
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Harvesting-aware and Quality-aware Energy Management for Solar-powered Embedded 
Systems

Permalink
https://escholarship.org/uc/item/5sf072p9

Author
Dang, Nga

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5sf072p9
https://escholarship.org
http://www.cdlib.org/


 

 

 
 
 
 

UNIVERSITY OF CALIFORNIA, 
IRVINE 

 
 

Harvesting-aware and Quality-aware Energy Management 
for Solar-Powered Embedded Systems 

 
 

THESIS 
 

submitted in partial satisfaction of the requirements 
for the degree of 

 
 

Doctor of Philosophy 
 

in Computer Science 
 

by 
 

Nga Dang 
 
 
 
 
 
 

Thesis Committee: 
Associate Professor Eli Bozorgzadeh, Chair 

Professor Nalini Venkatasubramanian 
Associate Professor Moonju Park 

Assistant Professor Marco Levorato 
 
 
 
 
 
 

2015 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

© 2015 Nga Dang



ii 

 

 
 
 

DEDICATION 
 
 
 

To 
 
 

my mother and my husband 
 
 

in recognition of their worth, 
and their unconditional love and enormous support during my PhD 

 
 

If, just once during his lifetime, 
he could make one other person happy, 

then he, 
too, 

would be happy. 
- Yasunari Kawabata 

 
 
 
 
 
 
 
 
 
 
 
 
 

  



iii 

 

TABLE OF CONTENTS 
 

                          Page 
 
LIST OF FIGURES                              v 
 
LIST OF TABLES                          viii  
 
ACKNOWLEDGMENTS                             ix 
 
ABSTRACT OF THE THESIS                              x 
 
CHAPTER 1:  Introduction                             13        

1. 1  Energy Sustainability Approaches for Smart Spaces                            16   
              1.2   Energy Harvesting as a Promising but Challenging Solution for  
                       Embedded Systems                             20 
              1.3   Application Quality of Services and Variations                            24 
              1.4   Focus of the Dissertation                            25 
              1.5   SQUARES – Smart Quality-aware Renewable Energy System Middleware 
Framework Overview                             29 
 
CHAPTER 2: Energy Harvesting Embedded System Background                           33  
             2.1 Energy Harvesting Sources                           35 
             2.2 Energy Harvesting Circuit Components                           38 
 2.2.1 Energy Transducer                           38 
 2.2.2 Energy Harvesting Circuit                           39 
 2.2.3 Energy Storage Subsystem                           43 
 2.2.4 Case study of Energy Harvesting Embedded Systems                         45 
             2.3 Software Stack                            49 
             2.4 Networked Energy Harvesting Embedded Systems                                           56 
 
CHAPTER 3: Quality-aware Energy Management Framework for Harvesting 
              Wireless Sensor Networks                                  64  
              3.1   Related Work                             67 
              3.2   Data Quality in Energy Harvesting Systems                            68                            
              3.3 Problem Formulation                            72 
 3.3.1 Stage 1: Budget Allocation and Baseline Data Quality Assignment  76 
 3.3.2 Stage 2: Online Dynamic Adaptation                            78 
              3.4   Evaluation                             80   
              3.5   Case Study - Indoor Energy Harvesting Systems in Sensorized  
 Infrastructures                                                        87 
              3.6   Prototype System                             91 



iv 

 

              3.6   Conclusion                             92 
 
CHAPTER 4: Quality-Aware Energy Management for Real-time Systems with 
              (m,k) constraints                            95 
              4.1   Introduction                            97 
              4.2   Related Work                          101 
              4.3   System Overview and Proposed Framework                         103 
              4.4   Adaptive multi-level (m,k) constraint QoS model                         106 
              4.5   Algorithms for QoS-Adaptive Energy Management                         112 
 4.5.1 Speed Nominal Computation and Offline QoS Adaptation               113 
 4.5.2 Run-time QoS Adaptation                         120 
 4.5.3 Real-time Scheduler and DVFS                         121 
              4.6   Experiments                          127 
              4.7   Case Study- Smart Camera Systems                         134 
              4.8   Conclusion                          141 
    
CHAPTER 5:  Orchestrated Application Quality and Energy Storage Management    147 
              5.1   Introduction                           148   
              5.2   Related Work                           151                                                             
              5.3   Our Proposed Framework                          156 
              5.4   Target System and Application Model                          168 
              5.5   Algorithm for Application Quality and Energy Charge/Discharge 
 Assignment                           161 
              5.6   Experiments                           168 
              5.7   Conclusion                           174 
  
CHAPTER 6: A Unified Stochastic Model for Energy Management in Solar-Powered 
 Embedded Systems                           176 
              6.1   Introduction                                                   177    
              6.2   Related Work                                                   180    
              6.3   Overview of Proposed Energy Management Framework                            181    
              6.4   A Unified Model for Solar-Powered Embedded Systems                              183    
              6.1   Optimal Policy to Maximize Expected System Performance                       192  
              6.1   Experimental Results                                                  194  
              6.1   Conclusion                                                   200    
 
CHAPTER 7: Conclusions and Future Work                          203 
              7.1   Contribution                                                   204    
              7.2   Limitation and Feasibility of Accomplished Work                                         205    
              7.3   Future Work                           210    



v 

 

LIST OF FIGURES 
 

                          Page 

 
 

Figure 1.1 Solar-Powered Embedded Systems ............................................................................. 16 

Figure 1.2 a) Temporal Variations and b) Spatial Variations in Solar Energy Profile .................... 22 

Figure 1.3 SQUARES as a Middleware .......................................................................................... 26 

Figure 1.4 SQUARES Overview ...................................................................................................... 30 

Figure 2.1 Energy Harvesting System Overview ........................................................................... 34 

Figure 2.2 I-V Characteristics of an Example Solar Cell ................................................................ 40 

Figure 2.3 Architecture of an Energy Harvesting Network ........................................................... 56 

Figure 3.1 Data Collection in Wireless Sensor Networks.............................................................. 68 

Figure 3.2 QuARES Framework ..................................................................................................... 70 

Figure 3.3 Problem Formulation ................................................................................................... 75 

Figure 3.4 Solar Data, Sensor data, and Data Quality ................................................................... 81 

Figure 3.5 Impact of battery capacity on application data ........................................................... 86 

Figure 3.6 Indoor Solar Energy Harvesting Profile ........................................................................ 88 

Figure 3.7 System Operation Time Estimation ............................................................................. 89 

Figure 3.8 System Operation Time by QuARES…………………………………………………………………………92                      

Figure 3.9 Data Quality for ............................................................................................................ 90 

Figure 3.10 Responsphere Infrastructure and Solar Testbed ....................................................... 92 

Figure 4.1 Target System ............................................................................................................ 103 

Figure 4.2 (m,k)_HAM Framework ............................................................................................. 105 

Figure 4.3 Example of a Task under (2,5) Constraint and E-pattern .......................................... 107 

Figure 4.4 Transition Window Example ...................................................................................... 108 

Figure 4.5 E-Pattern Changes as QoS Changes ........................................................................... 108 

Figure 4.6 Scheduling Tasks in Transition ................................................................................... 122 

file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185662
file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185663


vi 

 

Figure 4.7 Solar Harvesting Profile and Prediction for a Week in Elizabeth City and Sacramento, 

Summer and Winter, 2013 .......................................................................................................... 127 

Figure 4.8 Comparison of (m,k)_HAM with Adapted Existing Work, (m,k)_QUARES and 

(m,k)_DVFS .................................................................................................................................. 131 

Figure 4.9 Comparison of Offline and Online QoS Adaptation, .................................................. 133 

Figure 4.10 Harvesting Smart Camera Networks and Systems .................................................. 135 

Figure 4.11 Comparison with Existing work, Case Study – Feature Extraction Application ....... 138 

Figure 4.12 Comparison with Existing Work, Case Study – Object Identification Application ... 140 

Figure 5.1 Networked Energy Harvesting Multi-Sensor Systems ............................................... 149 

Figure 5.2 Hybrid Energy Storage Architecture Variant 1 .......................................................... 152 

Figure 5.3 Hybrid Energy Storage Architecture Variant 2 .......................................................... 153 

Figure 5.4 Hybrid Energy Storage Architecture Variant 3 .......................................................... 153 

Figure 5.5 Slot-based Energy Harvesting and Budget Allocation Example ................................. 155 

Figure 5.6 Our Proposed Middleware Framework for Energy-Storage-aware Application Quality 

Adaptation .................................................................................................................................. 157 

Figure 5.7 Hybrid Energy Storage Subsystems ........................................................................... 159 

Figure 5.8 Winter QoS and Daily SoH/Lifetime Degradation ...................................................... 172 

Figure 5.9 Summer QoS and Daily SoH/Lifetime Degradation ................................................... 172 

Figure 6.1. Overview of Energy Management Framework for Solar-Powered Supercapacitor-

based Embedded Systems .......................................................................................................... 182 

Figure 6.2. System State Evolution in a Harvesting Period ......................................................... 184 

Figure 6.3. An Example of Non-stationary Markov Chain with System States and Transition 

Edges ........................................................................................................................................... 185 

Figure 6.4. Solar Profile Combined of a Deterministic Curve and Fluctuations ......................... 186 

Figure 6.5. Weather Process Markov Chains .............................................................................. 187 

Figure 6.6. Application Process Markov Chain ........................................................................... 188 

Figure 6.7. Converter Efficiency .................................................................................................. 190 

file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185681
file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185688
file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185689
file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185690
file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185690


vii 

 

Figure 6.8. Weather Process Markov Chain ............................................................................... 197 

Figure 6.9 Comparison with Deterministic Approach for a Week, Single Application State ...... 198 

Figure 6.10 Comparison with Deterministic Approach for a Week, Multiple Application States

..................................................................................................................................................... 201 

 

       
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185697
file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185698
file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185699
file:///C:/Users/ntdang/Documents/Research/Research/Topic%20defense/Dissertation_library.docx%23_Toc421185699


viii 

 

 
 

LIST OF TABLES 
 

 
 

                          Page 

 

Table 2.1 Energy Harvesting Sources ............................................................................................ 36 

Table 2.2 Comparison of Rechargeable Battery Types (adapted from [4] and [12]) ................... 44 

Table 3.1 Comparison Results ....................................................................................................... 83 

Table 3.2 Comparison results ....................................................................................................... 85 

Table 3.3 Indoor Light Energy Harvesting ..................................................................................... 87 

Table 3.4  Measurement of Solar Panel Output at Various Locations in UCI ............................... 91 

Table 4.1 Processor PXA270 DVFS Configuration ....................................................................... 129 

Table 4.2 Feature Extraction Application and Individual Tasks’ Execution Time (ms) for Different 

Image Resolutions ....................................................................................................................... 136 

Table 4.3 Feature Detection Experimental Results .................................................................... 137 

Table 4.4 Object Detection Application and Individual Tasks’ Execution Time (ms) for Different 

Image Resolutions ....................................................................................................................... 139 

Table 4.5 Object Identification Result for Image Size 64x64 and 128x128 ................................ 140 

Table 4.6 Object Identification Result for Image Size 256x256 .................................................. 140 

Table 5.1 Quantized QoS Levels for Temperature Sensor QoS level .......................................... 169 

Table 5.2 QoS Levels for Low-power Camera QoS Level Configuration Energy Consumption per 

Slot (mJ)....................................................................................................................................... 170 

 

 
 
 
 



ix 

 

 
 

ACKNOWLEDGMENTS 
 

I wish to thank those who have inspired and supported me during my PhD. First and 
foremost, I would like to thank my advisor, Prof. Eli Bozorgzadeh, who has constantly 
supported, guided me, and gave me countless valuable suggestions. I would also like to 
thank my committee, Prof. Nalini Venkatasubramanian for her inspiration and insights on 
wireless sensor networks, Prof. Moonju Park for teaching me real-time system principles 
and Prof. Marco Levorato for introducing me to Markov Chain.  
 
I wish to thank my parents and my family, especially my mother and my husband, Rosario 
Cammarota for their precious love, constant support, and care which give me strength 
every day. But more than anything, their working ethic, passion, and dedication inspired 
my journey.    
 
I wish to thanks my best friend at UC Irvine, Siripen Pongpaichet, her humility reminded 
me to work harder and her care was important during my last 2 years of PhD. I wish to 
thanks all colleagues that have co-authored some of the work presented in this 
dissertation. And thanks to many friends I met at Irvine who brought joy to my life. 
 
Through this PhD journey, I have learnt many lessons. I feel thankful for this opportunity to 
understand myself, my strengths and my weaknesses, and to become a better person.  
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 



x 

 

 
 
 

ABSTRACT OF THE THESIS 
 

Harvesting-aware and Quality-aware Energy Management 
in Solar-Powered Embedded Systems 

 
By 

 
Nga Dang 

 
Ph.D in Computer Science 

 
University of California, Irvine, 2015 

 
Associate Professor Eli Bozorgzadeh, Chair 

 
 

 
Embedded system market growth is fast in the last couple of decades, especially with the 

current demand for embedded processing to support IoT services. However, to power 

billions of IoT devices and embedded systems is a challenge. Energy harvesting has 

emerged as a promising power supply alternative for embedded systems, enabling systems 

to convert renewable energy sources in the surrounding environment (e.g., solar, wind, 

thermal, kinetic energy) to electrical energy. Nevertheless, these renewable energy sources 

often exhibit temporal and spatial variations, which cause uncertainties and fluctuations in 

the energy supply of the systems. Furthermore, the complex non-ideal characteristics of 

harvesting circuit components such as converters and the energy storage make it even 

more challenging for energy management. In this thesis, I propose a harvesting-aware and 

quality-aware energy management middleware framework for solar-powered embedded 



xi 

 

systems, modeling them as complete Cyber Physical Systems, optimizing performance 

(Quality of Service), and tackling their mentioned challenges.   

The energy management middleware framework exploits energy harvesting history, 

patterns, and prediction algorithms to extrapolate solar harvesting in the next harvesting 

period. The prediction is used by an offline algorithm to assign QoS for each time slot in the 

next harvesting period. The objective is to maximize total QoS while meeting energy 

harvesting constraints. An online adaptation phase is employed to adjust QoS assignment if 

actual harvesting profile deviates from offline prediction. This thesis explores the notion of 

application QoS and QoS adaptation in two middlewares for two types of systems: 

communication-intensive and computation-intensive. In communication-intensive systems, 

such as wireless sensor networks, where majority of tasks (and energy consumption) are 

sending and receiving messages, I exploit the tolerance to data inaccuracy in data 

transmission. In computation-intensive systems such as real-time systems, application QoS 

can be expressed as quantity and distribution of real-time task completion. In particular, I 

target firm real-time systems with adaptive QoS.  

Furthermore, energy harvesting embedded systems require energy storage to smooth out 

fluctuations and to store energy for long term operation. Two types of commonly used 

energy storage elements are batteries and supercapacitors. Frequent charging and 

discharging activities accelerate the aging of batteries while supercapacitors suffer from 

high leakage. Therefore in this middleware, in orchestration with QoS adaptation, I propose 



xii 

 

algorithms to keep battery aging under threshold and reduce leakage from 

supercapacitors.  

Lastly, as an alternative to prediction-based deterministic approach, I explore stochastic 

modeling using Finite State Markov Chain and propose a novel unified stochastic model 

and optimization for solar-powered embedded systems. Experimental results show that 

stochastic model improves the systems’ ability to capture and adapt to variations in the 

energy harvesting supply and application demand.  

 

 

 

 

 

 

 

 

 

 



13 

 

 

Chapter 1 Introduction 

 

Embedded Systems growth is tremendous in the last couple of decades. Numbers reported by BCC 

research showed that billions of revenue was generated from worldwide embedded system sale 

[1]. Embedded System growth was double in all sectors between 2004 and 2009, from consumer 

appliances, automotives, medical devices, to industry/military equipments. The emergence of 

Internet of Things (IoT) gives even a greater boost to embedded systems growth. It is predicted by 

Cisco that there will be 50 billion of IoT devices connected to the Internet by 2020 [2] and the root 

of all these IoT services will be embedded systems with sensing, processing, and communicating 

ability [3].  

A basic but important question is how we could power these 50 billion of IoT devices and 

embedded systems. Sustainability, including energy sustainability is a key challenge for embedded 

systems. A sustainable embedded system is endurable, providing continuous service or with 

minimal disruption during its long lifetime. To achieve this goal, embedded systems need to rely 

on various methods, such as infrastructure resilience, energy sustainability, to application 

adaptation or all of them. My thesis focuses on energy sustainability aspect of embedded systems. 

For other aspects of sustainability, such as infrastructure resilience or application adaptation, the 

readers are referred to [4, 5]. 



14 

 

Energy sustainable systems must have a reliable and dependable energy supply subsystem which 

could be the characteristics of the energy source itself or could be provided through a good energy 

management layer. The power grid is a dependable energy source as the chance of power outage 

nowadays is small in many countries. However, the power grid is not a suitable power option for 

embedded systems. Embedded systems are often portable or embedded into the physical world. 

An elaborate effort as wiring to a power plug is intrusive and limits the portability or outreach of 

embedded systems.  

Traditionally, to achieve energy sustainability while being non-intrusive, embedded systems rely 

on non-rechargeable batteries. However, batteries have limited capacity and this poses another 

challenge for embedded systems: their lifetime is bounded by the capacity of batteries. For 

example, if a wireless sensor mote runs at full duty cycle, it lasts only several weeks. Wireless 

sensor motes are therefore usually set to operate at low duty cycle, from 1% to 5% to prolong the 

system lifetime while maintaining minimum acceptable quality of services. Still their batteries last 

from 6 months to 1 year. As soon as a wireless sensor mote runs out of battery, a technician must 

replace its exhausted battery to avoid temporary shutdown in their services or lose access to a 

physical area under monitoring by this sensor mote. It is costly to replace batteries (think of the 

labor cost to replace 50 billion of batteries). In scenarios where changing battery is impossible due 

to inaccessibility or high risk such as volcano or battlefield monitoring, out-of-battery sensor 

motes must be discarded and new sensor motes are deployed. Despite many efforts to prolong 

system lifetime and maintain system performance under power-efficient or energy-efficient 



15 

 

management schemes [15, 16], the repetitive high maintenance cost still remains a burden for 

embedded systems.  

There is a need for a new alternative energy supply for embedded systems that can alleviate these 

concerns. A promising power supply for embedded systems is renewable energy. Renewables are 

energy sources that keep replenishing themselves such as solar, wind, kinetic, and thermal energy. 

Their obvious advantages are that they are free, unlimited, no noise, odorless, and completely 

clean. With the advancement of energy harvesting technologies and system development, 

embedded systems are now able to transform renewable energy in the surrounding environments 

into electrical power [5, 17, 18]. Energy harvesting embedded systems last perpetually only 

subject to hardware aging and failures. This emerging technology makes it feasible to build 

embedded systems that are truly energy sustainable, nonintrusive, with low maintenance cost and 

long lifetime. There are existing systems integrated with energy harvesting technologies from the 

macro level down to the micro level, from solar farms, smart grids, solar-powered houses, cars, to 

solar-powered wireless sensor motes and surveillance cameras. My thesis focuses on micro-scale 

energy harvesting systems. I define the concept of micro-scale energy harvesting embedded 

systems as opposed to macro-scale energy harvesting systems (such as solar or wind farms) as 

follow: 

“Energy Harvesting Embedded Systems are small low power embedded devices which have 

energy harvesting subsystems capable of harvesting energy from the surrounding 

environment to fully or partially power the whole system, hence attain almost perpetual 

system lifetime.”  



16 

 

 

Figure 1.1 Solar-Powered Embedded Systems 

Figure 1.1 shows the hardware architecture of a solar-powered embedded system. This thesis 

focuses on solar harvesting because of its high harvesting potential and accessibility. Each 

embedded system is equipped with a solar panel (or an array of solar panels) to harvest energy 

from solar irradiance. The solar panel voltage is controlled by an energy harvesting unit which 

employs a Maximum Power Point Tracking (MPPT) method to optimize the generated power. 

Harvested energy is stored in the energy storage. Two typical energy storage elements are 

batteries and supercapacitors. To isolate solar panel optimal voltage from energy storage voltage, 

a buck/boost converter is added to the energy harvesting unit. Energy storage supplies power to 

the embedded processor through another DC-DC converter which matches supply voltage with the 

embedded processor’s required operating voltage. Embedded processors run applications that 

provide services or information to users.  

1.1 Energy Sustainability Approaches for Smart Spaces  

In this section, I present several views and approaches of energy sustainability in a larger scope, 

beyond embedded system, WSNs, or IoT, i.e., energy sustainability for smart spaces. I show that 

among these approaches, energy harvesting is still the most suitable approach for sustainable 

Energy 
Harvesting 

Circuit

Energy 
Storage

Embedded 
Processor



17 

 

embedded systems. Smart spaces mostly refer to enclosed well-structured areas such as a 

building, a house, a meeting room whose physical infrastructure is well integrated with 

computing, communication technologies, and energy systems. Smart spaces are extended to larger 

scale and more sophisticated (and/or open) spaces such as an instrumented campus composed of 

several smart buildings, smart parking lots, and smart outdoor spaces (e.g., Responsphere 

infrastructure on UCI campus [6]). 

Approaches for energy sustainability in smart spaces should consider the entire energy system in 

a holistic way, not only reducing total energy usage, peak load, or enabling Smart Grid architecture 

integration but also considering any side-effects on occupant behaviors, and possible pollutants. 

To achieve energy sustainability in smart spaces, there have been works proposed in the following 

categories: 

Energy awareness increase: It is important to make building occupants aware of their energy 

usage by leveraging sensing systems together with visualization and other forms of media (such as 

smart phones, apps, social networks) to convey relevant information to users. This can make an 

impact and influence their behavior towards a more parsimonious usage of utilities including 

electricity, gas, heating, water, etc. 

Smart buildings, smart apps: Novel approaches are needed to predict, monitor, and actuate the 

systems in smart spaces in order to reduce energy consumption. The SYNERGY Labs at UC San 

Diego performed multiple research projects on smart buildings [7, 8]. The team employed 

occupancy sensors that can tell when a room is empty, and had these detectors communicate with 



18 

 

a smart controller to adjust the existing HVAC system in real time, reducing their energy waste [9]. 

The wireless occupancy sensors are claimed to be easy-to-use and do not require any alteration to 

existing energy systems. These sensors achieve accuracy of 96% and are calibrated to never 

assume a room is empty when someone is around. 

Smart meters: A smart meter is an electrical meter that records consumption of electric energy in 

houses in intervals of an hour or less and communicates that information at least daily back to a 

utility plant for monitoring and billing purposes [10]. Such an advanced metering infrastructure 

(AMI) differs from a traditional automatic meter reading (AMR) in that it enables two-way 

communications between a meter and a central system. Novel infrastructure and communication 

standards are needed for collecting data from smart meters and energy-related information in 

smart spaces. However, there are security and privacy issues related to smart meters which must 

be addressed [11].  

Smart materials: Smart materials are those that can adapt themselves to the environment 

conditions and user needs. A smart material such as smart glass (also called smart windows or 

switchable windows for homes, skylights, and transportation vehicles) refers to electrically 

switchable glass which changes light transmission properties when a voltage is applied to it [12, 

13]. Current smart glass technologies include electrochromic devices, suspended particle devices, 

and liquid crystal display. When activated, the glass changes from transparent to translucent, 

partially blocking light while maintaining a clear view through the glass. The use of smart glass 

can save cost for heating, air conditioning, and lighting, and avoid the cost of installing and 

maintaining motorized light screens, blinds, or curtains. Smart glass however increases 



19 

 

installation costs and requires the use of electricity and a control system for dimming and 

changing transparency. Smart glass is just one example of smart materials for smart spaces; other 

smart materials such as smart lighting to increase energy efficiency in smart spaces are still in 

research and at initial production.  

Smart Grid: Smart Grid is a digitally enabled electrical grid that gathers, distributes, and acts on 

information about the behavior of all participants (suppliers and consumers) in order to improve 

the efficiency, reliability, economics, and sustainability of electricity services. One example is the 

Irvine Smart Grid Demonstration project [14] whose goals are: 1) Reducing customers’ utility bills 

by shifting usage loads to off-peak hours or using an energy storage to buffer energy at low price. 

2) Optimizing the performance of the electric grid, renewable generation and energy storage, and 

3) Scalability. They applied various cutting-edge technologies including smart meters, smart 

appliances, solar panels, electric vehicles, and smart electric distribution circuits. A project 

concept was successfully deployed around University Hills housing community on the UC Irvine 

campus.  

Renewable energy: An alternative to achieve energy sustainability in smart spaces is energy 

harvesting. Energy harvesting technologies help systems to capture and transform renewable 

energy in the surrounding environment (such as solar irradiance, wind, kinetic, or thermal 

energy) to electrical energy to power systems themselves. One characteristic which makes energy 

harvesting approach unique and different from other sustainability approaches is that energy 

harvesting does not attempt to reduce the energy consumption of the system since it does not 

withdraw energy from the grid. It instead relies on the environment to sustain. Furthermore, it 



20 

 

can be integrated into Smart Grids and become a cooperative part in these emerging systems. 

There should be innovative tools to model and visualize energy expenditure, production, and 

utilization of renewable energy. 

Many above approaches address sustainability of various components in smart spaces but only 

benefit embedded systems indirectly. For example, smart glasses could be integrated with energy 

harvesting technologies to enhance harvested power for embedded systems. Smart Grid could 

help to reduce energy concern of embedded systems but explicit wiring from its infrastructure to 

embedded systems would defeat their non-intrusiveness goal. Among sustainability approaches 

for smart spaces presented above, renewable energy and energy harvesting techniques have a 

significant direct impact on energy sustainability of embedded systems. Energy harvesting 

embedded systems augment traditional sensing, processing, communicating systems with energy 

harvesting capability to reduce energy concern and prolong their lifetime. However, beside many 

benefits, energy harvesting embedded systems have their own challenges that will be summarized 

in the next section. Energy harvesting technologies revolutionize traditional embedded systems 

but their inherent challenges demand novel solutions at all levels of systems, from hardware to 

software in order to realize their promising energy sustainability. 

 

 



21 

 

1.2 Energy Harvesting as a Promising but Challenging 

Solution for Embedded Systems 

The benefits that energy harvesting technologies bring to embedded systems include but not 

limited to: 

Energy sustainability: Energy harvesting embedded systems operate autonomously on their own 

renewable energy sources which potentially sustain the system for unlimited time subject only to 

hardware aging and failures. 

Environmental friendliness: Energy harvesting utilizes clean energy sources from the 

surrounding environments instead of non-rechargeable batteries which must be discarded after 

use and might not be recyclable. In inaccessible locations, human cannot replace batteries and are 

forced to discard the whole embedded systems while deploying new ones, resulting in a high 

amount of unrecyclable system wastes. On the other hand, renewable energy sources are clean, 

odorless, and noise-free (or low noise). 

Energy scalability: As the energy harvesting embedded systems in a smart space grows in size, 

energy resource is scalable if each embedded system has access to renewable energy sources in 

the environment. Each system’s renewable energy source is largely independent from the others 

(such as solar irradiance) although they could share the same environment. Because of this 

independency, energy resource is scalable. 



22 

 

Low generation and maintenance cost: Users have less concern on installation, energy 

generation, and maintenance of energy harvesting embedded systems. No wire or alteration to the 

current energy infrastructure of smart spaces is needed to support energy harvesting. Except for 

the installation cost, the generation of energy in energy harvesting systems virtually costs nothing. 

Cost in maintenance is much lower compared to traditional battery-powered systems. 

Pervasiveness: Because of all the characteristics above, energy harvesting embedded systems can 

be easily deployed in smart spaces as plug-and-play devices. They can spread and integrate into 

everyday life’s activities effortlessly and non-intrusively. 

On one hand, energy harvesting technologies bring many benefits to embedded systems including 

energy sustainability. On the other hand, energy harvesting embedded systems face several 

challenges listed below and they require smart management framework in order to attain the 

aforementioned benefits. Some of the challenges are due to the inherent nature of renewable 

energy sources; some are general challenges in embedded systems that are exaggerated by the 

dynamic energy sources. I provide a brief overview of these challenges below: 

 

Figure 1.2 a) Temporal Variations and b) Spatial Variations in Solar Energy Profile 

0

1

2

3

4

5

6

7

8

6
:3

4
:1

5

7
:0

9
:1

2

7
:4

4
:0

8

8
:1

9
:0

5

8
:5

4
:0

2

9
:2

8
:5

8

1
0

:0
3

:5
5

1
0

:3
8

:5
2

1
1

:1
3

:4
9

1
1

:4
8

:4
6

1
2

:2
3

:4
3

1
2

:5
8

:4
0

1
3

:3
3

:3
7

1
4

:0
8

:3
4

1
4

:4
3

:3
1

1
5

:1
8

:2
8

1
5

:5
3

:2
5

1
6

:2
8

:2
2

1
7

:0
3

:1
9

1
7

:3
8

:1
6

V
o

lt
ag

e

Time

2/25/2012

2/26/2012

2/27/2012

2/28/2012

2/29/2012 0

1

2

3

4

5

6

7

8

6
:3

4
:1

5

7
:1

4
:1

1

7
:5

4
:0

7

8
:3

4
:0

4

9
:1

4
:0

0

9
:5

3
:5

6

1
0

:3
3

:5
2

1
1

:1
3

:4
9

1
1

:5
3

:4
6

1
2

:3
3

:4
2

1
3

:1
3

:3
9

1
3

:5
3

:3
6

1
4

:3
3

:3
2

1
5

:1
3

:2
9

1
5

:5
3

:2
5

1
6

:3
3

:2
2

1
7

:1
3

:1
8

V
o

lt
ag

e

Time

Room 3074

Room 5082

Room 3091

MR level 5

MR level 3



23 

 

Temporal variations: Renewable energy exhibits both spatial and temporal variations. For 

example, harvesting energy through solar cells highly depends on time of the day, season, and 

weather conditions that affect exposure to direct sunlight at a specific location. Figure 1.2 shows 

our measurement in a building on campus at UC Irvine. Figure 1.2a shows the solar energy profiles 

at the same location for several days in a week. It shows large variations in the energy profiles 

within each day and of adjacent days.  

Spatial variations: Spatial variations refer to the difference in energy harvesting profiles of 

different locations, even ones in close proximity to each other. For solar irradiance, this is due to 

geological differences (latitude, longitude) and solar panel tilts. In addition, static objects such as 

trees and buildings cast different shadow effects on solar panels at different locations. Figure 1.2b 

shows the harvested energy profiles at several locations around a building on a same day. Solar 

panels facing east have peak harvesting in the morning while solar panels facing west have peak 

harvesting in the afternoon. Solar panels that do not have direct sunlight the whole day receive 

indirect sunlight with lower energy potential. Sudden increases/drops in the profiles in Figure 

1.2b was due to objects blocking direct sunlight such as walls or trees. In conclusion, variations in 

scavenging energy from environment, leading to an uncertainty in energy availability during 

system operation, challenge the sustainability in embedded systems.  

Non-ideal behavior of harvesting circuit components: In Figure 1.1, we see that there are two 

converters, one matching the voltage of solar panel and energy storage and another matching the 

voltage of energy storage and the embedded processor.  These converters have varying efficiency 

from 10-40% depending on the input voltage, the output voltage, and the output current. This 



24 

 

significant loss from voltage converters must be considered in energy management. It adds 

complexity as estimating converter loss accurately requires tracking voltages and currents closely. 

During runtime, this tracking is possible but expensive. During offline planning, it is difficult to 

predict solar panel’s output voltage and current, energy storage voltage, and load voltage and 

current as they all vary dynamically in an energy harvesting embedded system. 

Energy storage management: Two commonly used elements for energy storage are batteries 

and supercapacitors. Frequency charging/discharging activities in energy harvesting embedded 

systems have adverse effects on the energy storage. Such frequent activities of different 

magnitudes accelerate battery aging and shorten system lifetime. It may also increase 

supercapacitor leakage and reduce system energy efficiency. 

These characteristics make it challenging to realize all the benefits of an energy harvesting 

embedded system. Therefore, to achieve dependable energy source, an effective energy 

management is required to tackle mentioned challenges. Furthermore, there are general 

challenges for embedded systems that must be taken into consideration by the energy 

management. 

1.3 Application Quality of Services and Variations 

Embedded processor runs applications that provide services or information to users. Their 

performance is hence often measured by the Quality of Services. In smart spaces, unsupervised 

events and environmental changes trigger various applications with sensing, processing, or 



25 

 

communicating tasks to run on the embedded systems. Different applications and different 

demands of the same application in varying scenarios lead to variations in quality of services 

requirement and urgency of response. While aiming for the highest application quality and fastest 

response can resolve the issue, it incurs high energy cost, over design and complexity in 

implementation. Thus, this is often not feasible in practice.  

Application demand and QoS variations: The variations in the application demand appear both 

in time and space domains. For example, the frequency of events such as people entering the main 

entrance of a building changes over time (day vs. night). Frequency of events also changes across 

locations, e.g., the entrance of a building as opposed to a back-door or side-door. Surveillance 

cameras in each of these locations will have variations in their sensing, processing, or 

communicating demands according to event occurrences.  

As the application demand and Quality of Services vary, the energy demand also varies. This is a 

general challenge for embedded systems. However, in an energy harvesting embedded system 

whose energy supply also varies, the problem becomes even more challenging.  

1.4 Focus of the Dissertation 

This dissertation specifically targets harvesting-aware and quality-aware energy management in 

energy harvesting embedded systems, in particular, solar-powered embedded systems. Solar-

powered embedded systems have high accessibility to solar irradiance almost everywhere 

outdoor and even indoor (such as light bulb or through windows). Compared to other renewable 



26 

 

energy sources, solar irradiance also generates significant higher amount of energy (see Table 

2.1). 

I propose an energy management middleware framework called SQUARES (Smart Quality-aware 

Renewable Energy Systems) as shown in Figure 1.3. The objective of the framework is to optimize 

the system performance, measured by application QoS under energy harvesting and system 

constraints. The framework is aware of challenges in energy harvesting (section 1.2) as well as 

application demand and QoS (section 1.3). 

  

Figure 1.3 SQUARES as a Middleware 

SQUARES middleware framework is a software component sitting on top of the embedded 

processor. Its task is to collect information about each embedded system component including 

harvesting history, converter efficiency model, energy storage model, embedded processor, and 



27 

 

applications to build a unified model for solar-powered embedded systems. SQUARES utilizes this 

unified model in its algorithms to make control decision for the systems with the objective to 

maximize application QoS.  

In this dissertation, I developed four middlewares based on SQUARES for energy management in 

solar-powered embedded systems. These middlewares are summarized as follow: 

1. Energy management for Communication-Intensive systems: This middleware targets 

communication intensive systems such as wireless sensor networks and data collection 

application running on such networks. As a preliminary version, this middleware assumes a 

simple energy storage model with maximum capacity and does not consider converter efficiency. 

It exploits prediction algorithms and deterministic planning to tackle harvesting variations.       

2. Energy management for Computation-Intensive systems: This middleware targets 

computation-intensive systems such as real-time systems with periodic tasks. As an improved 

version, it takes into consideration practical energy storage constraints, i.e. supercapacitor and its 

leakage.  

3. Hybrid Energy storage management: This middleware targets solar-powered embedded 

systems with hybrid storage, containing both batteries and supercapacitors. It orchestrates the 

objective of the energy management, optimizing application QoS with energy storage lifetime and 

efficiency.  



28 

 

4. Stochastic Model and Optimization: This middleware takes a different approach from 

previous three middlewares in tackling energy harvesting variations. Instead of using prediction 

and deterministic planning, it employs a stochastic model and optimization method based on 

Finite State Markov Chain to capture the variations in harvesting and application QoS.  

There are many approaches to energy management in solar-powered embedded systems. This 

dissertation focuses on tackling energy harvesting variations and optimizing application QoS 

simultaneously. This dissertation is organized into chapters as follows. Section 1.5 presents the 

overview of our SQUARES middleware. Chapter 2 presents the background of energy harvesting 

systems.  

Chapter 3 introduces communication-intensive systems whose energy consumption is mainly 

spent on data transfer. It presents my energy management middleware for communication-

intensive systems focusing on wireless sensor networks and data collection application.  

Chapter 4 introduces computation-intensive systems in which a large portion of energy 

consumption is spent on task processing. An example of such systems is real-time systems with 

powerful processors for real-time task processing. Chapter 4 presents my energy management 

middleware for computation-intensive systems with a focus on soft real-time systems. The 

middleware exploits task scheduling and DVFS as knobs to tune application QoS and energy 

consumption in order to tackle energy harvesting variations.  

Chapter 5 shows the need for energy storage management in solar-powered embedded systems 

with hybrid storage, batteries and supercapacitors. Hybrid energy storage combines the 



29 

 

advantages of both energy storage elements and uses one element’s strength to complement the 

other’s weakness. Ideally, hybrid energy storage helps to prolong storage lifetime and increase 

energy efficiency. However, energy management for such complex storage subsystem is not 

simple and in this chapter, I show my middleware for hybrid storage management in solar-

powered embedded systems. 

Chapter 6 shows my unified stochastic model and optimization middleware framework based on 

Finite State Markov Chain. Prediction-based and deterministic planning approach works well in 

situation where energy harvesting and application demand variations are not significant. In 

scenarios where harvesting and application demand is hard to predict accurately, stochastic 

model and optimization show its strength. 

Finally, I conclude my work in chapter 7 and show possible directions for future work. In the next 

section, I give an overview of my proposed middleware framework, SQUARES. 

1.5 SQUARES – Smart Quality-aware Renewable Energy 

System Middleware Framework Overview 

SQUARES focuses on solar energy management and its objective is optimizing application QoS 

under system constraints which include energy harvesting variations, harvesting circuit efficiency, 

and energy storage limitations. SQUARES is a middleware framework sitting on top of the 

embedded processor (as shown on Figure 1.3). Since the tasks of this middleware framework is 



30 

 

fairly complicated and it is computational expensive to construct models and run long-term 

planning algorithms on the embedded processor, I divide SQUARES into two phases as shown in 

Figure 1.4: an offline modeling and planning phase running on a server or cloud with unlimited 

power and resources, and an online adaptation and control phase running on the embedded 

processor itself. 

The offline phase of SQUARES first uses a prediction algorithm to extrapolate future energy 

harvesting for the next harvesting period. Prediction algorithms exploit harvesting history, diurnal 

and seasonal patterns, and weather forecast. This prediction is used to plan energy budget and 

QoS assignment for each slot in the next harvesting period.  This plan is built with the knowledge 

of application QoS model and system model. The server then communicates with the embedded 

processor about slot-based QoS assignment via wireless.  

 

Figure 1.4 SQUARES Overview 

The online adaptation on the embedded processor receives this offline planning and applies any 

necessary adaptation according to energy harvesting status, energy storage status, and application 

QoS status tracking at run-time. This updated QoS assignment control the tasks execution on the 

embedded processor. Tasks here can refer to sensing, processing, or communicating, or a 



31 

 

combination of those depending on the nature of the application. Different system configurations 

or application options might be set in order to achieve the desired QoS level, such as frequency of 

sensing and communicating, or the speed at which tasks are processed on the embedded 

processor. 

This is the overview of SQUARES middleware framework. In chapter 2, I will introduce the 

background of energy harvesting systems. In chapter 3-5, SQUARES middleware framework is 

applied in three different systems to solve problems of harvesting variations, application 

variations, and energy storage challenges in solar-powered embedded systems. 

References 

[1] http://cordis.europa.eu/ist/embedded/facts_figures.htm, Source "Future of Embedded Systems 

Technology". BCC Report G-229R 

[2] “The Internet of Things How the Next Evolution of the Internet Is Changing Everything”, White Paper, 

by Dave Evans, https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf 

[3] “What the Internet of Things (IoT) Needs to Become a Reality”, White Paper, 

http://www.freescale.com/files/32bit/doc/white_paper/INTOTHNGSWP.pdf 

[4] “Resilient dependable cyber-physical systems: a middleware perspective”, by Grit Denker, Nikil 

Dutt, Sharad Mehrotra, Mark-Oliver Stehr, Carolyn Talcott, Nalini Venkatasubramanian 

[5] X. Jiang, J. Polastre, and D. Culler, "Perpetual environmentally powered sensor networks ," in IPSN 2005, 

pp. 463-468  

[6] Responsphere infrastructure test bed, 17 March 2011, http://www.responsphere.org/index.php  

[7] Jan Kleissl and Yuvraj Agarwal, "Cyber-Physical Energy Systems: Focus on Smart Buildings" in DAC 

2010 

[8] Yuvraj Agarwal, Bharathan Balaji, Seemanta Dutta, Rajesh K Gupta, Thomas Weng, "Duty-Cycling 

Buildings Aggressively: The Next Frontier in HVAC Control", in IPSN/SPOTS 2011 

http://cordis.europa.eu/ist/embedded/facts_figures.htm
http://www.freescale.com/files/32bit/doc/white_paper/INTOTHNGSWP.pdf
http://link.springer.com/search?facet-creator=%22Grit+Denker%22
http://link.springer.com/search?facet-creator=%22Nikil+Dutt%22
http://link.springer.com/search?facet-creator=%22Nikil+Dutt%22
http://link.springer.com/search?facet-creator=%22Sharad+Mehrotra%22
http://link.springer.com/search?facet-creator=%22Mark-Oliver+Stehr%22
http://link.springer.com/search?facet-creator=%22Carolyn+Talcott%22
http://link.springer.com/search?facet-creator=%22Nalini+Venkatasubramanian%22


32 

 

[9] Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob Lyles, Michael Wei, and Thomas Weng, 

"Occupancy-Driven Energy Management for Smart Building Automation", in Buildsys 2010 

[10] Shang-Wen Luan , Jen-Hao Teng ; Shun-Yu Chan ; “Development of a smart power meter for AMI based 

on ZigBee communication”, in International Conference on Power Electronics and Drive Systems, 2009. 

PEDS 2009.  

[11] P. McDaniel, S. McLaughlin, “Security and Privacy Challenges in the Smart Grid”, IEEE Journal of 

Security and Privacy, volume 7, issue 3, 2009 

[12] C.M. Lampert, “Switchable glazings for the new millennium”, Proceedings of the Eurosun, Copenhagen, 

Denmark, 2000 

[13] C.M. Lampert, “Functional coatings—displays and smart windows”, in: H.A. Meinema, C.I.M.A. Spee, 

M.A. Aegertner (Eds.), Proceedings of the Third International Conference on Coatings for Glass, Maastricht, 

NL, 2000 

[14] Irvine Smart Grid Demonstration Project, 

http://www.sustainability.uci.edu/Resources1/ISGDOverview.pdf 

[15] U. Cetintemel, A. Flinders, Y. Sun, “Power-efficient Data Dissemination in Wireless Sensor Networ”,in 

MobiDE’03 

[16]  T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui, B. Krogh, 

“Energy-Efficient Surveillance System Using WirelessSensor Network”, in MobiSYS’04 

[17] C. Park and P. H. Chou, "AmbiMax: Autonomous Energy Harvesting Platform for Multi-Supply Wireless 

Sensor Nodes," in 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and 

Networks (SECON ), Reston, VA, 2006, pp. 168-177. 

[18] Farhan Simjee and Pai H. Chou, “Everlast: Longlife, Supercapacitor operated Wireless Sensor Node” in 

ISLPED 2006 

 

 

 

 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shang-Wen%20Luan.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jen-Hao%20Teng.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shun-Yu%20Chan.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lain-Chyr%20Hwang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5374437
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5374437
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.McDaniel,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.McLaughlin,%20S..QT.&newsearch=partialPref
http://www.sustainability.uci.edu/Resources1/ISGDOverview.pdf


33 

 

 

Chapter 2 Energy Harvesting Embedded 

System Background 

 

In this chapter, I present a system model for energy harvesting embedded systems, highlight some 

system prototypes and related work at all layers of hardware and software. There are four main 

components in an energy harvesting embedded system: (a) energy transducer (harvesting 

devices), (b) energy harvesting circuit, (c) energy storage subsystem, and (d) the load. Figure 2.1 

shows the hardware/software layer overview of an energy harvesting embedded system. The load 

can be a sensor board, a micro processor or a general purpose processor running a software stack 

and applications. Hardware components of the load also include sensor(s) and radio chip for 

wireless communication. The software stack comprises of the network layer, OS, middleware, and 

the applications. 

Energy harvesting from the surrounding environment are subject to availability of energy sources 

both in time and in space. Classification and characteristics of energy harvesting sources are 

presented in Section 2.1. Energy goes through several transformation steps before being used by 

the load; each step has its own efficiency: conversion efficiency, harvesting efficiency, buffering 

efficiency, and consumption efficiency [1]. 



34 

 

 

Figure 2.1 Energy Harvesting System Overview 

Depending on the location where sensors are deployed, cost, size constraints of the system, and 

power demand of applications, a feasible energy source(s) is identified and suitable energy 

transducers are chosen. In order to select and set up the right configuration for harvesting devices, 

designers must understand harvesting circuit component characteristics and their configuration 

options. I discuss hardware components including energy harvesting circuit and energy storage 

subsystem, their characteristics, and configuration options in Section 2.2. 

A good hardware layer for energy harvesting embedded system is capable of efficiently harvesting 

energy and storing energy in a storage subsystem. However, as the energy storage replenishes at a 

varying rate, it is necessary to have an energy management scheme to address the challenges of 

sustainability and efficiency, to guarantee continuous services and application requirement 

satisfaction. The software stack for energy management in energy harvesting embedded systems 

will be discussed in Section 2.3 

Software
Layer

Hardware
Layer

Energy Transducer

Energy Harvesting 
Circuit

Energy Storage

Network

OS

Sensor

Radio

Application



35 

 

2.1 Energy Harvesting Sources 

Energy harvesting sources are those available in the surrounding environment. Energy harvesting 

sources can be classified into two groups according to characteristics of their source generation: 

• Natural sources are those available readily from the environment such as sun light, wind, and 

geothermal heat. 

• Artificial sources are those generated from human or system activities. They are not part of 

the natural environment. Examples are human motion, pressure (on shoe inserts) when walking 

or running, and system vibration or heat when operating.  

System designers need to take energy harvesting source type into account for two reasons. First, 

natural sources are influenced by natural factors such as weather, temperature, season while 

artificial sources are influenced by schedule of human and machine systems. This will impact, for 

example, prediction mechanism for each harvesting source type. Second, natural sources do not 

cost extra energy to generate. There could be effects on the environment through harvesting 

natural sources at large scale which is outside the scope of our study of energy harvesting 

embedded systems. Artificial sources, on the other hand, require human/machine systems to 

expend energy in order to generate harvestable energy. This generating energy should not be 

considered as a cost if it is used mainly for other purposes such as lighting a room or running a 

computer system. The available harvestable energy is thus just a side effect of these processes. 

However, if the generating energy is mainly used to generate harvestable energy it is considered a 



36 

 

cost. This could happen, for example when a light bulb is turned on for some extra hours just to 

charge a sensor equipped with solar panels; or radio spectrum is generated to charge a RFID 

harvesting sensor. 

Table 2.1 Energy Harvesting Sources 

Energy source Type Typical power 

Outdoor solar light Natural 100 mW/cm2 (outdoor), 

Indoor office light Artificial/Natural 100μW/cm2 (artificial light) – 

10mW/cm2 (filtered solar light) 
Ambient radio frequency Artificial 0.001μW/cm2(WiFi) - 

0.1μW/cm2 (GSM) 
Thermoelectric Artificial 60 μW/cm2 

Vibration Artificial 4 μW/cm3 (human motion) 

800 μW/cm3 (machines) 
Ambient airflow Natural/Artificial 1 mW/cm2 

Acoustic noise Natural/Artificial 960 nW/cm3 

 

Table 2.1 shows different energy sources for harvesting, their source type, and typical harvesting 

power. Energy harvesting sources can be classified into four groups based on two characteristics: 

controllability and predictability [2]. Controllability means whether an energy harvesting system 

has full/partial control over its energy harvesting sources. Predictability means the degree to 

which the energy harvesting source can be modeled and predicted. The four groups are: 



37 

 

 Uncontrollable but predictable: Natural sources are typically uncontrollable but some 

sources exhibit or follow predictable patterns such as solar energy. For artificial sources, 

the schedule and impact of the generating systems or human can be known beforehand or 

be predicted so energy harvesting availability is predictable to a certain degree. However, 

they often operate independently from the harvesting systems and hence they are not 

controllable. 

 Uncontrollable and unpredictable: Natural sources can be uncontrollable and behave in a 

random way. For instance, in mobile systems, the surrounding energy harvesting sources 

are uncontrollable and unpredictable due to the stochastic mobility of the systems. 

 Controllable and predictable: Artificial sources can be fully controlled if a central control 

system, which is authorized to and is capable of coordinating both the generating system 

and the harvesting system, exists. For example, a control system schedules turning on/off 

the lights or charging wirelessly via radio frequency to create harvesting opportunities for 

harvesting systems. It is also possible to predict the availability of artificial sources to some 

extent given the schedule and impact of human and generating system activities. 

 Partially controllable: Artificial sources can be partially controlled by human or systems 

but with uncertain result in energy harvesting. 

Among these four groups, the first group has so far yielded the most research interest, the energy 

sources cannot be controlled but its behavior can be modeled to predict energy harvesting 

availability. Degree of predictability varies according to energy sources and the granularity of 

prediction. Coarse-grained prediction such as on a daily basis in general yields higher accuracy 



38 

 

than fine-grained prediction such as at minute or second intervals. Nevertheless, prediction at 

various time intervals is still important. For example, long-time coarse-grained prediction is 

sufficient for offline planning while short-time fine-grained prediction is more useful for online 

adaptation. All in all, a thorough understanding of the target energy harvesting source is crucial in 

building an efficient harvesting system. In the following sections, I describe the hardware 

components and software stack in energy harvesting embedded systems. 

2.2 Energy Harvesting Circuit Components 

In this section, I discuss essential hardware components that build up an energy harvesting 

embedded system. I present different options for each component and trade-offs between system 

cost, size, efficiency, lifetime, and other important factors to embedded system design. 

2.2.1 Energy Transducer 

Energy transducers are hardware devices transforming energy harvesting sources into electrical 

power. Harvesting devices have different cost and power conversion efficiency depending on the 

materials used to build the transducer. For example, monocrystalline silicon, polycrystalline 

silicon, or thin films are alternative materials to build solar panels. Typical solar cell efficiency is 

around 18% [3] but it is expected to improve with new technologies. 

Existing work in literature [4, 5, 6] focus on design consideration for energy harvesting embedded 

systems. Taneja et al. [4] gave some guidelines for selecting hardware components and their 



39 

 

corresponding size. Daily energy requirement for the system is computed based on empirical 

estimation of load power. This requirement and estimation of energy harvesting are important 

factors to drive the process of choosing solar panel size and energy storage elements. For example, 

in the case of Hydro-Watch system deployed in a forest [4], each node has only about half an hour 

sun light each day. Given efficiency of hardware components, they suggested that solar panel  size 

in this case should be sufficient large to produce harvesting power of 15 times load power 

requirement during its limited exposure time to direct sun light. This over design ensures that the 

system has enough energy in storage to sustain its operation during non-harvesting periods. 

2.2.2 Energy Harvesting Circuit 

Energy harvesting circuit is one of the most crucial parts of the hardware in an energy harvesting 

embedded system. It calibrates and maximizes the output from the energy transducer, routes the 

energy to power the load directly, or deposits into the energy storage subsystem. Energy 

harvesting circuit monitors the transducer output and energy storage status, and possibly makes 

this information available to upper software layers. Each of these tasks is often handled by 

individual hardware circuit. In this chapter, I call them in general the energy harvesting circuit. 

Maximum Power Point Tracking (MPPT): Most energy harvesting source has a special voltage–

current (I–V) characteristics curve. In Figure 2.2, I show the model of I–V curve for a solar panel. 

For energy harvesting embedded systems, empirical characterization and manual calibration of 

energy transducer are often required to obtain this I–V curve model. Measuring, modeling, and 

understanding I–V curve is important since it reveals the Maximum Power Point at which the 



40 

 

highest power is attained by the harvesting circuit. Without MPPT, the efficiency loss can range 

from 30% to 90% of the available power [1]. 

However, the I–V curve for a harvesting device is dynamic as it is sensitive to ambient factors such 

as temperature and solar irradiance level. Figure 2.2 shows the I–V curves under various 

temperature and irradiance condition (extracted from a model of Sunpower A300 solar cell). It 

shows that Maximum Power Point changes under different environmental conditions. For AC 

sources such as vibration, Maximum Power Point is related to the resonant frequency of vibrating 

devices and magnitude of the physical oscillation. Operating energy transducers at Maximum 

Power Point gains significantly more power than sub-optimal points. Therefore harvesting circuits 

should employ Maximum Power Point Tracking methods to improve their efficiency. 

 

Figure 2.2 I-V Characteristics of an Example Solar Cell 

Maximum Power Point Tracking is a practice to maximize harvesting power by adjusting the 

impedance load of the harvesting transducers. Many methods have been proposed for macro-scale 

harvesting systems, a survey is given in [7]. Chou and Kim [8] classified MPPT approaches for 



41 

 

energy harvesting embedded systems (with limited memory and stringent energy consumption 

requirement) into two categories: load matching and supply side MPPT. In the load matching 

approach, the load is adjusted by duty cycling, dynamic power management (e.g., DVFS), or other 

power management techniques to match with energy transducer load and hence, maximizing the 

harvesting power. This MPPT approach is very application-specific and can only be managed at 

run-time by software stack. 

The second approach, supply side MPPT, is further divided into two types: sensor-driven MPPT 

and perturbation-based MPPT. In the sensor driven MPPT, sensors are employed to measure 

environment conditions. Sensor values are then used to determine the optimal impedance load 

corresponding to Maximum Power Point from a look-up table. This method is simple to implement 

and it runs fast. However, it blocks a portion of the limited memory to store the look-up table. In 

addition, sensors consume energy and they are subject to aging and other forms of deterioration 

which might require recalibration. 

Perturbation-based MPPT techniques are open circuit voltage, short circuit current, hill climbing, 

and I–V curve sweeping. One method is called Fractional Open-Circuit Voltage in which Vmpp=KVoc 

where Vmpp is voltage at Maximum Power Point and Voc is open circuit voltage. K is a constant, 

typically between 0.71 and 0.78 for photovoltaic modules [9, 10]. This approximation method has 

low energy overhead and does not require many sensors or calibration at the trade-off of lower 

accuracy. In the curve sweeping method, the I–V curve is profiled at run-time using sensors and 

calibration if needed. This method is more robust at the trade-off of a complex MPPT circuit and 

higher overhead both in time and energy consumption. 



42 

 

MPPT methods can be implemented in hardware (analog circuit) or software (running on the 

Main Control Unit, MCU). Software implementation is reusable in any system but it is unable to re-

calibrate energy transducers. On the other hand, implementation in analog circuit consumes very 

low power and allows continuous and quick response to Maximum Power Point changes. The 

hardware for such MPPT, however, must be designed for each specific harvesting system. 

From another point of view, Taneja et al. [4] argue that energy transducer such as solar panel can 

be chosen to operate near its Maximum Power Point given the combination of the load and energy 

storage. Hence they do not use MPPT in their design of Hydro-Watch harvesting circuit but select 

solar panel that best matches the system load and energy storage sub-system. 

Voltage regulators: There is usually a gap between the transducer output voltage and energy 

storage voltage or between energy storage voltage and the load voltage. Voltage regulators are 

necessary to bridge this gap. The options are either linear regulators or switching regulators and 

the trade-off is between their conversion efficiency and generation of clean, stable output power.  

Switching regulators have been mainly used in most energy harvesting embedded systems. 

Switching regulators could be diodes, bucks, boosts, or a combination of buck-boost regulators 

such as pulse frequency modulation (PFM) regulators. Bucks perform voltage step-down while 

boosts perform voltage step-up. Among these options, PFM regulators are considered most 

effective since each regulator has a switching capacitor regulator to avoid wasting energy in diode 

at low voltage and a buck converter to prevent shorting the input and output. Other components 

which might be needed are DC-AC or AC-DC adapters depending on the types of current generated 

by the energy harvesting process and the types of current accepted by the load. 



43 

 

Multi-dimensional array of harvesting transducers: Multiple harvesting devices can be 

combined in series or in parallel to form an energy harvesting sub-system. Harvesting arrays are 

reconfigurable at run-time, allowing systems to adjust output voltage or current dynamically. 

However, such arrays of harvesting transducers are subject to size and packaging constraints of 

embedded systems. 

Heterogeneous/homogeneous harvesting systems: If one source of energy harvesting is not 

sufficient to provide energy for system operation, several energy sources could be harvested at 

the same time to complement each other in term of harvesting availability and to increase overall 

energy supply. This adds complexity to the harvesting circuit because each energy harvesting 

source requires a separate energy transducer and a different MPPT method. Each source might 

require independent energy storage with a specific charging algorithm for efficiency purpose. 

Because of this separation and independence of resources, heterogeneous harvesting systems 

often have an energy harvesting subsystem for each energy harvesting source [6, 11].  

2.2.3. Energy Storage Subsystem 

Systems could be powered directly from energy harvesting sources but large variations in the 

energy sources will make the systems unstable. Therefore, to smooth out the variation effect, 

energy storage is often used to buffer harvested energy. There are currently two choices for 

energy storage in an energy harvesting embedded system: rechargeable batteries and 

supercapacitors (also called ultracapacitors or electrochemical double layer capacitors). These 



44 

 

two types of energy storage elements are significantly different from each other as summarized 

below. 

Batteries have higher energy density (more storage capacity for a given volume or weight). 

Rechargeable batteries can be recharged multiple times but they are subject to aging effect and 

rate capacity constraints. Characteristics of four types of rechargeable batteries are presented in 

Table 2.2. Sealed Lead Acid (SLA) and Ni-cadmium are used less often because of their low energy 

density and low power density. According to [5], there are several trade-offs between Nickel-

Metal Hybrid batteries (NiMH) and lithium-ion batteries (Li-ion). Li-ion batteries are often used 

because they more efficient and have longer lifetime. However, they are more expensive and 

require a more complicated charging circuit. They might not accept charging at low rate which 

often happens in energy harvesting circuits. Characteristics of any battery type could vary 

according to operating temperatures. This is important for energy harvesting systems since they 

are usually exposed to harsh conditions like strong wind, direct sunlight, and thermal heat.  

Table 2.2 Comparison of Rechargeable Battery Types (adapted from [4] and [12]) 

Battery Type Energy Density 

(MJ/kg) 

Power Density 

(W/kg) 

Efficiency (%) Discharge Rate 

(% per month) 

Recharge Cycles 

Sealed Lead Acid 0.11-0.14 180 70-92 3-4 500-800 

Ni-cadmium 0.14-0.22 150 70-90 20 1500 

NiMH 0.11-0.29 250-1000 66 20 1000 

Li-ion 0.58 1800 99.9 5-10 1200 



45 

 

Supercapacitors do not have aging problem, they offer long lifetime with unlimited or high charge-

discharge cycles. They have high power density but low energy density. High leakage which 

increases exponentially with supercapacitor voltage (even when idle) is a disadvantage. Another 

problem with supercapacitors is the cold start, which was addressed in [13] using a feed forward 

PFM. 

Chou and Kim [8] suggested hybrid schemes for energy harvesting storage in which batteries and 

supercapacitors compensate each other and utilize advantages of both energy storage 

technologies. More of this hybrid energy storage architecture will be discussed in chapter 6. 

2.2.4. Case Study of Energy Harvesting Embedded Systems 

Recent research has enabled embedded systems, in particular, wireless sensor motes to have 

capability of harvesting energy from surrounding environment. Many prototype platforms have 

been built successfully including Heliomote [15], Prometheus [3], Everlast [15], Ambimax [6, 16]. 

Beside solar and wind, technologies have made it feasible to harvest from other renewable 

sources such as vibration, RFID, geothermal, human motion [17–19]. I present here several 

working prototypes of energy harvesting embedded systems, many of them have been deployed in 

real- life applications. 

Prometheus [3] is one of the first designs for solar-powered embedded systems. It focuses mainly 

on the energy storage subsystem and there is no MPPT. It argues that in most latitudes we only 

expect a few hours of direct sunlight, therefore the systems need large buffers to store harvested 

energy and to power themselves through the night. In their design, there are a primary buffer and 



46 

 

a secondary buffer. Supercapacitor is chosen as the primary buffer for its longer lifetime and 

capability of frequent pulse charging. However, larger supercapacitors have greater leakage 

current. Given charging, discharging, and leakage rate of a harvesting system, Prometheus finds 

the theoretical optimal capacitance of its supercapacitor. It also proposes configuration for 

supercapacitors such as connecting two supercapacitors in series, in order to reduce leakage and 

match with solar output voltage instead of using MPPT methods. 

Prometheus chooses Lithium battery as the secondary buffer which is neither charged nor 

discharged frequently but holds backup energy for an extended time. A rechargeable battery is 

more suitable than a supercapacitor for secondary buffer because of its low leakage, high energy 

density, and high voltage for a single cell. In their experiments, they run a simple driver program 

controlling a power switch (either drawing load power from the primary buffer or the secondary 

buffer) and sending energy harvesting statistical information to a base station at 1% duty cycle.  

Heliomote was designed at UCLA [15]. In the first version, Raghunathan et al. [5] argued that the 

Maximum Power Point changes slightly within a day. Therefore they avoid using MPPT circuit by 

carefully selecting a suitable battery. They use NiMH batteries as energy storage because the 

charging circuit is simplified compared to Li+ batteries. In Helimote3, its harvesting circuit is 

integrated with a MPPT method to actively learn the solar panel’s I–V characteristics and to 

reconfigure itself at run-time. Notably, the platform is equipped with an on-board measurement 

system providing voltage and current output of the solar transducer and the battery terminal 

voltage which could be used in tuning or optimizing overall system performance. 



47 

 

The overall efficiency of their energy harvesting and storage subsystem is 80–84%. It is tested by 

running an application of ecosystem sensing at James Reserve Mountain [63]. The measurement 

results show the system can run at 20% duty cycling which is a very promising result compared to 

a typical non-rechargeable battery system running at 1–5% duty cycling. 

Hybrid energy harvesting systems: Due to the intermittent nature of energy harvesting sources, 

several efforts explored the possibility of building hybrid energy harvesting systems with the goal 

to increase energy harvesting availability overall. Ideally, different sources complement each 

other for a stable power source in time and in space. Tan and Panda [20] designed a hybrid energy 

harvesting system consisting of both indoor ambient light and thermal energy harvesting circuits. 

Ambimax was designed at UC Irvine by Park and Chou [6]. Ambimax is a hybrid energy harvesting 

system with both a solar panel and a wind generator. Each energy source is managed separately 

by individual energy harvesting subsystems with source-specific MPPT methods and efficiently 

charging different supercapacitors. A PWM (pulse width modulation) is put between the energy 

harvesting transducer and the supercapacitor. This isolation keeps the supercapacitor from 

degrading energy harvesting efficiency and allows harvesting when Vsource < Vsupercapacitor. 

This PWM switching regulator combined with a comparator and sensors creates a perturbation-

based MPPT circuit. In comparison with Prometheus, Ambimax shows a charging time 12.5x 

faster. An improvement of Ambimax was presented in Duracap [13] which includes three 

supercapacitors to improve system reliability during the cold booting phase. Carli et al. [11] 



48 

 

proposed a similar architecture with independent energy harvesting subsystems but emphasized 

on fully analog implementation of MPPT, charging algorithm, and power management.  

Indoor energy harvesting systems: Indoor environment has many potential sources for 

harvesting, each with intensity and availability different from the same sources outdoor. The most 

accessible source is light in offices and hallways. Hande et al. [21] devised a system to harvest 

energy from fluorescent light in hospital hallways to support routing of patient data in clinics 

using Micaz motes. Tan and Panda [20] carried out an extensive indoor energy harvesting 

measurement over 16 months in different settings. EnHantTag [22, 23] are small ultra-low- power 

devices harvesting both light and RFID, and supporting novel applications such as tracking 

personal items and locating disaster survivors. Other energy sources such as kinetic, vibration, 

magnetic can be harvested as well. inDOOR Energy Harvester was a project at New York 

University [24] that converted kinetic energy from opening and closing a door to electrical energy. 

Simulator: In addition to hardware prototypes, designers need tool chain such as simulators to 

support the design process. Simulators allow designers to explore the design space, to evaluate 

performance of a design candidate in a modeling environment with reproducible inputs and 

conditions, and to choose optimal configuration options for their energy harvesting embedded 

systems. It can also be used for comparison of designs, topologies, and algorithms. 

A solar power simulator S# was developed by Li and Chou [25]. The simulator is a programmable 

power supply used to simulate or emulate electronic behavior of a solar panel. In the simulation 

mode, S# takes a sunlight profile as inputs, looks up the built-in solar power model and generates 



49 

 

a simulated power output trace. The simulation model could take locations and configuration of 

solar panels and weather condition as inputs and to generate customized power output. 

Another simulator for energy harvesting platforms is developed by Jeong [26] at UCLA. This 

Matlab-based simulator captures behavior of the main components of an energy harvesting 

system: solar irradiation, the solar panel, the energy storage, and the energy harvesting circuit 

including both input and output regulator. Solar irradiation is modeled using an astronomical 

model. It is further improved by integrating obstruction model from surrounding objects and a 

weather conditions such as cloud coverage and horizontal visibility. Other components of energy 

harvesting embedded systems are modeled based on their electronic properties and 

characterization. 

In this section, I have presented state-of-the-art research in building efficient energy harvesting 

embedded systems from hardware perspective. In the next section, I present the software stack 

that works in concert with hardware components in order to realize the best benefits of energy 

harvesting and sustainability. 

2.3 Software Stack 

In traditional battery-powered systems, the conventional ultimate goal is to maximize system 

lifetime given the limited battery capacity. To address this problem, researchers proposed many 

energy-efficient and power-efficient approaches, from energy-efficient sensor placement [27–29], 

routing and communication protocols [30-32], low power MAC protocols [33], duty cycling 



50 

 

techniques [34], DVFS [64], to adaptive data rate [35]. These approaches aim to minimize energy 

consumption to prolong system lifetime while barely meeting the requirements of applications. 

These assumptions and goals must change in the context of energy harvesting embedded systems. 

Renewable energy sources regenerate automatically and they power the systems for indefinite 

time subject only to hardware longevity and failures. A widely used new constraint in energy 

harvesting systems is energy neutrality, proposed by Kansal et al. [2]. Energy neutrality means an 

energy harvesting system can sustain its desired operation level by not consuming more energy 

than the amount of energy harvested. 

Reducing power consumption below the level needed for energy neutrality will not increase 

system lifetime or system utility. On the other hand, just barely meeting energy neutrality 

constraint might not utilize all harvested energy. The remaining energy must be stored in the 

energy storage which has limited capacity and even leakage. For example, running 5–10% duty 

cycling on an energy harvesting embedded system and maintaining energy neutrality is possibly 

feasible but not necessary optimal. A smart approach would be adjusting power consumption (e.g.,  

duty cycling) according to energy harvesting profile, spending the right amount of energy to 

optimize system performance and storing the right amount for back-up at times of low or no 

harvesting activity. In order to set the right amount for energy consumption and storage, and to 

achieve the optimal performance, it is important to share information about energy harvesting 

condition and energy storage status among system layers and even across the network. 



51 

 

One of such important information is prediction of future energy harvesting availability. Before 

going into details of power management using software, I present related research on energy 

harvesting prediction which is used extensively in energy management schemes for energy 

harvesting embedded systems.  

Energy Harvesting Prediction: Renewable energy sources such as solar energy show recurring 

patterns (diurnal and seasonal patterns) that can be utilized to predict future energy harvesting 

availability. The prediction of energy harvesting is very important for simulation, estimating 

system performance, and planning system activities. However prediction algorithms must be 

lightweight with small memory footprint if it is to run on limited-resource embedded systems. 

There are several prediction algorithms to estimate future availability of energy harvesting at 

coarse-grain (slot-based) level, i.e., every 30 min or per hour. Hsu et al. [36] proposed a prediction 

algorithm based on Exponentially Weighted Moving Average (EWMA). EWMA is a method to 

compute weighted average of data with the weight factors decreasing exponentially. When it is 

applied for time-series data analysis, by adjusting weight factors, short-term fluctuations can be 

smoothed out and long term trend is emphasized. A harvesting period, typically a day, is divided 

into N slots. In this algorithm, N is chosen to be 48 for low memory overhead, each slot is 30 min. 

They assume that on a typical day, amount of energy harvested in a slot is similar to that of the 

previous days in the same time slot. The energy generated in a particular slot hence is predicted as 

weighted average of the energy received in the same time slots during previous recorded days. 

Their experiments show the absolute error between the predicted and the actual energy profile is 

from 2 to 10 mA (out of 60 mA), which is up to 16.6% error.  



52 

 

                 (2-1) 

Recas et al. [36] noticed that EWMA algorithm proposed in [37] is only accurate if the weather is 

consistent or “typical.” Hence, they introduced another prediction algorithm called Weather-

Condition Moving Average (WCMA) that does not only take into account the weights in each time 

slot but also the changing condition in energy harvesting profiles throughout a day. A similar 

principle was exploited in another energy harvesting prediction scheme proposed by Noh et al. 

[38]. In [36], the predicted energy value on day i, sample n + 1 is:  

                                     (2-2) 

where E(d, n) is the previous sample on the same day and MD(d, n + 1) is the mean of D past days 

at the same time sample n + 1. GAPK is a weight factor measuring the weather condition in the 

present day in relative to the previous days. WCMA claims lower average error of 9.8% as 

compared to EWMA’s average error of 28.6%  in an experiment consisting of 45 harvesting days. 

Jeong [26] and Sharma et al. [39] leverage weather forecast and extract cloud coverage 

information to improve their energy harvesting prediction algorithms. The later one uses these 

formulations for solar and wind prediction: 

                                       (2-3) 

                                         (2-4) 

 



53 

 

where MaxPower is maximum solar power derived from the typical solar radiation at a given 

latitude, altitude, and at a specific time of the year. Renner and Turau [40] proposed another 

method to actively learn energy harvesting profile and to adapt the number of slots and duration 

of each slot at run-time. Its goal is prediction accuracy with small memory footprint for energy 

harvesting prediction algorithms running on embedded systems. 

There also exist commercial tools for predicting energy harvesting such as iPV, iSV, SolarShade 

apps for smart phones and SunEye, Solar Pathfinder devices. The smart apps are able to record 

obstruction while the user traces the phone along the skyline where the solar panel is deployed. It 

utilizes available sensors on smart phones such as compass and inclinometer to identify position 

and elevation of the obstructing objects and overlays them on the sun plot. Using the shading 

effect derived from the overlaid sun plot, a built-in weather station database, and solar panel 

model, these smart apps produce an estimate of monthly solar energy at the user’s location.  

However, smart app documentation and verification of method are limited.  

Cross-layer approaches have been proposed to exploit energy harvesting prediction to adapt 

systems and tackle energy harvesting challenges (section 1.2). I classify research work in cross-

layer power management schemes for energy harvesting embedded systems into three groups: 

node layer, operating system layer, and application layer adaptation. These power management 

schemes consist of three steps: leaning and predicting the energy harvesting profile, adapting 

power consumption at each layer to match with harvested energy, and fine-tuning power scaling 

to account for battery non-idealities and prediction error. 



54 

 

Node layer: Node layer management refers to management of hardware components such as 

sensors, radio chips, processors, and possibly energy storage subsystem using software. Kansal et 

al. [2, 41] and Hsu et al. [36] presented several power management schemes at the node layer. 

Duty cycling between active and low power modes for the purpose of performance/power scaling 

is a good option since most embedded systems provide at least one low power mode in which the 

power consumption is negligible. Hsu et al. [36] proposed an algorithm to adapt duty cycling rate 

of systems to the changes in renewable sources. 

OS layer: Operating system controls how tasks such as sensing, processing, and communicating 

are scheduled using a scheduling algorithm(s). There are works in task scheduling, multi-version 

scheduling, and dynamic voltage frequency scaling (DVFS) at the OS layer of energy harvesting 

embedded systems. Moser et al. [42, 43] proposed a task scheduling technique for energy 

harvesting systems called Lazy Scheduling, which delays task execution to harvest and store more 

energy until tasks must be executed to meet their respective deadlines. Liu et al. [44, 45] extended 

these task scheduling techniques with DVFS capability. Steck and Rosing [46] and Ravinagarajan 

et al. [47] adapted task utility of structural health monitoring applications (coupled with DVFS 

technique) to maximize accuracy of tasks while sustaining the system under energy neutrality 

constraint. 

Application layer: At the application layer of energy harvesting embedded systems, there are 

related works in adapting data quality, data update frequency, and quality of services in order to 

meet energy neutrality constraint. Moser et al. [48–50] presented a system model with different 

abstract levels of quality. Each level is associated with an energy demand and a corresponding 



55 

 

reward. They proposed an optimal solution using ILP and an approximation dynamic 

programming technique to allocate energy budget and assign a quality level to each time slot in a 

harvesting period. This assignment must meet energy-neutrality constraint and maximize the total 

reward at the same time. Noh et al. [38] proposed a minimum variance slot-based energy budget 

allocation for systems which prefer a steady level of operation.  

For applications with varying requirements, more dynamic energy budget schemes are required. 

Software support for energy harvesting embedded systems is unstructured so far and it is difficult 

to guarantee all approaches work in concert with each other to produce the optimal result. A 

middleware layer providing software services and information about energy harvesting statistics, 

and battery status is desirable. Such middleware layer allows tuning parameters, e.g., changing 

duty cycle rate, selecting scheduling algorithm, choosing budget allocation scheme, and turning 

on/off database services. Middleware layer will play an important role to connect hardware and 

software layers, enabling cross-layer adaptation and system performance optimization.  

In a broader scale, i.e., networks of energy harvesting embedded systems presented in the next 

section, middleware and network layers will have a crucial role. These two layers connect systems 

in the network, enable sharing energy harvesting information beyond a single system’s boundary, 

and allow application layers on different nodes to communicate and coordinate for more complex 

activities.  

 



56 

 

2.4 Networked Energy Harvesting Embedded Systems 

So far, I focused on individual energy harvesting embedded systems. In this section, I present the 

model and structure of energy harvesting networks and related research. Many applications in 

smart spaces leverage connection and information sharing in network to monitor properties of the 

environment, to detect unsupervised events, and to relay the processed information to a central 

base station(s).  

 

Figure 2.3 Architecture of an Energy Harvesting Network 

SMART SPACE APPLICATIONS

BASE STATION MIDDLEWARE

Harvesting 
Profile 

Prediction/ 
Maintenance

Long Term  
Planning 

Short Term 
Planning/ 

Online 
Adaptation

Dynamic 
Recalibration

• Device Status
• Harvesting Status
• Network Status

System Data Sensor Data

• Temperature
• Video Surveillance
• Audio data

Network

BASE STATION

NODE 
MIDDLWARE

NODE 

NODE 
MIDDLWARE

NODE 

NODE 
MIDDLWARE

NODE 

… …

NODE MIDDLWARE

NODE 

OS

Sensor 
HW

Harvest 
HW

Harvest 
Mea.

Network

OS

Network



57 

 

Each energy harvesting node has hardware and software components working together as 

described in the previous section. A middleware layer is proposed on each node to enable sharing 

energy harvesting information, cross-layer optimization and in-network optimization. Data from 

nodes are sent to the base station(s) and vice versa through application and network protocols. 

Collected data is stored in a database at the base station and/or sent to the smart space 

applications. With unlimited resources (power, computation units), middleware layer on the base 

station can do computational-intensive tasks such as energy harvesting prediction, long-term and 

short-term planning, hardware and software recalibration. 

Network layer: The network layer manages communication at packet level. Packets are sent from 

source to destination according to network protocols. In energy harvesting networks, packets 

should be routed along paths that do not only ensure delivery but also maintain energy 

sustainability. Each node sends its own sensor data and also forwards packets of other nodes in 

the network. Therefore, energy budget for communication on each node must consider both these 

internal and external data streams. Routing is an important challenge since there are both 

communication vs. computation trade-off on each node and data traffic balancing among nodes 

according to harvesting capability of each node in the network. 

Voigt et al. [51] and Islam et al. [52] modified LEACH, a cluster-based routing protocol for sensor 

networks to take advantage of energy harvesting. Lattanzi et al. [53], Lin et al. [54, 55], Zeng et al. 

[56], Hasenfratz et al. [57], and Jakobsen et al. [58] modified existing energy-efficient routing 

protocols to exploit both temporal and spatial variations of renewable energy and to maximize 

data delivery for sensors. Different from traditional battery-residual-based routing cost, Kansal et 



58 

 

al. [2] proposed an enhanced routing cost metric that takes into consideration both the harvesting 

potential of a node and its residual battery level. Once routing cost for each link is established, 

Bellman Ford algorithm, shortest path algorithms, and variants of these algorithms are deployed 

to find minimum cost routes between sources and destinations. 

Middleware layer: As discussed, energy harvesting nodes in a network should communicate to 

share energy harvesting statistics for power management and in-network optimization. Kansal 

and Srivastava [59] proposed a framework which actively learns the properties of the renewable 

energy sources, predicts future energy availability, and distributes this information in the network 

for power management. It suggested several uses of this framework including topology 

management, clustering, leader election, load balancing, transmission power control, and network 

routing.  

Networking application layer: For applications such as storage services in a wireless sensor 

network, Wang et al. [62] proposed an adaptive technique to turn on and off the storage services 

based on different energy thresholds. Fan et al. [60] and Zhang et al. [61] attempted to maximize 

data rate and utility-based data rate for data collection applications in energy harvesting WSNs. 

In conclusion, I have provided a thorough background for energy harvesting embedded systems in 

this chapter, from characterization of renewable sources, energy harvesting hardware, to 

software, from individual harvesting systems to a network of harvesting systems. The literature 

provided here however is not in any way complete as energy harvesting systems are improving 

and new works are proposed. The readers are therefore encouraged to explore further. 



59 

 

References 

[1] V. Raghunathan and P. H. Chou, "Design and Power Management of Energy Harvesting Embedded 

Systems ," in ISLPED'06. Proceedings of the 2006 International Symposium on Low Power Electronics and 

Design, 2006., Tegernsee, 2006, pp. 369-374 

[2] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, "Power Management in Energy Harvesting Sensor 

Networks," ACM Transaction on Embedded Computomg Systems, vol. 6, no. 4, pp. 1539-9087, Sep. 2007 

[3] X. Jiang, J. Polastre, and D. Culler, "Perpetual environmentally powered sensor networks ," in IPSN 2005, 

pp. 463-468 

[4] J. Taneja, J. Jeong, and D. Culler, "Design, Modeling, and Capacity Planning for Micro-solar Power Sensor 

Networks ," in IPSN '08. International Conference on Information Processing in Sensor Networks, 2008., St. 

Louis, MO, 2008, pp. 407-418 

[5] Vijay Raghunathan, Aman Kansal, Jason Hsu, Jonathan Friedman, and Mani Srivastava. “Design 

considerations for solar energy harvesting wireless embedded systems”, IPSN 2005 

[6] C. Park and P. H. Chou, "AmbiMax: Autonomous Energy Harvesting Platform for Multi-Supply Wireless 

Sensor Nodes," in 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and 

Networks (SECON ), Reston, VA, 2006, pp. 168-177. 

[7] Trishan Esram, Patrick L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking 

Techniques”, IEEE Transaction on Energy Conversion, volume 22, issue 2, June 2007 

[8] Pai H. Chou and Sehwan Kim, “Techniques for Maximizing Efficiency of Solar Energy Harvesting 

Systems”, ICMU 2010 

[9] Bekker B, Beukes HJ. Finding an optimal panel maximum power point tracking method. In: 7th African 

IEEE Conf.; 2004. p. 1125–9. 

[10] K. Kobayashi, H. Matsuo, and Y. Sekine, “A novel optimum operating point tracker of the solar cell 

power supply system,” in Proc. 35th Annu. IEEE Power Electron. Spec. Conf., 2004, pp. 2147–2151. 

[11] Davide Carli, Davide Brunelli, Luca Benini and Massimiliano Ruggeri, “ An Effective Multi-Source 

Energy Harvester for Low Power Applications”, DATE 2011 

[12] Sujesha Sudevalayam and Purushottam Kulkarni, “Energy Harvesting Sensor Nodes: Survey and 

Implications”, IEEE Communications Surveys and Tutorials, volume 13, issue 3, 2011 



60 

 

[13] Chien-Ying Chen, Pai H. Chou, “DuraCap: a Supercapacitor-Based, Power-Bootstrapping, Maximum 

Power Point Tracking Energy-Harvesting System”, ISLPED 2010 

[14] K. Lin, et al., "Heliomote: enabling long-lived sensor networks through solar energy harvesting," in 

SenSys '05, New York, 2005, pp. 309—309 

[15] Farhan Simjee and Pai H. Chou, “Everlast: Longlife, Supercapacitor operated Wireless Sensor Node” in 

ISLPED 2006 

[16] Davide Carli, Davide Brunelli, Davide Bertozzi and Luca Benini, “A high-efficiency wind-flow energy 

harvesting using micro turbine”, International Symposium on Power Electronics Electrical Drives 

Automation and Motion (SPEEDAM), 2010 

[17] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J. H. Lang, "Vibration-to-electric 

energy conversion," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp. 64-

76, Feb. 2001. 

[18] H. A. Sodano, G. E. Simmers, R. Dereux, and D. J. Inman, "Recharging Batteries using Energy Harvested 

from Thermal Gradients," Journal of Intelligent Material Systems and Structures, vol. 18, no. 1, pp. 3-10, 

2007 

[19] D. W. Harrist. (2004) Wireless Battery Charging System Using Radio Frequency Energy Harvesting. 

Master's Thesis, University of Pittsburgh 

[20] Y. K. Tan and S. K. Panda, "Energy Harvesting From Hybrid Indoor Ambient Light and Thermal Energy 

Sources for Enhanced Performance of Wireless Sensor Nodes," IEEE Transactions on Industrial Electronics, 

vol. 58 , no. 9, pp. 4424-4435, Sep. 2011 

[21] A. Hande, T. Polk, W. Walker, and D. Bhatia, "Indoor solar energy harvesting for sensor network router 

nodes," Microprocessors and Microsystems, vol. 31, no. 6, pp. 420--432, Sep. 2007 

[22] Maria Gorlatova, Peter Kinget, Ioannis Kymissis, Dan Rubenstein, Xiaodong Wang, Gil Zussman, 

“Challenge: Ultra-Low-Power Energy-Harvesting Active Networked Tags (EnHANTs)”, Mobicom 2009 

[23] Maria Gorlatova, Zainab Noorbhaiwala, Abraham Skolnik, John Sarik, Michael Zapas, Marcin Szczodrak, 

Jiasi Chen, Luca Carloni, Peter Kinget, Ioannis Kymissis, Dan Rubenstein, Gil Zussman, "Prototyping Energy 

Harvesting Active Networked Tags (EnHANTs) with MICA2 Motes ," in SECON 2010  

[24] R. Zollinger. (2012, May) inDOOR Energy Harvester. [Online]. 

http://itp.nyu.edu/sigs/sustainable/indoor-energy-harvesting 

[25] Dexin Li, Pai H. Chou, “Maximizing efficiency of solar-powered systems by load matching”, ISLPED 

2004 



61 

 

[26] Jaein Jeong, “A Practical Theory of Micro-Solar Power Sensor Networks”, PhD thesis dissertation, UC 

Berkeley, 2009 

[27] A. Krause, C. Guestrin, and J. K. A. Gupta, "Near-optimal Sensor Placements: Maximizing Information 

while Minimizing Communication Cost," in IPSN 2006 

[28] D. Ganesan, R. Cristescu, and B. Beferull-Lozano, "Power-efficient sensor placement and transmission 

structure for data gathering under distortion constraints," ACM Transaction on Sensor Networks, vol. 2, no. 

2, pp. 155--181, May 2006 

[29] P. Cheng, C.-N. Chuah, and X. Liu, "Energy-aware node placement in wireless sensor networks," in IEEE 

Global Telecommunications Conference, GLOBECOM 2004 

[30] M J Handy, M Haase, D Timmermann, Low Energy Adaptive Clustering Hierarchy withDeterministic 

Cluster-Head Selection”, 4th International Workshop on Mobile and Wireless Communications Network 

(2002)  

[31] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan “Energy-Efficient 

Communication Protocol for Wireless Microsensor Networks”, in the Proceedings of the Hawaii 

International Conference on System Sciences, January 4-7, 2000 

[32] Samuel R. Madden, Michael J. Franklin, and Joseph M. Hellerstein, Wei Hong, “TinyDB: An Acquisitional 

Query Processing System for Sensor Networks”, ACM Trans. Database System, 2005,  volume 30 

[33] K. Langendoen, “Medium access control in wireless sensor networks”, in H. Wu and Y. Pan, editors, 

Medium Access Control in Wireless Networks. Nova Science Publishers, Inc., 2008 

[34] Christophe J. Merlin and Wendi B. Heinzelman, “Duty Cycle Control for Low-Power-Listening MAC 

Protocols”, IEEE Transactions on Mobile Computing,  2010 

[35] Q. Han, S. Mehrotra, N. Venkatasubramanian, "Energy Efficient Data Collection in Distributed Sensor 

Environments," in ICDCS, 2003. 

[36] Jason Hsu, Sadaf Zahedi, Aman Kansal, Mani Srivastava, and Vijay Raghunathan, “ Adaptive duty 

cycling for energy harvesting systems”, ISLPED 2006 

[37] Recas, J., C. Bergonzini, D. Atienza, and T. Simunic, “Prediction and Management in Energy Harvested 

Wireless Sensor Nodes”, Wireless VITAE 2009 

[38] D. K. Noh, L. Wang, Y. Yang, H. K. Le, and T. Abdelzaher, "Minimum Variance Energy Allocation for a 

Solar-Powered Sensor System," in Proceedings of the 5th IEEE International Conference on Distributed 

Computing in Sensor Systems, Marina del Rey, CA, USA, 2009, pp. 44—57 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7755


62 

 

[39] Sharma, N.; Gummeson, J.; Irwin, D.; Shenoy, P., “Cloudy Computing: Leveraging Weather Forecasts in 

Energy Harvesting Sensor Systems”, SECON 2007 

[40] C. Renner and V. Turau, “Adaptive Energy Harvest Profiling to Enhance Depletion-Safe Operation and 

Efficient Task Scheduling”, in Journal of  Sutainable Computing: Informatics and Systems, Volume 2, Issue 1, 

March 2012 

[41] Aman Kansal, Jason Hsu, Mani Srivastava, and Vijay Raghunathan, “Harvesting aware power 

management for sensor networks”, in DAC 2006  

[42] C. Moser, D. Brunelli, L. Thiele, and L. Benini, "Real-time scheduling with regenerative energy ," in 18th 

Euromicro Conference on Real-Time Systems, 2006. , 2006, pp. 10-270 

[43] C. Moser , D. Brunelli , L. Thiele , L. Benini, “Lazy Scheduling for Energy Harvesting Sensor Nodes”, in 

DIPES 2006 

[44] Shaobo Liu, Qing Wu, and Qinru Qiu, “An adaptive scheduling and voltage/ frequency selection 

algorithm for real-time energy harvesting systems”, in DAC 2009 

[45] Shaobo Liu, Qinru Qiu, and Qing Wu, “Energy aware dynamic voltage and frequency selection for real-

time systems with energy harvesting”, in DATE 2008 

[46] J. B. Steck and T. S. Rosing, "Adapting task utility in externally triggered energy harvesting wireless 

sensing systems ," in Sixth International Conference on Networked Sensing Systems (INSS), 2009, 

Pittsburgh, PA , 2009, pp. 1-8 

[47] A. Ravinagarajan, D. Dondi, and T. S. Rosing, "DVFS based task scheduling in a harvesting WSN for 

structural health monitoring," in DATE 2010 

[48] C. Moser, J.-J. Chen, and L. Thiele, "Reward Maximization for Embedded Systems with Renewable 

Energies ," in RTCSA 2008 

[49] C. Moser, J.-J. Chen, and L. Thiele, "Power management in energy harvesting embedded systems with 

discrete service levels," in ISLPED 2009 

[50] C. Moser, J.-J. Chen, and L. Thiele, "Optimal service level allocation in environmentally powered 

embedded systems," in Proceedings of the 2009 ACM symposium on Applied Computing, 2009 

[51] T. Voigt, A. Dunkels, J. Alonso, H. Ritter, and J. Schiller, "Solar-aware clustering in wireless sensor 

networks," in ISCC, 2004. 

[52] J. Islam, M. Islam, and N. Islam, "A-sLEACH: An advanced Solar Aware Leach Protocol for Energy 

Efficient Routing in Wireless Sensor Networks," in ICN 2007 



63 

 

[53] E. Lattanzi, E. Regini, A. Acquaviva, and A. Bogliolo, "Energetic sustainability of routing algorithms for 

energy-harvesting wireless sensor networks," Computing Communication, vol. 30, no. 14-15, pp. 2976--

2986, Oct. 2007. 

[54] L. Lin, N. B. Shroff, and R. Srikant, "Asymptotically Optimal Energy-Aware Routing for Multihop 

Wireless Networks With Renewable Energy Sources," IEEE/ACM Transactions on Networking, vol. 15, no. 

5, pp. 1021-1034, Oct. 2007  

[55] L. Lin, N. B. Shroff, and R. Srikant, "Energy-aware routing in sensor networks: A large system 

approach," Ad Hoc Network, vol. 5, no. 6, pp. 818--831, Aug. 2007 

[56] K. Zeng, K. Ren, W. Lou, and P. J. Moran, "Energy-aware geographic routing in lossy wireless sensor 

networks with environmental energy supply," in QShine '06, Waterloo, Ontario, Canada, 2006 

[57] D. Hasenfratz, A. Meier, C. Moser, J.-J. Chen, and L. Thiele, "Analysis, Comparison, and Optimization of 

Routing Protocols for Energy Harvesting Wireless Sensor Networks ," in IEEE International Conference on 

Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC), 2010 

[58] M. K. Jakobsen, J. Madsen, and M. R. Hansen, "DEHAR: A distributed energy harvesting aware routing 

algorithm for ad-hoc multi-hop wireless sensor networks," in WoWMoM 2010  

[59] A. Kansal and M. B. Srivastava, "An Environmental Energy Harvesting Framework for Sensor 

Networks," in ISLPED '03, Seoul, Korea, 2003, pp. 481--486 

[60] K.-W. Fan, Z. Zheng, and P. Sinha, "Steady and fair rate allocation for rechargeable sensors in perpetual 

sensor networks," in SenSys 2008 

[61] Bo Zhang, Robert Simon, and Hakan Aydin, “ Maximum utility rate allocation for energy harvesting 

wireless sensor networks” in Proceedings of the 14th ACM international conference on Modeling, analysis 

and simulation of wireless and mobile systems (MSWiM '11). 

[62] L. Wang, et al., "AdaptSens: An Adaptive Data Collection and Storage Service for Solar-Powered Sensor 

networks," in 30th IEEE Real-Time Systems Symposium, 2009, RTSS 2009., Washington, DC, 2009, pp. 303-

312 

[63] James Reserver Data Management Systems. [Online]. http://dms.jamesreserve.edu/ 

[64] Liu, Yongpan, et al. "Thermal vs energy optimization for dvfs-enabled processors in embedded 

systems." In 8th International Symposium on Quality Electronic Design, 2007 (ISQED'07) 

 

 

http://dms.jamesreserve.edu/


64 

 

 

Chapter 3 Quality-aware Energy Management 

Framework for Harvesting Wireless Sensor 

Networks 

 

In energy harvesting systems, energy is derived from environmental sources such as sunlight, 

wind and heat. Renewable energy sources allow us to continuously harvest energy from the 

environment, providing a constant and perpetual source of energy to the systems they drive. 

Despite its low efficiency, renewable energy technology is a viable and promising solution for low 

power wireless sensor network systems. Scavenging energy could enable smart sensors to be 

functional indefinitely and as a result, eliminating the cost for battery, enabling sustainable and 

manageable infrastructures. 

Nevertheless, renewable energy depends heavily on environmental conditions (e.g., harvested 

solar energy on a sunny day is much higher than it is on a cloudy or rainy day). The time-varying 

characteristics of renewable energy sources create a shift in research focus from energy-efficient 

to energy-neutral approaches, i.e., from optimizing energy consumption to adapting systems to 

deal with unstable energy sources while meeting application quality constraints. Renewable 

energy sources such as solar energy show predictable patterns that are exploited in several 

coarse-grain (or slot-based) energy harvesting prediction methodologies [4, 9, 15]. Energy 



65 

 

harvesting prediction is utilized for planning activities of nodes in a sensor network to keep them 

functional, yet still powered on. 

Wireless sensor networks (WSN) are deployed in infrastructures, such as buildings or bridges and 

enable various data collection applications (e.g., structural monitoring). Sensors collect 

information about their surrounding environment, update a base station and respond to frequent 

or sporadic monitoring requests [14]. The base station stores such information in a cache and the 

bounded difference between the cached values and the actual instantaneous data values at the 

sensors is called the error margin. The energy cost of data collection applications relates heavily to 

the frequency of data requests and updates between sensors and the base station, which in turn 

affects accuracy of the collected data or the error margin. In systems with energy harvesting 

capabilities, I envision that sensors only communicate when there is sufficient harvested energy. 

There is therefore, a tight coupling between the ability of the system to harvest energy and the 

consequent data accuracy – intuitively better harvesting leads to better data quality whereas poor 

harvesting conditions imply loss of accuracy. 

I propose an energy harvesting management framework called QuARES for data collection 

applications in wireless sensor networks. To the best of our knowledge, this work is the first 

attempt to jointly use both application data quality (expressed as error margins) and harvesting 

ability to manage the energy budget of such systems. Our framework includes two stages: an 

offline slot-based energy budget allocation algorithm and an online adaptation strategy. The 

offline stage exploits the slot-based harvested energy prediction and the relation between energy 

cost and data accuracy to allocate energy budget for each time slot in a given harvesting period 



66 

 

(e.g., one day, one week). In the online stage, an online adaptation policy is proposed to guarantee 

timely responses to queries in spite of the time-varying characteristics of harvested energy. 

Our contribution includes: (1) exploiting application tolerance to quality degradation to adapt the 

sensor data collection process under unstable energy harvesting conditions; (2) design of the 

QuARES framework, an energy harvesting management framework with 2 stages (online and 

offline) that utilizes energy harvesting prediction and knowledge of application tolerance–energy 

cost to maintain system sustainability and optimize data quality; (3) performance evaluation of 

the QuARES management framework as compared to other offline/online strategies (fixed-error-

margin, minimum  variance[9]) under different application and energy harvesting scenarios using 

the QualNet simulator (here, the battery model was modified to simulate energy harvesting) 

considering different sensor inputs, application constraints, weather conditions and battery 

capacities; (4) implementation, deployment and measurement in a real-world campus testbed, 

Responsphere at UCI [11]. Our simulator is also a valuable tool for designers to tune system 

parameters, to check feasibility of application constraints under various energy harvesting 

conditions and to study system performance. Experimental Results show that our framework can 

tolerate lower error margins (i.e. higher data accuracy) of 30-70%, ensure a response to all 

queries; additionally, sensors do not have to shut down to replenish. Results also support the fact 

that while offline stage is needed to plan the energy budget to tolerate lower error margins, the 

online adaption is required for responsiveness to queries. 

 



67 

 

3.1 Related Work 

Recent research has enabled wireless sensor motes to harvest energy from the surrounding 

environments [1-3]. Energy-neutral approaches have been proposed to cope with the time-

varying characteristics of energy harvesting profile. Most of these approaches are cross-layer, 

considering energy status at battery layer and adapting system at other layers. Hsu et al. [4] adapt 

duty cycling of systems to the changes in renewable sources. Hasenfratz et al. [10] modify routing 

protocol at MAC layer to exploit both temporal and spatial variations of renewable energy and 

maximize data delivery rate for sensors. Voigt et al. [7] adapt LEACH, a cluster-based routing 

protocol for sensor networks to take advantage of energy harvesting. At operating system layer, 

Liu et al. [5] and Moser et al. [6] propose task scheduling techniques for energy harvesting 

systems. At the application layer, Noh et al. [8] use an adaptive technique to turn on and off 

storage services based on different energy thresholds. Ravinagarajan et al. [12] adapt task utility 

of structural health monitoring applications to maximize accuracy of tasks.  

Some approaches exploit patterns in renewable energy profile to predict future harvested energy 

and to plan energy budget accordingly. Wang et al. [9] propose a minimum variance slot-based 

energy budget allocation for systems which prefer steady level of operation. This solution is not 

suitable for systems whose level of operation is dictated by application and user constraints that 

vary. Moser et al. [13] allocate energy budget for time slots to maximize quality of service for 

general systems. However, given the fluctuation of harvested energy within each time slot, an 

offline budget allocation methodology cannot always guarantee the desired quality of service. 



68 

 

 

Figure 3.1 Data Collection in Wireless Sensor Networks 

None of these works consider data collection applications with data accuracy tolerance, i.e. those 

that admit flexibility of error. [21] and [22] attempt to optimize data rate for data collection in 

wireless sensor networks without considering application quality needs as well as application’s 

tolerance to data quality degradation. In [14], Han et al. propose an adaptive data collection 

protocol which is aware of these data accuracy requirements and exploits error margin of many 

applications to minimize energy consumption and prolong battery life-time. This approach is 

designed for and suited to battery powered sensor systems. Our work, on the other hand, exploits 

error tolerance in both offline and online stages to adapt the system to the fluctuations of 

renewable energy sources. 

3.2. Data Quality in Energy Harvesting Systems 

Our system consists of a wireless sensor network (WSN) deployed in an infrastructure for 

monitoring purposes. The components of our systems are a set of n sensor nodes {s1, s2,…,sn} and a 

base station(s) B as shown in Figure 3.1. Each sensor si collects information about its surrounding 

environment by reading value vi from its embedded sensor and periodically sends an update to 



69 

 

the base station(s). vi is a property of the environment, e.g., temperature, humidity or sound, that 

the application needs to monitor through our WSN. In this study, I assume that all sensor nodes 

are equipped with a harvesting circuitry. Harvested energy is accumulated in an energy buffer that 

supplies power for sensor nodes’ operation.  

A base station B resides at a node with unlimited resources, e.g., power, storage, computation. It 

collects data from sensors and stores them in a cache. The cache contains an approximated value 

ui for each sensor si’s true value vi. Base station B is connected to a monitoring application on the 

user side. The application periodically polls sensor nodes through the base station(s) for the 

monitored information. When necessary, the application can ask for sporadic information. In 

particular, the application sends a query Qj to the base station each time it needs data from a 

sensor node or a set of sensor nodes. The query Qj contains data accuracy constraints specified as 

error margin. If the approximated value ui for a sensor si satisfies these constraints, the base 

station B returns ui to the monitoring application. Otherwise, B sends an update request to the 

sensor si, to retrieve the latest value vi, and replies to the query Qj with the updated approximated 

value.                                  

Data accuracy can be expressed as an error margin of the actual value vi, e.g., vi 10 or vi 10%. 

Such error tolerance can be exploited while tuning the system. Error margins can be increased or 

decreased to meet both data accuracy constraints and system constraints, such as varying energy 

supply. Our energy harvesting management framework exploits this error tolerance to adapt the 

system to the availability of renewable energy sources. However, there are several challenges in 

managing such dynamic systems as outlined in the next section.  





70 

 

 

Figure 3.2 QuARES Framework 

3.2.1 Energy Harvesting Systems 

Exploiting renewable energy patterns, such as daily and seasonal patterns, several prediction 

algorithms (see [4], [9], [15], [16]) have been proposed to predict future harvested energy. 

Prediction information is composed of the predicted total energy harvested in each time slot in a 

harvesting period rather than a series of instantaneous values. Typically, systems keep track of the 

average rate of energy harvesting, they do not maintain specific statistics on variations in energy 

harvesting as a function of time.    

Furthermore, in energy harvesting systems, dynamicity is not only from the fluctuation in energy 

supply but also from the changes in input data and application quality constraints. To make the 

application demand match the energy supply is a critical task for system sustainability, realizing 

additional criteria such as the optimization of application quality, specifically data accuracy under 

these constraints, is even more challenging. 

Energy Harvesting 

Prediction for next Period

Sensor
Base 

station

Budget Allocation &Baseline 

Data Quality Assignment 

Energy 

Harvesting 

Prediction

Application 

Profiling

Budget Allocation 

& Baseline Data 

Quality Assignment 

Online 

Adaptation

Approximated Data 

Collection on Sensor

Approximated Data 

Collection on BaseStation

Energy 

Harvesting 

Statistics

S
ta

g
e

 1
: 
O

ff
li
n

e
S

ta
g

e
 2

: 
O

n
li
n

e

1
2

3

4

5

6

7 8



71 

 

The first challenge is to utilize the prediction information about future harvested energy to sustain 

the system and maximize overall data accuracy. If high data accuracy is assigned to an interval 

with predicted low energy, the energy supply will not meet the energy demand and the system 

might run out of battery and shut down, and as a result suspend monitoring activities. If low data 

accuracy is assigned to an interval with predicted high energy, the harvested energy is not utilized 

and might be wasted due to energy overflow. The second challenge is to adapt the assigned data 

accuracy to the actual rate of harvested energy that the system perceives at run-time. If the energy 

in the buffer is low and the harvested energy rate is lower than the predicted average rate, the 

system will not have enough energy to sustain itself, let alone maintain the assigned data accuracy. 

A high level definition of the problem is as follows: Given predictions of energy harvesting and 

knowledge of error tolerance and energy cost, the goal is to guarantee maximum system lifetime 

while optimizing data accuracy. 

3.2.2 Proposed Framework - QuARES 

I propose a framework called QuARES – Quality Aware Renewable Energy System to address this 

problem. QuARES is a cross-layer energy management framework consisting of 2 stages, one 

offline stage and one online stage. Each stage addresses a challenge in section 3.2.1 respectively. 

Figure 3.2 depicts our framework and its stages.  

Stage 1 is executed offline in the current harvesting period. In this stage, the base station runs a 

prediction algorithm to extrapolate information about energy harvested in the next harvesting 

period. The predicted information and the knowledge about data accuracy and energy cost are 



72 

 

inputs to an optimizing algorithm (step 1, Fig. 3.2). This algorithm allocates energy budget for 

each time slot in the next period and optimize overall data accuracy. The results are then sent to 

sensor nodes (step 2) and each sensor node stores the energy budget in its memory.  

Stage 2 is executed online in the subsequent harvesting period. At the beginning of each time slot, 

the corresponding energy budget is retrieved from memory and a corresponding baseline error 

margin is looked up (step 3). Sensor nodes and the base station exchange messages according to 

their protocol to maintain the error margin (steps 4 & 5). Online adaptive policies monitor the 

energy buffer and the actual harvested energy (step 6) to adjust the baseline error margin (step 

7). Adaptation allows the system to cope with variation in renewable energy source and maintain 

system sustainability. In addition, energy harvesting statistics are sent to the base station 

(together with messages in step 4) to update energy harvesting prediction of the next harvesting 

period (step 8). 

3.3. PROBLEM FORMULATION 

In this section, I define system parameters, energy harvesting and data accuracy models. Next, I 

describe the algorithms used in each stage of our framework. Each sensor has a battery, with 

capacity C, to store harvested energy. Energy accumulated beyond capacity C will be discarded 

(energy overflow).  Let         
  be the available energy at the beginning of the harvesting period. 

Let      be the minimum energy to be reserved at the end of the harvesting period.  



73 

 

Energy Harvesting Model - I denote the length of a harvesting period as T. A harvesting period is 

then divided into equal-length intervals or time slots. Let N be the number of slots in a harvesting 

period T. The values of T and N are defined by the harvested energy prediction algorithm on the 

basis of renewable energy source, the nature of sensor input and query model. Our framework, 

however, is independent of these parameters. For each time slot i, the prediction algorithm 

provides         
  which is the amount of harvested energy in that slot. I assume an ideal slot based 

harvested energy prediction algorithm. 

Data Accuracy Model - I model data accuracy in terms of error margin. Error margin    is the 

bounded difference between the sensed value vi at the sensor node    and the approximated value 

   at the base station B, such that           . The entry in the base station’s cache is not a single 

value but an approximation range [li, ui] where    is the lower bound and    is the upper bound for 

sensed value    and          . This error margin is the constraint of the application and is not 

the measurement error or sensitivity of physical sensors. I provide the following definitions: 

Definition 1: Baseline Average Error margin denoted as         
         is the average of baseline error 

margin predicted in the offline stage, representing the predicted average data accuracy of data 

collected from sensor   . 

Definition 2: Actual Average Error Margin denoted as    
  is the average error margin maintained 

by sensor    in a harvesting period T, representing the actual average data accuracy of data 

collected from sensor   . 



74 

 

Our framework, QuARES, optimizes         
         in the offline stage and uses online adaptation to 

maintain   
  close to         

         during online stage. 

Definition 3: Consistent state refers to the state of cached entry on the base station B. If the 

approximation range [  ,   ] satisfies            and sensed value    satisfies          , the 

cache entry is in a consistent state.  

Definition 4: Inconsistent state refers to the state of cached entry on the base station B when vi 

falls outside the approximation range [  ,   ] or when           .  

When sensor node    reads a new value vi, it checks if the cache is still consistent. If the cache is 

inconsistent, a new approximation range [           ] is sent to the base station to update the 

cache. This process is called source update. If the sensor node does not update the base station, 

e.g., running out of battery, the cache entry is in inconsistent state. The number of source updates 

essentially reflects the physical characteristics of monitored phenomenon. I assume the sampling 

rate of sensors is sufficient to detect changes in the monitored environment and time to send 

update message is negligible. 

When the base station B receives a new query Qj, it first checks if the current cache entry satisfies 

the data accuracy constraint Aj, i.e.,      . If it is satisfied, the base station immediately 

responses to the query with value 
       

 
. Otherwise, the base station sends a request to    for 

current sensed value vi. The sensor node replies with the updated approximation range 

[           ], the base station updates its cache entry and sends    to the application. This 



75 

 

process is called consumer update. The number of consumer updates reflects the nature of query 

model both in term of query frequency and associated accuracy constraints.    

The smaller the error margin, the more source updates and less consumer updates. On the other 

hand, the larger the error margin, the less source updates and more consumer updates. The two 

extremes are     (only source updates) and     (only consumer updates). However, 

considering both types of updates, Olston et al. [17] find an error margin      where the total 

number of updates and energy consumption is minimum. Hence, we only need to consider error 

margin in the range [0,     ] as beyond this, both the error margin and energy consumption is 

higher. 

I assume to have a vector (     ) and a corresponding vector (     
       

 )  where      
 

 is the 

energy required to maintain error margin    in a time slot. K is the number of error margin levels. 

This function from error margin to energy consumption is an abstraction of the relation between 

application quality and the nature of monitored physical phenomenon and query behavior.  

 

Problem Formulation 

Given input: 

Harvesting period T, N time slots  

Battery capacity C   0 and Initial battery         
  

Minimum battery remained after T:      

Energy harvesting prediction of each time slot         
     Ni 0  

Error margin and energy cost vectors: (     )  and (     
       

 )   

Objective: Minimize  , the average actual error margin, in a 

harvesting period T 

                             

Figure 3.3 Problem Formulation 



76 

 

A more formal characterization/formulation of the problem is given in Fig. 3.3 where our goal is to 

minimize the actual average error margin. In the next two sections, I describe our algorithms in 

each stage to achieve this. 

3.3.1 Stage 1: Budget Allocation and Baseline Data Quality Assignment 

In stage 1, I solve a linear optimization problem (see Algorithm 3-1) to allocate energy budget and 

assign a corresponding baseline error margin for each time slot. The linear optimization problem 

for each sensor node is solved by a linear solver at the base station. System parameters, harvested 

energy prediction and data accuracy – energy cost in Fig. 3.3 are input to this optimization 

problem.     

Let         
 denote the energy in the battery at the beginning of time slot i. Since the battery cannot 

store more than its capacity C,         
  must be constrained by this upper bound (constraint 1, 

Algorithm 3-1). Any excess energy is discarded (energy overflow). Let        
 denote the energy 

budget for slot i which could only be drawn from the available energy in the battery at the 

beginning of the slot and the energy harvested during this slot (constraint 2). Vice versa, the 

energy in the battery at the beginning of a slot is limited by the amount of energy available in the 

previous slot subtracted by its energy consumption (constraint 3). 

The base line error margin for each slot is assigned based on the allocated energy budget. Let  

q[i,j]= 1 if error margin    is assigned to slot i, q[i,j] = 0 otherwise. Each slot i could only be 

assigned one base line error margin (constraint 4) and this error margin is computed in constraint 



77 

 

5. In addition, its energy budget must be sufficient to maintain this error margin, i.e., at least      
 

  

(constraint 6). Let      
  be the maximum tolerated error margin of the application in slot i and 

also the upper bound for the assigned base line error margin of slot i (constraint 7). Many 

applications could have time-based quality constraints such as monitoring closely during day-time 

than night-time or vice versa. Under this constraint, the QuARES framework makes sure the data 

accuracy is never degraded beyond application needs.  

 

Algorithm 3-1: Offline planning 

Stage 1 at Base Station B  

1. Run a linear solver to solve this linear programming for each sensor s    

Objective                Minimize       
        

      
    

   

  

Subject to constraints: 

    Input and Constraints in Figure 3.3 

    
        

                                                                                                                (1) 

           
          

          
                                                                            (2)            

 

    
        

            
          

         
 

            
        

                                   
(3) 

              
                                                                                                             (4) 

    
          

   
         

                                                                                     (5)  

    
             

    
           

                                              (6) 

         
      

  

  

                                                                                                       (7)         

2. Send energy budget allocation and baseline data quality assignment to sensor s 

Stage 1 at Sensor node s 

1. Receive energy budget allocation and baseline data quality from base station 

2. Save in memory for run-time use in the next harvesting period 



78 

 

The objective of this optimization problem is to maximize the average base line error margin, 

     . Next, I describe stage 2 of our framework, online dynamic adaptation whose task is to 

maintain the assigned baseline error margin and guarantee continuous system operation. 

3.3.2 Stage 2: Online Dynamic Adaptation 

During stage 2, data collection protocol runs on both sensor and base station to keep the cache in a 

consistent state and respond to monitoring queries. However, the actual harvested energy rate 

could be lower than the predicted average rate. The system thus needs online adaptation policies 

to tackle energy supply fluctuations, maintain system operation and data accuracy constraints. 

Our online adaption running on sensor node is a heuristic which keeps track of current harvesting 

rate and battery status to adjust the error margin, guarantee system operation and consistency of 

cached entry at the base station. I develop 2 dynamic adaptation policies: inter-frame adaptation 

and intra-frame adaption (see Algorithm 3-2).  

1) Inter-frame adaption is triggered at the beginning of each time slot. The harvested energy often 

does not come at a constant rate; when harvested energy is abundant and the energy buffer is 

almost full, energy overflow happens. The harvested energy thus could be less than what expected 

and the system needs to adapt its energy budget plan and base line error margin. The inter-frame 

policy keeps track of this energy discrepancy and distributes the energy offset among current and 

future slots’ energy budget. Our inter-frame adaptation algorithm is summarized in Policy 1, 

Algorithm 3-2. 



79 

 

 

2) Intra-frame adaptation on the other hand is triggered more often every sub-slot within a time 

slot to quickly adapt to fluctuations of the renewable energy source.  The length of a sub-slot 

depends on the energy source, which is the interval of time that the harvested energy rate remains 

fairly stable, e.g. 1-5 minutes. Every sub-slot, intra-frame policy will check if the current harvesting 

Algorithm 3-2: Online Adaptation 

Policy 1: Inter-frame online adaptation (slot i) 

1. buffer   = current energy in the buffer 

2. offset    =         
 

 
- buffer 

2. if (offset > epsilon ) then     #adjust budget of future slots 

3.                  
         

         
  

4.           j = find_quality_level(       
 )

  

5.                   
              

6.  
         

update_server(            

Policy 2: Intra-frame online adaptation (slot i) 

1. h  = current_harvesting_rate; 

2. if (|h -     | < epsilon) then return 

3. else       = h 

4. buffer   = current energy in the buffer 

5. reserve = buffer energy reserved for future sub-slots 

6. l = length of a sub_slot 

7. supply =  h*l + (buffer-reserve)     #energy supply for this sub-slot 

8. if (supply <        
  /number_of_subslot  ) 

9.      then       
 
= find_quality_level (supply*number of subslot) 

10.   else              
  

 
11.

 
if   changes then 

12.          update_server(          ) 
  

 



80 

 

rate is significantly less than the predicted average harvesting rate and adjust error margin in the 

current sub-slot accordingly. In the next sub-slots, if the harvesting rate increases above the 

expected average rate, the policy restores the baseline error margin. Our inter-frame adaptation 

algorithm is summarized in Policy 2, Algorithm 3-2.   

3.4. Evaluation 

In this section, I first explain the experimental setup to evaluate the effectiveness of our proposed 

framework QuARES and then I compare the results with other existing policies in terms of error 

margin (data accuracy), responsiveness to queries, and energy consumption. 

3.4.1 Experimental Setup 

I initially implemented the approximated data collection application and QuARES framework in 

QualNet network simulator [18]. The simulator is configured to simulate a sensor network of Mica 

motes with ZigBee standard specification.  Power consumption of sensor node is set accordingly to 

Mica-2 [19]. I am also developing a prototype test bed with harvesting capability (see section 3.6). 

Sensor data are generated randomly from the range [-150, 150]. The sampling rate is 100Hz, each 

sampling either increases or decreases the previous value by an amount randomly chosen in the 

range [0.5, 1.5]. Figure 3.4b gives an example of randomly generated sensor data for simulated 

time of 6 hours. Periodic queries arrive every 100 ms. Sporadic queries are modeled by Poisson 



81 

 

distribution with mean interval = 100 ms.  Each query is associated with an error tolerance of 

mean = 20 and deviation = 1. 

Energy harvesting profile is retrieved from National Renewable Energy Lab website [20]. Solar 

profiling for a day is shown in Figure 3.4a. The data is average solar irradiance (mW/m2) at a 

specific location every 5 minutes. The irradiance is converted to harvested energy by linear 

conversion considering solar panel size 9.6cmx6.4cm, solar cell efficiency 10% and harvesting 

efficiency 80%. I modify QualNet battery model to charge battery every 1 minute. I assume a 

perfect solar energy prediction algorithm which gives accurate slot-based prediction to our offline 

stage.  I choose T = 1 day and N = 48 slots.  

I profile error margin vs. energy cost by simulating application for different error margins in the 

range [0,     ] (see Figure 3.4c). Since it is impossible to profile every value in this range, I choose 

to profile values at a constant interval step, r = 0.1. For each error margin         , I fix the baseline 

error margin for all slots (     =        ) and set energy buffer always full. I run the simulation for 

a simulated time of one day and divide the total energy consumption by the number of time slots 

Figure 3.4 Solar Data, Sensor data, and Data Quality 



82 

 

N to obtain average energy cost per slot at error margin         . For the given query model and 

sensor input, I find that         .  

3.4.2 Experimental results 

To evaluate the effectiveness of our proposed QuARES framework, I have implemented several 

offline or online policies for energy management during data collection. I evaluate the policies in 

terms of their data accuracy (error margin), system sustainability, and energy consumption. These 

implemented policies are as follows: 

 FIX_ERROR       ) and FIX_ERROR       ):  FIX_ERROR is an offline policy and has 

no online adaptation. A fixed baseline error margin is assigned to all time slots.  

 GREEDY_ADAPT: Greedy adaptation is a completely online protocol without offline 

energy budget assignment. It sets an error margin at the beginning of each time slot 

according to the amount of available energy in the buffer. 

 MIN_VAR: Adopted from [9], it allocates energy budget for slots in the offline stage with 

minimum variance. Its goal is to maintain steady operation for the system. It does not 

have online adaptation. 

 QuARES: As presented in this chapter, our quality-aware framework minimizes error 

margin both in offline and online stages.    

Table 3.1 shows results of QuARES in comparison with other approaches. FIX_ERROR         

has a very high error margin and consumes minimum energy. Due to high error margin, source 

updates is very low compared to consumer updates; this scheme is thus very close to push-based 



83 

 

data collection. The system responds to all the queries at the trade-off of a higher error margin. 

This is the extreme case where energy saving is a dominant requirement compared to data 

accuracy and is suitable for traditional battery powered systems [16]. The second column 

FIX_ERROR         is another fixed error rate policy which attempts to maintain a lower error 

margin       by exploiting energy harvesting. Due to very low error margin, the source updates 

are very high compared to the consumer updates. This scheme thus is very close to pull-based 

data collection. However, it fails since the sensor node cannot maintain this low error margin 

when the harvested energy is low. The battery is exhausted and system needs to shut down for 45 

minutes to replenish energy. This leads to a very high number of failed responses to queries. 

FIX_ERROR approach in general cannot work in dynamic energy harvesting systems.                                          

Table 3.1 Comparison Results 

 

 

 

FIX_ERROR

)0.8(   

FIX_ERROR 

)5.0(   

GREEDY_ 

ADAPT 

MIN_VA

R 

QuARES 

offline 

QuARES 

offline + 

online 

Average Error 

Margin 
8.00 0.50 0.348 0.388 0.156 0.159 

Total Energy 

Consumption (J) 
1813 2686 2656 2641 2641 2641 

Shut down time for 

harvesting (minute) 
0 45 21 7 4 0 

Failed responses to  

queries 
0 570 420 196 64 0 



84 

 

The third and the fourth column show results of GREEDY_ADAPT and MIN_VAR [9]. Both have 

comparable average error margin and energy consumption. However, neither of them consider 

fluctuation of energy harvesting in its greedy online adaptation or offline budget allocation. 

Therefore, in both cases, the sensor node runs out of battery and shuts down (only energy 

harvesting continues), leading to failed responses to queries. It is thus necessary to have online 

adaptation to handle fluctuation of renewable energy. In columns 5 and 6 of Table 3.1, I study the 

significance of each stage in the QuARES framework: offline budget allocation and online 

adaptation.  

I compare our QuARES offline and the whole QuARES with both online and offline stages. As seen 

from Table 3.1, without online adaptation, QuARES (offline) must shut down the sensor node for 4 

minutes and thus failed to response to 64 queries. The system often shuts down during the sunrise 

when both battery reserves and harvested energy rate is low.  

Among all approaches, QuARES with both online and offline stages keeps the system alive for the 

whole harvesting period, responds to all queries, maintains low error margin from 30-70%, and 

enables a uniform energy usage across nodes. The results show that while our proposed offline 

stage in QuARES maximize data accuracy, the online adaption stage is required for successful 

query responsiveness. 

Varying Application Constraints: I evaluated our framework for different application constraint 

profiles. Application Constraint profile 1 (AC1) maintains low error margin during day time 

(      , from 5am to 7pm. 



85 

 

Table 3.2 Comparison results 

 

Application Constraint profile 2 (AC2) maintains low error margin during night time,       from 

7pm to 5am. QuARES (in Table 3.2) satisfies all the application constraints at the trade-off of 

suboptimal energy budget allocation compared to no constraint case, higher error margin and less 

energy utilization. Interestingly, the QuARES offline stage also gives immediate feedback to system 

designers if the given data accuracy constraints are infeasible in the next harvesting period and 

needed to be adjusted. MIN_VAR, on the other hand distributes energy budget among slot with 

minimum variance regardless of application constraints, thus do not give any feedback to 

designers when application constraints are infeasible. Furthermore, the budget is not in 

accordance with energy demand in different slots, MIN_VAR spends more energy in slots where it 

should save energy for higher-demand slots in the future and soon runs out of battery and fails to 

response to queries.  

  App. Constr. 1 App. Constr. 2 

MIN_VAR QuARES MIN_VAR QuARES 

Average Error Margin 3.09 0.891 1.067 0.783 

Energy Cons. (J) 2481 2509 2481 2501 

Shut down time (min.) 32 0 9 0 

Failed responses to  queries 521 0 227 0 



86 

 

 

Figure 3.5 Impact of battery capacity on application data    

Impact of Battery Capacity: I simulate the application with different battery capacities. Figure 

3.5a shows average error margin during day time and night time under different battery 

capacities on a summer day. As seen from Figure 3.5 a, on one hand, the battery capacity has a 

negligible effect on the error margin during the day as the energy supply is abundant. On the other 

hand, the battery capacity has significant impact on the error margin during the night. There is no 

energy harvested during this period and the capacity of battery limits energy saving to maintain 

data accuracy at night. In addition, I compare results on summer days and winter days (Figure 

3.5b). Results show that to obtain a comparable error margin, the battery capacity required on 

winter days is larger than the battery capacity on summer days as winter night time is longer than 

summer night time. For example, to achieve average error margin of 1.0 at night requires battery 

capacity C = 950000 mJ on a summer day but requires C = 1400000 mJ on a winter day. 

 

 

0 

0.5 

1 

1.5 
Er

ro
r 

M
ar

gi
n

 

a)  Battery Capacity (mJ) 

QuARES 
(night) 

QuARES (day) 

0 

0.5 

1 

1.5 

Er
ro

r 
M

ar
gi

n
 

b)   Battery capacity (mJ) 

QuARES 
(night) 

QuARES(day) 



87 

 

3.5 Case Study – Indoor Energy Harvesting Systems in 

Sensorized Infrastructures 

In this section, I carry out simulation with synthetic input from our study of energy harvesting 

system in a sensorized infrastructure. I first describe our study and then show our simulation 

result applying QuARES in this context.  

In this study, I first measure energy harvesting availability in a building with a focus on light 

energy sources. I identify two sources of energy: light bulbs inside offices and hall ways and solar 

light from windows around the building. I experiment with different types of light bulbs and Table 

3.3 shows the results of our measurement. 

Table 3.3 Indoor Light Energy Harvesting 

Type of bulb Energy Used (W)  Light Output Harvesting power (mW) 

Daylight Complact Fluorescent 14  800  28.32 

Bright White Compact Fluorescent 14 800  29.75 

Round back light Max. 55 N.A 31.09 

Soft White Compact Fluorescent  14 900 35.15 

Halogen light 55 825 66.48 

Soft White Incandescent Bulb 57 780 148.97 

 



88 

 

The table shows various types of bulb used for lighting at offices and home. Our solar panel is 

placed in front of the light source at the distance of 10cm. I record the harvesting power from the 

solar panel (Solar-made, 9.6cmx6.4cm) in this table. I observe that the higher the energy a light 

bulb consumes, the higher the harvesting power it provides as the irradiance increase. 

Temperature also plays an important role as soft while incandescent bulb with same energy 

consumption but has higher temperature but also significant higher harvesting power. Among 

these types of bulbs, soft white compact fluorescent light bulb has a nice balance between its 

energy consumption and energy harvesting power supply.  

 

Figure 3.6 Indoor Solar Energy Harvesting Profile 

In addition to indoor lighting bulb, another interesting energy harvesting source we find in a 

building is solar light filtered by glass windows. I place our solar panel on the inside of such 

windows and measure the output of the solar panel. Figure 3.6 shows the profile of energy 

harvesting at 2 windows at different locations of the building. The two energy harvesting profiles 

have a similar shape and peak point but one is shifted toward the right while the other to the left 

in the time domain. One peak point is at 11am while the other is at 5pm. The reason is the energy 

0 

50 

100 

150 

200 

H
ar

ve
st

in
g 

P
o

w
e

r 
(m

W
) 

Indoor Solar Energy Harvesting 



89 

 

harvesting reaches its peak point when the angle of the sun is directly orthogonal to the solar 

panel which is in the morning for the window at the east side and in the afternoon for the window 

at the west side. It is well known that energy harvesting depends on solar irradiance, temperature 

as well as angle of the sun.  

 

Figure 3.7 System Operation Time Estimation 

If we do an estimation of system operation time and apply this for different type of sensors on a 

Micaz2 sensor board and combined energy harvesting sources from one window and one soft 

white compact fluorescent bulb, we will have Figure 3.7 which estimates the duty cycle during 

which the system is active. 

                      
                          

                         
 

From this raw estimation, we may think that energy harvesting supply with 1 solar panel is not 

enough to sustain system operation even for low power sensor such as temperature and humidity. 

And it might need 16 of such solar panel to provide 80-100% system runtime. 

Size 1 

0 

50 

100 
Te

m
p

er
at

u
re

 

A
cc

el
er

at
io

n
 

H
u

m
id

it
y 

H
ea

rt
 R

at
e 
…

 

Ti
lt

 s
en

so
r 

A
co

u
st

ic
 

M
ag

n
et

ic
 

H
ea

d
in

g,
A

tt
i…

 

M
o

ti
o

n
 

G
P

S 
lo

ca
ti

o
n

 

50-100 

0-50 



90 

 

In fact, I run QuARES with synthetic input of combined energy harvesting sources from one 

window and one light bulb, the result is shown in Figure 3.8. With only 1 solar panel, the energy 

harvesting system is able to sustain 100% time. The low-power image sensor needs 2 solar panels 

(as opposed to 4-8 solar panels in the raw estimation above). The acoustic sensor board needs 8 

solar panels which is half of the worst case estimated size. In addition, QuARES also provide 

information about the battery capacity and data quality for the designer to explore the system 

design space. The summary of data quality for different type of sensor is given in                     Figure 

3.9. 

In this case study, we see that using QuARES we can design an energy harvesting system with 

smaller solar panel size and with a guarantee of data quality. System designers can also choose 

different battery size according to application need or requirement of data quality. 

 

Figure 3.8 System Operation Time by QuARES                    Figure 3.9 Data Quality for    

                                                                                                                    Different Types of Sensors 

Size 1 

Size 8 
0 

50 

100 

Te
m

p
er

at
u

re
 

A
cc

el
er

at
io

n
 

H
u

m
id

it
y 

H
ea

rt
 R

at
e 
…

 

Im
ag

e 
se

n
so

r 

A
co

u
st

ic
 

50-100 

0-50 

0.6

0.8

1

1.2

1.4

1500K 1550K 1600K 1650K 1700K

Er
ro

r 
m

ar
gi

n

Battery Capacity

Temperature

0.6

0.8

1

1.2

2000K2040K2080K2120K2160K2200K

Er
ro

r 
M

ar
gi

n

Battery Capacity

Sp02

0
2
4

4800K 4850K 4900K 4950K 5000K

Er
ro

r 
M

ar
gi

n

Battery Capacity

Image Sensor

0
0.5

1
1.5

1814K 1816K 1818K 1820KEr
ro

r 
M

ar
gi

n

Battery Capacity

Acoustic



91 

 

3.6 Prototype System and Test Bed 

I am deploying a test bed of energy harvesting wireless sensor network in Responsphere [11].  

Figure 3.10 shows our Responsphere infrastructure and prototype of our energy harvesting 

platform, including a Crossbow sensor temperature, light and acoustic sound), two solar panels 

and 2 AA batteries. Table 3.4 shows our measurement at noon at 4 different locations inside and 

outside a building in Responsphere infrastructure (Floor Plan, Figure 3.10). Locations 1-2 are 

indoor while locations 3-4 are outdoor. Under artificial light condition (location 2), solar panels 

provide low but stable power to sensors. Under natural light (loc. 1 next to a window and loc. 3-4) 

solar panels provide higher but fluctuating power as it subjects to several conditions such as time 

of the day, surrounding objects, cloud or wind which may create or shift shadow or direction of 

windows for indoor case. I plan to use our measurement of solar profile and real sensor data to 

input to our network simulator. The simulator of data collection application and QuARES 

framework plays an important role in designing and tuning real system parameters, studying the 

feasibility of application constraints and energy harvesting as well as system performance. 

Table 3.4  Measurement of Solar Panel Output at Various Locations in UCI 
 

 
Indoor (1: next to a 

window) 

Indoor (2: inside 

a room) 

Outdoor (3: under 

shadow) 

Outdoor (4: sunny 

location) 

Voltage (V) 16.24 7.17 15.2 - 15.7 17.2 - 17.7 

Current (mA) 20.7 2.6 9 – 11 59.4 - 65.2 

Availability 12 hours 8 hours 12 hours 12 hours 



92 

 

 

Figure 3.10 Responsphere Infrastructure and Solar Testbed 

3.7. Conclusion 

In conclusion, this chapter proposes a complete autonomous energy management framework in 

energy harvesting WSN whose goal is to optimize data accuracy for approximated data collection 

applications and sustain system operation. The offline stage explores energy harvesting prediction 

information to allocate energy budget among time slots in a harvesting period and maximize 

overall data accuracy. The online adaptation stage maintains the predicted data accuracy while 

coping with harvested energy fluctuation. Our framework is evaluated extensively in comparison 

with other approaches and considering different weather conditions, battery capacities and 

application constraints. 

 



93 

 

References 

[1] K. Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman, A. Kansal, V. Raghunathan, and M. Srivastava, 

“Heliomote: Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting,” in SenSys, 2005. 

[2] X. Jiang, J. Polastre, and D. Culler , “Perpetual Environmentally Powered Sensor Networks,” in IPSN, 

2005. 

[3] F. Simjee and P. H. Chou, “Everlast: Long life, Supercapacitor operated Wireless Sensor Node,” in 

ISLPED, 2006. 

[4] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, V. Raghunathan, “Adaptive Duty Cycling for Energy Harvesting 

Systems,” in ISLPED, 2006. 

[5] S. Liu, Q. Wu, Q. Qiu, “An adaptive scheduling and voltage/frequency selection algorithm for real-time 

energy harvesting systems,” in DAC, 2009.  

[6] C. Moser, D. Brunelli, L. Thiele, L. Benini, “Lazy Scheduling for Energy Harvesting Sensor Nodes,” in 

DIPES, 2006. 

[7] T. Voigt, A. Dunkels, J. Alonso, H. Ritter, J. Schiller, “Solar-aware clustering in wireless sensor networks,” 

in ISCC, 2004. 

[8] D. K. Noh, L. Wang, Y. Yang, H. K. Le, and T. Abdelzaher, “Minimum Variance Energy Allocation for a 

Solar-Powered Sensor System,” in DCOSS, 2009. 

[9] L. Wang, D. K. Noh, Y. Yang, H. K. Le, T. F. Abdelzaher and M. Ward, “AdaptSens: An Adaptive Data 

Collection and Storage Service for Solar-Powered Sensor networks,” in RTSS, 2009. 

[10] D. Hasenfratz, A. Meier, C. Moser, J. J. Chen, and L. Thiele , “Analysis, Comparison, and Optimization of 

Routing Protocols for Energy Harvesting Wireless Sensor Networks,” in SUTC, 2010. 

[11] Responsphere infrastructure test bed, 17 March 2011, http://www.responsphere.org/index.php 

[12] A. Ravinagarajan, D. Dondi and T. S. Rosing, "DVFS Based Task Scheduling in a Harvesting WSN for 

Structural Health Monitoring," in DATE, 2010. 

[13] C. Moser, J. J. Chen, L. Thiele, "Power Management in Energy Harvesting Embedded Systems with 

Discrete Service Levels," in ISLPED, 2009. 

[14] Q. Han, S. Mehrotra, N. Venkatasubramanian, "Energy Efficient Data Collection in Distributed Sensor 

Environments," in ICDCS, 2003. 

http://www.responsphere.org/index.php


94 

 

[15] C. Bergonzini, B. Lee, J. R. Piorno, T. S. Rosing, "Management of Solar Harvested Energy in Actuation-

based and Event-triggered Systems," in Energy Harvesting Workshop, 2009. 

[16] M. Ali, B. Al-Hashimi, J. Recas and D. Atienza, "Evaluation and Design Exploration of Solar Harvested-

Energy Prediction Algorithm," in DATE, 2010. 

[17] C. Olston, B. T. Loo, and J. Widom, "Adaptive precision setting for cached approximate values," in ACM 

SIGMOD, 2001. 

[18] QualNet network simulator. [Online].   “http://www.scalable-networks.com/products/QualNet/"     

[19] Crossbow Technology INC. Mica-2 Data Sheet. [Online] Crossbow, http://www.xbow.com. 

[20] National Renewable Energy Lab. [Online].  http://www.nrel.gov 

[21] B. Zhang, R. Simon and H. Aydin,”Energy Management for Time-Critical Energy HarvestingWireless 

Sensor Networks” in SSS, 2010. 

[22] K  Fan, Z. Zheng and  P. Sinha ,“Steady and Fair Rate Allocation for Rechargeable Sensors in Perpetual 

Sensor Networks” in SenSys, 2008. 

http://www.nrel.gov/


95 

 

 

Chapter 4 Quality-aware Energy Management 

for Real-time Systems with (m,k)-firm 

constraints  

 

To cope with fluctuations in the renewable energy sources, energy harvesting embedded systems 

need to deploy various schemes to adapt their energy consumption. In this chapter, we focus on 

computation-intensive system, for example real-time systems. Real-time systems have powerful 

processor to execute multiple tasks simultaneously. The energy consumption on task processing is 

dominant, in the range of 60-90% of the system energy consumption which may include other 

tasks such as sensing and communication. Tuning energy consumption on task execution 

therefore makes a large impact on controlling system energy consumption and coping with 

variations of energy harvesting supply.  

For real-time systems, I look at two knobs for energy consumption tuning which are task selection 

and Dynamic Voltage/Frequency Scalding (DVFS). I target solar-powered firm real-time multi-task 

systems. Each task executes under one of multiple possible (m,k)-firm constraints (abbreviated as 

(m,k) constraint), where at least m out of every continuous k instances of a task are required to 

complete their execution. In this work, a holistic middleware framework for energy management 



96 

 

which orchestrates DVFS and application QoS in solar-powered real-time systems under (m,k) 

constraints is proposed.  

The proposed solution is composed of three components: (a) an offline phase to assign a tentative 

QoS level for tasks in each time slot in the next harvesting period. This is done based on energy 

harvesting prediction, multi-level (m,k)-constraint QoS model and estimated energy consumption 

for each level using nominal speed, (b) a runtime QoS update phase, which adapts per-slot QoS 

using a more accurate runtime energy harvesting prediction to accommodate anomalous 

deviations from the offline profile, and (c) a real-time EDF-based task scheduling and DVFS. I 

prove that our heuristic DVFS scheme when adapting QoS from one level to another level 

guarantees schedulability. Extensive experiments are carried out to show the effects and the 

robustness of our technique for both synthetic benchmarks and a case study with smart camera 

systems. The proposed framework shows an improvement of 19%-50% in terms of total QoS 

compared to a DVFS framework for (m,k)-constraint real-time systems that is not harvesting-

aware and does not provide adaptive (m,k)-constraint model. 

4.1 Introduction 

Renewable energy technology has enabled many embedded systems such as 

environmental/habitat monitoring and structural health monitoring of critical infrastructures and 

buildings [1] to harvest energy from the surrounding environments, providing perpetual energy 

for systems to operate autonomously. Renewable energy sources often exhibit both temporal and 

spatial variations, which cause dynamic fluctuations in harvested energy. There is an increasingly 



97 

 

growing research to characterize the solar energy’s spatial and temporal variability, mostly 

exploiting its diurnal and seasonal patterns to extrapolate its future availability [2]. However, 

unexpected fluctuations caused by the stochastic variability of atmospheric conditions require 

short-term or runtime prediction algorithms to capture [3]. While prediction can be exploited to 

some degree, there is still a need for system solutions to cope with energy harvesting 

uncertainties and fluctuations effectively.  

Harvesting-aware schemes at device level to tackle renewable energy fluctuations such as duty 

cycling [2], DVFS [4], and DPM [5] enable energy tuning. At application level, various models for 

adapting application quality in energy harvesting systems such as adapting data rate [6], adapting 

error margin [7], and adapting reward-based QoS [8] can be deployed for adapting energy in 

systems and matching with harvested energy. In real-time systems, scheduling to meet task 

deadlines directly affects performance. While application-level adaptive schemes in those systems 

such as dropping jobs are a knob to provide larger and coarser energy adaptation, device-level 

adaptive schemes such as DVFS provide further energy savings. This work is an attempt to enable 

both application and device adaptations to tackle the aforementioned challenges in real-time 

harvesting systems. 

This work targets sustainable firm real-time multi-task systems – i.e., systems with multiple tasks 

running simultaneously under firm real-time constraints. Firm real time systems allow some 

tolerance in scheduling, i.e., by dropping jobs selectively. In particular, (m,k) constraint was 

presented in [15], specifying that at least m out of k consecutive task invocation deadlines need to 

be met. (m,k) constraint model can adequately enforce both quantity and distribution of job 



98 

 

dropping while other metrics such as average percentage of missed deadlines base solely on 

quantity of job dropping. Furthermore, it has been shown that (m,k) constraints can effectively 

model QoS for a wide range of applications including multimedia and control applications [10]. 

For example, in a smart camera system such as CITRICS [13], video images are captured from a 

camera sensor in a number of frames per second (maximum 30fps). If image or video processing 

algorithms need at least 10 frames to process each second, the QoS can be modeled as a (10,30) 

constraint.  

In this chapter, I propose a QoS-adaptive and Harvesting-aware middleware framework, named as 

(m,k)_HAM. (m,k)_HAM orchestrates both application-level and device-level adaptive schemes to 

benefit from coarse and fine-grained energy tuning in order to cope with dynamic fluctuations in 

renewable energy sources. I focus on firm real-time applications with reward-based QoS model 

(multi-level (m,k) constraints for each task) and DVFS as the device-level knob. Our target system 

has a supercapacitor-based energy storage system. While supercapacitors provide high power 

density without aging effect, they incur additional challenges in system management due to self-

leakage. The proposed framework then takes a further step to consider the non-linear 

characteristic of the self-leakage in energy storage.  

In summary, the proposed framework has three main components: 1) Nominal Speed 

Computation and QoS Adaptation: Nominal speed is computed for each QoS level to estimate 

corresponding energy budget. An offline dynamic programming algorithm adapts QoS for the next 

harvesting period given the estimated energy consumption at each level and the long-term energy 

harvesting prediction. Considering self-leakage in supercapacitor, QoS assignment by the 



99 

 

proposed algorithm remains optimal; 2) Runtime QoS Update:  a light-weight greedy algorithm to 

adapt the QoS given energy storage status and the recent energy harvesting trend. It is run at the 

beginning of each time slot during a harvesting period, and 3) Real time task scheduling and DVFS: 

In this step, a real-time preemptive EDF-based task scheduling is followed by DVFS to reduce 

energy consumption. A heuristic DVFS is developed for transition jobs when QoS changes from 

one level to another. The distinct technical contributions in design of algorithms and theoretical 

discussions in each step of the framework are highlighted as follow: 

 The original model of (m,k)-firm in which the system has only a fixed (m,k) constraint is 

extended to be a multi-level (m,k)-constraint QoS model in this work. QoS level can change 

from time to time to meet energy budget. Such QoS adaptation introduces challenges in 

scheduling and DVFS for jobs in transition to meet (m,k) constraints. I formally prove that jobs 

in transition between two QoS levels still meet (m,k) constraints under evenly-distributed 

(m,k) patterns and CPU utilization ≤ 1. A heuristic DVFS scheme for such jobs to guarantee 

schedulability is provided.  

 Design of optimal offline algorithm for QoS adaptation under non-linear energy storage 

leakage model (supercapacitor-based).  

 Design of a runtime QoS adaptation algorithm and DVFS to tackle variations in energy 

harvesting profile. The proposed adaptation algorithm is a greedy look-ahead scheme with 

negligible energy overhead. 

 Applying the proposed framework to real-time applications such as image and video 

processing algorithms in smart camera systems. 



100 

 

 The experimental results demonstrate significant outperformance of our proposed framework 

compared to existing state-of-the-art works in terms of total QoS and average shutdown time 

(i.e., during which systems must shut down to replenish energy). The results support our claim 

that it is important to orchestrate application QoS, DVFS, and energy harvesting and it is 

necessary to have both offline and runtime QoS adaptation working together to achieve both 

mentioned goals. A case study with smart camera systems is carried out extensively to show 

the applicability and impact of (m,k)_HAM. 

In summary, our proposed Harvesting-aware energy Management for real-time systems under 

(m,k) constraints ((m,k)_HAM) is a generalized energy management framework targeting super-

capacitor-based solar embedded systems with DVFS capabilities and real-time applications with 

multiple reward-based QoS levels.  However, in this chapter, I advance the theory for applying the 

framework for (m,k)-constraint real-time applications.  

The rest of the chapter is organized as followed. Section 4.2 introduces the related work. Section 

4.3 presents our system overview, formulates the problem and introduces the (m,k)_HAM 

framework. Section 4.4 explains the multi-level (m,k)-constraint QoS model. The proposed 

framework and algorithms are detailed in section 4.5. The experimental results for a synthetic 

benchmark and a case study of smart camera systems are shown in section 4.6 and 4.7 

respectively. Section 4.8 concludes this chapter. 

 

 



101 

 

4.2 Related Work 

While in hard real-time systems, a failure to execute a job by its deadline can lead to catastrophes, 

soft real-time systems and firm real-time systems offer some tolerance to delayed execution or 

dropping jobs. The metric to measure performance in these systems is usually the number of 

missed deadlines or the average percentage of missed deadlines. However these metrics are not 

adequate. For example “10% of deadlines can be missed” may mean one missed deadline in every 

10 task invocations or 100 missed deadlines followed by 900 met deadlines, each may have a 

significantly different impact on overall performance. To overcome such shortcoming of the QoS 

metrics based solely on quantity of missed deadlines, a variety of window-based QoS constraints 

have been proposed for firm real-time systems to constrain not only the quantity but also the 

distribution of missed deadlines. For example, [15] introduced the concept of (m,k) constraint for 

the first time. Later, [10] generalized the concept of (m,k) and introduced the notion of weakly-

hard real-time systems to cover other types of dropout patterns. A (m,k) constraint specifies that 

tasks are desired to meet m deadlines in any k consecutive task invocations. The model has been 

applied successfully to a broad range of applications including inertial navigation systems, 

computerized numerical control, webphone, and multimedia applications [25, 13]. 

There are several related work in the area of energy-efficient real-time scheduling for weakly hard 

real time systems. [10] proposed a fixed priority scheduling and provided a theoretical analysis on 

schedulability and bound of response time. [15] proposed a dynamic priority-based scheduling 

which assigns higher priority to a task that is closer to miss its (m,k) constraint in order to 

improve its chance of meeting a deadline. [11] monitors and quantifies how close a task to miss a 



102 

 

deadline by criticality functions for not only (m,k) constraints but also other window-based 

constraints. In addition to dynamic priority scheduling, other pattern-based scheduling algorithms 

have been proposed such as Evenly Distributed pattern [20], or Red Only pattern [17]. These 

patterns statically identify task invocations to execute to meet (m,k) constraint and may drop 

other task invocations to reduce energy consumption. [25], [9], and [13] further apply DVFS and 

DPM techniques to reduce dynamic and leakage energy consumption for real-time systems with 

(m,k) constraints. These works are not designed for energy harvesting systems, they do not have 

the adaptation capability needed to address harvesting fluctuations. 

In the context of harvesting-aware real-time systems, EDF-based scheduling algorithms were 

proposed in [12, 14, 23, 27]. Aforementioned EDF-based scheduling is maybe adopted to enhance 

the performance of our EDF-based scheduler. However, it is not in the scope of this work. 

Scheduling algorithms exploiting DVFS function of CPU have been studied [4, 21, 19]. These works 

use number of missed deadlines as QoS metrics. Hence, they are not able to guarantee important 

QoS property such as distribution of missed deadlines for harvesting real time systems. [4, 21] 

target non-periodic task sets, therefore when applying for periodic task sets as in our case, the 

deadlines of tasks might easily be missed. [19] employs a novel harvesting-aware control 

algorithm for DVFS considering power loss of converters. However, the timing and energy 

overhead of such control algorithm limit its applicability in real-time systems. Furthermore, [26] 

proposes a framework for energy harvesting management in multi-core real-time systems.     

Recently, [16] addresses (m,k) constraint guarantee in harvesting real time systems. This work 

proposes a two-step approach for energy management, an offline stage exploiting energy 



103 

 

harvesting prediction to select (m,k) constraints for tasks in the next harvesting period and an 

online adaptation to tackle harvesting variations. This work does not fully support adaptive QoS, it 

has only one fixed (m,k) constraint for each task for the whole harvesting period. In term of fully 

adaptive quality-aware framework for energy harvesting systems, QuARES [7] is the closest work. 

However, their QoS model does not target real-time systems with (m,k) constraints. In addition, 

they assume ideal energy storage and do not consider DVFS or any device-level adaptation scheme 

along with data quality adaptation. Our framework is fully QoS adaptive in both offline planning 

and runtime adaptation. To show the effectiveness and impact of our framework, I investigate a 

case study of smart camera systems in section 4.7. 

4.3 System Overview and Proposed Framework 

This section first presents the system overview from the component perspective. The problem of 

energy management in real-time harvesting systems under (m,k) constraint is then formulated 

followed by overview of our proposed framework. Figure 4.1 shows the target embedded system, 

including an energy harvesting sub-system and a central processing unit. 

Embedded System Node

Energy Harvesting 

Unit

CPU with DVFS-

capability
Energy Storage

(Supercapacitor)

Voltage 

Regulator

 

Figure 4.1 Target System 



104 

 

Energy harvesting subsystem generates energy to supply the whole system. This work focuses on 

solar harvesting because of its high harvesting potential and accessibility. The solar panel is 

controlled by an energy harvesting unit with Maximum Power Point Tracking (MPPT) to optimize 

the generated energy. Harvested energy is stored in a supercapacitor(s). I choose supercapacitor 

because they have high power density, large charge/discharge cycles without aging effect. Their 

non-negligible leakage is captured and considered in the proposed framework. The initial energy 

in the supercapacitor at the beginning of a harvesting period is denoted as    . At the end of each 

harvesting period, the supercapacitor should maintain at least the energy threshold (Emin) to 

ensure sustainability for the system. Supercapacitor supplies power to the CPU through a voltage 

regulator, I assume a constant loss for voltage regulating. The CPU runs real-time periodic tasks, 

whose quality can be modeled using the proposed multi-level (m,k) constraint QoS model. The 

CPU is capable of doing dynamic voltage/frequency scaling (DVFS). I assume the transition time 

from one speed to another is negligible and the CPU can preempt a task instance, changing its 

speed or switching to another task at any time.  

The proposed framework provides an energy management scheme during each harvesting period. 

A harvesting period, denoted as T is then divided into N equal-length intervals, called slots. For 

solar power, T is equal to 1 day and the length of each slot is usually 30 minutes, i.e. N = 48. The 

total amount of harvested energy in each slot i is EHi (0 ≤ i < N). Long-term prediction [2] predicts 

EHi for all slots i in the next harvesting period based on history of previous klong days while short-

term prediction [3] predicts EHi for the next slot i in the current harvesting period based on 

history of previous kshort slots. The system records history of harvested energy which is used for 

energy management purposes such as prediction and adaptation. 



105 

 

The energy management framework adapts the energy consumption of the system to match with 

energy harvesting in order to stay sustainable. Such adaptation can rely on energy harvesting 

status (prediction and actual values) to assign QoSi for each slot i, i.e. assigning appropriate (m,k) 

constraints for each task in order to maximize the overall QoS and ensure fairness among slots. 

Problem Formulation: Given a periodic task set, multi-level (m,k)-constraint QoS model, the set 

of available CPU speeds for DVFS and corresponding power consumption, and the predicted 

harvested energy                 for all the slots in the next harvesting period, the objective is 

to schedule the task set to lexicographically maximize the pair                   where 

                        , and                         .  

Predicted 

{EH0,….,EHn-1}

Nominal Speed 

Computation  and 

QoS Adaptation 

Long-term Energy 

Prediction Algorithm

Shorterm  Energy 

Prediction Algorithm

Runtime QoS Update 
Real-time Task 

Scheduling and DVFSUpdated 

iQoS

storage status 

CPU

iEHislot

time

e
n
e
rg

y

Application 

model

Server

System 

model 

iEnergy harvesting status EH

Task and speed to execute

{QoS1,….,QoSn}

{EH0,….,EHN-1}

Actual EHi

Updated prediction {EH0,….,EHN-1}
Prediction 

{EH0,….,EHN-1}

 

Figure 4.2 (m,k)_HAM Framework 

To address this problem, our proposed framework utilizes three main components at the 

middleware layer as shown in Figure 4.2. 

1) Nominal Speed Computation and QoS Adaptation: Given the periodic task set, multi-level (m,k)-

constraint QoS model, and CPU speed set, nominal speed is first computed for each QoS level such 

that all deadline constraints are met. Energy consumption for each QoS level is estimated based on 

this nominal speed and corresponding power consumption. The multi-level QoS model with 



106 

 

estimated energy consumption and energy harvesting prediction for the next harvesting period 

are inputs to an offline dynamic programming algorithm. The algorithm assigns QoS for slots in 

the next harvesting period to maximize the pair                . The proposed algorithm is 

proven to be optimal while considering leakage in the supercapacitor. Given the complexity of this 

step, it is off-loaded to a cloud or server where power and resource are unlimited.  

2) Runtime QoS Update:  A light-weight greedy algorithm runs periodically at the beginning of 

each slot during the harvesting period to adjust QoS in response to fluctuations in actual 

harvesting EHi and supercapacitor status. The algorithm relies on recent harvesting history to 

estimate the trend of harvesting in the near future and its impact on QoS. From this analysis, the 

algorithm adapts the QoS accordingly. 

3) Real-time task scheduling and DVFS: EDF-based scheduling and DVFS for (m,k)-constraint real-

time applications is adapted from [9]. A heuristic DVFS is developed for transition jobs when QoS 

changes from one level to another. The saving in energy consumption from DVFS is accumulated, 

which can be used to increase QoS.  

In the next section, I explain our multi-level (m,k)-constraint QoS model before going into detail of 

the algorithms for each component in section 4.5. 

4.4 Adaptive Multi-level (m,k) Constraint QoS Model 

This section presents the proposed multi-level (m,k) constraint QoS model for real time tasks. The 

set of given periodic tasks is       . Each periodic task    is characterized by a tuple            



107 

 

where    is the period,    is the relative deadline, and    is the execution time. It is assumed that 

the deadline is the same as the period and the system is not over-loaded, i.e.    
  

  
     . (m,k) 

constraint is used to model real-time application performance. Figure 4.3 shows an example of a 

task under (2,5) constraint. In all sliding windows of 5 continuous task instances, there are at least 

2 instances executed. Although techniques such as EDF can guarantee schedulability for non-

harvesting systems with U≤1.0, the schedulability in harvesting systems is still challenged by 

uncertainties and fluctuations in the energy availability.     

To meet (m,k) constraint while preserving energy, a number of jobs can be selected to run while 

others can be dropped. The selected jobs from a pattern are called mandatory jobs while others 

are called optional jobs. There are well known patterns for selecting mandatory jobs such as E-

pattern and Red Only pattern used in the literature [25, 9, 5]. E-pattern for (m,k) constraints [20] 

categorizes jobs according to Equation 4-1, where      means mandatory jobs and      means 

optional jobs. This pattern distributes mandatory jobs as equally as possible. At the beginning of 

each slot, the E-pattern is restarted. Figure 4.3 shows the E-pattern for constraint (2,5). 

                     
   

 
  

 

 
 

                                      

  ( 4-1) 

 

Figure 4.3 Example of a Task under (2,5) Constraint and E-pattern 



108 

 

On the other hand, the Red Only pattern selects the first m of every k jobs as mandatory jobs. 

Compared to the Red Only pattern, the equal distribution property of E-pattern has better impact 

on application performance in several ways. [25] proves that if it is feasible to schedule any other 

pattern, it is also feasible to schedule E-pattern, asserting E-pattern the most schedulable pattern 

among all possible ones. Furthermore, from the perspective of applications such as a smart 

camera, it is more desirable to capture and process images frequently to detect events rather than 

processing multiple images in a short time interval and then staying idle for a long interval (Red 

Only pattern) when unexpected events might happen. 

The multi-level QoS model consists of Q_max levels                 . Each level q specifies a 

(  
 ,   

 ) constraint for task   , where   
 ≤  

   if q≤q’, assuming   
 =  

  . Because of multi-level QoS 

model and dynamic adaptation in energy harvesting systems, it is possible that QoS level and 

tasks’ (m,k) constraints change across time slots.  

Definition 1: Transition windows are sliding windows that contain jobs from two adjacent slots. A 

job belongs to a slot if it arrives in that slot. 

 

Figure 4.4 Transition Window Example 

0 1 0 1 0 1 0 1 0  1 0 1 0 0 1 0 0

Slot i, QoS(n,k) Slot i+1, QoS(m,k)

A transition window

Head sequence of ER-

pattern for (m,k) constraint

Sequence of ER-pattern 

for (n,k) constraint  

Figure 4.5 E-Pattern Changes as QoS 

Changes 



109 

 

Figure 4.4 shows an example of a task with QoS (2,5) in the first slot and QoS (4,5) in the second 

slot. There are 4 transition windows. Among them, one has QoS (2, 5), two have QoS (3,5) and one 

has QoS (4,5). Not all transition windows have the same QoS, yet I want to put a theoretical lower 

bound on QoS of these transition windows. I prove that all transition windows would meet (m,k) 

constraint of at least one slot. 

Let l(z) be a sequence of a 1 followed by all 0’s, whose length is z. In each non-overlapping window 

of k continuous jobs, E-pattern for constraint (m,k) is composed of xm sequences l( 
 

 
   followed by 

ym sequences l( 
 

 
 ) where 

                            where     
 

 
           ( 4-2) 

Let gm(h,l) be the number of 1’s in a sequence of the E-pattern for constraint (m,k), whose length is 

l and which starts from job h. Note that gm(σk,k) = m. In addition, we have: 

        

 
 

    
   

  
                 

   
      

    
           

                

   

 ( 4-3) 

The first lemma and corollary below compare gm(h,l), the number of 1’s in sequences of the same 

length l and under the same (m,k) constraint, the starting points h however can be different. 

Lemma 2 and 3 compare the number of 1’s in sequences of the same length l but under different 

(m,k) constraints. 



110 

 

Lemma 1: In the E-pattern for (m,k) constraint, the number of 1’s in a sequence of length l starting 

from position σk (head sequence) is greater or equal to the number of 1’s in any sequence of 

length l, i.e. 

                           where 0≤l,h,σ ( 4-4) 

This lemma is a restatement of lemma 4 from [20], hence it is not necessary to include a proof. 

Using Lemma 1, I prove the following corollary.  

Corollary 1: In the E-pattern for (m,k) constraint, the number of 1’s in a sequence of length l 

starting from position σk-l (tail sequence) is smaller or equal to the number of 1’s in any sequence 

of length l, i.e. 

                   where 0≤σ,h and 0≤l≤σk ( 4-5) 

Proof: From Lemma 1,                     . Both these sequences share identical 

subsequences                . Removing these identical subsequences, Equation (4-5) is 

derived and hence it is proved. □ 

Now let us compare the number of 1’s in sequences of the same length l but under different (m,k) 

constrains. 

Lemma 2: The number of 1’s in a head sequence of length l in the E-pattern for constraint (m,k) is 

greater than or equal to that in a head sequence of the same length l in the E-pattern for constraint 

(n,k) where m≥n, i.e. 



111 

 

                  where 0≤σ,ω,l, and m≥n ( 4-6)  

Lemma 3: The number of 1’s in a tail sequence of length l in the E-pattern for constraint (m,k) is 

greater than or equal to that in a tail sequence of the same length l in the E-pattern for constraint 

(n,k) where m≥n, i.e. 

                      where 0≤σ,ω, 0≤l≤min(σk,    , and m≥n ( 4-7) 

The proofs for Lemma 2 and Lemma 3 are shown in the Appendix. With these lemmas and 

corollary proven, we are now ready to prove the lower bound of QoS for all transition windows. 

Theorem 1: Let the QoS of the two adjacent slots be (n,k) and (m,k).  For any transition window 

starting from job instance h,                  where s-k<h<s and s is the first job of the second 

slot. 

Proof: There are two cases below: 

Case 1: n≤m. At the beginning of the second slot, starting from job s, the new E-pattern for 

constraint (m,k) starts. In all transition windows (see Figure 4.5), a head sequence of (m,k) of 

length l replaces a sequence of (n,k) with the same length. According to lemma 2, a head sequence 

of (m,k) has more or same 1’s as a head sequence of (n,k) of the same length l because n≤m, 

whereas according to lemma 1, a head sequence of (n,k) has more or same 1’s as any sequence of 

the same length under the same (n,k) constraint. Therefore, in each transition window, the new 

sequence of E-pattern for (m,k) constraint  creates more or same 1’s as the E-pattern with (n,k) 

constraint. As a result, the number of 1’s in each transition window is greater than or equal to n.  



112 

 

Case 2: n>m. Each transition window is composed of a sequence of length k-l of E-pattern for (n,k) 

constraint followed by a head sequence of E-pattern for (m,k) constraint of length l. According to 

corollary 1, a sequence of length k-l for (n,k) constraint has more or same 1’s as a tail sequence of 

the same length and under the same (n,k) constraint. According to Lemma 3, a tail sequence of 

length k-l under (n,k) constraint has more or same 1’s as a tail sequence of the same length but 

with (m,k) constraint where n>m. As a result, the number of 1’s in each transition window is 

greater than or equal to m.                         

In both cases, the number of 1’s in any transition window is greater than or equal to min (m,n). 

Therefore, we have Theorem 1 proved.  □ 

Corollary 2: QoS of all transition windows is always greater than or equal to the minimum QoS of 

the two slots. 

The above corollary is an immediate result following Theorem 1 so I do not include a proof here. 

This theoretical result shows that multi-level (m,k) constraint QoS model enables smooth QoS 

adaptation in energy harvesting systems.  

4.5 Algorithms for QoS-Adaptive Energy Management 

Our framework consists of three main components. The first component is an offline dynamic 

programming based algorithm which adapts the QoS in different slots based on energy available in 

the system provided by a long-term prediction algorithm. The second one is a light-weight greedy 

algorithm to adapt the QoS at runtime given the recent energy harvesting trend and energy 



113 

 

storage status. Finally, the framework has an EDF-based real time scheduler for mandatory jobs 

followed by dynamic voltage/frequency scheduling to reduce energy consumption. In this section, 

I present our algorithms for each components mentioned above. 

4.5.1 Speed Nominal Computation and Offline QoS Adaptation 

This offline planning leverages the given energy harvesting prediction for the next harvesting 

period to assign optimal QoS for each slot. Assume the CPU has M available frequency and voltage 

pairs, (fj,Vj). The system is said to run at speed sj = fj/fmax when it runs at frequency fj and voltage Vj. 

Hence, the set of available CPU speeds is {s1,s2,..,sM} and the corresponding power consumption is 

                        
  

 .  

Energy consumption for each QoS level is estimated using a nominal speed. The method in [18] is 

utilized to find a minimum nominal continuous speed for mandatory jobs of all tasks at each QoS 

level, by finding the highest intensity interval in the hyper-period. Each QoS level has a different 

(m,k) constraint for each task, the number and distribution of mandatory jobs at each level are 

hence different and so is the corresponding nominal continuous speed. This continuous speed is 

approximated by the closest (larger or equal) discrete speed s available in the system. The energy 

consumption ECq in a slot for each QoS level q is estimated based on the number of mandatory 

jobs, the execution time 
  

 
  for each job j at the selected speed s and power consumption powers, as 

follow   



114 

 

     
 

   
 

  
 

  
  

  

 
       

 

 ( 4-8) 

Given the energy harvesting prediction EHi for each slot i and energy consumption estimation ECq 

for each QoS level q above, the offline QoS adaptation assigns QoS for each slot in order to 

maximize {QoSmin,QoSsum}. QoS adaptation inherently changes the nominal speed (i.e., voltage and 

frequency) across time slots. Note that energy consumption is estimated at nominal speed for each 

slot because static optimal DVFS is computational expensive and it is not accurate as task arrival 

and execution time change at runtime. The real time scheduler and runtime DVFS will be 

presented in section 4.5.3.     

The energy at the beginning of slot i+1 is computed recursively as followed: 

                      ( 4-9) 

where     is energy at the beginning of slot i and ELi is energy leakage in slot i. In this work, a 

lightweight approximation model for supercapacitor leakage [22] is used. 

                       ( 4-10) 

    
 

 
                

         
( 4-11) 

where Vsup is the voltage of the supercapacitor, α and β are empirical parameters of the 

supercapacitor.       
       is the average voltage in the supercapacitor corresponding to the average 

energy        during slot i:  



115 

 

            
 

 
          = 

 

 
       
        

 ( 4-12) 

Our extensive experiments show that this estimation of leakage for short time period such as a 

slot of 30 minutes has negligible error. It is especially true when the rates of harvesting and 

consumption are close and energy stored in the supercapacitor changes gradually. Substitute 

Equation (4-10 to 4-12) into (4-9), we have: 

      
 

 
       
         

 

 
          

 

 
                 

 ( 4-13) 

For a given EHi and ECq, ESi+1 is monotonically increasing with       
        if the first order derivative 

of (13) with respect to      is non-negative, i.e. 

      

  
       

 

 
           ( 4-14) 

I observe that for supercapacitor parameters reported in [22], the first order derivation above is 

always nonnegative. Therefore this property, i.e., ESi+1 is monotonically increasing with       
      , 

applies for a large class of supercapacitors. 

Definition 1: A QoS assignment                  is feasible if the energy in the 

supercapacitor at the beginning of all slots is positive and remaining energy in the supercapacitor 

at the end of the harvesting period is greater or equal to threshold     .  

Algorithm 4-1 finds the optimal       . It iterates through all QoS levels from       downto 1. For 

each QoS level, it performs a test of feasibility, considering energy harvesting, energy consumption 

and non-linear energy leakage in the supercapacitor. Because energy leakage is non-linear, it is 



116 

 

not straightforward that the QoS found by algorithm 1 is optimal QoSmin. I formally prove this in 

Lemma 4 below. 

Lemma 4: The QoSmin found by Algorithm 4-1 is optimal if the supercapacitor satisfies the 

inequality (4-14). 

 

ALGORITHM 4-1. Finding Optimal        

Input: ES0, Emin, EHi, Q_max levels                  and corresponding ECq for 

each level q 

Output: QoSmin 

1. for each QoS level q=       to 1 do 

2. for each i = 0 to N-1 do  

3. compute       using Equation (9); 

4. if (      < 0) then  

5.   Check the next QoS level;  

6. end  

7. end  

8. if (    <     ) then  

9. Check the next QoS level; 

10. else  

11. QoSmin=q;  

12. end 

13. end  



117 

 

Proof: I prove this lemma by contradiction. Assume that QoSmin found by Algorithm 4-1 is not 

optimal QoSmin. Therefore, there must exist a feasible QoS assignment A in which       
  

                     and       
  > QoSmin. Let                          . I prove 

that if A is a feasible QoS assignment,    is also a feasible QoS assignment.  

By definition, A’ is feasible if        for all slots i:0..N-1 and          . I prove this by 

induction. At the beginning of a harvesting period, energy storage in supercapacitor is the same, 

i.e.,          
 . Given        

 , remaining energy at the beginning of the next slot for 

assignment A and A’ is 

      
 

 
    

 

 
           

  
 

 
     ( 4-15) 

       
 

 
     

 

 
              

  
 

 
      ( 4-16) 

Since the supercapacitor satisfies the inequality (4-14),       is monotonically increasing function 

of voltage V. Since        
 , V≤V’. In addition,       

         
  because            

 . As a 

result,              
 . At the end of the harvesting period,             

 .  

Therefore A’ is a feasible assignment in which            
              . This is a 

contradiction to Algorithm 4-1 because it must have checked all QoS levels greater than optimal 

QoSmin and all of them (including       
 ) must be infeasible. □ 



118 

 

Given the optimal        determined by Algorithm 4-1, the dynamic programming solution in [8] 

is adapted to find the optimal QoSsum. I extend the algorithm to take into consideration the non-

linear supercapacitor leakage and prove that the dynamic programming is still correct.  

Let D[i,Q] be the maximum energy remained in the supercapacitor at the beginning of slot i (i:0..N) 

if the sum of the QoS  in the first i slots is Q.   D[0,0] = ES0. To update D[i,Q] where QoSminⅹi ≤ Q ≤ 

Qmaxⅹi, the following equation is used 

                                                      ( 4-17) 

D[i,Q] is computed as the maximum energy remaining in the storage considering all possible QoS 

assignment (≥      ) for the previous slot i-1 given QoS sum of the first i slots is Q. At the end, 

maximum        is determined as 

                           ( 4-18) 

 

ALGORITHM 4-2. Finding Optimal        

Input: ES0, Emin, EHi, Q_max levels                  and corresponding 

ECq for each level q 

Output: QoSsum 

1. for slot i= 1..N do 

2. for Q = QoSminⅹi..Q_maxⅹi do  

3. Compute D[i,Q] according to Equation (4-17); 

4. end  

5. end 

6. Compute QoSsum according to Equation (4-18); 



119 

 

The pseudo-code for the dynamic programming to find optimal QoSsum is given in Algorithm 4-2. 

Despite supercapacitor leakage is not a linear function, I prove that the dynamic programming is 

still correct. 

Lemma 5: The output QoSsum of the dynamic programming above is optimal if supercapacitor 

satisfies the inequality (4-14). 

Proof: In order to prove this, I first prove that the function f below is monotonically increasing 

with D[i-1,Q-q] for a given q 

                               ( 4-19) 

Substitute Equation (4-10 to 4-12) into (4-19), we have 

   
 

 
    

 

 
            

 

 
     ( 4-20) 

Where 
 

 
               

 

 
            

Since the supercapacitor satisfies the inequality (4-14), the function f is monotonically increasing 

with voltage V. Since D[i-1,Q-q] is a quadratic function of V, f is also monotonically increasing with 

D[i-1,Q-q]. Therefore, D[i,Q] can rely on the maximum value of D[i-1,Q-q] which was computed by 

dynamic programming algorithm. Hence the dynamic programming result, QoSsum is optimal. □ 

Complexity: To find the nominal speed for tasks in the hyper-period takes O(nM
2
) where N is the 

number of tasks, and M is the number of jobs in the hyper-period. This repeats for each QoS levels, 

hence the complexity to find nominal speed for all QoS levels is O(nM
2
QoSmax). The runtime 



120 

 

complexity of the Algorithm 4-1 to find maximum QoSmin is O(QoSmaxN) while the complexity of the 

dynamic programming in Algorithm 4-2 to find maximum QoSsum is O(N
2
QoSmax

2
). 

4.5.2 Run-time QoS Adaptation 

The predicted energy harvesting is usually different from the actual harvesting at runtime due to 

changes in the weather. Long-term energy harvesting prediction algorithm such as [2] has 

inaccuracy (10%-40% in our experiments). 

Hence, at the beginning of each time slot, I propose an efficient algorithm to adjust the QoS; by 

accessing the trend of energy harvesting at runtime. The trend factor      is defined as the 

weighted ratio of predicted energy harvesting    
          and actual energy harvesting 

   
       in the last kshort slots. 

     

      
     

      

     
         

      
   

     
      
   

 
( 4-21) 

where the weight for each of previous        slots is defined as      
 

 
. The trend factor is 

applied to future energy harvesting and to estimate the fluctuation’s impact factor      on QoS. 

     
            

         
             

               

 
( 4-22) 

Equation (4-22) is the ratio of expected available energy and energy required for current QoS 

assignment in the remaining slots, i..N-1. It estimates the impact of harvesting fluctuations on QoS. 

If harvesting amount in remaining slots and harvesting fluctuations play an important role in 



121 

 

supplying energy for QoS of the remaining slots, its impact will reflect in       If energy harvesting 

in the remaining slots is insignificant compared to accumulated energy in the supercapacitor ESi, 

the fluctuations will not have significant impact on     . This ratio is used in the Algorithm 4-3 

below to adjust QoS of the current slot i. Once a new energy budget is computed, the updated QoS 

is found using a binary search among sorted QoS levels.  

 

4.5.3 Real-time Scheduler and DVFS 

At runtime, jobs may finish earlier than its worst case execution time. In addition, since the 

nominal discrete speed is greater than (or equal to) the nominal continuous speed, jobs may finish 

earlier than its scheduled finishing time. These two factors create slack time which, when 

accumulated, can be used to significantly reduce frequency/voltage of following jobs and save 

energy consumption. The extra saving energy from runtime DVFS can compensate for harvesting 

abatement or improve QoS in the future.  

ALGORITHM 4-3. Run-time QoS adaptation 

Input: QoSi,    
      (j = i-kshort .. i-1),     

         
(j’ = i..N-1) 

Output: Updated QoSi 

1. compute      according to Equation (21); 

2. compute      according to Equation (22); 

3. new_budget =            
; 

4.      = BinarySearchQoS (           ; 

 

 

       

               

 

 

 



122 

 

 

 

 

 

The runtime DVFS is adapted from previous work [9] whose effectiveness has been shown for 

continuous speed. In this work, I adapt the technique by choosing the closest discrete speed to the 

continuous speed. Our distinct contribution is in frequency/voltage scaling during transition 

windows which was not considered in previous DVFS techniques for systems under (m,k) 

constraints.  

I show an example in Figure 4.6 that scheduling jobs in transition windows at the maximum speed 

of the two slots will not guarantee schedulability of all mandatory jobs. For instance, assume there 

are two tasks: 

Task A: execution time = 2, period = 8 with QoS (1,2) 

Task B: execution time = 2, period = 4 with QoS (1,4) 

Using nominal speed computation described in section 4.5.1, the system can run at speed s = 0.5, 

meeting all mandatory job deadlines and satisfying both task A and B’s QoS constraints. Assume at 

t = 20, a new slot starts and QoS of both tasks remains the same, the nominal speed would be the 

same s = 0.5. However, the E-pattern for each task restarts. Figure 4.6 shows that at t=20, there is 

one job of task A arriving at t = 16 in the previous slot is still in the ready queue. At the same time, 

 

Figure 4.6 Scheduling Tasks in Transition 



123 

 

one new job of task B arriving at t = 20 becomes mandatory after its E-pattern restarts. The only 

option to meet both these jobs’ deadlines is to execute them at full speed s = 1.0. This example 

shows our observation that neither speed of the previous slot nor the current slot can guarantee 

meeting all mandatory job deadlines. After completing jobs in transition windows, the system can 

resume to run at the nominal speed. 

Lemma 6: If the system runs jobs in the ready queue at                   while there are still 

transition jobs, where    and    are nominal speeds for the previous and current slots 

respectively, schedulability is guaranteed for all jobs. 

Proof: Since utilization of the whole task set Utot ≤ 1.0, it is possible to schedule all mandatory jobs 

at full speed smax = 1.0.  

Now let    denote the time when the current slot starts.    is the set of mandatory jobs in the 

previous slot arriving before   , and    is the set of mandatory jobs of the current slot arriving at or 

after   . The utilization of J1 is called    and of J2 is called U2. We have    ≤       ≤   , and 

            . The system should maintain speed         until the latest deadline (  ) of 

jobs which are ready at   . 

Let    be the end of the last idle time before   ; so there is no idle time in  (  ,   ). Assume that a 

deadline is missed at   ≤d≤  . Then there cannot be an idle time in       . Because jobs in    

executes at speed    in        , the remaining execution time of jobs in    after    in the worst case 

is given by:   



124 

 

   
 

  
  

    
  

            

  

 ( 4-23) 

Because there is no idle time in       , the demand from    in        is given by: 

  
    

  
   

  

 ( 4-24) 

Therefore, to miss a deadline at d, we have 

        
   

 
  

  
    

  
               

    
  

       

     
      ( 4-25) 

which gives the following: 

   
 

  
  

    
  

               
    

  
   

    

               ( 4-26) 

And we have 

  
    

  
                

    
  

   

    

               ( 4-27) 

which is followed by 

                                          

                              
( 4-28) 

which eventually gives 



125 

 

                             ( 4-29) 

The inequality (29) above contradicts the fact that            . Therefore, it is possible to 

schedule all mandatory jobs at speed s= min(1.0,       .□ 

Algorithm 4-4 shows our real-time scheduler and DVFS. When a new job arrives, it is put in to the 

ready queue if it is a mandatory job according to its QoS constraint in the current slot and the E-

pattern, otherwise it is discarded (line 2-6). To compute slack time, the system maintains an 

auxiliary data structure called alpha queue which has remaining time of jobs if they are executed 

at nominal continuous speed and with worst case execution time. Jobs in both ready queue and 

alpha queue are sorted according to its EDF order (or arrival time if they have the same deadline). 

The system calls the scheduler when it is ready to execute a new job. This happens when a job 

finishes, or it is dropped due to lack of energy or when a new job arrives. The scheduler chooses 

the job at the head of the ready queue (line 11). If there is still any transition job in the ready 

queue, this job at the head of the ready queue is executed at the speed selected by Lemma 5 (line 

12-13). Otherwise, the job is scheduled at a speed according to the nominal speed and extra slack 

time it has, taking into consideration the discrete speeds available on the processor (line 15-16). 

Scanning through the alpha queue of worst case schedule, it is possible to compute available slack 

time for run time DVFS.  

When a job is finished, dropped, or pre-empted, the alpha queue is synchronized to reflect the 

remaining worst case execution time of jobs (line 10). Detail of the alpha queue implementation 



126 

 

can be found in [9]. When a job is finished or dropped, its pattern and QoS violation count are also 

updated (line 9).  

 

ALGORITHM 4-4. Real-time scheduler and DVFS 

Input: Ready queue and alpha queue  

Output: next job to run and its speed s 

1. Task_arriving(job) 

2. if  job is mandatory according to E-pattern & QoS in the current slot then 

3. ready_queue.add(job); 

4. alpha_queue.add(job); 

5. end  

6. schedule(); 

7. Schedule() //when a job is finished, dropped, or preempted 

8. update task pattern and check if there is QoS violation; 

9. update alpha_queue; 

10. job = read_queue.next(); 

11. if there is transition job in the ready queue then 

12. s = min(1.0, s1+s2); 

13. else 

14. compute slack time by consulting the alpha queue; 

15. set speed s according to nominal speed and slack time; 

16. end 

 



127 

 

4.6 Experiments 

The experimental setup is first explained in section 4.6.1. The proposed adaptive QoS framework, 

(m,k)_HAM for energy harvesting real-time systems under (m,k) constraints is evaluated using a 

synthetic benchmark, comparing with state-of-the-art work. Experimental results for a case study 

of smart camera systems are shown in section 4.7. 

  
Elizabeth City Summer Elizabeth City Winter 

  
Sacramento Summer Sacramento Winter 

 

Figure 4.7 Solar Harvesting Profile and Prediction for a Week in Elizabeth City and 

Sacramento, Summer and Winter, 2013 

 

 

0 

5 

10 

15 

20 

1 24
 

47
 

70
 

93
 

11
6 

13
9 

16
2 

18
5 

20
8 

23
1 

25
4 

27
7 

30
0 

32
3 

To
ta

l e
n

er
gy

 h
ar

ve
st

in
g 

in
 a

 s
lo

t 
(m

J)
 

x 
1

0
0

0
0

0 

Slots 

Actual_Value 

Offline_Prediction 

0 

2 

4 

6 

8 

10 

1 23
 

45
 

67
 

89
 

11
1

 

13
3

 

15
5

 

17
7

 

19
9

 

22
1

 

24
3

 

26
5

 

28
7

 

30
9

 

33
1

 

To
ta

l e
n

er
gy

 h
ar

ve
st

in
g 

in
 

a 
sl

o
t 

(m
J)

 
x 

1
0

0
0

0
0 

Slot 

Actual_Value 

Offline_Prediction 

0 

5 

10 

15 

20 

1 

24
 

47
 

70
 

93
 

11
6 

13
9 

16
2 

18
5 

20
8 

23
1 

25
4 

27
7 

30
0 

32
3 

To
ta

l e
n

er
gy

 h
ar

ve
st

in
g 

in
 a

 s
lo

t 
(m

J)
 

x 
10

00
00

 

Slot 

Actual_Value 

Offline_Prediction 

0 

2 

4 

6 

8 

10 

1 

23
 

45
 

67
 

89
 

11
1

 

13
3

 

15
5

 

17
7

 

19
9

 

22
1

 

24
3

 

26
5

 

28
7

 

30
9

 

33
1

 

To
ta

l e
n

er
gy

 h
ar

ve
st

in
g 

in
 a

 s
lo

t 
(m

J)
 

x 
10

00
00

 

Slot 

Actual_Value 

Offline_Prediction 



128 

 

4.6.1 Experimental Setup 

I set up a simulation environment that integrates the harvesting system, the energy storage, and 

the DVFS-capable processor with our proposed framework, (m,k)_HAM. Harvesting period T is 

equal to one day, number of slots N is 48 and slot duration is 30 minutes. The offline QoS 

adaptation are run before each new harvesting period on a server and the run-time QoS 

adaptation is called at the beginning of each slot. 

The experiments use harvesting data from [24] in Sacramento, California and Elizabeth City, North 

Carolina. The solar irradiance is converted to harvested energy by linear conversion considering 

solar panel size of 9.6 cm × 7.6 cm, solar cell efficiency 10% and harvesting efficiency 80%. Figure 

4.7 shows the total energy harvesting in each slot for a week in summer and a week in winter in 

both locations. Harvesting profile in Elizabeth City shows a large variation among slots within a 

day and between days in a week. It also has a significant gap between prediction and actual 

harvesting. On the other hand, harvesting profile in Sacramento, CA consistently shows a higher 

harvesting potential than Elizabeth City and its pattern has less variation, especially in the 

summer. In the long-term solar energy prediction algorithm, energy harvesting data from the last 

3 days is used to predict energy harvesting of the next harvesting period.  

The target embedded processor is PXA270 processor which operates at seven different voltages 

and frequencies as shown in Table 4.1 below. Energy storage is a supercapacitor of 2000F, the 

leakage parameters are extracted from [22]. 

 



129 

 

Table 4.1 Processor PXA270 DVFS Configuration 

 

In our synthetic benchmark, task sets are randomly generated with number of tasks between 

[6...10]. Task periods are uniformly distributed in the range [5...30] seconds. Jobs arrive with jitter 

uniformly distributed between 0-10% of the period. Worst case execution times are generated and 

scaled based on utilization. 100 random task sets are generated for each utilization {0.4, 0.8} to 

represent low and high utilization scenarios and idle time is shorter than break-even time for 

sleep modes. The average ratio of actual execution time over worst case execution time is 0.8. For 

all tasks, I chose k = 5 and there are five QoS levels where m = [1...5]. The solar panel size and the 

supercapacitor size are doubled for utilization of 0.8. 

4.6.2 Experimental Results 

To test the effectiveness of our proposed framework, several experiments compare this work with 

related work are set up.  

Comparison with existing work: Since this is the first work to propose an adaptive framework for 

real-time energy harvesting systems under (m,k) constraints, I compare our approach, 

(m,k)_HAM, with two adapted state-of-the-art work. Our multi-level (m,k) constraint QoS model 

and corresponding energy consumption for each level (after applying nominal speed computation 

in section 4.5.1) are input to each of the adapted related work below.  

Frequency (MHz) 13 104 208 312 416 520 624 

Power (mW) 44 116 279 390 570 747 925 



130 

 

 (m,k)_DVFS: is adapted from [9]. The original DVFS work is based on single (m,k) constraint 

QoS model. I extend it to allow selection from multi-level (m,k) QoS model each day based on 

predicted average energy harvesting per slot. This QoS level is applied to all slots and there is 

no adjustment at run time. This approach does not have QoS adaptation in both offline and at 

run time. 

 (m,k)_QUARES: is adapted from [7] which is an adaptive QoS framework for energy harvesting 

systems. It is adapted to take in multi-level (m,k) constraint QoS model as input instead of the 

original data quality model. QUARES is however not aware of supercapacitor leakage. In 

addition, QUARES assumes ideal energy harvesting prediction, and its run time adaptation 

does local adaptation per slot which does not consider the trend of harvesting with 

fluctuations. 

Figure 4.8a shows our comparison results with existing work for utilization of 0.4. In each graph, 

the x-axis shows the average shutdown time per day while the y-axis shows the average QoS per 

slot. When the system runs out of energy, it must shut down to replenish energy from harvesting 

sources. The average QoS per slot is essentially QoSsum each day divided by number of slots, N. A 

good approach should show both system sustainability and high performance, i.e. low shutdown 

time and high QoS. In all graphs, our approach (m,k)_HAM is consistently in the higher left corner, 

achieving negligible shut down time per day and high QoS per slot simultaneously. Both 

(m,k)_QUARES and (m,k)_DVFS, either show very high shutdown time or lower QoS.  

(m,k)_QUARES has similar average QoS per slot to (m,k)_HAM but it has very high shutdown time 

(in average, 1.5-2 hrs each day). (m,k)_QUARES is an adaptive QoS framework; it is able to exploit 

energy harvesting prediction to optimize QoS in the offline phase. However, its offline phase is not 



131 

 

aware of leakage in the supercapacitor, making its offline plan inaccurate. Furthermore, 

(m,k)_QUARES’s runtime QoS adaptation is local to each slot, it does not look ahead in its 

adaptation. Because of these two shortcomings, the system with (m,k)_QUARES often runs out of 

energy and has to shut down to replenish energy. These are obviously not desirable properties of 

a sustainable system. 

  

 

a) Utilization = 0.4 

 
 

 

b) Utilization = 0.8  

Figure 4.8 Comparison of (m,k)_HAM with Adapted Existing Work, (m,k)_QUARES and 

(m,k)_DVFS 

(m,k)_DVFS is an energy-efficient technique developed for a single (m,k) QoS model systems, it has 

neither offline QoS nor runtime QoS adaptation. As a result, the system has lower QoS than other 

0 

0.5 

1 

1.5 

2 

2.5 

3 

0 0.5 1 1.5 2 2.5 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

Average shutdown time per day (hrs) 

Elizabeth City 

0 

1 

2 

3 

4 

5 

0 2 4 6 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

Average shutdown time per day (hrs) 

Sacramento 

0 

0.5 

1 

1.5 

2 

2.5 

3 

0 0.5 1 1.5 2 2.5 3 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

Average shutdown time per day (hrs) 

Elizabeth City 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

0 0.5 1 1.5 2 2.5 3 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

Average shutdown time per day (hrs) 

Sacramento 

F 

 

D 

 

E B 

 

A 
E 

 

D 

 
F 

 

B 

C 

 

A 

A: (m,k)_HAM (summer) 

B: (m,k)_HAM (winter) 

C: (m,k)_QUARES (summer) 

D: (m,k)_QUARES (winter) 

E: (m,k)_DVFS (summer) 

F: (m,k)_DVFS (winter) D 

 

F 

 

B 

 

E 

C 

 

A 

B 

A 

C 

 D 

 

E 

 

E 

 

C 

 



132 

 

adaptive QoS approaches, i.e. (m,k)_HAM and (m,k)_QUARES (19%-27%). In addition, in some 

scenarios (Elizabeth City summer and Sacramento summer), without a runtime QoS adaptation 

mechanism to handle changes in energy harvesting condition, it has high average shut-down time 

per day. 

The result is similar for U=0.8 as shown in Figure 4.8b. (m,k)_HAM has negligible shut down time 

and high QoS in all cases. (m,k)_QUARES has high average shut down time per day (almost 3 

hours) while (m,k)_DVFS has lower QoS (24%-50%). The only exception is in the case of 

Sacramento summer where both (m,k)_DVFS and (m,k)_HAM have no shutdown time and similar 

average QoS. 

(m,k)_HAM demonstrates strength in both dimensions, sustainability and performance 

consistently in all experiments. It has better QoS and much less shutdown time compared to 

existing work. 

Offline QoS adaptation vs. Runtime QoS adaptation: To understand the importance of each of 

these QoS adaptation components and how they work in concert with each other, several variants 

are set up for comparison with (m,k)_HAM: 

 (m,k)_HAM_A: In this setting, there is no QoS adaptation. The offline phase only 

determines optimal QoSmin based on energy harvesting prediction, leakage estimation 

and nominal speed computation. At runtime, tasks are scheduled by the EDF-based 

scheduler followed by runtime DVFS. 



133 

 

 (m,k)_HAM_B: This setting has no offline QoS adaptation; the offline phase determines 

optimal QoSmin for all slots. The runtime QoS adaptation is enabled to work with the EDF-

based scheduler and runtime DVFS. 

 (m,k)_HAM_C: The offline phase is fully adaptive, finding optimal QoS assignment for all 

slots. The runtime QoS adaptation, however, is disabled. Tasks are scheduled by the 

EDF-based scheduler followed by runtime DVFS. 

  

             Figure 4.9 Comparison of Offline and Online QoS Adaptation,  

                                                              Utilization = 0.8 

As shown in              Figure 4.9, without offline and runtime QoS adaptation, (m,k)_HAM_A has 

lower QoS than other variants. Compared to (m,k)_HAM, this variant has 52% lower QoS on 

average. Since it always runs at low fixed QoSmin, it consumes less energy and has low shutdown 

time. (m,k)_HAM_B, the variant without offline QoS adaptation but with run-time QoS adaptation, 

has better QoS than (m,k)_HAM_A. However, its shut down time is higher (average 0.2-0.7hrs 

shutdown time each day). (m,k)_HAM_C, the variant with offline QoS adaptation but no run-time 

adaptation has similar QoS to (m,k)_HAM. Without runtime adaptation, this approach is not able to 

react to changes in the weather conditions (resulting in average 1.5-3hrs shutdown each day). 

This can be observed clearly when actual harvesting is significantly different from the offline 

0 

0.5 

1 

1.5 

2 

2.5 

3 

0 1 2 3 4 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

 

Average shutdown time per day (hrs) 

Elizabeth City 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

0 1 2 3 4 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

 

Average shutdown time per day (hrs) 

Sacramento 

A: (m,k)_HAM (summer) 

B: (m,k)_HAM (winter) 

C: (m,k)_HAM_A (summer) 

D: (m,k)_HAM_A (winter) 

E: (m,k)_HAM_B (summer) 

F: (m,k)_HAM_B(winter) 

G: (m,k)_HAM_C (summer) 

H: (m,k)_HAM_C(winter) 

 

E 

 
H 

 

F 

 

C 

 

D 

 

B 

 

G 

 

A 

 
H 

 

G 

 

E 

 

A 

 
C 

 

F 

 

D 

 

B 

 



134 

 

harvesting prediction (in all cases except for Sacramento summer). This experiment shows the 

importance of full adaptation with both offline QoS and runtime QoS adaptation in achieving high 

QoS for sustainable energy harvesting systems. 

4.7 Case Study - Smart Camera Systems 

This section presents a case study – harvesting smart camera systems. Traditional sensor 

networks with temperature, humidity or acoustic sensors usually have a low cost and low power 

micro-processor on each node with small memory for simple processing tasks. Applications such 

as camera surveillance, traffic monitoring, object detection, however, require more powerful 

processor and larger memory to capture, process, and store large-size images.  

Smart camera networks [13] recently emerge as a new class of wireless sensor networks. Each 

node in a smart camera network is an integrated platform consisting of a camera, a microphone, 

and a frequency-scalable CPU, replacing traditional low power micro-processor (see Figure 4.10). 

Because of limited network bandwidth, real-time transmission of high quality and high frame rate 

is impossible. Smart camera networks push more computation and storage to the edge of the 

network where powerful processors are capable of doing pre-processing tasks for a wide range of 

applications. The preprocessed data can be stored on the nodes which have sufficient memory. 

The nodes only communicate with each other and with a central server when needed (e.g., event 

detections) via the standard sensor network protocols. [13] measure power consumption of the 

integrated platform and the results show that the CPU consumes about 50-60% of total system 

power consumption. Therefore, being able to adapt the CPU energy consumption as in our 



135 

 

framework, (m,k)_HAM is important. I propose to power each node with solar panel and 

supercapacitor as shown in Figure 4.10. These are called harvesting smart camera networks and 

systems. Our framework, (m,k)_HAM focuses on application QoS adaptation and DVFS at each 

node in the network. 

Gateway

Gateway

s
e

rv
e

r

Processor 

Intel PXA270

Sensor

TelosB

Network 

Board

M
e

m
o

ry

Energy Harvesting Management 

Framework

Solar Panel Super Capacitor

..
.

..
.

 

Figure 4.10 Harvesting Smart Camera Networks and Systems 

Image processing tasks have been shown to be good candidate for (m,k) constraint model [10]. In 

this study, the focus is on two applications, feature extraction (section 4.7.1) and object detection 

(section 7.2). Object detection experiments are run with solar panels = 9.6 cm × 7.6 cm, 1 

supercapacitors of 2000F, Emin=40% full supercapacitor. Feature extraction experiments are run 

with double size of the solar panel and the supercapacitor. The harvesting data input is the same 

as in the synthetic benchmark experiments. 

4.7.1 Feature Extraction Application 

Feature extraction is a comprehensive application which does not only detect object but also 

obtain the contour of the occluding object. The application combines of background subtraction 

and median filter tasks followed by Canny edge detector and array add [13]. Table 4.2 shows the 

execution time for each of these image processing tasks and for different image resolution (64ⅹ64 



136 

 

pixels and 128ⅹ128 pixels). For each image size, I choose a feasible period that allows room for 

DVFS and attains high maximum frames per second. At the bottom, the table shows the total 

utilization of the task set and its multi-level QoS range. For image size 64ⅹ64, the period is set to 

33ms, the maximum frames per second (QoS) is 30fps. The minimum QoS is 5fps to meet 

application requirement. For image size 128ⅹ128, I set a period of 50ms, allowing the maximum 

QoS be 20fps. Another possibility for setting period for image size 128ⅹ128 is 100ms, allowing 

more room for DVFS but lower QoS range of 5-10fps.  

Table 4.2 Feature Extraction Application and Individual Tasks’ Execution Time (ms) for 

Different Image Resolutions 

Task (Description) 
  Image size 128x128  Image size 64x64 

Exec. Time Period-1 Period-2 Exec. Time Period 

T1 (IPP Canny Edge Detector) 22 ms 50 ms 100 ms 5.2 ms 33 ms 

T2 (IPP Median Filter) 2.1 ms 50 ms 100 ms 0.48 ms  33 ms 

T3 (IPP Background Subtraction) 1.4 ms 50 ms 100 ms 0.15 ms 33 ms 

T4 (IPP Add) 0.48 ms 50 ms 100 ms 0.049ms 33 ms 

Total Utilization 0.52             0.26 0.18 

QoS Range 5-20 fps 5-10 fps 5-30 fps 

 

Table 4.3 shows the result of our case study for feature extraction application. For image size 64ⅹ

64, the utilization is low. There is room for aggressive DVFS to reduce energy consumption and the 

overall energy consumption is low. The average QoS per slot is almost at the maximum level, 



137 

 

30fps. There is no shutdown time. For image size, 128ⅹ128, the results show that the setting with 

period of 50ms has higher QoS than the setting with period of 100ms. However, during winter in 

Elizabeth City, there is a significant average shutdown time for setting with period of 50ms. The 

second setting (period of 100ms) does not have shutdown time because its period is larger, the 

system does more aggressive offline speed reduction and runtime DVFS to reduce energy 

consumption and to cope with harvesting fluctuations.  

Table 4.3 Feature Detection Experimental Results 

 

Image size 64x64 
Image size 128x128 

(period=50ms) 

Image size 128x128 

(period=100ms) 

Average 

QoS (fps) 

Shutdown 

time   

Average 

QoS 

Shutdown 

time 

Average 

QoS (fps) 

Shut-down 

time 

Sacramento – Winter 29.9 0 12.0 0 9.8 0 

Sacramento – Summer 30 0 19.9 0 10 0 

Elizabeth City – Winter 28.6 0 8.64 0.6hrs 8.2 0 

Elizabeth City – Summer 29.7 0 18.0 0 9.8 0 

 

This result suggests that to achieve high QoS and low shutdown time, the system should configure 

itself with image size 128ⅹ128 and period=50ms in most seasons except for Elizabeth City in 

winter. During such harsh time, it should have a lower QoS setting, such as image size 128ⅹ128 

and period=100ms or image size 64ⅹ64. These are other dimensions rather than (m,k) constraint 

that can be adapted to improve system sustainability. It is beyond the scope of this work but it is 

an interesting observation for future work. 



138 

 

 

Figure 4.11 Comparison with Existing work, Case Study – Feature Extraction Application                                                                                                                                                                                                   

Figure 4.11 shows our comparison with adapted existing work for this case study of feature 

extraction applications on energy harvesting smart camera systems. Except for Elizabeth City 

winter (where harvesting is low), (m,k)_HAM consistently enables continuous operation with high 

average QoS. While (m,k)_QUARES and (m,k)_DVFS perform well in Elizabeth City and Sacramento 

summers, they show inferior performance in Sacramento winter. (m,k)_QUARES has high 

shutdown time (average 1 hr per day) while (m,k)_DVFS has 16% lower average QoS per slot 

compared to (m,k)_HAM. 

4.7.2 Object Detection Application 

Object detection application is an important and extremely useful application for smart camera 

systems. It includes a background subtraction task followed by a median filter task in order to 

detect a new object that is not in the default background [13]. Table 4.4 shows the tasks for an 

object identification application, their execution time and period for three image resolutions 64ⅹ

64 pixels, 128ⅹ128 pixels and 256ⅹ256 pixels. For both image size 64ⅹ64 and 128ⅹ128, the 

  

 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

0 0.5 1 1.5 2 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

(f
p

s)
 

Average shutdown time per day (hrs) 

Elizabeth City 

A 

B 

C 

D 

E 

F 

0 

5 

10 

15 

20 

25 

0 0.5 1 1.5 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

(f
p

s)
 

Average shutdown time per day (hrs) 

Sacramento 

A 

B 

C 

D 

E 

F 

A: (m,k)_HAM (summer) 

B: (m,k)_HAM (winter) 

C: (m,k)_QUARES (summer) 

D: (m,k)_QUARES (winter) 

E: (m,k)_DVFS (summer) 

F: (m,k)_DVFS (winter) 



139 

 

period is set to be 33ms, providing the maximum QoS of 30fps. For image size 256ⅹ256, I have two 

settings: one with period of 50ms and one with period of 100ms.  

Table 4.4 Object Detection Application and Individual Tasks’ Execution Time (ms) for 

Different Image Resolutions 

Task (Description) 
Image size 256x256 Image size 128x128 Image size 64x64 

Exec. Time Period Exec. time Period Exec. Time Period 

T2 (Median Filter) 35 ms 50/100 ms 8.3 33 ms 2.0 33 ms 

T3 (Background Subtr.) 3.7 ms 50/100 ms 0.42 33 ms 0.093 33 ms 

T4 (Add) 3 ms 50/100 ms 0.29 33 ms 0.061 33 ms 

Total Utilization                     0.8/0.4 0.27 0.06 

QoS Range 5-20 fps/5-10fps 5-30 fps 5-30 fps 

 

The results for object identification are shown in Table 4.5 and Table 4.6. For image size 64ⅹ64, 

there is no shutdown time and in all cases, the system achieves the maximum QoS of 30fps. For 

image size 128ⅹ128, there is no shutdown time. The average QoS is, however, lower than the QoS 

for image size 64ⅹ64 since at higher image resolution, tasks are longer and are more 

computational intensive. For image size 256ⅹ256, the system has reasonable QoS without 

shutdown time during the summers but there is significant shutdown time during the winters. In 

this case, it requires a larger solar panel to harvest sufficient energy and to supply energy demand. 

With a larger solar panel, our experiment shows that it is feasible to run object detection 

application with image size 256ⅹ256 without any shutdown. 



140 

 

Table 4.5 Object Identification Result for Image Size 64x64 and 128x128 

Table 4.6 Object Identification Result for Image Size 256x256 

 

 

 

 

 

Figure 4.12 Comparison with Existing Work, Case Study – Object Identification Application 

0 

5 

10 

15 

20 

25 

30 

35 

0 0.5 1 1.5 2 2.5 3 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

(f
p

s)
 

Average shutdown time per day (hrs) 

Elizabeth City A 

B 

C 

D 

E 

F 

0 

5 

10 

15 

20 

25 

30 

35 

0 0.5 1 1.5 

A
ve

ra
ge

 Q
o

S 
p

er
 s

lo
t 

(f
p

s)
 

Average shutdown time per day (hrs) 

Sacramento A 

B 

C 

D 

E 

F 

 
Image size 64x64 Image size 128x128 

Average QoS Shut-down time  Average QoS Shut-down time  

Sacramento – Winter 30 fps 0 25.4 fps 0 

Sacramento – Summer 30 fps 0 30 fps 0 

Elizabeth City – Winter 30 fps 0 17.7 0 

Elizabeth City - Summer 30 fps 0 29 fps 0 

 
Image size 256x256 (p=50ms) Image size 256x256 (p=100ms) 

Average QoS Shut-down time  Average QoS Shut-down time  

Sacramento – Winter 6.9 fps 0.8hrs 8.19 fps 0 

Sacramento – Summer 15.8 fps 0 10 fps 0 

Elizabeth City – Winter 5.8 fps 3.1hrs 6.3 fps 2.0hrs 

Elizabeth City - Summer 12.5 fps 0 9.69 fps 0 

A: (m,k)_HAM (summer) 

B: (m,k)_HAM (winter) 

C: (m,k)_QUARES (summer) 

D: (m,k)_QUARES (winter) 

E: (m,k)_DVFS (summer) 

F: (m,k)_DVFS (winter) 



141 

 

Figure 4.12 shows result for object identification application with resolution 128ⅹ128. Results 

are similar to case study of feature extraction applications where in the summers, all the 

approaches perform well. However, in the winter, both (m,k)_QUARES and (m,k)_DVFS have very 

high shutdown time (on average, 0.7-2.5 hrs per day). Our approach, (m,k)_HAM provides high 

average QoS without shut-down time in both locations and in all seasons. 

4.8 Conclusion 

In this chapter, I propose a unified framework for adapting application QoS and exploiting DVFS in 

energy harvesting real-time systems under (m,k) constraints. I prove QoS adaptation will not 

violate QoS constraints during transition windows and I propose a heuristic DVFS policy for jobs 

in transition such that schedulability is guaranteed. Our experiments prove that offline planning 

and runtime QoS adaptation along with DVFS, tightly coupled with knowledge of energy storage 

and harvesting prediction is important to mask fluctuations in ambient energy harvesting sources, 

achieving sustainable systems with high QoS performance. 

APPENDIX 

Lemma 2: The number of 1’s in a head sequence of length l in the E-pattern for constraint (m,k) is 

greater than or equal to that in a head sequence of same length l in the E-pattern for constraint 

(n,k) where m>=n, i.e. 

                  where 0≤σ,ω,l, and m≥n  ( 4-30) 

Proof: Let l’ =  l % k. Then Inequality (4-30) is equivalent to  



142 

 

                    ,                      ( 4-31) 

Let     
 

 
  and     

 

 
 ,       because m≥n. Consider these cases: 

Case 1:          and        . According to Equation (4-3), Inequality (4-31) is equivalent to 

 
    

  
    

    

  
 , which is obvious because       . 

Case 2: If          and        . According to Equation (4-3), Inequality (4-31) leads to 

 
       

    
    

    

  
 . We consider two further cases below: 

If        then         , we have  
       

    
    

    

  
 . 

Consider the case when      . According to Equation (2), we have                    

k×tn m×tm+1 k×tm=xm×tm<    which is a contradiction.  

Case 3:         and        . According to Equation (4-3), Inequality (4-31) is 

  
    

  
    

       

    
 . Because        , we have                         , thus 

 
       

    
   

    

  
   

    

  
 .   

Case 4:         and        . According to Equation (4-3), Inequality (4-31) is 

 
       

    
    

       

    
 . We consider two further cases below: 

If       then        , which gives   
       

    
    

    

  
    

       

    
 . 



143 

 

Consider the case      . Applying Equation (4-2), we have:  

                         . Therefore,  
       

    
    

       

    
 . □ 

Lemma 3: The number of 1’s in a tail sequence of length l in the E-pattern for constraint (m,k) is 

greater than or equal to that in a tail sequence of same length l in the E-pattern for constraint (n,k) 

where m>=n, i.e. 

                      where 0≤σ,ω, 0≤l≤min(σk,    , and m≥n ( 4-32) 

Proof: Let l’ = l % k. Then Inequality (4-32) is equivalent to 

                                           ( 4-33) 

Let     
 

 
  and     

 

 
 ,       because m≥n. Similar to Equation (4-3), we have 

            

 
 
 

 
  

  

    
                

 
     

  
                          

     

 

( 4-34)  

 

Case 1:              and            .According to Equation (4-34), Inequality (4-33) 

becomes  
  

    
    

  

    
  which is obvious because        .  

Case 2:              and            .According to Equation (4-34), Inequality (4-33) 

is   
  

    
    

     

  
 .  There are two further cases below: 



144 

 

If       then        , which gives  
  

    
    

     

  
  

If      . Applying Equation (4-2) and because m≥n, we have 

                                                    which is a 

contradiction 

Case 3:             but t            . Applying Equation (4-34), Inequality (4-33) is 

equivalent to  
     

  
    

  

    
 .  

We have                     from            , which leads to 

 
     

  
   

  

    
   

  

    
 . 

Case 4:             and             . Applying Equation (4-34) to Inequality (4-33), we 

have  
     

  
    

     

  
  to be proven. Because m≥n and      , trivially              

            .  

Using          and          by definition in Equation (4-2), we have 

                      which is followed by  
     

  
    

     

  
 . □ 

References 

[1] W.K.G. Seah, Zhi Ang Eu, H. Tan. “Wireless sensor networks powered by ambient energy harvesting 

(WSN-HEAP) - Survey and challenges.” In VITAE2009. 



145 

 

[2] Jason Hsu, Sadaf Zahedi, Aman Kansal, Mani Srivastava, and Vijay Raghunathan. "Adaptive duty cycling 

for energy harvesting systems." In ISLPED’06, pp. 180-185. ACM, 2006. 

[3] J. Recas Piorno, Carlo Bergonzini, David Atienza, and T. Simunic Rosing. "Prediction and management in 

energy harvested wireless sensor nodes." In Wireless VITAE 2009. 

[4] Shaobo Liu, Qinru Qiu, and Qing Wu. "Energy aware dynamic voltage and frequency selection for real-

time systems with energy harvesting." In DATE'08, pp. 236-241. IEEE, 2008.  

[5] Linwei Niu, and Gang Quan. "Leakage–aware scheduling for embedded real–time systems with (m, k)–

constraints." International Journal of Embedded Systems 5, no. 4 (2013): 189-207. 

[6] Kai-Wei Fan, Zizhan Zheng, and Prasun Sinha. "Steady and fair rate allocation for rechargeable sensors 

in perpetual sensor networks." In Proceedings of the 6th ACM conference on Embedded network sensor 

systems, pp. 239-252. ACM, 2008. 

[7] Nga Dang, Elaheh Bozorgzadeh, and Nalini Venkatasubramanian. "QuARES: Quality-aware data 

collection in energy harvesting sensor networks." In Green Computing Conference and Workshops (IGCC), 

2011 International, pp. 1-9. IEEE, 2011.  

[8] Clemens Moser, Jian-Jia Chen, and Lothar Thiele. "Power management in energy harvesting embedded 

systems with discrete service levels." In Proceedings of the 14th ACM/IEEE international symposium on 

Low power electronics and design, pp. 413-418. ACM, 2009. 

[9] Tarek A. AlEnawy, and Hakan Aydin. "Energy-constrained scheduling for weakly-hard real-time 

systems." In Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International, pp. 10-pp. IEEE, 

2005. 

[10] Guillem Bernat, Alan Burns, and Albert Liamosi. "Weakly hard real-time systems." Computers, IEEE 

Transactions on 50, no. 4 (2001): 308-321. 

[11] Guillem Bernat and Ricardo Cayssials “Guaranteed On-Line Weakly-Hard Real-Time Systems”, IEEE 

Real-Time Systems Symposium, 2001 

[12] Maryline Chetto. "Optimal scheduling for real-time jobs in energy harvesting computing systems." 

IEEE Transactions on Emerging Topics in Computing (2014).  

[13] Phoebus Chen, Kirak Hong, Nikhil Naikal, S. Shankar Sastry, Doug Tygar, Posu Yan, Allen Y. Yang et al. 

"A low-bandwidth camera sensor platform with applications in smart camera networks." ACM Transactions 

on Sensor Networks (TOSN) 9, no. 2 (2013): 21. 

[14] Hussein El Ghor, Maryline Chetto, and Rafic Hage Chehade. "A real-time scheduling framework for 

embedded systems with environmental energy harvesting." Computers & Electrical Engineering 37, no. 4 

(2011): 498-510. 



146 

 

[15] Moncef Hamdaou and Parameswaran Ramanathan, “A Dynamic Priority Assignment Technique for 

Streams with (m,k)-Firm Deadlines”, IEEE Transactions on Computers, Vol 44, No. 12, December 1995 

[16] Hessam Kooti, Nga Dang, Deepak Mishra, and Eli Bozorgzadeh. "Energy budget management for 

energy harvesting embedded systems." In Embedded and Real-Time Computing Systems and Applications 

(RTCSA), 2012 IEEE 18th International Conference on, pp. 320-329. IEEE, 2012.  

[17] G. Koren and D. Shasha, “Skip-over: Algorithms and complexity for overloaded systems that allow 

skips,” in Proc. RTSS, 1995, p. 110. 

[18] Yao, F., Demers, A., and Shenker, S. 1995. A scheduling model for reduced cpu energy. In Proceedings 

of IEEE Symposium on Foundations of Computer Science. 374–382.  

[19] Xue Lin , Yanzhi Wang , Siyu Yue , Naehyuck Chang and Massoud Pedram, “A Framework of Concurrent 

Task Scheduling and Dynamic Voltage and Frequency Scaling in Real-Time Embedded Systems with Energy 

Harvesting”, in ISLPED, 2013 

[20] Parameswaran Ramanathan. "Overload management in real-time control applications using (m, k)-

firm guarantee." Parallel and Distributed Systems, IEEE Transactions on 10, no. 6 (1999): 549-559. 

[21] Jun Lu, Shaobo Liu, Qing Wu, and Qinru Qiu. "Accurate modeling and prediction of energy availability 

in energy harvesting real-time embedded systems." In Green Computing Conference, 2010 International, 

pp. 469-476. IEEE, 2010. 

[22] Azalia Mirhoseini, and Farinaz Koushanfar. "HypoEnergy. hybrid supercapacitor-battery power-supply 

optimization for energy efficiency." In Design, Automation & Test in Europe Conference & Exhibition 

(DATE), 2011, pp. 1-4. IEEE, 2011.  

[23] Clemens Moser, Jian-Jia Chen, and Lothar Thiele. "Dynamic power management in environmentally 

powered systems." In Proceedings of the 2010 Asia and South Pacific Design Automation Conference, pp. 

81-88. IEEE Press, 2010.  

[24] National Renewable Energy Lab. [Online]. http://www.nrel.gov 

[25] Linwei Niu, and Gang Quan. "Energy minimization for real-time systems with (m, k)-guarantee." Very 

Large Scale Integration (VLSI) Systems, IEEE Transactions on 14, no. 7 (2006): 717-729. 

[26] Yi Xiang and Sudeep Pasricha. "Harvesting-Aware Energy Management for Multicore Platforms with 

Hybrid Energy Storage”, in GLSVLSI’13 

[27] Maryline Chetto and Audrey Queudet. "Clairvoyance and online scheduling in real-time energy 

harvesting systems." Real-Time Systems 50.2 (2014): 179-184. 

 



147 

 

 

Chapter 5 Orchestrated Application Quality 

and Energy Storage Management in Solar-

Powered Embedded Systems 

 

While energy harvesting technology is a promising solution toward achieving self-sustainable low 

power systems, the efficient energy storage for these energy harvesting systems is still a challenge 

because of high self-leakage (e.g., supercapacitors) and limited life cycles (e.g., batteries). In this 

work, I propose an adaptive quality-aware energy management middleware framework for 

energy harvesting embedded systems. Our hybrid energy storage model takes into consideration 

the battery life cycle, supercapacitor self leakage, and power loss in the harvesting circuit. The 

framework has an offline planning phase and a runtime adaptation phase. By incorporating 

abstract models for battery state of health (SoH) and supercapacitor self-leakage, the offline stage 

determines the budget for charging and discharging distribution of each storage component and 

accordingly adapts the application quality of service (QoS). 

The runtime adaptation phase dynamically adjusts the charging and discharging distribution to 

the dynamic changes in energy harvesting profile. In comparison with related work, our proposed 

framework is able to capture the lifetime and characteristics of the energy storage components 



148 

 

more accurately during adaptation and hence, resulting in a more sustainable system with 

realistic QoS. 

5.1. Introduction 

Renewable energy technology is a viable and promising solution for low power networked 

embedded systems. Environmental energy sources are ubiquitous in our surroundings and each 

system can be equipped with an energy harvesting circuitry to scavenge the energy from such 

sources. However, the spatial and temporal variations in scavenging energy from the environment 

lead to uncertainty in energy availability during operation. 

Temporal variations refer to energy harvesting condition changes in time (e.g., day vs. night) while 

spatial variations refer to energy harvesting condition changes in space (e.g., locations under 

shadow vs. locations with direct sunlight). These variations continue to challenge the energy 

sustainability in embedded systems. 

A solution to mask this uncertainty is using energy storage as a buffer to smooth down the 

variations in energy harvesting. The choice of energy storage is important because each type of 

energy storage has its own advantage and disadvantage. While batteries provide energy storage 

for a long period of time, they are constrained by limited battery lifetime (i.e., limited 

charging/discharging cycle counts) and power density (maximum charging/discharging current). 

On the other hand, lifetime of supercapacitors, another type of energy storage, is not a concern. 

Yet they have non-negligible leakage and lower energy density. As a result, using combination of 



149 

 

supercapacitors and batteries, i.e., hybrid energy storage is currently the state-of-the-art practice 

in energy harvesting systems [5][2]. 

Our target solar-powered embedded system is a multisensory platform supporting simultaneous 

multiple sensing and/or processing applications (see Figure 5.1). The system transfers data from 

its sensors to a server via wireless connection. The energy scavenged from solar panels is stored 

in a hybrid energy storage subsystem. Our model of the hybrid energy storage has a switch-based 

architecture, composed of a rechargeable battery and a supercapacitor (similar to [4]). 

Continuous sensing/processing while handling energy harvesting variations and hybrid energy 

storage constraints mandate harvesting embedded systems to employ an energy storage 

management scheme. The management scheme not only needs to be aware of the amount of 

energy being harvested but also the load and energy demand from the applications. If the 

applications demand energy aggressively without being aware of the energy storage status, the 

energy storage may get exhausted and this can hurt the application quality. Continuous aggressive 

charge and discharge might also severely affect the health of storage components and hence 

shorten their lifetime. Without a proper energy management scheme, the system cannot deliver 

Figure 5.1 Networked Energy Harvesting 

Multi-Sensor Systems 



150 

 

sustainable operation for a long period of time which contradicts with the objective of providing 

energy sustainability in systems. While adapting application quality to adjust energy consumption 

at middleware has been a promising solution for energy minimization and energy harvesting 

management, I focus on quality-aware energy harvesting management framework in concert with 

hybrid energy storage management. Many existing work at middleware consider the energy 

storage as a buffer with maximum capacity [8][9][6]. However, the power density constraint, the 

storage lifetime constraint, and energy efficiency in the hybrid energy storage architecture cannot 

be neglected. To the best of our knowledge, this is the first effort to bring hybrid-energy-storage-

awareness into application quality adaptation at middleware. I propose a holistic middleware 

framework to orchestrate the application quality management and hybrid energy storage 

management for embedded systems such as multi-sensor platforms with solar energy harvesting 

capability. 

In this chapter, I present: 1) an abstract model for hybrid energy storage with battery and 

supercapacitor to capture the characteristics of each storage type during charge and discharge, 

including battery lifetime and supercapacitor leakage, 2) an offline slot-based energy budget 

management to adjust application quality (QoS) according to energy availability and storage 

status, providing energy charge/discharge planning for each storage type with the objective of 

maximizing the application QoS under a given energy storage lifetime constraint, and 3) a semi-

online adaptation phase captures the inaccuracy during offline approximation and prediction and 

dynamically adapts the charging and discharging distribution as well as the application QoS. 

Lastly, a controller directs charge and discharge at runtime. 



151 

 

In comparison with quality-aware frameworks [6][9] which do not consider the storage power 

density and storage lifetime, our experimental results show that such simple model can make the 

system fall short in realizing the expected application QoS for a long system lifetime. Our approach 

emphasizes that considering battery SoH (State-of-Health) and leakage of supercapacitor during 

offline planning along with an online scheme can help systems achieve high application QoS while 

reliably meeting battery lifetime constraint. In particular, this energy management framework 

effectively extends battery lifetime 1.6x-2x compared to [6][9]. 

5.2. Related work 

There are several architectures proposed for energy harvesting systems with hybrid energy 

storage. In Chulsung and Chou [4] and Carli et. al [5], pure hardware implementation for hybrid 

energy storage management is proposed while in [1], various software energy management 

techniques are proposed on top of the hybrid energy storage. I first give an overview of hybrid 

energy storage architecture followed by their energy management strategy. 

5.2.1 Hybrid energy storage architecture variants 

Several variants of hybrid energy storage for energy harvesting embedded systems have been 

proposed in the literature. Chulsung and Chou[4] proposed Ambimax for multi-source energy 

harvesting, with each renewable energy source connected to a separate supercapacitors.  The 

supercapacitor array bridges the gap between energy harvesting and energy consumption. A 

battery is used as backed up when supercapacitor array does not have sufficient energy to power 



152 

 

the load. When supercapacitor array has extra energy, it can also charge the backed up battery. 

This architecture is shown in Figure 5.2. 

 

Figure 5.2 Hybrid Energy Storage Architecture Variant 1 

Carli et. al[5] proposed another architecture for multi-source energy harvesting systems. Similar 

to [4], they have small supercapacitors connected to individual harvesting sources. Differently, 

they also have a large central supercapacitor called the main reservoir where all the charge from 

small supercapacitor flows to. The central supercapacitor is the sole source that powers the load. 

A back-up battery gets charged from the central supercapacitor when the supercapacitor has 

abundance of energy. Vice versa, the back-up batter charges the supercapacitor when harvesting 

is low. This architecture alternative is shown in Figure 5.3. 

Lastly, [1] proposed a general hybrid electrical energy storage system architecture. This 

architecture uses charge transfer interconnect as a medium to connect all components, energy 

harvesting sources, battery arrays, supercapacitor arrays, and load. Different from the above two 

architectures, both battery and supercapacitor arrays can be charged by the energy harvesting 



153 

 

sources. Similarly, both can be discharged to power the load. This architecture is shown in Figure 

5.4. 

 

Figure 5.3 Hybrid Energy Storage Architecture Variant 2 

 

Figure 5.4 Hybrid Energy Storage Architecture Variant 3 

I choose a similar architecture to the last one as it is for general purpose. The first two 

architectures do not use harvesting sources to charge battery directly in order to reduce battery 

aging effect. However, using supercapacitor to buffer energy may cause some significant energy 

loss due to converters between supercapacitor and batteries. Instead, with the last architecture, a 

software management technique can control the charging to the battery and supercapacitor while 

monitoring and keeping battery aging under constraint. For simplicity and efficiency, I have not 

Energy 
Harvesting 

Circuit

Super-
capacitor

Embedded 
Processor

Battery



154 

 

considered a direct connection between battery and supercapacitor. However, it is feasible to 

integrate such option for energy transfer in this middleware framework for hybrid energy storage. 

Note that this hybrid storage architecture is not limited to a single battery or supercapacitor. It 

can be a combination of multiple batteries and multiple supercapacitors. However, size constraint 

and efficiency must be considered carefully and the energy management will also get more 

complicated. 

5.2.2. Energy Storage Management for Hybrid Energy Storage Architecture 

In Chulsung and Chou [4] and Carli et. al [5], hybrid energy storage management is implemented 

in hardware using simple voltage thresholds (threshold to charge/discharge battery and 

supercapacitor) to avoid energy overflow and underflow. These methods are neither aware (or 

partially aware) of energy efficiency nor battery lifetime. Hybrid energy storage systems for 

automotive or mobile system have been proposed in [1][7]. In [1], their approach increases the 

battery lifetime by reducing battery charge average and standard deviation, and using 

supercapacitor as a buffer to smooth out charging and discharging current from the battery. This 

system architecture assumes a charge transfer interconnect between charging source (or load) 

and hybrid energy storage subsystem. It allows charging or discharging to/from both 

supercapacitor and battery at the same time However, their system avoids charging and 

discharging simultaneously which often happens in energy harvesting systems. [16] is an 

improved extension of [1]. In [7], the authors focus on the rated capacity effect (energy efficiency) 

of the battery. This work statically schedules discharging activities of a hybrid energy storage 

system and does not consider recharging activities or lifetime of batteries. Both [7] and [16] do 



155 

 

not consider load adaptation. In my work, I dynamically adjust workload in orchestration with 

hybrid energy storage management to maximize application QoS while meeting storage lifetime 

and harvesting constraints. 

Furthermore, [14] considers harvesting system with only rechargeable battery. They utilize Phase 

Change Memory to do load matching in energy harvesting WSNs, reducing number of 

charging/discharging cycles to battery. Their goal however is not to optimize application QoS. 

Previous works on energy budgeting for harvesting sensor networks [9][6] optimize application 

QoS or consumption of harvested energy. They are not aware of hybrid energy storage 

characteristics, neither power density constraint nor battery lifetime constraint. [6] assumes ideal 

storage and therefore overestimates energy availability and aggressively optimizes application 

QoS. As a result, it can cause significant battery lifetime degradation and shorten useful lifetime of 

the whole system. 

 

Figure 5.5 Slot-based Energy Harvesting and Budget Allocation Example 

 



156 

 

5.3. Our Proposed Framework 

In this section, I present an overview of our proposed framework. The framework is for operation 

during a hyper-period of harvesting and application activities. For solar-powered embedded 

systems, I chose a day long hyper-period. Each period is then divided into n equal slots, each slot 

of duration ΔT. I leverage existing harvesting prediction algorithm [12] to gain knowledge about 

future energy harvesting in each slot. Figure 5.5 is an example of slot-based energy harvesting 

prediction and budget allocation. The optimization problem addressed in this multi-phase 

framework is formally stated as: 

1) Given a set of QoS levels for each application, the hybrid energy storage characteristics, a 

target battery lifetime Tlife, and predicted energy harvesting for each time slot, 

2) Assign QoS level for each slot as well as charge/discharge distribution for energy storage 

components such that 

3) The total QoS of the system is maximized. 

Our framework structure is shown in Figure 5.6. Using prediction algorithm to estimate energy 

harvesting profile (i.e., solar) and prior knowledge on event and application activities, an offline 

phase is proposed to allocate charge/discharge budget to each energy storage component while 

maximizing the total QoS in the next hyper-period. 

Our distinct contribution is that the proposed offline algorithm is not only a QoS-aware energy 

budget allocation but also takes into consideration the hybrid energy storage characteristics. It 



157 

 

considers battery lifetime constraint, the leakage in supercapacitor, and efficiency of chargers and 

converters. Increasing the energy efficiency of the storage leads to maximizing energy availability 

and hence, maximizing QoS while the target system lifetime is guaranteed by considering battery 

status and lifetime constraint. Given the high complexity of this problem, the offline phase is 

driven by a server and the results are transferred to each node before the next hyper-period. 

 

Figure 5.6 Our Proposed Middleware Framework for Energy-Storage-aware Application 

Quality Adaptation 

These limits and bounds from the offline optimization are guidance to an online energy storage 

charge and discharge controller. In addition, given that energy harvesting profile is more 

accurately predicted with short-term prediction (i.e., extrapolating next slot energy harvesting 

from harvesting data of previous k slots [17]), a semi-online adaptation algorithm is deployed to 



158 

 

correct error from offline prediction. The state of hybrid energy storage at the current time slot 

may not be the same as the expected value due to lack or surplus of energy in the past slots. 

Therefore, the semi-online algorithm provides incremental updates on the expected QoS and 

charge/discharge distribution for the current slot. The proposed algorithm is lightweight and can 

be deployed at the middleware layer of the node. 

5.4. Target System and Application Model 

This section provides an overview of application quality model and hybrid energy storage model 

deployed in this work. 

5.4.1 Application Quality Model 

I assume each sensing application j has a multi-level quantized QoS model. Each level k is 

characterized by a configuration of application and/or system parameters represented as a tuple 

<cjk1, cjk2, .., cjkm> where m is the number of system and application parameters, and cjkx is 

configuration value for parameter x at level k of application j. For example, data rate and error 

margin are configurable application parameters, while frame rate and resolution are configurable 

system parameters whose different values determine various QoS levels. The corresponding 

energy consumption ECjk for each QoS level k of application j is determined through multiple 

measurement experiments, taking the average out of those measurements. 

 



159 

 

5.4.2 Hybrid Energy Storage Model 

Figure 5.7 shows the hybrid energy storage architecture. I denote the output from the harvesting 

circuit as      and     .         
         

and          
         

are the efficiency of the regulators controlling the 

charging process to the battery and supercapacitor, respectively. On the other side, the voltage 

and current required to power the load is denoted as       and      . The efficiency of the 

converters matching voltages of battery and supercapacitor with the required load voltage are 

        
          and          

         . State of Charge (SoC) is the percentage of charge remained in the battery, 

compared to the full rated capacity. SoC is updated based on charging and discharging current 

according to Columbus counting method. 

 

Figure 5.7 Hybrid Energy Storage Subsystems 

Battery lifetime model: Battery has a limited number of charging and discharging cycles, i.e. 

limited lifetime. To estimate battery lifetime, I adopt the model in [3][1]. This model allows us to 

use SoC average and standard deviation to estimate the State of Health (SoH) degradation. SoH 

degradation is a way to measure the ability of battery to store and deliver energy. This 

Battery

Super-
capacitor

Regulator

Regulator

Switch

Converter

Converter

Switch
converter

rercapacitosup

converter

batteryregulator

battery

regulator

ercapsup

ech

bat

ech

bat IV argarg , edisch

bat

edisch

bat IV argarg ,

ech

ercap

ech

ercap IV arg

sup

arg

sup , edisch

ercap

edisch

ercap IV arg

sup

arg

sup ,

srcsrc IV , loadload IV ,



160 

 

degradation gradually increases from 0 to 1 during battery lifetime, with 0 as a fresh battery and 1 

as a battery without capacity. 

Conventionally, a battery with a degradation of 0.2 is considered failed. SoH degradation of battery 

in a hyper-period P is computed as: 

                        
                                                           ( 5-1) 

where C1, C2, C3, α, and β are empirical constants specific to each battery. N is the number of 

effective charging/discharging cycles in a hyper-period P. Ds is the SoH degradation at the start of 

this hyper-period. The SoH degradation over multiple hyper-periods is the sum of degradation 

over each individual hyper-period: 

                                                                                            ( 5-2) 

To meet the target lifetime Tlife, assuming equal degradation in each period, equation below shows 

the constraints for SoH degradation in each hyper-period.  

     
    

     
                                                                                    ( 5-3) 

All three parameters, N, SoCdev and SoCavg in Equation 6-1 are dynamically adjusted in our 

proposed framework to meet the battery lifetime constraint in Equation 6-3. 

Supercapacitor leakage model: For an accurate estimation of supercapacitor leakage energy, 

there are models using complex circuits with intensive calculations. I use the approximation 

model for supercapacitor leakage in [7] for low complexity and ease of integration. 



161 

 

                                                                                                    ( 5-4) 

where Vsup is the voltage of the supercapacitor and μ and ρ are empirical parameters of the 

supercapacitor. 

5.5. Algorithms for Application Quality and Energy Charge 

and Discharge Assignment 

In this section, I first describe our offline optimal solution for slot-based QoS assignment and 

storage charge/discharge distribution. I then propose semi-online algorithm for QoS re-

adjustment at the beginning of each slot and an online charge and discharge controller. 

5.5.1 Offline Planning 

I propose an optimal solution using ILP solvers. The objective is to assign each time slot i an 

expected application QoS and charge/discharge distribution. I summarize here the various set of 

constraints: 

Capacity and Power Density Constraints: Let ESi and EBi denote the energy in the 

supercapacitor and the battery at the beginning of time slot i. To avoid overflow and underflow, 

ESmax and EBmax are the upper bounds; ESmin and EBmin are the lower bounds of ESi and EBi, 

respectively. 

                ( 5-5) 



162 

 

                ( 5-6) 

Similarly, the charging and discharging energy budget of the battery and supercapacitor in each 

slot EB 

     
      

    
      

      
      

 ( 5-7) 

      
         

    
         

      
         

  ( 5-8) 

     
      

    
      

      
      

  ( 5-9) 

     
         

    
         

      
         

 ( 5-10) 

Remaining Charge Update: Energy in battery and supercapacitor at the beginning of slot i+1 is 

updated based on its charge, discharge and leakage in slot i. 

           
       

        
   

      
    

         
 ( 5-11) 

           
        
           

      
    

         
    

       
 ( 5-12) 

 

Where    
       

 is the leakage energy from the supercapacitor. I use piecewise linear approximation to 

estimate leakage in Equation 6-4. 

Energy Harvesting Constraints: The total energy charging to battery and supercapacitor in each slot, 

i.e.,    
      

 and     
      

 is limited by the predicted energy harvesting    . 

       
      

    
      

                                                                ( 5-13) 



163 

 

Application Quality constraints: For each slot i, an application        is assigned for application j and it must 

meet the minimum QoS requirement. The total energy consumption for all applications in each slot comes from 

the power supply,    
         

 and    
          

                     
            

         
          

            
         

                                       ( 5-14) 

Battery Lifetime Constraints: Charging and discharging currents from battery,     
      

  and      
         

 are 

functions of battery SoC and the charging/discharging power. 

    
      

        
      

  
                         

      

  
                                          ( 5-15) 

where VOC is a function of SOC (see [3][1]) and R is a empirical constant of the battery. Similar function is for 

    
         

 and  
         

. Since this is a non linear function, I use Taylor approximation to approximate charging 

and discharging currents from battery in each slot i, choosing              and       
      

      
      

       as 

the pivot points. 

      
      

                  
      

                                      
      

  

    
      

       
      

   
 

                      
      

                                            ( 5-16) 

Where   
      

    
      

    

The charging and discharging currents are used to compute effective cycles N and battery SoCdev 

and SoCavg as shown in the following equations. 

             
      

     
         

           )                                      ( 5-17) 



164 

 

                 
      

     
         

  
  

    
                                          ( 5-18) 

       
 

 
                                                                            ( 5-19) 

       
   

 
                                                                              ( 5-20) 

Ni is the accumulated effective cycles in the first i slots while SoCi is the battery SoC at the 

beginning of slot i. The battery lifetime degradation in each hyper-period is estimated from the 

values of N, SoCdev and SoCavg according to constraint (5-1). Substitute the Equation 5-1 into 

Equation 5-3 we have this battery lifetime constraint:  

      
               

               
    

 
                                        ( 5-21) 

This constraint is also nonlinear, I simplify it as followed. When   ≥1.0, C2 is much smaller than other 

components, hence it can be safely ignored. Equation 5-21 is equivalent to: 

                                    
    

           
                                      ( 5-22) 

When 0.1≤  ≤1, C2 is estimated as    
 

 
     

       . Therefore, Equation 5-21 is equivalent to: 

                                            
    

           
                           ( 5-23) 

Objective Function: Given these energy harvesting constraints, hybrid energy storage capacity, 

battery lifetime constraints, and application quality constraints, the objective of the ILP is to 

maximize overall application QoS: 

Maximize          



165 

 

5.5.2 Semi-online Adjustment 

The predicted energy harvesting can be different from actual values due to uncertainty and change 

in the weather condition and workload. Battery SoC could also be different from offline prediction 

because of approximation error. 

Hence, at the beginning of each time slot, I propose an efficient algorithm to adjust the QoS and 

charge/discharge distribution in energy storage. The idea is to keep (or to reduce) battery SoC as 

close as possible to the offline plan to meet the lifetime constraint. Extra harvesting energy if any 

is routed through the supercapacitor to improve QoS. 

At run time, I keep track of variables related to battery lifetime including effective cycles N and 

SoC. The deviation from offline approximation is computed in each slot as follow:  

     
         

        ( 5-24) 

            
   

 

      
          

        

 

 

( 5-25) 

  

This deviation can lead to battery lifetime constraint violation; hence it must be kept track and 

adjusted to stay within a safe bound. Charging and discharging activities of the battery directly 

affect battery’s N and SoC. This impact is reflected in the observation below. 

Increase in charge to the battery leads to increase in N and SoC and vice versa. Increase in 

discharge from the battery, however, leads to increase in N but decrease in SoC and vice versa. 

Therefore, to keep battery’s ΔN and ΔSoC within an accepted bound, adjustment to charging and 

discharging from the battery is important. The short-term adaptation Algorithm 5-1 first detects  



166 

 

 

 

Algorithm 5-1: Short-term Adaptation: at beginning of slot i 

Input:         

Output: Updated     
 

1. if (     ) 

2.                

3. elseif  (         ) 

4.                   

5. endif 

6. if (         
      

) 

7. Reduce       
      

 by    

8. Update    
      

 

9. else  

10. Reduce    by       
      

 and        
      

   

11. if  (     ) 

12.  Reduce       
         

 by    

13. elseif  (          ) 

14.  Increase       
         

 by    

15. endif 

16. Update    
      

 and    
         

 

17. endif 

18.            
      

 –    
      

  

19. if (ΔEH < 0) 

20. Reduce    
      

 and    
      

 

21. else 

22. Increase    
      

  

23.           Increase    
      

 if      and        

24. endif 

25. Update    
         e and    

         
 

26. Update QoS = lookup(   
         

    
         

) 

 



167 

 

the cases in which battery’s ΔN and ΔSoC is beyond a safe bound and in a long run, it can lead to 

battery lifetime constraint violation. In these cases, the system has used or has stored more energy 

in the battery than the offline planning. Applying the observation above, the algorithm computes 

the corresponding adjustment in charging/discharging currents needed to bring battery’s N and 

SoC to be within bound (line 1-5). To achieve this target reduction, the charging current to the 

battery is first reduced and the charge budget for battery in slot i is updated (line 6-8). If the target 

reduction in current is not met, the discharging current from the battery is adjusted next. From the 

observation, the discharging current has opposite effects on battery’s N and SoC. If effective cycles 

N has to reduce, the algorithm reduces the discharge current from the battery. If battery SoC has 

to reduce, the algorithm increases the discharge current from the battery instead. The budget for 

battery charge and discharge is updated (line 10-16). 

Once the adjustment to meet battery lifetime constraint is carried out, the algorithm checks the 

harvesting condition (line 18). Energy harvesting for slot i is updated using short-term prediction 

algorithm [17]. If updated energy harvesting is less than the planned charge budget to battery and 

supercapacitor, the algorithm reduces charge budget to battery which in turn helps to reduce both 

battery N and SoC (line 19-20). If energy harvesting is more than what was expected, the charge 

budget to the supercapacitor is increased up to its limit. In addition, if ΔN < 0 and ΔSoC < 0, there 

are some slack cycles to charge more energy to the battery (line 22-23). The discharge budget 

from supercapacitor/battery has a corresponding adjustment (line 25). Finally I update 

application QoS according to the new discharge budget form supercapacitor and battery (line 26). 



168 

 

The proposed algorithm is an efficient algorithm that opportunistically harvests, stores and 

improves application QoS under battery lifetime constraint and dynamic changes in energy 

harvesting profile.  

5.5.3 Online Charge/Discharge Controller 

At run time, given the harvesting power, the controller decides whether to charge the 

supercapacitor or the battery. The decision is based on the guideline given by the offline and semi-

online phases. The controller charges the supercapacitor first up to its charge budget, then it 

switches to the battery. However, it discharges from the battery first up to its discharge budget 

then switches to the supercapacitor. Delaying charging to the battery and expediting discharging 

from the battery help to reduce the battery SoCavg while keeping effective cycles N the same. 

5.6. Experiments 

In this section, I first explain the experimental setup and then evaluate our proposed energy 

management middleware for hybrid energy storage harvesting systems. 

I evaluated our approach under various weather conditions for a period of seven days in two 

typical seasons, summer and winter. I compare with existing work on adapting data quality and 

hybrid energy storage management and show that it is necessary to consider application QoS 

optimization and system lifetime constraint in an orchestrated manner in both offline planning 

and online phase of an energy harvesting system. 



169 

 

5.6.1 Experimental Setup 

I implemented our hybrid energy storage management in a simulated harvesting system 

consisting of a 220mAhr Li-on battery and a 50F supercapacitor. The simulation is conducted in 

state-of-the-art commercial networked system simulator, Qualnet [10]. A network of wireless 

sensor nodes is simulated; each node has a temperature sensor, a humidity sensor, an acoustic 

sensor and a low-power image sensor. 

I model the physical phenomenon such as temperature as a random process between a lower and 

upper bound, with a random variation in each step. Query model includes both periodic queries 

and Poisson-distribution sporadic queries. Specific settings are provided in our previous work [6]. 

Table 5.1 Quantized QoS Levels for Temperature Sensor QoS level 

QoS level Error margin Energy consumption per slot (mJ) 

1 7.0 37901.79 

2 6.0 37950.02 

3 5.0 38057.57 

4 4.0 38257.28 

5 3.0 38717.11 

6 2.0 39876.28 

7 1.0 44342.70 

8 0.0 51122.13 

 



170 

 

Through extensive simulation, I quantify different levels of QoS, each with an error margin and 

energy consumption (see Table 5.1). Energy consumption is average value from multiple 

simulation runs.  

The low-power image sensor has a QoS model defined by resolution and frame rate. [13] shows 

that different resolution and frame rate changes the video quality perceived by users. 

Table 5.2 QoS Levels for Low-power Camera QoS Level Configuration Energy 

Consumption per Slot (mJ) 

QoS level Configuration Energy consumption per slot (mJ) 

1 15 fps, 640x480 4298  

2 60 fps, 352x288 22447  

3 90 fps, 320x240 39272 

 

I select 3 modes and corresponding energy consumption shown in Table 5.2 for a lower power 

image sensor (Aptina [11]). Assuming power consumption per pixel is constant, corresponding 

power for QoS level 1-3 is 80mW, 106mW and 120mW respectively. Assume it takes 2ms to 

capture an image and the system is idle until the next capture. 

I test our approach with solar profiles including a winter week (February) and a summer week 

(August) at Elizabeth city, North Carolina. Data is retrieved from National Renewable Lab website 

[15]. The solar irradiance is converted to harvested energy by linear conversion considering solar 

panel size of 30.3 cm × 20.2 cm, solar cell efficiency of 10% and harvesting efficiency of 80%. The 



171 

 

winter days in this data set consistently has lower solar irradiation and thus, lower energy 

harvesting than summer days. During the summer days, although the irradiation is higher, I also 

observe significant fluctuation within each day and very low harvesting on a rainy day. 

I integrate a long-term solar energy prediction algorithm which gives slot-based harvesting 

prediction of the next day based on the past 3 days [12]. The inaccuracy of this per-slot prediction 

algorithm goes up to 40% in our experiments. The short-term energy prediction for the next slot 

based on previous 3 slots is adopted from [17]. 

5.6.2 Experimental Results 

To show the importance of orchestrating application QoS and hybrid storage management, I 

compare our work with two baseline approaches coupling with other existing techniques to 

enhance them. 

 Battery-aware approach: The offline planning is only aware of energy storage capacity, 

similar to other work such as [6][9][8]. In addition, I adopt the charging and discharging 

controller in [4] to switch between battery and supercapacitor based on their voltages. 

 Online-SoH approach: Inspired by the battery SoC model in 0[3], I incorporate an online 

SoH-aware heuristic. The heuristic keeps track of accumulated cycles N, SoCavg and SoCdev at 

run time and allows charging to the battery only if projected battery lifetime degradation 

based on current battery status meets the lifetime constraint.  

The target lifetime in our experiments is 3 years. The metrics I use are application QoS 

(normalized to the maximum possible QoS in a day) and SoH degradation. 



172 

 

Figure 5.8 shows the results comparing application QoS and daily battery lifetime degradation of 

our approach with two variations above for a week in winter. Since the goal of the other two 

baselines is to optimize application QoS without being constrained by the battery lifetime, it is not 

a surprise that they have better QoS than our approach. On average, Battery-aware approach has 

15% higher QoS and Online-SoH has 14% higher QoS than our approach. 

 

However, as shown in Figure 5.8, our approach has significant less daily SoH degradation. On 

average, our daily SoH degradation is 50% lower compared to Battery-aware approach and 48% 

lower compared to Online-SoH approach. The Online-SoH approach tries to reduce the daily 

battery lifetime degradation at runtime. However, because of the complicated correlation between 

SoH parameters including effective cycles N, average SoC and SoC deviation, online heuristics are 

not sufficient to guarantee battery lifetime constraints. Both Battery-aware and Online- SoH 

 

Figure 5.8 Winter QoS and Daily SoH/Lifetime Degradation 

 

Figure 5.9 Summer QoS and Daily SoH/Lifetime Degradation 

 
 

     

 

     

   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

Day

Normalized QoS, February

Our approach

Battery-aware

Online-SoH

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

1 2 3 4 5 6 7
Day

Daily Lifetime Degradation, February

Our approach

Battery-aware

Online-SoH

Lifetime 
constraint

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

Day

Normalized QoS, August

Our approach

Battery-aware

Online-SoH

0

0.0001

0.0002

0.0003

0.0004

0.0005

1 2 3 4 5 6 7
Day

Daily Lifetime Degradation, August

Our approach

Battery-aware

Online-SoH

Lifetime constraint



173 

 

approaches often miss battery lifetime constraint as shown in the Figure 5.8. On the other hand, 

our approach always meets the battery lifetime constraint without degrading application QoS. 

This reinforces our approach of orchestrating application QoS and hybrid storage management in 

both offline and online phase. 

Figure 5.9 shows the comparison results for a week in summer. On average, Battery-aware 

approach has only 7% higher QoS compared to our approach while Online-SoH is 1% lower in QoS 

than our approach. This partly comes from the sixth day of the summer week where harvesting 

profile is significant low while energy harvesting prediction is high. 

Battery-aware and Online-SoH aggressively optimize QoS and consume large amount of energy 

consumption till the short-term adaption realizes the shortage in harvested energy compared to 

prediction. Their application QoS is dropped significantly after this and it affects the next day 

when energy reserve at the beginning of the seventh day is low. In terms of daily battery SoH 

degradation, our approach consistently has lower degradation compared to the other two. On 

average, our approach has 50% less degradation than Battery-aware approach and 38% less 

degradation than Online-SoH approach. 

If this trend in the summer and winter continues, our approach is expected to have 2x longer 

lifetime compared to Battery-aware approach and 1.6x-1.9x longer lifetime compared to Online-

SoH approach. Our approach always meets the daily SoH degradation constraint and is very likely 

to have useful lifetime of more than 3 years. On the other hand, the average daily SoH degradation 

of Battery-aware and Online-SoH approach suggests that their system can only sustain 1.7-2.5 

years. 



174 

 

5.7. Conclusion 

In this chapter, I propose a two-phase hybrid energy storage management and application quality 

adaptation for harvesting capable devices. The offline phase plans energy charge and discharge 

based on prediction of energy harvesting profile in order to maximize application QoS while 

meeting energy storage lifetime constraint. The online phase implements a heuristic to control 

and adapt charging, discharging activities to the hybrid energy storage. Our experiments prove 

that offline planning and online adaptation tightly coupled with knowledge of hybrid energy 

storage is crucial to realize application quality optimization on a sustainable harvesting device. 

References 

[1] X. Qing et. al, "State of health aware charge management in hybrid electrical energy storage systems." In 

DATE 2012. 

[2] M. Pedram, N. Chang, Y. Kim, and Y. Wang, “Hybrid Electrical Energy Storage Systems”, in ISLPED 2010 

[3] A. Millner, “Modeling Lithium Ion Battery Degradation in Electric Vehicles”, in CITRES 2010. 

[4] P. Chulsung, P. H. Chou. "Ambimax: Autonomous energy harvesting platform for multi-supply wireless 

sensor nodes." In SECON 2006. 

[5] D. Carli, D. Brunelli, L. Benini, M. Ruggeri, “An effective multi-source energy harvester for low power 

applications”, in DATE 2011 

[6] N. Dang, E. Bozorgzadeh, N. Venkatasubramanian “QuARES: Quality-aware data collection in energy 

harvesting sensor networks”, in IGCC 2011 

[7] A. Mirhoseini, F. Koushanfar, “HypoEnergy: Hybrid supercapacitor-battery power-supply optimization 

for Energy efficiency”, in DATE 2011 

[8] D. K. Noh, L. Wang, Y. Yang, H. K. Le, and T. Abdelzaher, “Minimum Variance Energy Allocation for a 

Solar-Powered Sensor System”, in DCOSS 2009 



175 

 

[9] C. Moser, J.-J. Chen, and L. Thiele, “Power management in energy harvesting embedded systems with 

discrete service levels”, in ISLPED’09 

[10] Qualnet, http://web.scalablenetworks.com/content/qualnet 

[11] Aptina MT9V11, http://www.aptina.com 

[12] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, V. Raghunathan, “Adaptive Duty Cycling for Energy 

Harvesting Systems,” in ISLPED 2006 

[13] S. Mohapatra et. al. “Integrated power management for video streaming to mobile handheld devices”. 

In ACM Multimedia 2003 

[14] Ping Zhout, Youtao Zhang, Jun Yang, “The Design of Sustainable Wireless Sensor Network Node using 

Solar Energy and Phase Change Memory”, in DATE, 2013 

[15] National Renewable Lab, http://www.nrel.gov/midc/ 

[16] Y. Wang et. al, “Minimizing State-of-Health Degradation in Hybrid Electrical Energy Storage Systems 

with Arbitrary Source and Load Profiles”, in DATE 2014. 

[17] J. Recas Piorno, Carlo Bergonzini, David Atienza, and T. Simunic Rosing. "Prediction and management 

in energy harvested wireless sensor nodes." In Wireless VITAE 2009. 

 

 

 

 

 

 

 

 

 



176 

 

 

Chapter 6 A Unified Stochastic Model for 

Energy Management in Solar-Powered 

Embedded Systems

 

Uncertainties in energy harvesting, non-ideal characteristics of harvesting circuits and energy 

storage (battery or supercapacitor), and application demand dynamics add more complexity to a 

system. In this chapter, I present a unified model based on discrete-time Finite State Markov Chain 

to capture the dynamicity and variations in both energy supply from solar irradiance and energy 

demand from the application. The probabilistic models for energy harvesting and application state 

capture the variations of physical environment which the embedded system interacts with 

through a set of Finite State Markov Chains, enabling a complete cyber physical model and closed 

loop control. In this chapter, I exploit the temporal and spatial prediction in solar energy and 

propose a deterministic profile with stochastic process to reflect the fluctuation due to unexpected 

weather condition. Energy harvesting circuit characteristics, the leakage of the energy storage, 

and efficiency loss in voltage regulators are captured during transition among the states in this 

model. Optimal policy to maximize expected total QoS is derived from the presented model using 

probabilistic dynamic programming approach. Compared to state-of-the-art deterministic energy 



177 

 

management framework, our proposed approach outperforms in term of QoS and energy 

sustainability (with less shutdown time) of the system. 

6.1 Introduction 

To achieve energy sustainability in embedded systems, energy harvesting technology is emerging 

as a promising solution to provide perpetual energy for systems to operate autonomously. 

However, design and operation of such systems have faced various challenges. This chapter 

focuses on proposing a formal model and optimal energy management policy at software level to 

address the complexity of such systems more efficiently. 

Renewable energy sources such as solar energy often exhibit both temporal and spatial variations, 

which cause uncertainty in energy availability. There is an increasingly growing research to 

characterize the solar energy’s spatial and temporal variability, mostly exploiting its diurnal and 

seasonal patterns to extrapolate its future availability [7-9]. However, unexpected fluctuations 

caused by the stochastic variability of atmospheric conditions are hard to capture effectively, 

leading to errors in prediction results.  

Furthermore, an energy harvesting system requires dedicated circuitry and components including 

harvester (e.g., solar panel), MPPT circuit, and energy storage (supercapacitor or rechargeable 

battery). Supercapacitors have exponential leakage while battery lifetime is challenged by 

frequent charge and discharge and their peaks. DC-DC converters have varying efficiency 

depending on supercapacitor voltage and load voltage and current [13]. Energy 



178 

 

harvesting/storage management schemes need to account for energy efficiency and the significant 

loss in energy harvesting storage and circuitry. 

On the other hand, there is variation in energy consumption (or load) due to unpredictable 

behavior of physical environment/phenomenon that applications are monitoring or interacting 

with. For example, in smart camera systems or sensor platforms monitoring smart spaces, it is 

hard to predict when important events happen. When such events occur, energy management 

tools should enable more computation tasks and data processing/transfer in order to meet the 

application quality requirements.  

In this chapter, I present a unified model to enable the orchestration and tight integration between 

energy harvesting/storage management and energy consumption management. This unified 

model based on discrete-time Finite State Markov Chain captures the dynamicity and variations in 

both energy supply from solar irradiance and energy demand from the application. System states 

enclose energy harvesting rate (Energy Harvesting process), energy status of the system (Energy 

Storage process), and energy consumption required to meet the current application QoS 

(Application process). To the best of our knowledge, this is the first formal unified model for solar-

powered supercapacitor-based embedded systems using Finite State Markov Chain to model the 

dynamics of the systems. 

In Energy Harvesting process, I consider patterns in solar energy as well as variation in energy 

availability. Instead of fully stochastic model or solely deterministic model based on prediction, I 

propose a model based on deterministic profile integrated with a stochastic process to 

characterize the energy harvesting rate in the system. The model is a multi-layer parameterized 



179 

 

Markovian model capturing the dynamics of solar energy behavior due to weather change. In this 

chapter, I target supercapacitor-based energy storage system. In the Energy Storage process, I 

consider the non-linear leakage in the supercapacitor as well as the varying efficiency of DC-DC 

converters. For Application process, I determine various states of application in response to 

events (e.g., event monitoring vs. event processing) and model the energy consumption in system 

depending on the QoS level of the application in the current state. While Energy Harvesting 

process and Application Process are independent, the behavior of energy storage process is tightly 

coupled with the other two processes. Our proposed unified model enables to fuse and capture the 

variations in solar energy and application QoS together with complex characteristic of energy 

harvesting circuitry and storage.  

Based on our proposed stochastic model, I develop a dynamic-programming-based algorithm to 

find an optimal policy in order to stochastically maximize expected performance, measured by 

reward associated with application QoS levels and states. Our proposed model inherently aims for 

continuous operation and hence, avoids shutdown time and results in better performance. I 

applied our model and optimal policy on a solar-powered smart camera system (camera with 

built-in embedded processors for image processing). Compared to deterministic method [15] 

using prediction of solar energy, our proposed method captures and quickly responds to 

uncertainty (in Energy Harvesting and Application processes) more effectively and hence, 

provides a higher QoS reward with fewer or no shutdown time. 

 



180 

 

6.2 Related Work 

A significant amount of research for dynamic power management in non-harvesting (non 

rechargeable battery-powered) embedded systems is undergoing, that use stochastic model and 

optimization methods.  [1, 2] presented Partially Observable Markov Decision Process based 

framework for energy savings. Their work captures the manufacturing process and temperature 

variations, and the uncertainty of identifying or predicting processor state. [1] mainly targeted 

energy saving while [2] extended it to consider serving requests and stabilize request queue 

occupancy.  

A considerable number of work in energy harvesting communication systems, wireless sensor 

networks, and body area networks have also considered Markovian Model [3-6]. [3] proposed 

both a stationary model and generalized (non-stationary) Markovian model for piezoelectric and 

solar energy. [5] proposed a simple Markov chain for energy harvesting wireless sensor networks 

in which harvesting has only two states (active and inactive) and assuming harvesting power is 

equal to load power. [4] applied Lyapunov optimization technique to maximize utility of 

communication channels. In these work, the harvesting process is modeled as a fully random 

process or a stationary Markov Chain for a short period of time. Furthermore, the model of the 

energy storage and underlying hardware components are too simplistic or simply neglected. 

There are approaches for energy management in harvesting systems that do not rely on stochastic 

model but prediction of harvesting in the future. Exploiting the diurnal and seasonal patterns of 

solar irradiance profile, prediction algorithms of energy harvesting based on Moving Average have 



181 

 

been proposed [7-9, 19]. Because of variations in solar profile and uncertainty of weather, it is 

inherent that these prediction algorithms have error. In our measurement, prediction algorithms 

can have up to 10-30% inaccuracy. Deterministic approaches [10,11,15] that are based on 

harvesting prediction will suffer from misplanning because of prediction inaccuracy, either 

resulting in system shutdown or energy harvesting under-utilization. Other instantaneous 

approaches rely on near future prediction [12] or involve optimization techniques at runtime that 

have high overhead [13]. Albeit adapting quickly to variations, these runtime technique might not 

obtain optimal result due to its local optimization nature. 

6.3 Overview of Proposed Energy Management Framework  

Figure 6.1 shows the overview of a solar-powered embedded system node with proposed energy 

management middleware framework as a software component running on top of the embedded 

processor. The embedded system is powered by solar energy harvested through a solar panel, 

which transforms solar irradiance to electrical energy. An energy harvesting circuit controls the 

operation of the solar panel and maximizes its efficiency by setting the optimal solar panel 

operating voltage according to a Maximum Power Point Tracking (MPPT) method [16]. The 

generated energy is stored in a supercapacitor whose terminal voltage varies according to its 

energy storage status. Therefore, to avoid degrading solar panel efficiency, a DC-DC converter 

isolates solar panel from the supercapacitor. Similarly, another DC-DC converter is used to match 

supercapacitor voltage with the required operating voltage of the embedded system’s processor. 



182 

 

The terminal voltage of the supercapacitor changes according to its energy storage status, and 

hence, the efficiency of DC-DC converters can widely vary. 

The upper half of Figure 6.1 shows the main components of proposed energy management 

framework. A unified model for solar-powered embedded systems is built from a probabilistic 

model for energy harvesting, a probabilistic model for application state and a model for the 

harvesting circuit and energy storage. The probabilistic models for energy harvesting and 

application state capture the variations of physical environment which the embedded system 

interacts with through a set of Finite State Markov Chains, enabling a complete cyber physical 

model and closed loop control. It also models the non-ideal behaviors of hardware components 

such as DC-DC converters and supercapacitor. Each of them will be presented in detail in section 4. 

 

 

Figure 6.1. Overview of Energy Management Framework for Solar-Powered 

Supercapacitor-based Embedded Systems 

 



183 

 

The unified model for solar-powered embedded system is input to a system performance 

optimization algorithm based on Markov Decision Process. The system performs actions subject to 

available QoS levels and application state. Each action completed earns a reward, representing 

system performance. The goal of the optimization is to maximize the expected performance in the 

next harvesting period (which is a day for solar-powered systems) given the dynamics of 

harvesting, application, and characteristics of circuit and energy storage. The output of this 

optimization phase is an optimal policy lookup table which guides the system to take the right 

action once the actual harvesting state, application state, and energy storage state are detected at 

run time.  

As opposed to deterministic planning approaches [15], our framework does not assume the exact 

energy harvesting availability nor application QoS state in the future but rather their probabilities 

and distributions. Actions are not determined at the time of planning, instead the best action are 

picked at every control time unit to quickly adapt to variations in harvesting and application QoS. 

Yet the optimal policy guarantees to maximize the expected total system performance in the long 

run. 

In section 6.4, I formally define each component of the system model, and describe our 

optimization solution using Markov Decision Process in section 6.5. 

6.4 A Unified Model for Solar-Powered Embedded Systems 

The unified model for the system is a Finite State Markov Chain defining system states and their 

probabilities of transiting from one state to another. Each system state contains information about 



184 

 

current state of harvesting process, application process, and energy storage. Formally I define a 

system state as a tri-tuple <Hk,Sk,Qk> where Hk is the harvesting state, Sk is the energy storage state 

of supercapacitor, and Qk is the application state at time k. Slotted time is assumed where the 

considered harvesting period is divided into N slots of duration T. The duration T of each time 

epoch is small enough for the system state to be stable. The length of T therefore depends on the 

time granularity of harvesting process, application process, and energy storage which altogether 

determine how often the system should react. After each duration T, the system may evolve in to a 

new system state and new action must be taken to respond to harvesting, energy storage, or 

application state changes (as illustrated in Figure 6.2). 

 

Figure 6.2. System State Evolution in a Harvesting Period 

The transition probability from state <Hk,Sk,Qk> to <Hk+1,Sk+1,Qk+1> is 

( 6-1) 

The harvesting process and application process evolve independently. However, the energy 

storage process of supercapacitor evolution depends on these two processes, the circuit and 

energy storage characteristics, and the action taken at each time unit T. These are reflected in the 

probability of transitions between the system states. 

, , , ,1 1 1

1 1 1

( )

{ | , , , } { | } { | }

H S Q H S Q kk k k k k k

k k k k k k k k k

Pr

Pr S H S Q Pr H H Pr Q Q





    

  



 



185 

 

 

Figure 6.3. An Example of Non-stationary Markov Chain with System States and 

Transition Edges 

This model is a non-homogeneous Markov Chain as the state transition probability is a function of 

time index k. Figure 6.3 shows an example of system state at time k moving to system states at 

time k+1 with different probabilities, assuming there are 2 possible system states. Next, I present 

details on modeling of the processes. 

6.4.1 Harvesting Process 

The solar irradiance profile is composed of a deterministic profile with some fluctuations due to 

weather (as illustrated in Figure 6.4). The deterministic profile can be built by astronomical model 

(for e.g., [17]) based on solar panel efficiency, orientation, longitude, latitude, air/pollution 

attenuation level, daily shadow effects from static objects such as building, trees, and under typical 

weather condition and temperature. This deterministic profile is represented as {I1, I2,…IN} where 

Ik is the typical solar irradiance at time k during a day and N is the number of slotted time in a day.  



186 

 

 

Figure 6.4. Solar Profile Combined of a Deterministic Curve and Fluctuations 

The dynamic fluctuations in harvesting profile is captured by a weather process which models 

weather condition such as sunny, cloudy, and rainy. This weather process is denoted as {Wk}. Each 

weather state is associated with an attenuation level, i.e. A(Wk) denoting the effect of weather on 

actual harvesting. The Markov Chain model for weather process (see Figure 6.5) is non-stationary 

as the transition probability Prk{ Wk+1 | Wk } can change over time. It is possible to have multiple 

Markov Chains for weather process, such as one for a normal day, and another for a rainy day. 

Selection of the Markov Chain for weather process can be based on weather forecast or by another 

stochastic process.  

These Markov Chains for weather process, attenuation levels, and state transition probability 

matrix can be trained from the history of harvesting profile at a location. It can also be updated 

each day according to the weather forecast. References on modeling harvesting process using 

Markov chain can be found in the literature such as [3]. 

Given a weather state at time k, the harvesting irradiance can be computed as  

( 6-2) (1 ( ))k k kH I A W  



187 

 

 

a) Normal day                                     b) Rainy day 

Figure 6.5. Weather Process Markov Chains 

Given the solar irradiance Hk, the output voltage and current of the solar panel,             and 

           at its maximum power point can be obtained by profiling the solar panel operation or 

by analytical model [17].  

6.4.2 Application and Action Processes 

Application state changes in response to physical world. For example, application state of a smart 

camera system can be regular monitoring vs. event processing (after a detected event occurrence). 

The actions (tasks to perform) can be different in each of these states. For example, low resolution 

images can be accepted in regular monitoring state while higher resolution images are more 

desirable after an event such as motion or human is detected. In event processing state, the 

application may need to perform more computational tasks such as face detection or object 

contour detection that consumes more energy than in regular monitoring state. The QoS levels 

and energy consumption in each mode are therefore different.  



188 

 

 

Figure 6.6. Application Process Markov Chain 

The application process has a stochastic nature because it is hard to predict exactly when and for 

how long events will happen. Therefore, I use a Finite State Markov Chain model to capture the 

application process which is denoted as {Qk}. This model captures the correlation over time that is 

typical of the physical event dynamics. Figure 6.6 shows an example of such model where the 

system has two states: event monitoring and event processing. The transition edges from one 

state to another state are associated with probability of event occurrence leading to application 

state changes. 

A simplified version of this model is applications with a single state [10-11], which assume 

systems always respond in the same way. 

In each application state i, I assume the system has a list of available QoS levels {QoSi1, 

QoSi2,....QoSiM}. Each QoS level represents a different set of actions to take in response to physical 

environment in the current application state i. Each QoSij level is associated with a required 

operating voltage and current Vload(QoSij), Iload(QoSij) of the embedded processor, and a reward 

R(QoSij). I assume higher QoS level has higher energy consumption and higher reward as it 

improves the application’s accuracy or quality. 



189 

 

Action process is denoted as {μk} ,                                       given Qk=i,  where 0 represent the possibility 

of shutdown due to energy outage or as a controller decision. Action is decided by the embedded 

processor at each time epoch. Action can be any of the QoS levels in the current application state, 

provided that system has sufficient energy storage to supply the action energy demand. By 

completing an action, the system gains a reward associated with that action. 

6.4.3 Energy Storage Process 

In case of battery-less system, the energy storage is a (an array of) supercapacitor. Given the 

nominal capacity C, the maximum energy that can be stored in supercapacitor is 

                                      ( 6-3)  

where Vmax is the maximum rating voltage of the supercapacitor. I choose to represent energy 

storage process of the supercapacitor by its voltage as it has direct relation with energy as shown 

in Equation 6-3. Let Sk be voltage of the supercapacitor at time slot k. Sk is updated in each slot 

according to its current value, harvesting process, application process, and actions taken. In 

addition, Sk is affected by supercapacitor leakage and converter losses as explain next. 

Supercapacitor leakage: The advantages of supercapacitor as compared to battery are higher 

power density and no aging effect. However, supercapacitor has non-ideal behavior which is 

leakage that grows exponentially with its voltage. The leakage of the supercapacitor can be 

approximated as 

( 6-4) 

where α and β are empirical constant [14]. 

V
leakageP e

2

max max

1

2
E CV

10 { ,... }k i iMQoS QoS  



190 

 

DC-DC converter efficiency: Because the voltage of the supercapacitor varies widely according to 

its energy, the circuit needs DC-DC converters to match supercapacitor voltage with required 

output voltage and current. These converters for charging and discharging could work in either 

buck mode or boost mode, i.e. reducing or increasing the voltage output of the supercapacitor to 

match with the optimal voltage for MPPT of solar panel or required operating voltage of the 

embedded processor.  

     gcharge (Hk,Sk) = fcharge(Sk, Vsolar(Hk), Isolar(Hk))                                                              ( 6-5) 

     gdischarge(Sk,μk) = fdischarge (Sk,Vload(μk), Iload(μk))                                                    ( 6-6) 

The power loss due to converter is a function of input voltage, output voltage, and output current. 

In case of charging, it is a function of Sk, Vsolar, and Isolar as in Equation 6-5 In case of discharging, the 

power loss is a function of Sk, processor voltage Vload and its current Iload as in Equation 6-6. For 

detailed formulation of power loss, the readers are referred to previous work in literature [13]. 

Figure 6.7 shows that the loss due to converter is significant, ranging from 20% to 80%. The larger 

the gap between input and output voltage of a converter, the higher the loss is.  

 

Figure 6.7. Converter Efficiency 



191 

 

Energy storage update and quantization: Formally, the next state Sk+1 is computed according to 

Equation 6-7 to 6-9 below.  

( 6-7) 

( 6-8) 

( 6-9) 

To evaluate exactly the next system state and transition probability, there is a large amount of 

information to keep track of. Therefore I propose to quantize the energy storage state of the 

supercapacitor, i.e. its voltage to enable a Finite-State Markov Chain representation. 

The supercapacitor voltage range [0..Vmax] is partitioned into K non-overlapping intervals using K-

1 thresholds                             .  The voltage range              in interval ith is denoted as intv(i). Steady 

state probability of energy storage state i is 

( 6-10) 

where f(s) is probability density function of voltage. 

The transition probability that system is moving from state <Hk,Ek,Qk> at time k to state 

<Hk+1,Ek+1,Qk+1> at time k+1, given the action μk  is 

 

 

( 6-11) 

arg arg

( ) ( ) ( ) ( ) ( )

( , ) ( , )

k solar k solar k load k load k leakage k

ch e k k disch e k k

P V H I H V I P S

g H S g S

 



    

 

1[ , ]i iv v 

1

( )

i

i

i

f s ds









 

2

1

1

2
k k kE CS P T  

1
1

2 k
k

E
S

C


 

1 2 1 max1
{0, , ,..., , }K V   

1

int ( ) int ( )1
, , , , 1 11 1 1

int ( )

( ) ( | , , , )

( ) { | } { | }

( )

S S k k k k k

v H v Hk k
H S Q H S Q k k k k kk k k k k k

s

v Hk

f s f S H S Q dsds

Pr Pr H H Pr Q Q

f s ds








      

  

 





192 

 

Numerical computation of this double integral is time consuming. Therefore, I use Monte Carlo 

simulation method to obtain the state transition probability. The simulation method is briefly 

described below: 

 For each state <Hk,Sk,Qk> and action μk, a long sequence of supercapacitor voltage in the 

range of intv(Sk), and simulated output state Sk+1 according to Equation 6-7 to 6-9 are 

generated. 

 For each state input Sk, the number of occurrences that state output belongs to interval of 

state Sk+1.is found. Then this number is normalized by the number of occurrences in state 

input. This is Pr{Sk+1|Hk,Sk,Qk, μk}.  

6.5 Optimal Policy to Maximize Expected System 

Performance 

In the previous section, I presented the unified Markov Chain model for solar-powered embedded 

systems. In this section, I discuss an optimization framework based on dynamic programming to 

maximize expected rewards. 

Each time epoch, the system needs to make decision as to which action to take. The actions are 

possible QoS levels in the current application state. The selected action dictates the embedded 

processor to perform certain processing tasks. The cost is the corresponding energy consumption 

of the action that changes the energy storage state of the system. In return the system gains a 

reward which is accumulated over the harvesting period, representing the system performance in 



193 

 

that period. Since a current action can change the energy storage, careful decision making is 

required to avoid energy outage. 

The goal of the optimization is to maximize the expected reward associated with actions taken 

each time epoch in the next harvesting period N. 

( 6-12) 

6.5.1 Optimal Policy  

The optimization problem can be solved using a back-ward probabilistic dynamic programming 

for finite horizon [18]. The result is a policy that maps a system state to an action that maximizes 

the expected total reward given all the variations in harvesting process or application process. 

I denote Jk(Hk, Sk, Qk) as the maximum expected total reward from time slot k to N.  

( 6-13) 

( 6-14) 

The optimal action that maximizes Jk(Hk, Sk, Qk) in Equation 6-14 is saved in a table, called optimal 

policy look-up table. At run time, the system keeps track or detects the current system state and 

picks the right action using this optimal policy look-up table. 

Complexity: The running time of this dynamic programming is O(N|μ||H|2|S|2|Q|2) where |μ| is 

the number of actions, |H| is the number of harvesting states, |S| is the number of quantized 

superpcapacitor voltages, and |Q| is the number action modes. 

{ ( )}k

N

Maximize E R 

1 1 1 1( , , ) 0N N N NJ H S Q    

1 1 1 1( , , ) max {R( ) ( ( , , ))}k k k k k k k kJ H S Q E J H S Q      



194 

 

As shutdown (μk =0) is undesirable in harvesting systems, I associate high reward to actions the 

system can take and no reward if energy storage is not sufficient to actuate any action.  This 

inherently makes dynamic programming to choose actions that lead to minimal shutdown. In 

addition, at the end of each day, the system needs to maintain certain level of energy storage to 

start the system at the beginning of next day when harvesting is low. Equation 6-13 encourages 

the dynamic programming to utilize all energy to optimize system performance. Instead, I 

modified Equation 6-13 to associate some reward incentive π to system states whose SN is greater 

or equal to minimum energy storage at the end of a day, as shown in Equation 6-15. 

( 6-15) 

The optimal policy lookup table is only needed to be computed one time and it only needs updates 

when harvesting process or application process change their states and probabilities. The 

overhead is therefore small. Furthermore, the optimal policy look-up table enables the system to 

react quickly to dynamic changes in harvesting and application processes at run time, yet 

maximizes expected system performance in the long run. 

6.6 Experimental Results 

To demonstrate the effectiveness of our model and optimization framework, I implement a 

simulator in Matlab to model the solar-powered embedded system. The experimental setup is 

described in section 6.6.1 followed by our results in section 6.6.2. 

 

1 1 1 1( , , )N N N NJ H S Q     



195 

 

6.6.1 Experiment Setup 

I assume that the system has two supercapacitors with 400F capacitance each, Vmax=5V. In the 

Monte-Carlo simulation (section 6.4.3), the voltage of the supercapacitor is quantized into 10 

equal intervals. The empirical constants for supercapacitor leakage are α=1.26e-10 and β=10.43 

according to measurement in [14]. The parameters for DC-DC converters are obtained from [13] 

and from the datasheet of the corresponding buck-boost converters. The required voltage at the 

end of each day is set to be 3.5V. 

I assume the load processor is similar to PXA270 with Vdd of 1.55V and load current is set 

according to QoS level. I simulate a smart camera application which captures images by a number 

of frames per second (set by QoS level). For each frame, it performs image processing tasks such 

as background subtraction (in event monitoring state) and object contour detection (in event 

processing state). 

 

 

  

                                  Figure 6.8. Weather Process Markov Chain  

a) Normal day b) Rainy day 



196 

 

 

I proposed a general model of harvesting process in section 6.4.1. For the experiments, I assume to 

have a harvesting probabilistic model as shown in Figure 6.8. Figure 6.8a is Markov Chain for 

weather process during a normal day and Figure 6.8b is Markov Chain for a rainy day. The 

attenuation in each mode and the transition probability between weather states are denoted in 

each state and on each edge. This weather process model can be obtained from training the 

parameters with real data. From this model and a deterministic profile in Figure 6.4, I randomly 

generate harvesting profiles as shown in Figure 6.9a, Figure 6.10a and 6.10b. 

Since there is no direct related work for comparison, I adapt a related work in energy 

management for supercapacitor-based energy harvesting systems [15]. This work aims to 

maximize duty cycling on a harvesting sensor node. I adapt it to maximize total rewards of the 

system. It relies on energy harvesting prediction to plan activities for the next harvesting period. 

In order to consider DC-DC converter efficiency, it quantizes the voltage of the supercapacitor into 

L intervals (L=100 in our experiments). A dynamic programming is then employed to plan duty 

cycling (QoS and reward in our adaptation) for the next harvesting period, considering the 

predicted energy harvesting, supercapacitor voltage, and DC-DC converter efficiency in each slot. 

 

a) Harvesting Profile                                          b) Total Reward Comparison                                     c) Shutdown time comparison 

Figure 6.9 Comparison with Deterministic Approach for a Week, Single Application 

State 

 

 

10000

11000

12000

13000

14000

15000

16000

17000

1 2 3 4 5 6 7

Day

Total Reward

Our approach

Deterministic

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7

Day

Shutdown time (minutes)

Our approach

Deterministic



197 

 

It however considers single application state and energy consumption for each QoS level is fixed (a 

special case of our general application process model in section 4.2). I call this Deterministic 

approach.  

6.6.2 Results 

In the first set of experiments, I assume the system has only one application state. The system has 

7 QoS levels with corresponding current (in mA) {51.765, 128.889, 242.609, 312, 422.222, 515.172, 

596.774}. The rewards for each QoS levels are {100, 110, 120, 130, 140, 150, 160}. Figure 6.9 shows 

the comparison of our approach against the Deterministic approach. The metrics used are total 

reward which reflects system performance and shutdown time which reflects system 

sustainability. Shutdown time is the duration during which the supercapacitor voltage falls below 

the minimum operating voltage. During the shutdown time, the processor is not powered but the 

supercapacitor is still charged by harvesting power if any. Figure 6.9 shows 17% improvement on 

average in total reward of our approach as compared to Deterministic approach. In addition, our 

system has no shutdown time while Deterministic approach has 25-170 minutes shutdown time 

each day.  Deterministic approach relies on prediction which has inaccuracy. Their plan is either 

optimistic at times, assigning high QoS level while harvesting is less than prediction or  pessimistic 

at other times, assigning low QoS level while harvesting or energy storage is abundant. 

In the second set of experiments, I assume the system has two application states. The two states 

are event monitoring (state 1) and event processing (state 2). The Markov Chain model for the 

application process is shown in Figure 6. The system has 7 QoS levels as in the first experiment but 

in event processing state, application executes more tasks and consumes 1.5 times the load 



198 

 

current in state 1. Since the Deterministic approach is not aware of different stochastic states of 

the application process, I define two variations, Deterministic 1 and Deterministic 2. Deterministic 

1 optimistically assumes the application is in state 1 most of the time and therefore its plan is 

aggressive. Deterministic 2 assumes the system can be in state 2 at any time for safety and hence, 

the planning is less aggressive. 

Furthermore, the Deterministic approach is coupled with an online adaptation algorithm 

(QUARES[10]) to improve the adaptation ability of Deterministic approach at runtime when there 

is a gap between prediction and actual energy harvesting. The online adaptation algorithm keeps 

track of energy harvesting and energy storage status to adjust application QoS accordingly. Note 

that this online adaptation is aware of the actual application states at runtime. 

Figure 6.10 shows the result running our approach and two Deterministic approach variations for 

7 days according to the harvesting profiles on the left side of Figure 6.10 (the first 3 days are for 

prediction for Deterministic Approach). The first harvesting profile is a series of normal days 

while the second harvesting profile contains one rainy day with significant less energy harvesting 

potential. Our approach has 28% improvement in total rewards on average compared to 

Deterministic 1, and 27% compared to Deterministic 2. Because Deterministic 2 assumes a less 

aggressive planning, we would expect it to have lower total reward. Counter to intuition, 

Deterministic 2 has higher total rewards, thanks to its less aggressive planning which reduces the 

effect of prediction inaccuracy, leading to less shutdown time. The system under Deterministic 2 

therefore provides QoS for a longer time than Deterministic 1 and attains higher total rewards. 

 



199 

 

 

                        

a) Harvesting Profile 1                  b)     Harvesting Profile 2  

 

c) Total Reward Comparison 1                         d) Shutdown Time Comparison 1 

    

 

                           e) Total Reward Comparison 2                                                    f) Shutdown Time Comparison 2                              

Figure 6.10 Comparison with Deterministic Approach for a Week, Multiple Application 

States 

 

 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7

Day

Total Reward

Our approach

Deterministic 1

Deterministic 2

Deterministic + 
Online adaptation

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

Day

Shutdown time

Our approach

Deterministic 1

Deterministic 2

Deterministic+ 
Online Adaptation

10000

11000

12000

13000

14000

15000

16000

1 2 3 4 5 6 7

Day

Total Reward

Our approach

Deterministic 1

Deterministic 2

Deterministic+ 
Online adaptation

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7

Day

Shutdown time

Our approach

Deterministic 1

Deterministic 2

Deterministic+ 
Online adaptation



200 

 

The Deterministic + Online adaptation approach improves both total reward and shutdown time 

as compared to Deterministic 1 and 2. The online adaptation effectively adjusts QoS when there is 

a gap between prediction and actual harvesting, helping reducing shutdown time and as a result, 

improving total rewards. However, this improved deterministic approach is still unable to tackle 

large fluctuations, such as on rainy days (e.g., on day 5, harvesting profile 1 during which it shuts 

down for 4 hours). Compared to Deterministic + Online adaptation, our stochastic approach has on 

average 4-12% higher total rewards and zero to minimal shutdown time. This gap is expected to 

be larger with more variations in the solar harvesting profiles and the application demand. 

Overall, our approach outperforms Deterministic approaches in any setting and in both defined 

metrics, higher total reward and lower or no shutdown time. Under rainy condition, it is 

unavoidable that supercapacitor runs out of energy, our approach shuts down for 15 minutes at 

the end of the rainy day and another 60 minutes at the beginning of the next day before the 

supercapacitor recovers above the minimum operating voltage.  

6.7 Conclusion 

In this work, I propose a unified stochastic model based on Finite State Markov Chain that 

captures both energy supply and energy demand variations and the complexity of harvesting 

system components. This unified model enables a complete cyber physical model and closed loop 

control for solar-powered supercapacitor-based systems. The proposed optimization framework 

aims to maximize the expected performance of the systems. Compared to state-of-the-art 



201 

 

deterministic energy management framework, our proposed approach outperforms in term of 

QoS and energy sustainability (with less shutdown time). 

References 

[1] Mohammad Ghasemazar and Massoud Pedram, “Variation Aware Dynamic Power Management for Chip 

Multiprocessor Architectures”, in DATE 2011 

[2] Hwisung Jung, and Massoud Pedram, “Uncertainty-Aware Dynamic Power Management in Partially 

Observable Domains”, in IEEE Transaction on VLSI Systems, 2009 

[3] Chin Keong Ho, Pham Dang Khoa, and Pang Chin Mang, “Markovian Models for Harvested Energy in 

Wireless Communications”, in IEEE International Conference on Communication Systems 2010 

[4] Longbo Huang and Michael J. Neely, “Utility Optimal Scheduling in Energy Harvesting Networks”, in 

Mobihoc 2011 

[5] Alireza Seyedi and Biplab Sikdar, “Modeling and Analysic of Energy Harvesting Nodes in Wireless 

Sensor Networks”, in Annual Allerton Conference on Communication, Control, and Computing, 2008  

[6] Joan Ventura and Kaushi Chowdhury, “Markov Modeling of Energy Harvesting Body Sensor Networks”, 

in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2011 

[7] Jason Hsu, Sadaf Zahedi, Aman Kansal, Mani Srivastava, and Vijay Raghunathan. "Adaptive duty cycling 

for energy harvesting systems." In ISLPED 2006 

[8] J. Recas Piorno, Carlo Bergonzini, David Atienza, and T. Simunic Rosing. "Prediction and management in 

energy harvested wireless sensor nodes." In Wireless VITAE 2009.  

[9] Jun Lu, Shaobo Liu, Qing Wu and Qinru Qiu, “Accurate Modeling and Prediction of Energy Availability in 

Energy Harvesting Real-Time Embedded Systems”, in IGCC 2010 

[10] Nga Dang, Elaheh Bozorgzadeh, and Nalini Venkatasubramanian. "QuARES: Quality-aware data 

collection in energy harvesting sensor networks." In IGCC 2011. 

[11] Clemens Moser, Jian-Jia Chen, and Lothar Thiele. "Power management in energy harvesting embedded 

systems with discrete service levels." In ISLPED 2009. 

[12] Shaobo Liu, Qinru Qiu, and Qing Wu. "Energy aware dynamic voltage and frequency selection for real-

time systems with energy harvesting." In DATE'08, pp. 236-241. IEEE, 2008. 



202 

 

[13] Y. Choi, N. Chang and T. Kim, “DC-DC Converter-Aware Power Management for Low-Power Embedded 

Systems”, in TCAD, 2007 

[14] Azalia Mirhoseini, and Farinaz Koushanfar. "HypoEnergy. hybrid supercapacitor-battery power-supply 

optimization for energy efficiency." In DATE 2011. 

[15] Zheng Liu, Xinyu Yang, Shusen Yang, and Julie McCann, “Efficiency-Aware: Maximizing Energy 

Utilization for Sensor Nodes Using Photovoltaic-Supercapacitor Energy Systems” in International 

Journal of Distributed Sensor Networks, 2013 

[16] Sehwan Kim and Pai Chou, “Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems” 

in ICMU 2010 

[17] Jaein Jeong, “A Practical theory of micro-solar power sensor networks”, Ph.D. thesis 

[18] D. P. Bertsekas. “Dynamic Programming and Optimal Control”, Vols I and II. Boston: Athena Scientific, 

2005 and 2007 

[19] Navin Sharmaa, Jeremy Gummesonb, David Irwinb, Ting Zhuc , Prashant Shenoya , “Leveraging 

Weather Forecasts in Renewable Energy Systems”  in SECON 2010 

 

 

 

 

 

 

 

 

http://www.hindawi.com/98617160/
http://www.hindawi.com/19853805/
http://www.hindawi.com/16509896/
http://www.hindawi.com/35401954/


203 

 

 

Chapter 7 Conclusion and Future Work 

 

Energy harvesting is a very promising energy supply alternative for embedded systems. 

Compared to other alternatives such as plug-ins and batteries, energy harvesting has no 

generation cost (energy is free from the surrounding environment) and low maintenance 

cost. Most importantly, the energy sources are clean and replenish-able, making the 

systems self-sustainable. However, energy harvesting brings new challenges for embedded 

system energy management. These challenges were not present in the previous systems 

and therefore, novel energy management techniques must be proposed and adopted for 

energy harvesting embedded systems. This dissertation focuses on solar energy for its high 

availability and ease of accessibility.  

The main challenges for solar-powered embedded systems are spatial and temporal 

variations in the solar profiles. Other challenges induced by energy harvesting are the non-

ideal behaviors of complex hardware components such as converters and the aging effect 

of batteries. Furthermore, the variable demand of applications makes it even more 

challenging for any energy management technique in solar-powered embedded systems.  

 



204 

 

7.1 Contribution 

This dissertation tackles the challenges of solar-powered embedded systems, its 

optimization goal is to maximize system performance measured by the application Quality 

of Services. The contribution of this thesis is proposing SQUARES middleware framework 

for energy management in such systems. In chapter 3 and 4, I explored different knobs of 

the systems for cross-layer energy management which allows system energy consumption 

tuning and matching with variable energy harvesting. In particular, I exploited error 

margin for data collection applications on wireless sensor networks in chapter 3 and a 

combination of DVFS and real-time task constraints in chapter 4.  

In this thesis, I also highlighted the impact of harvesting activities on the energy storage 

subsystems. Specifically, the challenges are battery aging and supercapacitor leakage under 

fluctuating charging and discharging activities. In chapter 5, a middleware framework for 

hybrid energy storage architecture (of batteries and supercapacitors) is proposed to keep 

battery aging under threshold and to minimize supercapacitor leakage.  

Finally, this thesis provides a novel stochastic model to capture solar profile variations and 

application demand variations. The model is built based on a unified Finite State Markov 

Chain in which each state captures the harvesting status, application status, and energy 

storage status. The transition edges among states capture not only the stochastic nature of 

energy harvesting sources and physical events but also the complex behaviors of 

harvesting circuit components. This unified Finite State Markov Chain representation of 



205 

 

solar-powered embedded systems enables stochastic optimization based on Markov 

Decision process. The experimental results show improvements in system sustainability 

and performance compared to deterministic approaches such as prediction-based 

planning. 

In conclusion, this work provides a cross-layer energy management middleware 

framework, SQUARES for solar-powered embedded systems. It tackles challenges of energy 

harvesting systems by two approaches, deterministic approach and stochastic approach. It 

exploits different knobs at the hardware, software layers and the application layer for 

energy tuning and matching. It reinforces the impact of energy harvesting systems by 

taking into consideration the energy storage lifetime and efficiency constraints, making the 

energy harvesting systems truly sustainable.  

7.2 Limitation and Feasibility of Accomplished Work 

In this section, I look at limitation of my accomplished work from two angles: the 

applications it can make an impact on and the scalability of the algorithms proposed. I 

analyze each of this perspective in section 7.2.1 and 7.2.2 respectively. Lastly, I look at the 

feasibility of implementing this framework on a real test bed and give my recommendation 

to make it work.  

 



206 

 

7.2.1 Application Limitation 

Data collection applications: I chose approximated data collection applications on 

Wireless Sensor Network as the focus of my study for energy harvesting communication-

intensive systems. However, approximated data collection protocols exploit only error 

margin (i.e., data accuracy) adaptation for energy consumption tuning. There are other 

important data qualities such as data timeliness should also be considered or other models 

to capture data accuracy. Furthermore, in my work, I assumed the relationship between an 

error margin and the corresponding energy consumption is stationary and it is possible to 

profile and obtain this information prior to the offline planning phase. In fact, this relation 

can change dynamically at run-time. In that case, the given offline phase may not work. A 

model that can capture the dynamic changes in data characteristics (e.g., stochastic model) 

is needed for the offline phase to work or a complete online algorithm is required.  

Smart Camera Networks: Differently from data sensing and collection protocols, many 

networking applications such as object tracking, object identification require in-network 

processing in addition to sensing and communicating. Understanding the semantics of 

these applications, their Quality of Service definitions, demands, and requirements, their 

patterns of communicating may give advantages to energy management in scheduling 

tasks, tuning energy consumption, and optimizing application performance.  

Real-time applications: I focused on soft real-time systems with (m,k)-firm constraints 

for my study of computation-intensive systems. Soft real-time systems are just one class of 



207 

 

real-time systems, and real-time systems again are just one category of computation-

intensive systems. There are many other possible systems to look at. (m,k)-firm constraints 

assume any task can be dropped as long as the system can meet m out of every k sequential 

deadlines. This may ignore the semantics of the applications which may value one task than 

other tasks or there are dependencies among tasks that make it impossible to drop an 

important one. 

To sum up, I looked at two specific systems: communication-intensive systems and 

computation-intensive systems. However, there are systems with fairly equal 

communication and computation tasks. Such systems would require an orchestration of 

tuning knobs for communication and tuning knobs for computation. An integrated 

computation and communication model is needed for effective tuning. 

7.2.2. Algorithmic Limitation 

In chapter 3 and 5, I used Integrated Linear Programming (ILP) which is a NP-complete 

problem. Although there are effective solvers for ILP, its running time still increased 

exponentially as the number of variables and constraints increase. There is no bound for 

running time of NP-complete programs. Thus, if number of variables and constraints are 

large and there is limited time for running the ILP, heuristic approaches that exploit the 

structure of the problem is needed. 

In chapter 4, I proposed a dynamic programming (DP) solution which is typically a 

polynomial algorithm. Dynamic programming works if possible choices at each step are 



208 

 

known and results at each step are dependable only on previous steps. In addition, system 

states and actions at each step must be discrete. If system states and actions at each step 

are continuous, quantization is required and hence there are approximation errors. 

However approximation errors can be bounded using iterative approximation methods. 

Chapter 6 exploits a stochastic approach based on Finite State Markov Chain model. Finite 

State Markov Chain model is a very flexible and effective model to capture the stochastic 

nature of physical environment and complexity of harvesting circuits which may pose 

difficulties for ILP and DP solutions otherwise. However, it relies on the prior knowledge of 

energy harvesting sources and physical events to build Markov Chain states and 

transitions. It is not straight forward to build accurate models and to detect accurate state 

at run-time while inaccurate models will reduce the optimality of the solution.  In addition, 

the number of possible states in the systems and actions affects the running time and size 

of the optimal policy look-up table. If the size of the optimal policy look-up table is large, it 

may take up a significant portion of the memory on a limited-memory embedded system. In 

case the memory is insufficient to store the whole optimal policy table, it could be 

fragmented and the right fragment is retrieved and stored when needed. Another 

interesting point is that theoretically, it is straight-forward to extend this stochastic 

approach for a network of solar-powered embedded systems. However, the number of 

states, the running time, and the size of the optimal policy table will grow exponentially 

with number of nodes in the networks, making it infeasible in practice. Smart approaches 



209 

 

to tackle this scalability problem are desirable to bring the benefit of stochastic models and 

optimization methods from the individual node level to the network level. 

7.2.3 Feasibility of Implementation 

SQUARES middleware framework certainly brings many benefits for solar-powered 

embedded systems it supports. However, its successful implementation depends on several 

factors listed below. One thing is the existence of a sensing system that allows each 

embedded system to read its harvesting power (voltage and current), the energy storage 

status (charging and discharging current, battery and/or supercapacitor voltages, their 

State of Charge), and load demand (voltage and current). The second thing is the ability to 

control the hardware and to tune the systems knobs (such as DVFS) and software knobs 

(such as OS scheduler). Importantly, it must be able to communicate with and adapt the 

application (such as tuning data error margin or changing task constraints). These 

requirements necessitate changes to the application code. 

The overhead of the middleware must also be considered for realization of the benefits of 

this SQUARES middleware on solar-powered embedded systems. Measurement of timing 

and energy consumption of this middleware’s algorithms is needed to decide the frequency 

and depth of adaptation and controlling.  

 

 



210 

 

7.3 Future work 

In this section, I discuss about directions for future work. The limitations on applications 

and algorithms listed in section 7.2 are good candidates for extension of this work. In 

addition, I listed here other possibilities for extension. 

It is necessary to model solar-powered embedded systems or energy harvesting systems in 

general as complete cyber physical systems to enable close-loop control. Stochastic model 

is promising, but the challenges in building accurate models must be tackled first. 

Furthermore, the extension to network level can benefit many new applications whose 

Quality of Services are based on network-level metric. Yet this poses a scalability issue 

(mentioned in section 7.2.2) which is an interesting research problem to investigate.  

Furthermore, there are emerging technologies in both energy harvesting and energy 

storage such as micro-engineer batteries which promise to bring the benefits of both 

batteries and supercapacitors together. These new technologies offer new benefits to 

explore and yet new challenges to tackle. 

This thesis focuses on solar energy. However, there are other renewable sources such as 

wind, kinetic, thermal energy that can be harvested. Each of this has different 

characteristics and their applications and contexts are vastly different (e.g., body area 

networks exploiting kinetic energy while system on chips harvesting thermal energy). It is 



211 

 

promising to extend this middleware framework to other renewable energy sources, 

systems, applications, and environments. 

 

 




