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ABSTRACT OF THE THESIS 

 

Network Statistics and Modeling the Global Trade Economy: Exponential Random Graph 

Models and Latent Space Models: Is Geography Dead? 

 

by 

 

Anthony James Howell 

 

Master of Science in Statistics 

University of California, Los Angeles, 2012 

Professor David Rigby, Chair 

 

Due to advancements in physics and computer science, networks have becoming 

increasingly applied to study a diverse set of interactions, including P2P, neural mapping, 

transportation, migration and global trade.  Recent literature on the world trade network relies 

only on descriptive network statistics, and few attempts are made to statistically analyze the trade 

network using stochastic models.  To fill this gap, I specify several models using international 

trade data and apply network statistics to determine the likelihood that a trade tie between two 

countries is established.  I also use latent space models to test the ‘geography is dead’ thesis.  

There are two main findings of the paper.  First, the “rich club phenomenon” identified in 

previous works using descriptive statistics no longer holds true when controlling for homophily 

and transitivity.  Second, results from the latent space model refute the ‘geography is dead’ thesis.  
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Introduction 

Over the past half century, countries have become increasingly integrated into the global 

economy, leading to a large, diverse network of country nodes and trade flows.  This global 

network is both more cohesive and more unstable than at any other previous point in history 

(Kim and Shin, 2003).  The East Asian financial crisis in 1997 is a prime example of how the 

global economy can be conceptualized as a network, whereby a crisis that originated in one 

country, Thailand, spread through the global ‘network’ like a disease to other Asian countries 

and beyond (Li et al., 2003).  Similarly, the 2009 global financial crisis, leading to the depression 

in the Silicon Valley, plummeting housing market in the U.S. and the Eurozone crisis, also 

exposes the extent to which the global network is integrated.  Recently, many scholars rely on 

network analysis to examine how network statistics can be used to explore the volatility within 

an increasingly connected and complex global network (Schweitzer et al., 2009).      

Due to advancements in physics and computer science, networks analysis has 

increasingly been applied to the study of various social phenomena, including P2P, neural 

mapping, transportation, and most recently migration and global trade.  In regards to the world 

trade web (WTW), network analysis has most notably been used to address several major 

questions: does the trade network follow a core-periphery structure (Clark, 2008; Clark, 2010; 

Kali and Reyes, 2007); what is the role of geography in forming trade ties (i.e. globalization 

versus regionalization) (Aggarwal and Koo, 2005; Kim and Shin, 2002; He and Deem, 2010); do 

global elites tend to trade among themselves; and what are the effects of international trade on 

economic growth (Bhattacharya et al., 2008; Serrano, 2008; Fagiolo et al., 2009).   

Findings from the network literature have produced a wealth of knowledge to better 

understand answers to these questions that have arisen over the past 30 years, although the 
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results are sometimes mixed.  In general, scholars have concluded that a country’s position in the 

global network does influence its economic performance (Fagiolo et al., 2010); the network 

structure is hierarchical (evidence of a core-periphery relationship) (Nemeth and Smith, 1985; 

Smith and White, 1992); regionalization and globalization are complimentary and have 

intensified with time (Kim and Shin, 2002); and lastly, countries that have higher trade 

intensities tend to trade  among themselves (termed as the “rich club phenomenon”) (Serrano and 

Boguna, 2003).  

Despite the complicated nature of the WTW, pertinent topological properties of the 

global trade system can be extracted through modeling the system as a network (Serrano et al., 

2008).  Understanding the structure of the global trade network has implications for research 

across numerous social science disciplines trying to examine the effects of economic integration 

and internationalization.  Network analysis is a powerful tool for studying networks and is 

increasingly applied to the WTW.  Proper applications of network analysis can reveal topological 

properties of the trade network and uncover features of the underlying structure of the network 

(Fagiolo et al., 2009; Reyes et al., 2010). 

Much of the recent literature on the WTW applies network analysis using longitudinal 

data that spans a decade or more usually at some time period between 1950 and 2010 (Kali and 

Reyes, 2007; Beckfield, 2010).  Longitudinal approaches are ideal to examining structural 

changes in the network over time; however, most scholarly articles rely only on the network’s 

summary statistics to track changes without ever fitting a statistical model to the network.  

Opting to not fit a model is a major shortcoming in the WTW literature.  It is analogous to non-

relational analyses that only report descriptive statistics in cross-sectional analysis; something is 

missing.  Fitting statistical models for network data, in general, is still in its infancy stages 
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(Hunter and Handcock, 2006), and therefore it is not surprising that the WTW literature has not 

yet adequately addressed the topic.  Moreover, because most scholars that examine dynamic 

network structures are primarily interested in seeing how topological properties of the WTW 

change over time, they forego a deeper analysis for any given year (notable exceptions are 

Garlaschelli and Loffredo, 2005; Garlaschelli et al., 2007).  Similar to non-network data, 

however, relational data can be analyzed at three different levels of analysis: descriptive, 

hypothesis tests and stochastic modeling.   

Descriptive analyses are the most prevalent in the WTW literature and reveal the 

topological properties of the trade network.  Null hypothesis tests compare the network of study 

with random networks of the same size and basic structure in order to reveal underlying 

processes that are operating on the network.  Lastly, stochastic models are used to identify the 

specific processes that have led the network to its particular configuration.  While the descriptive 

statistics may change as new countries are incorporated into the network and trade relationships 

are established and/or strengthened, it is likely that the underlying processes that generate the 

network are likely to be stable over time (Schiavo et al., 2010).  Therefore, to avoid the 

complexities of using longitudinal data, it is suffice to select a stochastic model for a single year 

to examine the statistical properties of the WTW. 

The network can be set up as some combination of binary/weighted and directed/ 

undirected.  I build a binary, undirected network for the year 2007 using bilateral trade data 

extracted from the United Nations’ COMTRADE database and GDP per capita and the 

trade/GDP share data extracted from Penn World Table 6.2.  For the purposes of my paper, using 

a binary network is sufficient to examine the variables that influence the likelihood that a trade 

tie is established between two countries.  In support of selecting a binary matrix, Squartini et al. 
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(2011) specify various combinations of the network and find that the projections made by the 

binary matrix is maximally informative and should be the focus of subsequent models of trade.   

In the network, countries represent nodes and the links between two countries are their 

shared imports and exports.    The number of in and out ties are highly correlated, r=.91, and 61% 

of the trade relationships are reciprocal.  In accordance with Fagiolo et al. (2009) and Serrano 

(2003), the WTW is sufficiently symmetric to use an undirected analysis.  In the undirected case, 

if country i exports to country j or country j exports to country i, then     .  If a trade tie is not 

present, then     .   The data offer information on both exports and imports, however, I use 

only import data because previous scholars suggest that these figures are more accurate than 

export figures (Kim and Shin, 2003).   

One of the goals of this paper is to examine the topological properties of the WTW.  

Specifically, I examine measures of connectivity, centrality, clustering and hierarchy.  I also 

explore correlation patterns between these network statistics and country-specific characteristics, 

such as real per capita GDP, and I compare network statistics at the regional level.   The second 

goal of this paper is to fit a model to the network to reveal the underlying processes that shape 

the WTW.  I use the results to statistically test which network features influence the probability 

of a tie being formed between two countries. To help control for exogenous factors, I incorporate 

two additional covariates to include in the model, per capita Gross Domestic Product (rpcGDP) 

in real terms and a regional variable based on present day trade blocks and geographical 

proximity
1
.     

The third goal of this paper is to introduce a simple latent space model to reveal country 

positions in the network and test the hypothesis of whether geography matters.  Since Toffler 

                                                           
1
 See Appendix A for a complete listing of countries by region.  
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(1970) first argued that place is no longer an important determinant due to evolution of transport 

and communication systems, scholars have speculated that geography is dead.  O’Brian (1992) 

proclaimed that the globalization era equates to ‘the end of geography,’ whereby geographical 

location no longer matters for economic development.  Despite these claims, it is well known 

that the effects of globalization are not distributed uniformly throughout the global economy; 

there are place- and region-based variations that require a geographical lens in order to 

understand issues of unequal development (Warwick, 2005).   

Moreover, the growing forms of regionalization shed further evidence that geography 

does matter for economic development, as different regions have different collective powers and 

positions in the global economy.  Using network analysis to support this view, Kastelle (2006) 

provides evidence that the “movement of trade, capital and people is a geographically 

heterogeneous and historically episodic process and can be interpreted to support regionalization 

rather than globalization.”  To determine the role of geography in the WTW, I use a latent space 

model and test the null hypothesis that distance, measured in social space, does not influence the 

likelihood of a trade tie being established between two countries.   

The outline of this paper is as follows.  First, I summarize recent work carried out on the 

WTW using networks and discuss major findings and applications for the trade-growth 

literatures.  In the second part of this thesis, I carry out the analyses sections, consisting of two 

subsections: descriptive network statistics and stochastic modeling.  At the start of each 

subsection, I briefly provide a theoretical foundation for each level of analysis, as well as define 

major statistics and models used in the analyses.  I conclude by summarizing my key findings 

about the trade network and note the relationship between geography and trade.        
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Literature Review 

In the 1970s, world-systems theory replaced “modernization theory” as the major 

paradigm of thought.  Network analysis was first used to test whether trade patterns followed a 

core-periphery framework.  A seminal piece published in 1979 was the first attempt to use the 

network approach to study the world economic system.  Snyder and Kick (1979) used 

blockmodeling analyses of social structure for trade flows in order to help explain differential 

economic growth among countries using a world-systems and dependency theoretical framework.  

They helped to advocate the powerful analytical power that stems from emphasizing the “world 

economy” as the appropriate level of analysis.  The results of their blockmodel analysis 

supported a core-periphery structure in the global economy and encouraged a flood of 

subsequent research on the topic.    

Nemeth and Smith (1985) mapped countries into structural positions in the economic 

system based on flows of different types of internationally traded commodities.  Whereas Snyder 

and Kick (1979) placed countries into positions based on trade, military interventions, treaty 

memberships, and diplomatic exchanges, Nemeth and Smith (1985) exclusively focused on 

networks of trade and unequal exchange to classify countries into core-periphery-semi-periphery 

groupings.  Their blockmodel analysis partitioned the 89 countries into four distinct structural 

positions that validated a dependency/world-systems framework.    

Another path-breaking article in the WTW network analysis is Smith and White (1992).  

The authors apply network analysis to study the evolution of the WTW using dynamic analysis 

for three different years.  Previous work examined only one point in time.  The advantage of 

using a dynamic modeling approach is it allows changes in the global network structure to be 

tracked.  The authors are able to track changes in specific position of individual countries.  
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Specifically, they show that the U.S.-aligned core began to erode away to a larger and less U.S.-

dominated core in 1970 and 1980.  Their general results also support world-system and 

dependency arguments regarding the asymmetrical flows of raw materials versus processed 

goods.  Whereby the core nations import raw materials from periphery nations and in turn export 

processed goods back to the periphery. Network analysis applications in the 1980 and 90s made 

it clear that the trade network is hierarchical and follows a core-periphery structure.   

More recently, network analysis has produced mixed results on whether the present 

trends in the global trade economy still support a core-periphery structure.  On the one hand, Kali 

and Reyes (2007) use network statistics in a growth regression model and conclude that countries 

with high position in the network have significantly more growth than countries occupying lower 

position, thus supporting a core-periphery structure.  Fagiolo et al. (2010) also take a world-

systems approach and confirm that countries with high positions in the WTW leads to higher 

growth than countries with low positions.  

Using a slightly different approach, Fagiolo et al. (2009) examine the correlation patterns 

between network statistics and country per capita GDP (pcGDP) in order to see whether 

countries with a higher income are more/less connected, central and clustered. They find that 

high-income countries tend to hold more trade relationships and occupy a more central position 

in the network. At the same time, the same countries tend to trade with few and weakly-

connected partners.  The authors interpret this result as an emerging pattern that suggests the 

presence of a “rich club phenomenon” that is indicative of core-periphery structure.  On the other 

hand, Kim and Shin (2003) study the global network from 1959-1996 and provide evidence that 

refutes much of the previous work produced under the world-systems perspective and suggest 
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that increasing trade (globalization) has decentralized the structure of world trade, which 

supports neoclassical economic theory as opposed to world-systems theory. 

Aside from the core-periphery debate, network analysis has also been applied to study 

another major debate over whether regionalization is a stepping stone or stumbling block to 

globalization.  Some scholars believe that regionalization is a transitory step that some countries 

pursue to become more competitive on the global market and will eventually promote 

globalization.  Others suggest that regionalization impedes globalization by hurting the welfare 

of non-member countries and leading to inefficient production strategies that may work at the 

regional scale but not at the global scale. 

Kim and Shin (2003) argue that network analysis can naturally be extended from 

dependency/world-systems theory to test the globalization/regionalization thesis.  The authors 

show that globalization and regionalization are not necessarily competitive, but complementary 

processes.  During the time period of analysis, the WTW became globalized (overall network 

density increased significantly), while it also became regionalized (intraregional density also 

significantly increased).  Therefore, regionalization does not jeopardize globalization; rather the 

two processes are complimentary and can coincide with one another.     

The most recent application of network analysis on the global trade economy is to 

perform network analysis, obtain relevant network statistics and incorporate them into various 

forms of economic growth models to examine the role that trade/openness has on economic 

growth.  Standard international-trade indicators and openness measures (e.g. trade to GDP ratio) 

are limited in that they can only measure first-order relationships, or direct bilateral-trade 

relationships; however, network indicators can account for higher-order relationships.  The 

ensuring debate following Rodrik et al.’s (2001; 2004) seminal work on the main determinants of 
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growth reveals the inadequacy of the trade/GDP ratio; the authors finds that openness, i.e. 

trade/GDP ratio, does not have a statistically significant effect on growth.  Alcala and Murcia 

(2003), however, use a more robust measure of openness and find that the more robust measure 

has a large, significant effect on growth.  In search of an appropriate measure for openness, 

practitioners have now turned to network analysis to obtain a more suitable proxy for openness 

to incorporate into growth regressions.  There are three influential papers that attempt this 

process, which I will highlight.  

First, Kali and Reyes (2007) insert network statistics into a growth regression model.  

They find that the network statistics offer greater explanatory power on growth compared to 

traditional volume-based measure (trade/GDP ratio).  This finding has large implications in the 

trade-growth literature and helps to redress the widely influential work of Rodrik and his 

colleagues who argue that integration has no effect on growth.  Reyes et al. (2007) use network 

analysis to help explain the different growth trajectories of countries in Asia in relation to Latin 

America.  The authors find that over a 20-year time span Asian countries not only expanded the 

number of trading partners and their volume of trade, but they also experienced higher mobility 

in the network, whereas Latin America only expanded trade with a small number of trading 

partners and remained in a constant position or slightly declined in the network.  The authors use 

partial correlations to show that Asia grew faster than Latin America as a result of its higher 

centrality in the trade network.   

Clark (2010) further solidifies the link between network mobility and growth by 

incorporating network statistics into a neoclassical growth model.  He specifies output (Y) as a 

function of capital (K) and labor (L), where capital refers to both physical and human capital.  

His findings show that the mobility statistic is the second most influential variable in explaining 
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productivity, behind human capital.  This is a major finding produced by network analysis and 

will have future implications on the way in which network analysis and growth regressions can 

be used in combination.  Although, one author mentions that a drawback of this approach is that 

there is no specific economic theory for including network statistics in growth models and 

therefore should not be done.  However, I feel that network measures are an extension of the 

trade/GDP measures that offers far more explanatory power.  If trade/GDP ratios can be used in 

regressions, so too can network statistics.                  
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Descriptive Network statistics 

Graph theory is used to inform much of what we know about how networks work.  A 

graph is a network model consisting of dichotomous (binary) relations.  I represent the network 

with the following graph notation 

                                                                                 (1)                                                                                                      

Where V is a vertex set,            , and in the directed graph,    (     )            .  

In the WTW, countries represent vertices, and edges between any two countries         exist if 

at least one million U.S. dollars in trade is transacted during the year in observation.  The one 

million U.S. dollar threshold is common in the WTW literature (Kim and Shin, 2003) and is 

selected in order to focus on significant trade relationships that shape the network.   

 

I set Y to be the adjacency matrix for the random graph G.      is a binary random variable 

which indicates the state of the i, j edge.  The Pr(         is the probability of the     edge 

state.  I can express     in terms of the WTW as a dichotomous outcome  

    {
     (     )                             

                                                                        
                                  (2) 

The density for the WTW in the year 2007 is 39.9, which means based on the number of nodes, 

trade ties represent approximately 40% of the total possible.  The density of a network is the 

proportion of present ties to the maximum possible lines in a graph.  A gXg nodal graph can be 

computed as  

  
∑       

      
                                                                            (3) 

I present the plot of the WTW in Figure 1 (Appendix B).  The vertices are colored according to a 

country’s respective region.  Because the observed graph contains 190 vertices, it is difficult to 
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visually inspect the network linkages and make any speculations about whether certain regions 

tend to trade amongst themselves or not, i.e. homophily by region. Homophily is an important 

concept in the study of social networks and helps to explain why we observe a particular type of 

network.  The principle of homophily is predicated on the fact that people with similar 

characteristics will have a higher rate of contact between them then dissimilar people 

(McPherson et al., 2001).  One can scale this principle up to include, organizations, countries, 

regions, and so forth.  In the present context, I am interested in whether homophily by region 

exists.  That is, do regions, delineated by geographical proximity and historical reference tend to 

trade more among themselves relative to ‘outsiders’ in other regions that do not share a similar 

degree of cultural and historical shared experience.  While there are many different ways to 

delineate regions, the most basic source of homophily is space (ibid., 2001), so it makes intuitive 

sense to group countries based on geographic proximity.   

To gain better intuition on whether homophily by region is present in the WTW, I present 

the mixing matrix for each region (Appendix C).  The mixing matrix presents the count of trade 

relationships cross-tabulated by the region of the two countries involved.  If a strong presence of 

homophily is present, I expect to see large values along the diagonal relative to off-diagonal 

values.  Based on the fact that the diagonal values in the matrix do not tend to be higher than the 

off-diagonal values, countries do not appear to be overwhelmingly trading within their particular 

region; homophily by region does not appear to be a major factor.   

There are three caveats to this interpretation.  First, marginal totals can be misleading and 

do not statistically test for the presence of homophily (this will be carried out in the modeling 

section below).  Also, the trade network is very complex and strict interpretations of homophily 

are not always straight forward.  For example the largest value in the matrix is between Europe 
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(region 2) and Africa (region 11).  Due to the colonization era, African and European countries 

still maintain a strong, client-like relationship in many cases.  Third, there is likely some 

misleading results due to the way countries are grouped.  While there is no ‘right’ way to group 

countries into regions, defining China (region 4) as its own region has some drawbacks for cases 

like this, since its value along the diagonal is 0, since the data only cover international trade.  It is 

not possible to see China’s intra-trade relationships and see how it compares to other countries’ 

internationally trade within a particular region.   

Another interesting feature in networks is transitivity.  Transitivity is a statistic that 

measures the degree of network integration. Balance theory predicts that people should adjust 

their relations until the network becomes stabilized around a pattern where all dyadic ties are 

largely transitive, i.e. triadic. This social phenomenon tends to be explained in terms of triadic 

relationships and by the adage “a friend of a friend is a friend.” Balance theory predicts that if 

ties exist between A and B and B and C, then A and C have a strong propensity to develop a tie. 

A triangle is defined to be any set f(i; j); (j; k); (k; i)g of three edges (Morris et al., 2008).  The 

trade network consists of 190 countries and 7,177 ties.  The number of triangles is surprisingly 

large, 157,645.  This number is far larger than what would be expected by chance and offers 

initial evidence that the trade network has a high degree of transitivity.  A more detailed analysis 

of edges and triangle terms will be carried out in the modeling section.   

In addition to network statistics, there are also node level statistics that can quantify 

individual positions in the network and describe the local neighborhood.  There are four major 

dimensions, each dimension with its own set of statistics that can be chosen as necessary by the 

researcher.  The four dimensions, followed by the most commonly used statistics, are presented 

as follows: Connectivity, Assortativity, Clustering and Centrality.  ND and NS are statistics used 
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for connectivity.  ND is the fractional count of trading partners a country has relative to all 

possible trade links in the network.  NS measures the intensity of these trade links.  These 

statistical measures are used in the empirical studies to offer evidence for or against increasing 

globalization.  If the statistics increase in value, they show the globe is becoming smaller or more 

integrated over time.  

ANNS is the statistic for assortativity.  It measures the number of trading partners and the 

intensity (volume of trade) of a given country’s trading partners.  For example, if country A has 

20 trading partners and each of those 20 countries trades with 20 other countries, ANNS gives 

ND/NS statistics for each of country A’s trading partners.  This statistic is commonly employed 

to assess whether certain groupings of countries (i.e. rich) tend to trade with well-connected 

countries or less connected countries.  It is important to use in order to determine whether a ‘rich 

club phenomenon’ has emerged in the WTW.    

BCC and the CCC are statistics for clustering, as well as clustering coefficient and 

ANND.  The BCC is a ratio that counts the number of triangles that exist compared to the total 

number of triangles that are possible in the network.  CCC measures the trade intensity of these 

triangles.  Each of these statistics offers a perspective on the multi-laterlism vs. bilateralism 

debate.  Clearly, if the statistics increase over time, the WTW is strengthening multi-lateral ties, 

whereas if the statistic is decreasing, it is associated with a rise in bilateralism.     

Lastly, the centrality dimension has probably received the most attention in the network 

analysis because of its explanatory power of describing the hierarchy that exists within the 

network.  RWBC is the most commonly employed statistic for this dimension and it measures 

the degree of influence a particular country has on the entire network.  The higher the measure 

for a country the higher the degree of influence that country has on the WTW.  Most often, this 
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measure has been found to show a core-periphery hierarchy in the WTW, thus strengthening the 

position of world-systems perspective.   

ND and BET are the most prominent centrality measures and are based on reach and flow 

mediation.  The former quantifies the ability of the ego-node to reach other vertices.  Centrality 

measures attempt to capture the influence of a node from its position in the network.  ND 

calculates the number of direct ties coming in and going out of a node and represents how 

connected a country is within the trade network.  High degree positions are influential in the 

network, and at the same time, may be vulnerable to other actors’ influence.  Histograms of the 

node degree show that the distribution of trading partners is right-skewed (Appendix D).   

Mathematically, the node degree measures the probability of a randomly chosen vertex to 

have k connections to other vertices and provides a summary of a node’s overall activity.  The 

number of incoming ties is called in-degree, expressed as the sum of incoming ties over the 

number of actors in the network minus 1.  In-degree will equal out-degree ties, expressed as 

        ∑    
 
   

     
                                                                     (4)  

The second common centrality measure is based on the quantity of walks that pass through the 

ego-node, i.e. betweenness.  Betweenness (BET) is the tendency for an ego-node to reside on 

shortest paths between third parties, i.e. serves as a bridge between two other nodes.  

Betweenness relies on the concept of geodesic distance, i.e. the shortest path between two nodes, 

I and j.  Betweenness can be quantified and is expressed as  

        
∑

       

   
   

            
                                                               (5)  

   is the number of j,k geodesics (shortest path between j,k) and       ) is number of j,k 

geodesics that include i. High betweeness positions are associated with the term “broker.” In the 
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network literature, a “broker” is an actor that mediates between third parties who are not directly 

tied.  Both the node degree and betweenness measures are standardized and are compared to the 

theoretical maximum number of edges possible for that graph, values ranging from 0 to 1.   

Another interesting centrality measure is the eigenvalue centrality (EC).  This measure 

quantifies the position of the actor in terms of the sum of the centralities of its neighbors, 

attenuated by a scaling constant ( ).  Eigenvector centrality can be expressed numerically as,  

       
 

 
∑          

 
                                                          (6) 

Actors with high eigenvector centrality are those with many central neighbors. This centrality 

measure is often overlooked by previous articles on the WTW, a major oversight considering this 

statistic is ideally suited to test core-periphery relations, a major focus point for WTW analyses 

in the past.  

Table 3 reports the statistics for connectivity (ND) and centrality (BET, EC) by region 

and selects the three countries with the highest rankings for a particular measure (Reported in 

Appendix E). This allows us to see the most connected countries within regions, as well as 

compare the degree of influence across regions.  NAFTA and East Asian countries are the most 

connected and central/influential regions in the global economy.  Despite the high connectivity 

and centrality scores for the United Kingdom, Germany and France, the EU consists of many 

small Eastern European countries not very well connected, thereby lowering overall average 

scores for the EU. SAA and the Arab league are the least connected and least central regions in 

the global economy.  

Within East Asia, China has only 10 fewer trading partners than Japan (i.e. connectivity), 

yet its BET centrality score is almost half as big as Japan’s.  This distinction between 

connectivity and centrality is a key feature of network analysis. It reveals that although China is 
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increasing its trading partners and becoming better connected to the global economy, its actual 

influence in the network in terms of trade remains limited relative to Japan.  Figure 3 shows a 

plot of betweenness scores for each country (Appendix F).  Japan, along with the UK, and the 

U.S. have the highest BET centrality score, representing the brokers in the network; China, on 

the other hand is plotted much lower than any of these three countries.     

A major question posed in the era of globalization is whether countries with a large 

number of trading partners are wealthier.  To test this hypothesis, I carry out simple correlations 

between network statistics and per capita GDP.  I find that there is a positive correlation between 

the number of trade channels of a country and its wealth (pcGDP).  The high correlation, .49, 

means that most high-connected countries tend to be rich, whereas low connected countries tend 

to be poor.  For example, the U.S., Japan, Germany, UK and France are the highest connected 

countries and are the wealthiest.     
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Modeling the WTW with ERGM 

To model network data, I use the ergm package for R, which offers advanced tools for 

modeling networks for a class of models called exponential-family random graph models 

(ERGMs).  The ergm package obtains approximate maximum likelihood estimates, simulates 

random networks from a specified Ergm and performs graphical goodness-of-fit checks on the 

observed network (Hunter et al., 2008).  The terms fit in the ERGM model are network statistics 

that are used to represent the probability distribution over all possible networks of that size 

(Morris et al., 2008).    

The process that generates ERGM can be explained in the following way.  The observed 

network is the outcome of some unknown stochastic process, which I attempt to model by 

allowing network ties to vary and fixing network nodes.  Model parameters used in my statistical 

models are estimated from the data and represent regularities in the network.  Once I have 

obtained the parameters, graphs are drawn at random and their characteristics are compared to 

the observed trade network.  Then I can include network structures into the model to see if they 

can explain the emergence of the trade network.  ERGM will place more/less weight on graphs 

with certain features, as determined by the size of the network and number of nodes,    .  

ERGM model parameters are statistical and represent expectations and covariances of 

relational measurements that allow inferences to be made about network characteristics 

(Westfeld and Hoff, 2010).  The likelihood that a trade tie exists between two countries is the 

outcome of social processes, which are the product of both regularities and variability.  Because I 

use a binary graph, I use logistic regression to represent the dependent variable, a trade tie.  I 

model tie variables as:  
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  [   ]     

                                      

I compute parameters using Maximum Likelihood Estimator (MLE).  The MLE is obtained from 

a probability distribution on the set of all possible graphs of size n that maximizes the probability 

that our model parameters predict our observed network.  The probability distribution of the set 

of possible graphs is  

       
   {∑         

   }

    
                                                      (7) 

Where Y is random network on n nodes,       are parameters.         are statistics on y, and k( ) 

is a normalizing constant:  

     ∑     ∑        
 
                                                    (8) 

The probability is proportional to some linear combination of the parameters and graph statistics,  

                                                                   (9) 

The model can be re-written in terms of the odds of tie    conditional on the rest of the graph 

             
 

             
  

    {∑      (   
 )    (   

 )  
   }                                (10) 

Where    
  is the graph with       and    

 is the graph with      . I obtain the MLE using the 

log likelihood function, expressed as  

                  ∑                         
      

                           (11) 

The log-odds depends on the vector of change statistics, 

 (    )
  

   (   
 )    (   

 )                                                (12) 

Given the log-odds depends on    , each unit change in   for (i,j) tie present (versus absent) 

increases the conditional log-odds of (i,j) by   . In effect, when I run the ERGM, the theta 
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coefficients measure the impact of the covariate on the log-odds of a tie occurring between two 

nodes.   

Model Specification 

In Table 4, I specify several models that attempt to describe different aspects of the trade 

network (Appendix G).  The first model includes three predictors: edges, triangle and gwesp.  All 

predictors represent a specific configuration of links, i.e. edges or triangles; the term is a function 

of the number of such configurations in the network.  Edges represent the likelihood that a trade 

relationship exists and the output will tell us how likely the observed network is expected to 

occur if it were a random graph.  Triangle is an indicator of transitivity and is a type of 

configuration of ties that are hypothesized to occur more often or less often than expected by 

chance (Morris et al., 2008).   

The insertion of Triangle in the model implies dependency between dyads, which quickly 

leads to degeneracy (Morris et al., 2008).  Model degeneracy is a serious problem that frequently 

occurs when dealing with networks.  If a model is degenerate then the terms in the model are 

grossly unsuitable at describing the underling processes that form the observed network. That is, 

even under the maximum likelihood coefficients in the model, the observed network is so 

unlikely to occur that the model cannot even be properly estimated (Goodreau et al., 2008).  The 

statistic geometrically weighted edgewise shared partner (gwesp) is similar to triangles, but it has 

the major advantage in helping overcome the problems associated with model degeneracy 

(Goodreau et al., 2008; Hunter et al., 2008).  The statistic measures the number of pairs of nodes 

that are connected by a direct edge and by a two-path through another node (Hunter, 2007). In 

order to help protect against degeneracy, I include the gwesp term for all the models.  
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According to Goodreau et al. (2008) a good model is one that accounts for a country’s 

tendency for assortative mixing, which is based on the notion of homophily.  In the present 

context, I want to account for assortative mixing that may occur for countries that belong do a 

particular region. If assortative mixing is present, then countries within the same region have a 

greater probability of forming a tie relative to countries in other regions.  Model 2 therefore is the 

same as model 1, but it includes an additional term, nodematch, which accounts for assortative 

mixing.  Nodematch assumes each attribute class is uniform – i.e. there is the same tendency for 

within-region edges, regardless of the region.  Based on the recommendation of (ibid, 2008), 

Model 3 adds another term to account for assortativity, i.e. nodefactor.  While nodematch 

captures the “interaction” or “second-order effects”, nodematch captures the “main effects.”     

Model 4 includes all of the network statistics in the previous model, but also adds an additional 

covariate to control for the effect of wealth on countries forming a tie.   

In general, all of the models produce similar coefficients that are highly statistically 

significant and have the same sign.  In terms of the best fit model, Model 4 offers the highest 

model likelihood relative to the other models.  Based on the highest likelihood, I select Model 4 

to interpret the coefficients.    Following an interpretative analysis of the coefficients, I will run 

diagnostics to see if the model suffers from degeneracy.   

The coefficients in model 4 can be interpreted by using the log-odds for the different 

types of ties.  The coefficient on Edges is -6.96.  This is the log-odds of two countries, I and j, 

becoming trading partners if they do not have any trading partners in common.   The significant, 

positive coefficient for Triangle and GWESP indicates transitivity in this network.  The positive, 

significant coefficient on Nodematch.region reveals that two countries within the same region 

are more likely to establish a trade link than two countries in different regions, i.e. homophily is 
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present in the model.  The MLE of the log-odds of a tie between two countries of the same 

region is .835.  The probability corresponding to this is then 
     

         
 = .70.  Conversely, the 

MLE of the log-odds of a tie between two countries from different regions is -6.96 + .835 = -

6.125.  The probability then is   
        

            
         

Nodefactor.region returns a coefficient for each region, allowing for heterogeneous 

effects of homophily by region.  Region 1 (NAFTA) is the reference group.  It is clear from the 

variety in the returned coefficients that homophily is not homogenous across regions.  

Coefficients that are negative are less likely to from ties with other countries within their region 

compared to NAFTA.  That is the countries in NAFTA (Canada, Mexico, U.S.) are more likely 

to establish ties among themselves than countries in the E.U., ECE, ASEAN,SAA, Arab League, 

Pacific Islands, Latin America, and Africa, respectively.  Countries in East Asia (China, South 

Korea, Japan, and Taiwan) are more likely than the countries in NAFTA to develop trade links 

amongst themselves.     In fact, East Asia has the highest coefficient, which indicates the 

countries in this region have the strongest preferential trade policies relative to other region-

based trading blocs.  The last coefficient in the model, rpcGDP, shows a small, positive effect on 

the probability of two countries to form a trade tie.  The interpretation on this coefficient is that 

wealthier countries are slightly more likely to develop ties amongst themselves, controlling for 

region-based homophily and the three network statistics included in the model.   

I test Model 4 for issues of degeneracy and report the diagnostics in Figure 4 (Appendix 

H).  The diagnostics return trace plots and density plots for each coefficient in the model.  The 

plots tell the user what is happening to the model statistics during the last iteration of the Markov 

Chain Monte Carlo (MCMC) estimation procedure.  The default in R is 3 iterations. The trace 
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plots show the chain as one time series for each model statistic and the density plots summarizes 

the chain in a histogram. In a converged model, these statistics will vary stochastically around 

the mean, but will not trend steadily away from the mean (Goodreau et al., 2008).  From the 

results, it is clear that the model statistics do not diverge from the mean.  This tells us that our 

initial estimates for the coefficient values generate networks with approximately the same 

number of statistics that are actually observed, e.g. edges or triangles, which ensure that the 

maximum likelihood estimation is reliable. Based on the evidence, the selected model does not 

suffer from degeneracy. 

Latent space and latent position model: Is Geography Dead?  

In order to test the role of geography in determining the probability two countries (i,j) 

form a trade relationship, I can extend the ERGM model and specify a latent space model.  The 

Bernoulli random graph models discussed above assume independence among all trade linkages 

between country pars.  However, in reality it is much more likely that there is inherent 

dependency between ties (Shortreed et. al, 2004).  For example, if S. Africa and Brazil are trade 

partners, and China and Brazil are trade partners, then it is more likely that S. Africa and China 

are trade partners then it is if these previous trade relationships did not exist.  The latent space 

model is one method to deal with this dependency.       

Recently, latent space models have replaced blockmodelling as the primary approach to 

study issues of propinquity, the tendency of spatially proximate vertices to be tied.  Based on the 

presence of homophily indicated in our models above, there is evidence that propinquity exists in 

the trade network.  The probability of a link between two actors is a function of the distance 

between them in an unobserved latent space.  Following the principles of propinquity, in general, 

actors tend to form ties to those that are nearby.   
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I can use latent space models to capture the relationship between distance and the 

likelihood of establishing a trade partnership in the WTW.  Latent space models can help us 

examine whether the trade network is globalizing or regionalizing.  If proponents of 

globalization who suggest “geography is dead” are correct in their assertion, then I expect the 

results of the latent space model to confirm that distance does not play a significant role in 

influencing the probability that a trade tie is established between country I and country j.   

The latent position model assumes a conditional independence approach to modeling.  

Let      be the positions of the actors in the social space    and {    } denote the observed 

characteristics that are dyad-specific.  That is the presence or absence of a trade tie between two 

countries is independent of all other ties in the system, given the unobserved positions in social 

space of the two individuals,  

             (    |          )                                              (13) 

Where X and   and     are observed characteristics that are pair-specific and vector-valued and   

and Z are parameters and positions to be estimated (Hoff and Handcock, 2002). I can use logistic 

regression to parameterize equation (3).  

                                                                             (14) 

                                                                          (15) 

Where the log odds ratio for two actors j and k, equidistant from i, is   (         )   I can 

estimate     using the log-likelihood of a conditional independence model, expressed as,  

           ∑ {                      }   ,                                     (16) 

Where   is a function of parameters and unknown positions.  As such, I can use maximum-

likelihood to estimate  . 
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 In Table 5, I specify two simple latent space models to test the role of distance and 

region-based homophily (Appendix I).  Model 1 only examines the role of distance in 

establishing a trade partner.  The coefficient on Edges is highly significant and positive, 

indicating that larger distances increase the likelihood of two countries establishing a tie.  This 

finding is bizarre and at odds with predictions made by gravity models that predict trade 

decreases as a function of distance.   In Model 2 I add an additional covariate to account for 

homophily.  In this model, I find the sign of the Edges coefficient switched from negative to 

positive, confirming the conventional relationship between trade and distance.  In other words, 

the likelihood of two countries forming a tie decreases as distance between countries in latent 

space increases.  The coefficient on the second term (homoregion) is very large and statistically      

significant.  This finding indicates that countries classified into the same regional grouping will 

be more likely to form a trade tie than with countries from other regional groupings.   

I select model 2 to carry out model diagnostics.  First, I plot the minimum Kullback-

Leibler (KML) likelihood estimates for each country (Shortreed et al., 2006).  A simple way to 

visualize the network is to plot each node as a small pie chart, where each slice of the pie is 

proportionate to MCMC draws for which that node belonged (Krivitsky and Handcock, 2008).    

Because of the size of the network, it is difficult to inspect the tightly clustered countries; 

however, some countries on the peripheral of the network are identified.  To check for issues of 

degeneracy, I report diagnostics for model 2 in Figure 6 (Appendix K).  As stated above, the 

MCMC estimation procedure iterates 3 times and produces trace plots and density plots.  The 

results show that the model statistics do not diverge from the mean, meaning that the model is 

not degenerate and the maximum likelihood estimates are reliable.       
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Conclusion 

Network analysis offers many interesting approaches to studying the WTW.  One of the 

less explored paths taken in the WTW literature is to fit models to the network.  I address this 

oversight by estimating several ERGM and latent space models for the year 2007.  The goals of 

this research are two-fold: 1) explore the topological properties of the WTW and test how they 

affect the likelihood of a trade linkage being formed between two countries; and 2) use latent 

space models to test the relationship between distance and trade in the network space. 

The results from the descriptive analyses in this report agree with other previous work.  

The WTW network has a high density, the node degree has a high right-skew, the clustering 

coefficient and ANND provide evidence of hierarchy – trade partners of well-connected 

countries are less interconnected relative to those of poorly connected ones – and is very 

dissortative – countries holding many trade partners are on average connected with countries 

holding relatively few countries. 

Based on the results from ERGM, the trade network can be characterized as transitive 

and countries are more likely to establish ties with other countries within their region.  The 

degree of homophily based on region is heterogeneous across regions.  NAFTA and East Asian 

countries have the greatest homophily effect.  Lastly, in contrast to previous studies that use 

descriptive statistics to conclude that a “rich club” phenomenon exists – in the sense that rich 

countries tend to trade amongst themselves – there is little evidence for that in the ERGM model 

when controlling for homophily and transitivity. Although the coefficient on pcGDP is positive 

and significant, the magnitude is very low and has only a marginal influence on the probability 

of a trade tie being established.  
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The latent space models add an additional dimension of analysis of the WTW.  While the 

ERGM model fit to the data controls for a region-based homophily, which is in itself defined, in 

part, by geographical proximity, the latent space model tests directly the role of space in 

determining the likelihood of whether or not a tie will be established.  When controlling for 

regional homophily, the Euclidean distance -calculated in latent space - is returned negative, 

significant and large in magnitude.  This finding supports findings in the gravity literature on 

trade and reaffirms that trade decreases as distance increases.  Despite strong globalizing 

processes that have led some scholars to claim “geography is dead”, the significant coefficient on 

Edges reveals that distance continues to play a strong role in determining a trade relationship. 

There are a number of ways that my research can proceed in the future and be used to 

uncover additional properties of the trade network.  One interesting avenue for further research 

will be to add additional covariates used in the growth literature to the ERGM models, and test 

the robustness of the network coefficients in the presence of other non-network variables.  A 

second future line of research will fit longitudinal ERGM and latent space models to the trade 

network to examine, respectively, how trade ties are developed and how space and trade vary 

over time.  Lastly, it might prove useful to carry out separate ERGM equations for a bi-modal 

network – trade flows and FDI flows, respectively – and incorporate them into a simultaneous 

equations approach.  Taking on these areas of future research will promote a deeper 

understanding of the global economy and better equip scholars, government leaders and global 

institutions, with the tools to mitigate increasing cases of external shocks to the network, i.e. 

crisis, and promote an equitable trade regime for the global economy.   
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Appendices 
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Appendix A 

190 countries are placed into 10 regions.  These regions are based on present-day trading blocs 

and/or geographical location.  Several regions combine two or more economic trading blocks 

that span a certain geographic region.  For example, the EU, EFTA and Central European FTA 

member countries are collapsed into one region based on their geographical region, Europe.  

Similarly, UNASUL, Caribbean Community and the Central American Integration System 

member countries were all collapsed into their geographical region, Latin America.  

Table 1: Regional Groupings 

NAFTA (Region 1) 

  CAN 

  MEX 

  USA 

Europe (Region 2) 

ALG 

AND 

ANG 

ARG 

ARM 

AUL 

AUS 

AZE 

BAH 

BAR 

BEL 

BEN 

BFO 

BHM 

BHU 

BLR 

BLZ 

BNG 

BOL 

BOS 

BOT 

BRA 

BRU 

BUI 

BUL 

CAM 

CAN 

CAO 

CAP 

CDI 

CEN 

CHA 

CHL 

CHN 

COL 

COM 

CON 

COS 

CRO 

CUB 

 East Asia (Region 3) 

JPN 

MON 

PRK 

ROK 

TAW 

CHN  (Also Region 4)        

Eurasian Economic 

Community (Region 5) 

ARM 

AZE 

BLR 

GRG 

KYR 

KZK 

RUS 

TAJ 

TKM 

UKR 

UZB 

ASEAN (Region 6) 

BRU 

CAM 

DRV 

INS 

LAO 

MAL 

MYA 

PHI 

SIN 

THI 

South Asia Association 

(Region 7) 

AFG 

BHU 

BNG 

IND 

MAD 
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NEP 

PAK 

SOL 

SRI 

Arab League (Region 8) 

BAH 

EQG 

IRN 

IRQ 

ISR 

JOR 

KUW 

LEB 

MOR 

OMA 

PAL 

QAT 

SAU 

SUD 

SYR 

UAE 

YEM 

Pacific Islands (Region 9) 

AAB 

AUL 

AUS 

DMA 

FJI 

FSM 

KBI 

NAU 

NEW 

PNG 

TON 

TUV 

VAN 

Latin America (Reg. 10) 

ARG 

BAR 

BHM 

BLZ 

BOL 

BRA 

CHL 

COL 

COS 

CUB 

DOM 

ECU 

GRN 

GUA 

GUI 

GUY 

HAI 

HON 

JAM 

MSI 

NIC 

PAN 

RUM 

SAL 

SKN 

SLU 

SUR 

SVG 

TRI 

URU 

VEN 

African Union (Region 11) 

ANG 

BEN 

BFO 

BOT 

BUI 

CAO 

CAP 

CDI 

CEN 

CHA 

COM 

CON 

DJI 

DRC 

EGY 

ERI 

ETH 

GAB 

GAM 

GHA 

GNB 

KEN 

LBR 

LES 

LIB 

LIE 

MAG 

MAS 

MAW 

MLI 

MZM 

NAM 

NIG 

NIR 

PAR 

PER 

RWA 

SAF 

SEN 

SEY 

SIE 

SOM 

STP 

SWA 

TAZ 

TOG 

TUN 

UGA 

ZAM 

ZIM 
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Appendix B 

 

Figure 1: World Trade Web (Thresh = $1 million) 
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Appendix C 

 

Table 2: Mixing Matrix by Region 

 

             1 2 3 4 5 6 7 8 9 10 11 

1 3 104 3 12 21 23 18 40 19 81 92 

2 104 590 37 144 302 250 168 388 141 599 893 

3 3 37 NA 5 11 10 7 16 7 27 43 

4 12 144 5 7 38 37 25 52 23 99 123 

5 21 302 11 38 47 48 43 71 27 98 106 

6 23 250 10 37 48 40 51 93 43 128 194 

7 18 168 7 25 43 51 16 62 29 62 118 

8 40 388 16 52 71 93 62 83 44 142 247 

9 19 141 7 23 27 43 29 44 13 80 81 

10 81 599 27 99 98 128 62 142 80 243 259 

11 92 893 43 123 106 194 118 247 81 259 251 

* Note:  Marginal totals can be misleading for undirected mixing matrices. 
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Appendix D 

 

Figure 2: ND Distribution for WTW 
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Appendix E 

 

Table 3: Connectivity and Centrality Measures by Region and Select Countries 

Region ND BET EC 

NAFTA (n=3)  279.3 218.9 .107 

   USA 346 439.39 .121 

   CAN 284 186.2 .11 

   MEX 208 31.2 .09 

EU 2 (n=40) 210.3 103.8 .084 

  UKG 344 522.9 .12 

  GFR 340 376.9 .121 

  FRN 338 304.3 .11 

East Asia  (n=5) 246 177.7 .094 

  JPN 342 477.7 .12 

China   332 270.8 .121 

  ROK 310 177.21 .11 

ECE  (n=11) 156.2 27.4 .079 

  RUS 278 104 .11 

  UKR 276 109 .12 

  BLR 194 39.5 .082 

ASEAN  (n=10) 191.4 78.5 .079 

  THI  304 233.7 .113 

(Table 3 cont.) 

  MAL  298 170.4 .113 

  INS 292 144.4 .112 

SAA  (n=9) 136.7 45.6 .058 

  IND 314 222.7 .116 

  PAK 262 107.6 .102 

  BNG 196 57.68 .082 

Arab League  (n=17) 155.4 24.4 .068 
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  SAU 

 

234 

 

90.2 

 

.093 

  ISR 232 65.3 .095 

  UAE 218 62.1 .09 

Pacific Islands (n=13)   80 38.04 .033 

  AUL 294 246.7 .11 

  AUS 266 114.12 .106 

  NEW 220 120.7 .09 

Latin America (31)   132.9 21.2 .059 

   BRA 294 175.2 .11 

   ARG 244 65.3 .101 

   RUM 242 69.4 .1 

African Union (50) 106.3 11.2 .049 

  SAF 280 131.2 .109 

  EGY 228 49.5 .096 

Table 3: Continued 
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Appendix F 

 

Figure 3: Centrality Score by Country   
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Appendix G 

 

Table 4: ERGM Models 

 

 Model 1 Model 2 Model 3 Model 4 

Log Likelihood -7324.3 -6919.7 -6677.8 -6521.9 

Edges -7.56*** -7.92*** -5.01*** -6.96*** 

Triangle .077*** .078*** .081*** .077*** 

Gwesp.fixed.0.5 2.50 2.62*** 1.94*** 2.16*** 

Nodematch.Region 

Nodefactor.EU 

… 

… 

.428*** 

… 

.737*** 

-.768*** 

.835*** 

-.483*** 

Nodefactor.E.ASIA … … 1.73 . 3.02** 

Nodefactor.ECE … … -.182 * -4.84* 

Nodefactor.ASEAN … … -1.16*** -.119 

Nodefactor.SAA … … -.679*** -.0092 

Nodefactor.ARAB.L … … -.860*** -.920*** 

Nodefactor.PAC.ISL … … -1.37*** -.483** 

Nodefactor.LAT.AM … … -.734*** -.728*** 

Nodefactor.AFRICA … … -1.28*** -.565*** 

Nodecov.pcGDP … … …  .004*** 
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Appendix H 

 

Figure 4: MCMC Degeneracy Plots 
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(Figure 4 cont.) 
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(Figure 4 cont.) 
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(Figure 4 cont.) 
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Appendix I 

 

Table 5: Latent Space Models (d=2)  

 

 Model 1 Model 2      

Edges  2.56*** -5.73***     

Latentcov  

(homoregion) 

 26.25***     
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Figure 5: MKL Latent Positions for Model 2  
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Appendix K 

 

Figure 6: MCMC Diagnostics  
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