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Abstract

The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the 

setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic 

modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET is 

less promising. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET 

data is challenging in human studies. This paper aims to identify the optimal dual-input kinetic 

modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen patients with 

nonalcoholic fatty liver disease were included. Each patient underwent 1-hour dynamic FDG- 

PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: 

the traditional two-tissue compartmental model with an image-derived single-blood input function 

(SBIF), a model with population-based dual-blood input function (DBIF), and a new model with 

optimization-derived DBIF through a joint estimation framework. The three models were 

compared using Akaike information criterion (AIC), F test and histopathologic inflammation 

score. Results showed that the optimization-derived DBIF model improved liver time activity 

curve fitting and achieved lower AIC values and higher F values than the SBIF and population-

based DBIF models in all patients. The optimization-derived model significantly increased FDG 

K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. 

K1 by the optimization-derived model was significantly associated with histopathologic grades of 

liver inflammation while the other two models did not provide a statistical significance. In 

conclusion, modeling of DBIF is critical for dynamic liver FDG-PET kinetic analysis in human 

studies. The optimization-derived DBIF model is more appropriate than SBIF and population- 

based DBIF for dynamic FDG-PET of liver inflammation.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) affects approximately 30% of the general 

population and is emerging as a leading cause of liver-related morbidity and mortality (1,2). 

Nonalcoholic steatohepatitis (NASH) is a more severe form of NAFLD characterized by 

hepatocyte inflammation and injury, and can subsequently lead to cirrhosis and associated 

liver cancer and liver failure (3). NASH develops in 5–10% of NAFLD patients (i.e., 5–10 

million people in the United States) and is associated with higher liver-related mortality than 

is hepatic steatosis alone (4). Differentiation of NASH from simple fatty liver is essential for 

future patient management in NAFLD, particularly as newer therapies become available 

(3,5).

The diagnostic hallmark of NASH is hepatocellular inflammation and injury in the setting of 

hepatic steatosis (3). Imaging methods have been developed to quantify hepatic steatosis (6), 

e.g. ultrasonography (7), computed tomography (CT) (8) or magnetic resonance imaging 

(MRI) (9–11). Other methods such as magnetic resonance elastography (MRE) (12) and 

ultrasound elastography (13) can measure liver stiffness and quantify advanced fibrosis of 

hepatic tissue (14–16). However, there is currently no effective imaging method for accurate 

characterization of liver inflammation in clinical practice and clinical trials (17). Liver 

biopsy followed by clinical histopathology remains the current standard practice (18).

18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a widely used and 

effective method for imaging cell glucose metabolism. Previous studies have reported the 

use of FDG-PET for imaging infection and inflammation (19,20). Several studies have 

investigated the use of FDG-PET in the liver (21–27) with focus on evaluation of hepatic 

steatosis (24,26–32). Contradictory results have been reported (24,26–29) on the relation 

between FDG standardized uptake value (SUV) and hepatic steatosis. Keramida et al (30–

32) have recently pointed out that SUV, if corrected for liver fat content, is increased in 

hepatic steatosis and may potentially relate to liver inflammation. However, no direct 

findings have been reported between FDG-PET and hepatic inflammation so far.

Current clinical usage of PET is largely limited to static PET imaging which provides SUV 

as a semi-quantitative measure of glucose utilization. SUV is related to steatosis (30) and is 

influenced by many patient factors including body habitus (33). This static way of using 

PET may not be able to explore the full potential of FDG-PET in imaging of hepatic 

inflammation. In contrast, dynamic FDG-PET acquires FDG activity images at multiple time 

points and can exploit quantitative tracer kinetics to characterize and separate the underlying 

molecular process of glucose metabolism (34). There are already several dynamic FDG-PET 

studies of liver, e.g., (21,23,32,35–37). However, existing studies mainly examined the 

overall glucose utilization using either glucose metabolic rate or FDG influx rate Ki. None 

of these studies have reported relevant or promising results for liver inflammation and 

NASH assessment. Our recent preliminary work has indicated a new promise (38). While we 

have not found FDG SUV by static PET or Ki by dynamic PET to be helpful, the FDG K1 

parameter, which represents the delivery rate of FDG from blood to hepatic tissue, is 

promising for characterizing liver inflammation in NASH (38).
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The blood input function is essential for kinetic modeling in dynamic FDG-PET (34). 

Conventionally it is either obtained by invasive arterial blood sampling or noninvasively 

derived from the left ventricle or aortic regions in dynamic PET images (39–41). In the liver, 

both the hepatic artery and portal vein provide blood supply to the hepatic tissue (22). The 

portal vein input is not the same as the hepatic artery input and is difficult to obtain in 

human subjects (22). Neglecting the influence of portal vein can result in inaccurate kinetic 

modeling. A common approach to accounting for the effect of dual blood supplies is to use a 

flow-weighted model of dual-blood input function (DBIF) (21,36,42). The model parameters 

are often pre-determined by population means that were derived using arterial blood 

sampling in animal studies (22,37). Due to heterogeneity across patients and potential 

differences between arterial and image-derived input functions, the population-based DBIF 

model may become ineffective when arterial blood sampling is not available and in practice, 

image-derived input function is typically used in human studies.

The objective of this paper is to evaluate and identify an appropriate dual-input kinetic 

modeling approach for FDG kinetic quantification of liver inflammation using human 

patient data. Besides the population-based DBIF approach, we also examined a new 

optimization-derived DBIF model which employs mathematical optimization to jointly 

estimate the parameters of DBIF and liver FDG kinetics. This model directly utilizes image-

derived aortic input function, requires no arterial blood sampling, and is more adaptive to 

individual patients. We used both statistical information criteria and histopathologic 

inflammation data to compare these methods.

MATERIALS AND METHODS

Patient Characteristics

Fourteen patients with NAFLD were included in this study. These patients had a liver biopsy 

as a part of routine clinical care or for enrollment in clinical trials. The University of 

California Davis Institutional Review Board and the University of California Davis Medical 

Center Radiation Use Committee approved the study. All patients signed informed consent 

before participating in the study. Patients with history of alcohol abuse, chronic hepatitis B 

or C, or other chronic liver disease other than NAFLD were excluded from the study.

Liver Histopathology

Liver biopsies were performed under ultrasound guidance and scored according to the 

nonalcoholic steatohepatitis clinical research network (NASH-CRN) criteria (43). The 

NAFLD activity score (NAS, range 0–8) is comprised of severity of steatosis, inflammation, 

and hepatocellular ballooning. While a NAS score greater than 4 has been reported to 

correlate with the presence of NASH, the scores of lobular inflammation and ballooning 

degeneration are noted to represent hepatic inflammation and injury, and are therefore 

combined to create an overall “hepatic inflammation” score (range 0–5). In this study, an 

inflammation score higher than 3 was considered indicative of high inflammation, while 

scores lower than 3 and equal to 3 suggested low and medium inflammation, respectively.
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Dynamic 18F-FDG PET/CT

Scan Protocol: Dynamic 18F-FDG PET studies were performed using the GE Discovery 

690 PET/CT scanner at the UC Davis Medical Center. Patients fasted for at least 6 hours. 

Each patient was injected with 10 mCi 18F- FDG. List-mode time-of-flight data acquisition 

started right after the intravenous bolus administration and lasted for one hour. At the end of 

PET scan, a low-dose CT scan was performed for attenuation correction for PET. Dynamic 

PET data were binned into 49 time frames using the sampling schedule: 30 × 10s, 10 × 60s, 

and 9 × 300s. Dynamic PET images were then reconstructed using the vendor software with 

the standard ordered subsets expectation maximization (OSEM) algorithm with 2 iterations 

and 32 subsets.

Extraction of Blood and Tissue Time Activity Curves (TACs): Eight spherical 

regions of interest (ROI), each with 25 mm in diameter, were placed on the eight segments 

of the liver avoiding any major blood vessels. These ROI placements were tuned and 

confirmed by an abdominal radiologist. The averaged FDG activity in all 8 ROIs was 

extracted from the dynamic images to form a global liver TAC of low noise. An additional 

ROI is placed in the descending aorta region to extract image-derived aortic input function.

Dual-Input Kinetic Modeling

Compartmental Model with Dual-blood Input Function (DBIF): FDG kinetics 

commonly follow the two-tissue compartmental model (34) as shown in Figure 1(a). 

Glucose transporters transport 18F-FDG from blood to hepatic tissue with the rate constant 

K1 (mL/min/mL) and from hepatic tissue to blood with the rate k2 (1/min). FDG is 

phosphorylated by hexokinase in cells into FDG 6-phosphate with the rate k3 (1/min) and 

the dephosphorylation process occurs with the rate k4 (1/min). Cp(t), Cf(t) and Cm(t) 
represent the FDG concentration in the plasma compartment, free-state FDG in the hepatic 

tissue compartment, and metabolized FDG 6-phosphate in the tissue, respectively. In 

traditional kinetic modeling with single-blood input function (SBIF), only blood supply 

from the aorta is considered and thus the input function Cp(t) is equivalent to the aortic input 

function CA(t). To account for the effect of dual blood supplies in the liver, a flow-weighted 

sum of the aortic input CA(t) and portal vein input CPV(t) can be used to model the DBIF 

(22):

Cp(t) = 1 − f A CPV(t) + f ACA(t) Eq. 1

where fA is the fraction of hepatic artery contributing to the overall liver blood flow. The 

portal vein input function CPV(t) follows an analytical solution

CPV(t) = kaexp −kat ⊗ CA(t), Eq. 2

which is equivalent to a dispersed version of the aortic input function CA(t) (44). The 

dispersion is because FDG in the portal vein flows through the gastrointestinal system 

before entering into the liver. Thus, portal vein can be considered as an additional 
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compartment, as shown in Figure 1(b). As a result, the combined compartmental model is 

equivalently described by a set of differential equations:

d
dt c(t) = Ac(t) + bCA(t), Eq. 3

where

c(t) =

C f (t)
Cm(t)
CPV(t)

, A =
− k2 + k3 k4 K1 1 − f A

k3 −k4 0
0 0 −ka

, b =
K1 f A

0
ka

. Eq. 4

The total activity that can be measured by PET is the sum of different compartments:

CT(t; θ) = 1 − vb C f (t) + Cm(t) + vb 1 − f A CPV(t) + f ACA(t) , Eq. 5

where vb is the fractional blood volume and θ = [vb,K1,k2,k3,k4,ka,fA]T is a vector collecting 

all unknown parameters. Note that this DBIF model becomes the traditional SBIF model 

when ka = 0 and fA = 1.

Joint Estimation of Kinetic and Input Parameters: All model parameters are jointly 

estimated by fitting a measured liver TAC č using the model equation and following 

nonlinear least square estimation:

θ = arg min
θ

WRSS(θ), WRSS(θ) = ∑m = 1
M wm cm − CT tm; θ 2 . Eq. 6

where WRSS(θ) denotes the weighted residual sum of squares of the curve fitting and wm 

denotes the weighting factor for time frame m. In this study, a uniform weight was used as 

suggested by Thiele and Buchert (45) and Winterdahl et. al (37). We used the classic 

Levenberg-Marquardt algorithm with 100 iterations to solve the optimization problem. The 

fitting process was implemented using C/C++ programing similar to our previous work 

(46,47). In this paper, we refer this joint estimation as the optimization-derived DBIF 

approach for clarity. It would become equivalent to the population-based DBIF if the 

parameters fA and ka are assigned with fixed population means (if known). Based on our 

initial analysis of the patient data sets, we set the initials of kinetic parameters to vb = 0.01, 

K1 = 1.0, k2 = 1.0, k3 = 0.01, k4 = 0.01, ka = 1.0, fA = 0.01.

Comparison of Kinetic Models

We compared three input models: the traditional model with SBIF, a model with population-

based DBIF and a model with optimization-derived DBIF. In this study, the SBIF was 

derived from the descending aorta region in dynamic FDG-PET images. To utilize reported 
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population means for the population-based DBIF, we used the following portal vein input 

model (22,37)

CPV(t) = β/(β + t)2 ⊗ CA(t), Eq. 7

which is very similar to the exponential-based model in Eq. 2 but not easily integrated into 

the differential equations for joint estimation. β = 0.5 and fA = 0.25 were previously reported 

for FDG (37).

Comparison Using Statistical Criteria: The three models were compared using two 

established statistical criteria for model selection for TACs: the corrected Akaike 

information criterion (AIC) and the F test (48,49). The AIC is defined by

AIC = M ln WRSS
M + 2n + 2n(n + 1)

M − n − 1, Eq. 8

where n denotes the total number of unknown parameters. Note that n=5 for the SBIF and 

population-based DBIF models and n=7 for the optimization-derived DBIF model. Here 

AIC was corrected for finite sample sizes due to the ratio M
n ≤ 40. A lower AIC value 

indicates a better selection of model (50).

The F test compares a complex model 2 with a simple model 1 using

F =
WRSS2 − WRSS1 / n2 − n1

WRSS2/ M − n2
, Eq. 9

where the degree of freedom (number of unknown parameters) n2 > n1 larger F value 

indicates better fit. If the p value of F test is 0.05 or less, the model 2 is then considered 

significantly better than model 1.

Evaluation Using Histopathological Inflammation Data: Patients in this study were 

divided into three groups according to their histopathological inflammation scores: low 

inflammation (<3), medium inflammation (=3), and high inflammation (>3). To examine the 

capability of FDG kinetic parameters for differentiating different inflammation groups, a 

two-sample 2-sided t-test at the 0.05 level was used to test the difference of group means and 

the Mann-Whitney U test was used to test difference of group medians. Other FDG-PET 

parameters that were reported to be associated with hepatic steatosis were also examined for 

their potential association with inflammation. These parameters include SUV, fat-adjusted 

SUV (31), and the metabolic rate of glucose by Keramida’s Patlak analysis (32). The SUV 

was calculated using the last frame (55–60 minutes) in the dynamic sequence. All statistical 

analyses were conducted using MATLAB (Natick, MA). P-values less than 0.05 were 

considered as statistically significant in this study.
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RESULTS

Patient Characteristics

A majority of the patients were white (75%) while 25% were Hispanics. Female patients 

formed 67% of the cohort with 75% of the patients between the ages 40–70 years and 25% 

between 18–39 years. The mean BMI was 34±6 kg/m2. The mean fasting glucose prior to 

PET scan was 115±33 mg/dL. The patient population had an equitable spread across NAS 

score (≥ of 58%). Two thirds of patients had hepatic inflammation score of ≥3.

Demonstration of dual-blood input function

Figure 2 demonstrates an optimization-derived DBIF from a patient data set. Only the first 5 

minutes are shown in the figure and the curves after 5 minutes are very similar among 

others. The DBIF is a weighted combination of the image-derived SBIF and the PVIF 

derived from the optimization. In this example, the weighting factor fA was 0.19. The DBIF 

has a much lower peak value than the SBIF because the contribution from hepatic artery is 

small (19%) while the contribution from portal vein is great (81%).

Figure 3 compares the optimization-derived PVIF with two image-derived PVIFs. To 

measure the PVIF, a spherical ROI was manually placed within the region of the portal vein 

on the CT image by a radiologist. Both ROI mean and ROI max were used to derive the 

image-derived PVIF, respectively. The PVIF by ROI mean has lower noise than that of ROI 

max but has a notable decrease in activity quantitation, which can be explained by the effect 

of partial volume. The PVIF by ROI max is consistent with the optimization-derived PVIF 

but the former is compromised by substantial noise, especially in early frames.

Evaluation of TAC Fit Quality

Figure 4A–4C show the fittings of the liver TAC using the image-derived SBIF, population-

based DBIF and optimization-derived DBIF, respectively. The residual plots of these fits are 

shown in Figure 4D–4F. The fitting with SBIF could not fit the early-time peak and late time 

points due to lack of the portal vein component in the input function. The population-based 

DBIF provided an improved fit of the peak but still suffered error for late time points due to 

inaccuracy of the population means for a specific patient data set. A linear trend was 

observed in the residual plots (Figure 4D and4E) for these two approaches, indicating a 

systematic bias in the fitting. The optimization-derived DBIF estimated the input parameters 

from the data and fit both the peak at early time and late time points closely. The linear trend 

was removed and the residuals became asymptotically normal.

The AIC values of the three fittings were −81, −140 and −159, respectively. AIC values of 

the three input models are further compared in Figure 5 for all individual patients in the 

cohort. The AIC difference was −105±23 between SBIF and optimization-derived DBIF, and 

−59±27 between population-based DBIF and optimization-derived DBIF, respectively. The 

optimization-derived DBIF model had the lowest AIC amongst the three models in all 

patients.
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The results of F test are given in Table 1. The minimum F value among different patients 

was 80.5 for comparing the optimization-derived DBIF with SBIF and 13.4 for comparing 

the optimization-derived DBIF with population- based DBIF model, both greater than the F 

critical value 3.2 calculated with n1 = 5 and n2 = 7 for a p value of 0.05. The p values of F 

test in individual patients are all small (<0.0001), indicating the optimization-derived DBIF 

is more appropriate for TAC fitting than the traditional SBIF and population-based DBIF 

models.

Change in Kinetic Parameters

The three input models resulted in different estimates in kinetic parameters. The mean and 

standard deviation of kinetic parameters vb,K1,k2,k3,k4 and Ki = 𝐾1𝑘3/(𝑘2+𝑘3) estimated by 

the three approaches are listed in Table 2. Results of fA and ka are also included. It is worth 

noting that a reversible kinetic model (i.e., k4 ≥ 0) was required for accurately modeling 

FDG TACs in the liver due to possible high level of glucose-6-phosphatase, as discussed in 

the literature (21,36,51,52). Neglecting k4 in the model reduced TAC fit quality with higher 

AIC values (results not shown). Compared with the image-derived SBIF, the optimization-

derived DBIF significantly increased the mean values of vb (0.0000 vs 0.0229), K1 (0.5112 

vs 0.9829), k2 (0.4983 vs 1.1053), k3 (0.0008 vs 0.0141) and Ki (0.0008 vs 0.0119), all with 

p<0.0001 .The difference in K1 in individual patients was 101% on average with a maximum 

of 150%, as shown in Figure 6. Compared with the population-based DBIF, the 

optimization-derived DBIF significantly increased the mean values of k3 (0.0011 vs 0.0141, 

p<0.0001), k4 (0.0196 vs 0.0534, p=0.0034), Ki (0.0010 vs 0.0119, p<0.0001) and vb 

(0.0003 vs 0.0229, p<0.0001). Although the mean values of K1 by the optimization-derived 

DBIF and population-based DBIF models are similar to each other (0.9787 vs. 0.9829), K1 

values by the two models were very different in each individual patient (Figure 6). The 

change was 27% on average with a maximum of 44%.

Association with Histopathologic Data

Figure 7 shows the associations of histopathologic grades of liver inflammation with FDG 

K1 by different input models. The standard boxplots reflect the median, 25% percentile and 

75% percentile of K1 in each of low, medium and high inflammation groups. Overall, FDG 

K1 value decreased as inflammation grade increased. The results of statistical t test for 

comparing group means and U test for comparing group medians are summarized in Table 3. 

Neither the SBIF model nor the population-based DBIF model could differentiate low, 

medium and high inflammation groups (p>0.05). Because of the larger overlap between the 

low and high inflammation groups in K1 by the SBIF and population-based DBIF models, 

the p values of the t test were even higher than that of differentiating medium versus high 

inflammation groups. In comparison, K1 by the optimization-derived DBIF model was better 

associated with the inflammation grades and differentiated low versus high inflammation 

groups and medium versus high inflammation groups (p<0.05).

The capability of other kinetic parameters 𝑘2,3,𝑘4 and 𝐾𝑖 for differentiating different 

inflammation groups are summarized in Table 4. No kinetic parameter was able to 

differentiate inflammation groups, though k3 and Ki by the population-based DBIF tended to 

differentiate low versus high inflammation groups. The boxplots of k3 and Ki by different 
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input models are shown in Figure 8. k3 by the population-based DBIF achieved statistical 

significance (p=0.0444) in the t test but not in the U test (p=0.0794), both p values larger 

than that of Ki. The optimization-derived DBIF did not improve the p values of k3 and Ki as 

compared with the population-based DBIF. This may indicate there is no inherent 

association between these kinetic parameters and liver inflammation, given that the former 

had better statistical fit quality than the latter as demonstrated by AIC (Figure 5) and F test 

(Table 2).

The associations of liver inflammation grades with SUV, fat-adjusted SUV (31), and the 

metabolic rate of glucose by Keramida’s Patlak analysis (MRglu-KP) (32) are shown in 

Figure 9. The p values of t and U tests are reported in Table 5. No association was 

statistically significant. While SUV had no association with inflammation (p>0.5), the fat-

adjusted SUV corrected by CT values (31) tended to increase in high-grade inflammation 

(p≈0.1). MRglu- KP was calculated using blood glucose level and the Patlak intercept in 

addition to the Patlak slope (32) and thus had a trend different from Ki in Figure 8. We also 

applied the correction factor of fat-adjusted SUV to obtain fat-adjusted K1, which however 

reduced the association between K1 and inflammation (Table 5).

DISCUSSION

Determination of liver inflammation in nonalcoholic fatty liver disease patients is crucial in 

differentiating serious NASH from simple hepatic steatosis. Dynamic FDG-PET with kinetic 

modeling has the potential to provide a noninvasive imaging biomarker for characterizing 

hepatic inflammation. Accurate kinetic modeling of dynamic liver FDG-PET data requires 

consideration of the effect of dual-blood supplies in the liver. Although the input function 

from the hepatic artery can be derived from the aorta in the dynamic images, it is difficult to 

derive the portal vein input function from dynamic PET because the size of portal vein (10–

15mm) is small compared to the spatial resolution of clinical PET scanner (4–8mm). Partial 

volume effects, noise and respiratory motion all can contaminate the accuracy of the portal 

vein input function.

The standard SBIF model simply neglects the portal vein input which theoretically 

represents more than 80% of the total blood input. Neglecting the PVIF causes 

overestimation of the peak value of the input function and subsequently results in inaccurate 

estimation of FDG kinetic parameters. The K1 parameter, which reflects the scale between 

the blood input function and the tissue TAC (see Eq. 4 and Eq. 5), can hence be 

underestimated by the fitting process to compensate for the higher peak value of the SBIF. 

To account for the dual-blood supply effect, we applied the population-based DBIF model 

(21,36) in this study. It improved TAC fitting with lower AIC and higher F values than SBIF 

but did not improve association of the FDG biomarker with inflammation grades. This can 

be explained by the fact that the population model is not adaptive to individual objects and 

thus might not provide the optimal estimation.

The optimization-derived DBIF model estimated the PVIF adaptively and provided the best 

performance according to TAC fitting quality and association with histopathological 

inflammation grades. Because the parameters of the input model were jointly estimated with 
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liver tissue kinetic parameters, the estimation was more adaptive to individual patients and 

achieved lower AIC and higher F values. In this study, the vb estimates were very small but 

increased by the new model, though the values were still smaller than expectation in the liver 

(36). This is possibly explained by the difference between image-derived input function and 

arterial blood input. Similarly, the fA estimates were far smaller than the population mean 

0.25 that was reported based on arterial sampling. This may also be in part due to the 

capability of being adaptive to individual patient data. The resulting K1 parameter estimates 

were different from those by population-based DBIF. Both were higher than those by SBIF 

thanks to the correction on overestimation of the input function peak. Although there was no 

ground truth of K1 values for validating the estimates, evaluation of statistical information 

criteria and analysis of association of K1 with liver inflammation grades provided a feasible 

way to prove the improved performance of the modified DBIF model.

In addition to establishing the kinetic modeling method for dynamic FDG-PET 

characterization of liver inflammation, this work adds a new contribution to the 

methodology of dual-input kinetic modeling. We extended and validated the method of 

DBIF modeling using a joint optimization framework. Previously, Kudomi et al estimated 

both aortic input function and parameters of input model from multiple regional liver TACs 

in dynamic FDG-PET (42). Their method, however, is more complex for practical use with 

multiple steps involved. When the tracer distribution is uniform in the liver, TAC data would 

also be less helpful for the estimation of the many parameters in their model. Our method is 

simpler and can be implemented voxel-by-voxel to easily derive parametric images which 

will allow the future study of liver heterogeneity. The proposed method shares a similar 

spirit with the work by Chen and Feng (53) designed for modeling a different tracer 11C-

acetate. The compartmental model used in (53) was irreversible while a reversible model 

was required in our study for FDG modeling. Rani et al also used a similar DBIF model for 

modeling FDG kinetics in rat liver (54). Their model uses a fixed fA and 4 free dispersion 

parameters (as opposed to 1 parameter in this work), which is more flexible but results in 

higher variability. Garbarino et al proposed a more complex model for mouse imaging by 

including the gut as another compartment (35). The model has 9 free parameters if fA is 

included and requires definition of the gut TAC. Thus, the current work has complemented 

existing studies to establish the optimization-derived DBIF modeling method. Our method 

can be easily implemented without additional operations.

Another notable aspect of this work is the validation of dual-input kinetic modeling using 

histopathological reference. All existing studies of dual-input kinetic modeling were only 

able to validate the DBIF approaches in animal studies (e.g., pigs (36,37), foxhounds (21), 

rodents (35,54)) or demonstrated the improvement using statistical TAC fitting quality in 

human patients (53). No studies had demonstrated an impact on physiological measurements 

by using a histopathological ground truth. In comparison, the present work provided direct 

evidence on the impact of DBIF on improving association of the FDG-PET biomarker with 

histopathological inflammation in human patients.

Using the optimization-derived DBIF model, we found that FDG K1 decreases as liver 

inflammation grade increases (Figure 7). This result is consistent with previous findings that 

perfusion reduces in NASH (55,56), given that FDG K1 from a 3-minute early-dynamic 
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FDG-PET scan reflects hepatic blood flow (37). Nevertheless, FDG K1 in this study was 

derived from one-hour dynamic data. It characterizes the overall delivery rate of FDG from 

blood to hepatic tissue and may also relate to the expression level of glucose transporters 

(34), though FDG has a high extraction fraction in the liver as compared to other organs 

such as the brain. Winterdahl et al. (37) also pointed out that FDG K1 estimated by a scan 

longer than 3 minutes was less correlated with liver blood flow. It is worth further 

investigation to determine whether blood flow only or its combination with glucose 

transporters decides the association of FDG K1 with liver inflammation. Our study also 

indicated that SUV and other kinetic parameters were not correlated with inflammation 

grades. FDG k3 and fat-adjusted SUV tended to increase in liver inflammation, but the 

associations did not achieve statistical significance. Thus, FDG K1 can be the major 

parameter of interest in future studies.

Earlier studies showed that liver fat content has a modulating effect on hepatic physiology 

including perfusion, fatty acid metabolism, and glucose metabolism as measured by PET 

(57) and it is necessary to correct FDG SUV and Ki for the fat content (30). This study 

showed that fat-adjusted K1 had poorer association with liver inflammation than non-

adjusted K1, suggesting a potential effect of liver fat content on hepatic inflammation. This 

result complements existing observations.

There are limitations with the present study. Histopathological inflammation can vary across 

different spatial locations in the liver. The statistical analysis of PET data in the study was 

not specific to the location of biopsy. This is because accurate biopsy location information 

was difficult to obtain even with ultrasound guidance and was not available in this study. We 

chose to analyze the PET data based on the whole liver region to achieve robustness to 

locations and to noise in PET data. It is noted that all the evaluated kinetic models did not 

achieve a statistical significance (p>0.05) in differentiating low versus medium inflammation 

levels (Table 3), though the FDG K1 values by the optimization-derived DBIF model tended 

to differ in the two groups (Fig. 6C). This might be limited by the number of samples 

(N=14) in this study and is worth further investigation in a larger number of subjects. Note 

that this study did not include healthy subjects. It is therefore more difficult to reach 

statistical significance than in other studies comparing patients to healthy subjects. The 

optimization-derived DBIF model contains two additional parameters as compared with the 

standard 3-compartment model, which may result in higher variability in parameter 

estimates. The nonlinear least-square estimation by the Levenberg-Marquardt algorithm may 

also suffer from local minima. While the better fit quality of the new model has been 

confirmed by statistical criteria including AIC and F test, our future work will investigate the 

structural identifiability of the new model using mathematical analysis and investigate 

practical identifiability using Monte Carlo simulation.

It is possible that k3 is inherently associated with liver inflammation but the association 

could not be extracted from the data because of noise. k3 may physiologically represent 

FDG transport instead of phosphorylation, as indicated by Bertoldo et al. in the study of a 4-

compartment model in skeletal muscle (58). Also, in contrast to standard Patlak plot which 

underestimates Ki when k4 is not small, the generalized Patlak plot (59,60) considering the 

effect of nonzero k4 can be potentially used to improve Keramida’s analysis. In addition, 
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advanced image reconstruction algorithms (61) such as direct reconstruction (62) or the 

kernel method (63) may provide a hope to reduce the variability of kinetic parameter 

estimates, given vendors have started to implement sophisticated four-dimensional 

reconstruction algorithms for whole-body parametric imaging on new PET scanners (64,65). 

Recent development of high-sensitivity PET scanners such as the EXPLORER (66,67) 

further provides a new opportunity for obtaining reliable estimation of k3 and even k4 to 

examine their possible role in characterizing liver inflammation. All these are of interest and 

value in future studies.

CONCLUSION

In this study, we examined three different kinetic models for analyzing dynamic FDG-PET 

data for characterizing liver inflammation. Statistical fit quality metrics and analysis of 

association with histopathology indicated that modeling of DBIF is crucial for accurate 

kinetic modeling of liver time activity curves. The optimization-derived DBIF model 

improved the association of FDG K1 with liver inflammation grades and was more 

appropriate than traditional single-blood input function and population-based DBIF for 

dynamic FDG-PET kinetic analysis in human NASH studies.
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FIGURE 1: 
Kinetic modeling of dynamic liver FDG-PET data with a dual-blood input function from the 

hepatic artery and portal vein.
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FIGURE 2: 
Example of optimization-derived DBIF and its components from the hepatic artery and the 

portal vein: image-derived SBIF and portal vein input function (PVIF).
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FIGURE 3: 
Comparison of optimization-derived PVIF minutes; Right: Zoom-in of (A) for the first 5 

minutes.
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FIGURE 4. 
Fit of a liver TAC using different input models: (A) SBIF, (B) population-based DBIF, (C) 

optimization-derived DBIF; (D-F) corresponding residual plots of the fits in (A-C).
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FIGURE 5: 
AIC values of liver TAC fitting with different input function models.
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FIGURE 6: 
FDG K1 values estimated by different input function models.
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FIGURE 7: 
Association of histopathological inflammation score with FDG-K1 estimated by different 

input models. (A) Image-derived SBIF; (B) Population-based DBIF; (C) Optimization-

derived DBIF
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FIGURE 8: 
Association of liver inflammation score with FDG k3 (top row) and Ki (bottom row) 

estimated by different input models. (A) Image-derived SBIF; (B) Population-based DBIF; 

(C) Optimization-derived DBIF.
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FIGURE 9: 
Association of liver inflammation score with different glucose utilization parameters. (A) 

Standard SUV; (B) Fat-adjusted SUV; (C) Metabolic rate of glucose by Keramida’s Patlak 

analysis (MRglu-KP).
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Table 1:

F statistics of model comparison (F critical value is 3.2 at the significance level of 0.05)

Model Comparison
F values

p values
Mean±SD Min Max

Optimization-Derived DBIF
vs SBIF

200.2±102.7 80.5 389.9 <0.0001

Optimization-Derived DBIF
vs Population-Based DBIF

67.5±43.7 13.4 137.7 <0.0001
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Table 2:

Mean and standard deviation of FDG kinetic parameters estimated by different input function approaches

SBIF Population-Based
DBIF

Optimization-Derived
DBIF

K1 0.5112±0.2064 0.9787±0.5509 0.9829±0.2730

k2 0.4983±0.1760 0.9197±0.4222 1.1053±0.2488

k3 0.0008±0.0010 0.0011 ±0.0011 0.0141±0.0070

k4 0.0512±0.0465 0.0196±0.0291 0.0534±0.0263

Ki 0.0008±0.0010 0.0010±0.0011 0.0119±0.0051

vb 0.0000±0.0000 0.0003±0.0010 0.0229±0.0252

fA - 0.25 0.0440±0.0544

ka (or β) - 0.50 1.9002±1.2560
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Table 3:

P values of t test and U test for comparing different liver inflammation groups using FDG K1 estimated by 

SBIF, population-based (PB) DBIF, and optimization-derived (OD) DBIF.

Group Comparison
T test U test

SBIF PB DBIF OD DBIF SBIF PB DBIF OD DBIF

Low vs. medium
inflammation

0.2733 0.3158 0.3121 0.5556 0.5556 0.5556

Medium vs. high
inflammation

0.0826 0.0941 0.0242 0.1508 0.1508 0.0317

Low vs. high
inflammation

0.1206 0.1707 0.0116 0.0635 0.1905 0.0317
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Table 4:

P values of T test and U test for comparing different liver inflammation groups using other FDG kinetic 

parameters estimated by SBIF, population-based (PB) DBIF, and optimization-derived (OD) DBIF.

Group
Comparison

FDG
Parameter

T test U test

SBIF PB DBIF OD DBIF SBIF PB DBIF OD DBIF

k2 0.5894 0.5465 0.7848 0.7302 0.9048 1.0000

Low vs. medium k3 0.9321 0.2755 0.5661 1.0000 0.2381 0.5556

inflammation k4 0.8121 0.2861 0.9427 1.0000 0.4603 1.0000

Ki 0.9367 0.3345 0.9509 1.0000 0.5556 0.9048

k2 0.1123 0.1320 0.1021 0.1508 0.3095 0.1508

Medium vs. high k3 0.9355 0.3478 0.7661 0.8413 0.4127 0.6905

inflammation k4 0.9975 0.7663 0.7269 1.0000 1.0000 1.0000

Ki 0.8636 0.3862 0.9702 0.8413 0.4127 1.0000

k2 0.3112 0.3276 0.2042 0.7302 0.9048 0.2857

Low vs. high k3 0.9955 0.0444 0.4885 1.0000 0.0794 0.5556

inflammation k4 0.8140 0.2223 0.7107 0.8095 0.2540 1.0000

Ki 0.7955 0.0580 0.9263 0.9683 0.0794 1.0000
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Table 5:

P values of t test and U test for comparing in different liver inflammation groups using standard SUV, fat-

adjusted SUV (fSUV), metabolic rate of glucose by Keramida’s Patlak analysis (MRglu-KP), and fat-adjusted 

K1 (fK1).

Group
Comparison

T test U test

SUV fSUV MRglu-
KP

f K1 SUV fSUV MRglu-
KP

fK1

Low vs. medium inflammation 0.7678 0.7386 0.4543 0.3110 0.9048 0.9048 0.7302 0.4127

Medium vs.
high inflammation

0.9709 0.1287 0.1139 0.1672 1.0000 0.2222 0.2222 0.3095

Low vs.high
inflammation

0.7494 0.1069 0.3690 0.0827 0.7302 0.1111 0.5556 0.1111
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