently noisy, TIM selection might be affected. Marker selection and overall algo-
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rithm performance might be improved by better, high-coverage reference data. Reference

panel design for cfDNA applications is a robust area of current research, and incorporating

new samples or biobanks into ALS disease prediction could be an area for future research.

Overall, the design of the cell-free DNA methylation capture panel presented in this study

represents a significant advancement in the field of ALS research. The panel demonstrates

promising potential as a non-invasive and diagnostic tool for ALS, which could facilitate

timely intervention and personalized treatment strategies. Further research and validation

are necessary to refine the panel’s performance, assess its generalizability, and address prac-

tical considerations. Nonetheless, this study paves the way for the integration of DNA

methylation biomarkers into the clinical management of ALS, bringing us closer to improved

patient outcomes.

3.4 Methods

3.4.1 Patient Recruitment and Clinical Data

ALS patients were recruited from the UCSF ALS Clinic in San Francisco, California, USA

and the Royal Brisbane and Women’s Hospital in Brisbane, Australia under neurologist

supervision. All participants provided informed consent and the study was approved both by

the Human Research Ethics Committee at the University of Queensland (IRB 2018002470)

and by the UCSF Committee on Human Research (IRB 10-05027).

Age-matched healthy controls were recruited from non-related family members or care-

givers. In total, 46 ALS cases of varying disease stages were obtained from each site along

with 46 controls. For cases and controls, age, sex, and self-reported race/ethnicity were

recorded. At UCSF, for ALS cases at the time of visit, FVC and ALSFRS-R were taken, and

ALSFRS-R slope and FVC slope relative to the previous visit were calculated. The symptom

onset site and date of first symtoms were also recorded. For the UQ samples, ALSFRS-R was

recorded and progression was calculated as ((48 enrollment ALSFRS-R)/time (in months)

from symptom onset to enrollment).
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cfDNA was extracted from patients after a 30min rest period to prevent cfDNA origi-

nating from exercise. At each site, 20mL of whole blood from controls and 10mL of whole

blood from cases, were extracted.

4.2 Library Preparation and Sequencing cfDNA from 2-8 ml of plasma was extracted using

the QIAGEN Circulating Nucleic Acid kit according to the manufacturer’s recommendations.

Extracted cfDNA was quantified using Qubit dsDNA HS Assay and visualized using the

cfDNA assay (Agilent - TapeStation 4200). cfDNA was bisulfite converted using the Zymo

Lightning kit (Zymo Research) and underwent library preparation using the Accel-NGS

Methyl-Seq (Swift Biosciences) according to the manufacturer’s instructions with a major

modification. Briefly, the denatured BS-converted cfDNA was subject to the adaptase,

extension, and ligation reaction. Following the ligation purification, the DNA underwent

primer extension (98C for 1 minute; 70C for 2 minutes; 65C for 5 minutes; 4C hold) using

oligos containing random UMI and i5 barcodes. The extension using a UMI-containing

primer allows the tagging of each individual molecule in order to be able to remove PCR

duplicates and correctly estimate DNA methylation levels.

Following exonuclease I treatment and subsequent purification, the libraries were then

amplified using a universal custom P5 primer and custom i7-barcoded P7 primers (initial

denaturation: 98C for 30 seconds; 15 cycles of: 98C for 10 seconds, 60C for 30 seconds,

68C for 60 seconds; final extension: 68C for 5 minutes; 4C hold). The resulting unique-dual

indexed libraries were then purified, quantified using the Qubit HS-dsDNA assay, the quality

checked using the D1000-HS assay (Agilent - TapeStation 4200), and grouped as 12-plex

pools. Each pool was then subject to hybridization capture using the xGen Hybridization

Capture Kit (IDT) using custom probes designed on approximately 5000 pre-selected regions.

See section 4.4 on how regions were selected for methylation capture.

For each top and bottom strands of the regions of interest, two probes were designed:

one “unmethyl” probe with all G bases converted to A, and one “methyl” probe with all

non-CpG G bases converted to A.

Following the hybridization capture, a final amplification PCR (initial denaturation: 98C
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for 30 seconds; 10 cycles of: 98C for 10 seconds, 60C for 30 seconds, 68C for 60 seconds;

final extension: 68C for 5 minutes; 4C hold) has been performed, followed by SPRI beads

purification and quantification as QC as previously described.

The final pool of libraries has been submitted for sequencing on an Illumina NovaSeq6000

(S4 lane - 150 PE, 8bases for i7, 17 bases for i5). not sure how they sequenced in Australia

3.4.2 Bioinformatics processing

For data generated at UCLA, UMIs were first extracted from the index read and added to the

header of the corresponding R1 and R2 fastq file using umitools. This step was skipped for

UQ samples since UMIs were not sequenced. For samples from both institutions, adapters

were trimmed using trimgalore. Read alignment, processing, and methylation calling were

performed using BsBolt v 1.6.1. Reads were aligned to an hg38 bisulfite converted genome,

which was generated using the BsBolt Index over an hg38 fasta file obtained from the UCSC

genome browser. Reads were aligned using BsBolt Align in paired end mode with default

parameters.

To prepare for duplicate removal, aligned reads were subject to samtools fixmate and

sorted. At UCLA, UMIs were used to remove duplicates using umitoolsdedupinpairedendmode.AtUQ, duplicatereadswereremovedusingsamtoolsremoveduplicates.

For both cohorts, CpG methylation was called using the command BsBolt CallMethy-

lation -BG -CG -remove-ccgg. The CG parameter restricted to only CpG sites (ignoring

non-CpG methylation), the the BG parameter sent the output to a bedgraph file and the

-remove-ccgg parameter removed methylation calls in ccgg regions.

3.4.3 Tissue informative marker selection

TIMs were selected for 19 tissues and cell types: dendritic cells, endothelial cells, eosinophils,

erythroblasts, macrophages, monocytes, neutrophils, T-cells, adipose, brain, fibroblast, heart,

hepatocytes, lung, megakaryocytes, skeletal muscle, small intestine, placenta, and mammary

epithelial cells. These tissues were determined based on our previous work to be relevant to
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ALS, or selected based on previous publications to be the primary contributors to cfDNA.

At least two WGBS samples per reference dataset were obtained. The average methylation

per CpG for the reference tissue replicates was calculated.

Per CpG, for one tissue at a time, the distance between the methylation proportion at

that tissue and the mean methylation of all other tissues was calculated. The N sites per

tissue with the greatest difference were kept as TIMs. If two tissues had the same CpG

classified as a TIM, it was removed from both lists.

To begin, we selected 500 potential TIM sites and then performed quality control checks.

To ensure that TIMs were sites that would be covered in cfDNA data, we used two WGBS

cfDNA datasets and removed any CpG site that had less than an average of 10X coverage

in both datasets. We also removed TIMs that overlapped a common SNP (minor allele

frequency > 5%). Since we wanted to have the greatest diversity of regions targeted in the

capture, if there were multiple TIM sites within 500bp of each other, we kept only the first

site.

3.4.4 Deconvolution

cfDNA deconvolution was performed using CelFiE, which is a supervised deconvolution

algorithm that is designed for noisy read count data and missing reference tissues. Input

sites for CelFiE were the on-target TIMs selected for capture, As demonstrated in the CelFiE

publication, summing reads from adjacent CpGs can improve deconvolution performance by

decreasing sampling noise. As such, reads were summed +/-250bp around the target CpG.

Sites with no reads covering the CpG were set to have a read depth of zero.

Deconvolution was performed using the same tissues used for capture. CelFiE can es-

timate an arbitrary number of unknown tissues. Since CelFiE learns from both the input

and reference data, the number of samples influences the accuracy of unknown estimation.

Based on simulation experiments published in the original CelFiE paper, 2 unknowns were

chosen for the sample size of 96 total cfDNA input samples.
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The reference panel for CelFiE consisted of 19 tissues over the same on-target TIMs as

the input matrix. References samples were WGBS samples obtained from ENCODE and

Blueprint. Reference samples were also summed in 500bp regions around the target CpG.

CelFiE was run over the samtools deduplicated UQ samples, the UMI deduplicated sam-

ples, and both cohorts combined. The CelFIE default of 10 random restarts was used.

After running deconvolution, differences in cell-type proportion between cases and con-

trols were tested for one tissue at a time using the Python StatsModels package. A logistic

regression model was run where the outcome was the binary case/control status and the

input variable was the estimated tissue of origin proportion for a given tissue. Self-reported

age, genetic sex, and genetic ancestry were used as covariates.

3.4.5 Principal component analysis

PCA was performed on the methylation proportions for on-target sites. Reads from CpGs

+/-250bp around a TIM were summed. Methylated and unmethylated reads were converted

in a matrix of the proportion of methylated reads. Missing values were dropped. Before

performing PCA, the matrix was standardized using the StandardScaler() function in the

Python SciPy package. PC’s were calculated for each cohort independently and 10 principal

components were calculated for each cohort. 4.6 Machine learning preprocessing

Samples with more than 10% of targeted CpGs missing, meaning that no reads were

covering a CpG, were removed. Any site that had a median read coverage of 1 read or

less was also removed. For the remaining sites and samples, the input matrix was made

by dividing the number of methylated reads by the total number of reads. Imputation was

performed over the methylation proportion matrix using SoftImpute, implemented in the

Python package fancyImpute Sex and race/ethnicity were one-hot encoded and added as

columns in the input matrix. Age, cfDNA starting concentration, and total sample read

depth were also added. Two separate matrices were kept, one for the ALS case/control

status, and one for the methylation proportion and covariates.
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3.4.6 Lasso regression

Lasso regression was performed in R using the BigStatsR package. We performed logistic

regression separately for each cohort. ALS disease status served as the binary outcome

variable, while the DNA methylation proportion at targeted CpGs and clinical variables

served as predictors. We incorporated relevant covariates, such as age, biological sex, genetic

ancestry, cfDNA concentration, and total sequencing depth, into the regression models as

non-penalized variables.

Models were first trained on each cohort separately and then applied to the second

cohort. The alpha parameter which controls model sparsity, was selected by performing

ten-fold cross-validation on the training cohort.

Models were evaluated using area under the receiver operating characteristic curve (AUC)

and the area under the precision-recall curve (AUPRC).
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3.5 Figures

Figure 3.1: Schematic of cfDNA methylation capture. (a) First, tissue informative
markers (TIMs) are selected to capture CpG sites that are hypermethylated or hypomethy-
lated in a tissue of interest. (b) Next, cfDNA is extracted from the blood plasma of ALS
cases and controls. (c) The cfDNA is bisulfite sequenced and amplified at the on-target re-
gion around a TIM. Some off-target reads will also be captured. (d) Using bioinformatics, we
analyze the tissue of origin of the cfDNA samples and perform machine learning to identify
features of disease.
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Figure 3.2: Cohort demographic and clinical characteristics. For both the cases and
controls in the UQ and UCSF cohorts, the distribution of sample (a) ages (b) the number of
female and male participants, (c) the sample genetic ancestry. For the ALS samples in each
cohort, (d) the age of onset, (e) the ALS-FRS-R at time of cfDNA extraction, and (f) the
days of since symptom onset.
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Figure 3.3: Capture panel design. (a) The panel was designed to capture both hy-
pomethylated TIMs, which were CpG sites who were less methylated relative to other tis-
sues, and hypermethylated TIMs, which were designed to capture sites more methylated
than other tissues. (b) The methylation proportion of reference tissues at either the site the
TIM was selected for, or all other tissues. (c) The distance a TIM was from the transcription
start site of a gene. (d) The number of hyper- and hypomethylated TIMs in different genomic
regions. (e) For a validation experiment where mixtures of DNA with a true methylation
proportion between 0 and 1 were captured, the observed methylation proportion.
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Figure 3.4: Capture panel performance on cfDNA data. (a) The starting cfDNA
concentration of ALS patients and controls for each cohort. (b) Coverage of the on-target
and off-target CpG sites of UQ cohort samples and (c) UCLA cohort samples. (d) Correlation
between the UQ and UCLA methylation proportions at on-target sites.
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Figure 3.5: cfDNA methylation disease classification. (a) Principal component analysis
on UQ samples. (b) Principal component analysis over UCSF samples. (c) For the UQ-
trained model that was tested on UCSF data, and the UCSF model tested on UQ data, the
area under the curve and (d) area under the precision-recall curve.
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3.6 Tables

Tissue Hypermethylated Hypomethylated Total
T-cell 274 59 333
Adipose 239 43 282
Brain 313 53 366
Dendritic cell 210 84 294
Endothelial cell 291 60 351
Eosinophil 89 172 261
Erythroblast 136 128 264
Fibroblast 301 51 352
Heart left ventricle 210 48 258
Hepatocyte 283 51 334
Lung 234 46 280
Macrophage 88 167 255
Mammary epithelial cell 232 50 282
Megakaryocyte 208 75 283
Monocyte 74 166 240
Neutrophil 72 190 262
Placenta 251 55 306
Skeletal muscle 308 53 361
Small intestine 249 53 302

Table 3.1: TIM selection design. Per tissue selected for capture, the number of hyperme-
thylated TIMs selected, the number of hypomethylated TIMs selected, and the total number
of final TIMs selected for capture.
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CHAPTER 4

Disease risk and healthcare utilization among

ancestrally-diverse groups in the Los Angeles region

4.1 Introduction

Individuals belong to many populations (Box 4.2), each with unique health risks. This can

be a consequence of a population’s shared cultural or physical environment, genetics, or a

combination of both. Structural factors, including racism and socioeconomic status, also

shape the health of populations, particularly in the United States [184][51][56]. Therefore,

understanding population-level differences in disease risk is important for reducing health

disparities and developing personalized interventions [109][105]. New large-scale biobanks

tied to electronic health records (EHR) present an ideal opportunity to study population

health [126]. Previous biobank studies have identified new genetic associations to complex

traits [73] examined how diseases track through families [64], and produced polygenic risk

scores for multiple ancestries9.

Our work, and other previous work [10][142][39][57] have used identity-by-descent seg-

ments (Box 1) to find fine-scale populations who share genetic ancestry in biobanks. Identity-

by-descent segments are identical stretches of DNA inherited from a shared ancestor. People

whose ancestors lived in the same geographic location or who were part of the same ethno-

linguistic group tend to have a greater proportion of their genome identical-by-descent [65]

These clusters of people may also share an environment, including structural factors like dis-

crimination, which can be relevant for understanding why or how patients visit the hospital.

We have previously shown that individuals within identity-by-descent-based clusters often
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share clinical diagnoses[10].

Here, we use identity-by-descent sharing to define fine-scale population clusters and to

analyze their health system utilization within the ATLAS Community Health Initiative16

(ATLAS). ATLAS is part of the University of Los Angeles (UCLA) health system located

in Los Angeles, a city with a rich history of recent and past immigration [74]. We note that

identity-by-descent clusters offer one lens into the study of health outcomes alongside others

including socially determined concepts of race and ethnicity (Table 1). We examined the

relationship between identity-by-descent clusters and healthcare system utilization inferred

from electronic medical records. We identified thousands of cluster-specific health associa-

tions and cluster-specific enrichments of clinically actionable genetic variants. To facilitate

the use of the large set of associations, we developed a web framework allowing interactive

access to the results presented.

4.2 Results

4.2.1 ATLAS Community Health Initiative

The ATLAS Community Health Initiative [73] includes 35,968 patients with genotyping and

de-identified EHR data (see Methods)Patients are diverse both genetically, and in terms of

EHR reported demographic characteristics [73]. ATLAS demographics are consistent with

the overall patient population of UCLA Health, but the demographics of UCLA differ from

that of Los Angeles. Socioeconomic factors and racial discrimination strongly influence where

people live in Los Angeles, especially as West Los Angeles. contains some of the wealthiest

zip codes in the nation according to Census and IRS income data [22]. Despite this, 40% of

ATLAS patients identify as a race other than White, making it substantially more diverse

than many other biobanks that have participants with predominantly European ancestry

[26]. Some groups, including Middle Eastern and North African (MENA) populations like

Iranians or Armenians, are not well represented in current biobanks. Thus, ATLAS offers

opportunities to study health in diverse communities16.
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Identifying fine-scale identity-by-descent clusters To identify fine-scale clusters we first

inferred patient relationships via identity-by-descent sharing (Fig. 4.1). Studying identity-

by-descent clusters offer advantages over clustering patients through EHR-reported measures

alone10. In ATLAS, a large proportion of patients have missing or “other race” specified in

their EHR. Other demographic characteristics may be missing for complex and non-random

reasons, and when included, they are not guaranteed to be accurate [11]. Therefore, for

this study, we focus on groups identified via genetic ancestry. Genetic ancestry is a distinct

concept from race, which is a social construct [92]

To define the identity-by-descent clusters, we called pairwise identity-by-descent between

all ATLAS participants and reference individuals from the 1000 Genomes Project [6], the

Simons Genome Diversity Project [106] and the Human Genome Diversity Project [13].

Identity-by-descent segments were estimated using iLASH [150] and clusters were identified

with the Louvain community detection algorithm [17]. Sensitivity analyses were performed

with additional phasing and identity-by-descent calling algorithms; pairwise identity-by-

descent segments were highly concordant between the methods (Pearson’s R2=0.91) and

alternative clustering algorithms over the alternatively phased data produced similar clusters.

We detected 367 identity-by-descent clusters, each of which was given an identifier deter-

mined by three iterations of Louvain clustering (e.g., “cluster-1-0-2”). There was substantial

variation in cluster size, ranging from 2 to 2,030 individuals. Differences in cluster size,

historic population size, and complex patterns of genetic relatedness resulted in differential

cluster densities. In some clusters, like cluster 3-8-2, nearly every pair of individuals share

identity-by-descent segments, while in other clusters, like cluster 1-6-10 or 5-7-0, individuals

share fewer connections. Admixture analysis39 revealed substantial genetic diversity be-

tween the clusters, with continental ancestry sources from the Americas, West Asia, Europe,

Africa, East Asia, and South Asia (Fig. 4.3a).

To further refine the clusters, we used the approach of Dai et al [39]. and merged subclus-

ters with low genetic differentiation, measured as Hudson’s fixation index (Fst )(Fst <0.001).

This produced clusters differentiated enough to represent the diversity of ATLAS, while still
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powered for statistical analyses. Finer-scale clusters might be relevant for specific medical

or population genetics questions. For example, the subclusters that were merged together

to make the predominantly European ancestry cluster each had a different distribution of

identity-by-descent sharing Computing Fst to UK BioBank [23] participants born outside

the UK suggested that these subclusters represent individuals with Northern, Southern, and

Eastern European ancestry (Fig. 4.3b).

After Fst merging, 24 clusters with at least 30 ATLAS participants representing 97.8%

of ATLAS remained for downstream analysis. These 24 clusters were assigned a name. The

ATLAS biobank does not contain the country of origin of participants, which was used

in our previous studies to annotate cluster identity [11]. Instead, we annotated clusters

by using reference data in the clustering algorithm. For clusters without reference data, de-

identified EHR demographic information, such as EHR reported race and ethnicity, preferred

language, and religion, were used to refine and determine cluster annotations. Importantly,

the label given to a cluster serves as a broad interpretation of the cluster’s demographic and

ancestral ties and does not necessarily reflect the self-identity of members (see Discussion).

Furthermore, the clusters discussed here are specific to Los Angeles, especially those who

visit UCLA Health, and may not be representative of the global population.

Using external reference data (Fig. 4.3d, global genetic ancestry, principal component

analysis (PCA), and EHR-reported demographics, we identified identity-by-descent clusters

reflecting the demography of Los Angeles. There was a large cluster of Mexican and Central

American patients. Further Louvain clustering of this cluster with additional indigenous

reference samples from Mexico [55] revealed subclusters with ancestry from northern Mexico

and Baja California, central Mexico and Oaxaca, and Guatemala (Supplementary Table 2).

We also identified three distinct Black and African American identity-by-descent clusters,

containing patients with African American, Afro-Caribbean, and West African ancestries

respectively (Fig. 4.3c). Several clusters had MENA global genetic ancestry (Fig. 4.3a),

consistent with Los Angeles County having the largest population of people from the Greater

Middle East in the United States [131]. Two distinct clusters contained patients of Iranian
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descent, one with patients with EHR-reported Jewish religion while the other contained

patients who reported other religions. One cluster was enriched for patients of Armenian

descent, consistent with Los Angeles having the largest population of diaspora Armenians in

the US [123]. Lastly, we identified several Asian identity-by-descent clusters. These included

clusters with patients that have predominantly East Asian global genetic ancestry (Fig. 2a),

and also clusters with South Asian ancestry.

Our previous work [11] found that clustering using identity-by-descent offered enhanced

resolution relative to PCA. Similarly, we found that many of the clusters overlapped in PC

space. This was especially true for the Middle Eastern and South Asian identity-by-descent

clusters, which were tightly clustered with the European cluster.

4.2.2 Health system utilization of identity-by-descent clusters

We next sought to understand how individuals in the identity-by-descent clusters accessed

the hospital system using EHR data. Patients in clusters varied substantially by age, sex,

and BMI, as well as the fraction carrying private health insurance. However, the proportion

patients with private insurance coverage was high for all clusters, likely driven by the fact

that not having quality insurance coverage is a primary obstacle to obtaining healthcare in

the United States [52].

We used logistic regression to test for associations between EHR-phecode [183] based di-

agnoses and cluster membership. To account for differences in diagnosis frequencies between

medical contexts, we separately assessed the code assignments both for outpatient encoun-

ters and emergency room (E.R.) visits and controlled for age, sex, and BMI. More complex

combinations of ICD10 codes are often used in place of phecodes for improving phenotypic

specificity. To explore this, we used additional phenotype definitions for Alzheimer’s disease

and related dementias [38].

We began by comparing outpatient phecode assignments in the Ashkenazi Jewish identity-

by-descent cluster (n=5309) to all other participants. We tested n=1131 phecodes assigned

to at least 30 patients in outpatient encounters. 236 phecodes were significantly associ-
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ated with cluster membership at Benjamini-Hochberg false discovery rate of 5% (Fig. 4.4a).

Consistent with previous studies of Ashkenazi Jewish individuals [11][143][141]patients in

the cluster were more likely diagnosed with ulcerative colitis (OR=2.24, 95% CI: [1.83, 2.75],

q-value=5.34x10-13) and regional enteritis (OR=2.93, 95% CI: [2.41, 3.56], q-value=2.39x10-

24). We further identified less well-characterized associations, particularly for several mental

health disorders, including eating disorders (OR=3.37, 95% CI: [2.45, 4.64], q-value=6.79x10−12),

anxiety disorder (OR=1.7, 95% CI: [1.59, 1.82], q-value=9.90x10-52), and major depressive

disorder (OR=1.62, 95% CI: [1.47, 1.78], q-value=2.55x10-20). All these associations re-

mained significant at FDR 5% when restricting the analysis to only compare the Ashkenazi

Jewish cluster with the European cluster.

In E.R. visits, membership in the Ashkenazi Jewish identity-by-descent cluster was sig-

nificantly associated with major depression as the primary diagnosis (OR=2.29, 95% CI:

[1.32, 3.98], q-value=4.86x10-2). While these results were consistent with previous reports

of mental health conditions in European Jewish communities [91][135], we emphasize that

this association does not indicate a causal relationship between identity-by-descent cluster

membership and these disorders [189].

We next examined associations in the African American and Mexican and Central Amer-

ican identity-by-descent clusters. This analysis revealed several associations in both out-

patient (Fig. 4.4) and emergency room contexts. Consistent with previous literature[158],

patients in the African American cluster were more likely diagnosed with sickle cell anemia

(OR=50.29, 95% CI: [29.08, 86.97], q-value=1.33x10-42)(Fig. 4.4b). We also identified a sig-

nificant increase in uterine leiomyomas in the African American identity-by-descent cluster

(OR=2.92, 95% CI: [2.4, 3.55], q-value=2.16x10-24), consistent with the increased burden

of uterine fibroids in African American women and representing a substantial health dis-

parity [47]. In the Mexican and Central American cluster, there was a strong enrichment

of type2 diabetes (OR=2.37, 95% CI: [2.2, 2.56], q-value=3.27x10-104) and chronic liver

disease (OR=5.52, 95% CI: [4.65, 6.56], q-value=3.47x10-81)(Fig. 4.4).

To further characterize the disease risk of Latino patients, we examined how phecode
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associations differ between the three Mexican and Central American subclusters, the Afro-

Caribbean cluster, and the Puerto Rican identity-by-descent cluster. 106 phecodes showed

effect size heterogeneity54 across these five clusters. For example, while phecodes relating

to lung disease (i.e. pulmonary fibrosis and lung transplants), were associated identifying

as Latino in the EHR, the association was most primarily driven by patients in the the

Afro-Caribbean cluster. Even within the three Mexican and Central American subclusters,

there was heterogeneity. The Guatemalan and Central American subcluster was the only

subcluster associated with several pregnancy phecodes, including anemia during pregnancy

(OR=2.57, 95% CI: [0.94, 1.48], q-value=4.84×10-5) and short gestation period (OR=5.04,

95% CI: [2.73, 5.95], q-value=4.86×10-5 The Central Mexican subcluster was the only sub-

cluster associated with the coccidioidomycosis fungal infection(OR=3.98, 95% CI: [1.92,

3.71], q-value=3.86×10-5). Overall, these differences offer further evidence that grouping

patients only by Hispanic and Latino ethnicity is too coarse.

We further examined disease associations in MENA and Asian clusters (Fig. 3d). We

began with the Iranian (n=315) and Iranian Jewish (n=264) identity-by-descent clusters.

These two clusters shared several associations in outpatient diagnoses. Individuals from both

clusters were less likely to be diagnosed with skin cancer (Iranian Jewish: OR=0.1, 95% CI:

[0.03, 0.28], q-value=3.09x10-3, Iranian: OR=0.26, 95% CI: [0.13, 0.51], q-value=4.07x10-2)

However, the phecode with the smallest p-value for each cluster, non-toxic multinodular goi-

ter in the Iranian cluster (OR=2.58, 95% CI: [1.63, 4.08], q-value=4.07x10-2) and adjustment

disorder in the Iranian Jewish cluster (OR=2.89, 95% CI: [2.04, 4.09], q-value=2.31x10-6),

were not the same. Other associations included an enrichment of phecodes relating to bac-

terial enteritis in the Egyptian Christian identity-by-descent cluster (n=92) (OR=7.42, 95%

CI: [3.56, 15.47], q-value=1.04x10-4) and phecodes relating to bronchus cancer in the Korean

identity-by-descent (cluster (n=546)(OR=2.82, 95% CI: [1.84, 4.32], q-value=2.56x10-4).

We also observed an increased number of diagnoses relating to viral hepatitis B in identity-

by-descent clusters with Asian ancestry patients. Asian ancestry as a risk factor for viral

hepatitis B is widely documented [27]. However, we noted that there were differences between
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the fine-scale Asian ancestry clusters. For example, individuals in the Chinese identity-

by-descent cluster (n=1547) (OR=19.12, 95% CI: [14.92, 24.5], q-value=1.88x10-117) were

more likely to receive a diagnosis of hepatitis B, while diagnoses of hepatitis B were not

elevated in the Japanese cluster (n=596) (OR=1.15, 95% CI: [0.47, 2.8], q-value=1.00x10-

1). We performed a mixed-effects meta-regression using the odds ratios estimated for each

Asian ancestry cluster [178]. The effect sizes significantly differed between the clusters for

this phecode and others (meta-regression p=2.23x10-15), showing the value of fine-scale

information.

To explore whether the associations reported here were specific to UCLA or could be

generalizable to other settings, we used BioMe summary statistic data published in Belbin

et. al10. For six BioMe identity-by-descent clusters found in ATLAS (Supplementary Table

3), the correlation of effect sizes was high, R2=0.69 (IQR=[0.63, 0.84]) (Extended Fig. 10).

Many associations in BioMe were found in ATLAS, including elevated rates of gout in the

Filipino cluster (OR=4.91, 95% CI: [3.77, 6.4], q-value=2.24x10-29), chronic lymphocytic

thyroiditis in the Ashkenazi Jewish cluster (OR=1.51, 95% CI: [1.3, 1.76], q-value=3.07x10-

6), and peripheral vascular disease in the African American cluster (OR=2.0, 95% CI: [1.58,

2.53], q-value=3.21x10–7) (Supplementary Table 4). Unlike BioMe, the ATLAS European

cluster did not have an elevated rate of multiple sclerosis (OR=1.2, 95% CI: [0.93, 1.54],

q-value=3.55x10-1). Associations were calculated relative to a background population and

differences between ATLAS and BioMe might be driven by differences in comparator clusters,

environment, or the underlying fine-scale populations.

While phecodes assigned to an identity-by-descent cluster can be relative to the entire

biobank, we also explored enrichments between closely related clusters. Phecode association

tests for the Armenian cluster were performed against four comparator clusters- against the

entire biobank, against the European cluster, against the two Iranian clusters, and against

all MENA ancestry identity-by-descent clusters. We restricted to phecodes with more than

30 patients in all four groups and examined phecodes significant in all four comparisons

(Fig. 4.4a). Phecodes relating to heart disease were more likely to be associated with the
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Armenian cluster relative to all comparison groups. This result is consistent with previous

reports of Armenian ancestry as a risk factor for cardiovascular disease56. Next, we exam-

ined whether there were phecodes associated with the Armenian identity-by-descent cluster

that had significantly different effect sizes across the comparison groups (Fig. 4.4b). Seven

phecodes had a nominally significant meta-regression p-value (p<0.05), e.g. non-toxic unin-

odular goiters. The Armenian cluster was more likely than the biobank and the European

cluster to be associated with this phecode, but less likely to be diagnosed with this phecode

relative to the Iranian and MENA clusters. This example illustrates the importance of holis-

tically evaluating cluster-disease associations, as they are likely determined by context and

environment.

We next sought to evaluate how individuals in identity-by-descent interface with the

health system. We found that many clusters were significantly less likely to visit a routine

care provider than the European cluster. For example, individuals who belonged to the

European cluster were significantly more likely to visit a primary care physician (OR=1.33,

95% CI: [1.27, 1.4], q-value=7.19x10-29) than other biobank participants (Extended Fig.

9b). We observed differential utilization of the emergency room by clusters. Patients in the

African American and the Mexican and Central American, identity-by-descent clusters were

more likely to visit the emergency room, a well-documented health inequity that is associated

with worse outcomes [35][147][9]. However, we also identified other clusters that were more

likely to visit the emergency room, including the Iranian Jewish (OR=1.78, 95% CI: [1.41,

2.25], q-value=7.64x10-6) and Armenian (OR=2.34, 95% CI: [1.53, 3.57], q-value=3.98x10-

2), identity-by-descent clusters both of primarily MENA ancestry. Emergency room use for

these populations is not widely documented.

We next examined how individuals from different identity-by-descent clusters interact

with the health system over time, which can give insights into the dynamic nature of dis-

ease. We plotted two typical phecodes (Methods), kidney transplants and major depressive

disorder for the 6 largest clusters. The proportion of patients assigned a phecode relating to

kidney transplants significantly increased between 2016 and 2019 for the Filipino (p=4.42x10-
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5), Mexican and Central American (p=1.77x 10-31), and African American (p=5.30x10-7)

identity-by-descent clusters, but not in the Ashkenazi Jewish, European, or Chinese clusters.

Diagnoses generally increased but dropped sharply in 2020, which might be attributed to

the decrease in procedures performed during Covid-19 shelter-in-place orders.

Phecodes relating to mental health conditions were heterogeneous between clusters. The

Ashkenazi Jewish identity-by-descent cluster had the highest proportion of patients diag-

nosed with major depressive disorder. By 2020, this cluster had five times as many diagnoses

as the Chinese identity-by-descent cluster. This cluster had a consistently low proportion

receiving the phecode, and while most other clusters had an increasing number of diagnoses

with time, the Chinese cluster had a slow or even decreasing proportion. For any of these

diagnoses, it is not necessarily true that the rates of diagnosis indicate the actual prevalence

of the health conditions in the cluster. Instead, these results indicate the complex dynamics

between how clusters interact with the health system, which could be a function of doctor

choice, insurance coverage, practitioner perceptions, or other forces.

Identity-by-descent clusters can facilitate the study of pathogenic alleles in diverse groups,

which are often underrepresented in genetic screening efforts [1]. To do this we examined the

minor allele frequency (MAF) of pathogenic mutations that have been previously reported

to be enriched within particular groups. One example is Familial Mediterranean Fever,

which is caused by mutations in the MEFV gene [157]. We restricted to pathogenic MEFV

SNPs and performed a Fisher’s exact test comparing cluster allele frequencies to the rest of

ATLAS. One pathogenic SNP genotyped in MEFV (rs28940579) was significant at FDR 5%

in several MENA ancestry clusters. These included the Ashkenazi Jewish (MAF: 2.9×10-

2, p=2.6×10-159) Armenian, (MAF: 4.2×10-2, p=1.7×10-21), and the Lebanese Christian

identity-by-descent clusters (MAF: 3.7×10-2, p=1×10-8), which all had elevated frequencies

compared to the remaining biobank excluding these clusters (biobank MAF: 9.55×10-4). Of

all ATLAS clusters, diagnosis with FMF was strongly associated with membership in the

Armenian cluster (OR=17.36, 95% CI: [6.99, 46.95], p=1.0×10-8, consistent with literature

finding of high FMF burden in individuals of Armenian descent [117]. However, the high
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carrier rate in other clusters motivates disease screening in other populations.

We also analyzed pathogenic variants in the HBB gene, which is implicated in thalassemia

and sickle cell disease [25]. Sickle cell disease is known to be associated with African ances-

try [158] and in the phecode analysis, it was significantly associated with membership in the

African American identity-by-descent cluster. Consistent with that observation, we found

a pathogenic HBB allele, rs34598529, that was significantly more common in this cluster

(biobank MAF: 3.02x10-5 cluster MAF: 2.20x10-3, p=1.52x10-9). Furthermore, we found

two pathogenic alleles in HBB associated with membership in the Chinese identity-by-descent

cluster. Both alleles, rs34451549 (biobank MAF: 0.00, cluster MAF: 3.54x10-3, p=1.12x10-

13) and rs33931746 (biobank MAF: 1.15x10-5, cluster MAF: 1.18x10-3, p=1.89x10-4), are

documented to be associated with beta-thalassemia in East Asian populations [79][188] and

are at elevated frequencies in these populations in gnomAD, a large database of allele fre-

quency data [78]. Furthermore, patients in this cluster were also more likely to receive

diagnoses of hemoglobinopathies (OR=2.81, 95% CI: [1.87, 4.21], p=3.93×10-5) than the re-

maining biobank participants. This result illustrates that patients of many different ancestry

backgrounds could experience elevated genetic risk in the HBB gene.

Lastly, we broadly studied genetic risk variants associated with each identity-by-descent

cluster and found over 100 loci that were at elevated frequencies in a specific cluster. Exam-

ples included elevated MAF of a pathogenic allele associated with transthyretin cardiac amy-

loidosis in the African American cluster (biobank MAF: 2.14x10-4, cluster MAF: 1.78x10-2,

p=4.76x10-66 ), and an allele associated with Lynch Syndrome in the Mexican and Central

American cluster (biobank MAF: 0.0, cluster MAF: 6.95x10-4, p=5.59x10-7)[58][40]. We

further identified several lesser-known associations. One finding was rs28937594, which was

significantly higher in the Iranian Jewish identity-by-descent cluster (biobank MAF: 5.80x10-

5 cluster MAF: 0.024, p=5.58x10-28). Rs28937594 is in the GNE gene and is implicated in

hereditary inclusion-body myopathy, an ultra-rare recessive disease [136]. While no ATLAS

participants were homogenous for the SNP or diagnosed with the disease, this SNP has been

reported to be a founder mutation in Iranian Jewish populations [46]. Interestingly, in the
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Iranian identity-by-descent cluster, the MAF for this SNP was also high, but not significant

(cluster MAF: 0.0017, p=0.1512). Overall, this supports the idea that identity-by-descent

clusters can confirm and refine variants included in genetic screening programs [2].

4.2.3 Genetics of identity-by-descent clusters

Identity-by-descent clusters also present opportunities for learning about historical or demo-

graphic factors, which can have implications for personalizing care or developing precision

treatments [167][48]. First, we analyzed the distribution of total identity-by-descent shared

between pairs of individuals in a cluster (Fig. 4.5a)(Supplementary Table 5). The Iranian

Jewish cluster had the highest level of total identity-by-descent sharing (mean = 57.43 cM,

95% CI: [(56.80 - 58.06]). This is higher than other clusters that contained populations

expected to have founder effects. The Iranian cluster also had relatively high identity-by-

descent sharing (total pairwise identity-by-descent mean=15.70 cM, 95% CI: [14.54 - 16.86]),

but not as high as the Iranian Jewish cluster, highlighting the role of cultural factors.

Additionally, we examined cluster runs of homozygosity (ROH) (Fig 4.6b), which occur

when an individual inherits identical copies of a haplotype from each parent [28]. ROH can

reflect the demographic processes, such as consanguinity, and is implicated in risk for complex

diseases [90][118]. We found elevated amounts of ROH in several MENA clusters and South

Asian ancestry clusters. The amount of within-cluster identity-by-descent sharing did not

always correlate with the rate of ROH. This observation may be attributed to differences in

the historical and modern demographic processes, like the practice of endogamy or historical

population bottlenecks.

We used the IBDNe program [21] to estimate cluster-specific historical effective popula-

tion size (Fig. 4.6c). Consistent with previous reports [12], we observed a large bottleneck in

the Puerto Rican cluster, with a minimum population size occurring around 15 generations

ago. We also observed historic population size reduction in several other clusters, especially

in MENA ancestry clusters. The bottleneck timing in these clusters is similar, approximately

13-15 generations ago. Despite the similarity in the timing of the bottleneck, the estimates
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of the max population size differed. For example, the population size of the Iranian Jewish

cluster was estimated to be less than 10,000 for the last 30 generations, which is very small,

and could be relevant for understanding the genetic disease burden in this group.

Patterns of identity-by-descent sharing between clusters can further reveal modern and

historical relationships. We first computed pairwise Hudson’s Fst in the largest identity-

by-descent clusters (Fig. 4.6d), which revealed complex within-continent sharing patterns.

While there was low differentiation between the Iranian and Iranian Jewish clusters, (Fst=0.0055),

the Iranian cluster exhibited a smaller Fst with the Armenian, Egyptian Christian, and

Lebanese Christian clusters. It is important to note, however, that the Fst estimates used

here do not capture the effect of rare variants [15].

Lastly, we created a network representation of identity-by-descent sharing, where the

nodes of the network were a cluster and the edges were the median identity-by-descent

shared between clusters (Fig. 4.6e). From this representation, we observed that geography

affected cluster relationships. For example, clusters with MENA ancestry were close in

network space, with the Pakistani cluster acting as a bridge between them and the South

Asian identity-by-descent clusters. We also observed some unexpected relationships. The

Mexican and Central American cluster shared more identity-by-descent on average with the

Ashkenazi Jewish cluster (mean=0.243 cM, 95% CI:[0.243, 0.244]) than European cluster

(mean=0.0372 cM, 95% CI: [0.0371, 0.0373). A similar trend was observed for the Puerto

Rican identity-by-descent cluster. Other reports have found a contribution of Jewish ancestry

to Latin American populations [30].

4.3 Discussion

To ensure that precision medicine initiatives are applicable to all people, it is important

to understand the diverse determinants of health. In this study, we analyzed clusters of

people who share genetic ancestry. Identifying these fine-scale ancestry clusters is useful

in the study of health disparities, especially with respect to the coarse race and ethnicity
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information usually recorded in biobanks. While people who share ancestry may share

genetic risk for disease, they may also share an environment, which is particularly important

for understanding disease risk. Race, ethnicity, and religion are social constructs and are

not determined by genetics, although they may be correlated [19]. It is simultaneously true,

however, that identity by race, ethnicity, and religion can affect access to and quality of

healthcare in the United States81. Thus, this approach provides a complementary lens for

identifying potential health differences between people living in Los Angeles.

These findings can inform provision of care at UCLA Health and similar health systems.

We identified pathogenic loci that segregated at higher frequencies in the Chinese, Iranian

Jewish, Armenian, and African American clusters. Historically, in the United States, carrier

screening guidelines are based on self-reported race and ethnicity [34][4]. Many of the associ-

ations we identified would be missed by these guidelines. Furthermore, allele frequency data

is often only available for limited ancestry groups66, and pathogenicity or penetrance may

differ across ancestries [108]. This work supports calls to expand genetic screening efforts to

more people [2][1] regardless of race or ethnicity. We make allele frequencies available for all

clusters to facilitate studies on genetic disease in diverse groups.

These results occur within, and support the existence of, an unequal healthcare system.

For example, the African American and Mexican and Central American clusters were both

associated with severe diseases, like chronic renal failure and liver transplants. This could

be a consequence of the burden of systematic racism, which adversely affects the health of

minority groups in America [7], and reduced access to quality insurance, which affects care

and varies by race and ethnicity. These results may be further compounded by the fact

that the main UCLA Health facilities are in west Los Angeles, which includes some of the

wealthiest neighborhoods in Los Angeles County. Thus, clusters with from economically

disadvantaged households might be traveling further to access specialty care at UCLA and

thus have greater health needs motivating the longer trip.

There are several limitations to this work. Although we used genetics to identify clusters,

genetics is likely not the only causal factor for these results. The reported associations are
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strictly correlative and may be specific to UCLA Health. Additionally, defining a population

or cluster is not straightforward [130][92], and the definition of ancestry itself is subject to

disagreement [112]. We followed previous studies and chose a genetic similarity criterion, but

any number of criteria or algorithms could have been used. Additionally, the clusters are not

necessarily equivalent. Some were tightly related in network space, while others had more

diffuse patterns of connection. While every participant in ATLAS is placed into a cluster,

this approach may have limitations for individuals with multiple ancestries.

The individuals whose data comprise ATLAS are not representative of a random sample

of the general Los Angeles population. The ATLAS biobank is opt-in, which means that

an individual’s participation can be influenced by their level of comfort and trust with

health research. Since medical research has a long history of unethical experimentation

on people of color, these groups may be less willing to participate [125]. Another source of

participation bias is that individuals who come to a hospital are usually unwell. The severity

of ill health may vary with geographic distance from UCLA. Other socioeconomic factors,

such as age, education, and household income are also associated with when and if patients

receive diagnoses [8][169][186]. These differences may also be exacerbated by biases from

health practitioners, which systematically affect care [43].

Lastly, we focused on population-level analyses in this work. When translating results

to individuals, the limitations of genetic ancestry must be considered. Genetic ancestry is

continuous, and many individuals have multiple ancestries. Identity-by-descent clusters as a

biomarker must be inclusive and tailored to individuals for clinical use [110]. Furthermore,

access to genetic information will inevitably have intrinsic biases. Health systems will have to

evaluate the impact of genomic medicine initiatives on the populations they serve [2] as well

as provide education to their patients and practitioners [163]. In particular, evidence-based

recommendations on when to use ancestry, race, and ethnicity tailored to specific diseases

and treatment options are needed [19].

Overall, we identified and characterized the health profiles of diverse Los Angeles identity-

by-descent clusters. This represents an advance toward equitable health research and, along
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with our website, can empower future studies on health outcomes in Los Angeles.

4.4 Methods

4.4.1 Ethics

Patient Recruitment and Sample Collection for Precision Health Activities at UCLA is an

approved study by the UCLA Institutional Review Board (IRB17-001013). All necessary

patient/participant consent has been obtained and the appropriate institutional forms have

been archived.

4.4.2 Patients and Recruitment

The UCLA ATLAS Community Health Initiative aims to create a genomic resource to enable

translational and precision medicine [73]. In ATLAS, genotyping data is tied to de-identified

EHRs as part of the UCLA Health IT Discovery Data Repository and Dashboard (DDR)

[31]. UCLA primarily serves patients on the west side of Los Angeles, but also has more than

200 clinics throughout the area, making it one of the largest health systems in Los Angeles.

Enrollment in ATLAS is elective and patients enroll in ATLAS when they visit a UCLA

site for a blood draw. ATLAS has a 65% opt-in rate (see Lajonchere et al. [87] for more

details on participation). As of 2021, there were approximately 35968 participants with full

genotyping and DDR data available [73]. No statistical method was used to predetermine

sample size. The experiments were not randomized and the Investigators were not blinded

to allocation during experiments and outcome assessment. A complete description of the

ATLAS project and data is available in Johnson et al. [73].

4.4.3 EHR Data

Each patient’s genotype data was tied to Electronic Health Records (EHR) collected during

patients visits on EPIC systems using a de-identified ID. Patient EHR was pulled for 2016-
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2020 and included visit information, diagnosis information, and demographics. For the

normal outpatient data, we restricted to visits that were labeled as scheduled appointments

and that did not have a code associated with an inpatient, ICU, or trauma stay. Emergency

room data was any visit that happened within an emergency room department. Diagnoses

assigned in emergency rooms were restricted to the primary reason for the visit. Each

visit contained information on patient weight, height, and BMI measured at the visit. We

calculated the median BMI for a patient across all encounters and used this as the BMI for

that patient in our association testing. The EHR was queried using Microsoft SQL Server

2014.

4.4.4 Demographic information

Demographic information was restricted to race/ethnicity, preferred religion, preferred lan-

guage, sex, and birth date. Sex was indicated as binary. To calculate patient age, we

calculated the patient age at the time of each visit and took the maximum age overall for

each patient. For EHR-reported race/ethnicity, patients were designated (by themselves or

a healthcare staff member) as “White,” “Black”, “Asian”, “Native American”, or “Pacific

Islander.” Asian patients could be further designated as Chinese, Japanese, Korean, Thai,

Filipino, Vietnamese, Taiwanese, Pakistani, Indian, or Indonesian, although not all Asian pa-

tients had one of these identifiers. Hispanic/Latino patients were designated as “Hispanic”,

which was further subdivided into several other sub-identifiers, such as ”Spanish origin”,

”Chicano/a” or ”Cuban”. For visualization, we considered the main race/ethnic categories

and not the sub-designations. There were numerous preferred languages and religions. For

simplicity, we examined the languages that had more than 5 individuals who indicated that

they preferred that language. Furthermore, the preferred religion was restricted to consider

major religions: Christianity, Islam, Judaism, Hinduism, Sikhism, and Buddhism. Chris-

tianity was further subdivided into Protestant and Catholic. Other religions were condensed

into an “Other Religion” category.
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4.4.5 Diagnoses and Phecodes

We used phecodes to study disease associations. Diagnoses are coded in the DDR as ICD10

codes. For all encounters that occurred at UCLA between January 2016 (the start of the

DDR) and January 2021, we found all unique diagnoses assigned to a patient in an outpatient

setting, which included in-person doctor visits and video calls. In outpatient visits, we

included all diagnoses given in a visit. For emergency room visits, we restricted to diagnoses

given as the primary reason for the visit, which was coded by the diagnosing clinician (i.e.,

if a person showed up to the emergency room for a heart attack who also had diabetes, the

primary reason for the visit was the heart attack).

ICD10 codes were then merged into phecodes using the mappings provided at Phecode

Map 1.2 with the first 5 characters of an ICD10 code (i.e., if the ICD10 code was V80.720S,

only V80.720 would be used for mapping).

Alternative phenotype definitions were defined with ICD 10 codes or with using the

procedure orders. Specialties

Specialty utilization was determined by the specialty of the primary provider for a patient

encounter. Providers with multiple specialties were only counted for their primary specialty.

We grouped subspecialities into one specialty. For example, “Neurology, sleep medicine” and

“Neurology, movement disorders’ were both counted as a visit to a neurologist. Changes in

phecodes over time

We calculated the proportion of a cluster assigned a phecode in a given year. We then

calculated the inter-year difference in the proportion of people diagnosed in 2020 and 2016.

Since we were interested in phecodes that might have different trajectories between clusters,

we identified the phecodes that had the greatest variance in the inter-year difference between

the 6 largest clusters.
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4.4.6 Other phenotype definitions

We focused on definitions of phenotypes defined via phecodes because they have been shown

to work well in the context of EHRs [183]. However, phecodes tend to be broad and are

optimized for generalizability across health systems and for genetic association studies. De-

pending on the application, other phenotype definitions might be more relevant.

To explore this, we utilized two different phenotype definitions. One phenotype definition

was a curated list of ICD codes relevant to Alzheimer’s and related dementias (see below),

and that is used by physicians for defining clinical cohorts. The other phenotype was brain

MRI imaging orders. We performed a logistic regression to assess the relationship between

cluster membership and ever having the phenotype, controlling for age, sex, and BMI.

4.4.7 Genomics pre-processing and quality control

Genotyping for ATLAS was performed on a custom genotyping chip, with sites from the

global screening array. Data was mapped to hg38 and all SNPs were mapped to the 147

build of dbSNP96. All preprocessing and quality control steps were performed using PLINK

1.997 and bcftools v1.998.

For ATLAS samples, we removed any individuals whose genotyped sex mismatched their

EHR-reported sex. We did this by using the PLINK –update-sex command to update the

PLINK fam files to contain the EHR sex and the PLINK –check-sex to identify samples with

discrepancies between the estimated genotype sex and EHR sex.

ATLAS data was merged with genotyping data from the 1000 Genome Project (1000GP),

the Simons Genome Diversity Project (SGDP), and the Human Genome Diversity Project

(HGDP). All reference data were converted to hg38 for merging using CrossMap [190]. Sam-

ples that overlapped between the different projects were removed using PLINK –keep. Rsids

were harmonized across projects using bcftools annotate. Data were then standardized us-

ing bcftools norm and a hg38 genome reference. After merging, sites or individuals with

more than 1% missing were removed using plink –mind and –geno. For identity-by-descent
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analysis, only SNPs with MAF ¿ 5% were kept.

4.4.8 Phasing

Before identity-by-descent calling, data was statistically phased using Shapeit4 [42] using

default parameters and the hg38 map files distributed with the software. To speed up

computation, one chromosome was phased at a time.

4.4.9 PCA

To prevent the large sample size of ATLAS from distorting the relationship populations in

PC space, PCA was performed first on only the reference samples. ATLAS samples were

then projected onto the reference PCs. To enable visualization, the reference data, and the

ATLAS sample PCA results were plotted separately on adjoining axes.

4.4.10 Identity-by-descent calling and processing

For identity-by-descent calling, the genotype data were converted from PLINK bed files into

PLINK ped/map files using a custom Python script that preserves phasing. Centimorgan

information for the map files was pulled from the same genetic maps used in Shapeit4.

Identity-by-descent segments were called using iLASH37 with the following parameters:

slice size 350, step size 350, perm count 20, shingle size 15, shingle overlap 0, bucket count

5, max thread 20, match threshold 0.99, interest threshold 0.70, min length 2.9, auto slice 1,

slice length 2.9, cm overlap 1, minhash threshold 55. Identity-by-descent was called for one

chromosome at a time.

4.4.11 Identity-by-descent quality control

After identity-by-descent segments were called, we removed outliers as in Belbin et al [10].

Firstly, any identity-by-descent segments overlapping centromeres or telomeres were re-

moved. Identity-by-descent tracts intersecting the HLA region were also removed. To find
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other regions of the genome that may have erroneously high identity-by-descent, we calcu-

lated the total amount of identity-by-descent contained at each SNP in our input file by

summing all segments that overlapped that SNP. SNPs that had total identity-by-descent

greater or less than 3 standard deviations from the genome-wide mean were removed. In

total, 6696 were removed.

For downstream analysis, identity-by-descent segment lengths were summed between

individuals, meaning that for a given pair of individuals, all the identity-by-descent segments

that they shared across all chromosomes were added together to create one summary number.

We removed pairs of individuals who were immediate family members using two methods.

Firstly, we used the PLINK 2.0 implementation of KING [107] to identify relatives of third

degree or closer, using the parameter of –king-cutoff with a value of 0.0884. KING was run

on all SNPs with MAF > 0.05 and after linkage pruning, using PLINK and –indep-pairwise

50 10 0.1. As KING may underestimate the relatedness of individuals, especially in the

case of individuals with high levels of autozygosity [150], we also filtered pairs based on the

total amount of identity-by-descent shared. Using empirical data reported to DNA Painter

[14], we determined a conservative threshold of second-degree relatedness was a threshold of

1000cM. We removed any pairs with identity-by-descent higher than this threshold.

4.4.12 Sensitivity analyses

To characterize the robustness of our results to the choice of phasing and identity-by-descent

calling algorithms, we performed additional sensitivity analyses with different algorithm

choices. Statistical phasing was performed with Eagle v2.4.1 [98] and identity-by-descent

calling was performed using hap-ibd [192]. As with iLASH, identity-by-descent was called

for segments > 3.0cM long and on individuals who were unrelated (more than third-degree

relatives). After calling all identity-by-descent segments across ATLAS and the reference

data, we summed the total amount of identity-by-descent shared between a pair of indi-

viduals. We then calculated the Pearson’s correlation between the total identity-by-descent

shared between a pair detected with shapeit4 + iLASH and the total amount detected with
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Eagle + hap-ibd.

We further characterized the robustness of the clusters initially identified with iLASH.

We re-performed Louvain clustering as we did previously, using three iterations of clustering

and merging any clusters with Fst ¡ 0.001. To assess the consistency of the clustering, we

randomly sampled 10,000 ATLAS pairs and asked if they were in the same cluster originally,

was the pair still in the same cluster with the new algorithm, or vice-versa.

4.4.13 Cluster identification

To infer clusters, we followed the approach of Dai et al. and used the Louvain method for

cluster detection [17]. This method finds structure in large networks and has been shown to

work well on genetic data12. We applied this algorithm to an undirected network constructed

from identity-by-descent sharing, where each node represented an individual and edge weights

were defined as the genome-wide sum of identity-by-descent sharing between the nodes. An

advantage of the Louvain algorithm is that it can be run iteratively, meaning that an initial

run over the entirety of the graph can be used to define broad substructure, which can be

further resolved into more fine-scale clusters upon subsequent iterations.

For cluster detection, we used the Python package NetworkX [60]. We created an undi-

rected graph representation of the identity-by-descent matches, where each node was an

individual and an edge between individuals was weighted by the total amount of identity-

by-descent matches shared between the two people.

Louvain clustering implemented in NetworkX, was used iteratively to detect fine-scale

populations. It was first run to detect a primary set of clusters. Each cluster was then

subject to Louvain clustering again, and these subclusters were clustered once more, for a

total of three runs of Louvain clustering.

After generating clusters with the Louvain algorithms, the clusters were merged using

Fst, as in Dai et al12. We used the implementation of Hudson’s Fst from PLINK 2.0. It was

run on all pairs of clusters from the third level of the Louvain clustering and clusters that
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had Fst < 0.001 were merged. Since Fst may perform poorly in small populations, clusters

with less than 10 people were removed [15]. This threshold was selected because it gave good

separation of clusters on a subcontinental level.

4.4.14 Cluster identity and demographics

We primarily used external reference data to characterize what populations may be con-

tributing to a cluster. Some clusters did not contain any reference data, or the reference

data did not capture important aspects of the cluster. For example, there was no Ashkenazi

Jewish reference data, only reference data labeled by European countries. To address this

problem, we used the de-identified EHR demographic table as an additional source of infor-

mation. This included EHR-reported race and ethnicity, preferred language, and religion.

We emphasize that race, ethnicity, and religion are not determined by identity-by-descent

segments but represent sociocultural characteristics that may be related to characterizing the

cluster. We chose to use religion when it was relevant to identifying a historically persecuted

group (i.e. “Lebanese Christian” instead of just “Lebanese”). These groups often have dis-

tinct histories and cultural practices, which can affect demography, environment, and disease

risk. For example, it is well known that Ashkenazi Jews have distinct genetic risks relative

to other Europeans [155]. Thus, including religion in this study may offer opportunities to

improve the health of understudied ethnoreligious groups.

The majority of ATLAS patients are not Latino, have no religious preference, and indi-

cated that they prefer to speak English. We, therefore, explored cluster identity using indi-

viduals who preferred a different language or religion or were identified as Hispanic/Latino

in the EHR (note that the actual number of English speakers may be lower, as some patients

may not, for societal or practical reasons, have this information included in their medical

records).

For downstream analysis, we focused on identity-by-descent clusters that had more than

40 members to ensure a large enough sample size for our EHR and genetic analyses.

Additional summary statistic reference data were used to compute Hudson’s Fst between
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ATLAS identity-by-descent clusters and external populations, including identity-by-descent

clusters identified in the BioMe biobank. This enabled additional refinement, along with the

use of EHR demographic information and cluster-level admixture analyses.

4.4.15 Latino subclusters

We obtained an additional reference dataset that focused on fine-scale indigenous popula-

tions of Mexico [55]. Importantly, some of these indigenous groups also live in neighboring

Guatemala, Belize, Honduras, and El Salvador, which were all part of the historic Mesoamer-

ica region that was broken up by Spanish colonization [128]. We merged the genetic data

from the indigenous populations and that of patients from the Mexican and Central Ameri-

can identity-by-descent cluster and performed an additional level of Louvain clustering. As

above, we merged clustered with low differentiation (Fst < 0.001). One set of four sub-

clusters were merged for subsequent analyses and was referred to the Central American

identity-by-descent cluster.

EHR demographic characteristics were explored for each subcluster. Phecode associations

for each subcluster were also compared using the and heterogeneity in effect size was analyzed

for the three largest subclusters along with the Puerto Rican and Afro-Caribbean clusters

4.4.16 Identity-by-descent distribution

To find the distribution of identity-by-descent in a cluster, we considered segments of indi-

viduals assigned to the same cluster. We summed the identity-by-descent segments to get

the total identity-by-descent shared between the pair and calculated the distribution of total

identity-by-descent between members of the cluster. ROH distribution

For ROH, we first performed linkage pruning and MAF filtering using PLINK and the

parameters –maf 0.01 –indep-pairwise 50 10 0.1. ROH calling was also performed using

PLINK and the parameters -homozyg –homozyg-density 200 –homozyg-gap 500 –homozyg-

kb 3000 –homozyg-snp 65 –homozyg-window-het 0 –homozyg-window-missing 3 –homozyg-
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window-snp 65. Detected ROH were summed within an individual. We then calculated the

distribution of detected ROH of all individuals within a cluster. IBDNe

IBDNe was run using the identity-by-descent haplotypes estimated using iLASH . We

filtered the iLASH output for each chromosome to individuals from a single cluster. The

haplotypes were combined into one file for IBDNe input. IBDNe was run with default

parameters and the hg38 genetic map provided on the IBDNe website.

4.4.17 Fst

For the heatmap of Fst, we calculated the pairwise Hudson’s Fst, as described in the Lou-

vain clustering section. We calculated Fst between the largest final clusters (after Louvain

clustering and merging). Data was visualized using Python Seaborn clustermap with default

parameters.

4.4.18 Genetic relatedness network

The network visualization between clusters was developed using NetworkX. The input was

a matrix where each row and columns represented one of the largest clusters, and each entry

was the mean identity-by-descent shared between the two clusters. To find this mean, we

found all possible pairs of individuals between the two clusters. If the pair did not have any

identity-by-descent detected, we set their sharing to 0 and then calculated the mean over all

possible pairs. This was to prevent biasing the mean identity-by-descent by limiting it to

only pairs that had identity-by-descent detected. This square matrix was then used to create

a weighted undirected graph, where the nodes were the clusters and the edges were the mean

identity-by-descent between the clusters. We visualized the graph using 1000 iterations of

the Fruchterman-Reingold force-directed algorithm [53].

88



4.4.19 Association testing

Statistical testing was done using the Python StatsModel [145] package. For each phecode,

we determined whether an individual has ever had been assigned that phecode in an out-

patient context, making the outcome binary. Cluster status was binary and could either

be a particular cluster vs all other biobank participants, or a particular cluster compared

against another cluster. We tested whether binary cluster status was associated with phe-

code assignment using the StatsModel GLM command with the family set to binomial. We

corrected for sex, age, and BMI in these analyses. S

The same statistical framework was used to test for emergency room diagnoses and

specialty visits, where instead of phecode assignment, the outcome was whether an individual

had visited a doctor with a given specialty reported in the EHR. In all cases, we restricted

to specialties, diagnoses, or zip codes with at least 30 visits.

An association was considered significant after controlling for false discovery rate at 5%

using the Benjamini and Hochberg procedure. Multiple test correction was performed across

phecodes each time a regression analysis was performed, i.e. for each cluster-background

comparison.

4.4.20 Heterogeneity test

To calculate whether there was a significant difference in the effect sizes between clusters

for a given phecode, we performed a mixed-effects meta-regression test for heterogeneity,

implemented in the R package metafor [178]. Specifically, we used the function rma.uni.

4.4.21 Reproducibility

To assess the reproducibility of the results presented in this work, we obtained published

association statistics taken from the BioMe biobank at Mt. Sinai10. For 6 related identity-by-

descent clusters comprised of similar populations in ATLAS and Biobank (see Supplementary

Table 3), we computed odds ratios for phecodes tested in both biobanks. We compared the
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effect size of the estimates using a Pearson’s correlation.

4.4.22 Website

The website hosting the data visualization is implemented as a single-page application [121].

The application is developed in the JavaScript framework React, where each graph page

is implemented as a separate component. The map plot is powered by the deck.gl library

developed by Mapbox, which provides maps for data overlays. The other graphs are powered

by the react-plotly.js library developed by Plotly, which provides a React interface to create

interactive plots. The application has no backend, as the data is relatively small, requires

no modification or manipulation per request, and is not subject to any privacy concerns due

to its approval for release. All the data is stored in static JSON files that the application

directly references to generate data visualizations. The website code and underlying data

are publicly available on Github with an MIT license, which will allow others to contribute

to the application as well as use the code to build visualizations for their own organizations.

4.4.23 Data Visualization

Data analysis was done in Python 3.7 using Jupyter Notebooks. Visualization was done

using Seaborn and Matplotlib.
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4.5 Figures
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Figure 4.1: An overview of the fine-scale cluster detection approach. A schematic
of identity-by-descent calling and cluster annotation. (a) We first infer identity-by-descent
segments for all biobank participants and reference samples. (b) We then identify fine-scale
clusters using Louvain clustering (c) and we explore patterns of enrichment for cluster-specific
health utilization. (d) Finally, we measure patterns of genetic relatedness both within and
between clusters.
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Figure 4.2: Definitions of frequently used words relating to ancestry.
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Figure 4.3: Genetic and demographic properties of clusters (a) The mean admixture
fractions for each of the identity-by-descent clusters. Each line corresponds to one ATLAS
cluster. The components refer to genetic ancestry from the Middle East, East Asia, Europe,
South or Central Asia, Africa, and the Americas. The left column indicates the identity-by-
decent cluster number, and the right column gives examples of names given to the largest
clusters. (b) The distribution of identity-by-descent within subclusters that were merged
to make one European cluster (n= 17017). The names on the left indicate the identity-by-
descent cluster number, and the name on the right indicate relatedness from comparison
with the UK BioBank. The center line of the box indicates the mean, the outer edges of
the box indicate the upper and lower quartiles, and the whiskers indicate the maxima and
minima of the distribution.(c) The Hudson’s fixation index (FST) value between identity-by-
descent clusters identified in BioMe at Mount Sinai and ATLAS identity-by-descent clusters
demonstrates the relationship between ATLAS and populations outside of UCLA Health.
The darker the color, the smaller the FST value. The smallest FST value for each of the
ATLAS clusters is indicated by a white dot. (d) For each of the largest clusters, (from top
to bottom) the proportion of reference data by continent in each cluster, the proportion that
indicated they prefer a specific religion, the proportion of EHR race/ethnicity category, and
the proportion of language preferred.
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Figure 4.4: Phecode associations for selected clusters. Phecodes associations for
(n=1131) identity-by-descent clusters relative to the remaining biobank participants. Re-
sults are shown for the (a) Ashkenazi Jewish (n=5309) (b) African American (n=1877) and
(c) Mexican and Central American (n=6075) identity-by-descent clusters. Phecodes are
grouped by phenotypic category. Top significant (Benjamini-Hochberg false discovery rate
(FDR) at 5%) associations for each cluster are labeled, Bonferroni significance is indicated
by a grey dotted line. (d) Odds ratios of association between identity-by-descent clusters
and phecodes for the Telugu (n=276), Korean (n=546), Iranian (n=350), Iranian Jewish
(n=264), Egyptian Christian (n=92), European (n=17017), and Filipino (n=796) clusters.
Vertical bars indicate the standard error. Dots represent the odds ratio and a solid indicates
significance at FDR 5%. Open dots indicate a non-significant association.
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Figure 4.5: Phecodes associated with the Armenian identity-by-descent cluster.
For each phecode, the odds ratio that membership in the Armenian cluster (n=491) was
associated with that phecode, compared to the rest of the biobank, the European clus-
ter (n=17017), the Iranian and Iranian Jewish clusters (n=614) and MENA ancestry clus-
ters(n=960). In (a), phecodes that are FDR significant at 5% (where logistic regression
q<0.05) in all comparison groups and had the same direction of effect (“homogenous ef-
fect”), are shown. In (b), phecodes that have a “heterogeneous effect,” (mixed-effects meta-
regression test where p<0.05) are shown. Phecodes of the same color are from the same
phecode category. In each plot, the dot represents the odds ratio and the lines represent the
standard error.

Figure 4.6: The genetic properties of the largest identity-by-descent clusters.(a)
The distribution of total pairwise identity-by-descent (cM) and (b) total amount of ROH
detected shared between individuals of a given cluster. The center line of the box indicates
the mean, the outer edges of the box indicate the upper and lower quartiles, and the whiskers
indicate the maxima and minima of the distribution. (c) IBDNe estimates of historic popu-
lation size for 9 selected clusters, where the line is the mean estimate of the population size
for each generation from present, and the shaded region indicates the 95% CI of the estimate.
Dips in the population size can suggest founder effects. (d) Pairwise Hudson’s FST estimates
between UCLA ATLAS identity-by-descent clusters, where the darker color indicates lower
FST, suggesting less differentiation between the pair of clusters. (e) A network diagram of
identity-by-descent sharing between clusters, where each node is a cluster and each edge is
weighted by the amount of identity-by-descent shared between the clusters. The graph was
visualized using 1000 iterations of the Fruchterman-Reingold algorithm. For clarity, the 3
edges with the largest amount of identity-by-descent shared per cluster are displayed.

96



4.6 Tables
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Table 4.1: Largest ATLAS identity-by-descent clusters. For the 24 largest ATLAS
identity-by-descent clusters, the cluster number, the population that the cluster primarily
represents, the subclusters identified from the Louvain algorithm, and the total size of the
cluster.
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Table 4.2: Mexican and Central American subclusters. For the Mexican and Central
American identity-by-descent cluster, the six subclusters identified. The four largest were
given representative names.

Table 4.3: Replication in BioMe. Pearson’s correlation between effect sizes of cluster-
phecode associations calculated in BioMe and ATLAS for six clusters that are enriched for
similar populations.
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Table 4.4: BioMe phenotypes in ATLAS. For cluster-phecode associations published in
BioMe, the odds ratios and p-values are obtained from a logistic regression analysis for 6
clusters in ATLAS and in BioME that are enriched for similar populations.
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Table 4.5: Identity-by-descent and ROH within clusters. For the 24 largest ATLAS
clusters, the mean total pairwise identity-by-descent detected between individuals in the
cluster and the mean ROH detected within individuals of the cluster.
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E. Alarcón-Mart́ın, M. Alegret, O. Maroñas, J. A. Pineda, J. Maćıas, M. Marquié,
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[136] O. Pogoryelova, J. A. González Coraspe, N. Nikolenko, H. Lochmüller, and A. Roos,

“GNE myopathy: from clinics and genetics to pathology and research strategies,”

Orphanet Journal of Rare Diseases, vol. 13, p. 70, May 2018. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930817/ 74

132

https://www.latimes.com/projects/la-me-census-middle-east-north-africa-race/
https://www.latimes.com/projects/la-me-census-middle-east-north-africa-race/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360725/
https://doi.org/10.1186/s13059-016-1066-1
https://doi.org/10.1177/070674370805300907
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930817/


[137] J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference of Population Structure

Using Multilocus Genotype Data,” Genetics, vol. 155, no. 2, pp. 945–959, Jun. 2000.

[Online]. Available: https://www.genetics.org/content/155/2/945 30

[138] E. Rahmani, N. Zaitlen, Y. Baran, C. Eng, D. Hu, J. Galanter, S. Oh,

E. G. Burchard, E. Eskin, J. Zou, and E. Halperin, “Sparse PCA Corrects

for Cell-Type Heterogeneity in Epigenome-Wide Association Studies,” Nature

methods, vol. 13, no. 5, pp. 443–445, May 2016. [Online]. Available: https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC5548182/ 5

[139] E. Rahmani, R. Schweiger, L. Shenhav, E. Eskin, and E. Halperin, “A Bayesian Frame-

work for Estimating Cell Type Composition from DNA Methylation Without the Need

for Methylation Reference,” in Research in Computational Molecular Biology, ser. Lec-

ture Notes in Computer Science, S. C. Sahinalp, Ed. Cham: Springer International

Publishing, 2017, pp. 207–223. 5

[140] C. F. Rider and C. Carlsten, “Air pollution and DNA methylation: effects of exposure

in humans,” Clinical Epigenetics, vol. 11, no. 1, p. 131, Sep. 2019. [Online]. Available:

https://doi.org/10.1186/s13148-019-0713-2 2

[141] M. P. Roth, G. M. Petersen, C. McElree, E. Feldman, and J. I. Rotter, “Geographic

origins of Jewish patients with inflammatory bowel disease,” Gastroenterology, vol. 97,

no. 4, pp. 900–904, Oct. 1989. 69

[142] J. N. Saada, G. Kalantzis, D. Shyr, F. Cooper, M. Robinson, A. Gusev, and

P. F. Palamara, “Identity-by-descent detection across 487,409 British samples

reveals fine scale population structure and ultra-rare variant associations,” Nature

Communications, vol. 11, no. 1, pp. 1–15, Nov. 2020, cc license type: cc by Number: 1

Primary atype: Research Publisher: Nature Publishing Group Subject term: Genome-

wide association studies;Haplotypes;Heritable quantitative trait;Population genetics

Subject term id: genome-wide-association-studies;haplotypes;heritable-quantitative-

133

https://www.genetics.org/content/155/2/945
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548182/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548182/
https://doi.org/10.1186/s13148-019-0713-2


trait;population-genetics. [Online]. Available: https://www.nature.com/articles/

s41467-020-19588-x 64

[143] E. R. Schiff, M. Frampton, F. Semplici, S. L. Bloom, S. A. McCartney, R. Vega,

L. B. Lovat, E. Wood, A. L. Hart, D. Crespi, M. A. Furman, S. Mann,

C. D. Murray, A. W. Segal, and A. P. Levine, “A New Look at Familial Risk

of Inflammatory Bowel Disease in the Ashkenazi Jewish Population,” Digestive

Diseases and Sciences, vol. 63, no. 11, pp. 3049–3057, 2018. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182437/ 69

[144] H. Schwarzenbach, D. S. B. Hoon, and K. Pantel, “Cell-free nucleic acids as biomarkers

in cancer patients,” Nature Reviews. Cancer, vol. 11, no. 6, pp. 426–437, Jun. 2011. 21

[145] S. Seabold and J. Perktold, “Statsmodels: Econometric and Statistical Modeling

with Python,” Austin, Texas, 2010, pp. 92–96. [Online]. Available: https:

//conference.scipy.org/proceedings/scipy2010/seabold.html 89

[146] M. F. Seldin and A. L. Price, “Application of Ancestry Informative Markers to

Association Studies in European Americans,” PLOS Genetics, vol. 4, no. 1, p. e5,

Jan. 2008. [Online]. Available: https://journals.plos.org/plosgenetics/article?id=10.

1371/journal.pgen.0040005 35

[147] T. H. Self, C. R. Chrisman, D. L. Mason, and M. J. Rumbak, “Reducing emergency

department visits and hospitalizations in African American and Hispanic patients with

asthma: a 15-year review,” The Journal of Asthma: Official Journal of the Association

for the Care of Asthma, vol. 42, no. 10, pp. 807–812, Dec. 2005. 72

[148] A. L. Severson, S. Carmi, and N. A. Rosenberg, “The Effect of Consanguinity

on Between-Individual Identity-by-Descent Sharing,” Genetics, vol. 212, no. 1, pp.

305–316, May 2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC6499533/ 2

134

https://www.nature.com/articles/s41467-020-19588-x
https://www.nature.com/articles/s41467-020-19588-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182437/
https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0040005
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0040005
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499533/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499533/


[149] J. M. Shefner, R. Bedlack, J. A. Andrews, J. D. Berry, R. Bowser, R. Brown,

J. D. Glass, N. J. Maragakis, T. M. Miller, J. D. Rothstein, and M. E. Cudkowicz,

“Amyotrophic Lateral Sclerosis Clinical Trials and Interpretation of Functional End

Points and Fluid Biomarkers: A Review,” JAMA Neurology, vol. 79, no. 12, pp. 1312–

1318, Dec. 2022. [Online]. Available: https://doi.org/10.1001/jamaneurol.2022.3282

43

[150] R. Shemirani, G. M. Belbin, C. L. Avery, E. E. Kenny, C. R. Gignoux,

and J. L. Ambite, “Rapid detection of identity-by-descent tracts for mega-

scale datasets,” Nature Communications, vol. 12, no. 1, p. 3546, Jun.

2021, number: 1 Publisher: Nature Publishing Group. [Online]. Available:

https://www.nature.com/articles/s41467-021-22910-w 66, 84

[151] S. Y. Shen, R. Singhania, G. Fehringer, A. Chakravarthy, M. H. A. Roehrl,

D. Chadwick, P. C. Zuzarte, A. Borgida, T. T. Wang, T. Li, O. Kis, Z. Zhao,

A. Spreafico, T. d. S. Medina, Y. Wang, D. Roulois, I. Ettayebi, Z. Chen, S. Chow,

T. Murphy, A. Arruda, G. M. O’Kane, J. Liu, M. Mansour, J. D. McPherson,

C. O’Brien, N. Leighl, P. L. Bedard, N. Fleshner, G. Liu, M. D. Minden, S. Gallinger,

A. Goldenberg, T. J. Pugh, M. M. Hoffman, S. V. Bratman, R. J. Hung, and D. D. D.

Carvalho, “Sensitive tumour detection and classification using plasma cell-free DNA

methylomes,” Nature, vol. 563, no. 7732, pp. 579–583, Nov. 2018. [Online]. Available:

https://www.nature.com/articles/s41586-018-0703-0 6

[152] L. Shenhav, M. Thompson, T. A. Joseph, L. Briscoe, O. Furman, D. Bogumil,

I. Mizrahi, I. Pe’er, and E. Halperin, “FEAST: fast expectation-maximization for

microbial source tracking,” Nature Methods, vol. 16, no. 7, pp. 627–632, Jul. 2019.

[Online]. Available: http://www.nature.com/articles/s41592-019-0431-x 22

[153] C. Sheridan, “Investors keep the faith in cancer liquid biopsies,” Nature

Biotechnology, vol. 37, pp. 972–974, Aug. 2019. [Online]. Available: http:

//www.nature.com/articles/d41587-019-00022-7 5

135

https://doi.org/10.1001/jamaneurol.2022.3282
https://www.nature.com/articles/s41467-021-22910-w
https://www.nature.com/articles/s41586-018-0703-0
http://www.nature.com/articles/s41592-019-0431-x
http://www.nature.com/articles/d41587-019-00022-7
http://www.nature.com/articles/d41587-019-00022-7


[154] W. J. Shim, E. Sinniah, J. Xu, B. Vitrinel, M. Alexanian, G. Andreoletti, S. Shen,

B. Balderson, G. Peng, N. Jing, Y. Sun, Y. Wang, P. P. L. Tam, A. Smith, M. Piper,

L. Christiaen, Q. Nguyen, M. Bodén, and N. J. Palpant, “Conserved epigenetic

regulatory logic infers genes governing cell identity,” bioRxiv, p. 635516, Mar. 2020,

publisher: Cold Spring Harbor Laboratory Section: New Results. [Online]. Available:

https://www.biorxiv.org/content/10.1101/635516v5 22

[155] M. Slatkin, “A Population-Genetic Test of Founder Effects and Implications for

Ashkenazi Jewish Diseases,” The American Journal of Human Genetics, vol. 75,

no. 2, pp. 282–293, Aug. 2004. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0002929707624100 86

[156] M. W. Snyder, M. Kircher, A. J. Hill, R. M. Daza, and J. Shendure, “Cell-free DNA

Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin,” Cell,

vol. 164, no. 1-2, pp. 57–68, Jan. 2016. 5, 21

[157] E. Sohar, M. Prass, J. Heller, and H. Heller, “Genetics of Familial Mediterranean

Fever (FMF): A Disorder with Recessive Inheritance in Non-Ashkenazi Jews and

Armenians,” Archives of Internal Medicine, vol. 107, no. 4, pp. 529–538, Apr.

1961. [Online]. Available: https://jamanetwork.com/journals/jamainternalmedicine/

fullarticle/565719 73

[158] N. Solovieff, S. W. Hartley, C. T. Baldwin, E. S. Klings, M. T. Gladwin,

J. G. Taylor, G. J. Kato, L. A. Farrer, M. H. Steinberg, and P. Sebastiani,

“Ancestry of African Americans with Sickle Cell Disease,” Blood cells, molecules

& diseases, vol. 47, no. 1, pp. 41–45, Jun. 2011. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116635/ 69, 74

[159] K. A. Staats, D. R. Borchelt, M. G. Tansey, and J. Wymer, “Blood-

based biomarkers of inflammation in amyotrophic lateral sclerosis,” Molecular

Neurodegeneration, vol. 17, no. 1, p. 11, Jan. 2022. [Online]. Available:

https://doi.org/10.1186/s13024-022-00515-1 43

136

https://www.biorxiv.org/content/10.1101/635516v5
https://www.sciencedirect.com/science/article/pii/S0002929707624100
https://www.sciencedirect.com/science/article/pii/S0002929707624100
https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/565719
https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/565719
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116635/
https://doi.org/10.1186/s13024-022-00515-1


[160] M. L. Stackpole, W. Zeng, S. Li, C.-C. Liu, Y. Zhou, S. He, A. Yeh, Z. Wang,

F. Sun, Q. Li, Z. Yuan, A. Yildirim, P.-J. Chen, P. Winograd, B. Tran, Y.-T. Lee,

P. S. Li, Z. Noor, M. Yokomizo, P. Ahuja, Y. Zhu, H.-R. Tseng, J. S. Tomlinson,

E. Garon, S. French, C. E. Magyar, S. Dry, C. Lajonchere, D. Geschwind, G. Choi,

S. Saab, F. Alber, W. H. Wong, S. M. Dubinett, D. R. Aberle, V. Agopian, S.-H. B.

Han, X. Ni, W. Li, and X. J. Zhou, “Cost-effective methylome sequencing of cell-free

DNA for accurately detecting and locating cancer,” Nature Communications, vol. 13,

no. 1, p. 5566, Sep. 2022, number: 1 Publisher: Nature Publishing Group. [Online].

Available: https://www.nature.com/articles/s41467-022-32995-6 44

[161] M. Stroun, P. Maurice, V. Vasioukhin, J. Lyautey, C. Lederrey, F. Lefort, A. Rossier,

X. Qi Chen, and P. Anker, “The Origin and Mechanism of Circulating DNA,” Annals

of the New York Academy of Sciences, vol. 906, pp. 161–8, May 2000. 5, 44

[162] W.-M. Su, Y.-F. Cheng, Z. Jiang, Q.-Q. Duan, T.-M. Yang, H.-F. Shang,

and Y.-P. Chen, “Predictors of survival in patients with amyotrophic lateral

sclerosis: A large meta-analysis,” eBioMedicine, vol. 74, Dec. 2021, publisher:

Elsevier. [Online]. Available: https://www.thelancet.com/journals/ebiom/article/

PIIS2352-3964(21)00526-0/fulltext 43

[163] S. A. Suckiel, J. A. Odgis, K. M. Gallagher, J. E. Rodriguez, D. Watnick, G. Bertier,

M. Sebastin, N. Yelton, E. Maria, J. Lopez, M. Ramos, N. Kelly, N. Teitelman,

F. Beren, T. Kaszemacher, K. Davis, I. Laguerre, L. D. Richardson, G. A. Diaz,

N. M. Pearson, S. B. Ellis, C. Stolte, M. Robinson, P. Kovatch, C. R. Horowitz,

B. D. Gelb, J. M. Greally, L. J. Bauman, R. E. Zinberg, N. S. Abul-Husn,
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