Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Genomics, Gene Expression and Other Studies in Soybean Rust

Permalink

https://escholarship.org/uc/item/5sf4m343

Author Posada-Buitrago, Martha Lucia

Publication Date 2005-06-07

DOE JOINT GENOME INSTITUTE US DEPARTMENT OF ENERGY OFFICE OF SCIENCE

U.S. D.O.E. JOINT GENOME INSTITUTE

LBNL-58994

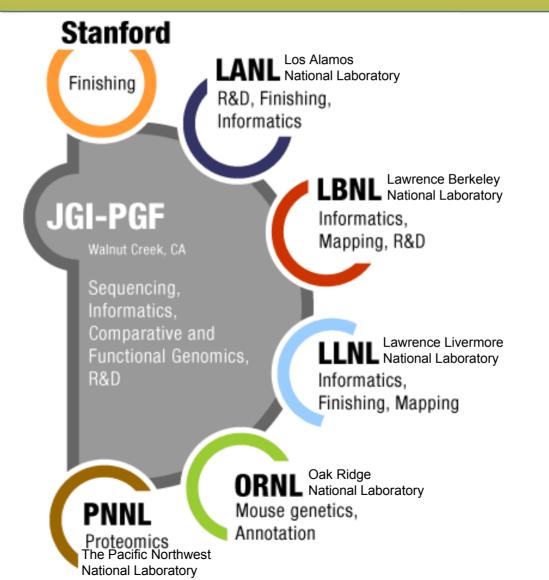
Introduction to the DOE-Joint Genome Institute

Martha Lucia Posada-Buitrago, Ph.D. Molecular Biologist

Production Genomic Facility

U.S. D.O.E. JOINT GENOME INSTITUTE

Opened in 1999 ~240 UC Employees 60,000 sf ~\$66M Annual Budget



Mission:

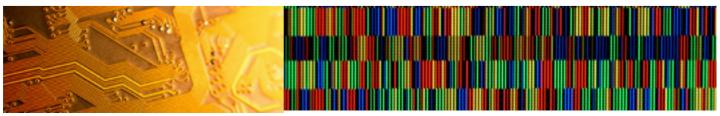
To develop and exploit new sequencing and other high-throughput, genome-scale and computational technologies as a means for discovering and characterizing the basic principles and relationships underlying the organization, function, and evolution of living systems.

JGI Partnerships

DNA Sequencing Production at the JGI

U.S. D.O.E. JOINT GENOME INSTITUTE

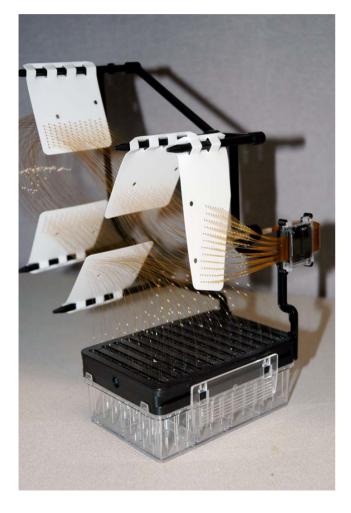
- April 2002:
- January 2004:
- July 2004:


- 1 gb/month
- 2 gb/month
- 2.5 gb/month

• March 2005:

3.1 gb/month

(equivalent to 1 human genome/month)


Total (3/99-4/05) 82.893 gb (equivalent of sequencing 27 human genomes)

Automated DNA Sequencing

U.S. D.O.E. JOINT GENOME INSTITUTE

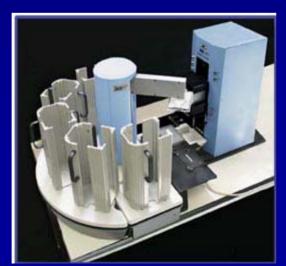
AGTCCGCGAATACAGGCTCGGT

DNA sequencing process Library Construction Group

U.S. D.O.E. JOINT GENOME INSTITUTE

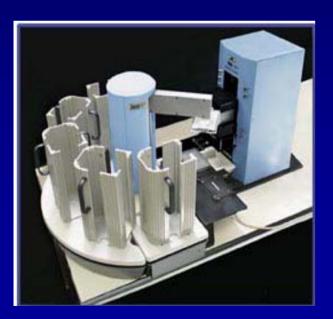
- 1. Shear DNA
- 2. Ligate into pUC18
- 3. Transform
- 4. Plate
- 5. Pick colonies
- 6. Grow overnight

DNA sequencing process Rolling circle amplification of plasmid clones for sequencing template


1. PlateMate adds lysis buffer to small amount of culture

2. Cells are heat-lysed

3. Hydra 384's with Twister arms add RCA reagents.


4. ON incubation

DNA sequencing process Sequencing Chemistry

F and R reactions are separated with hydra 384's with twister arms

Sequencing reagents are added with Cavro Dispense System

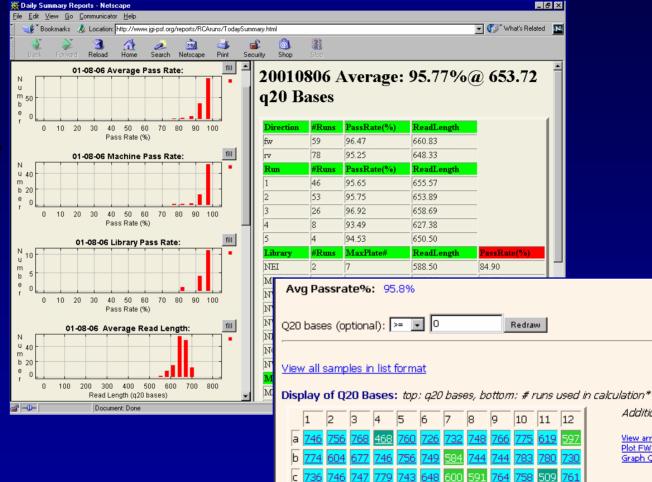


... more sequencing chemistry

Sequence reactions with Quad-head PCR machines, then clean-up using BioMek robots and SPRI

DNA sequencing process Capillary Group

Linstrument Control Manager - MegaBACE (Sequencing) JGIElkin67_27_01Run01	_ B ×		
zie view options zemplates comigure zeip Sample Name: N04			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	24		
Plate Setup Instrument Control Run Image			
For Help, press F1 Value Range Run time: 074min:59sec Full Run Time: 160 min NUM 07/27/01 03:36	PM		


35 MegaBACE 4000 60 ABI 3730

Q20 / month = 3.1 Gb

Online tracking of progress

LIMS uses bar code readers at every step and allows real time tracking of all reagents, personnel, and processes

Redraw

>600

_ 🗗 🗙

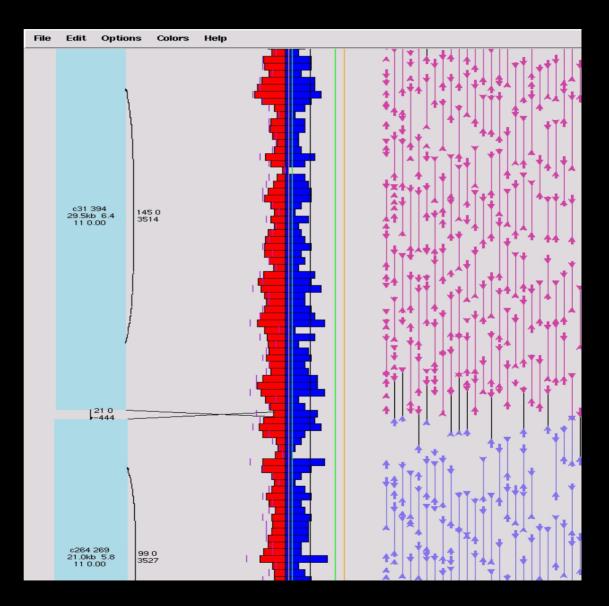
👻 🍘 What's Related 🛛 💀

84 90

						6						
a	<u>746</u>	<u>756</u>	<u>768</u>	<u>468</u>	<u>760</u>	<u>726</u>	<u>732</u>	<u>748</u>	<u>766</u>	<u>775</u>	<u>619</u>	<u>597</u>
b	<u>774</u>	<u>604</u>	<u>677</u>	<u>746</u>	<u>756</u>	<u>749</u>	<u>584</u>	<u>744</u>	<u>744</u>	<u>783</u>	<u>780</u>	<u>730</u>
с	<u>736</u>	<u>746</u>	<u>747</u>	<u>779</u>	<u>743</u>	<u>648</u>	<u>600</u>	<u>591</u>	<u>764</u>	<u>758</u>	<u>509</u>	<u>761</u>
d	<u>716</u>	<u>725</u>	<u>672</u>	<u>712</u>	<u>736</u>	<u>759</u>	<u>738</u>	<u>555</u>	<u>591</u>	<u>751</u>	<u>718</u>	<u>748</u>
е	<u>749</u>	<u>742</u>	<u>746</u>	<u>748</u>	<u>746</u>	<u>724</u>	<u>719</u>	<u>655</u>	<u>746</u>	<u>644</u>	<u>740</u>	<u>736</u>
f	<u>681</u>	<u>714</u>	<u>734</u>	<u>732</u>	<u>729</u>	<u>757</u>	<u>737</u>	<u>399</u>	<u>769</u>	<u>734</u>	<u>717</u>	<u>739</u>
g	<u>708</u>	<u>567</u>	<u>0</u>	<u>707</u>	<u>694</u>	<u>601</u>	<u>700</u>	<u>0</u>	0	<u>727</u>	<u>621</u>	<u>36</u>
h	<u>721</u>	<u>728</u>	<u>734</u>	<u>741</u>	<u>684</u>	<u>720</u>	<u>725</u>	<u>667</u>	<u>512</u>	<u>734</u>	<u>733</u>	<u>729</u>
Ca	lor S	ichen	ne: <mark>1</mark>	2-2	50 2:	51-35	0 35	1-45	1 45:	1-525	526	-600

Additional Analysis:

View array change history Plot FW vs. RV Graph Q20 readlengths by well

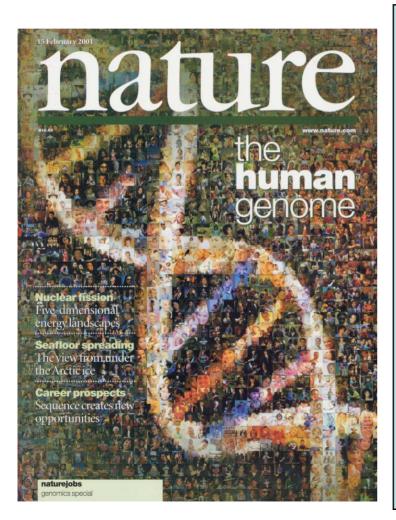


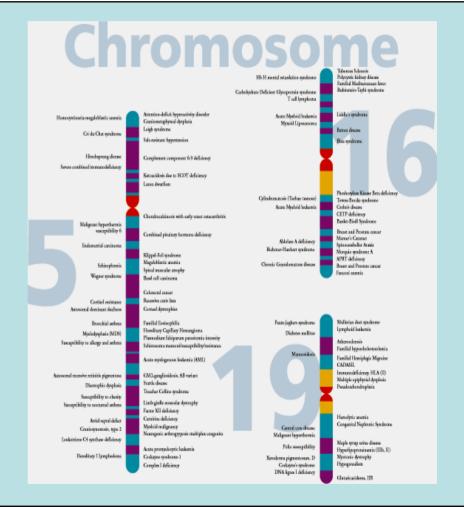
DNA Sequence Assembly

Informatics team assembles, verifies, annotates genomes

Best assemblies come from end sequences from a mixture of clone sizes.

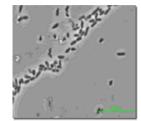
Typically, the JGI makes 3 libraries: 3-4 Kb in plasmids 8-10 Kb in plasmids 40 Kb in fosmids

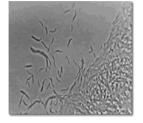



Genome annotation and visualization tools Netscape: JGI Genome Browser

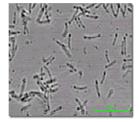
	• • • • • •				Ne	tscape: JG	l Genome Bro	wser			• • •			
•	🐳 📄 🧃	🚮	n 🕺 👘	e Images	📑 🧋 Print Secu	rity Stop	Netsc	-						LBNL 4.75
,	Location : 🎪 http://grolithe.jgi-p	sf.org/cgi-	-bin/splat?db	=ciona3&positi	ion=Scaffold_1								🛛 🍘 🗍 What's	Related
	👃 UCB 🤳 LBL 👍 Profusion	🤳 Goo	igle NC	BI ॳ JGI	Production o	Ь								
						Ci	ona Genome	Project					a a)~	П
							(internal)							7
D	OE JOINT GENOME INSTITUTE												PAN	
	<u>JGI Home</u>	<u>Sea</u>	uch		<u>Blast</u>		<u>GO</u>	Brown	<u>se</u>	<u>Anno</u>	tation	<u>Ci</u>	ona Home	
			move <<<	· ~ <	> >>	>>> zoom :	in 1.5x 3x	10x zoom o	ut [1.5x]	3x 10x				
			position	Scaffold_1	1:1-672427	siz	ze 672427, image	width (pixels) 9	60 jump/	refresh				
						on a contract	anna an sea	anal Linear			manal			
	Base Position HMMpfamTest55	5000	90 10000	90 150000		250000	HMMpfa	1000 400000 mTest55		500000	550000	600000	650000	
	HMMpfamTest						HMMpf	amTest						
	Scaffold_1			•				ffo1d		•				- 1
	ExtendedGenewiseCap4	H III					xtended Genewi	se Models – d						- 1
	BestMode 1						Our fin	al answer						
	ExtendedGenewisePhrap	H III				E)	ktended Genewi:	se Models – pl	hrap				H H	
	Un iqueGenew iseBest	1					nique Genewise	Models - win					-1 11	
	grailv1	HHM 11				HERE HERE H		Models vi						
	gw-gr	HH# 11						ailvi Models						
	User Models							Mode 1s						
	allGenewise	11	HI					newise				11 114	н н	
	Genscan		HE FI NI I BEN					redictions	I HHIIHIN I	IHI MAMINI HIH	+ 100 F + 10 F 10 F + 1 1	H		
	grail exp improved	H III HIII II II						o improved (sim4)				I HH MHHH I		- 1
	sim4 cDNA				-			tn xxk	1.11	I HH IH I	H I		H 🔳	
	blastn xxk							tn xx1						
	blastn xx1					1		tn xxm	1		Ш			
	blastn xxm						l new Sim4	C ionaEST5	1					
	newcionaEST5sim4						rawcional	EST3blastn					H 188	
	rawcionaEST3blastn						rawcional	EST5blastn						
	rawcionaEST5blastn						blas	tn xxn						
	blastn xxn							CionaEST3				"		
	newcionaEST3sim4						5 prime E	STs (sim4)						
	Sim4 CionaEST5						3 prime E	STs (sim4)					H .	
	Sim4 CionaEST3 CionaGonadESTsSim4						CionaGonac	ESTS (Sim4)					1	
	CionaGonadESISSim4 Halocynthia ESTs tBlastx	'u					Ha locynth ia	ESTS tBlastx						
	Human_IPI blastx	H				****	Human_I	PIBLASTX						
	optBlastxMusmusculus						optimized bla optimized bla	stx Musmuscul)	us					
	NonMammalianUertebrates	1									1 10 1			
ľ	http://grolithe.jgi-psf.org.	/cgI-bin/sp	lat?seqName	=Scattold_1&o	Id=Scatfold_1&v	rinStart=0&w	INENd=672427&db	=ciona3&pix=960	JöxleftLabels≕	onökcenterLabel	is≓onökguideline	es: 🔝 🎲	20 °C 🔊	- 🏏 - k

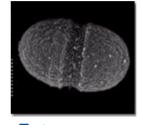
11% of Human Genome Sequenced by JGI




Selected JGI Microbes

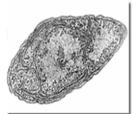
U.S. D.O.E. JOINT GENOME INSTITUTE

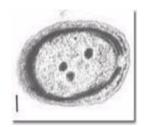



Burkholderia cepacia

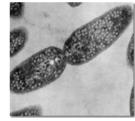
Cytophaga hutchinsonii

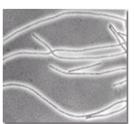
Desulfitobacterium halfniense


Enterococcus faecium

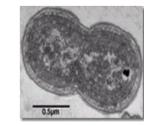

Ferroplasma acidarmanus


Magnetospirillum magnetotacticum


Nitrosomonas europaea

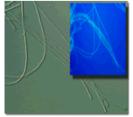

Prochlorococcus marinus

Pseudomonas fluorescens


Rhodobacter sphaeroides

Nostoc punctiforme

Rhodopseudomonas palustris


Marine synechococcusß

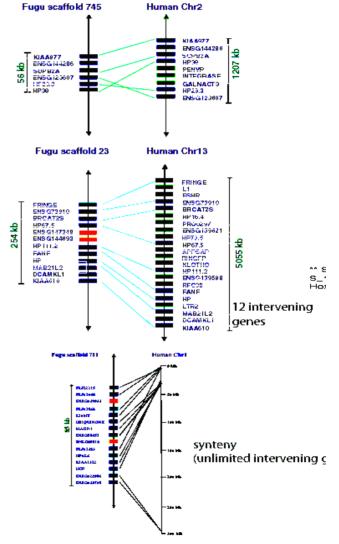
Sphingomonas

aromaticivorans

Magnetococcus MC-1

Thermomonospora fusca

Trichodesmium erythraeum


Xylella fastidiosa

Pufferfish Genome

Ciona intestinalis A Primitive Chordate

Xenopus tropicalis

- Close relative of the wellstudied X. laevis, a major model organism for developmental biology
- Favorite system for toxicology (EPA)
- Coordinated with
 - WashU BAC map project
 - cDNA projects at NIH, Sanger
 - other projects from international frog research community
- 7x coverage by early '05

Fungi (rots and plant pathogens)

DOE JOINT GENOME INSTITUTE US DEPARTMENT OF ENERGY OFFICE OF SCIENCE

U.S. D.O.E. JOINT GENOME INSTITUTE

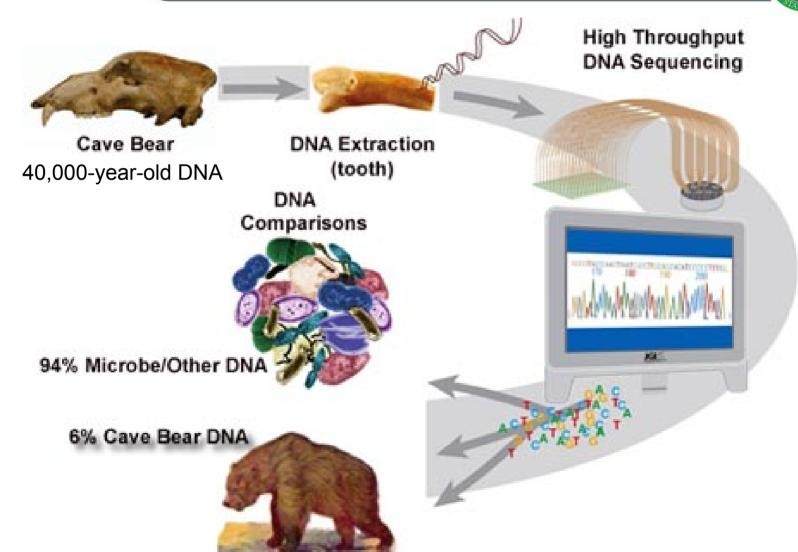
Trichoderma reesei possesses a host of carbohydrate degrading enzymes and is used extensively in industrial processes.

> White rot fungi like *P. chrysosporium* are uniquely able to degrade lignin, the second most abundant natural polymer and a major component of biomass

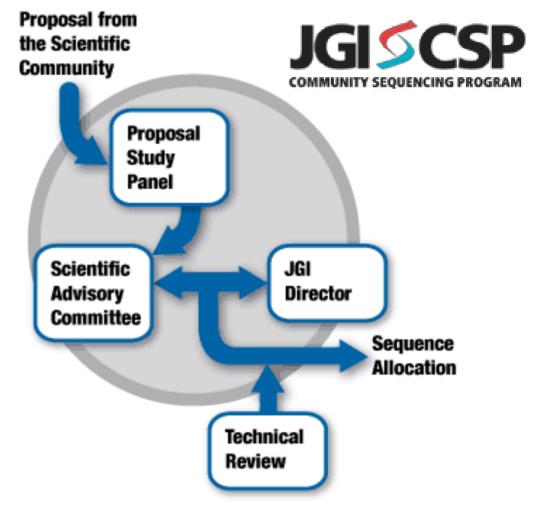
Phakopsora pachyrhizi & P. meibomiae

Soybean rust was recently found in US.

Highly repetitive sequence


Sudden Oak Death

- In partnership with the USDA, NSF, VBI, California Oak Mortality Taskforce, County Ag Commissioners, City of Walnut Creek, WC Chamber of Commerce.
- 4 TV Stations; various print media



JGI Community Sequencing Program "Non-traditional User Facility"

- Allocation of ~15gigabases/year for sequencing to advance the frontiers of science supported by DOE
- 56 Proposals received in Feb. '04 totaling 100Gb in requested sequencing (equivalent to the current WW sequencing capacity)
- 150 Proposals received in Feb. '05.
- SAC approved 23 projects beginning Fall '04
- New RFP Spring '06

U.S. D.O.E. JOINT GENOME INSTITUTE

JGI

DOE-Joint Genome Institute http://www.jgi.doe.gov

img

integrated microbial genomes http://img.jgi.doe.gov/v1.1/main.cgi

PhIGs

Phylogenetically Inferred Groups http://phigs.jgi-psf.org/

Genomics, Gene Expression and other Studies in Soybean Rust

Martha Lucía Posada-Buitrago Ph.D

Genomics Division Evolutionary Genomics

DOE- Joint Genome Institute Lawrence Berkeley National Laboratory

Soybean Rust

U.S. D.O.E. JOINT GENOME INSTITUTE

Caused by two species of fungi:

Phakopsora pachyrhizi aka "Old World" or "Asian" isolate More aggressive pathogen.

Phakopsora meibomiae

aka "New World" or "American" isolate Not as aggressive

Soybean rust hosts

U.S. D.O.E. JOINT GENOME INSTITUTE

LEGUMES (Papilionoideae) Cultivated Crops: Glycine max (soybeans)* Phaseolus lunatus (lima and butter beans)* Phaseolus vulgaris (green beans, kidney beans) Vigna unguiculata (cowpeas)* Cajanus cajan (pigeon peas) Pachyrhizus erosus (yam bean, jicama)*

Ornamental plants: Hyacinth bean, lupine, royal poinciana Wild hosts: Kudzu, sweet clover

Kudzu infected with soybean rust

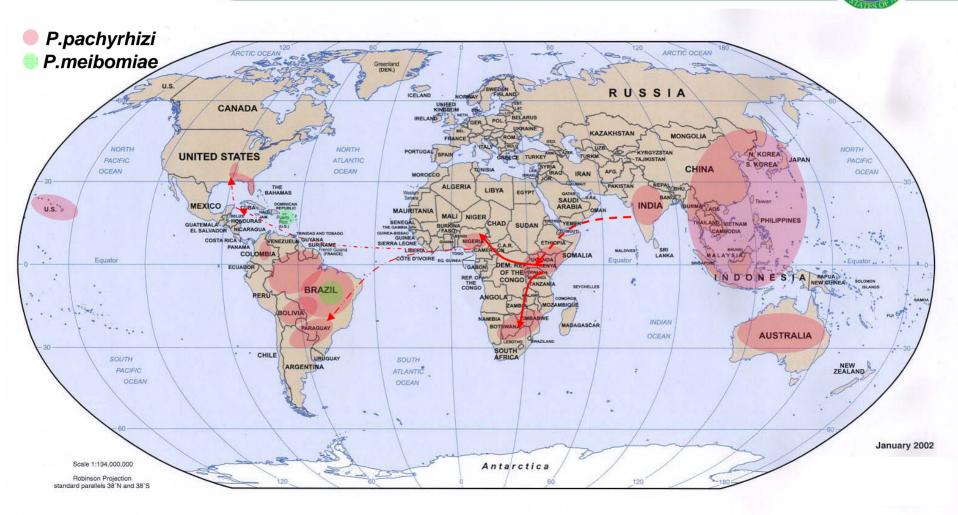
Soybean Rust in the World Phakopsora pachyrhizi

U.S. D.O.E. JOINT GENOME INSTITUTE

1904

Japan Kenya 1997/1998 **Nigeria Rwanda Zimbabwe South Africa** Paraguay Brazil Argentine **Bolivia** Colombia

1997/1998 1997/1998 1997/1998 2001 2001/2002 2002 2002 2003 2004


Thought to be windborne from Asia

Thought to be windborne from Africa

Hurricane Ivan

Soybean Rust in the World

Soybean Rust Effects

U.S. D.O.E. JOINT GENOME INSTITUTE

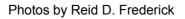
Premature defoliation

- Yield decrease characterized by:
- Increase in number of unfilled pods/plant
- Decrease in number of normal pods/plant
- Decrease in number of seeds/plant
- Decrease in weight of seed/plant
- Decrease in 1000-seed weight
- Decrease in germinability of seed

Soybean fields (Zimbabwee)

U.S. D.O.E. JOINT GENOME INSTITUTE

Photos by Reid D. Frederick


Symptoms

Symptoms

U.S. D.O.E. JOINT GENOME INSTITUTE

Infected cotyledons

Infected stem

Infected pods

Photos by Christine Stone

Symptoms

U.S. D.O.E. JOINT GENOME INSTITUTE

Infected leaves

18 dpi

15 dpi

U.S. D.O.E. JOINT GENOME INSTITUTE

GENOME SEQUENCING PROJECT

Phakopsora pachyrhizi Phakopsora meibomiae

Initial Genome Project Strategy

Random shotgun libraries:

General 3kb insert size in vector pUC18, Mid-size 8-10kb insert in vector p21 Fosmid (40kb insert size) in pCC1FOS

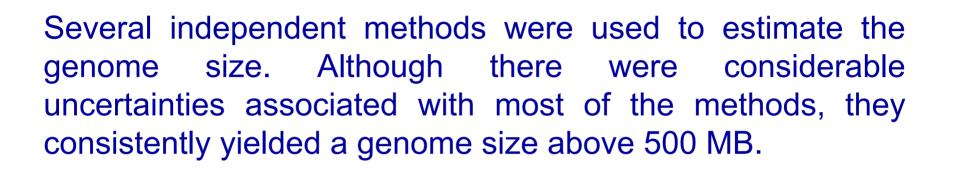
cDNA libraries from different stages of *P.pachyrhizi* (in pSPORT1)

Sequencers:

ABI3730 MegaBACE 4000

Informatics:

Reads processing by Phred Reads assembly by Phrap Verification Genome annotation



U.S. D.O.E. JOINT GENOME INSTITUTE

DOE-JGI Data by 27.05.05



Estimation Method	Genome Size
cDNA Coverage	720 Mb
All-Pairs Read Alignment	500-800 Mb
Gene Density	300-700 Mb
Shotgun Fosmid Coverage	600-950 Mb

G+C content in P. pachyrhizi and P. meibomiae

U.S. D.O.E. JOINT GENOME INSTITUTE

Phakopsora pachyrhizi and Phakopsora meibomiae G + C content estimation

The mean G+C content *in P. pachyrhizi* and *P. meibomiae* is 34-35%, estimated with the "G+C content program" (Chapman) on sequences from three different genomic libraries.

Fosmid sequencing

U.S. D.O.E. JOINT GENOME INSTITUTE

Random fosmidsStanford University:Finished87Incomplete28

Selected fosmids

Lawrence Livermore National Laboratory:

- Probes designed for 120
- Selected50To go70Sequencing24Finished0

Probes designed based on ESTs selected by high similarity to "interesting" genes from other fungi and unknown genes highly expressed in germinating spores from *P. pachyrhizi*.

Known mitochondrial genome sequences were blasted against the entire set of reads. Potential mitochondrial sequences were assembled with the Phred Phrap Package. This resulted in single contig assemblies for both fungal mitochondrial genomes.

Genome analysis and annotation:

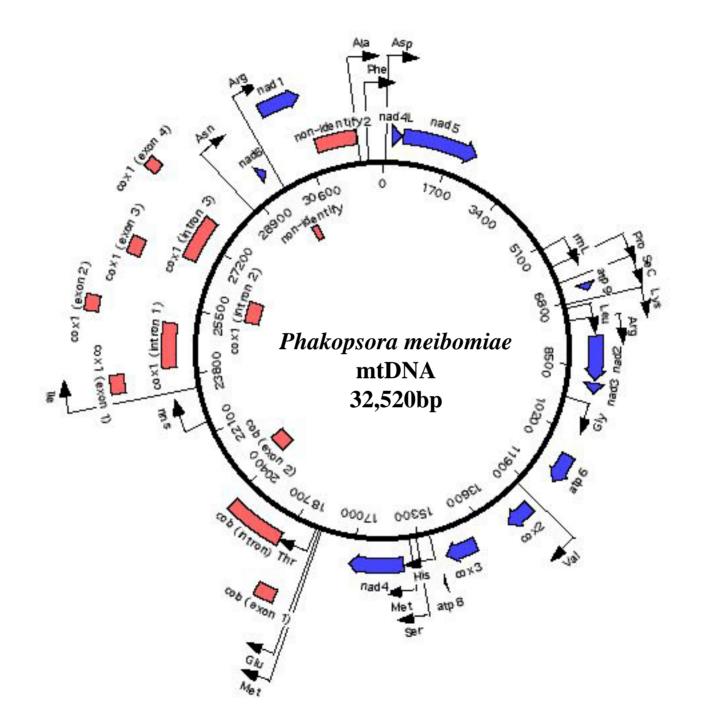
DOGMA Dual Organellar GenoMe Annotator (http:// bugmaster.jgipsf.org/dogma).

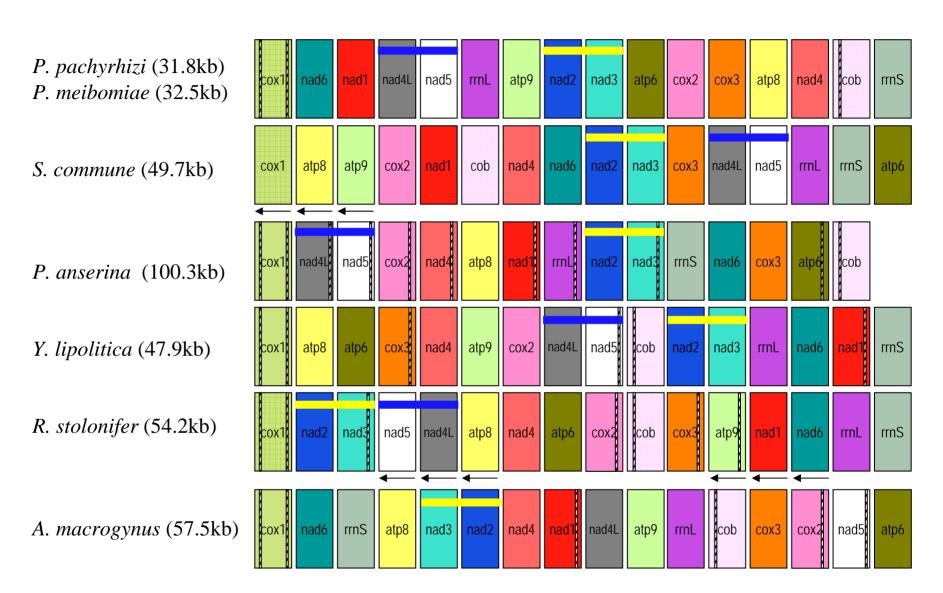
tRNAscan-SE 1.21 (http:// www.genetics.wustl.edu/eddy/tRNAscan-SE/)

MacVector 7.1 (Accelrys)

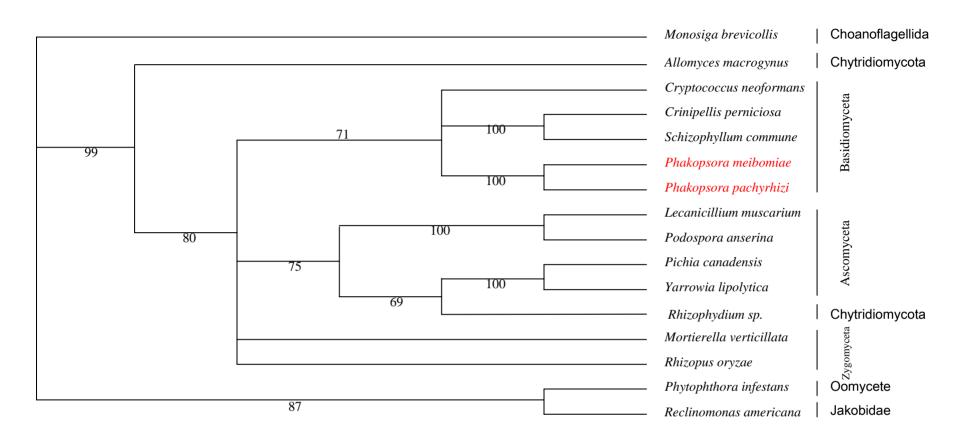
Blast algorithm

Mitochondrial Genomes


U.S. D.O.E. JOINT GENOME INSTITUTE



The complete nucleotide sequence of the mitochondrial (mt) genome was determined for *Phakopsora pachyrhizi* and *P. meibomiae*.


These 32 kb genomes contain the genes encoding ATP synthase subunits 6, 8, and 9 (atp6, atp8, and atp9), cytochrome oxidase subunits I, II, and III (cox1, cox2, and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxireductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5, and nad6), the large and small mitochondrial ribosomal RNAs (rrns and rrnl) and tRNAs for all amino acids.

	P. Pachyrhizi	P. meibomiae		
Size	31.82 Kb	32.52 Kb		
G+C	34.6 %	34.9 %		

Comparison of mitochondrial genomes from the four phyla of fungi. Protein-coding and rRNA genes are represented by boxes; arrows indicate the direction of transcription. Lines within genes represent presence of intron(s).

Phylogenetic tree of 1582 amino acid position from four mitochondrial-encoded proteins from 16 taxa. The genes encoding cob, cox1, nad1 and nad5 are present in all organisms compared. Parsimony-bootstrap support was calculated from 100 replicates using Paup 4.0b10. *Monosiga brevicollis, Phytophthora infestans* and *Reclinomonas americana* were included as outgroups.

Bootstrap Monosiga brevicollis Choanoflagellida Phytophthora infestans Oomycete 92 Jakobidae Reclinomonas americana Allomyces macrogynus Chytridiomycota Crinipellis perniciosa 100 Basidiomycota Schizophyllum commune Mortierella verticillata 81 Zygomycota Smittium culisetae Pichia canadensis 100 Yarrowia lipolytica Podospora anserina Ascomycota 100 100 Hypocrea jecorina 98 Lecanicillium muscarium Zygomycota Rhizopus oryzae 56 Cryptococcus neoformans 80 Phakopsora meibomiae Basidiomycota 100 Phakopsora pachyrhizi Hyaloraphidium curvatum Fungi incertae sedis 100 Monoblepharella 100 Chytridiomycota Rhizophydium sp. 100 Spizellomyces punctatus

Phylogenetic tree of 1296 amino acid position from seven mitochondrial-encoded proteins from 21 taxa, including 18 species from all fungal phyla and *Monosiga brevicollis*, *Phytophthora infestans* and *Reclinomonas americana* as outgroups. The genes encoding cob, cox1, cox2, cox3, nad1, nad4 and nad5 are present in all organisms compared. Parsimony-bootstrap support was calculated from 100 replicates using Paup 4.0b10.

U.S. D.O.E. JOINT GENOME INSTITUTE

Gene Expression Studies

Glycine max cvar Wiliams – Phakopsora pachyrhizi

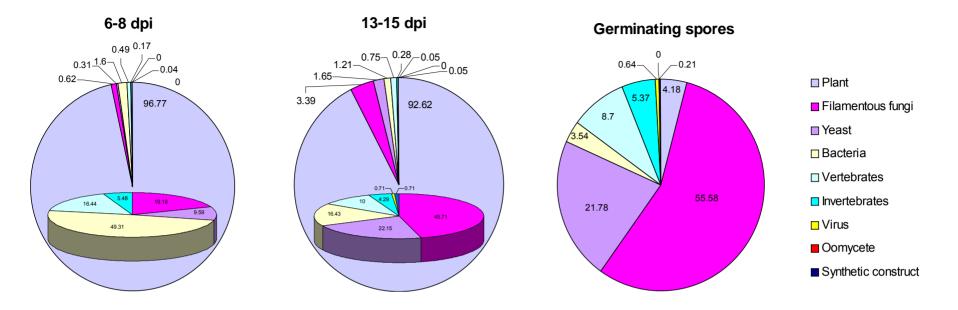
Interacción Susceptible

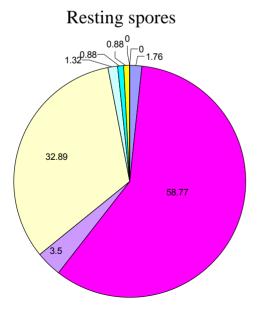
U.S. D.O.E. JOINT GENOME INSTITUTE

- 2 h Appresoria begin developing
- 5 h Appresoria expansion
- 7-12 h Penetration through cuticle
- 12-16h Increase in diameter
- 24 h Primary hyphae emerging from tev
- 48 h Intercellular hyphal growth (60µm from penetration site)
- 3-8 days Intercellular hyphal growth (75-450 µm from penetration site)
- 9 days Sporulation
- 14 days Sporulation peak

(Based on Koch et al. 1983; Keogh et al. 1980)

cDNA libraries


U.S. D.O.E. JOINT GENOME INSTITUTE


Germinating

Spores	Resting spores	Hyphal growth	High sporulation
16 Hours on water surface	Kept at – 80°C	 6 7 Days after inoculation 	 13 14 Days after inoculation

mRNA was extracted from infected leaf at each time point and pooled together for the construction of the cDNA libraries. Unidirectional cDNA libraries constructed in plasmid pSPORT1 (Invitrogen).

Description	EST s	cDNAs	Libraries	Clusters	Consensus	Singlets
6-8 dpi	6100	5374	1	1154	1278	1827
13-15 dpi	6023	4610	1	1291	1387	1356
Resting urediniospores	2295	1762	1	393	455	335
Germinating urediniospores	29601	18638	1	2686	3394	2142
Phakopsora pachyrhizi v2.1	44019	30244	4	5105	6165	4961

Percentage of similarity of cDNA clusters from the *Phakopsora pachyrhizi* germinating and resting spores libraries and the infected soybean leaf libraries (6-8 dpi and 13-15 dpi) to proteins from other organisms. Inner pies show the percentage of similarity of cDNA clusters to proteins from other organisms, excluding plant homologs.

cDNA functional categories

U.S. D.O.E. JOINT GENOME INSTITUTE

The cDNA clusters were classified into functional categories based on the BlastX hits and the Pfam hits, according to the Expressed Gene Anatomy database (EGAD, TIGR, Rockville, MD).

Approximately 23 % of the cDNA clusters from the 6-8 dpi and 13-15 dpi libraries and 40% from the germinating and resting spores libraries show similarity to hypothetical proteins or proteins of unknown function. Several homologs to pathogenesis related proteins (PR proteins) and defense proteins were identified in the infected leaf tissue libraries (Apidaecin, Beta defensin, Thaumatin, etc). In the GS library several homologs to pathogenicity proteins were identified. All the libraries show a high percentage of metabolism related proteins.

U.S. D.O.E. JOINT GENOME INSTITUTE

Real Time RT-PCR

Gene Selection

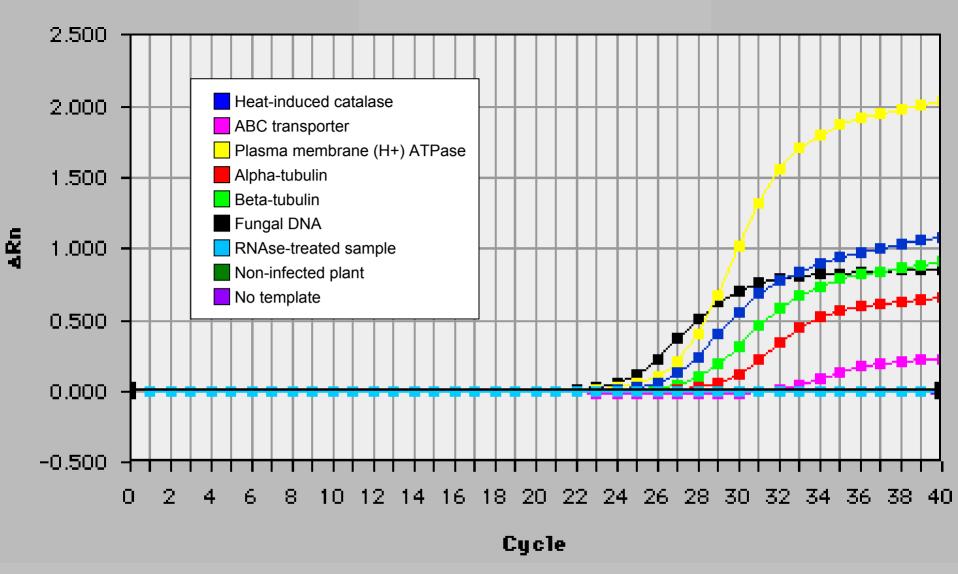
P. pachyrhizi putative Heat-induced catalase, ATP-binding cassette (ABC) transporter, Plasma membrane (H+) ATPase and two constitutive genes, putative Alpha and Beta-tubulin, were selected from the ESTs from the germinated spores to study their gene expression during the infection cycle of *P. pachyrhizi* on soybean.

RNA

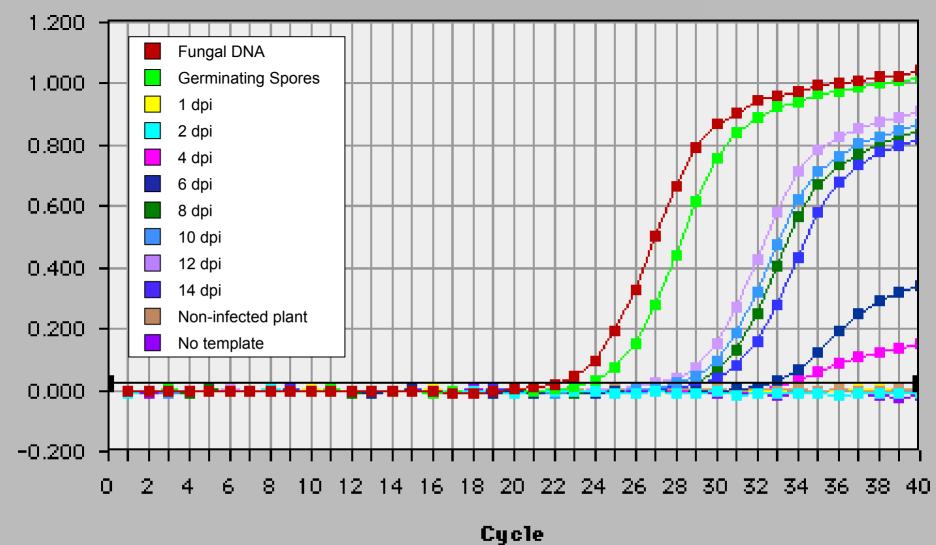
Total RNA (40ng) from non-infected plant, germinating spores, infected leaf tissue from 1, 2, 4, 6, 8, 10, 12 and 14 dpi were used as template. Positive controls were performed using fungal DNA (25ng), while RNase treated RNA samples and no template were used as negative controls.

Real Time RT-PCR

Real Time RT-PCR was performed in the ABI Prism 7700 (Perkin Elmer) with 40ng of total RNA using the SuperScript One-Step RT-PCR with Platinum Taq Kit (Invitrogen), following the manufacturer's protocol for a 25μ l reaction.

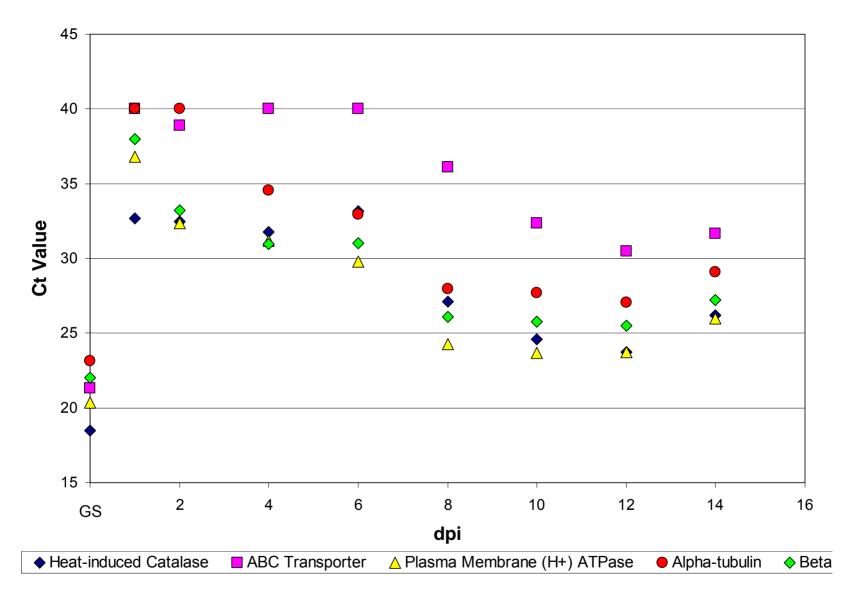

Primers and probes designed for Real Time RT-PCR assays

Putative Gene	Forward Primer	Fluorogenic Probe	Reverse Primer	Amplicon
Heat-induced Catalase	CCTGGTGTAGAGCCTTCTGCA	FAM- ACCCAGTCCTTCAATCGAGGCTATTTTCC-TAMRA	TGACGATGGGTGTCAGGGT	70
ABC Transporter	GAAACATTGGATGTACAACCTGGA	FAM- CCCTATACTCGATTGATTGGTGGACTGCTTG-TAMRA	TCGAGTCGTGCAGCTCATTT	76
Plasma membrane (H+) ATPase	TCGTTCACACGGCTGGTTT	FAM- TTTATGGAGAGACCATCGGCGGCTT-TAMRA	AGCAATCAGAAAAGCGCCC	68
Alpha-tubulin	CCAAGGCTTCTTCGTGTTTCA	FAM- TCGTTTGGAGGCGGACTGGTTCA-TAMRA	CAAGAGAAGAGCGCCAAACC	65
Beta-tubulin	CCCCGTGCAGTTTTGATTG	FAM- TTGGAACCAGGAACCATGGATTCGG-TAMRA	CCAAAAGTCCCGGATCGA	64


Putative genes of *P. pachyrhizi* selected from the germinating spores cDNA library. Primers and probes were designed using Primer Express 1.0 (Perkin Elmer). Primers (Operon); Probes (Synthegen).

Thermal cycling conditions (ABI 7700):

50°C for 15 min (hold) 95°C for 10 min (hold) 40 cycles: 95°C for 15 s 60°C for 1 min

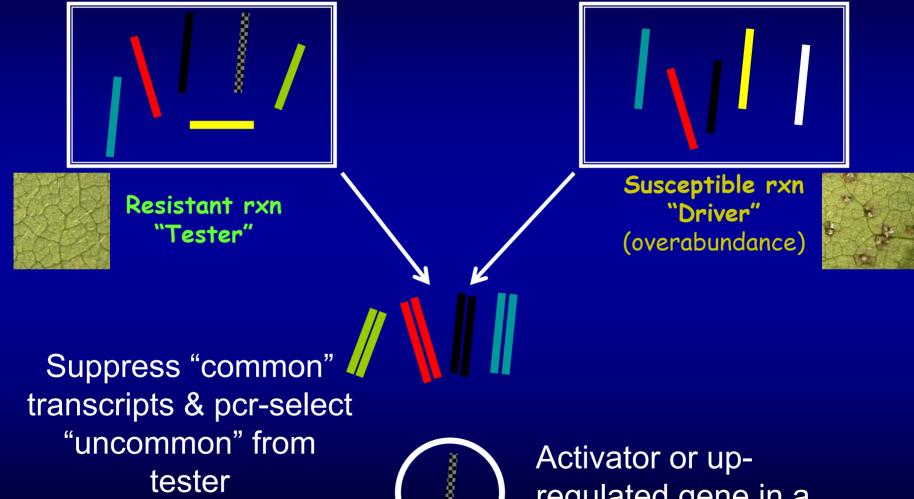


Real Time RT-PCR spectra for 10dpi. Fungal DNA (positive control), RNase treated sample and no template (negative controls).

Real Time RT-PCR spectra for Alpha-tubulin

ARn

Expression patterns of five putative genes over the infection cycle of *P. pachyrhizi* on *G. max* generated using Real Time RT-PCR. C_T (threshold cycle) is the cycle in which a significant increase in ΔR_n is detected. Germinating spores (GS) were used as a positive control. dpi: days post inoculation


Specific objectives

 Develop a suppression subtractive hybridization (SSH) library of the resistant interaction and identify transcripts/ESTs (Expressed Sequence Tags)

Suppression subtractive hybridization (SSH) cDNA library

- Two libraries: pooled RNA from t = 1, 6, 12, 24, 48hpi (each from first trifoliate, from 4 plants)
 Forward Subtraction: – Tester = Komata/HW94 [Resistant/immune] – Driver = Komata/TW72 [Susceptible]
- Reverse Subtraction:
 - Tester = Komata/TW72 [Susceptible]
 - Driver = Komata/HW94 [Resistant/imune]

Suppression subtractive hybridization (SSH) cDNA library

regulated gene in a resistant reaction

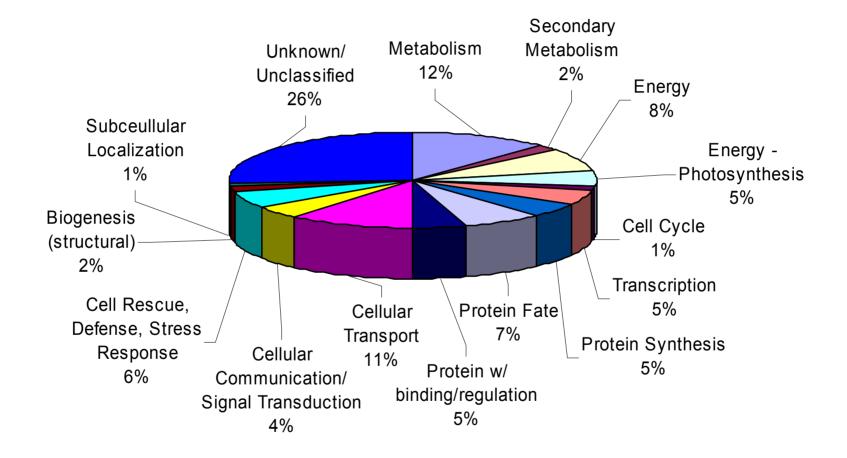
Suppression subtractive hybridization (SSH) cDNA library

- Our unique approach:
 "driver"= susceptible interaction
- This should identify not just the general "defense-related" genes of typical pathogen invasion, also genes that are differentially turned on that prevents the disease from progressing
- Suppression should allow for the identification of unique, rare gene expression

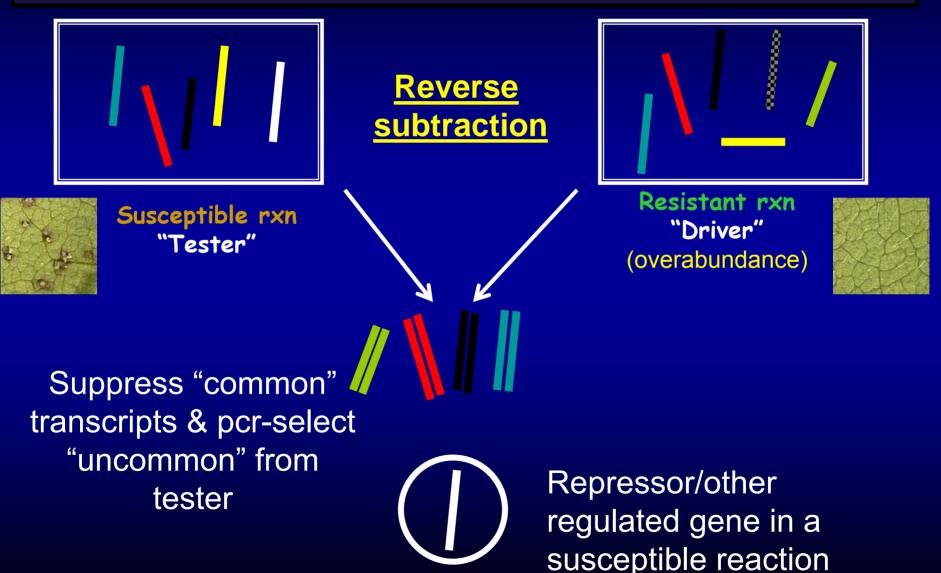
Suppression subtractive hybridization (SSH) cDNA library

Results:

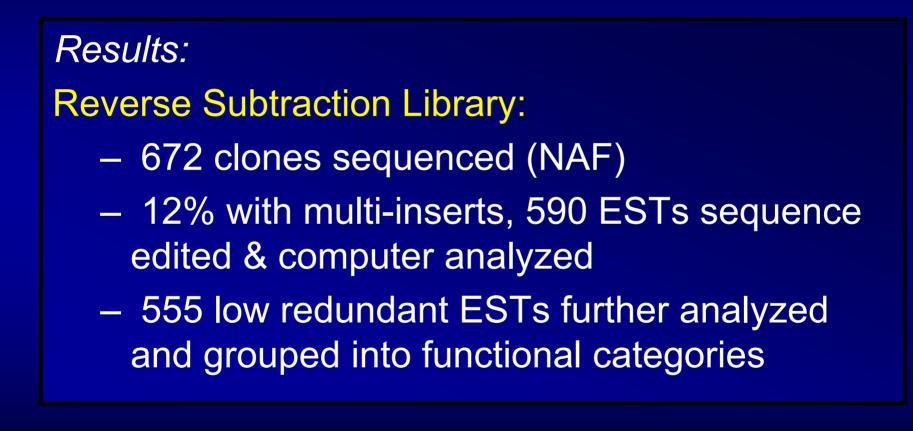
Forward Subtraction Library:

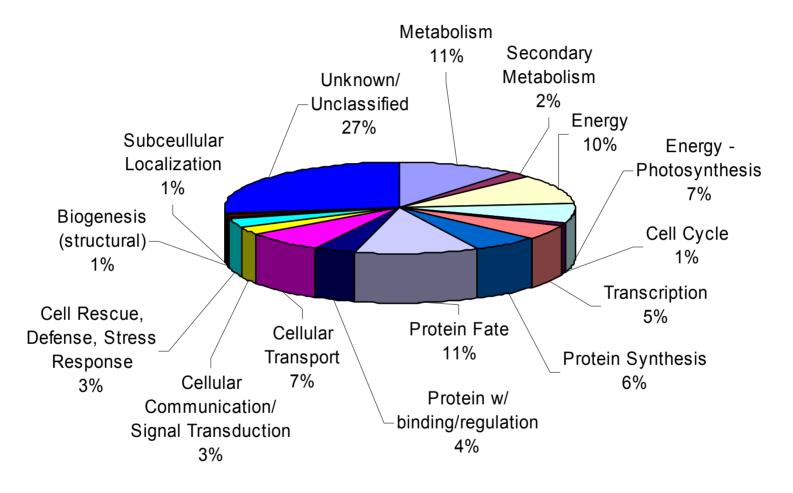

- 1056 clones sent for single-pass sequencing
 [Nucleic Acid Facility (NAF) at USDA-ARS-ERRC in Wyndmoor, PA]
- 45 clones did not sequence
- Due to method (blunt-digest) clones with multi-inserts (~15%), 1182 ESTs
- Insert sizes of EST ranged from 52nt to >600nt, no full-length transcripts were identified
- A low-redundant subset of 979 EST

Subtractive suppressive cDNA library Data Analysis


- Comparative genomics using sequencesimilarity tool BLAST (Basic local alignment search tool)
 - BLASTx = protein database
 - EST = dbEST
 - Unigene = compiled cluster of sequences from ESTs/mRNA/genomics projects

 Further analysis into Functional Categories (MIPS- Munich Information Center for Protein Sequences)


Results: Forward Subtraction Functional Categories


Suppression subtractive hybridization (SSH) cDNA library

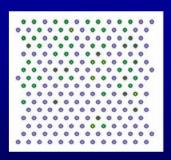
Suppression subtractive hybridization (SSH) cDNA library

Results: Reverse Subtraction Functional Categories

Specific objectives

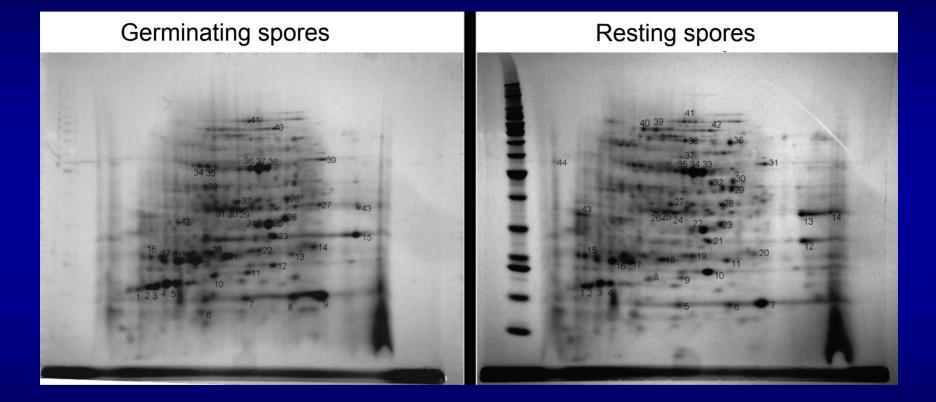
- Develop a suppression subtractive hybridization library of the resistant interaction and identify transcripts/ESTs (Expressed Sequence Tags)
- Protein profiling of germinating and resting urediniospores from *P. pachyrhizi*

Enriched extracellular proteins from germinating and resting urediniospores


- Vacuum infiltrate leaflets
- Low spin, collect infiltrate 45µm filter
- Concentrate, dialysis, acetone-precipitation

Enriched extracellular proteins from germinating and resting urediniospores

- 2-D protein gel
- Pick spots for MALDI
- In-gel trypsin-digestion
- MALDI/TOF-TOF mass spectrometry ABI4700



18

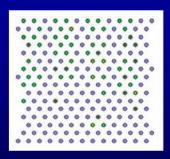
USDA-ARS-FDWSRU & USDA-ARS-ERRC)

Protein profiling with 2D-gel and MALDI/TOF-TOF mass spec 12hpi

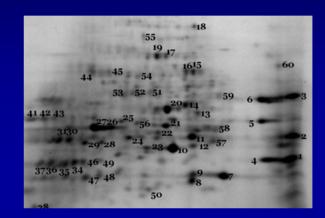
Selected spots were blasted against the "nr" database and the EST database (six reading frames)

USDA-ARS-FDWSRU & USDA-ARS-ERRC)

Enriched extracellular proteins from soybean leaves from resistant and susceptible interaction


Time points: 0h, 12h, 24h, 48h, 72h, 6dpi Treatments: Mock, HW94-1, TW72-1 Soybean cv.: *G. max* cv. Komata

- Vacuum infiltrate leaflets
- Low spin, collect infiltrate 45µm filter
- Concentrate, dialysis, acetone-precipitation


Enriched extracellular proteins from soybean leaves from resistant and susceptible interaction

- 2-D protein gel
- Pick spots for MALDI
- In-gel trypsin-digestion
- MALDI/TOF-TOF mass spectrometry ABI4700

USDA-ARS-FDWSRU & USDA-ARS-ERRC)

Acknowledgements

U.S. D.O.E. JOINT GENOME INSTITUTE

Reid D. Frederick Jane J. Choi Christine L. Stone Craig Austin Laura Ewing

Jeffrey L. Boore Peter Brokstein Nick Putman Harris Shapiro Jarrod Chapman

Lawrence Livermore National Laboratory

Laurie Gordon

 This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and Los Alamos National Laboratory under Contract No. W-7405-ENG-36.