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Automatic Reconstruction, Synthesis, and Processing of Musculoskeletal Magnetic Resonance
Images Using Deep Learning
Aniket Tolpadi
Abstract

Musculoskeletal (MSK) diseases are widespread, with the World Health Organization estimating
in 2019 that 1.71 billion people worldwide are afflicted with the condition [1]. MSK conditions
include low back pain, knee osteoarthritis, and rheumatoid arthritis, among others, all of which
induce debilitating pain and require early diagnosis to improve prognosis of treatment
outcomes. Imaging is a crucial tool for diagnosis, and among available options, Magnetic
Resonance Imaging (MRI) is a preferred modality for its sharp soft-tissue contrast, high-
resolution images, and lack of ionizing radiation. However, acquisition and processing of MR
images has numerous challenges: (1) acquisitions are time-consuming, and therefore expensive
and susceptible to motion artifacts; (2) special sequences require toxic contrast agent
administration, which have safety concerns; and (3) analysis of acquired images to identify
patients most requiring clinical intervention is laborious. This work proposes using deep
learning to address various aspects of these challenges. | will be presenting 5 applications and
uses of deep learning algorithms:

1. To accelerate a 3D fat-suppressed knee MR sequence, showing that optimizing

reconstruction algorithms for one tissue of clinical interest can improve its performance

in other tissues of clinical interest.
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For image reconstruction of accelerated compositional MR acquisitions in the knee, hip
and lumbar spine, optimizing reconstructed images for tissues of heightened clinical

interest (cartilage and intervertebral discs).

To automatically segment bone and cartilage from 8X accelerated knee MR acquisitions.

To synthesize post-contrast wrist MR images from pre-contrast scans in rheumatoid
arthritis patients.
To predict if patients would require a total knee replacement within 5 years, using MR

imaging and demographic variables.
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Chapter 1 - Overview

Chapter 2 will serve as a basic introduction to the musculoskeletal (MSK) joints and tissues that
will be further examined in the thesis. Next, chapter 3 will introduce Magnetic Resonance
Imaging (MRI), an essential imaging modality commonly used to better understand these
tissues, while chapter 4 will provide background on deep learning (DL) and how it can be
applied to various aspects of the clinical imaging workflow. Finally, chapters 5-9 are self-
contained studies, complete with relevant background, methods, results, and conclusions, each
of which details some application of deep learning to streamline, accelerate, or automate some

portion of the imaging workflow.



Chapter 2 - Relevant Musculoskeletal Anatomy

The MSK system is a complex framework consisting of various tissue types, responsible for
crucial tasks that include load bearing, posture maintenance, and facilitating locomotion.
Hierarchically, the organ system is stratified into numerous joints and sub-anatomies such the
ankle and shoulder, each of which can be broken down into components such as cartilage,
bones, muscles, and ligaments. This thesis will center around four such anatomies: knee, hip,

lumbar spine and wrist.

2.1 Knee

2.1.1 Knee Anatomy

The knee is a modified hinge joint allowing for sagittal flexion and extension, and varus and
valgus rotation in the frontal plane [2]. As one of the largest joints in the human body, it has
substantial weight-bearing responsibilities, carried out through a complex configuration of
bones, ligaments, cartilage, and muscles. Four bones are observed within the knee: the femur,
tibia, fibula, and patella. Among these, the tibiofemoral joint is particularly important in weight-
bearing, whereas the patellofemoral joint is responsible for frictionless transfer of flexion and
extension forces about the knee, facilitating motility. These muscles are stabilized primarily by a
series of ligaments, and secondarily by surrounding muscles. Ligaments connect bone to bone,
and within the knee, the anterior cruciate ligament (ACL) is the most important stabilizer,
responsible for up to 85% of the joint’s stability [3]. In conjunction with the posterior cruciate
ligament (PCL), the ACL prevents anteroposterior motion of the femur with respect to the tibia,

whereas the medical collateral ligament (MCL) and lateral collateral ligament (LCL) prevent



mediolateral relative motion between the bones. Other relevant stabilizing ligaments include
the popliteal ligament. To withstand compressive and shear forces observed in weight-bearing,
flexion, extension, varus rotation, and valgus rotation, the articulating surfaces of the
tibiofemoral and patellofemoral joints are lined with hyaline cartilage and encased in a fibrous,
synovial fluid filled capsule. Cartilage is a well-hydrated, collagen-rich tissue that reduces friction
and acts as a shock absorber for the entire knee. Moreover, the tibiofemoral joint is also
equipped with medical and lateral fibrocartilaginous structures known as menisci. Like cartilage,
menisci also function as a shock absorber, while also designed to prevent excessive varus or

valgus rotation [4].

2.1.2 Knee Pathophysiology

Among the most common pathophysiological knee anomalies is osteoarthritis (OA), for which
incidence rate estimates range from 14 to 30 million in the United States alone [5,6]. In OA, the
knee undergoes structural changes that may include cartilage loss, alterations in subchondral
bone properties, and narrowing of the tibiofemoral joint space, among others [7]. Ultimately,
these changes can cause inflammation, debilitating pain, and generally reduced quality of life.
Unfortunately, however, knee OA is irreversible: while treatments exist for early-stage OA that
can mitigate symptoms, late-stage OA has no noninvasive treatments, underscoring the
importance of regular monitoring of joint health for early OA identification and treatment
initiation [8,9]. Other anomalies that can occur as a precursor, concurrently, or due to OA
include cartilage and meniscal lesions, which can compromise the ability of both tissues to

withstand compressive forces and generally induce pain [10]. Aside from these lesions, bone



marrow edema is also common, in which fluid collects in extracellular marrow spaces, possibly
due to trauma, infection, or cancer [11,12]. Diagnosis of these anomalies is typically done with a
combination of medical imaging and monitoring symptoms, necessitating automatic tools to

track patient health and identify at-risk populations for these conditions.

2.2 Hip

2.2.1 Hip Anatomy

Like the knee, the hip also carries substantial weight-bearing responsibilities, but differs in that
it is a ball-and-socket joint rather than a hinge joint. Three bones—the ilium, ischium, and
pubis—intersect to form the “socket” of the hip joint, known as the acetabulum [13]. The
proximal head of the femur forms a ball that inserts into this socket, allowing for flexion,
extension, abduction, adduction, and internal and external rotation. The joint is stabilized by a
series of ligaments, the most significant of which are the iliofemoral, pubofemoral, and
ischiofemoral, all of which thicken the hip joint capsule and limit internal rotation, abduction
and extension, and extension, respectively [13]. The femoral head and acetabulum are both
lined with cartilage, which has similar roles in the hip as in the knee: resist compressive forces
and reduce friction associated with motion. Also as in the knee, the hip is a synovial joint,

contained in a fibrous sac and lubricated with synovial fluid [14].

2.2.2 Hip Pathophysiology
OA is a similarly common pathology in the hip as in the knee. In the hip, chronic usage and

general wear-and-tear of the hip joint can see damage to femoral and acetabular articular



cartilage, the formation of bony osteophytes that induce pain, and additional damage to
stabilizing ligaments and muscles [15]. Hip OA is widespread: in the United Kingdom, 10-25% of
those older than 55 suffer from the condition, and its effects are not solely limited to the elderly
population [16]. Also very commonly observed are hip fractures, observed in one (or more) of
the bones constituting the hip joint. Due to poor blood supply, healing from hip fractures is
often slow and affliction with the condition very painful, with potentially dire consequences: 5-
10% of those with hip fracture die within one month of the fracture date [17]. While OA and
fractures are both ongoing areas of research, particularly related to their detection from

medical images, this thesis will focus more so on tissues implicated in hip OA.

2.3 Lumbar Spine

2.3.1 Lumbar Spine Anatomy

The lumbar spine is a crucial structure in the lower back with numerous responsibilities,
including protecting the spinal cord and the numerous nerves that emerge from it, and
providing structural support for the spinal column and torso. The vertebral column features
alternating intervertebral discs (IVDs) and vertebral body bones. IVDs are avascular tissues lying
between adjacent vertebrae, and are responsible for resisting spinal compression while
absorbing axial and torsional stresses that may be imparted on the spine. These functions are
accomplished due to the IVD structure, which can be stratified into three regions: the nucleus
pulposus (NP), annulus fibrosis (AF), and cartilaginous end plates (CEP). The NP is centrally
located within the IVD, rich with proteoglycans that have negatively charged side chains,

allowing the region to be well hydrated and deform reversibly, thereby resisting axial loads. The



AF is radially located, consisting of 10-20 concentric rings of “lamellae” composed primarily of
collagen |, with each concentric ring having fibers oriented roughly 60-65 degrees from the
vertical in an alternating fashion [18]. This structure allows the AF to resist tensile stresses
exerted by the radial pressure of the NP. CEPs lie at the superior and inferior ends of the IVD,
composed of hyaline cartilage at early stages of development and fibrocartilage in adults, and is
crucial in delivering nutrients to the disc [19]. Vertebral bodies consist of anteriorly located
bodies that sit on top of IVDs, and several processes located posterior to the discs: the
transverse processes protrude laterally, limiting left/right rotation of the spine; the spinous
process protrudes posteriorly, limiting anteroposterior motion of the spine. Each vertebra also
consists of two superior and inferior articular processes, allowing adjacent vertebra to sit on top
of one another. The spinal cord itself passes through the central canals of vertebrae, whereas
adjacent vertebrae form foramen on the left and right sides of the spinal column at each
vertebral level, through which nerves pass that innervate various muscles (primarily in the lower
body for the lumbar spine). The spinal column is stabilized by numerous paraspinal muscles

[20-22].

2.3.2 Lumbar Spine Pathophysiology

The overarching anomaly observed in the lumbar spine is low back pain (LBP), which is the fifth
most common reason why Americans seek medical care and is the nation’s second leading
cause of disability [23]. A precise cause for LBP can be difficult to identify, as 90 percent of all
LBP cases are non-specific [24]: causes can be anatomic or psychosocial. In anatomic cases,

degeneration of IVDs is one possibility: NP proteoglycan side chains can degrade or shift from



chondroitin sulfate to keratin sulfate [25], decreasing the relative proteoglycan content within
the NPs, reducing their ability to stay hydrated, thereby reducing its ability to resist axial loads
[26]. AF changes with aging and trauma can include cracking or tears in the lamellae, allowing
the NP to protrude through the AF and breaking down the barrier between the NP and AF in the
tissue. This further reduces the disc’s ability to resist axial compression and torsion and may also
lead to a herniated disc that impinges on the spinal cord or other nerves, causing pain [27,28].
The lumbar spine work in this thesis will focus primarily on the IVDs, but various other
anomalies can arise within the lumbar spine that cause pain. For instance, lesions can emerge
between vertebral and cartilaginous endplates at the intersection of IVDs and vertebral bodies,
possibly causing the bony marrow to inflame and convert into fat, while the end plates can
undergo some degree of ossification; these are known as Modic changes [29,30]. Elsewhere, the
central canal of the spinal cord or the foramen can constrict for various reasons, impinging on
the spinal cord and/or foraminal nerves, causing pain that can radiculate to regions innervated
by the nerves [31,32]. Fractures can also be observed within the vertebral bodies, altering the
load bearing mechanics of the spine while also causing pain [33]. Other sources of pain can
include misalignment of the spine, which is observed in scoliosis, lordosis and kyphosis [34-36].
Beyond anatomic factors, psychosocial factors such as depression, stress, and reliving pain

episodes can also induce pain [37].



2.4 Wrist

2.4.1 Wrist Anatomy

The wrist joint is one of the most complex in the human body, encompassing a wide assortment
of relatively small bones. Proximally, the wrist joint begins at the forearms, where two bones
are found: the medially located ulna, and the laterally located radius. Moving distally into the
wrist is the distal carpal row (DCR) of bones: the trapezium, trapezoid, capitate and hamate [38].
Proximal to the DCR is the proximal carpal row (PCR) bones: the scaphoid, lunate, triquetrum
and pisiform [39]. The PCR then attaches to the metacarpal bones of the hand by strong
ligaments, causing the DCR to function fundamentally as a single unit. Relative motion of these
carpal bones is restricted by a complex system of 33 intraarticular and intracapsular ligaments
[40]. Six total forearm extensor and flexor muscles attach distally within the wrist into the DCR

through a network of tendons, allowing for wrist motion [41].

2.4.2 Wrist Pathophysiology

Numerous anomalies can occur in the wrist, including fractures of the many bones and ligament
tears, all of which can cause pain and joint instability [42]. While not a weight-bearing joint, the
wrist can also become afflicted with OA, the causes of which are unknown but likely involve
biomechanical factors, as well as biochemical factors such as proteinases and proinflammatory
cytokines [43]. The wrist-related work in this thesis, however, will focus on Rheumatoid Arthritis
(RA), a widespread autoimmune disorder observed in 0.5-1.0% of Americans, with an incidence
rate in women that is 2-3 times higher than that of men [44]. RA is systemic, mainly affecting

joints (particularly the feet and hands), and is characterized by synovial joint inflammation,



bone tissue erosion and soft tissue breakdown [45]. In addition to synovial inflammation, bone
marrow edema (BME) can also result from RA, all of which can cause pain and severely degrade
quality of life [46]. RA is typically treated using Disease-Modifying Anti-Rheumatic Drugs
(DMARDSs), which see 75-80% of patients attain intended treatment outcomes within a year of
treatment initiation. However, this spikes to 90% when treatments are initiated in early RA

stages, underscoring the importance of early diagnosis [47].



Chapter 3 - Clinical and Quantitative Imaging of Musculoskeletal Tissues

Diagnosing anomalies such as knee OA, hip OA, and wrist RA require holistic assessment of
symptoms such as pain and quality of life, and in the case of wrist RA, laboratory tests for C-
reactive protein (CRP) and erythrocyte sedimentation rate (ESR). However, central to diagnostic
schemes for these conditions and lumbar spine anomalies, is medical imaging. Imaging provides
a noninvasive means of depicting anomalies and can help identify potential pain sources and
guide treatment courses. Widely used clinical imaging modalities include X-ray, Computed
Tomography (CT), Ultrasound (US), and Magnetic Resonance Imaging (MRI). Compared to its
counterparts, MR has advantages with its sharp contrast, exquisite depiction of soft tissue,
ability to image three-dimensional volumes, and lack of ionizing radiation [48]. Its primary
drawbacks, however, are long acquisition times, high costs, and limited accessibility in low-
resource regions. Much of the work in this thesis will center around addressing MR drawbacks
with an eye towards its faster, cheaper, and more widespread clinical use. This chapter will
begin by discussing the fundamentals of MR imaging, after which standard clinical MR
sequences and contrast mechanisms will be described. To conclude, compositional MR will be

introduced, and the advantages it offers over conventional approaches.

3.1 Basic MR Physics

MR entails imaging one of several biologically active atomic nuclei with nonzero nuclear
magnetic moments. Nuclear magnetic moments form in an atomic nucleus: for a nucleus with
an equal number of protons and neutrons, nuclear charges can be distributed roughly evenly,

causing the nucleus to have a nuclear magnetic moment of essentially zero [49]. Alternately,
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nuclei with unequal numbers of protons and neutrons necessarily will have at least one
“unpaired” proton or neutron, impairing the atom’s ability to evenly distribute nuclear charges
and causing it to have a nuclear magnetic moment [50]. Such atoms, such as *H, 2*Na, and 3P,
therefore are susceptible to extrinsic magnetic fields [51]. While not detectable for a single
nucleus, these nuclei behave as small magnetic dipoles that, when gathered in sufficiently large
numbers (~10%°), yield a nuclei conglomerate that generates an observable magnetic signal,
forming the basis of MR signal [52]. Due to its abundance in the human body, *H MR is by far
the most widely used nucleus for MR, and is the basis of both clinical MR imaging and the

imaging analyzed in this thesis.

In the absence of an external magnetic field, these dipoles are randomly oriented, essentially
cancelling one another out and not generating net magnetization. In the presence of an external
magnetic field, however, some alignment of the dipoles is observed: most along the direction of
the magnetic field, but some in a high-energy state, antiparallel to the external field, generating
net magnetization [53]. In MR imaging, this alignment is induced with the By field, a 1.5 or 3
Tesla (T) field for most current clinical imaging applications, although higher strength By fields
are being investigated in research settings. Crucially, when placed in an external B field, these
nuclei begin precessing about the By field at a specific frequency known as the Larmor
frequency (wo = Bo x y, where wois the Larmor frequency, Bo is the strength of the external Bo
field, and y is the gyromagnetic ratio, or a constant for every nucleus at a given field strength)
[54]. Control of this frequency, and the location of spins within their precession cycles (“phase”)

are crucial to localizing MR signals.
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3.2 Components of a MR Pulse Sequence

In scanners, patients are subjected to strong By fields, inducing net magnetization along the
longitudinal axis (along the By field direction) [55]. To initiate imaging, a radiofrequency (RF)
pulse is applied at frequency wo perpendicular to the Bo field axis; this applies a torque that
“tips” the net magnetization away from the By axis by an angle determined by pulse strength
and duration (“flip angle”) [56]. This separates the net magnetization into longitudinal (along
the By axis) and transverse (perpendicular to the By axis) components. Once the RF pulse
concludes, net magnetization begins recovering along the longitudinal axis (“longitudinal
recovery”) and decaying along the transverse axis (“transverse decay”) [53]. Due to the
heterogeneity in intrinsic macromolecular properties such as free and bound water content
across tissues, longitudinal recovery and transverse decay occur at different rates across a tissue
sample, which are exploited to produce MR images [57]. Also due to this heterogeneity,
however, the phase coherence observed in nuclei immediately after an RF pulse is quickly lost
and must be reestablished during signal acquisition. Typically, phase coherence is induced after
excitation RF pulses by using 180° refocusing RF pulses or additional gradients [58]. Receiving
coils then measure signal in the transverse plane. In modern MR, several coils are usually used
and located around the periphery of the anatomy being imaged; the use of multiple coils allows
for considerably better spatial sensitivity to regions throughout the imaged volume than a single
coil setup. Receiving coils are tuned to the Larmor frequency and acquire the coherent signal.
The time between the initial RF pulse and signal acquisition is known as echo time (TE), whereas

the time between successive non-refocusing RF pulses is known as repetition time (TR).
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Signal is generated and recorded using these mechanisms but must also be localized in the
tissue. Receiving coils can be tuned a particular frequency and phase of spins within their
precession. As such, if signal from only a particular voxel is desired, its frequency and phase
must be modulated such that receiving coils can be tuned to isolate the voxel. Gradient coils
accomplish this frequency and phase modulation: most MR scanners are equipped with two
gradient coils along the transverse axes and one along the longitudinal axis. For 2D MR imaging,
a slice-selecting gradient coil is activated simultaneously with the excitatory RF pulse (“slice-
selecting pulse”); when the slice-selecting gradient coil is activated, it causes slight local
variations in magnetic field strength (from the original Bo), thereby locally altering the Larmor
frequency. When applied, the RF pulse is tuned to the desired frequency, thereby only “tipping”
longitudinal magnetization into the transverse plane for a slice of tissue. After excitation, phase
is encoded along an orthogonal axis by the phase encoding gradient coil: when applied, the
local alterations in Larmor frequency cause nuclei along the phase-encoding direction to reach
slightly differing starting points in their precession cycles. When the phase-encoding gradient is
turned off, the Larmor frequency returns to its original frequency, but due to the phase
encoding, nuclei along the phase-encoding axis now lie at different phases within their
precession cycles despite subsequently precessing at the same frequency. This accounts for
localization in two dimensions, and the third is accomplished with the frequency encoding
gradient coil. The frequency encoding gradient is applied while signal is read by the receiving
coils: just as the previous gradient coils, it induces local variations in the frequency of nuclei

precession by modulating the Larmor frequency, thereby allowing for localization of signal along
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the remaining axis [53]. In 3D imaging, an entire volume of tissue is instead excited rather than
a slice, with the slice-selecting gradient coil instead used as a second phase-encoding gradient

coil [59].

A standard MR sequence has several components: an RF pulse to excite tissue, refocusing pulses
or gradients to induce spatial coherence while signal is recorded, and a series of gradient coils
to localize signal to given voxels. Numerous parameters can affect resulting image appearance,
such as gradient coil strength, RF pulse strength and duration, and the bandwidth of frequencies
accepted by receiving coils during acquisition. Additional techniques can be added, for example,
to suppress or saturate signal from tissues such as fat or fluid [60—62]. The most important
parameters, however, are TR and TE: by controlling RF pulse and/or refocusing gradient timing,
the degree of longitudinal recovery and transverse decay undergone by a tissue prior to signal
acquisition can be adjusted. Strategic selection of TR and TE therefore controls which properties

are accentuated, and thus, the structures a resulting image will illuminate.

3.3 Standard Postprocessing of MR Acquisitions

An underreported aspect of the MR acquisition pipeline are the many steps involved in
postprocessing MR scanner data to arrive at images ultimately used in the clinic. First off, MR
images are acquired in the frequency domain, which is also described as k-space. A series of

postprocessing steps must be performed in k-space and image space to attain desired images.
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In k-space, standard clinical sequences may be accelerated using parallel imaging (PI)— briefly, it
exploits the redundancy in acquiring signal in multiple receiving coils to acquire fewer less data
in k-space, thereby reducing acquisition time. Some Pl methods will impute unacquired k-space
points, and if so, they must be imputed in an initial step [63]. Subsequently, many MR
acquisitions will acquire data using a given size of k-space (the “acquisition matrix”), but the
intended dimensions of the output resolution could be larger to increase the sequence’s
apparent spatial resolution. To accomplish this, images are zero-padded in k-space to the
desired dimensions. When transformed into Cartesian space (also called “image space,” or the
domain in which medical images are viewed by clinicians), the sharp boundaries between
nonzero acquired k-space points and the peripheral zeros can induce undesired Gibbs artifacts.
This is mitigated by filtering the k-space, often with a Fermi or Hamming filter, that softens the
boundary between nonzero and zero points within k-space, mitigating the Gibbs artifacts at the
expense of some sharpness in the resultant image [64,65]. Processed k-space is subsequently

inverse Fourier transformed (IFFT) into image space.

Upon IFFT, one image remains for each of the receiving coils; these must be integrated into one
coil-combined image, thereby improving signal-to-noise (SNR) ratio of the resulting image. Coil
combination can be accomplished with various approaches, the simplest of which summing the
squares of corresponding pixels across coils, while more complicated approaches will rely on
scanner calibration data to optimize the coil combination approach [66,67]. After coil-
combination, multiple corrections are applied: surface coil intensity correction (SCIC) and

gradient coil inhomogeneity correction. SCIC entails pixel intensity adjustment across the image
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to allow for more uniform contrast and SNR throughout the image [68], whereas gradient coil
inhomogeneity corrections warp images to adjust for nonlinearities that may be observed in the
localizing gradient coils [69]. Pixel magnitudes are typically stored and images scaled to a
desired range of pixel values, yielding standard images used in clinical applications. More
sophisticated MR sequences may require further processing, such as potential separation of
phase and magnitude signals, but these baseline steps will be required for nearly every

sequence.

3.4 Conventional MR Protocols

T1, T2 and proton density (PD) weighted images dominate current clinical MR protocols. T1
relaxation time is also referred to as longitudinal relaxation time, and is a time constant
describing the rate at which magnetization will recover along the longitudinal axis after an
excitatory RF pulse is applied [70]. Ti-weighted images then select parameters to accentuate
differences in these relaxation times across a given slice of tissue; this is accomplished by a
sequence with a short TR and TE. In doing so, T1 images will see fat appear as very bright, soft
tissues such as muscles and ligaments appear moderately bright, while fluid will be dark [71].
Contrarily, T, relaxation time is also referred to as transverse relaxation time; in this case, Tz is a
time constant describing the rate of magnetization decay along the transverse axis after RF
pulse application [72]. T2-weighted images are attained by using a long TR and TE, instead
attaining images in which fluid is very bright, fat appears moderately bright, and soft tissues
generally appear less bright [71]. The final of these major sequences, PD, does not refer to a

given type of relaxation, but instead selects parameters to maximize signal imaged in the
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transverse plane, doing so using a long TR and short TE. As such, tissues with the highest
concentrations of protons will appear brightest in PD imaging: fat and fluid will be very bright,

while soft tissue will appear gray and bones dark.

Clinical imaging protocols will administer multiple sequences to acquire multiple weightings of
tissue for radiologist assessment. Furthermore, current clinical sequences are overwhelmingly
acquired in 2D; as such, clinical imaging protocols will acquire the aforementioned sequences in
multiple planes (axial, sagittal and coronal) [73]. Furthermore, signal from fat, particularly from
tissues such as bone, can obscure the identification of more nuanced and clinically relevant
findings such as bone marrow edema and inflammation; as such, fat suppression or short tau
inversion recovery (STIR) can be integrated into these sequences to null fat signal. Lastly, in
extreme cases, a contrast agent such as Gadolinium (Gd) can be administered to improve the
diagnostic quality of MR images. Here, Gd is injected intravenously into a patient and, due to its
paramagnetic properties, will shorten both T1 and T, relaxation times. This means that, with
otherwise identical acquisition parameters, all tissues would appear brighter in a T1-weighted
scan and darker in a T.-weighted scan [74]. Specific tissues will see Gd uptake at differing rates,
meaning that resulting images will exhibit enhancement (alteration in pixel intensities with
respect to non-contrast baselines) in accordance with underlying anatomy, making anomalies

such as tumors and active sites of inflammation easier to identify.

These conventional sequences provide rich structural information that has formed the basis of

modern radiology. It is important to note, however, that all the sequences discussed to this

17



point are fundamentally qualitative sequences: that is, while the intrinsic T, relaxation times of
tissues in a sample affect how that sample appears in T>-weighted MR scans, those exact T
relaxation times are not identified from a conventional sequence. In other words, conventional
MR sequences are weighted such that the relative intensities of pixels give rise to anatomy (i.e.
fluid is known to be brighter than soft tissue in T, imaging), but actual pixel intensities
themselves are meaningless. This is the fundamental difference between conventional and

compositional MR scans, the latter of which is described in the next section.

3.5 Compositional MR Imaging
Compositional MR scans yield maps of MR parameters such as T1 and T, allowing the intrinsic
parameters to be visualized rather than qualitative images weighted by these parameters.

Longitudinal magnetization can be represented by the following equation:

TE
M, =M, (1 —e Tl); where M, is the longitudinal magnetization observed at echo time

TE, M. is the baseline longitudinal magnetization before the initial RF excitation pulse is applied,

and Ti is the intrinsic T1 of the given tissue [75]. Contrarily, transverse magnetization is given by

TE
the following: My, rg = Myy o (e T2>, where Myye is the transverse magnetization at echo

time TE, Myy,0 is the transverse magnetization time at echo time 0 (maximal transverse
magnetization), and T3 is the intrinsic tissue T, [75]. Conventional MR uses predefined TR and TE
to enable the desired weighting of an acquired image. In a single compositional MR sequence,
however, a given volume is essentially acquired multiple times using multiple TEs (or in the case

of a more complex intrinsic MR parameter such as T1,, multiple spin-lock times), making for a
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substantially lengthier acquisition than a conventional MR sequence with similar parameters
[76,77]. After acquisition, an image obtains intensities and corresponding TEs for each pixel,
which are then fit pixelwise to the appropriate magnetization equation, possibly using a
technique like Levenberg-Marquardt fitting [78]. This allows solving voxel-wise for an MR

parameter such as T1 or Ty, yielding maps of these parameters.

This approach affords compositional MR sequences (including T1 and T, mapping) many
advantages over conventional MR. First off, pixel values resulting from compositional MR
acquisitions carry physiological meaning: elevated T, values, for example, can be an indication
cartilage degeneration in the knee and hip, while low T, values can indicate degeneration in
IVDs [79-82]. Additionally, conventional MR images are sensitive to morphological changes in
tissues, but compositional MR can be sensitive to biochemical changes that precede
morphological changes. These changes may include alterations in collagen, proteoglycan, and
water content, and have most thoroughly been characterized in the knee [83,84]. Despite these
advantages, however, acquisition times for compositional MR are necessarily longer than
conventional sequences, and at least to this point are too long to reasonably be implemented in
clinical imaging protocols. Furthermore, while substantial progress has been made in
compositional MR scan-rescan reproducibility, additional improvements are needed before
widespread clinical adoption [85—-87]. Nonetheless, compositional sequences offer a promising
alternative to deliver useful and quantitative information to clinical imaging protocols with

further development, complementing the information obtained from conventional sequences.

19



Between these conventional and quantitative sequences, the work in this thesis will use the
following: 3D fat-saturated PD knee scans, coronal 2D fat-suppressed Ti-weighted scans, and
coronal 2D fast-suppressed Gd Ti-weighted scans. An additional project will use the
magnetization-prepared angle-modulated partitioned k-space spoiled gradient-echo snapshots
(MAPSS) compositional MR sequence that simultaneously acquires images to calculate T1p and
T, maps, focusing on the T, mapping acquisitions [88]. The final work will use 3D double-echo
steady-state (DESS) knee MR images, a more complex sequence that acquires two signals per
slice that can be sum-of-squares combined into a single morphological MR sequence [89]. The
acquisition of two echo images per slice has the added advantage of allowing for compositional
imaging along with the more conventional structural MR, but that facet of DESS is not explored

in this thesis.
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Chapter 4 - Deep Learning in Medical Imaging

Deep Learning (DL) has brought overwhelming changes to medical imaging, and more broadly,
radiology. Its applications have spanned the entire imaging lifecycle, with ongoing avenues of
research applying DL for assigning MR protocols to patients (the full list of MR sequences to be
acquired), accelerating image acquisition, and automating the processing and interpretation of
medical images. This chapter will introduce the basics of DL, with particular focus on the
computer vision architectures. It will then overview medical imaging applications in which

computer vision has been utilized and that constitute the core works of this thesis.

4.1 Basics of Deep Learning

DL entails efficient usage of large amounts of data to train multilayered, deep architectures and
solve tasks such as classification and regression. Conceptually, one of the simplest DL
architectures is an artificial neural network (ANN), which accepts input variables such as age,
BMI and OA severity, and can predict binary variables such as whether a patient experiences
pain or continuous variables such as pain severity. Each ANN layer consists of a series of nodes,
with the number of nodes in each layer being predetermined and intrinsic to precise network
design [90]. Each node performs two operations: a weighted sum of node outputs from the
previous layer (for the first layer, a weighted sum of the input variables), and applies a
nonlinearity such as a sigmoid operator, hyperbolic tangent, or rectified linear unit (ReLU) [91].
The nonlinearity applications are crucial in allowing network generalization to a wider variety of
data than a strictly linear approach would permit. Furthermore, weights used in weighted

summations are learned during network training: this is typically accomplished using an
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optimization approach and a loss function. A loss function is a penalty term that describes the
degree to which network predictions are incorrect: widely used examples include categorical
cross entropy for classification tasks and mean-squared error for regression tasks such as age
prediction [92,93]. Given network weights, a model can be inferred on a batch of data, allowing
loss function calculation; an optimization approach determines how to update network weights
in accordance with the loss. Conceptually, the simplest of these approaches is gradient descent:
gradients are calculated with respect to each network weight, essentially determining the
direction in which individual weights will be updated at the next network step. Furthermore, a
learning rate is set prior to model training, and is multiplied by the network gradients (all
multiplied by -1 to ensure correct direction of weight updates), determining the size of steps
used to update model weights [94]. In stochastic gradient descent, one data point is randomly
selected from a training batch to evaluate gradients, whereas in batch gradient descent, all data
points of a training batch are used [95]. More sophisticated approaches exist such as Adam
Optimizer that use higher-level gradient information and automatically adjust learning rate to
update network weights, whereas other approaches such as AdaGrad, AdaDelta, and RMSProp

are also available for this purpose [96—-98].

These ANN principles are crucial and form the foundation of more sophisticated DL approaches.
Particularly in medical image analysis, however, architectures often must be adapted to handle
visual inputs. Referred to as “computer vision” algorithms in the literature, the most used family
of algorithms in this space are convolutional neural networks (CNNs), which are used

extensively in this thesis. While overarching ANN principles apply to CNNs, some components
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are modified for visual input. Appropriately, the basis of CNNs are convolutions, which take the
place of ANN nodes in architectures. Here, fixed-size filters do elementwise multiplication of
filter values with a region of corresponding size from an input image, summing outputs to
obtain an output pixel value. The filter is then shifted to a new region within the input image,
also of corresponding size, in a process known as “striding.” Here, the process repeats, yielding
another output pixel value. By striding the filter throughout an entire image, filters yield a
feature map representation of the input image, which is fundamentally another image sensitive
to the filter’s properties [99]. In classical approaches, filters were handcrafted to maximize
sensitivity to desired attributes such as horizontal lines, vertical lines, or higher-level features
[100]. In DL, however, the filter weights are learned, generally yielding far superior performance
to handcrafted features for similar tasks. Just as nonlinearities needed to be applied to nodes in
ANNs to more accurately model intricate patterns, nonlinearities are applied to convolution
outputs, or feature maps. Also as was the case in ANNs, CNN feature maps of a given layer serve
as inputs to the convolutions and resulting feature maps of the next layer. By convolving images
in this manner, CNNs learn increasingly complex image representations: for instance, while
filters in the first layer may be sensitive to lines at different orientations, filters in the second
layer may be sensitive to corners, and so on, until a final layer may be sensitive to something as
specific as animal species [101]. Many ANN loss functions and optimization techniques that held
are applicable to CNNs, but working with images allows for usage of image-processing metrics

such as structural similarity index (SSIM) as a loss function during training [102].
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Properly training CNNs, or any DL network, has a series of required steps and challenges. First, a
dataset must be understood and split into multiple datasets: (1) a training set, seen by the
model during training and used to update model weights; (2) a validation set, seen by the model
during training but only used to evaluate model performance and not update weights; (3) a test
set, not seen by the network until final parameters have been selected and only inferred on
once to evaluate model performance. Particularly with images, pre-processing of images is
required to ensure consistent scaling and distribution of pixel values. After data splitting and
preprocessing, a network architecture must be designed, a loss function identified and an
optimization approach selected to carry out training. Considerations to improve training include
learning rate optimization: a small learning rate will cause training to be slow, while a large one
can cause difficulties optimizing network parameters. Data augmentation techniques such as
random rotation, translation, and addition of noise to training set images are common to
improve robustness of learned features, likely improving network performance on the test set
and external data. Also worth of considering are a stopping criterion and the number of epochs
to train the model: an “epoch” refers to a complete cycle of the network seeing all training data,
and while some approaches train for a fixed number of epochs, others may stop early in
accordance with criteria such as limited improvement in validation set performance. Some
medical imaging-specific challenges include robustness of trained algorithms to different MR
sequences, to MR images acquired from multiple scanners, and to MR images acquired from

different vendors.
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4.2 Anomaly Detection and Prognosis Prediction

Considerable effort from radiologists goes into mundane tasks: staging IVD degeneration
severity, assessing knee OA severity, and staging lumbar spine stenosis are among the most
common for MSK radiologists. These tasks are extremely repetitive, placing immense loads on
radiologists and possibly contributing to burnout [103]. Furthermore, radiologist expertise is
most needed in a limited number of cases with truly unique and subtle findings, such as small
tissue lesions, as opposed to other cases in which anomalies are common and more easily
spotted. As such, the medical imaging community has spent years training algorithms to
automate anomaly detection, imagining a future in which, given a lumbar spine MR scan, as an
example, a radiologist is provided automated assessments of IVD health, Modic changes in
vertebral endplates, detection of vertebral fractures, classification of stenosis, and so on. In this
manner, radiologists could edit model predictions as needed, but having them as a baseline
rather than grading from scratch can ease burden and redirect their attention to patients where

their expertise is most needed.

Examples of DL anomaly detection algorithms in MSK work are widespread. A Siamese-network
style architecture was used to automatically diagnose knee OA from radiographic images,
achieving strong test set performance, with an area under the receiver operating characteristic
curve of 0.93 [9]. For more detailed analysis, another approach used a 3D V-Net architecture to
segment tissues such as cartilage and menisci compartments, which were then fed into 3D CNN
architectures with residual connections, showing strong performance in diagnosing anomalies

in cartilage, bone marrow, menisci and the ACL [104]. Another approach used an MRNet-style
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architecture to automatically diagnose ACL and meniscal tears [105]. Outside the knee, hip
fractures can be difficult to identify in medical imaging, but a DenseNet architecture saw strong
sensitivity and specificity in doing so from radiographic images [106]. The lumbar spine has
similarly seen substantial ongoing work: Modic changes have classically been used to track
conversions between different states within vertebral endplates, but a recent work used a V-Net
to develop a voxel-wise, more nuanced assessment of these changes throughout entire vertebra
[107]. Similarly, Faster R-CNN and ResNet architectures have been used to effectively classify
degree of lumbar spinal stenosis from MR images [108]. One of the first works to thoroughly
assess numerous spinal anomalies was SpineNet, which automatically classifies IVD

degeneration, vertebral endplate defects and changes, and stenosis, among others [109].

Numerous aspects of MSK imaging have thus seen DL algorithms applied for anomaly detection.
From a data science perspective, prognosis prediction can be framed as a very similar problem:
rather than training algorithms to automatically diagnose current anomalies, they can instead
predict if the anomaly will be present in the future, requiring longitudinal datasets. Practically,
prognosis prediction algorithms have obvious applications: algorithms predicting otherwise
healthy patients have some length of time until they develop an anomaly such as OA can be the
impetus for initiating treatments that extend the time to disease or invasive treatment. In this
vein, prognosis prediction is of clear clinical interest, and ongoing works doing so in MSK include
prediction of OA progression from MR images using an EfficientNet-B0 architecture [110] and

investigating knee phenotypes associated with risk of radiographic knee OA [111]. Additional
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work is required to develop similar predictive models to inform preventative measure initiation

in clinical decision making, which this thesis addresses in one project.

4.3 Image Segmentation

Tissue segmentation is a booming area of MSK and DL research, with widespread clinical
applications. For instance, segmentations are crucial in surgical planning, identifying incision
paths that minimally damage tissue peripheral to an anomaly [112]. Beyond this, emerging
avenues of MSK research include identifying imaging biomarkers for OA, while compositional
MR research continues to characterize soft tissue mass composition, among numerous others
[113-115]. A necessary step in identifying imaging biomarkers is tissue segmentation: before
evaluating, for instance, if T2 values within knee cartilage or specific femoral bone shape
phenotypes are imaging biomarkers for OA risk, cartilage and bones must be segmented.
Probably more than any other medical image processing task, tissue segmentations are
laborious and slow when done manually. As such, substantial research has gone into designing

and training DL segmentation algorithms to automate this process.

Any discussion of medical imaging DL segmentation approaches must start with the UNet,
whose development in 2015 revolutionized segmentation and image synthesis algorithms alike
[116]. The key innovation with the UNet was the introduction of skip connections: the network
has an encoding path that creates low-resolution, high-dimensional representations of input
images, and a decoding path that decodes the high-dimensional representation into a predicted

segmentation. Importantly, at corresponding levels on the encoding and decoding paths, skip
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connections concatenate information from the encoding path to the decoding path, providing
crucial contextual information to the decoding path that helps localize predicted segmentations.
UNets and closely related architectures have seen substantial applications in segmenting knee
cartilage and lumbar spine IVDs from MR scans and have been repurposed into flexible
frameworks that streamline much of the data preprocessing and hyperparameter tuning
involved in training segmentation models [117-120]. More recently, advanced DL approaches

such as transformers have also seen application in tissue segmentation [121].

DL has seen considerable development for medical imaging tissue segmentation, and these
approaches show extremely promising performance. Many current approaches, however, show
human-like performance for healthy patients but can fail in rare cases such as cartilage lesion

anomalies, making this fine-tuning an area of ongoing research.

4.4 Image Synthesis

Image synthesis entails predicting the appearance of one image from another. In the context of
MR imaging, it will usually involve using at least one MR sequence to predict the appearance of
another (i.e. using axial T1 images to predict axial T2 images). This is of clinical interest for
several reasons, the most basic of which is saving time and costs. Properly trained image-to-
image translation algorithms can synthesize, for example, a T, image from a T, eliminating the
need to acquire a T, weighted image in the scanner, shortening the MR imaging protocol length.
A more exciting reason, however, is its potential to eliminate the need to administer toxic

contrast agents such as Gd. Often required for imaging inflammation or when a tumor is
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suspected, Gd is toxic and shows evidence of deposition within the bone and brain, meaning its
administration should be avoided whenever possible [122]. In this vein, image-to-image
translation algorithms can be applied to predict post-contrast MR image appearance from a pre-
contrast image. As such, a properly trained image synthesis algorithm here could dramatically

improve patient safety and possibly eliminate the need for toxic contrast agents.

Most applications of image synthesis algorithms for post-contrast images have come in brain
MR, where Gd is usually administered to rule out tumors. 2D and 3D UNets, and UNet-style
architectures have been applied to eliminate or reduce Gd dosage required in brain post-
contrast imaging applications, synthesizing post-Gd images with minimal loss in image quality
and similar utility of images for downstream tasks such as tumor segmentation compared to
full-dose post-contrast images [123—125]. Outside of brain applications, cardiac imaging can also
entail Gd administration to diagnose myocardial infarction, where DL has seen applications to
eliminate required Gd dosage [126]. Due to the temporal component inherent in cardiac
imaging, however, the proposed pipeline was more complex than conventional approaches.
MSK, however, has seen less widespread application of image synthesis algorithms than brain
imaging, with essentially no work done in synthesizing post-contrast imaging of inflammation.

This stands as a limitation of previous literature that one of the works in this thesis will address.

4.5 Image Reconstruction
Image reconstruction refers to converting MR imaging from k-space, the frequency-based

domain in which MR signals are acquired, into the image-space DICOM images that are
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interpreted by radiologists. A major drawback in MR imaging is long acquisition time;
consequently, much of recent image reconstruction research has entailed devising k-space
undersampling schemes and reconstruction algorithms. More specifically, undersampling
schemes sample fewer points in k-space by sampling fewer phase-encoding lines, resulting in a
faster MR acquisition that produces blurry and aliased images. Reconstruction algorithms, on
the other hand, accept the aliased image and/or the undersampled k-space and predict the
appearance of a full-length acquisition image. In combining the two, image reconstruction

schemes reduce MR acquisition time while attempting to minimally sacrifice image quality.

A wide array of reconstruction approaches has gained traction, not all of which use DL. Some
such approaches include parallel imaging (Pl), in which the redundance of acquiring k-space
using multiple coils is exploited to unalias undersampled images, reducing acquisition time at
the expense of SNR [63]. In compressed sensing (CS), image reconstruction is done in an
iterative manner, minimizing an objective function that ensures a predicted image maintains
fidelity to acquired k-space points while preserving sparsity of the predicted image in an
alternate domain, such as wavelets [127,128]. Low rank and spare modeling approaches share
some similarities to CS in requiring minimization of an objective function but have some other
methodological differences and are best studied for dynamic MR acceleration [129]. MR
Fingerprinting (MRF) has also shown considerable promise, and marks a fundamentally different
approach: here, MR images are acquired by pseudorandomizing acquisition parameters such as
TR, TE and flip angle, after which acquired images are compared against a lookup dictionary to

simultaneous predict multiple MR image weightings for the patient [130]. MRF acquisitions can
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be combined with classical reconstruction approaches to further accelerate the acquisition

scheme.

These non-DL approaches all show substantial promise and will be described in further detail in
Chapter 6. That said, DL applications in image reconstruction have exploded in recent years,
with the subject matter gathering considerable interest annually at major medical imaging
conferences. Here, image-to-image DL architectures are trained in one of several manners: they
can predict fully-sampled image space from an aliased image space, fully-sampled k-space from
undersampled k-space, or fully-sampled image space directly from undersampled k-space [131—
133]. Loss function selection is crucial: reconstruction algorithms often use a data consistency
loss, ensuring k-space of predicted images corresponds with acquired k-space points, just as CS
does in its objective function [134]. Data consistency aside, other common terms include a
pixel-based loss function, structural similarity index, and feature based loss functions. In this
manner, many of the same image-to-image architectures used in image segmentation and
image synthesis can be adapted for reconstruction, which fundamentally is a special image-to-
image translation problem. UNet style networks and skip connections formed the basis of early
DL works for reconstruction, but recent advances have popularized variational and unrolled
architectures, in which input aliased images/undersampled k-space/coil sensitivity maps are fed
through multiple versions of the same architecture, slightly improving predictions each iteration

and ultimately predicting final reconstructed images [135].
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There is no question that reconstruction has made substantial progress in recent years. Some
challenges remain, however: as it pertains to DL, it is important to note that CNNs are typically
translationally invariant. While this is useful when in image space, it is cumbersome in k-space,
where points at the center of k-space are orders of magnitude higher than peripheral k-space
points; properly training a network that operates directly in k-space and having peripheral k-
space points contribute meaningfully to final network parameters is therefore challenging,
making some DL approaches difficult to train. Beyond this, small, sharp features are easily lost in
the undersampling process, and are usually among the most important clinically yet the most
difficult for a reconstruction algorithm to recapture [136]. The stability of architectures in
reconstructing these features have also been challenged [137,138]. GANs have often been
added to training schemes to better preserve these features, but their retention remains a
challenge [139]. As with other DL applications in imaging, robustness of trained algorithms to
multiple vendors and MR sequences remains challenging, as does robustness to different
undersampling patterns [140]. Lastly, conventional metrics used to assess algorithm
performance such as SSIM, peak signal-to-noise ratio (PSNR), and normalized root mean
squared error (nRMSE) correlate poorly with gold-standard radiologist annotations, making
optimization of algorithms and assessment of their efficacy difficult [141,142]. The image

reconstruction works in this thesis will address some of these challenges.
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Chapter 5 - A Cartilage-Specific Loss Function Improves Image Reconstruction Performance in
Multiple Tissues of Clinical Interest
The following has been reformatted and reproduced with full permission from the publisher. It
was a conference presentation that appeared as:

Tolpadi A. A., Caliva F., Han M., Bahroos E., Larson P. Majumdar S & Pedoia V. A Cartilage-
Specific Loss Function Improves Image Reconstruction Performance in Multiple Tissues of
Clinical Interest. In Proceedings of the 30" Annual Meeting of ISMRM, London, England, United

Kingdom. 948 (2022).

5.1 Introduction

For musculoskeletal imaging, MRl is a premier option, offering high-resolution images with
exquisite soft tissue contrast [143]. A major drawback, however, is long acquisition time.
Consequently, image reconstruction has been a major recent research focus, with deep
learning, compressed sensing, and model-based approaches among those under development
to accelerate acquisition [144—148]. However, most published approaches are optimized for
entire imaging volumes rather than specific tissues of interest. While not necessarily a
drawback, musculoskeletal imaging often necessitates strong image quality most so in a specific
tissue such as cartilage [149]. Moreover, most reconstruction algorithms are assessed with
metrics like structural similarity index (SSIM) [102] that are agnostic to tissues of interest and
may not accurately capture a model’s clinical utility [141]. As such, optimization of
reconstruction algorithms for specific tissues remains an open question, and the limitations of

standard image reconstruction metrics is worth investigating.
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5.2 Methods

5.2.1 Image Acquisition

For 3D-Fast-Spin-Echo fat suppressed CUBE images acquired at a UCSF GE Signa 3T MRI scanner,
an in-house pipeline was developed that leveraged GE Orchestra 1.10 and other postprocessing
tools to reconstruct images from raw scanner data, allowing multicoil k-space, pre-processed
coil-combined images, post-processed coil-combined images, and other intermediate files from
the image processing pipeline to be stored. Acquisition parameters were as follows:
FOV=15cm?; acquisition matrix=256x256x200; +62.5kHz readout bandwidth; TR=1002ms;
TE=29ms; ARC acceleration by a factor of 4 [150]. Images are zero-filled in k-space to obtain final
512x512x200 resolution. Scans from 62 patients were split 38/12/12 into training, validation,

and test.

5.2.2 Undersampling and Pre-Processing

3D multicoil k-space was undersampled in ky-k, with a center-weighted Poisson pattern while
fully sampling the 5% central square in k-space, projecting the pattern along kx. Both
undersampled and fully-sampled k-space were 1D inverse Fourier transformed along the slice
direction, yielding undersampled and corresponding ground truth kx-ky-z 2D k-space for each
coil, along with associated multicoil images. Root sum of squares coil combination of fully
sampled coil images was used to calculate ground truth coil-combined images. A 5-class 3D V-

Net pipeline obtained segmentations for 4 knee cartilage compartments and the menisci [151].
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5.2.3 Training

A KIKI-Net [132] inspired architecture was designed to take 2D undersampled multicoil images
as input, predict fully sampled multicoil images, and do root sum of squares coil combination,
yielding a coil-combined prediction (Figure 5.1). A 4-component loss function was used to train
baseline networks at R=4 and R=8: (1) multicoil image space L; loss; (2) multicoil k-space L; data
consistency loss; (3) coil-combined image space L1 loss; (4) 1 - coil-combined SSIM. In addition,
separate networks were trained with an additional loss component: coil-combined L; loss in
cartilage. Training was done for 20 epochs, with loss function weightings and learning rate being
optimized in a hyperparameter search. Standard reconstruction metrics such as SSIM, as well as
tissue-specific metrics like normalized root mean square error (nRMSE) and peak signal-to-noise

ratio (PSNR) were used to assess performance [152].
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Figure 5.1 KIKI-Net inspired architecture for reconstruction. KIKI-Net inspired architecture
predicts coil-combined images from undersampled multicoil image-space inputs. Undersampled
coil images were fed through feature extractors for real and imaginary channels, inference
convolutions, and a reconstruction convolution, and subsequently sum of squares combined to
yield single-coil predictions. Weights were shared across coils, and N=10 inference layers used.
Baseline networks were trained with a multi-component loss: multicoil image space L1, multicoil
k-space L;, coil-combined L3, coil-combined SSIM.

5.3 Results

Standard reconstruction metrics show that at R=4 and R=8, baseline models perform well in

recovering ground truth images, with reasonably high SSIM and low nRMSEs (Table 5.1). At a

tissue level, these metrics clearly show addition of the cartilage Li loss reduced nRMSE and

increased PSNR not only within cartilage, but also within menisci.

Table 5.1 Model performance metrics in test set. Reconstructions within cartilage and menisci
show slight to substantially lower errors and higher PSNR at expense of slight drops in full-slice
performance with cartilage-specific loss usage. Tissue-specific losses can thus improve
reconstruction performance in multiple clinically relevant tissues. Lower SSIM compared to
other published models is likely in part due to the challenges associated with reconstructing
such a high-resolution, fat suppressed sequence.

=4 R=8
No Cartilage With Cartilage | No Cartilage With Cartilage
Loss Loss Loss Loss
+

SSISIV; ()' 1 0.712 £+ 0.09 0.703 £ 0.09 0.612 +0.07 0.599 + 0.07

nRMSE | Full Volume 1.24 + 0.62 1.28 +0.71 2.0+0.84 2.08+0.9
(%+1 Cartilage 1.03+0.31 0.91+£0.32 1.68 +0.53 1.55 +0.59
s.d.) Meniscus 2.93+1.98 2.81+2.05 4.18+2.24 4.04 +2.39
PSNR [+ Full Volume 27.5+1.54 27.4+1.53 25.4+1.53 25.3+1.52
1s.d ()' Cartilage 22.1+1.36 22.7+1.54 20.0+1.45 20.5+1.67

h Meniscus 21.8+1.61 220+1.7 20.1+1.52 20.3+1.5

Visualizations of reconstructions at R=4 show both pipelines recover fine details and yield

dramatic improvements in image quality over zero-filling (Figure 5.2). Moreover, reconstructions

show the cartilage L1 loss mitigates spurious signal elevations in menisci present in baseline
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models while more accurately reconstructing sharp, local signal elevations. While trends were
similar at R=8, the cartilage L1 loss also mitigated aliasing artifacts in menisci slightly better than
the baseline model (Figure 5.3).

Ground Truth

e

Zero-filled No Cartilage Loss

e

With Cartilage Loss
- T -

Patient A

Cartilage nRMSE = 0.895% Cartilage NRMSE = 0.746%
Meniscus NRMSE = 2.5% Meniscus NRMSE = 2.18%
Full Slice nRMSE = 1.17% Full Slice nRMSE = 1.18%

Patient B

Cartilage nRMSE = 1.07% Cartilage nRMSE = 0.824%
Meniscus nRMSE = 2.48% Meniscus nRMSE = 2.39%
Full Slice nRMSE = 1.23% Full Slice nRMSE = 1.25%

Figure 5.2 R=4 pipeline performances. In both patients, nRMSEs show improvement in cartilage
and menisci reconstructions with use of a cartilage-specific loss. In patient A, standard
reconstruction reveals a slight, spurious elevation in posterior meniscal horn signal that is less
apparent with cartilage-specific loss. Similarly in patient B, a sharp signal elevation in lateral
femoral cartilage is better reconstructed with cartilage-specific loss.
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Zero-filled No Cartilage Loss With Cartilage Loss Ground Truth

Patient A

Cartilage nRMSE = 1.45% Cartilage nRMSE = 1.45%

Meniscus nRMSE = 4.38% Meniscus nRMSE = 3.76%
Full Slice nRMSE = 1.95% Full Slice nRMSE = 2.07%

Patient B

Cartilage nRMSE = 1.65% ) Cartilage nRMSE = 1.38%
Meniscus nRMSE = 3.23% Meniscus nRMSE = 2.78%
Full Slice nRMSE = 2.05% Full Slice nRMSE = 2.11%

Figure 5.3 R=8 pipeline performances. Reconstructions at R=8 show similar or improved nRMSE
in cartilage and menisci with cartilage-specific loss use. In patient A, an aliasing artifact in both
reconstructions is better managed, although not eliminated, in the posterior meniscal horn with
use of cartilage specific loss. In patient B, similar to the R=4 pipeline, the sharp local elevation in
lateral femoral cartilage signal is better reproduced with a cartilage-specific loss, indicating
improvements in both cartilage and menisci reconstructions with the tissue-specific loss.

5.4 Discussion and Conclusions

In tandem with the proposed architecture, a cartilage L1 loss term improved reconstruction
performance not only within cartilage, but also within menisci. While the former is interesting
and useful, it is unsurprising. However, a cartilage loss term that improves meniscal
reconstruction in addition to cartilage indicates adding tissue-specific loss terms can improve

reconstruction performance in the multiple clinically crucial tissues, offering a simple means of
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improving reconstruction performance for clinical settings worthy of exploration for all
reconstruction algorithms. Also noteworthy is that at R=4 and R=8, full-slice SSIM, nRMSE, and
PSNR worsened despite improvements in cartilage and menisci reconstructions. This indicates
that, just as pulse sequence techniques such as fat suppression improve image quality in one
tissue at the expense of another, reconstruction pipelines too can and perhaps should be
optimized for tissue-specific performance. Another option may be training multiple tissue-
specific pipelines and aggregating predictions to obtain improved full-volume reconstructions.
Beyond these possibilities, that full-volume metrics worsened as cartilage and meniscal
reconstructions improved raises the question of whether these standard metrics are optimal to
evaluate clinical utility of reconstruction pipelines, seeing that the most clinically useful pipeline

is likely one with very strong cartilage and menisci reconstructions.

This work elucidates the potential of tissue-specific losses to improve clinical utility of
reconstruction models. To further investigate this, future work will include extension of this
approach to other anatomies. Lastly, particularly for 3D sequences, finding innovative ways to
exploit all dimensions of the acquisition in training while managing computational constraints is

another avenue of future exploration.
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Chapter 6 - Region of Interest-Specific Loss Functions Improve T, Quantification with Ultrafast
T> Mapping MRI Sequences in Knee, Hip and Lumbar Spine
The following has been reformatted and reproduced with full permission from the publisher. It
appeared in Nature Scientific Reports as:

Tolpadi, A.A., Han, M., Caliva, F. et al. Region of interest-specific loss functions improve
T, quantification with ultrafast T, mapping MRI sequences in knee, hip and lumbar spine. Sci

Rep 12, 22208 (2022). https://doi.org/10.1038/s41598-022-26266-z

6.1 Abstract

MRI T2 mapping sequences quantitatively assess tissue health and depict early degenerative
changes in musculoskeletal (MSK) tissues like cartilage and intervertebral discs (IVDs) but
require long acquisition times. In MSK imaging, small features in cartilage and IVDs are crucial
for diagnoses and must be preserved when reconstructing accelerated data. To these ends, we
propose region of interest-specific postprocessing of accelerated acquisitions: a recurrent UNet
deep learning architecture that provides T, maps in knee cartilage, hip cartilage, and lumbar
spine IVDs from accelerated T»-prepared snapshot gradient-echo acquisitions, optimizing for
cartilage and IVD performance with a multi-component loss function that most heavily penalizes
errors in those regions. Quantification errors in knee and hip cartilage were under 10% and 9%
from acceleration factors R=2 through 10, respectively, with bias for both under 3 ms for most
of R=2 through 12. In IVDs, mean quantification errors were under 12% from R=2 through 6. A
Gray Level Co-Occurrence Matrix-based scheme showed knee and hip pipelines outperformed

state-of-the-art models, retaining smooth textures for most R and sharper ones through
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moderate R. Our methodology yields robust T, maps while offering new approaches for
optimizing and evaluating reconstruction algorithms to facilitate better preservation of small,

clinically relevant features.

6.2 Introduction

Magnetic Resonance Imaging (MRI) has emerged as a crucial part of diagnosing pathologies
such as osteoarthritis, ligament damage, tumors, and others [153—155]. Within MRI, several
sequences can be deployed that exploit intrinsic tissue properties, providing images of varying
weightings that effectively visualize tissues such as muscle, ligaments, bone marrow, and others
[156]. In musculoskeletal (MSK) applications, clinical imaging protocols consist mostly of 2D fast
spin echo (FSE) acquisitions with T1 or T, weighting in various acquisition planes, which do well
in depicting the structure and morphology of the underlying anatomy [157]. However,
compositional MRI (cMRI) technigues to assess actual tissue parameters are gaining more

attention as a complement of qualitative imaging.

cMRI techniques like T, relaxometry can provide maps of T, values (or another intrinsic MR
parameter) across an imaging volume rather than a morphological image. For MSK applications,
T, relaxometry offers sensitivity to water content, collagen content, and collagen fiber
orientation in cartilage [149], making it sensitive to biochemical changes that can precede
morphological changes across several tissues and anatomies [158,159]. Pre-morphological
change sensitivity has been best characterized in the knee, where T, values are significantly

higher across most cartilage compartments in healthy patients that later develop osteoarthritis
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(OA) compared to controls [160,161]. Additionally, T, relaxometry offers quantitative MSK tissue
health assessments, correlating with measures of hip cartilage and intervertebral disc (IVD)
health [81,162—-164], whereas in conventional clinical imaging, only semiquantitative tissue
health assessments are obtainable with expert annotation [27,165]. All of this makes cMRI a

promising potential addition to clinical imaging protocols.

A major challenge facing clinical adoption of cMRI, however, is acquisition time: while mapping
sequences like the magnetization-prepared angle-modulated partitioned k-space spoiled
gradient echo snapshots (MAPSS) can provide robust MR parameter maps, their acquisition
times can exceed 5-6 minutes, making their addition to a clinical scan protocol difficult [88].
Acquisitions can be accelerated by sampling fewer points in k-space, inducing aliasing artifacts
in resulting images that must be removed through subsequent postprocessing. Some proposed
approaches to these ends are reconstruction strategies such as parallel imaging (Pl),
compressed sensing (CS), model-based reconstructions, deep learning (DL), low-rank and sparse
modeling methods, and MR Fingerprinting (MRF). Most of these approaches design an
algorithm or exploit the redundancy of k-space acquisition across multiple coils to predict the

appearance of the fully-sampled reconstructed image.

Pl was one of the earliest techniques to accelerate MRI acquisition and has seen clinical
adoption. Here, the redundancy of a multiple coil acquisition is leveraged to mitigate aliasing
artifacts [63,166,167], reducing clinical scan time up to acceleration factor R=3 for MSK

applications [168,169]. CS[128] has also shown promise, where aliased images are iteratively
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reconstructed by minimizing an objective function, retaining fidelity to acquired k-space and
imposing sparsity on the reconstructed image in another domain. CS has attained clinically
acceptable MSK image quality through roughly R=4[168-171], and up to R=8 in research
settings for knee cartilage T1, mapping [172]. Similarly, Pl and CS have also been applied

sequentially (and simultaneously) for further acceleration [173].

For cMRI acceleration, model-based reconstructions have gained traction, integrating the
physics of To/T>" decay and T1 recovery into an objective function iteratively optimized to
reconstruct maps, showing promise in brain and lumbar spine T, mapping [174-176]. More
generally, incorporation of the physics of MRI parameter recovery/decay has seen applications
not just in model-based approaches, but in various aspects of other methodologies as well
[177]. DL approaches have gained prominence in solving inverse problems such as
reconstruction, allowing for cMRI reconstructions at higher R than other methods. Standalone
DL approaches have seen promising results in knee MAPSS acceleration, T1 mapping, and T,
mapping sequences [116,178-181]. In other methodologies, DL has been integrated with
model-based approaches while introducing loss functions to maintain fidelity to acquired k-
space, seeing promise up to R=8 in knee and brain T1 and T, mapping [134,139,140]. DL has
been applied to accelerate T, mapping in MR Fingerprinting, where DL can remove aliasing
artifacts from undersampled acquisitions and/or replacing time-consuming dictionary lookup
steps to predict MR parameter maps, and exploiting spatial correlations within maps to improve
reconstructions [182,183]. Lastly, aside from DL, low-rank and sparse modeling methods have

emerged as a means of accelerating acquisitions, where several MRI images acquired at
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different echo times are decomposed into temporal basis functions and spatial coefficients to

model an MRI parameter, showing promise through R=8 [184].

These works represent great progress, although avenues for improvement remain. Above all,
these methods have optimized reconstructed images for full-volume performance; however, in
MSK applications, clinical assessment relies on the inspection of precise anatomic features in
specific anatomic regions, and consequently, the reconstruction quality cannot be compromised
within these regions. Put differently, given clinical context, strong image quality may be most
important in specific regions of an image, leaving room for algorithm optimization.
Furthermore, most recent published approaches leverage k-space data in formal reconstruction
approaches, but for niche applications such as region of interest (ROI)-focused optimization,
such approaches may be outperformed by DL-based post-processing algorithms that denoise
and fit undersampled T,-weighted images without using raw k-space. Moreover, performance of
standard reconstruction algorithms is typically evaluated using metrics such as structural
similarity index (SSIM), normalized root mean square error (NRMSE), and peak signal-to-noise
ratio (PSNR), but recent works show these metrics may not provide the best correspondence
with radiologist annotations [141,142], leading other groups to propose alternate metrics to fill

this niche [185].

To these ends, this study proposes a recurrent UNet pipeline to postprocess undersampled coil-
combined T2-weighted echo images, fitting and predicting T2 maps from accelerated MAPSS

acquisitions in the knee, hip and lumbar spine [186,187]. These algorithms are trained with
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multi-component, ROI-specific losses that optimize predicted maps for T, value and textural
retention in cartilage and IVDs. In doing so, our approach allows for ROI-specific optimization,
facilitating retention of small, crucial clinical features in tissues of interest while building on past

applications of weighted loss functions for image processing tasks [188].

To summarize, the contributions of this work are as follows:

e By using a 4-component loss function in network training, we introduce the concept of
“ROl-specific optimization” of cMRI accelerated acquisition pipelines.

e We conduct a thorough ablation study of these 4 loss function components, proving the
value of all in retaining textures in predicted maps while retaining high fidelity to ground
truth T, values.

e Acknowledging that standard evaluation metrics such as SSIM and NRMSE provide
suboptimal sensitivity to clinically relevant metrics, we conduct a thorough Gray Level
Co-Occurrence Matrix (GLCM)-metric-based analysis of smooth and sharp textural
retention in predicted maps, with an eye towards better evaluation of retention of small
features crucial to clinical diagnoses [189,190].

e We build on limited literature in hip and lumbar spine cMRI accelerated acquisition
schemes by developing and evaluating our pipeline not only in knee cartilage, as several
other works have done, but also for hip cartilage and lumbar spine IVD in ultrafast

acquisitions.
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6.3 Methods

6.3.1 MAPSS Acquisitions

Retrospective datasets including MAPSS in the knee (n=244 patients, 446 scans), hip (n=67
patients, 89 scans), and lumbar spine (n=21 patients, 24 scans) acquired from clinical 3T MRI
scanners was used. Patients were scanned in accordance with all pertinent guidelines, including
approval from the University of California, San Francisco Institutional Review Board (Human
Research Protection Program), and informed consent was obtained from all study participants.
MAPSS simultaneously acquired multiple T1, and T, weighted images, using T1p or T
preparation followed by 3D RF-spoiled gradient-echo Cartesian acquisition in a segmented radial
centric view ordering during a transient state. A fat-selective inversion pulse was applied before
either T1,[191,192] or T, preparation [193]. Each acquisition included T1,-prepared images at
four spin-lock times (TSLs) for T1, quantification, and three additional T.-prepared images for T,
guantification (TSL=0 ms images were shared for TE=0 ms images). In this study, only T»-
prepared images at four different TEs and corresponding T, maps from the MAPSS sequence
were used. ky-k; space was acquired within an elliptical coverage (area=0.7 compared to
rectangular ky-k;, not acquiring corner space). Knee images were acquired from patients having
ACL injuries, with scans taken at baseline and 3 years post-reconstruction. Hip images were
acquired from patients having hip OA. Lumbar spine images were acquired from healthy
subjects or patients with low back pain. Table 6.1 shows acquisition parameters.

Table 6.1 Knee, hip and lumbar spine datasets and splits. MAPSS acquisition parameters for all
datasets, with corresponding training, validation and test splits. ARC refers to Auto-calibrating
Reconstruction for Cartesian Imaging [150]. For hip acquisitions, no phase wrap was applied: ky

was oversampled by a factor of 2X, with space outside the prescribed y-FOV eliminated after
reconstruction. In some cases, multiple acquisitions were taken per patient due to having
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multiple knees/hips scanned, or due to having follow-up scans for the same patient. Age and
weight are reported mean +1 standard deviation (s.d.). Datasets were split into training,
validation and test, ensuring all scans of a particular patient were only placed into one of the
three datasets. Unless otherwise noted, all results are reported on the test set are described by
this table; to ensure robustness of trained pipeline to data splits, additional versions were
trained on 2 more splits detailed in Supp. Tables A.2 and A.13, with results on those splits

described in Supp. Tables A.14-A.16.

Knee Hip Lumbar Spine
GE Discovery GE Discovery GE Discovery
MR750w (GE MR750w (GE MR750w (GE
Healthcare, Healthcare, Healthcare,
Scanner(s) Waukesha, WI), Waukesha, WI), Waukesha, WI),
GE Discovery MR750 | GE Discovery MR750 | GE Signa PET/MR (GE
(GE Healthcare, (GE Healthcare, Healthcare,
Waukesha, WI) Waukesha, WI) Waukesha, WI)
Geometry embracing
8-channel T/R knee 32-channel cardiac method (GEM)
Coil(s) array (Invivo, array (Invivo, posterior array (GE
Gainesville, FL) Gainesville, FL) Healthcare, Aurora,
OH)
FOV 14x14 cm? 14x14 cm? 20x20 cm?
. Acq. Matrix 256x128 256x128 256x128
Acquisition Slice
Parameters . 4.0mm 4.0mm 8.0mm
Thickness
Slices 22 28 12
TEs 0Oms, 12.9 ms, 0 ms, 10.4 ms, 0ms, 12.9 ms,
25.7 ms, 51.4 ms 20.8 ms, 41.7 ms 25.7 ms, 51.4 ms
Readout BW 1+62.5kHz 1+62.5kHz 1+62.5kHz
Magnetization
Recovery 13s 1.2s 15s
Time
ARC 2X 2X None
N(:A;P;?)se None 2X k, oversampling None
64-view 64-view 64-view
Other acquisition/T acquisition/T acquisition/T
preparation preparation preparation
Demographics Sex (M/F) 140/104 35/32 10/11
Information Age 29.7+12.9 48.9+13.2 45.3+14.7
Weight 74.3+12.7 kg 69.8+12.4 kg 69.6+11.0 kg
Training Learning Rate 0.001 0.001 0.001
Information | o+ h size 1 1 1
Details
Patients 144 39 13
Training Scans 265 59 14
Slices 5,591 1,533 112
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Knee Hip Lumbar Spine
Patients 50 15 4
Validation Scans 91 15 5
Slices 1,952 390 42
Patients 50 13 4
Test Scans 90 15 5
Slices 1,928 390 40
Patients 244 67 21
Total Scans 446 89 24
Slices 9,471 2,313 194

6.3.2 T; Fitting and Spatial Undersampling

Later T, weighted echo time images for each slice were registered to corresponding TE=0 ms

images using a 3D rigid registration algorithm with a normalized mutual information criterion
[194]. Levenberg-Marquardt fitting of registered T, weighted images yielded ground truth T,

maps [195].

To simulate accelerated acquisition, coil-combined T, weighted magnitude images after
reconstruction (ARC for knee and hip) were Fourier transformed and retrospectively
undersampled using a center-weighted Poisson disc pattern, fully sampling a central 5% square
in ky-k; (R=2, 3, 4, 6, 8, 10, 12). Acquisition times associated with ground truth and accelerated
MAPSS acquisitions in each body part can be found in Supp Table A.1. As MAPSS acquires
phase-encode lines with elliptical coverage in ky-k; (relative area of 0.7 compared to rectangular
coverage), phase encoding lines solely within the sampling ellipse were undersampled.
Although working with synthesized k-space data generated from coil-combined magnitude
images, retrospective undersampling was done and R reported with respect to elliptical
coverage in ky-k; to accurately simulate an actual undersampling pattern and not overstate

model performance [196]. However, for hip acquisitions, reconstructed space outside the y-FOV
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had already been discarded; thus, simulating acquisitions with application of ‘no phase wrap’
was not possible and undersampling patterns would differ from those implemented on a
scanner. T2 weighted images from each echo time were undersampled with a unique pattern.
For ky-k; lines not sampled at a given echo time, those ky-k; lines were initialized with the
corresponding ky-k, from the image with the temporally closest echo time for which that ky-k,
was sampled. Only ky-k; lines not sampled in images acquired at all echo times were zero-filled.

k-Space was subsequently inverse Fourier transformed, yielding undersampled, aliased images.

6.3.3 DL Pipeline Training

6.3.3.1 DL Architecture

An overview of the data processing and training schemes is shown in Figure 6.1, while a detailed
diagram depicting our proposed network architecture is in Supp. Fig. A.1 (“Full Model”;
39,808,710 trainable parameters). Magnitude images from data undersampled as specified
were fed into a recurrent UNet network. The network contains an initial recurrent portion:
aliased images from each T, echo time have a 5-layer processing stream of 2D 3x3 convolutions
with stride 1, yielding layers of depth 64, 128, 256, 512, and 1. Residual connections connect
input aliased images with processing stream outputs. 2D 3x3 convolutions with stride 1 and
residual connections transfer information between temporally adjacent corresponding hidden
echo time processing layers with weighting parameter Aw=0.2 [197]. This soft-weighted view-
sharing of neighboring T, weighted echo time images facilitated sharing of feature map
information between temporally adjacent echo time images, which can augment sharing of ky-k,

initializations to improve network image predictions. Outputs of all 4 echo time image
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processing streams were concatenated and fed to a UNet that predicted T2 maps. 2D 3x3
convolutions with stride 2 were used for the encoder, and 2D 4x4 transpose convolutions with
stride 2 for the decoder. Two additional architecture versions were also trained: one UNet with
no recurrent portion (“No RNN”; 35,116,037 trainable parameters) and a second in which all
layers apart from inputs to the recurrent portion and UNet had half the depth listed in Supp.

Fig. A.1 (“Reduced Parameters”; 9,958,246 trainable parameters).

(" 1. Ground Truth T, Map Generation "\ (2. Simulation of Accelerated Acquisition

m Extract T_71

MAPSS Ty, T, MAPSS T, Ground truth Coil-combined Undersampled
weighted images weighted images T, map magnitude T, T, weighted
\B3 Tip, 3 Ty, 1 shared) § / \U__ volume volume )

Multi-Component Loss Function
* Ap - L, loss for entire map
* Aur - ROI-specific L, loss
* Assimw - SSIM loss
* Areature - VGGNet-19 feature-based loss function

Registration
ll and fitting
———

(3. Deep Learnlng T, Map Predlctlon

B

Undersampled T, I l;fe;ciicted T,
weighted images of |~ map
slice (different TEs) I ﬂ
\ Recurrent UNet Architecture /

Figure 6.1 Proposed MAPSS Acceleration Pipeline. Proposed MAPSS Acceleration Pipeline.
Experiments in proposed study entail generating ground truth T, maps from MAPSS, simulating
accelerated acquisition of To-weighted MAPSS images, and training a network to predict T,
maps from undersampled images. (1) MAPSS contains 7 images, 3 that are T, weighted, 3 Ty
weighted, and 1 shared; the T, and shared image weightings are extracted, registered, and fitted
slice-wise to yield ground truth T, maps. To simulate accelerated acquisition, each volume of
coil-combined magnitude T, weighted images acquired at a given echo time are Fourier
transformed, undersampled along the ky-k; plane with a center-weighted Poisson disc pattern,
and inverse Fourier transformed to yield a simulated accelerated acquisition of a volume.
Finally, undersampled T, weighted images acquired at all echo times for the same anatomic slice
are concatenated and fed to the proposed recurrent UNet architecture, which predicts the T
map appearance for the slice. Training is done slice-wise with a multi-component loss function
that includes a novel ROI-specific L1 loss that optimizes predicted T, maps in cartilage and IVD
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ROIs, with other components that improve training stability and encourage retention of
textures.
6.3.3.2 Loss Function

Networks were trained with the multi-part loss function shown in Equation 6.1:

Lnetwork = ALlLLl + /1L1,¢LL1,¢, + ASSIMLSSIM + AFeatureLFeature

Equation 6.1 L, is a scaled global loss function detailed in equation 6.2, LL1¢ is the ROI-specific

L1 loss described in equation 6.4, Lgss, is an SSIM loss described in equation 6.5, and Lregtyre 1S
a feature-based loss function designed to retain sharper textures and described in equation 6.6.
ALy /’le, Assivr Areature are loss component weightings optimized through a hyperparameter

search.
L, is a scaled global L loss:

Ly, =|S(T2) = S(T2)|
Equation 6.2 T, represents ground truth T, Tz represents predicted T,, and S(x) is a translated
and scaled sigmoid operator that assigns more weight to higher T values. Sharp contrasts and
high T, values can easily be lost in accelerated acquisition schemes, so S(x) proved useful
through empirical testing in focusing networks to preserve these details. S(x) is defined below

in Equation 6.3:

The translated and scaled sigmoid operator S(x) is calculated as follows:

SG) = v+ G — ) (1 + exp(—(10/ G = 2)) (x — (xy +x)/2)))

Equation 6.3 x; and x;, are the low and high T, value limits where the sigmoid operator
weighting will transition from y; to y;. Parameters selected for the knee were as follows: x;=0
ms, x,=100 ms, ¥;=0.1, y,=1.0. In the hip: x;=0 ms, x;,=60 ms, y,=0.5, y,,=1.0. In the lumbar
spine: x;=0 ms, x,=150 ms, y,=0.25, y,,=1.0. A schematic of the operator that results from
parameters of all three anatomies can be found as Supp. Fig. A.2.

LL1¢is the ROI-specific L1 loss:

Liy = |S(T2p) = S(T2e )|

Equation 6.4 T, 4 represents ground truth T, values in the tissue of interest ¢ (IVD or cartilage),
scaled by S(x) (Equation 6.3), and T2,¢ is the same for predicted T,. Pixels corresponding to ¢
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are obtained from segmentation masks, the generation of which is described in section 6.3.3.3.
For both L, and LL1¢, L1 norms were used instead of L, due to reduced sensitivity to outliers,

leading to more stable trainings.
Lggp is an SSIM loss:
LSSIM = 1 - SSIM

Equation 6.5 SSIM is the structural similarity index between predicted and target maps.
Lrpeature 15 @ feature-based loss function designed to retain sharper textures:

Lpeature = |VGGT2 - VGszl

Equation 6.6 VGG, and VGGy, were the outputs of the 21 layer of a VGG-19 [198] network
pretrained on ImageNet when fed resized and normalized target and predicted T, maps,
respectively. Maps were resized to 224x224x1, concatenated with themselves along the
channel axis to yield 224x224x3 inputs, and normalized such that the channels had mean pixel
values of 0.485, 0.456 and 0.406, with standard deviations of 0.229, 0.224, and 0.225,
respectively.
Loss component weightings were optimized through constrained random hyperparameter
searches with the following ranges:

e Knee: AL1=11 /’ll‘l,(l) =50 — 150, ASSIM =0- 2, AFeature =0-0.5

® H|p Alel, AL1‘¢ =0- 3, ASSIM =0- 2, AFeature =0-1

o Spine: AL1=1' AL11¢ =1- 10, /‘{SSIM =10 — 100, AFeature =5-55

6.3.3.3 Training and Segmentation Details

Scans of all three anatomies were split into training, validation and test sets as shown in Table
6.1. In the knee, cartilage was segmented manually. In the hip, cartilage was segmented
manually for 4 central slices per volume. Segmentation in both was performed by research
assistants trained by radiologists with over 20 years of experience. Since the hip dataset had

substantially fewer segmented than unsegmented slices, the hip training set was bootstrapped
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to equalize the number of slices with and without segmentations (1,068 bootstrapped slices).
Finally, in the lumbar spine, IVDs were segmented with an ensemble of coarse-to-fine context
memory (CFCM) networks [117]. To calculate performance metrics and implement ROI-specific
training losses, these segmentation masks were leveraged to identify pixels in tissues of interest

(cartilage or IVD).

Signal values were scaled per slice for the middle 95% of pixel values to fall between 0 and 500
for the knee and lumbar spine, and 0 and 100 for the hip; these ranges were optimized
empirically. During training, imaging volumes were augmented with random translation (+10
pixels across phase and frequency directions) and random rotation (+5 degrees about slice
direction). All models were trained with learning rate 0.001 and Adam optimizer on an NVIDIA
Titan Xp 12 GB GPU with batch size of 1 so the model would fit on a single GPU. Separate
pipelines were trained for all 3 anatomies at R=2, 3, 4, 6, 8, 10, and 12. For each pipeline, and at
each trained R, a constrained random hyperparameter search was done for 15 iterations at 10

epochs per iteration to optimize 4, , AL1¢, Assim, and Ageqeure for visual fidelity of predicted

maps to ground truth. Visual fidelity was assessed in the search using NRMSE and Pearson’s rin

the tissue of interest [199].
(7) NRMSE = [T, = T, , (IT2l24) ™

Equation 6.7 Calculation of NRMSE in tissues of interest, where T, are ground truth T, values
and T, are predicted T, values. L, norms are calculated in both only for pixels in tissues of
interest ¢.
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Final pipelines across all anatomies and R were trained using optimized parameter sets until
validation loss did not decrease for 10 epochs. Key training details are summarized as part of

Table 6.1.

6.3.4 Experiments

6.3.4.1 Loss Function Ablation Study

An ablation study is key to understand contributions of loss components. Given optimized loss
function weights, every combination of loss components was ablated and corresponding
models were retrained until validation loss no longer decreased. “No RNN” and “Reduced
Parameters” networks were also trained while maintaining loss function components at
optimized values to assess the utility of simpler architectures. NRMSE and Pearson’s correlation
coefficient (r) were calculated in tissues of interest across the test set for original and ablated
models to determine loss component contributions to performance. Pearson’s r was deemed an
appropriate statistical test for this and subsequent experiments, as it is useful in assessing the
linear relationship between related pairs of interval data. While no formal NRMSE test was
done, it nonetheless allows for quantitative assessment of T, quantification quality and easy
comparison with results from other approaches. NRMSE is reported +1 standard deviation (s.d.);
Pearson’s r was deemed significant in accordance with corresponding P values, a=0.001, 0.01,
and 0.05. NRMSEs within tissues of interest of a given scan were also multiplied by mean T,

values within the tissue of interest of that patient, generating T, value equivalents of error rates.
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To more specifically evaluate the utility of the ROI-specific loss component, two loss function
configurations from the ablation study were further analyzed at all R: no ROI-specific loss

component (/1L1’¢ = 0; Ap,, Assim» Areature # 0) and no ROI-specific or feature-based
components (ALW,AFeature = 0; Ay, Assim # 0). These models were intended to represent

baselines in which all loss functions were preserved except the ROI-specific component, and a
standard reconstruction loss function of pixel and SSIM-based loss components, respectively.
Pearson’s r—evaluated in tissues of interest and globally—was calculated to determine the
degree and significance of correlation between predicted maps and ground truth, both globally

and within tissues of interest, ®=0.001, 0.01, and 0.05.

6.3.4.2 Evaluation of Accelerated Acquisition Scheme Performance

Three versions of our pipeline (full pipeline, “No RNN,” and “Reduced Parameters”) were
compared to state-of-the-art CS, DL, and DL/model-based solutions. At each R, MANTIS
(54,413,056 trainable parameters) and MANTIS-GAN (54,413,056 [Generator] and 2,763,648
[Discriminator] trainable parameters) pipelines were trained using published network
architectures, loss functions and undersampling strategies [134,139]. Loss function weightings
for both were optimized through grid hyperparameter searches yielding the following: (MANTIS)
Adata=0.1, Acnn=1; (MANTIS-GAN) A;4t4=0.1, Acnn=1, Ac4n=0.01. To apply CS reconstruction,
original MAPSS T,-prepared images were Fourier transformed into coil-combined k-space, 1D-
inverse Fourier transformed along the readout direction, and individual slices in k,,—k,
reconstructed using an L; wavelet-based algorithm with regularization coefficient 0.001 [148].

CS reconstructed images were registered to the TE=0 ms echo time image using a 3D rigid
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registration algorithm with a normalized mutual information criterion and fitted using
Levenberg-Marquardt fitting to yield T, maps. Performance of these approaches and our

proposed methods was evaluated through the following:

6.3.4.2.1 Comparison of Global and ROI-Specific Performance

To test for completeness of training, performance of our proposed pipelines was compared
against state-of-the-art models that did not use ROI-specific components in predicting T2 maps.
Pearson’s r (a=0.001, 0.01, and 0.05) was used to compare model performances and assess

strength of correlations to ground truth T».

6.3.4.2.2 Standard Reconstruction Metrics
Performance was reported in tissues of interest with standard reconstruction metrics: NRMSE
(mean #1 s.d.) and Pearson’s r (a=0.001, 0.01, and 0.05). NRMSEs were also converted into T

value equivalents by tissue compartment as in the ablation study.

6.3.4.2.3 T, Value Retention

Fidelity of predicted maps to ground truth T, was also assessed. First, predicted and ground
truth T, values were compared across tissues of interest within the test set (mean +1 s.d.),
generating violin plots for all three anatomies with overlaid boxplots for T, value distribution

comparison. T, agreement was also assessed through Bland-Altman analysis.
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6.3.4.2.4 Texture Retention

Gray Level Co-Occurrence Matrix (GLCM) [200] metrics were used to assess texture retention
within tissues of interest. GLCM contrast and dissimilarity are maximized by large local pixel
value changes and thus by sharper textures. GLCM homogeneity is maximized by small local
pixel value changes, while GLCM energy and angular second moment (ASM) are maximized by
few total pixel values within an image; hence, all three are maximized by smoothness. For each
anatomy and R, we calculated these texture metrics at 4 orientations (6=0°, 45°, 90° and 135°;
d=1 pixel) and averaged across all orientations. Finally, we calculated intraclass correlation
coefficients (ICCs) for all metrics with respect to ground truth (two-way mixed effects, single
rater [201]) and reported 95% ICC confidence intervals (a=0.001, 0.01, and 0.05). These tests
were chosen as appropriate, as they assess both reliability and agreement of associated
metrics, and in this use case, individual GLCM metric values themselves are considered the only

rater, justifying the ICC test type selected.

6.3.4.3 Repeatability Study

To assess the robustness of pipelines to different datasets, two additional splits of the knee, hip
and spine datasets were made, ensuring no patient was part of multiple validation and/or test
datasets and that all scans from a given patient were only in one of training, validation and test
for each split (folds 2 and 3 in Supp. Table A.2, where fold 1 is the original split). Additional
hyperparameters searches optimized loss function weights on the two new splits. Optimized
loss weights and corresponding T, quantification and texture retention performance for each

splits is presented at all tested R in the same manner as for the primary split.
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6.3.4.4 Raw Multicoil Data Assessment

An in-house pipeline was developed that leveraged GE Orchestra 1.10 and other postprocessing
tools to reconstruct coil-combined images from raw k-space data. As a proof of concept, knee
MAPSS scans were performed on 3 volunteers, hip scans for 2, and lumbar spine for 2, all using
the acquisition parameters listed for the retrospective datasets used for algorithm training, with
raw k-space data saved for all. Multicoil k-space data (after ARC for knee and hip) was
undersampled with the same center-weighted Poisson disc pattern described earlier, with each
coil seeing the same undersampling pattern and ky-k; lines being shared across different T,
weighted echo time k-spaces as previously described. Coil-combined images resulting from
undersampled multi-coil data at all tested R were fed through corresponding post-processing
pipelines to predict T, map appearance. A radiologist with 2 years of experience segmented
knee cartilage, hip cartilage, and intervertebral discs from these acquisitions, allowing for

visualizations of predicted T, maps and NRMSE calculations in ROls.

6.4 Results

6.4.1 Ablation Study Results

Voxel-wise performance metrics for ablation study models at R=8 are shown in Supp. Table A.3,
with T2 value NRMSE equivalents in Supp. Table A.4. Within the knee and hip, all loss
components were necessary to obtain the optimal combination of high Pearson’s r and low
NRMSE in cartilage. For the lumbar spine, while all loss components proved vital in maximizing

Pearson’s r and minimizing NRMSE in IVDs, performance improved when the initial recurrent

58



network was omitted. Though quantitative analysis is shown for all three pipeline versions in
subsequent experiments, the full model is designated as best for knee and hip, and the no RNN

for the spine.

ROI-specific and global assessments of best models and corresponding models trained without
an ROI-specific loss (A1,4=0) and models trained with a generic loss (A1,4=0, Areat=0) are shown in
Supp. Table A.5. In the knee and hip, across nearly all R, ROI-specific loss addition leads to
improved correlations between predicted and ground truth cartilage T, with diminished
performance globally. In the lumbar spine, which was trained with a substantially fewer batches
than the knee and hip pipelines, these trends were inconsistent across tested R. Example
predictions and ground truth for one slice of a patient in each pipeline are shown in Supp. Fig.
A.3, showing that patterns of local T, value elevations in cartilage and IVDs are better preserved

with an ROI-specific loss as opposed to pipelines trained without the loss component.

6.4.2 Visuals of Network Performance and Comparison with State-of-the-Art Models
Predicted T2 maps are displayed at select R for knee, hip and lumbar spine models in Figure 6.2
for our three pipelines and three methods from the literature. In knee, hip, and lumbar spine, T
guantification performance is strongest with our proposed methods, maintaining low error
rates, showing promising results compared with state-of-the-art methods through R=10.
Optimal architecture performances are further explored in Figures 6.3-6.5. As shown in Figure
6.3, predicted T, knee maps retained strong fidelity to ground truth within tibiofemoral joint

cartilage. Patterns within predicted maps became slightly more diffuse as R increased to 10, as
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indicated by a slight rise in NRMSE for cartilage in the slice, but visually, T, values and map
patterns are preserved. As seen in Figure 6.4, hip predicted maps preserve T; values well in
femoral and acetabular cartilage through R=10, although T, patterns become more diffuse by
R=10. Figure 6.5 shows T, map predictions in the lumbar spine. The L4-L5 IVD is shown in more
detail, where T quantification performance was acceptable at R=3, moderate at R=6, and worse

at R=10, as indicated by rising IVD NRMSEs.

ROI and global performance comparisons of our selected pipelines against state-of-the-art
approaches are in Supp. Table A.5. Across piplines trained with relatively large dataset (knee
and hip), DL and model-based approaches (MANTIS and MANTIS-GAN) outperformed our
proposed pipeline globally, but within cartilage ROIs, our pipeline exhibited stronger Pearson’s r
at each tested R. These trends were not as strong in the lumbar spine pipelines, possibly owing
to the randomness of training with a smaller dataset. Global and ROI-specific T, predictions are
further visualized in Supp. Fig. A.4, showing predicted T, values exhibit substantially more visual
fidelity to ground truth and lower NRMSE in state-of-the-art models compared to our pipeline,
but a reversal of that trend in cartilage. In the lumbar spine, at some but not all R, those trends

held, yielding similar conclusions to the Pearson’s r analysis.
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Figure 6.2 Comparison of predicted T, maps with ROI-specific methodologies to past
approaches. (a) Predicted T, maps in knee cartilage for a representative patient within test set.
T, quantification performance was best in pipelines trained with ROI-specific losses (Full Model,
Reduced Parameters, and No RNN), where strong fidelity to T, values and patterns of local
elevations within cartilage were maintained through R=10, while other tested approaches did a
poorer job in predicting T2 values in these maps. (b) Predicted hip cartilage T> maps showed
similar trends, where performance of the full model was especially strong, showing low T
guantification error and better retaining local T, elevations through R=10 than other
approaches. (c) Predicted T, maps in lumbar spine IVDs show higher T, quantification errors
than in hip and knee cartilage, but ROI-specific loss pipelines best preserved map textures and
values.
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Figure 6.3 T, quantification performance of optimal ROI-specific pipeline in knee cartilage. T
guantification performance of optimal ROI-specific pipeline in knee cartilage. (a) Visual pipeline
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performance within the knee for a representative patient, with corresponding NRMSEs for
cartilage in the predicted T, map slice. Performance remains strong through R=10, maintaining
T, patterns in the medial tibiofemoral cartilage, indicating pipeline utility. Predicted maps
generated by the network are masked using a cartilage segmentation mask and superimposed
on the ground truth, fully sampled TE=0 ms MAPSS echo time image. (b) Bland-Altman plots for
all scans within test set for which multiclass cartilage compartment segmentations were
available (n=16, 6 cartilage compartments for each). Predicted T, values demonstrate minimal
bias and tight limits of agreement across most tested R, with best performance coming from

patellofemoral cartilage.
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Figure 6.4 T, quantification performance of optimal ROI-specific pipeline in hip cartilage. T
guantification performance of optimal ROI-specific pipeline in hip cartilage. (a) Visual pipeline
performance within the hip for a representative patient, with corresponding NRMSEs for
cartilage in the predicted T, map slice. Predicted maps are masked using a cartilage
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segmentation mask and superimposed on the ground truth, fully sampled TE=0 ms MAPSS echo
time image. For this patient, T, patterns maintain through R=10, although local T, elevations are
more diffusely predicted at higher R. (b) Bland-Altman plots for all scans within test set (n=15, 2
cartilage compartments for each). Plots demonstrate very limited bias and even tighter limits of
agreement from R=2 through R=12 than knee pipeline, showing hip pipeline effectiveness in
reproducing T, values from accelerated MAPSS acquisitions.
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Figure 6.5 T, quantification performance of optimal ROI-specific pipeline in lumbar spine
intervertebral discs. T, quantification performance of optimal ROI-specific pipeline in lumbar
spine intervertebral discs. (a) Visual pipeline performance within the lumbar spine IVDs for a
representative patient, with corresponding NRMSEs for IVDs in the predicted T, map slice.
Predicted maps are masked using an IVD segmentation mask and superimposed on the ground
truth, fully sampled TE=0 ms MAPSS echo time image. Network performance is best through
R=6, after which local T elevations are diffuse and underestimated. (b) Bland-Altman plots for
all scans within test set (n=5, 5 IVDs plotted for each if segmentation of disc available). T, value
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predictions reflect some bias and fairly wide limits of agreement, particularly above R=4. These
results indicate progress but the need for improvement. Smaller lumbar spine dataset and test
set size are likely responsible for poorer model when compared to hip and knee performance,
as well as the relatively smaller number of slices in k;, which exacerbates undersampling effects.

6.4.3 Evaluation of T, Quantification Performance and Comparison with State-of-the-Art

Models

6.4.3.1 Voxel-wise T: Evaluation Fidelity

Pearson’s r and NRMSE across all anatomies and R for our approaches and state-of-the-art
methods are in Table 6.2. T, value NRMSE equivalents are in Supp. Table A.6. For all anatomies
and across nearly all R, T quantification performance is strongest in our methods, particularly in

the No RNN and full model pipelines, compared to state-of-the-art models.

An exhaustive examination of knee T, quantification performance, stratified by cartilage
compartments, is in Supp. Tables A.7 and A.8. For the full model, across all cartilage
compartments, T, estimation errors remained under 10% through R=10 across all cartilage
compartments while Pearson’s r ranged from 0.748 at R=2 to 0.491 at R=12, indicating strong
correlations between predictions and ground truth at R=2 and moderate correlations through
R=12 [202]. For some cartilage compartments and R, performance was stronger in the No RNN
pipeline. Interestingly, quantification performance was strongest in patellofemoral joint
cartilage, generally exhibiting lower NRMSE and stronger correlations. Our ROI-specific loss

pipelines outperformed state-of-the-art models in each cartilage compartment.
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Supp. Tables A.9 and A.10 show hip T, quantification performance across cartilage
compartments. As in the knee, quantification performance was strong, with error rates across
all cartilage under 9% through R=12 for the no RNN and full model pipelines. While the no RNN
pipeline had stronger quantification errors, the full model had higher Pearson’s r, which ranged
from 0.794 at R=2 to 0.517 at R=12, showing strong correlations between predictions and
ground truth through R=3 and moderate correlations through R=12. T, quantification
performance was slightly stronger in femoral than acetabular cartilage. Our pipelines again

outperformed state-of-the-art models in each cartilage compartment.

Supp. Tables A.11 and A.12 show lumbar spine T, quantification performance, which was mixed.
Pearson’s r across all discs was very high, ranging from 0.884 at R=2 to 0.643 at R=12 for the no
RNN model, indicating strong correlations through R=8 and moderate correlations through R=12
to ground truth. That said, IVD error rates were markedly higher across all R than in hip and
knee cartilage, ranging from 4.86% to 18.8%. Though there was some volatility, error rates and
Pearson’s r generally showed poorest T, quantification in L1/L2 and L2/L3 discs. Through R=8,
ROI-specific loss pipelines outperformed state-of-the-art models at nearly all disc levels, with
stronger Pearson’s r in most IVD levels through R=12.

Table 6.2 ROI-specific model performance in standard metrics from R=2 through R=12.
Performances of pipelines trained with ROI-specific losses and other state-of-the-art methods in
T, quantification error rates in knee cartilage, hip cartilage, and lumbar spine IVDs. NRMSEs are
reported *1 s.d., and Pearson’s r is reported with significances as follows: * P < 0.05, " P < 0.01,
P <0.001 (knee: n=90; hip: n=15; lumbar spine: n=5). Across all anatomies, performances
were strongest in ROI-specific loss pipelines (Full Model, Reduced Parameters, and No RNN): in
the knee, the No RNN and Full Model pipelines particularly excelled across all tested R; in the
hip, the No RNN pipeline was strong in maintaining minimal T, quantification errors, while the

Full Model and Reduced Parameters models had strongest correlations between predicted maps
and ground truth; in the lumbar spine, the No RNN pipeline especially had strong T,
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guantification performance. Performance in the knee and hip pipelines is strong and below
clinically significant T, changes across nearly all tested R, while Pearson’s r indicates strong T»
value preservation in the lumbar spine through R=6. T, quantification performance is thus
promising in all three pipelines, but particularly for the knee and hip.

R| Metric | Full Model | Reduced No RNN MANTIS |MANTIS-GAN| €S
Parameters

,| NRMSE [ 552+125 | 6.07£3.21 | 476£1.78 | 1444285 | 135£33 | 89232
Pearson'sr | 0.748%** | 0.736%** | 0.807*** | 0.587*** | 0.611*** | 0.620%**

,| NRMSE [ 6.52$217 | 7.18+3.08 | 6.39£2.59 | 165+3.43 | 15.1£2.89 | 9.92£3.23
Pearson'sr | 0.695%** | 0.668*** | 0.722%%* | 0.467*** | 0.502%** | 0.550%**

o|,| NRMSE [7.54%2.96 [ 956547 | 7.56%319 | 166£373 | 15745 |118:3.73
3% pearson'sr | 0.651%** | 0.637%** | 0.677*** | 0.451*** | 0.467*** | 0.486%**
El | NRMSE | 8.09%2.65 [ 107£667 | 844%349 [ 152£233 | 163£3.91 | 124%4.1
O°| pearson'sr | 0.612*** | 0.610%** | 0.629%** | 0.397*** | 0378* | 0.445%**

2l | NRVSE | 8.94t2.66 [959+383 [ 1014442 [167£273 | 1734239 [ 12.9+3.93
Pearson'sr | 0.585%** | 0.574%%* | 0.600%** | 0.352%** | (0364** | 0.410%**

1o NRMSE [977£344 | 102£361 | 93535 |17.6%248 |167+3.44 | 134376
Pearson'sr | 0.555%** | 0.514%%* | (Q5g5*** | (0327%* | (0333%** | (386***

1, NRMSE [107:232 | 9.93$3.76 | 105£337 | 182:45 |205+558 | 13.43.96
Pearson'sr | 0.491%** | 0.545%%* | 0511%%% | 0290%** | 0.287*** | (0.381***

,| NRMSE [3.97+1.03 | 41211 [3.79%0.807 [458£0993| 821142 | 14.8£278
Pearson'sr | 0.794%*%* | (0.782%%* | 0.770%** | 0.716%** | 0.514*** | 0.310%**

;| NRMSE [6.53+163 | 5.63:168 | 5258113 | 641+131 | 100£157 | 12.9£3.15
Pearson'sr | 0.705%** | 0.726%** | 0.703*** | 0.596*** | 0.372%** | (0.332%**

4] NRMSE | 615101 [617£147 [584£0891 733167 | 9.97£174 | 118+2.03
S| Pearson'sr | 0.646*** | 0.665*** | 0.648*** | 0.510%** | 0.333*** | 0.339%**

E| | NRMSE | 81:185 822206 | 748152 | 863232 | 968192 | 1184214
S|°| Pearson'sr | 0.587*** | 0.597*%** | 0.570%** | 0382%** | 0321%** | 0.334%**
2 o| NRMSE [6.97+193 | 6335133 | 6.98:145 | 102£2.72 | 12.0£2.64 | 10523
Pearson'sr | 0.598*** | (.588%** | (0.558%%* | (334%** | (0237%** | (0.347%**

1o NRMSE [899+265 8125128 | 87:346 |974%224 [105+191 | 102£24
Pearson'sr | 0.558%%* | (.534%%* | (0522%%% | 279%** | (0268*** | (.335%**

15 NRMSE | 77515 [827+219 | 7.34:138 | 9.74£223 [ 115£236 | 10.3£2.52
Pearson'sr | 0.517*%* | 0.566%** | 0.512%%% | 0280%** | 0.228*** | (0.349%**

,| NRMSE | 67117 | 6.86£157 | 486116 | 8.78+2.08 | 895+ 191 | 10.13.06
Pearson'sr | 0.865*** | 0.866%** | 0.884%** | (0.784*** | (0.785%** | (.802%**

o,| NRMSE [ 992239 [876%216 | 713169 | 11.0£1.17 | 113%174 | 948+ 14
Z|°| Pearson'sr | 0.836*** | 0.823*** | 0832*** | 0.717*** | 0712*** | 0.777***

£, | NRMSE 1032302 | 9732307 | 7.42%11 [121$124 | 126135 [ 113£231
A% pearson'sr | 0.799%** | 0.813*** | 0.819%** | 0.680%** | 0.671%** | 0.723%**

3; (| NRMSE 121358 [ 1224411 [ 1032331 | 156+265 | 121+19 | 120+276
3|°| Pearson'sr | 0.776%** | 0.764*** | 0.771*** | 0.660%** | 0.658*** | 0.728%**

NRMSE | 13.4+3.89 | 13.0£2.63 | 12.0£3.07 | 132+1.42 | 12.7+1.7 | 12.8+2.53

8| pearson'sr | 0.742%** | 0723%** | 0742%** | 0631%** | 0.645*** | 0.695%**
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R| Metric | Full Model | R€duced No RNN MANTIS |MANTIS-GAN cs

Parameters
NRMSE | 153+3.22 | 148+2.78 | 14.8+2.26 | 13.8+157 | 13.2+1.81 | 15.0+3.77

Pearson'sr | 0.695%** | 0.700%** | 0.672%** | 0.647*** | 0.636%** | 0.648%**
NRMSE | 18.1+1.95 | 23.1+2.71 | 188+2.76 | 14.8+3.03 | 141+1.88 | 248+11.2

Pearson'sr | 0.664*** 0.320*** 0.643*** 0.651*** 0.614*** 0.586***

10

IVDs

12

6.4.3.2 T, Value Retention on Region of Interest Averages

Bland-Altman plots are provided for the knee, hip and lumbar spine in Figures 6.3-6.5. In knee
and hip, T, values are predicted with minimal bias with respect to ground truth. The £1.96 s.d.
limits of agreement were less than approximately 6 ms with mean biases under +3 ms through
R=8 for knee cartilage (Figure 6.3). Among cartilage compartments, predictions in trochlear and
patellar cartilage showed the least bias, while tibiofemoral cartilage T, was generally slightly
overestimated. In the hip (Figure 6.4), +1.96 s.d. limits of agreement were less than
approximately +5 ms with mean biases under 3 ms through R=12, although T, quantification
performance was similar across femoral and acetabular cartilage. In the lumbar spine (Figure
6.5), limits of agreement were considerably wider than the hip and knee pipelines, particularly
above R=4. While the line of equality was contained in these limits at all R, spine pipelines
generally overestimated T, values. While at some particular R, a disc level saw poorer T,
guantification than others (i.e. L2/L3 at R=6), on balance, predicted maps yielded similar bias

and error across all discs.

Supp. Figure A.5 shows T value distributions in violin and boxplots. Plots reveal minimal bias in

hip cartilage predicted T, maps and slight but limited bias towards overestimating T, in knee

cartilage. In the lumbar spine, more volatility was observed in predicted T, distributions, likely

68



due to small test set size (n=5), but at least through R=6, these deviations had limited

magnitude.

6.4.3.3 Texture Retention

ICCs %1 s.d. for GLCM metrics are in Table 6.3 for our best performing pipelines: no RNN and full
model. In knee cartilage, ICCs showed significant correlations between predicted and ground
truth GLCM metrics at all R for smooth textures and many R for sharp textures, indicating good
to excellent reliability in preserving smooth textures (ASM and energy) at all R and moderate
reliability in preserving sharper textures at low R (dissimilarity). In hip cartilage, ICCs showed
significant correlations across all R in preserving smooth textures, and at low to moderate R for
sharper textures. Reliability in smooth texture preservation ranged from good to excellent for all
R and moderate for sharper textures at low to medium R. In both knee and hip cartilage, the full
pipeline saw substantially higher GLCM ICCs for smooth and sharper texture across nearly all R.
Within the lumbar spine, ICCs were significant across nearly all R for smoother textures. While
ICCs were reasonable high for some R in contrast metrics, confidence intervals were wide,
limiting findings of significant correlations. ICCs showed moderate to excellent reliability in
preserving smoother textures, and poor to moderate reliability for sharper textures. For the
spine, the No RNN model yielded optimal texture retention.

Table 6.3 Texture retention analysis in No RNN and Full Model pipelines. Intraclass correlation
coefficients (ICCs) of Gray Level Co-Occurrence Matrix (GLCM)-based metrics. Contrast and
dissimilarity are most sensitive to sharper image textures, while homogeneity, ASM, and energy
are most sensitive to smoother image textures. Significance in correlations is noted as follows: *
P<0.05 " P<0.01, " P<0.001 (knee: n=16; hip: n=15; lumbar spine: n=5). In the knee and
hip, Full Model pipelines outperformed No RNN versions in retention of smooth and sharp

textures. In the lumbar spine, the No RNN pipeline outperformed the Full Model version,
possibly because the smaller lumbar spine dataset size made training a larger network with a
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multi-component loss more difficult. In conjunction with standard reconstruction metrics, the
Full Model pipeline was selected as the best knee and hip model, whereas the No RNN pipeline
was selected as the best lumbar spine model. Top models in all anatomies preserved smoother
textures at nearly all tested R, while dissimilarity texture metrics showed sharper textures were
significantly correlated with ground truth and preserved in the knee and hip at low to medium
R. In the lumbar spine, mean ICCs for sharper textures at many tested R also were high, but
small dataset size likely led to wide standard deviations, preventing significant conclusions from
being reached. Many textures are preserved in predicted T» maps, particularly knee and hip.

GLCM Texture Metric

R Contrast Dissimilarity Homogeneity ASM Energy
2 | 0.307 £0.18** | 0.638 £ 0.12*** | 0.734 £ 0.09*** | 0.966 £ 0.015*** | 0.954 + 0.02***
_ 13 0.153+0.2 0.521 £ 0.15*** | 0.735+0.09*** | 0.962 £ 0.015*** 0.95 + 0.02***
§ 4 0.11+0.2 0.387 £ 0.17*** | 0.61 +0.12%** 0.973 £ 0.01%** 0.95 + 0.02***
= | 6| 0.0667+0.2 0.22 +0.19* 0.382 £ 0.17*** | 0.97 £ 0.015*** 0.94 + 0.025%**
..__? 8 0.061+0.2 0.111+0.2 0.0615+0.2 0.952 £ 0.02%** 0.9 £ 0.04%***
10| 0.0594+0.2 0.218 £ 0.19* 0.307 £0.18** | 0.961 £ 0.015*** | 0.928 + 0.03***
3 12| 0.0032+0.2 -0.066 + 0.2 -0.178 £ 0.19 0.927 £ 0.03*** | 0.861 + 0.055***
< 2 | 0.455+0.16*** | 0.599 £ 0.13*** | 0.32 £0.18*** 0.898 + 0.04*** 0.904 £ 0.04***
3 | 0.394+0.17*** | 0.523 £ 0.15*** | 0.383 £ 0.17*** | 0.709 £ 0.11%** 0.802 £ 0.07***
% 4 | 0.262 £0.18** | 0.305+0.18** 0.244 £ 0.18** 0.646 £ 0.12%** 0.754 £ 0.09***
ﬂg 6 0.103:0.2 0.0574+£0.2 0.061+0.2 0.874 £ 0.045*** | 0.869 £ 0.05***
Z | 8| 0.0645+0.2 0.0411+0.2 0.0435+0.2 0.922 £ 0.03*** | 0.911 £ 0.035***
10| 0.0474+0.2 0.0382+0.2 0.093+0.2 0.92 £ 0.035*** | 0.913 £ 0.035***
12| 0.0568 +0.2 0.0315+0.2 0.0885 £ 0.2 0.818 £ 0.065*** | 0.862 + 0.055***
2 | 0.312+£0.34* | 0.633£0.23*** | 0.837 £0.12*** | 0.945 £ 0.04*** | 0.957 £ 0.035***
_ | 3] 0.369+0.32* | 0.671+0.21*** | 0.816 £0.14*** | 0.976 £ 0.02*** 0.98 + 0.015***
§ 4 | 0.328+0.33* | 0.597 £0.25*** | 0.801 £ 0.15*** | 0.957 £ 0.035*** | 0.954 + 0.04***
= | 6| 0.235+0.35 0.475 £ 0.3** 0.645 £ 0.23*** | 0.939 £ 0.05*** | 0.941 £ 0.045***
..__? 8 | 0.199+0.36 0.487 £0.28** | 0.823 £0.13*** | 0.923 £ 0.06*** | 0.933 £ 0.055***
10| 0.127+0.36 0.308 £0.34 0.48 £ 0.29** 0.862 £ 0.11%** 0.855 £ 0.11%**
o 12| 0.198 +0.36 0.38 +0.32* 0.523 £ 0.28** 0.927 £ 0.06*** 0.914 £ 0.07***
T 2| 0.285+0.34 0.399 £ 0.32% 0.406 £ 0.31* 0.855 £ 0.11%** 0.841 £ 0.12%**
3 0.15+0.36 0.241£0.35 0.292+0.34 0.867 £ 0.1*** 0.85 +0.12***
% 4| 0.113+0.36 0.202 £0.36 0.282+0.34 0.836 £ 0.12%** 0.813 £ 0.14%**
ﬂg 6 | 0.0394+0.36 0.0504 + 0.36 0.0785 £ 0.36 0.793 £ 0.15%** 0.767 £ 0.16***
Z | 8 | 0.0229+£0.37 | 0.000593 £0.37 | -0.0583 +0.37 0.682 £ 0.21%** 0.653 £ 0.22%**
10(-0.00292 £0.36 | -0.0328 +0.37 -0.196 £ 0.36 0.644 £ 0.23%** 0.621 £ 0.24%**
12 (-0.00208 £ 0.37 | -0.0312 +0.36 -0.0646 + 0.36 0.712 £ 0.2%*** 0.687 £ 0.2***
2 0.557+0.7 0.695 £ 0.62 0.744 £ 0.57* 0.892 £ 0.35** 0.923 £0.27**
ol (3] 0.499+0.73 0.615 £ 0.67 0.644 £ 0.66 0.819 £ 0.48* 0.872 £ 0.39*
;,5,- § 4 0.236+0.8 0.421+£0.76 0.497 £0.73 0.67 £ 0.64 0.775 £ 0.54*
_‘E E 6 | 0.341+0.78 0.428 £0.76 0.262£0.8 0.566 £ 0.7 0.67 £ 0.64*
E|> |8 | 006334081 0.152+0.8 0.276 £ 0.79 0.685 + 0.62 0.728 £ 0.58*
3 10| -0.0393+£0.81 | -0.0631+0.81 -0.0699 £ 0.81 0.40310.76 0.479 £ 0.74*
12| -0.0697 £ 0.81 -0.156 + 0.8 -0.424 £ 0.76 0.16 £0.8 0.198 £ 0.8*
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R GLCM Texture Metric
Contrast Dissimilarity Homogeneity ASM Energy

2| 0.496+0.73 0.731 £ 0.58* 0.883 £ 0.37** 0.967 £ 0.14%** 0.975 £ 0.11%**
o 3| 0.357+0.78 0.615 £ 0.67 0.807 £ 0.5* 0.909 £ 0.31** 0.934 £ 0.24**
;,5,- % 4| 0.336+0.78 0.607 £ 0.68 0.771 £ 0.54* 0.874 £ 0.38* 0.91 +0.31**
_‘E ﬂg 6 | 0.307+0.78 0.53+0.72 0.604 £ 0.68 0.903 £ 0.32%** 0.916 £ 0.29**
clZ |8 0.2+0.8 0.4+£0.76 0.59+0.68 0.847 £ 0.44* 0.871 £ 0.39*
3 10| 0.0696 +0.81 0.184+0.8 0.386 £ 0.76 0.692 £ 0.62 0.726 £ 0.59*

12| 0.0157 +0.82 0.0858 + 0.81 0.325+0.78 0.561+0.7 0.591 £ 0.68*

6.4.4 Repeatability Study

Optimal loss weightings from hyperparameter searches on the two additional splits are in Supp.
Table A.13. Results of trainings on additional splits in T quantification error, Pearson’s r, and
texture metrics are in Supp. Tables A.14-A.16. In the knee and hip pipelines, experiments show

comparable results across all folds for these metrics. In the lumbar spine, Pearson’s r exhibited

similar values across all folds, but in some cases, mean texture metric ICCs and NRMSEs

exhibited substantial differences. However, confidence intervals were very wide for ICCs and

NRMSEs in the lumbar spine, likely due to limited test set size (n=5).

6.4.5 Raw Multicoil Data Assessment

Supp. Fig. A.6 shows T, maps predicted from our proposed pipelines on retrospectively

undersampled raw k-space data. In the knee, T, quantification errors were low through R=12,

with local T, elevations preserved and little dip in performance compared to corresponding

retrospectively undersampled coil-combined knee data. In the hip, T> quantification errors were

low, with local T; elevations reproduced at most R; while performance at higher R matched

expected performance from coil-combined experiments, lower R quantification errors were

slightly higher. Performance was more volatile in the lumbar spine, where through R=4, T,
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guantification errors matched expected results and local T, patterns were generally preserved,

but performance degraded substantially above R=4.

6.5 Discussion and Conclusions

In this work, we present data-driven pipelines that leverage recurrent UNet architectures and
multi-component losses to accelerate MAPSS T, mapping for anatomies where a subset of
tissues is of particular clinical interest. By image processing and standard reconstruction
metrics, through R=10, our knee pipelines retained fidelity to T, values with tight limits of
agreement, preserving smooth textures with good to excellent reliability and sharper ones with
moderate reliability for most tested R. While the no RNN pipeline delivered lower NRMSEs and
higher Pearson’s r across many cartilage compartments and R than full model, its texture
retention was poorer, making the full model better suited to preserve small, key diagnostic
features. In hip cartilage, predicted maps retained T, fidelity through R=12 with tight limits of
agreement, preserved smooth textures with good to excellent agreement across tested R, and
maintained sharper textures at low to moderate R. As with the knee, texture retention was
strongest in the full pipeline despite lower no RNN NRMSEs. In IVDs, the no RNN pipeline
delivered best standard reconstruction metric and texture retention performance. Despite
maintaining smoother textures with moderate to excellent agreement across tested R and
preserving sharper textures at lower R, the IVD pipeline revealed biases and fairly wide limits of
agreement in T, preservation, particularly at R=6 and higher. When assessed on retrospectively
undersampled multicoil raw k-space data, the knee and hip pipelines saw minimal degradation

in performance as compared to results from images undersampled via synthetic k-space,
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whereas the lumbar spine pipeline exhibited similar performance through R=4. Furthermore,
repeatability studies indicated that, particularly for the hip and knee, performance was stable
with respect to datasets. All told, these metrics indicate promise for the knee and hip pipelines

in MAPSS T, mapping acceleration, and progress but room for improvement in IVDs.

Assessments of ROI-specific loss component utility showed its potential for improving
predictions in accelerated acquisition schemes. When trained with sufficiently large datasets, as
our knee and hip pipelines were, its inclusion saw stronger fidelity to local T, patterns in
cartilage ROIs and reduced T, quantification errors compared to analogous pipelines trained
without the ROI-specific loss component. Compared to state-of-the-art DL pipelines, knee and
hip pipelines saw improved Pearson’s r in cartilage ROls but poorer global Pearson’s r, as
expected from the focused training approach. Interestingly, CS approaches exhibit relatively
strong NRMSEs while generating relatively smooth predicted T, maps; this is possibly because in
training, DL-based approaches simultaneously removed aliasing artifacts and performed T
fitting, and could attempt to preserve finer details than a CS approach performing those steps
sequentially. While our approaches outperformed state-of-the-art methods at many R and
tissue compartments in the lumbar spine, global Pearson’s r indicated this may have been
partially due to some models being more completely trained than others. These results may
have been different with a larger lumbar spine training set. Nonetheless, the value of ROI-
specific loss functions in accelerated acquisition pipelines is clear: with sufficiently large
datasets, they can optimize for ROls and outperform state-of-the-art approaches at high R, as

existing approaches are optimized for global and not ROI-specific performance.
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We can contextualize performance by comparing quantification errors to clinically significant T
changes. In the knee, T, increases 13.4% in lateral femoral condyle (LFC) cartilage, 12.3% in
medical femoral condyle (MFC) cartilage, and 8.1% in medial tibial condyle (MTC) cartilage
among patients with mild OA compared to controls [203]. Our top-performing knee pipeline saw
errors below this benchmark through R=12 in the LFC and at R=2 in the MTC. In IVDs, T,
decreases 36.3% in the nucleus pulposus and 24.2% in the annulus fibrosus from healthy to
degenerative discs [204]. Our top-performing pipeline saw quantification errors for each disc
below the more stringent 24.2% through R=12. In the hip, T, values among healthy patients that
progress to OA within 18 months are 7.3% higher in femoral and 5.2% higher in acetabular
cartilage compared to controls [205]. Our top-performing hip pipeline had errors below these
benchmarks at all R in femoral cartilage and at R=2 in acetabular cartilage. Clinical metrics thus
depict promise for pipelines in all three anatomies in maintaining sub-clinical-significance

guantification errors.

Clinical and standard metrics show knee and hip pipeline performances to be particularly
promising—the T, values, map texture preservation, and error rates relative to clinical
benchmarks all mark meaningful progress towards reducing cMRI acquisition time for eventual
clinical use. That said, while lumbar spine performance was strong by clinical metrics, it lagged
the knee and hip by standard reconstruction metrics. One explanation is dataset size: the
lumbar spine dataset had substantially fewer scans and imaging slices than the knee and hip.

This has twofold impact: (1) the strength of a model trained from a smaller dataset is inherently

74



limited, and (2) having only 5 test set scans limits statistical power and induces wide standard
deviations of metrics, preventing significant conclusions from being reached. The effects of this
small dataset size particularly surface in repeatability studies. Furthermore, lumbar spine
acquisitions were more susceptible to breathing artifacts and had fewer slices than the hip and
knee; undersampling therefore left fewer lumbar spine ky-k; lines sampled compared to the hip
and knee, inducing worse initializations and possibly poorer performance. Nonetheless, to our
knowledge, this is the first DL application to accelerate lumbar spine cMRI, marking progress
that must be furthered with additional data procurement and algorithm development for

clinical utility.

The GLCM-based textural retention evaluation demonstrated a framework through which
reconstruction performance can be better evaluated than through standard metrics like SSIM,
NRMSE, and PSNR. ICCs of GLCM metrics between predicted and ground truth T, maps allow for
intuitive, scaled measurements that can reflect how well a particular texture was preserved: for
example, visual inspection of predicted T, maps in knee and hip cartilage in Figures 3-4 indicate
that sharp textures are preserved better by the hip pipeline. This qualitative observation is
confirmed by the GLCM Dissimilarity ICCs observed for the full model in the hip and knee
pipelines in Table 3 at several tested R. This work could be furthered by extending this analysis
to additional GLCM metrics for an even more thorough assessment of textural feature retention.
Additional future improvements could also include pre-processing cartilage and IVD tissues
prior to GLCM metric calculation to improve stability of these metrics, as other groups have

started to do [206].
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Moreover, by showing results at 7 acceleration factors instead of the 2-3 typical in the literature,
we found performance did not always degrade steadily as R increased. Networks therefore may
be sensitive not just to general undersampling patterns, but also the specific nature of the
pattern. Thus, when future DL reconstruction pipelines are trained, a library of undersampling

patterns may be advisable to encourage robustness to sampling patterns [140].

This study has limitations. First, we used retrospectively undersampled coil-combined
magnitude echo time images that, in the knee and hip, had undergone ARC processing in their
reconstruction, with 4 edge slices discarded for all data. Due to coil combination and post-
processing, the k-space being undersampled would not match the acquisition’s multi-coil k-
space. Additionally, while we undersampled the MAPSS acquisition ellipse for each anatomy, the
hip acquisitions had ‘no phase wrap’ applied, meaning that tested undersampling patterns
would differ from those implemented on the scanner. While our raw k-space experiments show
performance degradation was limited compared to coil-combined magnitude image
experiments, models would be stronger if trained with a similarly sized multicoil k-space
dataset. Second, this network is specific to our sampling patterns and acquisition parameters,
and new pipelines would need to be trained should parameters like MAPSS T, echo times be
substantially changed. Finally, the lumbar spine dataset size is rather small, limiting the power of

conclusions.
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To conclude, this study shows a novel means of training DL pipelines to accelerate cMRI in
anatomies where specific tissues are of heightened clinical importance. In knee and hip,
pipelines were effective at high R in maintaining textures, keeping fidelity to T, values, and
minimizing T, quantification errors, whereas in the lumbar spine, the pipeline performed
reasonably by those same criteria, but poorer in T, value fidelity and quantification errors. This
reflects progress towards clinically useful pipelines that specialize in MSK T, mapping. The
GLCM-based textural retention analysis elucidates an alternate to standard reconstruction
metrics, allowing for intuitive measures of the types of features best preserved by a accelerated
acquisition schemes, potentially allowing for better quantitative assessment of model
performance. Future directions include multicoil k-space training, simultaneous MAPSS T3, and

T, acceleration, and temporal undersampling of T, weighted echo time images.
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Chapter 7 - K2S Challenge: From Undersampled K-Space to Automatic Segmentation
The following has been reformatted and reproduced with full permission from the publisher. It
appeared in Bioengineering as:

Tolpadi, A.A., Bharadwaj, U., Gao, K.T., et al. K2S Challenge: From Undersampled K-Space
to Automatic Segmentation. Bioengineering 10:267 (2023).

https://doi.org/10.3390/bioengineering10020267

7.1 Abstract

Magnetic Resonance Imaging (MRI) offers strong soft tissue contrast but suffers from long
acquisition times and requires tedious annotation from radiologists. Traditionally, these
challenges have been addressed separately with reconstruction and image analysis algorithms.
To see if performance could be improved by treating both as end-to-end, we hosted the K2S
challenge, in which challenge participants segmented knee bones and cartilage from 8x
undersampled k-space. We curated the 300-patient K2S dataset of multicoil raw k-space and
radiologist quality-checked segmentations. 87 teams registered for the challenge and there
were 12 submissions, varying in methodologies from serial reconstruction and segmentation to
end-to-end networks to another that eschewed a reconstruction algorithm altogether. Four
teams produced strong submissions, with the winner having a weighted Dice Similarity
Coefficient of 0.910 + 0.021 across knee bones and cartilage. Interestingly, there was no
correlation between reconstruction and segmentation metrics. Further analysis showed the top
four submissions were suitable for downstream biomarker analysis, largely preserving cartilage

thicknesses and key bone shape features with respect to ground truth. K2S thus showed the
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value in considering reconstruction and image analysis as end-to-end tasks, as this leaves room
for optimization while more realistically reflecting the long-term use case of tools being

developed by the MR community.

7.2 Introduction

Magnetic Resonance Imaging (MRI) has emerged as one of the strongest medical imaging
modalities for clinical use, offering exquisite soft tissue contrast for visualizing tissues such as
ligaments, cartilage, and muscle [207,208]. Conventional MR sequences see the weighting of
images in accordance with intrinsic MR parameters such as T1 and T2 and allow for suppression
or saturation of signal from tissue types such as fat or fluid [57,61]. As such, MR images can be
tailored for a given clinical context. Furthering this are recent developments of advanced
sequences such as zero echo time (ZTE) and ultrashort echo time (UTE), which allow for high-
resolution imaging of additional tissues such as tendons in musculoskeletal imaging [209-212].
MR has the added advantage of not exposing subjects to ionizing radiation compared to
alternatives such as radiographs and computed tomography (CT). Despite these advantages,
however, MR faces several challenges, including (1) long acquisition times and (2) the
requirement of time-consuming and laborious radiologist annotation and interpretation of

images to extract clinical meaning [213,214].

Fortunately, several tools have been developed to address these concerns. In the case of long
MR scan times, acquisitions can be accelerated by sampling fewer points in k-space, the raw

frequency-based domain in which MRI signals are obtained. This undersampling induces aliasing
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artifacts in resulting images that can be removed by image reconstruction algorithms. In recent
years, considerable effort has been put into developing several families of reconstruction
approaches: (1) compressed sensing (CS) algorithms iteratively reconstruct images by ensuring
consistency with acquired k-space and imposing sparsity on the reconstructed image in an
alternate domain [128,170,171,215]; (2) parallel imaging (P1) algorithms exploit the redundancy
of using multiple coils to acquire the same imaging volume to reduce acquisition times at the
expense of signal-to-noise ratio (SNR) [63,166,167]; (3) deep learning (DL) approaches use
complex, nonlinear models to impute full-length acquisition images from aliased images and/or
undersampled k-space [134,216]. Other approaches growing in popularity include magnetic
resonance fingerprinting (MRF) and low-rank and sparse modeling approaches [172,217,218].
On the other hand, a host of DL tools have emerged to automate mundane MR image-
processing tasks. For instance, the introduction of the U-Net in 2015 seeded major advances in
medical image segmentation from limited data, paving the way for more complicated
architectures that have been applied for accurate lumbar spine and knee cartilage
segmentation, among others [116,219-221]. Yet other DL applications include automatic
assessments of cartilage thickness, staging of anterior cruciate ligament injury severity,

diagnosis of lumbar spine anomalies, and analysis of bone shape [109,222-224].

This body of work unquestionably reflects substantial advances made by the MR research
community. But it is noteworthy that with extremely few exceptions, the challenges of long
acquisition times and image analysis have been treated as separate entities [225]. The long-

term vision, however, would be a software package that addresses these challenges
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simultaneously, raising a niche for optimization. Namely, image analysis algorithms are designed
for full-length acquisition of MR image inputs, but there is no guarantee and little investigation
that they would perform similarly well on reconstructed images from the accelerated
acquisition. On the other hand, image reconstruction algorithms are overwhelmingly optimized
for metrics such as normalized root mean square error (nRMSE), peak signal-to-noise ratio
(PSNR), and structural similarity index (SSIM), which correlate to the perceptual quality of a
reconstructed image [226—228]. In other words, reconstruction algorithm image outputs are
optimized for visually appealing images and radiologist interpretation, but what if their outputs
were instead intended as features for subsequent image analysis pipeline input? Could the
features required for accurate radiologist readings with respect to ground truth differ from
those required for DL image analysis pipeline input to yield strong performance? More
generally, if image reconstruction and annotation are viewed as end-to-end rather than serial

tasks, is it possible to attain stronger image analysis performance?

To answer these questions, we hosted the K2S challenge at the 25th International Conference
on Medical Image Computing and Computer-Assisted Intervention (MICCAI) in Singapore.
Previously, challenges and/or the releases of large datasets have spurred major advances in the
MR research community. The release of the Osteoarthritis Initiative (OAIl) and Multicenter
Osteoarthritis Study (MOST) precipitated substantial advances in understanding osteoarthritis,
total knee replacement, and knee pain, among others [110,229-232]. On the other hand, the
fastMRI challenge was crucial in (1) making image reconstruction more accessible to the MR

research community by releasing large datasets including raw k-space, and (2) seeding major
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advances in reconstruction research such as popularizing unrolled DL architectures
[131,233,234]. Our objective was to fill a similar niche in the end-to-end reconstruction and
image analysis space. As such, we curated the K2S dataset, which consists of 300 patients that
underwent 3D fat-suppressed knee scans, for each of whom k-space data and radiologist-
approved 6-compartment tissue segmentations were released. The use of Fourier-transformed
DICOM images as k-space would be problematic, not maintaining consistency with the multicoil
nature of most MR acquisitions and the numerous post-processing steps to convert raw
multicoil k-space into DICOM images, while also likely overstating performance [196];
importantly, our released dataset thus was of raw multicoil k-space data. Challenge participants
were to train algorithms that segmented knee bones and cartilage from 8x undersampled
acquisitions. Winners were selected using a weighted dice similarity coefficient (DSC) that
assessed the accuracy of resulting segmentations, but additional analyses were conducted to
assess segmentation quality, determine if strong image reconstruction was a prerequisite for
strong segmentation, and gage the suitability of submitted segmentations for biomarker

analysis [235].

In short, the contributions of the K2S challenge and this paper are as follows:
Reframing image reconstruction and annotation as end-to-end tasks for an eventual clinical
workflow rather than sequential steps.

e Curating a large dataset (n = 300) with 3D raw k-space data and tissue segmentations to

allow training of segmentation algorithms directly from undersampled k-space, and
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whatever additional research objectives may emerge from having raw k-space and
segmentations in the same dataset.

e Investigating whether strong image reconstructions are a prerequisite for strong tissue
segmentations.

e Assessing if segmentation algorithms trained from 8x undersampled data are suitable for

biomarker analysis.

7.3 Methods

7.3.1 Challenge

K2S challenge participants were responsible for predicting 6-class knee tissue segmentations
(femur, tibia, patella, femoral cartilage, tibial cartilage, and patellar cartilage) from 8x
undersampled k-space data. An overview of the steps involved in dataset curation, the
challenge objective, and the timeline can be viewed in Figure 7.1, with details on all steps and

evaluation criteria described below.
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Figure 7.1 K2S challenge schematic. Overview of steps involved in human-in-the-loop training of
models to generate ground truth bone and cartilage segmentations, and the process for
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radiologist approval of final 300 segmentations to be included in K2S dataset. The K2S challenge
was for participants to segment knee bones and cartilage from 8x undersampled k-space, with
the training set released on 15 April, the test set released on 6 July, and the submission deadline
on 21 July.

7.3.2 Dataset

7.3.2.1 Subject Eligibility and Sequence Information

Subjects at the UCSF Orthopedic Institute between 14 June 2021 and 21 June 2022 were
scanned with an imaging protocol that included 3D fat-suppressed CUBE acquisitions (n = 816).
There were no exclusion criteria placed on patients for inclusion in the eventual K2S dataset,
and patients were scanned in accordance with all pertinent guidelines, including approval from
the UCSF Institutional Review Board (Human Research Protection Program), obtaining informed
consent from all study participants. The 3D fat-suppressed CUBE sequence was selected for K28,
as 3D sequences have higher SNR compared to 2D imaging, allowing for higher resolution
acquisitions that can be reformatted into multiple planes for subsequent research objectives.
Scans were performed on a GE Discovery MR750 3T Scanner using an 18-channel knee
transmit/receive coil. The full-length acquisition time of the sequence was 4 min and 58 s.
Complete acquisition parameters are listed in Table 7.1.

Table 7.1 Acquisition parameters for 3D fat-suppressed CUBE sequence used in K2S dataset, and
for this challenge.

MR Acquisition Information
Scanner: GE Discovery MR750 3T Scanner (GE Healthcare, Milwaukee, WI)
Gradient System Max Strength: 50 mT/m
Max Slew Rate: 200 mT/m/ms
Coil: 18-channel knee transmit/receive coil (Quality Electrodynamics (QED), Mayfield Village, OH)
Slice Thickness: 0.6 mm (0.6 mm

TR/TE: 1002/29 ms FOV: 150 mm . .
spacing between slices)
Flip Angle: 90 SAR: 0.0939 Echo Train Length: 36
Frequency: 128 Bandwidth: 244 ARC [150]: 4 (R=2inky, k)
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MR Acquisition Information
Image Dimensions: 512 x 512 x 200
Resolution: 0.586 mm x 0.586 mm x 0.6 mm
Voxel Size: 0.293 mm x 0.293 mm x 0.6 mm

Acquisition Matrix:
256 x 256 x 200

7.3.2.2 Extraction of ARC-Reconstructed Multicoil Raw k-Space Data

An in-house pipeline was developed replicating all post-processing steps done on an MR
scanner to go from raw k-space data to DICOM images viewed by clinicians for diagnostic
decisions. To the best of the authors’ knowledge, no centralized resource is available describing
all these steps, which can make it difficult for those interested in reconstruction to familiarize
themselves with the process before model development. The authors thus saw value in
describing these steps, shown schematically in Figure 7.2, with examples of pipeline
intermediates at several steps in Figure 7.3. Unless otherwise specified, all post-processing steps

were implemented using functions in GE Orchestra 1.10.

Autocalibrating
Reconstruction for
Cartesian imaging (ARC) Fermi filtration Zero-padding Post-processed

Raw acquired
k-space

k-space

i

Inverse Fourier ASSET-based coil Extract magnitude
Post-processed Transform combination image
k-space
PURE surface coil GRADWARP gradient . . .
inhomogeneity nonlinearity Orientation correction
correction correction and scaling DICOM

n

Images

Figure 7.2 k-Space and image space post-processing steps for the in-house pipeline to
reconstruct DICOM images from raw scanner data. Briefly, the steps in k-space are as follows:
ARC reconstruction (parallel imaging), Fermi filtration to remove Gibbs artifacts, and zero-
padding to bring the image to the intended output resolution. Image-space processing included
coil combination, surface coil intensity correction, and gradient coil inhomogeneity correction.
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b ||

Figure 7.3 Intermediate outputs within the post-processing pipeline going from raw k-space to
DICOM images. Each pane of the image reflects the output of the image after the step described
by the pane title.

7.3.2.2.1 k-Space Post-Processing

Some sequences may leverage Pl techniques (such as ARC or GeneRalized Autocalibrating
Partial Parallel Acquisition (GRAPPA)) to acquire fewer lines within k-space, instead exploiting
already acquired data across multiple coils to mitigate aliasing artifacts at the expense of SNR
[63,150]. This was the case for our sequence; consequently, the first step in post-processing raw
multicoil k-space data was applying ARC to impute unacquired k-space lines. Subsequently,
Fermi filtration was applied: given MR images are often zero-padded in k-space, ringing artifacts

can emerge from the sharp boundary in k-space between nonzero and zero points [236]. A
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Fermi filter smooths this boundary, reducing ringing artifacts at the expense of sharpness in the
reconstructed image. A custom Fermi filtration function was used, using the Fermi filtration
radius and width parameters extracted from raw sequence metadata. After Fermi filtration, k-
space was zero-padded to the intended image dimensions (in our case, from 256 x 256 x 200 to
512 x 512 x 200), completing k-space post-processing. All k-space post-processing was on

multicoil data.

7.3.2.2.2 Image Space Post-Processing

Post-processed k-space was 3D inverse Fourier transformed to image space for each of the 18
coils and coil-combined to yield a single-coil image. The most basic means of coil combination is
root sum-of-squares, but GE provides another method based on Array coil Spatial Sensitivity
Encoding (ASSET), which leverages sensitivity maps in a Pl-inspired technique to do coil
combination [237]. Magnitude images were then calculated, after which GE’s Phased array
Uniformity Enhancement (PURE) was used to perform surface coil intensity correction
[238,239]. This was followed by GRADWARP, which warps images to correct for inhomogeneities
in gradient coils [240]. A final step in post-processing was correcting image orientation and

scaling pixel values, yielding DICOM images used by clinicians for diagnostic purposes.

In the context of segmenting undersampled images, one complication emerges: in GRADWARP,
the MR image is warped such that it no longer corresponds to k-space. As such, the post-
processing pipeline intermediate prior to GRADWARP must be segmented, or the GRADWARP

function must be integrated into model training itself while segmenting DICOM images. Due to
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the difficulties of implementing the latter (backpropagating through GRADWARP would not be

trivial), our solution was the former.

7.3.2.3 Ground Truth Segmentation Generation
Ground truth knee cartilage and bone segmentations were generated by separate DL pipelines

and post-processing techniques, each trained with a radiologist in the loop.

7.3.2.3.1 Cartilage Segmentation Pipeline

480 3D fat-suppressed CUBE sequences were acquired across three sites (UCSF, San Francisco,
CA, USA; Hospital for Special Surgery, New York, NY, USA; Mayo Clinic, Rochester, MN, USA) with
similar acquisition parameters to the 3D fat-suppressed CUBE sequences ultimately used in K2S.
These volumes were manually segmented by readers trained by a senior radiologist with over
25 years of experience, split 400/80 into training and validation, and used to train a 3D V-Net for
multiclass cartilage segmentation [104,241]. This initial pipeline was inferred on 20 3D fat-
suppressed CUBE sequences from the UCSF Orthopedic Institute with K2S acquisition
parameters, but on volumes acquired prior to the eligibility window for K2S inclusion. The 20
inferred segmentations were manually corrected and quality checked (QC) by an intern under
radiologist supervision. 15 of the 20 cases were used to fine-tune the pipeline in a second
training, seeing convergence reached after 5 epochs, and the remaining 5 cases were used to

select final model parameters.
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After the second training, the V-Net was inferred on all 816 cases eligible for K2S. The following
post-processing steps were selected and applied under radiologist supervision: 3D
morphological opening, 3D connected components analysis (preserving the largest femoral and
patellar and the 2 largest tibial cartilage components), and 2D sagittal connected components

analysis (preserving all connecting components larger than 150 pixels).

7.3.2.3.2 Bone Segmentation Pipeline

40 3D fat-suppressed CUBE sequences acquired at the UCSF Orthopedic Institute prior to the
eligibility window for K2S inclusion were manually segmented by a trained reader for bone,
tibia, and patella. These cases were used to train a baseline 3D U-Net for a binary bone
segmentation model. An additional 15 cases acquired using the K2S acquisition parameters
were also manually segmented by three radiologists with three (J.L.), three (P.G.), and four (F.G.)
years of experience. The trained baseline model was inferred from these cases, which were

used for model fine-tuning.

The fine-tuned U-Net was inferred on the 816 cases with the following post-processing steps,
applied under radiologist supervision: filling holes, morphological opening, and connected
components analysis (preserving all connecting components larger than 1000 voxels and with
centroids in central 50% of slices). Finally, the sizes of connected components were used to

extract bone labels (femur, tibia, and patella).
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7.3.2.4 Selection of Cases for K2S Dataset

Of the 816 potential cases, the target was selecting 300, with the intent of maintaining sufficient
cases for training reconstruction and segmentation models, maintaining some variety of
anomalies in included cases, and ensuring a reasonable memory footprint given computational
constraints. Radiologists with three (J.L.) and four (F.G.) years of experience developed 5-point
LIKERT scales to assess segmentation quality: (1) unusable; (2) poor, with some mislabeling of
bones or cartilage; (3) useable, with some major issues, but correct labeling of bone or
cartilage; (4) good, with some minor but acceptable issues; (5) (near) human-like. Examples of
cartilage segmentation LIKERT scores for the 5 classes are seen in Figure 7.4, and for bone in
Figure 7.5. Segmentation LIKERT scores were calculated for bone and cartilage from videos of
the segmentations that cycled through all sagittal slices. Cases with acceptable segmentation
quality for both cartilage and bone were selected as the K2S dataset. Cartilage LIKERT scores for
K2S were as follows: 5:14; 4:175; 3:110; 1:1. Bone LIKERT scores were as follows: 5:112; 4:179;

3:9.
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LIKERT = 4 LIKERT = 3 LIKERT = 2 LIKERT = 1

N |

Tibial Cart. Inset Femoral Cart. Inset Segmentation Overlay
ey Y -

Patellar Cart. Inset

Figure 7.4 1-5 LIKERT cartilage segmentation scores overlaid on ground truth knee scans. In this
example, the LIKERT of 5 indicates human-like segmentation; the LIKERT of 4 shows a slight
underestimation of patellar and tibial cartilage; the LIKERT of 3 is assigned due to minor
underestimation of patellar and tibial cartilage, with soft tissue detected as femoral cartilage;
the LIKERT of 2 is assigned due to missing mask areas for patellar and tibial cartilage, with
femoral cartilage overestimation; the LIKERT of 1 is missing a tibial cartilage mask.
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Figure 7.5 1-5 LIKERT bone segmentation scores overlaid on ground truth knee scans. In this
example, the LIKERT of 5 indicates human-like segmentation; the LIKERT of 4 shows minor
missing components in the femoral bone; the LIKERT of 3 shows missing components of the
patellar bone mask; the LIKERT of 2 shows major missed regions within the tibial and patellar
bone; the LIKERT of 1 has patella and tibia masks misassigned.

7.3.2.5 Final K2S Dataset Characteristics
The K2S training dataset (n = 300) had the following demographic characteristics: age of 44.3 £

13.9 years, weight of 75.6 + 14.9 kg, 160/140 male to female. The test dataset followed the
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same described steps (n = 50): age of 44.5 + 14.4 years, weight of 70.5 *+ 16.6 kg, 26/24 male to

female (all mean + standard deviation).

The training dataset included the following: multicoil ARC-reconstructed k-space and multiclass
segmentation for each patient (n = 300), 8x center-weighted Poisson undersampling mask with
a fully sampled central 5% square of k-space in ky-k;, and a file detailing the quality of the
segmentations and any radiologist notes associated with each patient. The released test dataset

was solely the 8x undersampled multicoil ARC-reconstructed k-space.

7.3.3 Evaluation Process

Submissions were evaluated using a weighted sum of DSC. Namely, DSC was calculated in each
of the 6 tissue compartments, and combined as follows into a weighted DSC that assigned each
compartment a weight inversely proportional to the size of the tissue compartment, as shown

in Equation 7.1:

Weighted DSC = ———

Equation 7.1 Weighted DSC calculation, where t refers to the tissue compartment, DSC: refers to
the DSC within that tissue compartment, and n: is the number of pixels in the ground truth
segmentation for tissue t [235].

7.3.4 Timeline

e 15 April 2022: Training dataset release

e 30 April 2022: Participant registration close
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e 27 June 2022: Release of code used to evaluate submissions
e 6July 2022: Test dataset release
e 21 July 2022: Submission deadline
e 28 July 2022: Invitation of top 4 teams for in-person presentations
e 18 September 2022: In-person workshop at MICCAI 2022, winners announced
All told, 87 teams registered for the K2S challenge from 19 countries, and 12 teams made

submissions for the challenge.

7.3.5 Overview of Top Submission Methodologies

7.3.5.1 K-nirsh (University of Tiibingen, Tiibingen, Germany)

K-nirsh’s submission involved two cascaded nnUNet architectures, a first for reconstruction and
a second for segmentation [242]. Multicoil k-space was inverse Fourier transformed and coil-
combined using root sum-of-squares coil combination, yielding coil-combined 8x undersampled
images. An initial nnUNet was pretrained to predict fully-sampled coil-combined images from 8x
undersampled coil-combined inputs using a mean square error (MSE) loss. A second nnUNet
was pretrained to predict multiclass cartilage and bone segmentations from a 2-channel input
(8% undersampled coil-combined image and fully sampled coil-combined image), using DSC
segmentation loss. After pretraining, these models were trained end-to-end, with the initial
nnUNet regression output replacing the fully sampled coil-combined image as input for the
second segmentation nnUNet. The model was fine-tuned for over 1000 epochs on NVIDIA V100
GPUs, using only the segmentation loss and implementing a weight scheduler that linearly

increased small class weighting (cartilage). The weighted DSC loss used to evaluate the
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challenge submission was used as a validation loss and the best model according to this metric
was chosen for the challenge submission. The output of the first nnUNet was considered the
reconstruction output of this pipeline, whereas the output of the second nnUNet was the

segmentation submission.

7.3.5.2 UglyBarnacle (Skolovo Institute of Science and Technology, Moscow, Russia)
UglyBarnacle’s submission differed from other top submission methodologies by leveraging CS
as opposed to DL for reconstruction. An initial reconstruction pipeline accepted as input the 18-
channel, 256 x 256 x 200 8x undersampled k-space array, performing a CS reconstruction with a
combined Li;-wavelet and total variation (TV) regularization function, imposing 3 times the
weight on TV as opposed to Li;-wavelet. The CS reconstruction was solved as an optimization
problem: the goal was to find the undersampled part of the k-space that minimized the target
value function (weighted sum of Li;-wavelet and TV of volumetric image). The optimization
problem was solved using the Adam optimization algorithm over 50 iterations for each scan.
Reconstructed images were fed to an architecture similar to V-Net for tissue segmentation. The
segmentation network was implemented in 3D, with the following feature map depths at V-Net
stages: 16, 32, 64, 128, 256. Max-pooling was used to compress the representation of feature
maps in the encoder, and upsampling to increase resolution in the decoder, with skip
connections transferring information from the encoder to corresponding parts of the decoder.
The network output was fed through two final convolutions (one with a feature map depth of 7

and the last with a depth of 1) to yield predicted segmentations.
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7.3.5.3 FastMRI-Al (University Medical Center Groningen, Groningen, The Netherlands)

As with K-nirsh, k-space was zero-padded to 512 x 512 along kx and ky, inverse Fourier
transformed, and root sum-of-squares combined, yielding coil-combined 8x undersampled
image space. Unlike other top submissions, FastMRI-Al did not implement a reconstruction
framework, choosing instead to directly segment the undersampled image; the root sum-of-
squares coil combined images were thus considered the reconstruction outputs for this
approach in subsequent analysis. A 3D U-Net featuring a squeeze and excite attention layer was
trained on 160 x 160 x 48 patches, selected with stride 51 x 51 x 16, yielding around 27
predictions per voxel [243]. Networks were trained with weighted DSC loss, giving twice the
weight to cartilage afforded to bone and background. Predictions were post-processed with
simulated extended image boundaries by mirror padding, self-ensembling for overlapping
sliding window prediction, and connected component analysis for each class, removing objects

that were less than 60% the size of the largest object in the given class.

7.3.5.4 NYU-Knee Al (New York University Grossman School of Medicine, New York, USA)
NYU-Knee Al trained multiple components individually: a Variational Network (VN) for image
reconstruction, followed by an ensemble of 2D U-Nets to predict tissue segmentations
[119,135,244-246]. For reconstruction, eSPIRIT was used to calculate coil sensitivity maps for
undersampled and ground truth data using the central 24 x 24 region in k-space [67]. Zero-filled
k-space was then fed through a VN for K = 10 iterations, at each iteration using calculated coil
sensitivity maps and acquired k-space to ensure data consistency with intermediate

reconstructed images, while also feeding iteration outputs through a convolutional, RelLU, and
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transpose convolutional layer to encourage recovery of details lost from undersampling. The VN
was trained with an MSE loss function between the 256 x 256 ground truth and the
reconstructed coil-combined images for 200 epochs. VN outputs were fed to 2D U-Nets,
predicting 256 x 256 segmentations that were upsampled and convolved to the intended 512 x
512 output resolution. Multiple networks were trained with either focal loss, cross-entropy loss,
or a hybrid of both for 300 epochs; an internal validation set was used to choose the best-
performing network for each of the 6 tissue classes, ultimately using 3 focal loss networks and 1

weighted cross entropy loss network in the final submission.

7.3.6 Further Analysis of Submissions

7.3.6.1 Intermediate Pipeline Reconstruction Performance

The objective of the challenge was segmenting bones and cartilage, and no part of the
evaluation criteria nor any communication between organizers and challenge participants prior
to submissions discussed a requirement for reconstruction submissions. However, at some level,
each of the top-performing pipelines fed some image (either directly undersampled for
FastMRI-Al, or after reconstruction for the other 3 top submissions) through a segmentation
pipeline. As such, it was instructive to see how reconstruction metrics of images fed to
segmentation pipelines compared to segmentation metrics. Challenge organizers thus
requested the top four teams provide intermediate reconstruction outputs for the test set.

Using these images, standard reconstruction metrics were calculated: nRMSE, PSNR, and SSIM.
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7.3.6.2 Comparison of Reconstruction and Segmentation Performance

In addition to the visual comparison of reconstructions and segmentations, Pearson’s r was
calculated between weighted DSC and nRMSE, PSNR, and SSIM for each of the top 4 teams
[199]. Given the wide variety of approaches used by the teams, these experiments investigated

a correlation between reconstruction and segmentation performance.

7.3.6.3 Biomarker Analysis: Cartilage Thickness

Previously developed tools were used to calculate cartilage thicknesses for ground truth and
submissions [222]. Briefly, Euclidean distance transforms on each cartilage compartment of
each patient were used to generate skeletonizations. The skeletonizations were sampled and
distances from skeletonized points to cartilage surfaces were calculated for each compartment
and each patient. Skeleton-to-surface distances were averaged across a cartilage compartment
for a given patient to obtain mean cartilage thickness measurements, which were then
compared between ground truth and each of the submissions in Bland-Altman and correlation
plots. Pearson correlation coefficients were calculated for each submission to assess the
correlation of submitted cartilage thicknesses to ground truth, as a proxy for assessing the

suitability of submissions for biomarker analysis.

To visualize cartilage thickness maps, voxel-based segmentations were converted into
triangulated meshes using a Marching Cubes algorithm, and cartilage thickness maps were
projected onto bones for select cases [232]. Maps were then compared for a qualitative

assessment of regions best and most poorly preserved by sample submissions.
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7.3.6.4 Biomarker Analysis: Bone Shape

To analyze the bone shape, previously developed tools again were applied [224]. Triangulated
meshes of each bone of the ground truth segmentations were generated using a Marching
Cubes algorithm, after which Euclidean coordinates of each point in the mesh were flattened
into a 1D vector for each test set case. Principal component analysis (PCA) was used to reduce
the dimensionality of these vectors, preserving the top 5 PCs, which constituted bone shape
features. Statistical parameterization was used to extract the mean and standard deviation of
each PC. For visualization purposes, mean +3 standard deviations (s.d.) and mean -3 s.d. bone
shapes were generated for each PC, with qualitative interpretations of the features varying most
with each PC being described (i.e., volume). Segmentations of each submission were similarly
transformed into 1D Euclidean coordinate vectors and projected into the PC space generated
from the ground truth. Correlations between submissions and ground truth along these shape

features were calculated for each.

7.4 Results
12 submissions were received for the K2S, for which weighted DSC was calculated across the
test set as described in Equation 7.1. The top four submissions by weighted DSC were analyzed

further, with results discussed below.

100



7.4.1 Segmentation Metrics

Segmentation results are shown in Table 7.2, stratified by tissue compartment but also showing

the weighted DSC that determined challenge winners. K-nirsh delivered strong segmentation

performance in each tissue compartment, closely rivaling ground truth, and interestingly did so

from intermediate reconstruction outputs exhibiting poor reconstruction metrics. FastMRI-Al

also yielded high-quality segmentations despite not implementing any reconstruction

framework. Overarchingly, segmentation performance for all four pipelines was strong, given

that severely aliased images served as model input. To differentiate between the top two

submissions, which showed similar weighted DSC, a paired t-test was run to assess for

significant difference in performance: K-nirsh performance indeed was significantly better than

UglyBarnacle, even after adjusting for Bonferroni correction (n = 50, o = 0.05).

Table 7.2 Segmentation performance across test set (n = 50) for each of the top 4 pipelines,
stratified by tissue compartment. Results are presented mean + 1 s.d. K-nirsh showed the
strongest results in each tissue compartment and overall, and is shown in bold.

Cartilage Bone Full
Team Femoral Tibial Patellar Femur Tibia Patella Wegi'::ted

Kenirsh 0.904 + 0.899 0910 % 0.989 0.985 + 0.966 * 0.910 %
0.014 0.015 0.034 0.002 0.004 0.012 0.021

UglyBarnacle 0.895 + 0.890 + 0.903 + 0.984 + 0.980 + 0.961 + 0.903 +
0.016 0.017 0.032 0.004 0.004 0.015 0.021

FastMRI-Al 0.845 + 0.862 + 0.843 + 0.964 + 0.952 + 0.834 + 0.849 +
0.124 0.126 0.124 0.078 0.138 0.306 0.123

NYU-Knee Al 0.798 + 0.756 0.796 + 0.980 + 0.975 + 0.939 + 0.795 +
0.029 0.04 0.043 0.004 0.005 0.014 0.030

7.4.2 Reconstruction Metrics

Example sagittal slices of intermediate pipeline reconstruction outputs are shown in Figure 7.6,

with corresponding reconstruction metrics. NYU-Knee Al and particularly UglyBarnacle
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produced intermediate reconstruction outputs with strong fidelity to ground truth, recovering
fine details lost to aliasing. On the other hand, K-nirsh yielded an image with more distinct
tissue boundaries, but with noise and pixel intensity distributions that clearly differed from the

ground truth. Complete metrics of reconstruction performance are shown in Table 7.3.

Ground Truth NYU-Knee Al K-nirsh

NRMSE = 2.62%; PSNR = 30.1; SSIM = 0.658 NRMSE = 27.1%; PSNR = 20.0; SSIM = 0.234

FastMRI-Al UglyBarnacle

4

NRMSE = 3.85%; PSNR = 28.5; SSIM = 0.673 NRMSE = 2.21%; PSNR = 30.9; SSIM = 0.713

Figure 7.6 Intermediate pipeline reconstruction outputs for each of the top 4 submissions in an
example sagittal slice, as well as ground truth, with reconstruction metrics displayed for the
volume including the visualized slice. For this volume, UglyBarnacle delivers the highest quality
reconstruction, followed closely by NYU-Knee Al, recovering sharpness and many fine details
lost to aliasing during 8x Poisson undersampling. K-nirsh delivers an intermediate
reconstruction that was poor by standard reconstruction metrics, but perceptually, made
boundaries between tissues much more distinct and perhaps easier to segment. This is likely
due to K-nirsh fine-tuning the reconstruction and segmentation networks in an end-to-end
manner, unlike other top submissions.
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Table 7.3 Standard reconstruction metrics for intermediate pipeline outputs from all top
submissions across the released test set (n = 50). Results are presented mean + 1 s.d. The top

pipeline by each of these metrics was UglyBarnacle, shown in bold.

Team nRMSE PSNR SSIv
K-nirsh 31.2+4.26 19.7 £ 0.68 0.217 £ 0.059
UglyBarnacle 2.07 £0.25 31.5+0.87 0.693 £ 0.043
FastMRI-Al 3.05+0.68 29.8 £0.99 0.681 £ 0.061
NYU-Knee Al 2.18+0.33 31.3+0.87 0.672 £ 0.029

7.4.3 Comparison of Reconstruction and Segmentation Performance

Example slices of predicted segmentations, overlaid on intermediate reconstruction outputs,

are shown for all four teams alongside ground truth in Figure 7.7. For each reconstruction

metric, and for each of the top 4 performing pipelines, weighted DSC was plotted against the

reconstruction metric in Figure 7.8, with Pearson’s correlation coefficients being calculated for

each pair. The highest correlation coefficient in this study was between nRMSE and weighted

DSC for the NYU-Knee Al submission, at 0.284, with all other correlation coefficients being

substantially lower. This indicates that, at the absolute best, there was a weak correlation

between segmentation and reconstruction metrics, and in most cases, there was a negligible or

even slightly negative correlation between the two.
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Ground Truth NYU-Knee Al

Ground Truth (Seq)

NRMSE = 1.89%; PSNR = 31.3; SSIM =0. 678
Weighted DSC = 0.73

UglyBarnacle

K-nirsh FastMRI-Al

Y L ES § | - -
NRMSE = 31.5%; PSNR = 19.1; SSIM = 0.209 NRMSE = 2.69%; PSNR = 29.8; SSIM =0.674 NRMSE = 1.92%; PSNR = 31.2; SSIM = 0.688
Weighted DSC = 0.891 Welghted DSC = 0.824 Weighted DSC = 0.889

Figure 7.7 Sagittal slice segmentations overlaid on intermediate pipeline reconstructions, with
reconstruction and segmentation metrics for the volume including the slice displayed.
Background anatomy slices were thus blurrier for some teams than for others, as different
teams had different quality intermediate pipeline reconstruction outputs. In this example,
segmentation quality was strong for all top submissions, with only some overestimation of
cartilage thickness from the NYU-Knee Al pipeline being apparent. K-nirsh maintains a slight
edge over UglyBarnacle in reconstruction metrics for this volume.

104



1.0 35.0
401 .
* .5. . o
2.54
323 o 5T 35 t?,
0.81 . & ’?'o * ®y o
DI 4 30.0 1 " 30 . by
2 o ‘~'Q'gz o3
g ¢ 27.51 RS
0.6 : 251 . ,n’o
s < &
@ E 25.01 2 20
c
0.4
22.5 1
. 15
24 .
; 3 "“ 2001 s ¢ * * 10
4 . ¢
0.2 ¢ " f 3 ¢ “00 ’{
17.51 54
RREWESS O g
0.0 T T T T T 15.0 T T T T T 0 T T T T T
0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Weighted DSC Weighted DSC Weighted DSC
K—Nirsh UglyBarnacle FastMRI-Al NYU-KneeAl

SSIM: 0.216 + 0.027
PSNR: 19.691 + 0.681
NRMSE: 31.143 + 4.28

*  Weighted DSC: 0.91 # 0.021
SSIM/wDSC Pearson's r: 0.061
PSNR/WDSC Pearson's r: 0.065
nRMSE/wDSC Pearson's r: —0.213

SSIM: 0.693 £ 0.03
PSNR: 31.47 + 0.871
nRMSE: 2.063 = 0.25

*  Weighted DSC: 0.903 % 0.02
SSIM/wDSC Pearson's r: —0.201
PSNR/wDSC Pearson's r: —0.024
nRMSE/wDSC Pearson's r: —0.018

SSIM: 0.681 + 0.032

PSNR: 29.855 + 0.984

nRMSE: 3.041 + 0.685
Weighted DSC: 0.849 + 0.124
SSIM/wDSC Pearson's r: 0.106
PSNR/WDSC Pearson's r: 0.06
nRMSE/wDSC Pearson's r: —0.08

SSIM: 0.672 + 0.024

PSNR: 31.27 + 0.868

nRMSE: 2.169 + 0.331
Weighted DSC: 0.794 + 0.03
SSIM/wDSC Pearson's r: —0.222
PSNR/WDSC Pearson's r: —0.07
nRMSE/wDSC Pearson's r: 0.284

Figure 7.8 Reconstruction metrics (NRMSE, PSNR, SSIM) plotted against weighted DSC for each
of the top four submissions, with each point denoting a subject in the test set (n = 50). Pearson’s
correlation coefficient was calculated for each pair and is displayed on the chart, indicating that
at absolute best, there was a weak correlation between segmentation and reconstruction
metrics, and that in most cases, there was no or even negative correlation.

7.4.4 Biomarker Analysis: Cartilage Thickness

Example femoral cartilage thickness maps projected onto the femur are shown in Figure 7.9,
with corresponding femoral cartilage segmentation DSCs. These results elucidate added
complexity: while FastMRI-Al and NYU-Knee Al lagged K-nirsh and UglyBarnacle in weighted
DSC, they did a better job preserving certain thick and thin cartilage regions. Qualitatively,
however, these maps show K-nirsh, UglyBarnacle, and FastMRI-Al perform especially well in
reconstructing cartilage thicknesses; Bland-Altman plots in Figure 7.10 confirm these results,
showing cartilage thicknesses across all three compartments were predicted with minimal bias
and strong fidelity to ground truth by these three teams. Interestingly, bias in retaining femoral
cartilage thicknesses decreased with larger ground truth cartilage thicknesses, regardless of

submission. More granularly, while fastMRI-Al slightly overestimated patellar cartilage
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thicknesses, they also reflected the least bias in maintaining femoral cartilage thickness,
showing some discordance between weighted DSC and downstream biomarker analysis.
Contrarily, thicknesses were overestimated by NYU-Knee Al, particularly in tibiofemoral regions.
In comparing the top two challenge finishers, K-nirsh and UglyBarnacle, biases in predicted
cartilage thicknesses were slightly lower for UglyBarnacle in femoral and tibial cartilage, and
slightly higher in patellar cartilage (UglyBarnacle: femoral: 0.088 + 0.07, tibial: 0.036 + 0.09,
patellar: 0.114 + 0.13; K-nirsh: femoral: 0.096 + 0.08, tibial: 0.049 + 0.09, patellar: 0.097 + 0.11;
all in units of mm, mean * 1 s.d.). However, paired t-tests showed none of these differences

were significant even after Bonferroni correction (n = 50, a = 0.05).
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Figure 7.9 Femoral cartilage thickness maps projected onto voxel-based femoral bone shapes
for each of the top 4 teams, as well as ground truth. While all submissions exhibit a degree of
smoothness that is not reflected in the ground truth, the top three especially were strong in
preserving cartilage thicknesses (K-nirsh, UglyBarnacle, FastMRI-Al), with NYU-Knee Al slightly
overestimating cartilage thicknesses but still preserving key features in some regions.

Correlation plots in Figure 7.10 showed K-nirsh, UglyBarnacle, and NYU-Knee Al yielded high

Pearson correlation coefficients with respect to ground truth, indicating high-quality
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segmentations. Interestingly, UglyBarnacle showed a slightly higher correlation to ground truth

cartilage thickness in tibiofemoral cartilage than K-nirsh, despite lower DSCs in both tissues.

Visually, FastMRI-Al also appeared to show a strong correlation between predicted and ground

truth cartilage thickness, although poor prediction in one case appeared to severely degrade

the correlation coefficient.
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Figure 7.10 Bland-Altman and correlation plots between predicted and ground truth cartilage
thicknesses for each of the top 4 submissions, across each of the 3 cartilage compartments. The
mean and standard deviations for these plots were calculated using the data points from K-
nirsh, UglyBarnacle, and FastMRI-Al, given the thickness overestimations seen from NYU-Knee
Al. The top three submissions saw minimal bias and strong fidelity to ground truth, while NYU-
Knee Al appeared to slightly overestimate particularly tibial and femoral cartilage thicknesses.
That said, correlation plots showed strong correlations between predicted and ground truth
thicknesses for K-nirsh, UglyBarnacle, and NYU-Knee Al. FastMRI-Al visually appeared to have
strong correlation as well, but an outlier case appears to have severely degraded the correlation
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coefficient. All told, these results collectively are quite promising that submissions are suitable
for some downstream biomarker analysis.

7.4.5 Biomarker Analysis: Bone Shape

Statistical shape modeling identified 5 femoral shape features most contributing to variation
within the test set, as illustrated in Figure 7.11: femoral volume, medial wall incline slope,
condylar posterior protrusion, intercondylar notch width, and width-to-height ratio. Similar
features were identified for the patella and tibia, and the correlation between submitted bone
shapes and ground truth was calculated for the top PCs (and thus, top shape features) for each
submission. Those correlation coefficients are shown in Figure 7.12: while each of the top four
submissions performed best in at least one of the 15 shape features across the 3 bones,
generally K-nirsh had the strongest performance among the teams in the femur, while NYU-
Knee Al did best within the tibia and patella. Correlations for all teams were moderate to strong

for many of the shape features.
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+3SD -3SD Shape Feature Description
1 Femoral volume
2 “ Medial wall incline slope
3 p Condylar posterior protrusion
4 “ Intercondylar notch width
5 “ Width-to-height ratio

Figure 7.11 Femoral bone shape features, visualized after statistical parametrization, with
qualitative descriptions of shape features. Similar features were also generated for the tibia and
patella by the same procedure: extracting Euclidean points of bone surfaces, converting them
into 1D vectors, using PCA to compress the resulting matrix into a 5-dimensional one, and
visualizing each of the PCs.
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Figure 7.12 Correlations along femoral, tibial, and patellar bone shape features between
submissions and ground truth. For many of the bone shape features, correlations were
moderate to strong, indicating another means in which submitted segmentations from 8x
undersampled images at times were suitable for downstream biomarker analysis. K-nirsh and
NYU-Knee Al appeared to have strong correlations most consistently between predicted and
ground truth bone shapes among the top 4 submissions.

7.5 Discussion and Conclusions

In this work, we describe the K2S challenge, which aims to reframe image reconstruction and
image analysis as end-to-end rather than serial tasks, opening room for optimization. We
curated the K2S dataset of 300 patients that had undergone 3D fat-suppressed knee MRI
acquisitions, each with 3D raw k-space and bone and cartilage segmentations, challenging
participants to segment the tissues directly from 8x undersampled k-space. A variety of
solutions were submitted for the challenge. Some, like NYU-Knee Al and UglyBarnacle, spent
considerable time optimizing reconstruction networks, leveraging VN and CS frameworks to
attain high-quality reconstructions that served as inputs for standard segmentation networks.
Interestingly, FastMRI-Al did not pursue a reconstruction network at all, choosing exclusively to

optimize the segmentation network and develop unique postprocessing techniques, attaining
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very competitive results. K-nirsh, on the other hand, pretrained separate reconstruction and
segmentation networks, performing end-to-end optimization of both for weighted DSC. The
end-to-end optimization made this the only approach that implicitly optimized reconstruction
outputs for segmentation inputs, possibly playing a role in their top finish within the challenge.
All told, however, all top submissions produced high-quality segmentations in knee cartilage and
bone, maintaining accuracy with respect to ground truth despite working originally from 8x

undersampled multicoil k-space.

Beyond strong DSC metrics, predicted segmentations from all top submissions produced
cartilage thickness maps that either maintained minimal bias or strong correlation to ground
truth cartilage thicknesses. Statistical shape modeling generated five features that captured the
most variance in bone shape for each of the patella, tibia, and femur. Each of the top
submissions was most correlated to ground truth along at least one of the features, with
moderate to good correlations seen in many, while K-nirsh and NYU-Knee Al generally showed
the best performance in retaining bone shape. As such, for both bone and cartilage, all top
submissions yielded cartilage and bone segmentations that to varying degrees were suitable for
subsequent biomarker analysis. An added observation was that downstream biomarker
performance did not always correspond with segmentation metrics: for instance, NYU-Knee Al
delivered among the best correlations between predicted and ground truth bone shape
features despite obtaining the poorest weighted DSC among the top 4 submissions, with
segmentations that often appeared slightly dilated compared to ground truth but preserved

shape. Likewise, UglyBarnacle slightly outperformed K-nirsh in correlations between
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tibiofemoral cartilage thicknesses and ground truth despite slightly poorer weighted DSCs, but
its slightly reduced bias was not statistically significant. This accentuates the complexity of
segmentation as an image analysis task: there is no all-encompassing, perfect metric to quantify

segmentation quality.

A noteworthy finding from this challenge was that strong reconstruction performance was not a
prerequisite for strong segmentation performance. K-nirsh had by far the poorest metrics of the
submitted pipeline reconstruction intermediates, poorer even than the root sum-of-squares
coil-combined 8x undersampled images that FastMRI-Al used as pipeline inputs. Despite this, K-
nirsh yielded the strongest segmentation performance; visual inspection of K-nirsh
reconstructions reveals sharp images that enhance contrast at boundaries between different
tissues such as cartilage/bone boundaries, yielding an image that is perhaps easier to segment
than ground truth. This demonstrates that ideal features for radiologist interpretation of an MR
image can differ from those optimal for processing by an image analysis algorithm. That
FastMRI-Al showed competitive segmentation performance despite directly segmenting
undersampled images is a testament to this. Furthering this, was there essentially no correlation
between reconstruction and segmentation metrics for any of the top submissions on a per-
patient basis. There is therefore room for optimizing image analysis algorithms when trained
end-to-end with reconstruction algorithms instead of training separate algorithms and inferring
serially. It is important to note that segmentation performance from undersampled k-space
depends not only on the segmentation algorithm but also on the undersampling pattern, which

was fixed in this challenge. More complicated joint optimization of segmentation and
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undersampling can further improve end-to-end MRI reconstruction and image analysis

outcomes [247,248].

Apart from the specific challenge, the curation and release of the K2S dataset marks an
important initiative that can seed advances in both reconstruction and image analysis algorithm
development. To our knowledge, this is the largest released dataset that pairs raw k-space data
with tissue segmentations (n = 300 patients, each with an 18-coil, 200-slice k-space). While a
dataset of this size is more than sufficient for training most reconstruction algorithms, image
annotation algorithms generally require considerably larger datasets to sufficiently represent
rare anomaly classes. Our hope is that the release of this dataset can allow research groups to
investigate objectives such as ROI-specific image reconstruction, end-to-end reconstruction and

segmentation, and more generally end-to-end reconstruction and image analysis tasks.

This challenge had some limitations. First off, the k-space provided to challenge participants had
undergone R =4 ARC, and thus does not reflect the full-length acquisition k-space that would
ordinarily be undersampled. Given that the full 3D fat-suppressed CUBE sequence without ARC
would require nearly 20 min for acquisition, this compromise was made to make curate a larger
dataset suitable for algorithm development. Additionally, while substantial work was done by
challenge organizers and radiologists (J.L. and F.G.) in inspecting segmentation quality, bone and
cartilage segmentations ultimately were model generated, and were not the gold-standard
manual annotations that are desired for training models. It is therefore more accurate to

describe the challenge objective as achieving on 8x undersampled data the same segmentation
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performance seen on fully sampled data, albeit the latter was carefully monitored and quality
checked by radiologists. This tradeoff was taken to obtain a substantially larger dataset than
would have been possible if exclusively using manual segmentations. We would expect these
findings to hold on a dataset with purely manual segmentations but confirming so would
require inferring trained models on such a dataset. Furthermore, this challenge provided a fixed
undersampling pattern: a center-weighted Poisson pattern with a fully-sampled center. This
undersampling pattern was selected such that potential challenge solutions would not be
biased towards or against a given reconstruction backbone (i.e., compressed sensing, deep
learning), but there conceivably would be room for further optimization of segmentations with
respect to the undersampling pattern. Additionally, since all submissions were trained and
tested on a fixed undersampling pattern, the robustness of solutions to other R = 8
undersampling patterns was not assessed and is an important research objective for the
reconstruction community to pursue. Lastly, there is no perfect solution to the gradient
inhomogeneity correction step (GRADWARP) in the standard processing pipeline of raw scanner
data. Once applied, correspondence between k-space and image space is lost, meaning ordinary
DICOM image segmentations would not match k-space. In the K2S dataset, segmentations were
provided on images prior to GRADWARP application, meaning that gradient coil
inhomogeneities manifested themselves into segmentations. Due to the difficulty in
backpropagating through GRADWARP, this was viewed as the easier choice for pipeline
development, with the understanding that resulting segmentations could be processed by

GRADWARP to perform necessary corrections. Nonetheless, this is an unavoidable limitation
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that must be discussed at greater length for this and other datasets that may be released

pairing k-space and tissue segmentations.

In conclusion, the K2S challenge curated a landmark dataset, tasking participants with
segmenting bone and cartilage from 8x undersampled knee MRI images. Through it, the top
four teams produced submissions that yielded high-quality segmentations, showing highly
varied methodologies and very strong performance that was suitable for downstream
biomarker analysis in cartilage thickness and bone shape assessments. Through the submissions
of two teams with unconventional approaches—K-nirsh and FastMRI-Al—we clearly see that
features required for radiologist annotation differ from those required for DL model input, there
is room for image analysis pipeline optimization when trained end-to-end with reconstruction,
and strong reconstruction is not a prerequisite for strong segmentation. These findings can
motivate similar efforts for end-to-end optimization of image analysis and reconstruction tasks,
not only for segmentation, but for anomaly detection, prognosis prediction, bone shape

assessment, and others.
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Chapter 8 - Synthetic Inflammation Imaging with PatchGAN Deep Learning Networks

The following has been reformatted and reproduced with full permission from the publisher. It
appeared in Bioengineering as:

Tolpadi, A.A,, Luitjens, J., Gassert, F.G., et al. Synthetic Inflammation Imaging with PatchGAN
Deep Learning Networks. Bioengineering 10:516 (2023).

https://doi.org/10.3390/bioengineering10050516

8.1 Abstract

Background: Gadolinium (Gd)-enhanced Magnetic Resonance Imaging (MRI) is crucial in several
applications, including oncology, cardiac imaging, and musculoskeletal inflammatory imaging.
One use case is rheumatoid arthritis (RA), a widespread autoimmune condition for which Gd
MRI is crucial in imaging synovial joint inflammation, but Gd administration has well-
documented safety concerns. As such, algorithms that could synthetically generate post-
contrast peripheral joint MR images from non-contrast MR sequences would have immense
clinical utility. Moreover, while such algorithms have been investigated for other anatomies,
they are largely unexplored for musculoskeletal applications such as RA, and efforts to
understand trained models and improve trust in their predictions have been limited in medical

imaging.

Methods: A dataset of 27 RA patients was used to train algorithms that synthetically generated
post-Gd IDEAL wrist coronal T1-weighted scans from pre-contrast scans. UNets and PatchGANs

were trained, leveraging an anomaly-weighted L; loss and global generative adversarial network
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(GAN) loss for the PatchGAN. Occlusion and uncertainty maps were also generated to

understand model performance.

Results: UNet synthetic post-contrast images exhibited stronger normalized root mean square
error (nRMSE) than PatchGAN in full volumes and the wrist, but PatchGAN outperformed UNet
in synovial joints (UNet nRMSEs: volume = 6.29 + 0.88, wrist = 4.36 + 0.60, synovial = 26.18 +
7.45; PatchGAN nRMSEs: volume = 6.72 + 0.81, wrist = 6.07 + 1.22, synovial =23.14+7.37; n =
7). Occlusion maps showed that synovial joints made substantial contributions to PatchGAN and
UNet predictions, while uncertainty maps showed that PatchGAN predictions were more

confident within those joints.

Conclusions: Both pipelines showed promising performance in synthesizing post-contrast
images, but PatchGAN performance was stronger and more confident within synovial joints,
where an algorithm like this would have maximal clinical utility. Image synthesis approaches are

therefore promising for RA and synthetic inflammatory imaging.

8.2 Introduction

Rheumatoid arthritis (RA) is a widespread autoimmune disorder observed in 0.5-1.0% of the
American population, with incidence rates being two to three times higher in women than in
men [44]. RA mainly affects the joints, typically the hands and feet, and is characterized by
synovial joint inflammation. In the joints it can lead to bone tissue erosions and soft tissue

breakdown, often inducing stiffness and debilitating pain, but may also show systemic effects in
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the skin, heart or lungs if left untreated [45]. It is typically diagnosed through a holistic
assessment that begins with a medical history examination, paying particular attention to pain,
swelling, peripheral joint pain, and swelling/tenderness, all of which can be indicative of RA.
Furthermore, laboratory tests for rheumatoid factor (RF), C-reactive protein (CRP), and
erythrocyte sedimentation rate (ESR) are often performed to confirm other RA indications.
Lastly, medical imaging plays a crucial role in distinguishing inflammatory phenotypes, providing
additional evidence to confirm RA [249]. Once diagnosed, RA is usually treated with Disease-
Modifying Anti-Rheumatic Drugs (DMARDs), which see 75-80% of patients attain intended
treatment outcomes, but 90% when initiated in the early stages of RA [47]. Robust tools such as
imaging are thus necessary for screening and diagnosing RA at early stages, maximizing the

odds of successful treatment.

Radiographs have traditionally been the clinical standard imaging modality for RA diagnosis, as
their acquisition is quick, inexpensive, and widely accessible, yielding two-dimensional images
that are effective in visualizing late-stage bone erosions [250]. In recent years, however,
Magnetic Resonance Imaging (MRI) has gained prominence despite its higher costs and longer
acquisition time, producing three-dimensional anatomic images with excellent depiction of soft
tissues and sharp details [251]. As a result, it has emerged as a superior option for visualizing
early-stage bone erosions and bone marrow edema (BME) that can result from RA [46]. An
added advantage of MR is the ability to administer contrast agents such as Gadolinium (Gd)
prior to scans, altering the magnetic properties of underlying tissue to improve the visualization

of numerous pathologies [252]. In RA imaging, a post-contrast Gd MRI can better distinguish
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active soft tissue RA sites in joints, such as synovitis, from general effusion [253], conveying
critical information that conventional MRI cannot provide [254]. However, Gd administration
has long-term concerns such as deposition in brain and bone [255,256], is contra-indicated in
patient subgroups such as those with renal diseases and pregnant women [257], and, more
generally, adds scan time, cost, and patient discomfort to the imaging protocol. As such, if post-
contrast MR images could be synthetically generated without Gd administration, the
implications for RA diagnosis and other musculoskeletal (MSK) inflammatory conditions or even

sarcomas would be significant.

The problem posed by this clinical context is one of “image synthesis,” or the designing of
algorithms to generate images from some input. While these inputs can be multimodal,
including text or patches of images, the focus here will be on synthesis algorithms that accept
full image inputs [258,259]. For image synthesis tasks, deep learning (DL), and particularly
convolutional neural networks (CNNs) [260], have taken on an outsized role in recent years.
When trained with sufficiently large datasets, CNN filters can be optimized for a given task, with
filters in early network layers typically being sensitive to generic features such as edges, while
those in later layers are typically sensitive to far more complex, task-specific features [261]. The
UNet is a commonly used image synthesis algorithm in which inputted images are encoded by
convolutional filters into a low-resolution, high-dimensional representation that is decoded
using deconvolutional filters, yielding an output image. Originally designed for segmentation,
the UNet has seen substantial application in image synthesis for its ease of training and

relatively low dataset size requirements compared to other DL approaches [116]. Another
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prominent approach is generative adversarial networks (GANs), where an image-to-image
translation network such as a UNet (“generator”) is paired with a discriminator network that is
trained to distinguish between synthetic and real images [262]. By setting up training as a min-
max game in which generator and discriminator networks continually try to fool one another,
substantially sharper images can be obtained, although GANs are more difficult to train and are
prone to hallucinating artifacts compared to conventional approaches [263]. Other approaches
such as variational autoencoders (VAEs) and transformer networks have been investigated in

this space [264,265].

These methods have seen considerable application for medical imaging tasks. In brain MRI,
image synthesis has been studied for the reduction or elimination of the Gd dosage required for
post-contrast tumor imaging. In several studies, standard UNet or encoder-decoder style
architectures accepted reduced-dose Gd post-contrast images and/or other MR sequences as
inputs, were trained to predict full-dose post-contrast Gd images, and quantified model efficacy
through radiologist assessment or the suitability of synthetic images for downstream tasks
[123-125]. Another approach in eliminating Gd dosage for brain MRI used an innovative training
scheme, training a network for tumor detection and passing convolutional feature maps from
that network as inputs to a conventional image synthesis architecture. This allowed the image
synthesis architecture to focus on pathologic regions when optimizing parameters to produce
synthetic post-contrast images [266]. Some approaches beyond image synthesis have also been
investigated to eliminate the need for Gd administration. For instance, Gd is administered in

cardiac MRI to identify regions of myocardial infarction. Here, DL pipelines have been developed
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to accept exclusively non-contrast MR images as inputs, localize the left ventricle, extract
motion-based features inherent to cardiac MRI, and integrate both to predict if a patient
suffered from infarction [126,267]. On the other hand, features from non-contrast MR
sequences such as synthetic MRI and diffusion weighted imaging (DWI) have proven effective in
differentiating benign and metastatic retropharyngeal lymph nodes, a task that usually requires
a post-contrast MRI [268]. Also worthy of mention are recent image synthesis applications in
biomedical imaging outside of MRI: in histopathology, standard image synthesis generator
networks have been paired with multiple discriminators to generate synthetic stained images,
while in microscopy, GAN image synthesis pipelines have been applied for synthetic cell

painting, identifying cellular components from brightfield microscopy images [269,270].

These works mark substantial progress, with well-validated frameworks yielding promising
results on a wide variety of biomedical image synthesis tasks, including post-contrast MR image
synthesis. That said, there are some clear gaps in the literature. For RA imaging, the authors are
not aware of any previous work developing post-contrast MR image synthesis algorithms. Such
algorithms would have immense clinical utility, synthesizing post-Gd images that could be used
to identify synovitis and active inflammation sites in RA patients, while eliminating the risks
associated with administering Gd. More generally, Gd is used in brain imaging to identify tumors
and distinguish tumor types, while in cardiac imaging it helps identify myocardial infarction
sites, among others; in MSK, however, it is administered to image inflammation. Synthetic
inflammatory MSK imaging has seen little to no investigation in previous works. Particularly in

comparison with brain applications, synthetic Gd dosage reduction in MSK applications, such as
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wrist imaging, brings about additional challenges such as severe motion artifacts, reduced
signal-to-noise ratio (SNR), and considerably smaller datasets [271]. Lastly, despite all these
image synthesis works in biomedical applications, efforts to understand the basis of model
predictions have been limited; this work would be critical for radiologists to gain confidence in
model predictions, a prerequisite for eventual clinical deployment. As such, post-contrast MSK
MR image synthesis confers numerous unique challenges that must be managed
methodologically, and has been largely unexplored, making it ripe for an initial proof-of-concept

study.

This is precisely the niche this work seeks to fill: the purpose of this study was to develop DL
pipelines that generate synthetic post-contrast wrist MR images from their pre-contrast
counterparts [272], thereby marking the first known effort for synthetic MSK inflammatory
imaging. We use image quality metrics to assess the diagnostic and perceptual quality of model-
generated synthetic post-contrast images relative to true post-contrast images. We also
generate occlusion and uncertainty maps to better understand model performance, making its
predictions more trustworthy. More specifically, the contributions and novelty of our work are

as follows:

1. To our knowledge, this proof-of-concept study is the first application of DL techniques

for generating synthetic post-contrast images for MSK inflammatory imaging.
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2. We show that our trained pipelines perform strongly with regards to predicting post-
contrast image appearance, particularly in regions afflicted with synovitis, where these
models would see the most clinical utility.

3. We investigate the deconvolution operator, checkerboarding artifacts that can be
intrinsic to architectures that use it, and how they surface in conventional and
adversarial network training schemes.

4. We conduct a rigorous analysis of model predictions, identifying regions in pre-contrast
image inputs that were most important to predicted post-contrast images, and regions
in which predictions were most uncertain. This provides a straightforward framework
that can be used to understand predictions made by image synthesis architectures in

biomedical imaging applications.

8.3 Methods

8.3.1 Study Group

All studies performed in this retrospective study were Health Insurance Portability and
Accountability Act (HIPAA) compliant, approved by the UCSF Institutional Review Board (Human
Research Protection Program, IRB# 12-10418) and registered under Clinical Trial NCT01773681.
Informed consent was obtained from all study participants. Twenty-seven UCSF patients with RA
were recruited that met the following criteria: at least 18 years old and fulfilled the 2010
ACR/EULAR criteria for the classification of RA. Patients were treated with either methotrexate
or a combination of methotrexate and tumor necrosis factor alpha inhibitors (anti-TNFa) based

on RA disease activity; intended sample sizes were thus as large as feasible given the exclusion
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criteria and the requirements of informed consent from study participants. Data was collected
from patients as part of this cohort from 20 March 2014 to 8 February 2018. Patients were
imaged at baseline, 3-months, and 1-year follow-up time points, conducting MR imaging,
sampling serum to measure ESR, and recording clinical notes at each time point. As the dataset
used in this study was from a UCSF clinical trial, data privacy and patient confidentiality
concerns prevent its public release, but codes used in generating results can be obtained from

the authors upon reasonable request.

8.3.2 MR Acquisition

All patients underwent a standardized protocol that included coronal T1 IDEAL scans pre- and
post-Gd administration on a 3.0-T wide bore scanner (MR Discovery 750w, GE Healthcare,
Waukesha, WI, USA) using 8-channel HD wrist array coils (GE Healthcare, Waukesha, WI, USA).
Scans were done with acquisition matrices of 384 x 256 (n = 58) or 256 x 224 (n = 6), a slice
thickness of 2 mm, a TR of 457 to 793 ms, and a TE of 10.06—12.48 ms. Complete acquisition

parameters for both sequences can be found in Supp. Table B.1.

8.3.3 Anomaly Segmentations and Evaluations

In post-contrast images, synovitis was segmented in the following synovial joints: intercarpal
joints, carpometacarpal joints, the radioulnar joint, and radiolunar joints. Regions with bone
marrow edema (BME) were segmented in the following bones: the first to fifth metacarpals,
capitate, hamate, lunate, pisiform, scaphoid, trapezium, trapezoid, triquetrum, ulna, and radius.

Anomaly segmentations were performed by a radiologist with over 30 years of experience (T.L.)
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using the Image Processing Package (version 6.43.01) developed by the University of California,

San Francisco Musculoskeletal Quantitative Imaging Research Group.

T.L. also quantified synovitis severity for each patient at each time point with the Rheumatoid
Arthritis Magnetic Resonance Imaging Score (RAMRIS) for synovitis [273], a 0—9 scale in which a

higher score is associated with more severe imaging findings of RA.

Lastly, bounding boxes delineating wrist tissue and background were drawn using the software
MD.ai by a radiologist with two years of experience (J.L.), such that reconstruction metrics for
synthetic post-Gd images could be evaluated solely in wrist tissue and not be sensitive to

textures and noise in background pixels.

8.3.4 Image Preprocessing

Six of 64 acquired imaging volumes had slices that were 256 x 256 pixels, with the remainder
being 512 x 512; the slices of these six volumes were upsampled to 512 x 512 using third-order
b-spline interpolation. Pre-Gd volumes were then registered to post-Gd volumes with a three-
step process: (1) translation, (2) affine, and (3) third order b-spline registration (maximum
iterations = 256, 256, 512, respectively; Advanced Mattes Mutual Information [274] criterion for
all). B-spline registration was only done for scans where the structural similarity index (SSIM)
[228] between pre and post-Gd acquisitions was above 0.5; other scans had motion artifacts so
severe that non-rigid registration was not possible. All registrations were performed using

SimplelTK 2.0.0 in Python (version 3.7.11) [275-277]. Example slices before and after
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registration can be found in Supp. Fig. B.1. Pixel values in the slices of pre-Gd scans were scaled
such that the middle 95% of pixel values were between 0 and 1. The unscaled pixel values in
pre-Gd slices that corresponded to 0 and 1 in the scaled slices were also mapped to 0 and 1 in
the post-Gd slices, thereby scaling post-Gd slices while preserving the relative enhancement

across the volume.

8.3.5 Data Partitioning

The data were partitioned into training, validation, and test datasets, splitting such that all scans
from a given patient were in only one of the three datasets. Furthermore, four patients without
imaging findings of synovitis were in the dataset (RAMRIS synovitis of 0); splits ensured at least
1 of these patients were in each of training, validation and test. Splits were intended to
maintain similar age, BMI, and ESR across the three datasets, but the relatively small overall
dataset required some compromise. The full characteristics of the data splits can be found in
Table 8.1.

Table 8.1 Full Dataset and Splits Information. Demographics and patient information for the
entire dataset and splits into training, validation and test. All data are presented as mean + 1
s.d. The dataset consisted of 27 patients diagnosed with RA, each of whom were scanned up to
three times (baseline, 3-month, and 1-year follow-up after one of two treatments). Data
splitting was done at a patient level while ensuring each of the training, validation and test
datasets included at least one patient with a RAMRIS synovitis of 0. The small dataset size and

splitting conditions caused slight imbalances in demographic and health variables across the
splits.

Train Validation Test Full
Age 53.38 + 13.50 4594 + 16.16 52.12 + 18.60 52.41 + 14.65
BMI 29.35+8.90 25.32 +3.06 28.33+1.26 28.79 + 8.03
ESR [mm/hr] 29.06 + 26.07 32.00 + 24.00 27.00 + 20.12 29.05 + 25.32
RAMRIS Synovitis 457 +2.13 2.33+2.62 1.67 +1.25 4.00+2.37
Slices 783 87 105 975
Volumes 51 6 7 64
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8.3.6 Network Architecture

All network architectures were implemented in PyTorch (version 1.10.2). Two-dimensional UNet
[116] architectures were used as image-to-image synthesizers in our approaches, accepting as
input a pre-processed pre-Gd coronal T1 IDEAL slice and outputting the corresponding synthetic
post-Gd slice. A baseline UNet model was trained, and in a separate pipeline version, an
identical UNet was treated as a PatchGAN generator and paired with a PatchGAN discriminator
[278]. The PatchGAN discriminator accepted concatenated inputs of the pre-processed pre-Gd
slice and either the corresponding synthetic post-Gd slice or the ground truth post-Gd slice,
yielding a 16 x 16 output in which each output pixel had a corresponding receptive field “patch”
in the concatenated inputs. The 16 x 16 outputs were trained to predict whether synthetic post-
Gd generator outputs were real or synthetic. Multiple baseline UNet and PatchGAN generator
versions were trained: one set in which all steps of the UNet/generator decoding path used a
deconvolution operator, and another in which the deconvolutions were replaced by either a 2 x
2 bilinear upsampling interpolation operator followed by a convolution [279], or just the 2 x 2
bilinear interpolation. The exact network architecture and layers can be seen in Figure 8.1.
Weights for the UNets, UNet generators, and PatchGAN discriminators were initialized randomly

to have a mean of 0 and a standard deviation of 0.02.
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Figure 8.1 Network Architectures. The baseline UNet and PatchGAN generators used identical
architectures, while the PatchGAN pipeline also trained a discriminator whose architecture is
pictured. All generator encoding path convolutions had a stride of 2 and a padding 1, while all
decoding path convolutions had a stride and padding of 1. The first three discriminator
convolutions had a stride of 2 and a padding of 1, while the final two had a stride and a padding
of 1. For PatchGAN and UNet pipelines with deconvolutions, all “2X interpolate, 4 x 4 Conv2D”
steps would be replaced by 4 x 4 2D transposed convolutions with a stride of 2 and a padding of
1. All leaky ReLU layers had a negative slope of 0.2.

8.3.7 Training Details

The baseline UNets were trained with a weighted L; loss, as shown below in Equation 8.1, with
loss function variables as follows: n = number of samples; S; = anomaly segmentation mask for
slice i; ¥, = synthetic post-Gd image slice; y; = ground truth post-Gd slice. The anomaly
segmentation mask S; used to weight the L1 loss was calculated as follows: anomaly
segmentations were turned into binary masks, any pixel more than 20 pixels from the nearest
anomaly was set to a background value Ag, pixels within anomalies were set to 1, and
intermediate pixels were set to a range from A to 1 based on their Euclidean distance from an

anomaly segmentation. A sample distance map can be found in Supp. Fig. B.2.
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n
1
Lynet = EZ S —yi)
i=0

Equation 8.1 Baseline UNet, pixel-based loss function. Variables: n = number of samples; S; =
anomaly segmentation mask for slice i; ¥, = synthetic post-Gd image slice; y; = ground truth
post-Gd slice.

On the other hand, PatchGAN generators were trained with the same weighted L; loss and a
GAN loss, as shown in Equation 8.2, while PatchGAN discriminators were trained with the loss
function shown in Equation 8.3. Additional variables for these loss functions are as follows: x; =
pre-Gd image slice; D(a, b) = PatchGAN discriminator output for concatenated inputs a and b;
Ay, = anomaly-weighted L1 loss weighting for generator; A4y = discriminator loss weighting for
generator. With this loss function setup, the discriminator was trained to predict values of 1
when fed ground truth data and 0 when fed generator predictions, while the generator was
trained to do the opposite. For any training batch, the following scheme was followed: (1)
synthetic post-Gd generator predictions were calculated; (2) pre-Gd, synthetic post-Gd, and
ground truth post-Gd images were used to calculate Lp;; and update discriminator parameters;
(3) synthetic post-Gd generator predictions and corresponding discriminator outputs were
recalculated with new model parameters, L., was calculated, and generator parameters were
updated; (4) steps (1) and (2) were repeated again to update the discriminator parameters. This

approach of two discriminator steps and one generator step per training batch was empirically

useful in yielding similar generator and discriminator strength during training.

n
1
Lgen = ﬁz ALlsi(Yz —¥i) — AganlogD(x;, %)
i=0

Equation 8.2 PatchGAN generator loss function. Variables: n = number of samples; S; = anomaly
segmentation mask for slice i; x; = pre-Gd image slice; ¥y, = synthetic post-Gd image slice; y; =
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ground truth post-Gd slice; D(a, b) = PatchGAN discriminator output for concatenated inputs a
and b; 4, = anomaly-weighted L1 loss weighting for generator; A4y = discriminator loss
weighting for generator.

n
1
Lpis = %ZIOgD(Xi,YJ —logD(x;,y;)

i=0
Equation 8.3 PatchGAN discriminator loss function. Variables: n = number of samples; x; = pre-
Gd image slice; ¥, = synthetic post-Gd image slice; y; = ground truth post-Gd slice; D(a, b) =
PatchGAN discriminator output for concatenated inputs a and b.

Baseline UNets, PatchGAN generators, and PatchGAN discriminators were all trained with a
learning rate of 0.001, an Adam optimizer (B1=0.5, B2=0.999), and batch size of 1 to ensure
that full batches fit on a single GPU [97]. All pipelines were trained on an NVIDIA Titan Xp 12 GB
GPU. For baseline UNet and PatchGAN generator inputs, the following augmentations were
done on the training set, each with a probability 0.5: [-2,2] degree random rotation, [-10,10]
pixel random translation along both directions in a slice, [-5,5] percent random zoom, and
Gaussian noise addition with a mean of 0 and standard deviation of 0.02. Training was done in
two stages: initially for 10 epochs in a hyperparameter search to optimize A;4y and Ag (more
thoroughly described in the following subsection), and finally for 35 epochs with optimized
parameters. With 783 pairs of pre and post-Gd slices seen in the training set, this means that

27,405 total slices were seen by all selected models during training (3,045 additional slices for

validation).

8.3.8 Hyperparameter Search and Model Selection
For each of the four pipelines trained (UNet and PatchGAN, both with and without
deconvolutions), grid hyperparameter searches were carried out to optimize the background

pixel weighting in segmentation distance maps (0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2) and Ag 4y
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(0.001-0.01, spaced by 0.001). A, was held constant at 1 for all searches. In hyperparameter
searches, models were trained for 10 epochs and model performances were evaluated on the
validation set. The most promising parameter set for each of the four pipelines was then trained

from scratch for 35 epochs to yield the final models.

The selection of optimal parameter sets was done through a combination of standard
reconstruction metrics and visual inspection. For each of the four pipelines, SSIM and
normalized root mean square error (nRMSE) were used to screen for top candidate models,
whose performance on the validation set was then assessed by visual inspection. The primary
criteria for evaluating model performance were (1) the synthesis of new information not
obvious from pre-Gd scans, (2) the preservation of sharp textures in synthetic post-Gd scans
compared to ground truth post-Gd scans, and (3) the absence of obvious algorithm-generated

artifacts that may cause a radiologist to lose confidence in the reconstructed image quality.

8.3.9 Model Performance Evaluation

The assessment of whether to use or omit the deconvolutions in the UNet decoding path was
done visually for the UNet and PatchGAN approaches; the best performing models for both
methods were then used for a more rigorous analysis. The quantitative assessment of synthetic
post-Gd image quality was performed using three standard reconstruction metrics: SSIM,
NRMSE, and peak signal-to-noise ratio (PSNR) [227]. Due to the slight misregistration of
corresponding slices that may have been present even after previous preprocessing, metrics

were presented both with and without slice-wise registration: ((1) 256-iteration translation, (2)
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256-iteration affine, and then (3) 512-iteration third order b-spline with a transformation
bending penalty of 500, all with the Advanced Mattes Mutual Information criterion). The slice-
wise registration was solely for the calculation of model performance metrics; only unregistered
model outputs are presented in figures. The reconstruction metrics were evaluated per-volume
in the following regions: full imaging volumes, wrist anatomy bounding boxes, and synovial
joints. While these metrics do not correlate well with gold-standard radiologist annotations
when evaluated on full image volumes or slices, they are widely used in the image
reconstruction and image synthesis literature, and thus facilitate easy comparison of model
performance with those performing similar tasks [141,142]. Furthermore, our dataset affords us
wrist and anomaly bounding boxes; the calculation of these metrics specifically in these
regions—one discarding background, and another focusing specifically on tissues of highest
clinical interest when administering Gadolinium—can overcome the limitations of these metrics

when used conventionally, affording them more clinical significance.

8.3.10 Enhancement Maps

For UNet, PatchGAN, and ground truth post-Gd images, pixels among the top 10% in predicted
signal enhancement were identified. Enhancement maps were shown as follows: pre-Gd slice,
post-Gd slice, and post-Gd slice with the degree of enhancement overlaid for the most
enhancing pixels (top 10%), colored by the predicted extent of the enhancement. For visual
consistency, colormap ranges for the enhancement map were calculated with respect to the
enhancement observed in ground truth, with the same ranges being used for the maps

regardless of algorithmic approach.
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8.3.11 Occlusion Maps

For each slice, pre-contrast IDEAL T1 images were pre-processed using previously described
techniques, which were used as inputs for UNet and PatchGAN generator architectures,
generating network outputs. The pixel values were then set to zero in a 32 x 32 occlusion, and
the occluded image was fed through the same architecture, recording the absolute difference in
predicted pixel magnitude as compared to the unoccluded image. This procedure was repeated
for all 32 x 32 occlusions throughout the slice (with a stride length of 8), summing up the
predicted changes in pixel magnitudes in an aggregate array and dividing each pixel by the
number of occlusions in which it was contained. The aggregate array values were then min-max
normalized, divided by pre-contrast IDEAL T pixel values (to incorporate into resulting maps
information for regions other than areas of high pixel intensity), and again min-max normalized,
yielding occlusion maps. For display purposes, the maps are thresholded such that only the top

5% of the occlusion map magnitudes were visualized.

8.3.12 Uncertainty Maps

The uncertainty maps of the model predictions were generated by corrupting the latent
representations of a given slice [280]. Namely, for 100 iterations, Gaussian noise with a mean of
0 and a standard deviation of 0.5 was added to the encoding path outputs at each of the eight
levels (seven layers that were concatenated to the corresponding decoding path levels and the
bottom of the encoder). The variance of the predicted pixel intensities from these 100

perturbed latent spaces was then calculated, min-max normalized, and thresholded for display
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purposes such that only the 15% most variant pixels would display, thereby generating

uncertainty maps for each slice.

8.3.13 Statistical Analysis

To assess if synthetic post-Gd scans provided significant improvements over baseline pre-Gd
images, 2-sample t-tests [281] were conducted. On a per-scanned-volume-basis, these tests
compared the metrics of model outputs (nRMSE, SSIM, PSNR) to those of the pre-Gd scanned
volumes; a Bonferroni correction [282] was applied when necessary to adjust for multiple

comparisons.

8.4 Results

The hyperparameter search results are presented on the validation set, which was used to
select optimal values for A; 4y and Az in training loss functions. The results from finalized
models are presented on the test set, on which finalized models were run just one time. Key

demographic information on the test set is available in Table 8.1.

8.4.1 Model Parameter Selection

The reconstruction performance metrics evaluating the similarity of the synthetic post-Gd
model outputs to ground truth were calculated for all 70 tested hyperparameter combinations
for each of the four model type configurations (PatchGAN and baseline UNet, with and without
decoding path deconvolutions). Sample results are shown for PatchGAN without generator

deconvolutions for SSIMs in Supp. Table B.2, and for nRMSEs in Supp. Table B.3.
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Hyperparameter combinations with strong performances in either approach were carried onto a
visual inspection of post-Gd synthesis performance, an example of which is shown for several
hyperparameter combinations in Supp. Fig. B.3, also for the PatchGAN without deconvolutions.
Hyperparameters associated with the selected best models through this process are listed
below:

e PatchGAN, no deconvolutions: Ag=0.05, Acan=0.01;

e PatchGAN, with deconvolutions: Ag=0.15, Acan=0.001;

e UNet, no deconvolutions: Ag=0.05;

e UNet, with deconvolutions: Ag=0.15.

8.4.2 Utility of Deconvolution Operators in UNet Decoders

A comparison of sample synthetic post-Gd slices with and without deconvolutions in the UNet
decoding path can be found in Figure 8.2, while a comparison of synthetic post-Gd slices with
and without deconvolutions in the PatchGAN generator decoding path can be found in Figure
8.3. In baseline UNet pipelines, checkerboarding artifacts were apparent when deconvolutions
were used, particularly in regions of relatively homogenous pixel values, such as the muscles
around the radius and ulna. When those deconvolutions were replaced by 2 x 2 upsampling and
standard convolutions, the checkerboarding artifacts were largely absent. These
checkerboarding artifacts were less apparent in both PatchGAN pipelines, but in the version that
used deconvolutions, they were evident at the extended boundaries of sharp changes in pixel

intensities. Checkerboarding was thus best avoided by PatchGAN and UNet pipelines without
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deconvolutions, and these pipeline versions were selected as top-performing pipelines for both

approaches in the remaining experiments.

T, Pre-Gd IDEAL T, Post-Gd IDEAL

Syn. T; Post-Gd (UNet) Syn. T; Post-Gd (UNet, DeConv)

Patient 1

SSIM: (Overall) 0.691, (Wrist): 0.791
nRMSE: (Overall) 4.29%, (Wrist): 4.14%

SSIM: (Overall) 0.688, (Wrist): 0.789
nRMSE: (Overall) 4.55%, (Wrist): 4.42%

Patient 1 (Zoomed)

T, Pre-Gd IDEAL Syn. T, Post-Gd (UNet) Syn. T; Post-Gd (UNet, DeConv)

Patient 2

SSIM: (Overall) 0.692, (Wrist): 0.801 SSIM: (Overall) 0.693, (Wrist): 0.799
nRMSE: (Overall) 5.68%, (Wrist): 5.35% nRMSE: (Overall) 6.05%, (Wrist): 5.80%

Patient 2 (Zoomed)

Figure 8.2 Network Performance with and without Deconvolutions in Decoding Path of Baseline
UNet. The performance on example test set slices for baseline UNet, with and without decoding
path deconvolutions, with zoomed insets. The use of decoding path deconvolutions in baseline

UNets induces checkerboarding artifacts in larger regions of relatively homogenous pixel values,

136



such as the forearm muscle insets (particularly evident in patient 1). When replaced with
convolution and interpolation operators, these artifacts were substantially mitigated, making
this the preferred architecture when training baseline UNets.

T, Pre-Gd IDEAL T, Post-Gd IDEAL Syn. T; Post-Gd (PatchGAN)  Syn. T; Post-Gd (PatchGAN, DeConv)

Patient 1

SSIM: (Overall) 0.596, (Wrist): 0.731
nRMSE: (Overall) 5.23%, (Wrist): 5.00%

SSIM: (Overall) 0.591, (Wrist): 0.728
nRMSE: (Overall) 5.55%, (Wrist): 5.30%

Patient 1 (Zoomed)

T, Post-Gd IDEAL Syn. T, Post-Gd (PatchGAN)  Syn. T; Post-Gd (PatchGAN, DeConv)

Patient 2

— i,
m—

SSIM: (Overall) 0.612, (Wrist): 0.752
nRMSE: (Overall) 6.14%, (Wrist): 5.80%

SSIM: (Overall) 0.601, (Wrist): 0.743
nRMSE: (Overall) 7.55%, (Wrist): 7.16%

Patient 2 (Zoomed)

Figure 8.3 Network Performance with and without Deconvolutions in Decoding Path of
PatchGAN Generator. The performance on example test set slices for PatchGAN pipelines, with
and without generator decoding deconvolutions, with zoomed insets. At sharp transitions in
pixel intensities, such as intersections of the radius and ulna with muscles displayed in insets,
clear checkerboarding is observed when deconvolutions are used. This was substantially
reduced when deconvolutions were replaced with convolutions and interpolation; PatchGAN
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generators with these decoding path operations were thus used when training PatchGAN
pipelines in the remainder of this paper.

8.4.3 Standard Reconstruction Metrics Performance

Standard reconstruction metrics across the test set are shown in Table 8.2 for full imaging
volumes, wrist volumes, and synovial joints. Both synthetic post-Gd volumes had showed
significant improvements over pre-Gd volumes in PSNR and nRMSE, with the baseline UNet
pipeline also showing significantly higher SSIM. While the UNet baseline model showed
stronger performance in all metrics within full volumes and the wrist, the PatchGAN showed
stronger reconstruction performance in synovial joints when measured by nRMSE and PSNR.

Table 8.2 Coronal IDEAL Post-Gd T1 Image Synthesis Performance for Select Pipelines. Standard
reconstruction metrics of the PatchGAN and baseline UNet pipelines were evaluated on a per-
patient basis within the test set (n = 7) for entire imaging volumes (“full”), wrist tissue in each
volume (“wrist”), and synovial joints. Metrics were calculated with and without three-stage
nonlinear registration of synthetic post-Gd volumes to ground truth. UNet pipelines reflect the
stronger bulk reconstruction metrics in full volumes and within wrist tissue, but the PatchGAN
pipeline shows stronger performance in synovial joints in which an algorithm like this would see
most clinical utility. Bonferroni-corrected 2-sample t-tests showed nearly all pipelines offered
significantly better metrics than Pre-Gd baselines (n =7; * p < 0.05, ** p < 0.01, *** p < 0.001).

Full Wrist Only Synovial Joints
nRMSE 26.30+9.16 17.82 +6.31 260.24 + 158.56
Pre-Gd PSNR 17.77 £0.95 22.99+0091 8.94+1.64
SSIM 0.60 +0.03 0.94 +0.00
nRMSE 6.72 £ 0.81*** 6.07 + 1.22%*** 23.14 £ 7.37**
PatchGAN . o .
Registered PSNR 20.77 £ 0.65 25.40+1.24 12.10+1.34
SSIiM 0.58 +0.02 0.94 +0.01
nRMSE 8.46 + 1.03*** 7.68 £ 1.41** 28.96 + 10.57**
PatchGAN . " *
Unregistered PSNR 19.85 + 0.69 2438 +1.21 11.23+1.52
SSIiM 0.56 + 0.02* 0.94 +0.01
nRMSE 6.29 + 0.88*** 4.36 + 0.60*** 26.18 + 7.45%*
UNet Registered PSNR 22.03 £ 0.60***  27.13+0.69***  11.58 £ 0.93**
SSIiMm 0.69 + 0.02*** 0.95 + 0.00**
UNet Unregistered nRMSE 7.73 £ 1.03*** 5.38 £ 0.73*** 29.69 + 7.60**
PSNR 21.20 £ 0.62***  26.20 £ 0.77*** 10.98 + 0.87*
SSIM 0.68 + 0.02*** 0.95+0.01*
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8.4.4 Comparison of Reconstruction Performance Across Synovitis Severity

The image quality metrics for synthetic post-Gd volumes are shown in Supp. Table A.4 for test
set patients without imaging findings of RA synovitis (RAMRIS synovitis =0, n = 2) and those
with imaging findings of RA synovitis (RAMRIS synovitis > 0, n = 5). Though the sample size limits
the power of these conclusions, the metrics were slightly stronger for RAMRIS > 0 than for
RAMRIS = 0. Visual examples of the reconstructed post-Gd volumes for a RAMRIS = 0 and
RAMRIS > 0 patient are shown in Figure 8.4. In the RAMRIS = 0 patient with no imaging findings
of synovitis, the absence of synovial enhancement was captured by both pipelines, whereas in
the RAMRIS > 0 patient, UNet and PatchGAN pipelines illuminated similar enhancement
patterns in intercarpal regions, with the PatchGAN pipeline depicting sharper enhancement

pattern contours, particularly in the muscles and bones.
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Syn. T; Post-Gd (PatchGAN) Syn. T; Post-Gd (UNet)

T, Pre-Gd IDEAL T, Post-Gd IDEAL

SSIM: (Overall) 0.574, (Wrist): 0.733 SSIM: (Overall) 0.669, (Wrist): 0.788
nRMSE: (Overall) 7.87%, (Wrist): 7.53% nRMSE: (Overall) 5.50%, (Wrist): 5.24%

0 (Zoomed)

RAMRIS

T, Pre-Gd IDEAL

SSIM: (Overall) 0.502, (Wrist): 0.705 SSIM: (Overall) 0.657, (Wrist): 0.764
nRMSE: (Overall) 8.26%, (Wrist): 7.82% nRMSE: (Overall) 9.09%, (Wrist): 8.95%

3 (Zoomed)

RAMRIS

Figure 8.4 Visual Comparison of Reconstructed Post-Gadolinium Images with and without
Imaging Findings of RA. Two example test set slices reconstructed by baseline UNet and
PatchGAN pipelines for patients with and without imaging findings of RA (RAMRIS = 3, RAMRIS =
0, respectively). There was little to no enhancement in the synovial joints of the RAMRIS =0
patient, which is captured by both pipelines, as seen in the zoomed insets. In the RAMRIS = 3
patient, the contours of enhancement in the zoomed inset were captured well within the
intercarpal joint for both pipelines, with noise distribution patterns better reconstructed by the
PatchGAN. The reconstruction performance thus shows promise for patients with and without
imaging findings of RA.
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8.4.5 Enhancement Maps Analysis

Enhancement maps are shown for an example slice for the PatchGAN and UNet models, as well
as ground truth, in Figure 8.5. The enhancement maps show that for the PatchGAN model,
general magnitudes of uptake were much more accurately preserved than for the UNet, most
notably across intercarpal joints. The predicted enhancement locations were visually very

similar for both pipelines.

8.4.6 Occlusion and Uncertainty Maps Analysis

Occlusion maps for the UNet and PatchGAN pipelines in sample test set slices are shown in
Figure 8.6. Encouragingly, occlusion maps for both pipelines show a substantial focus on
intercarpal joint regions in terms of their relative importance to the predicted pixel values.
Peripherally to the intercarpal joint, the occlusion maps show some focus on muscles as well,
perhaps slightly more so for the UNet than for the PatchGAN. On the other hand, the
uncertainty maps are shown in an example test set slice for UNet and PatchGAN pipelines in
Figure 8.7. The UNet shows considerable uncertainty in intercarpal joint region predicted pixel
values, whereas for the PatchGAN, uncertainty was highest in the background and within the
muscles. PatchGAN also showed some uncertainty in predictions within bones such as the
radius and ulna, as well as within bone marrow edema regions; notably, however, uncertainty

was limited in the synovial joints.
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T, Pre-Gd IDEAL T, Post-Gd IDEAL T, Post-Gd Enhancement

75

Ground Truth

70

65

PatchGAN

60

SSIM: (Overall) 0.593, (Wrist): 0.692
nRMSE: (Overall) 6.95%, (Wrist): 6.75%

Syn. T; Post-Gd

(%) V3QI PO-3.d 1L J9AQ JUSWIdURYUT dARRIDY

55

UNet

SSIM: (Overall) 0.693, (Wrist): 0.766
nRMSE: (Overall) 6.61%, (Wrist): 6.45%

Figure 8.5 Predicted Gadolinium Enhancement Maps with PatchGAN, UNet, and Ground Truth
Models. Enhancement maps were generated by identifying the magnitude of pixel intensity
increase from synthetic or ground truth Post-Gd slices compared to corresponding pre-Gd slices,
and by highlighting the top 10%. While the performance in preserving the location of these top
10% of enhancing pixels was similar for the baseline UNet and PatchGAN, the enhancement
magnitudes were far better preserved globally by the PatchGAN, including intercarpal regions
susceptible to synovitis. These maps reflect the long-term vision of a pipeline like this: given a
pre-Gd scan, the algorithm can identify locations susceptible to synovitis and distinguish active
inflammatory sites from general effusion with additional model development.
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Figure 8.6 Occlusion Maps for PatchGAN and UNet Pipelines. Occlusion maps were generated
for PatchGAN and UNet by occluding 32 x 32 patches of the input slices and assessing changes
in predicted pixel values compared to unoccluded slices. Occlusion maps were then normalized
by pre-Gd pixel intensities and thresholded to identify hotspots most impactful in model
predictions. For UNet and PatchGAN, hotspots primarily included intercarpal joint regions.
Particularly for the UNet, the maps also showed some emphasis on the forearm muscles. Given
that the synovial joints are where an inflammatory imaging algorithm would see the most
utility, the fact that both algorithms placed heavy emphasis on the intercarpal regions was
promising, indicating that both focused on synovitis-relevant regions to make predictions.
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Figure 8.7 Uncertainty Maps for PatchGAN and UNet Pipelines. Uncertainty maps for the
PatchGAN generator and baseline UNet were generated by corrupting the latent space of all
encoding path outputs, adding Gaussian noise with a mean of 0 and a standard deviation of 0.5
for 100 iterations, and calculating the variance in the predicted pixel magnitudes for each
output pixel across these iterations. The most variant pixels were designated as the most
uncertain ones. For the PatchGAN, the uncertain regions were mainly in the background,
muscles, and within bones. For baseline UNet, the uncertainty maps placed a heavy emphasis
on the intercarpal joint, with some residual highlighting of background. In conjunction with
occlusion maps, PatchGAN generator predictions were more confident and less uncertain within
intercarpal joint regions compared to the baseline UNet. Considering that the intercarpal joint is
crucial for synovitis diagnosis and is where both algorithms would be the most useful, the
PatchGAN'’s confident predictions within it were promising.

8.5 Discussion

In this work, we developed multiple strong-performing DL pipelines that synthetically generate
post-contrast coronal IDEAL T1 wrist MR images from pre-contrast coronal IDEAL Ty wrist
images, marking steps toward synthetic inflammatory imaging of MSK tissues for conditions

such as RA. Reconstruction metrics show reasonably strong performances for UNet and
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PatchGAN pipelines without generator decoding path deconvolutions—PatchGAN nRMSEs in
the wrist were 7.68 + 1.41 (6.07 + 1.22 after registration, mean + standard deviation (s.d.)) and
for the UNet they were 5.38 + 0.73 (4.36 + 0.60 after registration, mean * s.d.). Standard
reconstruction metrics—nRMSE, PSNR, and SSIM—showed the UNet to have superior
performance across full volumes and within the wrist, but purely in the synovial joints, where a
pipeline like this would see the most utility, the PatchGAN outperformed the UNet. These
findings provide yet additional evidence to a growing body of literature which suggests that
standard reconstruction metrics do not provide great correlation with clinically useful metrics
when evaluated in a classical fashion (across an entire tissue) [141,142,185]. This, in addition to
a perceptually stronger performance replicating sharper textures (particularly within muscles
and bones, but at times in the synovial joints as well), shows the PatchGAN pipeline without
deconvolutions to be the strongest tested version and with the most potential for eventual
clinical use with further development. Additionally, enhancement maps showed that while both
pipelines exhibited similar performance in identifying the location of the top 10% of enhancing
pixels, the PatchGAN did a substantially better job in preserving the enhancement magnitudes.

These trends particularly held in the muscles and vessels, but also in many synovial joints.

To build clinicians’ trust in medical image processing algorithms, experiments such as the
proposed occlusion map and uncertainty analyses are vital to address the criticism of deep
learning algorithms being “black boxes.” These techniques yielded notable insights in the
PatchGAN and UNet pipelines: occlusion maps showed that both pipelines focused heavily on

intercarpal regions and synovial joints as a basis for generating model predictions. At the same
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time, uncertainty maps yielded diverging conclusions: whereas the PatchGAN was most
uncertain in background, muscles, and within bones, the UNet pipeline was the most uncertain
within the intercarpal joints themselves. Given that intercarpal joints—and more generally
synovial joints—are where a synthetic inflammatory imaging algorithm would see maximal
utility in RA imaging, it is extremely encouraging that the PatchGAN based much of its
predictions on the intercarpal joints and was relatively confident in its predictions. This,
combined with the superior reconstruction metrics obtained in synovial joints by the PatchGAN
as compared to the UNet, confirms it to be the pipeline with the most potential for clinical
utility, and indicates that the combination of a GAN and a focused, ROI-based loss can yield
promising results for optimizing image synthesis algorithms. Uncertainty and occlusion map
approaches such as those applied in this work are straightforward to implement and can be
extended to other deep learning applications such as image synthesis, image segmentation, and
image reconstruction. In doing so, they can make the findings of such algorithms easier to
interpret while providing valuable insights into how they work. From a clinical perspective, they
can not only build trust in algorithm outputs, but also direct a radiologist’s attention to

uncertain regions in an image that require closer examination.

The exploration of architectural designs also yielded interesting insights. Checkerboarding
artifacts have long been reported as a shortcoming of CNNs, and more specifically UNets, with
many strategies being proposed to mitigate them [283-285]. Our investigation of UNet pipelines
with and without one such mitigating strategy—replacing deconvolutions with interpolation and

standard convolutions—showed checkerboarding artifacts to be widespread in larger areas of
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relatively homogenous pixel intensity with the standard deconvolutions, but absent with the
mitigating strategy implemented. When paired with a PatchGAN discriminator, even a UNet
generator with deconvolutions resolved the checkerboarding artifacts in larger homogenous
pixel intensity areas, but saw minor checkerboarding emerge at the boundaries between pixel
intensities. Checkerboarding artifacts are thus intrinsic to the standard UNet architecture, and
among the tasks a discriminator must learn in adversarial training is their removal. When
deconvolutions are replaced with interpolation and standard convolutions, the artifact removal
responsibility is simplified for a GAN discriminator, in theory allowing the discriminator to focus
on more minute differences between real and synthetic images and, thus, possibly producing
stronger synthetic images. These lessons can be translated to GAN training strategies in other
settings—training schemes may vyield stronger results after the thorough inspection of generator

architectures to ensure that obvious artifacts are not intrinsic to the network design.

It is clear from our work that larger sample sizes are needed to derive statistical conclusions
with more power and to assess algorithm efficacy stratifying by race, RA status, and others.
However, this study nonetheless serves as a strong proof-of-concept indicating the potential for
DL algorithms to synthesize post-contrast images for inflammatory imaging in MSK applications.
Importantly, these algorithms can synthesize images in a negligible amount of time, essentially
providing free information for radiologists examining inflammation, even for the many patients
for whom contrast MR sequences would otherwise not be prescribed. With additional
validation, and through building clinicians’ trust in these algorithms, they can allow for safer,

more comfortable, and less time-consuming RA diagnosis and treatment through synthetic
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imaging. Beyond the proof-of-concept wrist RA post-contrast synthesis, this work can seed new
efforts in other MSK applications such as synthetic RA imaging in other joints [286], synthetic
screening for sarcoma [287], more thorough investigations associating contrast and non-
contrast MRI of Hoffa’s fat pad with pain [288], larger cohort studies assessing bone perfusion
[289], and safer imaging techniques to diagnose spondylodiscitis [290]. In all these applications,
Gd is administered in standard imaging protocols, so similar datasets can be curated and used to
train synthetic post-contrast imaging algorithms to reduce and hopefully eliminate the need for
Gd administration. Furthermore, validated algorithms could synthesize post-contrast images
from existing large datasets such as the Osteoarthritis Initiative (OAl), K2S, and fastMRI+ to

allow for large cohort studies to facilitate a better understanding of inflammation [229,291,292].

This study had several limitations. Ideally, there would be a true comparison of algorithm
performance in patients with and without RA to ensure strong performance in both, but ethical
considerations prevented us from administering Gd to healthy controls. In the absence of this,
we used RAMRIS scores to stratify RA patients into subgroups of those with and without
imaging findings of RA for a pseudo-control study, but this is not a true control study.
Furthermore, the desire to compare algorithm performance in patients with and without
imaging findings of RA in a pseudo-control study, combined with the small dataset size, led to
some imbalance in demographic characteristics across training, validation, and test datasets.
Namely, test set patients had the least severe RA. Additionally, pre-Gd coronal IDEAL images
were registered to corresponding post-Gd images in data preprocessing. Radiologist anomaly

segmentations were performed only on post-Gd images, so doing so allowed segmentations to
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be used in weighting loss functions and assessing model performance in anomalous regions, but
this registration step would not be possible at the inference time. There was thus a tradeoff
between optimizing trained algorithms for strong performance in synovial joints and using a
realistic workflow for eventual clinical utility; the authors viewed the former as more important
in a proof-of-concept approach. Lastly, standard imaging protocols would typically use T1 pre-
contrast scans and fat-saturated post-contrast T1 scans for RA imaging. Our approach used IDEAL
scans before and after contrast administration, as these sequences were available in our
dataset, but for true clinical translation an algorithm should be trained on these other
sequences. The structure of our dataset thus conferred many limitations on our work, but
nonetheless, it represents a meaningful first step towards making synthetic inflammatory

imaging a larger research focus for the MSK community.

8.6 Conclusions

To the best of the authors’ knowledge, our work marks the first concerted effort at leveraging
DL for synthetic inflammation imaging for an MSK application. We developed PatchGAN and
baseline UNet pipelines that showed strong performance synthesizing post-contrast IDEAL T
images from corresponding pre-contrast IDEAL T; images, with the PatchGAN pipeline
outperforming the UNet in synovial joints, generating more accurate and confident predictions
where a model would have the most utility. The PatchGAN also showed magnitudes of signal
enhancement that more closely match that of ground truth images and retained sharp textures
in synthetic images. As such, the PatchGAN model was particularly promising in synthesizing

post-contrast inflammatory images, and with further development, it could reduce or eliminate
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the need for Gadolinium administration in treating patients with RA. There are numerous future
directions for research: (1) more sophisticated GANs such as CycleGAN can be implemented to
improve the sharpness in reconstructed images; (2) generator architectures that learn
registration transforms and predict images can also be investigated, eliminating the need for the
registering of pre-Gd images to post-Gd images, which would not be possible at inference time
in the clinic; (3) investigating other loss functions, such as other types of GAN distances; and (4)
assessing model robustness by inferring from conventional wrist coronal T1 scans to evaluate
predicted post-contrast scans on conventionally used clinical sequences in inflammatory
imaging. For substantial progress, however, the MSK field will require concerted efforts to
curate larger datasets for inflammatory RA conditions that will allow for more statistically
powerful conclusions, more complicated models, and comparisons across population

subgroups. Our hope is that the promise of our results can motivate efforts to do so.
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Chapter 9 - Deep Learning Predicts Total Knee Replacement from MR Images
The following has been reformatted and reproduced with full permission from the publisher. It
appeared in Nature Scientific Reports as:

Tolpadi, A.A,, Lee, J.J., Pedoia, V. et al. Deep Learning Predicts Total Knee Replacement
from Magnetic Resonance Images. Sci Rep 10, 6371 (2020). https://doi.org/10.1038/s41598-

020-63395-9

9.1 Abstract

Knee Osteoarthritis (OA) is a common musculoskeletal disorder in the United States. When
diagnosed at early stages, lifestyle interventions such as exercise and weight loss can slow OA
progression, but at later stages, only an invasive option is available: total knee replacement
(TKR). Though a generally successful procedure, only 2/3 of patients who undergo the

|II

procedure report their knees feeling “normal” post-operation, and complications can arise that
require revision. This necessitates a model to identify a population at higher risk of TKR,
particularly at less advanced stages of OA, such that appropriate treatments can be
implemented that slow OA progression and delay TKR. Here, we present a deep learning
pipeline that leverages MRI images and clinical and demographic information to predict TKR
with AUC 0.834 £ 0.036 (p < 0.05). Most notably, the pipeline predicts TKR with AUC 0.943 +
0.057 (p < 0.05) for patients without OA. Furthermore, we develop occlusion maps for case-

control pairs in test data and compare regions used by the model in both, thereby identifying

TKR imaging biomarkers. As such, this work takes strides towards a pipeline with clinical utility,
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and the biomarkers identified further our understanding of OA progression and eventual TKR

onset.

9.2 Introduction

Knee Osteoarthritis (OA) is one of the most common musculoskeletal disorders in the United
States, with estimates of its incidence rate ranging from 14 to 30 million [5,6]. Annual arthritis-
related medical expenditures are nearly $140 million, and hip and knee OA together are the 11t
highest contributor to global disability [293,294]. The propensity of knee OA to induce eventual
disability can be attributed to structural changes in the joint that characterize the disease, as
well as symptoms that can include inflammation, debilitating pain, and functional limitations
[295,296]. Progression of the full-joint disease is typically assessed using the Kellgren-Lawrence
(KL) scale, a 0-4 scale in which a higher score is associated with narrowing of the tibiofemoral
joint (TFJ) space and other radiographic changes, and thus, a more advanced stage of knee OA
[165]. When diagnosed at early stages (KL =0, 1), knee OA can be managed through nonsurgical
treatment options, including exercise and/or weight loss, oral medications such as
acetaminophen or NSAIDs, or intra-articular injections such as corticosteroids and hyaluronic
acid, all of which have varying degrees of success in reducing pain [8]. At late stages (KL = 4),

however, no noninvasive option exists [9]; here, the only option is total knee replacement (TKR).

TKR is an elective procedure in which the knee joint is resurfaced with a metal or plastic implant
intended to restore function, provide pain relief, and improve quality of life [297]. In the United

States, estimates of TKR incidence lie at 400,000 each year, a figure expected to grow 143% by
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2050 even through conservative projections [298]. While TKR is considered one of the most
effective procedures in orthopedic surgery, electing for it is far from straightforward:
noninvasive alternatives such as weight loss, physical therapy, and NSAIDs are first exhausted. If
unsuccessful, a patient will undergo a thorough examination of clinical history and
comprehensive imaging of the joint to determine if a TKR is feasible, and if so, the desired
implant design and size [299,300]. The procedure is also imperfect: only 66% of patients report
their knees feeling “normal,” and 33% of patients report some degree of pain post-implant
[301]. Furthermore, the implant can fail under some circumstances: periprosthetic joint
infection and wound complications can be observed, and implant instability can occur due to
aseptic loosening, malpositioning of the implant, and wear of joint components [302,303]. It is
thus much preferable to prolong the good health of the knee, particularly in patients where OA
has not advanced to the most severe stages, thereby delaying TKR as long as possible. This
necessitates a model to identify patients at higher risk of TKR such that appropriate treatment

options can be pursued.

Given the multitude of factors on which a decision to pursue TKR is made, devising a model to
predict if the invasive intervention will be necessary is a difficult task, but with obvious utility.
For a patient in earlier stages of OA, a model predicting the patient to be at risk of TKR can be
the impetus for a more aggressive nonsurgical treatment. Meanwhile, for a late-stage OA
patient, a model predicting them to undergo TKR may facilitate a doctor and patient opting for
the treatment earlier than they otherwise would, thereby reducing time spent pursuing

nonsurgical alternatives with minimal probability of success while dealing with serious pain.
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Beyond this, if the model were to draw from medical images of the knee, it could identify
anatomic regions most correlated with a TKR prediction. To this point, few studies have been
conducted in this space, and those that have primarily investigate the importance of cartilage
volume loss, subchondral bone defects, and bone marrow lesions [304—-306]. An identification
of more such biomarkers for TKR, however, could greatly improve understanding of both OA and

TKR, and ultimately guide treatment strategies.

Predictive modeling of TKR, however, has a limited history, particularly with models that use
medical images. A few studies have leveraged random forest regression, Cochran-Armitage tests
for trend, and t-tests to identify demographic, general health, and physical examination
measurements that most strongly correlate with TKR or total joint arthroplasty (TJA) [307,308].
Others have taken these efforts further, using techniques such as multiple regression and
multivariate risk prediction models to predict TKR outright [309,310]. To our knowledge, only
one group has developed a predictive model of TKR that accepts image inputs, attaining
performance that surpasses that of models using only clinical and demographic information
[311]. Notably, past TKR predictive models largely measure performance by evaluating the area
under the receiver operating characteristic (ROC) curve, which plots true positive rate against
false positive rate [312]. However, in most datasets used in this space, the number of patients
who eventually undergo TKR is dramatically higher among those who have advanced OA as
opposed to those with no or moderate OA. Consequently, this performance metric (AUC), while
effectively capturing a model’s combination of sensitivity and specificity, can be inflated for TKR

prediction by indiscriminately predicting patients without OA not to undergo TKR, while more
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accurately predicting patients with severe OA to undergo TKR, the latter of which is easier. As a
result, while past works have made clear progress in predicting TKR, none have overcome
datasets imbalanced with respect to OA severity to report sensitive and specific prediction at

these early stages, where a model would have the most utility.

One technique that has shown promise in delivering such performance is deep learning (DL). DL,
especially convolutional neural networks (CNNs), has made strides in image classification tasks,
attaining performances on the popular ImageNet classification challenge that approach or
surpass human performance [313—-315]. DL shines when afforded large datasets, as its
automated feature extraction allows one to solve problems too complex for conventional
approaches?®. Given the complex prognostic features in TKR recommendation, CNNs become
more promising for TKR prediction. In the past, DL had seen limited utility in OA and TKR
prediction due to the large dataset requirement for efficacy; that limitation has been somewhat
mitigated by the curation of large-sized cohort studies such as the Osteoarthritis Initiative (OAl)
[229]. Consequently, DL has recently been applied for knee OA classification and progression
prediction [9,316-318]. The success of these works further suggests the feasibility of leveraging

DL to predict TKR.

In this study, we formulate a DL-based pipeline that incorporates knee joint images in addition
to clinical and demographic information to predict the onset of TKR (Figure 9.1). We
demonstrate that the pipeline’s predictions using solely Magnetic Resonance Imaging (MRI)

images matches that of past work, while the integration of MRI image-based predictions with

155



non-imaging variables facilitates TKR prediction with especially high sensitivity and specificity
for patients without radiographic OA. Furthermore, we show the increase in pipeline
performance when using 3D MRI images as opposed to 2D radiographs, suggesting MRI may
have a role in TKR risk screening despite higher costs and more limited availability. And finally,
we leverage occlusion maps to conduct a thorough analysis of tissues that most significantly

affect the output model metric associated with TKR prediction confidence, thereby identifying a

set of imaging biomarkers for eventual TKR onset.
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Figure 9.1 Pipeline predicting if patient will undergo TKR within 5 years from MRI/X-ray images
and non-imaging variables. MRI and X-ray images are center-cropped and cropped to a region
centered around the joint, respectively, and normalized. DenseNet-121 is pretrained to predict
OA and fine-tuned to predict TKR. Image-based predictions and clinical information are fed to a
logistic regression (LR) ensemble based on OA severity. Each ensemble, whose hyperparameters
were optimized for Youden'’s index in a hyperparameter search, averages predictions of LR
models in its OA severity for final TKR prediction. Pipeline is subsequently analyzed through
occlusion map analysis to identify imaging biomarkers of TKR.

9.3 Novelty

This work reports a methodology and results that are novel in the following manners:

1. This model is the first to apply a 3-dimensional DenseNet CNN for prediction of TKR from

MRI.
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2. The TKR prediction model is evaluated for patients stratified by OA severity, which has
not been reported in previous studies.
3. With the aim of improving model interpretability and clinical utility, we report the first

comprehensive, case-control study to identify imaging biomarkers for TKR.

9.4 Methods

9.4.1 Data

Data was acquired from a prospective observational study conducted by OAIl. The dataset
followed 4,796 patients and acquired images including 2D posteroanterior radiographs and 3D
Sagittal Double Echo Steady-State (DESS) MRI images over the course of 10 years. Details of data
collection and study design have been previously reported [229]. The OAl study protocol was
approved by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
and is registered on ClinicalTrials.gov as “Osteoarthritis Initiative (OAl): A Knee Health Study”,
NCT#00080171. The study was carried out in accordance with all pertinent guidelines and
regulations, and written and informed consent was obtained from participants prior to each

clinical visit in the study.

Both posteroanterior radiographs and DESS MRI images were evaluated as data sources for TKR
prediction models. Patients for whom KL grade was not recorded at any point in the longitudinal
study were excluded. To homogenize datasets, radiograph and MRI images were only taken
from patients and time points at which both were available (n = 35,482). We labeled entries as

cases if the patient underwent a first TKR within 5 years of the given time point (n = 1,043). We
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labeled entries as controls if patients did not undergo a TKR or eventually underwent one but

the time to it was longer than 5 years (n = 34,439). Contralateral TKRs were not considered.

The radiographs and MRI images were preprocessed for training and model evaluation.
Radiographs were cropped to a 500 x 500 region centered around the knee joint. Briefly, 2D
cross-correlation template matching was used to identify a 500 x 500 bounding box centered
around the knee joint in 450 joints, and these cases were used to train a U-Net architecture that
identified this region for all posteroanterior radiographs from the OAl study [318]. DESS MRIs
were center-cropped to a 120 x 320 x 320 region, after which both sets of cropped images were
normalized. Normalized MRI pixel values were then rounded to nearest integers, compressing
the MRI image to 14 possible pixel values. This rounding approach was initially tested as a
strategy to accelerate training of a 3D CNN, given the large imaging volumes and large dataset
on which it was being trained, believing the approach could suppress information extraneous to
eventual TKR. Empirically, this approach yielded superior validation performance to leaving pixel
values unrounded, so it was utilized. Examples of the results of this compression strategy are in

Supp. Fig. C.1.

Non-imaging variables were screened for among studies and reviews detailing risk factors for
knee OA progression and TKR onset [308—-310,319-322]. Variables such as KL grade known to be
deducible directly from MRI images and radiographs were not considered. From these studies,
40 non-imaging variables of interest were identified (Supp. Table C.1). The OAl database was

then parsed for corresponding variables, and these corresponding variables were added as
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potential non-imaging variables for our study, yielding 44 potential non-imaging variables. In
some cases, multiple OAl metrics corresponded to non-imaging variables of interest, causing
the number of OAI non-imaging variables to exceed what was identified from literature. Missing
data points were imputed with k-nearest neighbors. These potential variables were used to train
a random forest with 100 trees to predict onset of TKR within 5 years, and the minimum depth
at which each feature was used across all trees in the forest was identified. Features whose
minimum depth was below the average minimum depth of all features were preserved as non-
imaging variables [323]. This yielded 27 non-imaging variables that are displayed in Table 9.1.
Table 9.1 List of non-imaging variables fed into logistic regression models to make predictions of
whether a patient would undergo TKR within 5 years. Abbreviations used: Body Mass Index
(BMI), Nonsteroidal Anti-inflammatory drugs (NSAIDS), Blood Pressure (BP), Physical Activity
Scale for the Elderly (PASE), Knee Injury and Osteoarthritis Outcome Score (KOOS), Quality of

Life (QOL), Western Ontario and McMaster Universities Arthritis Index (WOMAC), Short Form 12
(SF-12).

Non-imaging variables used to augment image-based predictions
Age Comorbidity score
BMI Injections to treat arthritis in previous 6 months
Education Seen physician for arthritis in previous year
Ethnicity Knee valgus negative alignment (degrees)
Income Isometric leg strength
NSAID usage Back pain in previous 30 days
Analgesics usage Difficulty squatting in previous 7 days
Systolic BP Difficulty kneeling in previous 7 days
Considering TKR Baseline frequent knee pain status
PASE Previous knee injury that limited walking
KOOS QOL 0-10 global rating assessing effect of knee pain
KOOS pain SF-12 physical component score
WOMAC pain SF-12 mental component score
WOMAC disability

The data were then split into training, validation, and test with a 65%/20%/15% split, ensuring

entries of any patient were only in one of the three datasets to prevent data leakage. Within the
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training set, imbalance between TKR and non-TKR cases was addressed with data

augmentation, drawing bootstrap samples from the rare class with replacement[324]. A

summary of the data prior to augmentation is provided in Table 9.2, detailing the number of

cases and controls while showing descriptive statistics regarding demographics in each of the

three datasets.

Table 9.2 Data used to train 3D DESS MRI and 2D radiograph architectures. After exclusion
criteria were applied, 35,482 qualifying entries were found in the OAIl dataset across 4,790
unique patients, all of which were split into training, validation, and test sets as displayed in

table. To prevent data leakage, all entries from any given patient were only allowed to be in one

of the three sets. S.d. is reported for age, BMI, and KOOS pain score within the table.

Training Validation Test
Control Case Control Case Control Case
Age 62.5 % 66.3 = 62.4 + 66.1 62.8 = 66.4 £
9.15 8.38 9.21 8.76 9.55 7.78
BMI 283+ 29.6 £ 28.4 29.8 £ 28.4 299+
4.75 4,79 4.64 4.61 4.81 3.96
. 87.2 67.2 87.6 = 66.2 = 87.4 68.7 £
KOOSPain | ¢, 19.6 15.9 19.1 16.5 20.6
Male 9,708 291 2,876 70 2,126 59
Female 12,731 396 4,035 134 2,963 93
None 12,721 41 4,118 13 2,892 12
g Moderate 8,950 357 2,611 93 2,056 83
Severe 768 289 182 98 141 57
ET:::S 23,126 0 7,115 0 5,241 0
Pua '::::fs 3,114 0 957 0 719 0

9.4.2 Pipeline Architecture

The DL-based pipeline is based on a DenseNet-121 with the following parameters: 16 filters in
initial layer, growth rate of 32, pooling block configuration of [6, 12, 24, 16], 4 bottleneck layers,
2 classes. The same architecture was used for the radiograph and MRI pipelines, but for the MRI

pipeline, we modified the convolutional layers, batch normalization layers, pooling layers, and
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leaky rectified linear unit (ReLU) layers to allow for 3D image input [325]. The network yielded a
scalar reflecting certainty of TKR within 5 years, which was added to the non-imaging variables.
The 28 resulting variables were fed into one of three sets of Logistic Regression (LR) ensembles,
with each ensemble optimized to maximize sensitivity and specificity in cases of no (KL=0, 1),
moderate (KL = 2, 3), and severe OA (KL = 4). Based on the KL grade of a sample, it was fed into
an LR ensemble, yielding a prediction as to whether the patient will undergo a TKR within 5

years.

9.4.3 Training

A DenseNet-121 was initially pretrained to predict knee OA using the entire training set,
assessing cross-entropy loss and accuracy on the validation set after completion of each epoch.
The pre-train was stopped when validation loss began to increase. The pretrained model was
subsequently fine-tuned to predict TKR. We utilized a random search to determine optimal
learning rate, dropout rate, weights of the cross-entropy loss function, and number of layers to
freeze during fine-tuning. The search was carried out for 25 iterations, after which a set of
parameters were selected that yielded the best combination of accuracy, sensitivity, and
specificity on the validation set. Due to computational intensity, the hyperparameter search was
not conducted on the entire dataset: for the 2D DenseNet-121, 10% of training and validation
sets were used, whereas for the 3D DenseNet-121, 2.5% of both were used. After the search,
the model fine-tuned using the subset of the training set was further fine-tuned on the entire

training set using optimal parameters until validation loss began to increase. The test set was
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held out during training and predictions for it evaluated just once after fine-tuning, which

marked the end of model optimization.

9.4.4 Integration of Imaging and Non-Imaging Data

Random forest regression, support vector machine, neural network, and LR architectures were
assessed for efficacy of integrating imaging and non-imaging predictions, with LR providing best
results on validation data. The LR architecture was thus used: all 28 imaging and non-imaging
models were fed into an LR model, the optimal parameters of which were also identified
through a random search. The search was conducted for 100 iterations, seeking to optimize the
cross-entropy loss function weights afforded to both classes. For the cases of no, moderate, and
severe OA, ideal parameters were identified by selecting those that maximized Youden’s index
within each OA classification in the search [326]. Predictions of the best few models in each
classification were averaged to yield final TKR predictions. The number of predictions averaged
in each classification was selected by finding a value that optimized validation accuracy, AUC,
and Youden’s index. The resulting LR models were ensembled and run on test data just once.
Confidence intervals of accuracy, sensitivity, and specificity for each OA severity were obtained
by bootstrapping, sampling 100% of test data with replacement (B = 100). Confidence intervals
for AUC were calculated in the same manner. Results are reported on 3 versions of each model:
the sole DenseNet-121 output (image only), output of a single LR model trained to predict TKR
using solely the 27 non-imaging variables while not weighting the loss function class weights
(non-imaging info. only), and output of the LR ensemble with image predictions (integrated

model).
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9.4.5 Statistical Analysis

The accuracies of X-ray and MRI pipeline performances within each OA classification and overall
were compared using McNemar’s test [327,328]. This test was appropriate because it
specifically tests for differences in a dichotomous variable in matched groups. In our case, the
variable was correct TKR prediction and the groups were the X-ray and MRI pipelines. Initially,
the McNemar test statistic was modeled with a chi-squared distribution to test for significant
differences between the pipelines, and if one existed, a binomial distribution was used to
interrogate which pipeline yielded the significantly higher performance. All tests were carried

out at a = 0.05.

Relative sensitivity and specificity of the X-ray and MRI pipelines were assessed by comparing
their AUCs within each OA classification and overall. This test is appropriate because the ROC
curve plots true positive rate (sensitivity) against false positive rate (1 — specificity);
consequently, the closer the AUC is to 1, the better the combination of sensitivity and
specificity. 100% of test data was sampled with replacement (B = 100), and for each
corresponding pair of X-ray and MRI pipelines (matched by OA classification and use of images
only or both image and non-image information), AUCs were calculated. To test if one
outperformed the other, differences in AUCs were calculated at each iteration, and the mean
and standard deviation of the differences used to conduct a student’s t-test with 99 degrees of
freedom. This test is applicable on each matched pair of X-ray and MRI pipelines due to the

number of iterations for which test data was sampled, allowing the central limit theorem to
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apply. For confidence intervals, mean and standard deviation of AUCs of individual models were

calculated and used to report 95% intervals.

9.4.6 Imaging Biomarker Identification

For all 124 true positives in the test data for the integrated MRI pipeline, corresponding controls
were identified by randomly sampling from test data true negatives, keeping OA status
distributions identical and using a student’s t-test with 123 degrees of freedom to ensure no
significant difference in KOOS pain scores across cases and corresponding controls at o = 0.05.
Occlusion maps were generated for all cases and controls using voxel size of 12 x 32 x 32 and
stride of 12. For each pixel, the value displayed represented the magnitude of change in the
scalar pipeline output resulting when that pixel was occluded, averaged across all occlusions in
which that pixel existed. Pixels for which scalar pipeline output change lied in the top 5% were
designated as “hotspots.” Anatomic regions of these hotspots were identified and odds ratios
(OR) calculated to interrogate possible imaging biomarkers of TKR. 95% OR confidence intervals
were calculated for each anatomic region investigated in this analysis using Cornfield’s method,
as this method performs well with relatively small sample sizes [329]. P values of ORs were
calculated using a two-tailed Fisher’s exact test [330]. Tissues where p values fell below the
significance level of o = 0.05 and in which 95% OR confidence intervals did not include 1 were
deemed significant. These test selections were appropriate, as they allowed for direct
comparison of the frequencies at which several tissues were hotspots across cases and controls,

and as such, identified significant tissues with regards to TKR onset.
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9.5 Results

9.5.1 OA Pretrain Utility in TKR Prediction

To test information learned from the OA pretrain, pretrained models themselves were used to
predict TKR, with results depicted in Table 9.3. Predictably, the radiograph OA pretrain model
had poor sensitivity for patients without OA, and poor specificity in moderate and severe cases
of OA. While the MRI OA pretrain model expectedly yielded more balanced sensitivity and
specificity across all OA stages, it too left room for improvement, particularly in sensitivity at no
OA and specificity at severe OA. This confirmed the pretrain provided useful information to both
architectures but fine-tuning and integration of non-imaging variables were necessary to attain
desired TKR prediction performance.

Table 9.3 Performance in TKR prediction of OA pretrained models for radiographs and MR,

stratified by severity of OA. Pretraining strategy yields useful information to both models, but
performance at no OA in particular leaves room for improvement, justifying subsequent model

fine-tuning. Standard errors used to calculate confidence intervals.

Accurac Sensitivit Specificit Non-TKR | TKR
OA status | Model type (95% Cl;l (95% Cl)y (pQS% Cl)y cases cases
None Radiograph  92.1 +£0.083 25.2+2.16 92.4+0.081 5 892 1
MRI 94.3 £ 0.070 48.7£2.48 94.4+0.070 ’
Moderate Radiograph 29.3+0.151 93.8+0.439 26.7+£0.156 5 056 33
MRI 65.4 £ 0.154 65.5+0.848 65.4+0.158 ’
Severe Radiograph  29.7+0.488 100.0+0.000 1.4+0.180 141 c7
MRI 33.4+£0.523 82.2+0.824 14.0+0.441
All Radiograph 64.2+£0.124 90.7+0.378 63.4+£0.126 5,089 152
MRI 80.2 £ 0.079 70.4+0.595 80.5+0.082

9.5.2 X-Ray Pipeline Optimization and Performance

For the X-Ray model, hyperparameter tuning steps found the following to yield the best

combination of validation accuracy, sensitivity, and specificity: learning rate of 3.981 x 10, TKR
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class weight in cross-entropy loss function of 0.927 and non-TKR class weight of 0.073, dropout

rate of 0.375, and only the last 2 layers fine-tuned after OA pretrain.

A radiograph model was fine-tuned to predict TKR with these parameters, and its predictions
fed into an LR ensemble. Averaging predictions of the best 5 LR models found through random
search in the 3 OA categories yielded best validation performance, so this ensemble was used
on the test set. Test accuracy, sensitivity, and specificity are provided in Table 9.4, and ROC
curves of all three versions of this pipeline are found in Figure 9.2. AUCs are as follows: 0.848
0.039 (image only), 0.868 £ 0.028 (non-imaging info. only), 0.890 % 0.021 (integrated model).
Furthermore, AUCs for the image-only and combined versions of the pipeline at no OA are as
follows: 0.514 £ 0.087 (image only); 0.799 % 0.055 (integrated model). At moderate OA: 0.788 %
0.025 (image only); 0.865 £ 0.016 (integrated model). At severe OA: 0.552 + 0.040 (image only);
0.641 + 0.044 (integrated model). All AUC intervals are calculated using standard deviation

(s.d.), p<0.05.
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Figure 9.2 ROC curves for X-ray and MRI architectures on test data. X-ray pipeline ROC curves
are shown in (a), with AUCs as follows, p < 0.05: 0.848 + 0.039 (image only), 0.868 £ 0.028 (non-
imaging info. only), 0.890 £ 0.021 (integrated model). MRI pipeline ROC curves are shown in (b),
with AUCs as follows, p < 0.05: 0.886 + 0.020 (image only), 0.868 £ 0.028 (non-imaging info.
only), 0.834 £ 0.036 (integrated model). Standard deviations used to calculate confidence
intervals. ROC curves with AUCs within 1 standard deviation of the mean for each model type
during bootstrapping are also shown on plots.

Table 9.4 Performance of X-ray and MRI architectures on test data. While integrated X-ray
pipeline delivers higher accuracy than integrated MRI pipeline, integrated MRI pipeline yields
improved sensitivity over integrated X-ray pipeline across all stages of OA, markedly so at no OA.
Standard errors used to calculate confidence intervals.

Non-
Image Accuracy Sensitivity Specificity TKR
OAstatus | irce | Modeltype | ge0 ) (95% Cl) (95% Cl) TKR | cases
cases
Non-imaging  ¢51,0139 497+2.80  89.3+0.140
info. only
X-ray Image only 95.0 £ 0.089 7.8+1.64 95.4 £ 0.089
'”:ﬁ(g)g’:fd 95.4+0.081 8.6+1.95  958+0.077
None Non-imagin 2,892 12
. 8NE  891+0139 49.7+2.80  89.3+0.140
info. only
MRl Imageonly 952+0.088 66.9+3.23  953+0.089
Integrated o) 110171 922:168  82.4+0.173
model
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Non-
Image Accuracy Sensitivity Specificity TKR
OAstatus | irce | Modeltype | ge0 ) (95% Cl) (95% Cl) cTa':eRs cases
Non-imaging  _, 5, 0508 70.0+1.16 73.0+0.212
info. only
X-ray Image only 79.9+0.196 66.7+1.23 80.4 £0.195
'”:ﬁ(g)g’:fd 81.4+0.178 76.0+1.12 81.6+0.179
Moderate Nonimagin 2,056 83
. 8NE  279+0208 700+1.16 73.0+0.212
info. only
MRl Imageonly 68.8+0.225 783+0.952 68.4+0.227
Integrated ) 910216 78940974 74.7+0.228
model
Non-imaging o) 5,044 89.4+0864 35.8+0.925
info. only
X-ray Image only 32.1+0.714 94.5+0.735 7.2 £0.467
'”:ﬁ(g)g’:fd 60.5+0.775 64.0+1.57  59.0+0.959
Severe Non-imagin 141 57
. 8NE  513+0744 89.4+0.864 35.8+0.925
info. only
MRl Imageonly 34.6+0.775 983+0.390 9.2 +0.632
Integrated oo 010770 84.0+1.03  49.6+1.04
model
Non-imaging o) 1,118 75640776 81.2+0.122
info. only
X-ray Image only 86.4+0.095 725+0.864 86.9+0.095
'”:ﬁ(g)g’:fd 88.4+0.094 66.3+0.924 89.1+0.090
Al Po—— 5089 152
. 8NE 81140118 75.6+0.776 81.2+0.122
info. only
MRl Imageonly 82.1+0.118 84.9+0.636 82.1+0.119
Integrated g ¢, 0134 81.8+0643 78.4+0.138
model

9.5.3 MRI Pipeline Optimization and Performance

Similarly, a hyperparameter search was carried out for the MRI pipeline to optimize parameters

for eventual fine-tuning. The following hyperparameters were found optimal: learning rate of

1.906 x 1072, TKR class cross-entropy weight of 0.902 and non-TKR class weight of 0.098,

dropout rate of 0.329, only last layer of model fine-tuned after OA pretrain.
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An MRI-based model was fine-tuned from these parameters. The resulting predictions were fed
into an LR ensemble, where averaging predictions of the best 4 models in each OA category
optimized validation performance. Performance of the resulting architecture on test data is
reported in the same manner as the radiograph pipeline, in Table 9.4 and Figure 9.2. AUCs are
as follows: 0.886 * 0.020 (image only), 0.868 + 0.028 (non-imaging info. only), 0.834 £ 0.036
(integrated model). AUCs for the image-only and combined pipeline versions at no OA are as
follows: 0.897 £ 0.039 (image only); 0.943 £ 0.029 (integrated model). At moderate OA: 0.764 %
0.020 (image only); 0.830 £ 0.024 (integrated model). At severe OA: 0.560 £ 0.042 (image only);

0.726 £ 0.038 (integrated model). Again, all AUC intervals are calculated using s.d., p < 0.05.

9.5.4 Comparison of MRI and Radiograph Pipeline Performances

A comparison of overall AUCs attained by the integrated MRI and X-ray pipelines across OA
grades and overall shows that at no OA and severe OA, the MRI pipeline outperformed the X-ray
pipeline (No OA, B = 100: p = 3.04 x 10%; Moderate OA, B = 100: p = 9.55 x 10°%; Severe OA, B =
100: p = 4.57 x 10%; Overall, B = 100: p = 9.94 x 10!). The MRI pipeline thus has a superior
combination of sensitivity and specificity than does the X-ray pipeline for patients without OA
and those with severe OA. The AUCs obtained by the image-only pipelines also were compared,
and showed the MRI pipeline to outperform the X-ray pipeline for patients without OA and
overall (No OA, B =100: p = 6.10 x 10°; Moderate OA, B = 100: p = 7.58 x 10; Severe OA, B =
100: p = 4.37 x 10'%; Overall, B = 100: p = 1.16 x 1072). These results follow intuition: while
radiographic imaging is primarily capable of illuminating bones in the joint, MRI can visualize

soft tissues such as cartilage, muscle, and meniscus [143,331]. It follows that an MRI model will
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exhibit a better combination of sensitivity and specificity, especially in early OA stages at which
few radiographic changes in the knee have occurred. ROC curves for pipeline versions and OA
classifications in which the MRI architecture yielded a significantly better AUC than its X-ray

counterpart are shown in Figure 9.3.

McNemar’s test assessed relative accuracies of these pipelines. There was a statistically
significant difference between the accuracies of the integrated X-ray and MRI pipelines for
patients at no OA, moderate OA, and overall (No OA, n =537: p = 1.65 x 10°°; Moderate OA, n =
521:p=1.13 x 10°%; Severe OA, n = 47: p = 8.84 x 10'; Overall, n = 1,105: p = 1.52 x 10%), and
in each of those 3 statistically significant cases, the X-ray pipeline outperformed the MRI
pipeline (No OA, n=537: p=1.11 x 10'%; Moderate OA, n =521: p = 5.97 x 10%%; Overall, n =
1,105: p = 1.11 x 101®). In interpreting these tests and the AUC tests holistically, it is evident
that the X-ray pipeline is able to attain superior accuracy in several OA classifications by
compromising on its combination of sensitivity and specificity. This is further supported by the
accuracies and sensitivities reported for the respective pipelines in Table 9.4, which show that
while the X-ray pipeline is more accurate than its MRI counterpart at every OA classification, the
opposite is true for sensitivity—drastically so for patients without OA. In the clinic, where
sensitivity as to whether a patient is at risk of eventual TKR is paramount, these results would

show the MRI pipeline to be the more useful model.
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Figure 9.3 ROC curves for MRI and X-ray pipelines at selected OA classifications and pipeline
versions in which MRI performance was significantly better than that of X-ray. MRI pipeline
outperforms X-ray pipeline at no OA for both image-only and integrated models, as seen in (a)
and (c). As shown in (b), integrated MRI pipeline also outperformed integrated X-ray pipeline for
patients with severe OA, while (d) shows image-only MRI pipeline outperformed image-only X-
ray pipeline across all OA stages. AUCs are displayed in the figure with p < 0.05. Standard
deviations used to calculate confidence intervals. ROC curves with AUCs within 1 standard
deviation of the mean for each pipeline version during bootstrapping are also shown on plots.
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It is also worthy to note the improvement in performance that occurs for patients without OA
when imaging predictions are added to non-imaging variables in both pipelines. In the X-ray
pipeline, the model’s AUC increased from 0.514 £ 0.087 to 0.799 £ 0.055 when non-imaging
variables were added to the radiographs, a sizeable increase when compared to the MRI
pipeline performance, which saw AUC increase from 0.897 + 0.039 to 0.943 + 0.029 (p < 0.05 for
all). This demonstrates that non-imaging variables such as various pain scales seem to add
critical information to the X-ray pipeline, while the same information is less important in the

MRI pipeline.

9.5.5 Biomarker Identification and Analysis

Of the 152 patients in test data who underwent a TKR, 124 were detected by the MRI pipeline.
Occlusion maps were generated for these cases and their corresponding true negative controls,
an example of which is shown in Figure 9.4. Tissues and their hotspot percentages across these
true positives and corresponding true negative controls can be found in Supp. Table C.2 and
Supp. Table C.3 online, respectively. ORs, 95% confidence intervals, and associated p values for

each tissue can be found in Table 9.5.
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(Medial) « Slice » (Lateral)

Figure 9.4 Slices of occlusion map of true positive detected by MRI pipeline, overlaid on
corresponding slices of DESS MRI. Such maps were generated and analyzed for all 124 true
positives and corresponding true negative controls of the integrated MRI pipeline.

Three tissues saw ORs and 95% confidence intervals that lied above 1 and p values below o =
0.05: the medial patellar retinaculum, gastrocnemius tendon, and plantaris muscle. Thus, we
conclude there is a substantial and statistically significant difference in the risk of TKR within 5
years when these tissues are identified as hotspots by the pipeline. From the ORs, we see that
the risk of TKR increases when any of the three are identified as hotspots: for the medial
patellar retinaculum, the risk is 1.98 times higher with a 95% confidence interval from 1.02 to
3.99; for the gastrocnemius tendon, it is 2.97 times higher with a 95% confidence interval from

1.12 to 10.0; and for the plantaris muscle, it is 2.84 times higher with a 95% confidence interval
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from 1.47 to 5.82. As such, these results provide evidence that all are imaging biomarkers of
TKR.

Table 9.5 Summary of occlusion map analysis comparing frequencies with which selected knee
joint tissues were indicated as hotspots in analysis. Hotspots were defined as pixels that, when
occluded, were among the top 5% of all pixels in change of pipeline TKR prediction output
metric when occluded. Odds ratios, 95% confidence intervals calculated using Cornfield’s
method, and p values calculated using Fisher’s exact test are displayed. Tissues that were
significant at o = 0.05 are designated with a *. N value for all tests was n = 124.

Tissue type Tissue OR (95% Cl, n = 124) P value (n = 124)
Cartilage TF) medial” 0.05 (0.00 - 0.48) 3.36 x 103
TFI lateral” 0.03(0.00 - 0.25) 3.89 x 10°
PFJ 1.03 (0.60 - 1.77) 1.00 x 10°
Meniscus Medial anterior” 0.33(0.12 - 0.79) 1.04 x 1072
Medial posterior’ 0.40 (0.16 - 0.89) 2.37 x 1072
Lateral anterior” 0.23 (0.05 - 0.67) 5.05 x 103
Lateral posterior” 0.26 (0.06 - 0.80) 1.49 x 102
Bone TF) medial” 0.17 (0.00 - 0.91) 3.57 x 1072
TFI lateral” 0.02 (0.00 - 0.22) 8.48 x 10°°
PFJ 1.11 (0.64 - 1.92) 7.93x 101
Ligament ACL” 0.49 (0.23 - 0.99) 4.72 x 1072
PCL 1.58 (0.89 - 2.87) 1.27 x 101
Popliteal 1.62 (0.96 - 2.77) 7.51 x 1072
Tendon Medial patellar retinaculum” 1.98 (1.02 - 3.99) 4.19 x 1072
Lateral patellar retinaculum 1.08 (0.60 - 1.96) 8.88 x 10!
Popliteal 1.49 (0.87 - 2.57) 1.56 x 101
Patellar 1.76 (0.92 - 3.48) 9.00 x 1072
Gastrocnemius” 2.97 (1.12 - 10.0) 2.67 x 102
Semimembranosus 0.50 (0.23 - 1.03) 6.17 x 102
Quadriceps 3.18 (0.88 - 20.4) 8.38 x 102
Gracilis 4.52 (0.74 - 290) 1.20 x 101
Fat pad Hoffa 2.38(0.92 - 7.38) 7.80 x 102
Muscle Popliteus 1.98 (1.00 - 4.14) 5.11 x 102
Vastus medialis 1.26 (0.54 - 3.00) 6.93 x 101
Gastrocnemius 1.35(0.73 - 2.54) 3.76 x 101
Plantaris” 2.84 (1.47 - 5.82) 1.29 x 1073
Biceps femoris 4.52 (0.74 - 290) 1.20 x 101
Tibialis anterior 2.37(0.24 - 161) 6.22 x 101
Semimembranosus 0.35(0.05 - 1.32) 1.36 x 101
Synovium General 1.17 (0.50 - 2.82) 8.41 x 101
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On the other hand, several tissues located within or near the tibiofemoral joint—namely,
cartilage and bone in both medial and lateral locations of the joint, menisci in all tested regions,
and the ACL—saw ORs and 95% confidence intervals entirely below 1 and p values below o =
0.05. Consequently, for all of these tissues, we find a statistically significant difference in the risk
of TKR within 5 years when these tissues are identified as hotspots. In the case of each, the risk
of TKR appears to decrease when these tissues are identified as hotspots. Interestingly, each of
these tissues have either been implicated as imaging biomarkers of OA progression, or damage
within them is associated with OA onset [332-334]. These results, in conjunction with the three
tissues in which risk of TKR increased when identified as hotspots, suggest that compared to OA
progression, TKR onset relies less on tissues in and around the tibiofemoral joint and more on
tissues in other locations of the joint to make predictions. TKR has been considered an outcome

of OA progression, but these results demonstrate in part how it is a more nuanced problem.

9.6 Discussion and Conclusions

In this work, we present a pipeline that integrates MR imaging and non-imaging features to
attain strong TKR prediction performance, reporting accuracy of 78.5 £ 0.134%, sensitivity of
81.8 £ 0.643%, and specificity of 78.4 £ 0.138% (intervals calculated with standard error of
measurement (s.e.m.), p < 0.05). Comparisons of AUCs showed the MRI pipeline to outperform
the X-ray pipeline for patients without OA and with severe OA, thereby showing the MRI model
to have a better combination of sensitivity and specificity in these OA classifications. That it did
so particularly for patients without OA shows the utility of the MRI pipeline in screening for

patients at risk of TKR despite higher costs. It was also interesting that, particularly among
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patients with no OA, the X-ray model improved drastically more than the MRl model when non-
imaging information was added, judging by disparities in AUCs. This suggests the MRI-trained
DenseNet-121 may have learned to predict some of the non-imaging features from the images
themselves, indicating that MRl images may intrinsically contain information regarding pain,
quality of life, and physical performance, among other non-imaging variables used in this study.
The utility of MRI in predicting these variables through DL is certainly worth further

investigation.

A comparison of the MRI pipeline performance to past work is insightful. The closest analog to
our work was conducted by Wang, T. et al. [311], who trained independent residual networks to
predict TKR from both DESS and Turbo Spin Echo (TSE) MRI images, integrating both predictions
with non-imaging variables in an LR model to yield a final TKR prediction. This yielded a model
with AUC of 0.86 £ 0.01 (p < 0.01) when solely DESS or TSE images were used, and 0.88 £ 0.02 (p
< 0.01) when both images and non-imaging features were integrated. Our MRI image-only
model saw AUC of 0.886 + 0.020 (image only, p < 0.05) and an integrated AUC of 0.834 + 0.036
(combined, p < 0.05). Our image-only model thus yields performance superior to its image-only
counterpart, with a 95% confidence interval lying entirely above the mean AUC of the image-
only model by Wang, T. et al. [311]. Our integrated model, as discussed previously, was
optimized to maximize Youden’s index within each OA classification rather than overall AUC,
explaining why our integrated model has a lower overall AUC than our image-only model.
However, due to this decision, we obtained strong performance at early and moderate OA

stages, with sensitivity and specificity of 92.2 £ 1.68% and 82.4 £ 0.173% at no OA, respectively,
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and 78.9 £ 0.974% and 74.7 £ 0.228% at moderate OA (intervals calculated using s.e.m., p <
0.05). In particular, the AUC of 0.943 + 0.029 (interval calculated with s.d., p < 0.05) obtained by
the MRI pipeline for patients without OA, the most difficult OA classification from which to
predict TKR, by far surpasses that of past TKR predictive models that include patients across all
stages of OA. This performance marks progress towards a model that identifies patients at risk

for TKR such that nonsurgical treatment strategies can be implemented to delay TKR.

The biomarker analysis conducted also has implications, as it identified several tissues located
within or near the tibiofemoral joint as reducing risk of TKR when identified as hotspots by the
full MRI pipeline—namely, these were medially and laterally located cartilage and bone, all
examined meniscal regions, and the ACL. These tissues or damage within them all have been
associated with progression or onset of OA, and that our model shows TKR onset to be less
reliant on these imaging features in cases compared to controls demonstrates TKR onset to be a
more complicated problem than OA progression, despite the relationship between the two. On
the other hand, the model identifies three tissues as increasing risk of TKR when identified as
hotspots in the pipeline: the medial patellar retinaculum, gastrocnemius tendon, and plantaris
muscle. The medial patellar retinaculum is crucial for lateral stabilization of the knee joint, and
as such, damage to it results in a patella that more easily dislocates [335]. Past work has shown
patellar dislocation increases risk for OA, and TKR can be an effective procedure to treat
inveterate patellar dislocation, showing a previous link between this tissue’s functionality and
eventual OA and TKR [336,337]. The gastrocnemius tendon and plantaris muscle, on the other

hand, are both posteriorly located tissues within the knee that play a key role in knee flexion
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[338]. While literature regarding the plantaris muscle is rather sparse, injuries to the muscle can
be implicated in knee and calf pain felt by a patient [339]. Given their related functionality and
location, the gastrocnemius tendon and plantaris muscle can jointly be implicated in conditions
such as “tennis leg,” which refers to mid-calf pain felt during extension of the leg, usually due to
damage to one of these tissues or their associated muscles or tendons [340]. The significance of
the plantaris muscle and gastrocnemius tendon to OA progression and TKR, however, have not

been well characterized, and these results justify future studies to these ends.

This study had some limitations. The first is specific to the OAIl dataset, which tends towards
older, female patients, all from the United States: across 4,796 patients, the mean age is 61
years and 58% of patients are female. This is not emblematic of the general population, so the
robustness of the pipeline could be strengthened by testing on a dataset such as the
Multicenter Osteoarthritis Study (MOST). A further limitation of the dataset is that, despite the
fairly large size, there are a very limited number of patients with the classification of most
interest: those without radiographic OA that still undergo TKR within 5 years. Only 66 such cases
existed in the entire OAIl dataset, and 12 were in the test set. As such, the OAl dataset and the
number of comparison experiments we ran within and across OA classifications limits the
statistical power of our conclusions. Furthermore, in this study, pixels in MRI images were
compressed to 14 possible values to optimize performance—a version of the pipeline was also
constructed and evaluated without the compression, but its TKR prediction performance was
not as strong. Ideally, a model that uses all available information would be used in occlusion

map analysis to draw more precise conclusions regarding anatomic regions that associate with
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TKR, but this compromise was necessary to improve performance. A final limitation was
computational intensity in occlusion map generation: the voxel size and stride used were 12 x
32 x 32 and 12, respectively. These ideally would be smaller so maps could yield more precise

insights but doing so was infeasible in a reasonable amount of time.

To conclude, this work presents a predictive model that delivers performance not previously
seen in predicting TKR, especially for patients without OA. By delivering such performance, this
pipeline can identify patients at risk of TKR with high sensitivity and specificity, and for patients
with no or moderate OA, this can allow a non-invasive treatment to be implemented that
prolongs good health of the knee and delays TKR. The biomarker analysis identifies the medial
patellar retinaculum, gastrocnemius tendon, and plantaris muscle as increasing risk of TKR when
identified as a hotspot by the model, while its assessment that several tissues within and near
the tibiofemoral joint appear to reduce risk of TKR helps demonstrate the added complexity of
predicting TKR onset as opposed to OA progression. Beyond this, additional directions include
investigating a more effective means of integrating non-image information with image
predictions to improve TKR prediction performance, assessing the efficacy of alternate network

architectures, and reducing computational time to make predictions.
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Appendix A - Supplementary Information to Chapter 6

Supp. Table A.1 Acquisition times for MAPSS at tested R. Acquisition times for the full MAPSS
sequence if the proposed undersampling patterns were implemented for T1pand T, preparation
and image acquisition. If acquisition times were desired solely for T, weighted images acquired
from MAPSS, all acquisition times in this table would need to be multiplied by 0.571.

Acquisition Type Knee Hip Lumbar Spine
5 minutes, 53 8 minutes, 15 5 minutes, 17
Ground Truth
seconds seconds seconds
R=) 2 minutes, 56 4 minutes, 8 seconds 2 minutes, 39
seconds seconds
R=3 1 minute, 58 seconds 2 minutes, 45 1 minute, 46 seconds
seconds
R=4 1 minute, 28 seconds | 2 minutes, 4 seconds | 1 minute, 19 seconds
R=6 59 seconds 1 minute, 23 seconds 53 seconds
R=8 44 seconds 1 minute, 2 seconds 40 seconds
R=10 35 seconds 50 seconds 32 seconds
R=12 29 seconds 41 seconds 26 seconds

Supp. Table A.2 Information for cross-validation splits in knee, hip and lumbar spine datasets.
Training, validation, and test data splits of MAPSS acquisitions for all three folds, by patient and
by total number of scans. In lumbar spine, total scans exceeded number of patients because
some patients had spines scanned multiple times, whereas for knee and hip, both knees or both
hips of some patients may have been scanned. To prevent data leakage, all scans of a particular
patient was only placed into one of the three datasets. Unless otherwise specified, all results in
paper are reported from fold 1 split; additional splits 2 and 3 were made to assess robustness of
T, quantification performance and texture retention to different datasets used, as described in
subsequent Supplementary information tables.

Anatomy Fold Training Validation Test
Patients Scans Slices | Patients Scans Slices | Patients Scans Slices
1 144 265 5,591 50 91 1,952 50 90 1,928
Knee 2 144 262 5,619 50 93 1,960 50 90 1,892
3 144 259 5,480 50 81 1,739 50 106 2,252
1 39 59 1,533 15 15 390 13 15 390
Hip 2 39 59 1,533 12 15 390 13 15 390
3 40 59 1,533 13 15 390 15 15 390
1 13 14 112 4 5 42 4 5 40
Lumbar spine 2 15 16 130 4 4 32 4 4 32
3 14 16 130 4 4 32 4 4 32
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Supp. Table A.5 ROl and global correlations between predicted and ground truth T, maps.
Pearson’s r between predicted and ground truth T, maps for proposed model trained with full 4-
component loss function, proposed model trained with just the ROI-specific loss component
ablated (A1,4=0), and proposed model trained with an ordinary loss function of L1 and SSIM
(A1,6=0, Areat=0) as part of ablation study. Correlations are also provided between predictions and
ground truth for 3 state-of-the-art models. Significance of Pearson’s r is denoted as follows: * P <

0.05, " P<0.01,

%k ¥

P < 0.001 (knee: n=90; hip: n=15; lumbar spine: n=5). For any given R, the

strongest correlation within the ROl is highlighted in red, whereas the strongest correlation
globally is highlighted in blue. Across the hip and knee pipelines, each of which had large
datasets available for training, correlations are strongest within cartilage ROIs for the proposed
pipelines across all R, while for all R, state-of-the-art DL pipelines (MANTIS, MANTIS-GAN)
exhibited stronger correlations globally to ground truth. Similarly, when the ROI-specific loss
function was ablated, for nearly all tested R in hip and knee, correlations became stronger
globally than for the proposed pipelines. This is indicative of successful training and the role of
the ROI-specific loss function: with a sufficiently large training set, it improves results within

cartilage ROIs at the expense of global performance, allowing for ROI-specific model

optimization. These trends were inconsistent inn the lumbar spine, likely owing to the very
small dataset size that added randomness to the training process; some results thus may be a
result of more complete training rather than the specific utility of the ROI-specific loss. If trained
with a larger dataset, the lumbar spine results would be expected to mirror the knee and hip.

Tissue | R | Tissue P:slzzsjd A1y=0 ::'4’:_06 MANTIS | MANTIS-GAN cs
eat™

, | cartilage | 0.748** [ 0.658*** | 0.685%** [ 0587*** | 0.611*** | 0.620***

Global | 0.667*** | 0.675%** | 0.677*** | 0.700%** | 0.703*** | 0.581%**

, | Cartilage | 0.695°* [ 0.491%** [ 0.573%** [ 0.467*** | 0.502*** | 0.559***

Global | 0.383*** | 0.618*** | 0.683*** | 0.681*** | 0.693*** | 0.566%**

, | Cartilage | 0.651%%* [ 0.376*** [ 0558*** | 0.451%** | 0.467*** | 0.486***

Global | 0.149%** | 0.575%** | 0.693%** | 0.672%** | 0.670%** | 0.554%**

8 | o | cartiage | 0.612%%* | 0.465%** | 0.442%* | 0.397+*> 0.378* 0.445%**
S Global | 0.487*** | 0.663*** | 0.687*** | 0.667*** | 0.659%** | 0.547%**
o | Cartilage | 0.585%%* [ 0.383** [ 0450*** [ 0352*** | 0364** | 0.410%*

Global | 0.440%** | 0.661%** | 0.672%** | 0.659%** | 0.654%*** | 0.548%**

Lo | Cartilage | 0.555%*% | 0.124%* | 0.346*** | 0.327%** | 0.333*** | 0.386%**
Global | 0.165*** | 0.540%** | 0.623*** | 0.651%** | 0.653*** | 0.552%**

|, | Cartilage [ 0.491%%% | 0.339%** | 0.396*** | 0.290*** | 0.287*** | 0.381%**
Global | 0.559%** | 0.613*** | 0.630%** | 0.650%** | 0.656*** | 0.557***

, | cartilage | 0.794** [ 0.562*** [ 0.655%** [ 0.716*** | 0.514*** | 0.310%**

Global | 0.683*** | 0.713%** | 0.727%** | 0.755%** | 0.699%** | 0.534%**

, | Cartilage | 0.705%* [ 0.541%** [ 0.612%** [ 0506*** | 0.372*** | 0.332%**

a Global | 0.607*** | 0.669*** | 0.660%** | 0.723*** | 0.650%** | 0.549%**
T |, | cartiage [ 0.6467** | 0.459%** | 0.540%%* | 0.510%** | 0333*** | 0.339%**
Global | 0.609*** | 0.594*** | 0.610%** | 0.707*** | 0.641%** | 0.562%**

o | Cartilage | 0.587* [ 0.458*** [ 0.480%** [ 0382*** | 0.321%** | 0.334***

Global | 0.555%** | 0.595%** | 0.643%** | 0.690%** | 0.634%** | 0.573%**
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Tissue | R | Tissue P:slzzi?d A1,6=0 ::'4’:_06 MANTIS | MANTIS-GAN | CS
eat=

o | Cartilage | 0.598%% | 0.344%** [ 0437*** [ 0334%** | 0.237%%* | 0347+

Global | 0.630%** | 0.577*** | 0.627*** | 0.684%** | 0.660*** | 0.574***

2 || Cartiage [ 0.558%** [ 0.355%** | 0.434*** | 0.279*** | 0.268*** | 0.335%**
T Global | 0.412%** | 0.429%** | 0.551%** | 0.686*** | 0.615*** | 0.569***
L, | Cartilage | 0.517%%% | 0.427%%* | 0.423** | 0.280*** | 0228*** | 0.349%**
Global | 0.619%** | 0.625*** | 0.622*** | 0.682%** | 0.622*** | 0.578***

, | vps [ o0.884* [0.850+* [ 0.879%** [ 0.784%** | 0.785*** | 0.802%**

Global | 0.836%** | 0.673*** | 0.772*** | 0.816*** | 0.821*** | 0.812***

;| vDs | 0.832%* [0.823%* [ 08467+ [ 0717 | 07125 | 0.777%%

Global | 0.797*** | 0.707*** | 0.711%** | 0.784*** | 0.786*** | 0.788***

o | 4| VDs | 0819%%% | 0.804%** | 0.827°5 | 0.680%%* | 0.671%%* | 0.723%*
£ Global | 0.783*** | 0.696*** | 0.743*** | 0.771%** | 0.774*** | 0.772***
o [ o | wos [0771%%% [o.764%*x | 07615 | 0.660%** | 0.658*** | 0.728%**
3 Global | 0.766*** | 0.737*** | 0.712*%** | 0.764*** | 0.770*** | 0.760***
£ g | IDs | 07425 [0245%% [ 0747 [ 06317 | 0.645*** | 0,695+
Global | 0.749%** | 0.664*** | 0.720%** | 0.756*** | 0.757*** | 0.752%**

0| VDs [0672%%% [ 0.6517 | 0,698 | 0.647°%* | 0.636*** | 0.648%**
Global | 0.728*** | 0.707*** | 0.669*** | 0.762%** | 0.761*** | 0.747***

| VDs [0.643%%% [ 05817 | 0,655 | 0.651%FF | 0.614*** | 0.586%**
Global | 0.707*** | 0.661*** | 0.686*** | 0.760%** | 0.762*** | 0.746***

Supp. Table A.6 T, value equivalents of quantification errors in cartilage, IVDs across all models.
Additional details on model performance from R=2 through R=12 within cartilage
compartments and at disc levels. As in Supp. Table A.4, NRMSE was calculated across cartilage
or IVD compartment on a patient level for all ablated models, and these NRMSEs were
multiplied by corresponding mean reference T2 values to convert quantification error rates into
T2 estimation errors. Estimation errors are reported mean 1 s.d. [ms] (knee: n=90; hip: n=15;
lumbar spine: n=5).

Tissue | R | Full Model P:;dr::f:rs No RNN MANTIS Mgms- cs

2 [ 17540449 | 1.92+1.1 | 1.5+062 | 4.56+0.631 | 4.28+0.726 | 2.84 +0.951
w | 3120640773 | 2.27+1.07 | 2.02£0.884 | 5.23+0.694 | 4.79+0.652 | 3.15+1.08
_i;‘? 4 | 238+1.01 | 3.02+1.81 | 2.39+1.08 | 524+0.869 | 495+1.03 | 3.74+1.26
& | 6|25640933 | 3.38+2.18 | 2.67+1.21 | 4.82£0.709 | 5.16+0.903 | 3.93+1.44
$ | 8| 282:093 | 3.03£1.29 | 3.21+152 | 5.28+0.673 | 5.46+0.689 | 41141
¥ 110| 3.09+1.14 | 3.21+1.26 | 2954124 | 5.55+0.654 | 5.29+0.822 | 4.26+1.38

12 [337+0.822 | 3.14+13 | 3314121 | 577410 | 6.48+122 | 427+1.46
o [ 2] 1164034 | 1.2+0349 | 1.11+0.229 | 1.34+0.287 | 2.4+0.327 | 4.31+0.745
T | 3|191+0516| 1.6440.519 | 1.5440.332 | 1.87£0.363 | 2.93+0.382 | 3.74£0.814
S | 4| 180348 | 1.840525 | 171£0.273 | 2.1440.465 | 2.91+0.467 | 3.42+0.593
T | 6 | 23740598 | 2.4+0.676 | 2.19+0.484 | 2.52+0.643 | 2.83 +0.497 | 3.43 +0.559
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Tissue | R | Full Model P:;dn:‘:f:rs No RNN MANTIS ngﬂs- cs

| 8 [2.04+0676 | 1.85+0.418 | 2.04+0.488 | 2.98+0.789 | 3.52+0.767 | 3.04 £ 0.681
25 |[10]263+0873 | 237£04 | 254122 | 2.8540637 | 3.05+0563 | 2.96 0.685
12 | 2.26+0.499 | 2.42+0.737 | 2.14+0.433 | 2.85+0.614 | 3.35+0.685 | 3.0+0.748

2 [ 31540602 | 32240571 | 2.28+0.4 | 412+1.06 | 42+1.06 | 4.74+1.93

8 | 3 |466+£0854 | 4.11+0.434 | 3.35:0.478 | 517£0.931 | 529+ 1.14 | 445%114

v | 4 |485:0736 | 45740850 | 3.48+0.473 | 57+117 | 591129 | 53+165
S | 6| 5684174 | 575124 | 484+13 | 7324228 | 57+1.07 | 5.62+1.63
& | 862840967 | 6.1141.15 | 5624126 | 6.22+1.27 | 5.96+0.983 | 6.02+1.53
£ |10|718+0725 | 695+0705 | 693+11 | 6.48+156 | 6.19+1.29 | 7.04+2.35
12| 848+1.18 | 108+2.82 | 8844224 | 6944218 | 6.62+153 | 11.7+7.04

Supp. Table A.7 T, quantification errors in knee cartilage compartments for 6 tested models.

Performances of all methods — our ROI-specific loss approaches, other DL and DL/model-based
approaches, and a CS approach in predicting T2 maps in knee cartilage. NRMSEs are reported +1
s.d., with the top performing model in each cartilage compartment at a given R shown in bold
(n=16). Top performing pipelines were all pipelines with ROI-specific loss functions used in
training, particularly with our full pipeline and its no RNN version being strongest. In the lateral
and medial femoral condyles, T, quantification performance was below clinically significant
thresholds for all tested R of the full pipeline, and for nearly all tested R for the no RNN pipeline.

R Tissue Full Model Reduced No RNN MANTIS MANTIS-GAN cs
Parameters

2 | Lateral Femoral Condyle | 5.76 +2.63 | 895+ 10.7 5.67+4.72 139+4.21 1314429 1154938
Lateral Tibial Condyle 6.02+235| 69+456 5.49+3.72 1761743 179+6.71 956+6.7
Medial Femoral Condyle | 5314206 | 4544175 4.18+1.69 1524693 1424671 122+ 876
Medial Tibial Condyle 814494 (1014124 7.73+6.48 2254798 20.6 + 6.68 1494+7.87
Trochlear 7.1944.45| 6564532 5.14+2.7 166453 17.1+873 5.234+3.26
Patellar 4084124 4694155 3.52+1.38 1234289 1124395 4024215
All Cartilage 5524125| 6.07+3.21 4.76 £ 1.78 14442385 135433 892432

3 | Lateral Femoral Condyle | 7.37+£5.35 | 9.74 + 8.88 8254743 1634471 1494524 144+104
Lateral Tibial Condyle 8014383 | 78994+536 7.41+4.7 1884591 17.1+6.03 10.1+ 498
Medial Femoral Condyle | 5.77+£2.19 | 6.46+2.79 6334274 1754318 156+3.79 1364782
Medial Tibial Condyle 1064822 | 105+114 10.2 £9.52 2294721 189+7.21 16.1+8.27
Trochlear 7134443 755453 6.71+4.26 204+ 883 189+83 602424
Patellar 5034139 529+1.49 432+1.79 1414494 1294381 4654218
All Cartilage 6524217 | 7.18+3.08 6.39+2.59 165+3.43 1514289 9924323

4 | Lateral Femoral Condyle | 10.7£10.1 | 17.44+20.8 10.7 £9.41 17.24+5.44 1564+6.26 1514105
Lateral Tibial Condyle 9.2+464 | 1234756 8.98+5.28 20.54+6.87 1894565 127470
Medial Femoral Condyle | 7.16 £2.85 | 11.84+528 8.44 + 467 17.7+50 179+4.71 16.1+ 894
Medial Tibial Condyle 113+102 | 166+17.7 1204112 2364758 219+6.81 15.0+£9.19
Trochlear 7.4+4597 8884847 7.03+5.1 193+103 2174176 8154297
Patellar 5114126 (461173 4764199 133435 1234445 486+179
All Cartilage 7.54+296 | 956 +547 7.56+3.19 166+3.73 157445 118+373
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R Tissue Full Model Reduced No RNN MANTIS MANTIS-GAN cs
Parameters

6 | Lateral Femoral Condyle | 10.9+8.25 | 20.1+25.0 119+110 14954+ 4.08 168453 160+11.2
Lateral Tibial Condyle 103+4.75| 15.74+991 10.3+6.11 2164+7.29 156+492 1424792
Medial Femoral Condyle | 7.93+£3.36 | 11.2+6.09 9.76+598 16.6+5.09 20.14+8.09 17.24+843
Medial Tibial Condyle 124+832| 1734+20.1 13041089 2334551 2254566 1934+9.17
Trochlear 7.0+4.39 104+115 743 +4381 1764921 1954105 9.7+328
Patellar 5694129 | 5454211 5.45+1.83 120431 124435 5.76+233
All Cartilage 8.09+2.65| 10.7 £ 6.67 844 4+3.45 1524233 1634391 124441

8 | Lateral Femoral Condyle | 11.6 £9.1 1424146 147+136 16.2+4.83 16.4 £ 4.89 1724103
Lateral Tibial Condyle 104+4.13 | 1104598 11.94+6.75 2044584 1934503 1484717
Medial Femoral Condyle | 9.5+5.11 128+ 497 1424+ 874 1834542 17.24+403 1754+ 8.66
Medial Tibial Condyle 129+8.83 | 1454108 158+ 140 2324511 23.14+6.36 193+ 8385
Trochlear 8494477 | 8644649 8.38+5.54 1734421 1874449 10.7 +3.58
Patellar 6.33+1.24 | 634+16 5.684+2.18 1364346 148+3.29 6054235
All Cartilage 8.94+266| 955+3283 10.1+4.42 16.7+2.73 1734239 1294393

10 | Lateral Femoral Condyle | 13.24+ 105 | 13.4+ 105 125+ 8.94 16.7+4.32 181+68 16.6+9.32
Lateral Tibial Condyle 11.5+5.28 | 13.7+5.03 11.7+6.06 21.0+454 20.0+4.26 148+ 6.67
Medial Femoral Condyle | 122459 12.04+6.17 11.3+6.13 18.74+5.24 2144817 17.047.71
Medial Tibial Condyle 1744143 | 14.4£5.27 1504118 239+6.07 22.74+6.22 20,0+ 892
Trochlear 8884627 | 8.88+554 8.25+5.51 1894+6.22 15.04+9.7 1224415
Patellar 6314167 | 6474152 5.54+1.96 1494+3.48 1164325 68+£272
All Cartilage 9774344 | 1024361 9.35+35 1764+ 248 16.7+3.44 1344376

12 | Lateral Femoral Condyle | 13.0£7.39 | 1384124 1364785 17.7+5.29 21.24+7.46 16.7+9.75
Lateral Tibial Condyle 1334403 | 123+5.86 1374592 22.74+6.26 23.946.26 150+6.26
Medial Femoral Condyle | 12.1+5.68 | 12.6+6.34 1404933 224+ 865 2834106 17.5+8.03
Medial Tibial Condyle 1504+7.12 | 14.0£9.78 153+ 863 2424575 26.24+5.02 199+833
Trochlear 8.6+£4.45 8.2+531 8.18+4.79 19.84+9.12 2334116 1234422
Patellar 8184195 6.7+166 6.29+2.19 1454+ 6.52 155465 709+£273
All Cartilage 1074232 | 9.93+3.76 10.54+3.37 182445 20.54+5.58 1344396

Supp. Table A.8 Correlation between predicted and ground truth T, in knee cartilage
compartments for all tested pipelines. Pearson’s r between predicted and ground truth T, maps

in knee cartilage, the significance of which is noted as follows: * P < 0.05, " P < 0.01,

% %k %k

P<

0.001 (n=16). The top performing model in each cartilage compartment at each R is shown in
bold. The no RNN pipeline is the best across most cartilage compartments and R, but the
pipelines with ROI-specific losses substantially outperform their counterparts in most cases,
exhibiting strong map performance at high R.

R Tissue Full Model Reduced No RNN MANTIS MANTIS-GAN cs
Parameters

2 | Lateral Femoral Condyle | 0.712%*** 0.678*** 0.779%** 0.522%** 0.558*** 0.555**
Lateral Tibial Condyle 0.801*** 0.775*** 0.829%** 0.573*** 0.586*** 0.689***
Medial Femoral Condyle | 0.759%** 0.775%*** 0.826%*** 0.548*** 0.605*** 0.565*
Medial Tibial Condyle 0.721*** 0.697*** 0.760*** 0.460** 0.510*** 0.503***
Trochlear 0.780*** 0.762*** 0.826%*** 0.692*** 0.700*** 0.811***
Patellar 0.671*** 0.686*** 0.764*** 0.527*** 0.557*** 0.694***
All Cartilage 0.748*** 0.736*** 0.807*** 0.587*** 0.611*** 0.620***
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R Tissue Full Model Reduced No RNN MANTIS MANTIS-GAN cs
Parameters
3 | Lateral Femoral Condyle | 0.655%*** 0.562*%** 0.660*** | 0.404*** 0.469%** 0.447*
Lateral Tibial Condyle 0.715%** 0.720%** 0.738*%** 0.416* 0.463* 0.627%**
Medial Femoral Condyle | 0.723*** 0.701*** 0.748*** 0.435%** 0.509*** 0.505%**
Medial Tibial Condyle 0.655* 0.643** 0.675** 0.267 0.330 0.408*
Trochlear 0.711%** 0.715%** 0.759%** 0.638%** 0.664%** 0.773*%**
Patellar 0.618%** 0.584*** 0.679%** 0.363*** 0.391*** 0.633%**
All Cartilage 0.695%** 0.668*** 0.722%** 0.467*** 0.502*** 0.559%**
4 | Lateral Femoral Condyle | 0.528*** 0.512* 0.572%** 0.353*** 0.407*** 0.421**
Lateral Tibial Condyle 0.682%** 0.670%** 0.705%** 0.368* 0.373* 0.538*
Medial Femoral Condyle | 0.666%** 0.638*** 0.674%** 0.402* 0.443%** 0.463**
Medial Tibial Condyle 0.600* 0.586*** 0.616* 0.199* 0.218 0.319**
Trochlear 0.710%** 0.708*** 0.750*** 0.636*** 0.638%** 0.700%**
Patellar 0.627%** 0.629*** 0.645%** 0.362* 0.377* 0.597%**
All Cartilage 0.651*** 0.637*** 0.677*** 0.451*** 0.467*** 0.486%**
6 | Lateral Femoral Condyle | 0.475*** 0.481*** 0.527*** 0.306*** 0.308*** 0.345
Lateral Tibial Condyle 0.600** 0.652%** 0.646*** 0.245* 0.246* 0.462
Medial Femoral Condyle | 0.606%** 0.629*** 0.627*** 0.338* 0.366%** 0.394
Medial Tibial Condyle 0.530** 0.558*** 0.562* 0.130 0.082 0.219*
Trochlear 0.728*** 0.672%** 0.715%** 0.619*** 0.599%** 0.656%**
Patellar 0.557*** 0.568%** 0.561*** 0.308*** 0.247*** 0.527***
All Cartilage 0.612*** 0.610*** 0.629*** 0.397*** 0.378* 0.445***
8 | Lateral Femoral Condyle | 0.473*** 0.445** 0.486*** | 0.271* 0.278 0.285
Lateral Tibial Condyle 0.601*** 0.614** 0.648*** 0.216*** 0.237* 0.423*
Medial Femoral Condyle | 0.590%** 0.558*** 0.586*** 0.308 0.330*** 0.377*
Medial Tibial Condyle 0.502* 0.520** 0.536** 0.058* 0.034 0.177*
Trochlear 0.691*** 0.673*** 0.695%** 0.585*** 0.586*** 0.625***
Patellar 0.554*** 0.564%** 0.549*** 0.270*** 0.255*** 0.482***
All Cartilage 0.585*** 0.574*** 0.609*** 0.352*** 0.364** 0.410***
10 | Lateral Femoral Condyle | 0.399 0.366*** 0.405*** 0.242 0.275* 0.287
Lateral Tibial Condyle 0.548* 0.504*** 0.568*** 0.185* 0.174* 0.406*
Medial Femoral Condyle | 0.509*** 0.480*** 0.511%** 0.280* 0.347*** 0.362*
Medial Tibial Condyle 0.427*** 0.433** 0.465* 0.016 -0.008 0.132
Trochlear 0.650%** 0.628*** 0.650*** 0.564*** 0.561*** 0.590***
Patellar 0.537*%** 0.443*** 0.527%** 0.203 0.285%** 0.414%**
All Cartilage 0.555%** 0.514*** 0.565%** 0.327*** 0.333*** 0.386%**
12 | Lateral Femoral Condyle | 0.359* 0.408* 0.377* 0.214 0.198 0.266
Lateral Tibial Condyle 0.470%** 0.575%** 0.494%** 0.174* 0.184** 0.375*
Medial Femoral Condyle | 0.444%** 0.493*** 0.435%** 0.248* 0.244* 0.344
Medial Tibial Condyle 0.338* 0.467%** 0.360* -0.001 -0.022 0.080
Trochlear 0.656%** 0.679%** 0.672%** 0.520%** 0.501*** 0.582%**
Patellar 0.434%** 0.512%** 0.465%** 0.157** 0.153*** 0.392**
All Cartilage 0.491*** 0.545%** 0.511%** 0.290%** 0.287%** 0.381***

Supp. Table A.9 T, quantification errors in hip cartilage compartments for 6 tested models.
Performances of all methods in predicting T, maps in hip cartilage. NRMSEs are reported +1 s.d.,
and the top performing model in each cartilage compartment at a given R is bolded (n=15). The
no RNN pipeline version performs strongest at most R and cartilage compartments, and ROI-
specific losses see stronger performance at most R and cartilage compartments than
alternatively. In femoral cartilage, T> quantification errors are below clinically significant
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thresholds at nearly all tested R for the full model and no RNN pipelines. In acetabular cartilage,
error rates were below clinically significant thresholds at R=2.

R | Tissue | Full Model P:;dn;‘:‘::rs No RNN MANTIS Mgms- cs
Femoral |3.69+1.0 |3.94+1.05 |3.33+0.65 |3.85+0.746 | 7.05+1.09 | 9.56 +2.82
2 | Acetab. |4.4+146 |437+1.72 |454+152 |58+1.92 |9.89+2.99 |18.9+5.8
AllCart. |3.97+1.03 |41+11 |3.79£0.807 | 458+0.993 | 821+142 | 14.8+2.78
Femoral |6.14+1.61 |554+1.71 | 472+1.07 |555+0.94 |9.06+1.21 |8.56+2.21
3 | Acetab. | 7.164231 |578+2.44 | 6.15£2.07 |7.8+2.37 |11.3+2.95 | 16.5+5.75
AllCart. |6.53+1.63 |563+168 |525¢1.13 |641+131 |10.0+157 |12.9+3.15
Femoral |566+1.01 |581+1.53 |523+0.8 |6.27+1.23 |9.09+1.68 | 8.78+2.94
4 | Acetab. |7.0+176 |6.84+2.06 |6.79+1.55 |888+3.0 |11.1+3.23 |14.5+3.76
AllCart. |6.15+1.01 |6.17+147 |5.84+0.891 | 7334167 |9.97+174 | 11.8+2.03
Femoral |7.99+1.9 |826+2.47 |7.1+1.57 |7.42+179 |831+164 |832+2.03
6 | Acetab. |823+252 [815+2.58 | 8.01+2.4 |10.2+3.53 |11.3+3.69 | 15.2+3.91
AllCart. |81+1.85 |822+206 |7.48+152 |863+232 |9.68+192 |11.8+2.14
Femoral |6.54+2.22 |575+1.55 | 6.19+1.61 |9.25+2.67 |12.2+3.45 |8.17+2.32
8 | Acetab. | 7.67+2.48 |7.22+237 |82+24 11.4+3.26 |11.8+2.98 | 12.9+3.52
AllCart. |697+1.93 | 6334133 |698+145 |10242.72 |12.042.64 |10.5+2.3
Femoral |877+3.12 |7.6+1.46 |8.63+469 |838+1.96 |9.88+235 |8.1+2.83
10 | Acetab. | 9.26+3.04 | 9.03+2.49 | 8.8+2.92 |11.4+35 |11.1+3.47 |12.4+3.37
AllCart. | 899+265 |8.12+1.28 |87+3.46 |9.74+224 |105+1.91 |102+2.4
Femoral |7.13+1.78 |7.92+2.44 | 6.49+1.34 |834+171 |10.9+2.92 |8.69+3.09
12 | Acetab. | 8.64+224 |877+2.5 |859+2.29 |11.5+372 |12.1+3.6 |11.9+3.37
AllCart. |7.75+15 |827+219 |7.34+1.38 |974+223 |11.54236 |10.3+2.52

Supp. Table A.10 Correlation between predicted and ground truth T in hip cartilage

compartments for 6 tested models. Pearson’s r between predicted and ground truth T, maps in

hip cartilage with significances reported as follows: “ P < 0.05, ** P < 0.01,

%k ¥

P <0.001 (n=15).

The top performing model in each cartilage compartment at each R is shown in bold. The full
model and reduced parameters pipelines generally show highest correlations between
predicted and ground truth maps, but similar to the knee, networks with ROI-specific losses all
show strong performance at high R.

R | Tissue MF::eI P:;d;‘:::rs NoRNN | MANTIS Mgms- cs
Femoral | 0.773%** | 0.765%** | 0.760%** | 0.717*** | 0.540%** | 0.399%**

2 | Acetab. | 0.788*** | (0.780%** | 0.753*** | 0.676%** | 0.481*** | 0.309%**
All Cart. | 0.794%** | 0.782%** | 0.770%** | 0.716%** | 0.514*** | 0.310%**
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R | Tissue MF::eI P:;d;‘:::rs NoRNN | MANTIS Mgms- cs
Femoral | 0.711%** | 0.723*** | 0.712%** | 0.587*** | 0.420%** | 0.414%**
3 | Acetab. | 0.660%** | 0.709%** | 0.663*** |0.545%** |(315%** | (331%**
All Cart. | 0.705%** | 0.726%** | 0.703%** | 0.596%** | 0.372%** | 0.332%**
Femoral | 0.628%** | 0.635*** | 0.641%** | 0.528*** | 0.368*** | 0.408***
4 | Acetab. |0.620%** |0.656%** | 0.616%** | 0.440%** | 0.294%** | (0,328%**
All Cart. | 0.646%** | 0.665%** | 0.648%** | 0.510%** | 0.333%** | 0.339%**
Femoral | 0.589%** | 0.608*** | 0.593*** | 0.422%** | (371%** | (.428%**
6 | Acetab. |0.551%** |0.558*** | 0.521*** | 0.316 0.296%** | 0.292%**
All Cart. | 0.587*** | 0.597%** | 0.570%** | 0.382%** |0.321%** | 0.334%**
Femoral | 0.579%** | 0.564*** | 0.555%*% | 0.402%** | 0.331%** | 0.423%**
8 | Acetab. | 0.576*** |0.579%** | (0517%** |0 229 0.177*% | 0.323%**
All Cart. | 0.598%** | 0.588%** | 0.558%** | (0.334%** | (0.237%** | 0.347%**
Femoral | 0.523%** | 0.528%** | 0.511%** | 0.369%** | 0.333*** | 0.416%**
10 | Acetab. | 0.542%** | 0.482%** | 0.490%** |0.177* 0.242%** | 0.308*
All Cart. | 0.558%** | 0.534%** | 0.522%%* | 0.279%** | 0.268*** | 0.335%**
Femoral | 0.521*** | 0.563*** | 0.508*** | 0.336*** | 0.299%** | 0.416%**
12 | Acetab. | 0.471*** | 0.521%** | 0.455%** | 0,192* 0.187** | 0.333**
AllCart. | 0.517*** | 0.566%** | 0.512%** | 0.280%** | 0.228%** | 0.349%**

Supp. Table A.11 T, quantification errors in lumbar spine IVD levels for 6 tested models.
Performances of all methods in predicting T> maps in lumbar spine IVDs. NRMSEs are reported
+1 s.d., and the top performing model in each cartilage compartment at a given R is bolded

(n=5). Through R=8, the no RNN pipeline performs best in predicting T> maps, while at R=10, the

MANTIS-GAN pipeline performs best. It’s possible that, given the substantially smaller lumbar
spine dataset from which DL models were trained, the more complicated loss functions of the
ROI-specific loss approaches make it difficult to train at ultrafast R, and collection of a larger
dataset is required to see higher quality predictions. Regardless, all pipeline versions saw
predictions with error rates below clinically significant thresholds aggregated across all discs for
all tested R, except CS at R=12.

R Tissue Full Model Reduced No RNN MANTIS MANTIS- CS
Parameters GAN

L1/L2 6.11+1.3 6.17+164 |536%*116 |691+1.63 |7.54+2.19 10.0+5.72
L2/L3 9.08+4.57 |9.55+541 |7.71+£598 |12.6+11.1 | 13.0+10.6 | 13.5+6.28
L3/L4 5.93+1.1 5.82+0.731 | 3.99+1.27 |793+243 |7.77+£256 |10.1+4.69

2 L4/L5 5.86+2.29 | 6.02+2.22 |3.66+0.817 | 9.51+3.23 | 9.71+3.2 9.64 £ 3.82
L5/51 6.37+2.1 7.77+257 |4.18+146 |7.48%157 |7.28+2.04 |6.31+£3.5
All Discs | 6.71£1.7 6.86+1.57 |4.86t1.16 |8.78+2.08 |8.95+1.91 10.1+3.06
L1/L2 9.4+1.83 8.16+1.25 |7.37+1.86 |9.59+1.06 |10.4+251 10.9+3.45

3 L2/L3 12.6+5.13 |11.3+6.64 |104+7.42 |140+7.2 15.4+10.2 12.5+5.32
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R Tissue Full Model Reduced No RNN MANTIS MANTIS- CS
Parameters GAN
L3/L4 9.0+2.76 7.96+267 |6.14+2.07 |108+2.62 |9.34+2.1 9.75+3.15
3 L4/L5 8.57+229 |731+1.84 |541+0985 |11.1+186 |12.1+3.33 |8.2+1.33
L5/51 10.1+2.22 | 10.7+2.63 |5.9+2.02 8.912.56 8931232 |582%237
All Discs | 9.92+2.39 | 876+2.16 |7.13+1.69 |11.0+£1.17 |11.3+1.74 |9.48+1.4
L1/L2 12.4+358 |103+395 |9.21+1.43 | 11329 11.6 +4.09 13.2+5.38
L2/L3 12.1+6.67 |119+7.16 |104t7.1 16.0+8.03 | 18.9+12.0 | 15.3+5.64
L3/L4 8.68+3.86 | 842+2.69 |6.14+1.37 |11.1+156 | 10.7+3.07 | 9.66+3.77
4 L4/L5 9.64+248 | 9.44+2.74 |585+1.11 |12.2+282 |13.2+3.08 |10.1+£2.94
L5/51 10.3+2.44 |9.86+2.73 |6.49+2.15 |955+2.29 |9.38+1.96 |6.78+2.28
All Discs | 10.3+£3.02 | 9.73+3.07 |7.42+1.1 12.1+1.24 | 12.6+1.35 11.3+2.31
L1/L2 16.7+14.0 | 13.2+4.88 |11.9+5.19 | 14.0+4.9 109+2.36 |14.4+5.43
L2/L3 15.7+9.23 | 14.5+8.95 13.6+9.98 |22.6+12.1 |17.7+12.3 15.3+7.14
L3/L4 11.0+3.69 | 11.5+3.46 |9.0+2.42 13.6+4.32 | 10.2+1.65 11.3+4.24
6 L4/L5 105+1.14 | 11.5+4.11 |84+21 15.7+5.61 | 12.2+2.86 |11.3+2.61
L5/51 11.5+1.73 | 125+2.76 |8.82+2.77 | 125+3.21 |10.8+3.11 |8.19%2.29
All Discs | 12.1+£3.58 | 12.2+4.11 10.3+3.31 | 15.6+2.65 | 12.1+19 12.0+2.76
L1/L2 15.3+3.94 | 159+587 |13.6+4.45 | 128+4.49 |123+396 |13.3+3.8
L2/L3 17.2+8.8 17.1+8.64 |16.3+8.99 | 19.5+9.27 | 20.0+14.2 16.8 +6.38
L3/L4 12.3+4.85 | 11.7+3.84 | 10.9%3.22 11.6+2.54 | 10.4+1.87 | 13.5+6.05
8 L4/L5 12.3+4.25 |11.6+£218 |103+2.79 |11.7+2.63 |12.4+3.83 11.6+2.44
L5/51 12.6+3.94 |105+2.74 |9.01+2.43 | 10.8+1.87 |9.97+3.12 |9.18+3.05
All Discs | 13.4+£3.89 | 13.0+2.63 12.0+3.07 | 13.2+1.42 | 12717 12.8+2.53
L1/L2 17.2+3.6 18.2+3.37 | 18.0+2.72 15.2+5.16 | 12.9+3.58 | 16.4+6.34
L2/L3 19.7+6.8 17.9+599 | 18.1+7.09 |20.5+109 |195+12.8 | 18.9+8.12
L3/L4 149+4.38 |14.0£294 | 14.7+3.62 11.8+3.72 | 123+3.79 |15.516.71
10 L4/L5 14.1+5.13 | 13.9+4.83 12.8+3.39 126+1.79 |12.2+1.84 | 14039
L5/51 12.1+5.09 |123+3.77 |105+4.38 |11.6+3.35 |10.5+2.69 |9.97+2.36
All Discs | 15.3+3.22 | 14.8+2.78 | 14.8+2.26 | 13.8+157 |13.2+1.81 | 15.0+£3.77
L1/L2 26.9+10.1 | 255+4.78 |26.8+12.0 |143+4.15 | 143+3.96 | 33.0+19.8
L2/L3 232+589 [ 25.2+3.31 |[23.3+7.19 |247+18.7 [19.6+12.2 |30.1+11.3
12 L3/L4 16.8+4.11 | 24.5+£3.2 18.1+3.88 | 14.1+4.45 |13.2+2.61 |26.1+14.2
L4/L5 15.3+4.13 | 21.9+5.59 15.3+3.43 14.0+5.81 |13.5+5.25 |22.7+11.0
L5/51 13.6+4.66 | 17.9+3.72 13.1+4.29 |9.84+198 |10.5+2.49 | 11327
All Discs | 18.1+£1.95 | 23.1+2.71 18.8+2.76 | 14.8+3.03 [14.1+1.88 |24.8+11.2

Supp. Table A.12 Correlation between predicted and ground truth T, in lumbar spine IVDs for 6
tested models. Pearson’s r between predicted and ground truth T, maps lumbar spine IVDs with
significances reported as follows: * P < 0.05, ™ P < 0.01, ™™ P < 0.001 (n=5). The top performing
model at each IVD level at each R is shown in bold. The full model and no RNN pipelines show
highest correlations between predicted and ground truth maps, and all pipelines with ROI-
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specific losses performed well, apart from the reduced parameters pipeline at R=12. T,

guantification performances of our methods were therefore strong across in IVDs across all R.
R | Tissue | Full Model | Reduced No RNN ManTls | MANTIS- cs
Parameters GAN
L1/L2 0.849*** 0.855*** 0.853*** 0.782%*** 0.782%*** 0.749***
L2/L3 0.826*** 0.830*** 0.832*** 0.750*** 0.745%** 0.751%***
) L3/L4 0.861 0.869*** 0.886*** 0.764*** 0.755%** 0.830***
L4/L5 0.859*** 0.856*** 0.888*** 0.738*** 0.739*** 0.823***
L5/S1 0.793*** 0.771%** 0.832*** 0.696*** 0.671*** 0.712%**
All Discs | 0.865*** 0.866*** 0.884*** 0.784*** 0.785*** 0.802***
L1/L2 0.796*** 0.802*** 0.778*** 0.668*** 0.644*** 0.703***
L2/L3 0.791*** 0.782%*** 0.779*** 0.654*** 0.658*** 0.715%**
3 L3/L4 0.824*** 0.809*** 0.830*** 0.673*** 0.695*** 0.759***
L4/L5 0.841*** 0.826*** 0.853*** 0.696*** 0.676*** 0.795***
L5/S1 0.710%*** 0.682*** 0.763*** 0.584*** 0.611*** 0.741%***
All Discs | 0.836%** 0.823*** 0.832%*** 0.717%*** 0.712%** 0.777***
L1/L2 0.732%** 0.766*** 0.745%** 0.623*** 0.641*** 0.579***
L2/L3 0.749*** 0.756*** 0.751%*** 0.610*** 0.596*** 0.622%***
4 L3/L4 0.810*** 0.814*** 0.826*** 0.652*** 0.666*** 0.747***
L4/L5 0.818*** 0.828*** 0.853*** 0.654*** 0.618*** 0.751%***
L5/S1 0.675*** 0.694*** 0.730*** 0.557*** 0.542%** 0.672%**
All Discs | 0.799*** 0.813*** 0.819*** 0.680*** 0.671*** 0.723***
L1/L2 0.722*** 0.717%*** 0.689*** 0.626*** 0.612*** 0.653***
L2/L3 0.735*** 0.718*** 0.724*** 0.586*** 0.584*** 0.677***
6 L3/L4 0.762*** 0.745%** 0.762*** 0.608*** 0.641*** 0.708***
L4/L5 0.794*** 0.772%** 0.797*** 0.656*** 0.626*** 0.727%***
L5/S1 0.642%** 0.618*** 0.661*** 0.462%*** 0.472%** 0.620***
All Discs | 0.776*** 0.764*** 0.771%** 0.660*** 0.658*** 0.728***
L1/L2 0.659*** 0.613*** 0.637*** 0.583*** 0.574*** 0.599***
L2/L3 0.699*** 0.686*** 0.696*** 0.513*** 0.544 0.652***
3 L3/L4 0.737*** 0.719*** 0.734%*** 0.591*** 0.644*** 0.674***
L4/L5 0.745%** 0.731%** 0.752*** 0.613*** 0.624*** 0.725%**
L5/S1 0.606*** 0.578*** 0.627*** 0.464*** 0.501*** 0.557***
All Discs | 0.742%** 0.723*** 0.742*** 0.631*** 0.645*** 0.695***
L1/L2 0.586*** 0.610*** 0.514%*** 0.587*** 0.557*** 0.563***
L2/L3 0.656*** 0.660*** 0.632%*** 0.557 0.518* 0.590***
10 L3/L4 0.681*** 0.681*** 0.652*** 0.636*** 0.614*** 0.644***
L4/L5 0.715*** 0.706*** 0.701*** 0.649*** 0.614*** 0.686***
L5/S1 0.564*** 0.568*** 0.557*** 0.426*** 0.498*** 0.502***
All Discs | 0.695*** 0.700*** 0.672%** 0.647*** 0.636*** 0.648***
L1/L2 0.545%** 0.202** 0.513*** 0.566*** 0.509*** 0.453***
L2/L3 0.607*** 0.237*** 0.572%** 0.561*** 0.513*** 0.488***
12 L3/L4 0.652*** 0.273*** 0.616*** 0.586*** 0.527*** 0.542%***
L4/L5 0.684*** 0.435%** 0.668*** 0.654*** 0.585** 0.669***
L5/S1 0.508*** 0.233*** 0.525%** 0.569*** 0.507*** 0.436***
All Discs | 0.664*** 0.320*** 0.643*** 0.651*** 0.614*** 0.586***
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Supp. Table A.13 Optimized loss function weightings for best pipelines in each anatomy. Loss
function weightings found to yield optimal pipeline performance through constrained
hyperparameter searches in each anatomy, across each of the three folds. Across different folds
at a given R in the same anatomy, optimized loss function weights generally, although not

always, exhibited consistency with one another, indicating stability of the entire training

procedure.
R
Fold | Loss Component 2 3 4 6 8 10 12
AL, 1 1 1 1 1 1 1
1 AL1,¢ 1235 | 1445 | 1456 | 120.8 144 110.8 78.9
Assim 1.151 | 0.803 | 0.507 | 0.561 | 0.542 | 0.029 | 0.297
Aot 0.101 | 0.499 | 0.447 | 0.132 | 0.128 | 0.138 | 0.131
AL, 1 1 1 1 1 1 1
g | 5 ALy 117.5 | 100.2 | 1243 | 120.8 | 61.8 | 64.7 76
= Assim 1.574 | 0.635 | 0.62 | 0.561 | 0.447 | 0.45 | 0.655
Aot 0.433 | 0.423 | 0.395 | 0.132 | 0.451 | 0.367 | 0.134
AL, 1 1 1 1 1 1 1
3 AL1,¢ 1444 | 100.2 | 145.6 | 137.9 | 118.4 | 1349 | 106.9
Assim 0.469 | 0.635 | 0.507 | 1.363 | 0.793 | 0.371 | 0.403
Aroat. 0.119 | 0.423 | 0.447 | 0.429 | 0.389 | 0.115 | 0.035
AL, 1 1 1 1 1 1 1
1 AL1,¢ 1.275 | 0.778 | 0.789 | 1.221 | 1.376 2.82 1.227
Assim 0.27 1.7 | 1.609 | 1.727 | 1.253 | 0.948 | 0.961
Aot 0.313 | 0.487 | 0.632 | 0.995 | 0.296 | 0.996 | 0.101
AL, 1 1 1 1 1 1 1
2, ALy 1.275 | 1.294 | 1.322 | 2.575 | 0.784 | 2.82 | 1.445
= Assim 0.27 | 0.728 | 1.215 | 1.749 | 1.27 | 0.948 | 0.917
Aroat. 0.313 | 0.43 | 0.873 | 0.798 | 0.01 | 0.996 | 0.265
AL, 1 1 1 1 1 1 1
3 AL1,¢ 1.275 | 1.294 | 0.789 | 2.575 | 0.782 2.82 1.445
Assim 0.27 | 0.728 | 1.609 | 1.749 | 1.576 | 0.948 | 0.917
Aroat. 0.313 | 0.43 | 0.632 | 0.798 | 0.348 | 0.996 | 0.265
AL, 1 1 1 1 1 1 1
o 1 AL1,¢ 2.107 | 7.607 | 6.787 | 8.269 | 6.952 | 3.284 | 9.145
£ Assim 40.336 | 69.261 | 95.355 | 70.068 | 19.915 | 72.269 | 88.492
'l Aroat. 9.16 | 20.149 | 19.651 | 6.368 | 6.347 | 21.222 | 33.647
8 AL, 1 1 1 1 1 1 1
§ 2 AL1,¢ 1.961 | 3.057 3.33 1.737 | 3.284 | 9.234 | 9.964
Assim 73.233 | 87.205 | 67.15 | 94.58 | 72.269 | 85.043 | 62.233
Aroat. 37.602 | 48.727 | 5.506 | 28.705 | 21.222 | 44.598 | 22.239

241



R
Fold | Loss Component 2 3 4 6 8 10 12
° /11,1 1 1 1 1 1 1 1
-g_ 3 /11,1,4, 9.914 | 3.057 8.09 8.942 | 7.613 | 4.565 | 3.551
2 Assim 49.478 | 87.205 | 41.3 67.49 | 61.799 | 69.246 | 72.122
Areat. 35.377 | 48.727 | 26.156 | 20.46 | 15.093 | 19.953 | 13.167

Supp. Table A.14 T, quantification error rates across 3 splits in tissues of interest. NRMSEs
reported reported +1 s.d. between ground truth and predicted T, maps in across cartilage
compartments and IVD levels in 3 data splits (knee: n=16, n=9, n=16 for folds 1-3, respectively;

hip: n=15 for each of folds 1-3; lumbar spine: n=5, n=4, n=4 for folds 1-3, respectively).

Particularly for knee and hip pipelines, performance is consistent across data splits in cartilage
compartments and overall at all tested R. In lumbar spine, performance showed increased
variability compared to knee and hip pipelines, but mean T, quantification errors were all within
a standard deviation of one another. Relatively small lumbar spine dataset size relative to knee
and hip dataset sizes are likely responsible for considerably wider confidence intervals and
increased variance in performance for lumbar spine.

R
Tissue Tissue Fold 2 3 aq 6 8 10 12
Type

Lateral 1 576+ 263 7374535 | 1074101 1094825 (116451 1324109 | 13.0+£7.39
Femoral 2 3734127 5994224 7514479 89344596 | 110+458 9674543 | 1194555
Condyle 3 5224173 6764199 |733+28 74+234 | 8664354 |952+364 | 1164359
Lateral 1 | 6.02+£235 8014383 (9.2+464 1034475 | 1044413 | 1154528 | 1334403
Tibial 2 598+251 8834317 1214345 1494369 | 13.74+397 1494377 | 15.74+5.28
Condyle 3 | 8424253 8334273 | 1214725 1094461 | 109445 141445 1484424
Medial 1 531+206 577+219 7.16+£2.85 7934336 |95+£5.11 122459 1214568
Femoral 2 3344118 4844222 |612+341 (6894398 |7.784+3.78 |82+4384 11.0+6.39
Condyle 3 4184105 534+132 6.09+241 7514257 | 764+221 8134218 | 10.0£2.15
Medial 1 | 81+£454 1064822 | 1134102 1244832 (1294883 | 1744143 | 1504+7.12
g Tibial 2 |45+£241 8.29+4.0 10.3+5.05 129457 1014449 | 1154453 | 11.7+471

Condyle 3 851432 81+£332 1354120 1164474 | 123455 1454417 | 15.24+5.2

Trochlear 1 7.19+4.45 7134443 | 74+497 70£439 |849+477 |888+627 | 86+4.45
2 467141 6.66+3.86 8471445 9244435 | 139+6.01 8824428 | 128+6.16
3 5114331 6584359 |567+307 |613+26 (7834455 |869+459 | 7724423
Patellar 1 (4084124 5034139 |5114+126 | 5694129 |6334+124 |631+167 | 8184195
2 3434244 74+£30 8514282 1134355 | 13.4+401 8984388 | 1254565
3 551429 6654287 | 6174268 | 7324265 (734432 769434 9.994+3.84
All 1 5524125 6524217 7.54+296 8094265 | 8944266 9774344 | 1072232
Cartilage 2 (4114212 6.8+238 8454286 1044312 | 1264347 | 9764347 | 1274452

3 5824198 6884217 7334235 799+22 87+£271 98+£261 111425
Femoral 1 369+10 6144161 |566+101 799419 |6544+222 |877+312 (7134178
2 40+£169 493+168 7.86+2.86 6664251 | 838+3.04 6864266 | 6.79+3.02
3 3.364+0.86 4174105 |514+102 5894172 | 7364156 |66+£224 642+ 163
Acetabular 1 (442146 7164231 |7.0+£176 8234252 (767+248 (9264304 | 8641224
';-:1 2 501+384 59+£409 8654594 80+5.15 9424542 8544572 | 9384554

3 31840629 (4414111 5524118 6734199 | 83+£234 6974229 | 706+21

All 1 397+1.03 6534163 (6154101 |81£185 |[697+193 |899+265 | 775415
Cartilage 2 4424244 533425 82343381 7.21+346 | 884+371 7524372 | 7.844+3594
3 33140661 (42940865 | 52940889 | 6284142 |7.794132 |6784+198 | 6.73+135
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R
Tissue Tissue Fold 2 3 ) 6 8 10 12

Type

L1/L2 1 | 611+13 94+183 1244358 1674140 | 1534394 | 17.24+36 265+10.1

2 | 893+45 16.0+7.29 |16.7+883 2544130 | 2554143 | 20.1+5.02 | 20.7 +5.87

3 | 888+543 8844208 |1644+398 191497 | 2024127 | 2004887 | 27.3+9.65

L2/L3 1 9.08+457 1264513 12.1+6.67 1574923 | 172488 197+6.8 2324589

2 | 9.09+482 1564100 | 1764117 | 3344247 (3474238 |278+140 | 2444158

3 882+473 7.74 £ 1.56 16.6+10.2 1684+108 [ 206+122 2014133 | 266+ 144

@ L3/L4 1 593+11 9.0+£2.76 8.68+3.86 1104369 | 1234485 | 1494438 | 168+4.11

.; 2 | 6454306 151499 1034524 2764181 | 2574167 | 2614115 | 2334140

¥ 3 | 6524202 7854113 |136+4.0 1334522 [17.1+484 2344134 | 3534220

2 L4/L5 1 5864229 8574229 |[964+248 1054114 | 1234425 | 1414513 | 153+4.13

E 2 9.08+4.79 165+8.71 16.4 + 858 2724154 | 2414126 2744128 | 2474120

3 | 7.65+3.82 8684101 |148+736 1604891 | 1754836 | 2044949 | 29.7+139

L5/s1 1 | 637221 1014222 | 1034244 1154173 | 1264394 | 1214509 | 1364466

2 10.2+7.62 178+ 142 23.44+170 2084127 | 21842126 3084137 | 23.04£135

3 517+13 9424217 |796+116 | 9014146 |89940531 |1244+159 (1354123

All Discs 1 6.71+1.7 9924239 10.3+3.02 1214358 | 13.44+3.89 1534322 | 181+195

2 | 8454+374 1634833 | 1484718 | 2834165 | 2654145 |[2654115 | 235+114

3 7.65 + 3.58 86640601 | 1384574 1444725 | 1624+ 8.06 1524101 | 263+134

Supp. Table A.15 Correlations between predicted and ground truth T, maps across 3 splits in
tissues of interest. Pearson’s r between predicted and ground truth T maps in tissues of interest
for knee, hip and lumbar spine pipelines, with significances reported as follows: “ P < 0.05, ™ P <

0.01,

* %k %k

P < 0.001 (knee: n=16, n=9, n=16 for folds 1-3, respectively; hip: n=15 for each of folds

1-3; lumbar spine: n=5, n=4, n=4 for folds 1-3, respectively). Performance is reported across
each of the 3 data splits. With few exceptions across some IVD levels for some R, deviations in
Pearson’s r were relatively small across splits for the same tissue of interest at a given R,
indicating stability of pipelines to datasets used.

R

Tissue Tissue Type | Fold 2 3 4 6 8 10 12

Lateral 1 0.712%** 0.655*** 0.528*** 0.475%** 0.473*** 0.399 0.359*
Femoral 2 0.769*** 0.666*** 0.604%** 0.535%** 0.454%** 0.458*** 0.380***
Condyle 3 0.770*** 0.695*** 0.633*** 0.588*** 0.528** 0.516%** 0.334%**
Lateral 1 0.801*** 0.715%** 0.682%** 0.600** 0.601*** 0.548* 0.470%**
Tibial 2 0.821*** 0.715%** 0.591%** 0.537%** 0.536*** 0.434%** 0.451%**
Condyle 3 0.760*** 0.728*** 0.658*** 0.622%** 0.591*** 0.478 0.428%**
Medial 1 0.759*** 0.723*** 0.666%** 0.606%** 0.590%** 0.509*** 0.444%**
Femoral 2 0.757*** 0.658*** 0.580%** 0.528%** 0.484%** 0.443%** 0.438%**
Condyle 3 0.771*** 0.683*** 0.628*** 0.476%** 0.499*** 0.462%** 0.305***

Medial 1 0.721*** 0.655* 0.600* 0.530** 0.502* 0.427%** 0.339*

§ Tibial 2 0.784%** 0.620*** 0.495%** 0.360* 0.461*** 0.308*** 0321
> Condyle 3 0.656%** 0.637*** 0.553* 0.484* 0.407* 0.247 0.153

Trochlear 1 0.780%** 0.711*** 0.710%** 0.728%** 0.691*** 0.650*** 0.656%**
2 0.824%** 0.773*** 0.728%** 0.717*** 0.664%** 0.660*** 0.657***
3 0.817*** 0.762*** 0.715%** 0.717*** 0.701*** 0.661*** 0.678***
Patellar 1 0.671*** 0.618*** 0.627%** 0.557*** 0.554%** 0.537*** 0.434%*~
2 0.839%** 0.738*** 0.683*** 0.609*** 0.557*** 0.578*** 0.504%**
3 0.805*** 0.771*** 0.733*** 0.613*** 0.659*** 0.590*** 0.477%**
All Cartilage 1 0.748%** 0.695*** 0.651*** 0.612%** 0.585*** 0.555%** 0.491%**
2 0.812%** 0.708*** 0.633*** 0.569*** 0.532%** 0.51% 0.485%**
3 0.775%** 0.728*** 0.666%** 0.597*** 0.583*** 0.521*** 0.450%**
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R

Tissue Tissue Type | Fold 2 3 4 6 8 10 12
Femoral 1 0.773*** 0.711%** 0.628%** 0.589%** 0.579%** 0.523*** 0.521%**
2 0.755%** 0.686*** 0.611*** 0.585%** 0.564%** 0.518%** 0.554%**
3 0.802%** 0.738*** 0.667*** 0.623*** 0.537*** 0.581*** 0.593***
Acetabular 1 0.788%** 0.660*** 0.620%** 0.551%** 0.576%** 0.542%** 0.471%**
':% 2 0.792%** 0.722%** 0.613*** 0.586%** 0.541%** 0.553*** 0.481%**
3 0.821*** 0.744%** 0.677%** 0.566%** 0.468*** 0.552%** 0.543%**
All Cartilage 1 0.794%** 0.705%** 0.646%** 0.587%** 0.598%** 0.558%** 0.517%**
2 0.782%** 0.714%** 0.624%** 0.594%** 0.564%** 0.554%** 0.539%**
3 0.818*** 0.753*** 0.687%** 0.616%** 0.519*** 0.586*** 0.589%**
L1/L2 1 0.849%** 0.796*** 0.732%** 0.722%** 0.659*** 0.586*** 0.545%**
2 0.793*** 0.704%** 0.715%** 0.572%** 0.492%** 0.323**~ 0.462%**
3 |os812*** [o0.741*** |0.722*** |[0.707*** |0.696*** | 0.579%** 0.521***
L2/3 1 0.826*** 0.791*** 0.749%** 0.735%** 0.699*** 0.656*** 0.607***
2 0.869*** 0.824%** 0.824%** 0.701*** 0.641%** 0.375%** 0.584%**
3 0.852%** 0.791*** 0.776%** 0.779*** 0.728%** 0.651*** 0.569%**
» L3/L4 1 0.861*** 0.824%** 0.810%** 0.762%** 0.737%** 0.681*** 0.652%**
g 2 0.896*** 0.850*** 0.855%** 0.740%** 0.687*** 0.291*** 0.604%**
v 3 0.861*** 0.783*** 0.755%** 0.756*** 0.722%** 0.628*** 0.514%**
a L4/L5 1 0.859*** 0.841%** 0.818%** 0.794%** 0.745%** 0.715%** 0.684%**
5 2 0.835%** 0.757*** 0.708%** 0.642%** 0.607*** 0.357*** 0.539%**
3 0.823*** 0.738*** 0.709*** 0.717%** 0.671*** 0.578*** 0.540%**
L5/51 1 0.793*** 0.710%** 0.675%** 0.642%** 0.606*** 0.564%** 0.508%**
2 0.769%** 0.657*** 0.648%** 0.546%** 0.490%** 0.150 0.469%**
3 0.878*** 0.792%** 0.737%** 0.747%** 0.707*** 0.602*** 0.563***
All Discs 1 0.865%** 0.836*** 0.799%** 0.776%** 0.742%** 0.695*** 0.664%**
2 0.855%** 0.798*** 0.788%** 0.682%** 0.622%** 0.281*** 0.565%**
3 0.859*** 0.781*** 0.767%** 0.774 0.724%** 0.647%** 0.576%**

Supp. Table A.16 Texture retention performance of knee, hip and lumbar spine pipelines across
3 splits in tissues of interest. Intraclass correlation coefficients (ICCs) of Gray Level Co-
Occurrence Matrix (GLCM)-based metrics for knee, hip and lumbar spine pipelines across 3 data
splits. Significance of ICCs is reported as follows: * P < 0.05, " P < 0.01, ™" P < 0.001 (knee: n=16,
n=9, n=16 for folds 1-3, respectively; hip: n=15 for each of folds 1-3; lumbar spine: n=5, n=4, n=4
for folds 1-3, respectively). Deviation in ICCs for texture metrics is minimal in the hip and knee
pipelines for all cartilage compartments at all tested R. In the lumbar spine pipeline, more
deviation existed in texture metrics, although due to small test set sizes (n=4), confidence
intervals for ICCs are very wide, so at least some of the differences in texture retention
performance can be attributed to this.

r | roud GLCM Texture Metric
Contrast Dissimilarity Homogeneity ASM Energy
1 0.307 £ 0.18** 063820.12%** 0.734 1 0.09*** 0966 =0.015** 0954 z0.02%**
2 2 03441024 0.493:0.2"* 06732015 0508 £ 0.05*** 0.902 = 0.05***
3 0.261 + 0.18** 0.444 2 0.16%** 0579+ 0.13** 0.906 £ 0.04*** 0.909 £ 0.035***
o 1 0153202 052120.15%* 0.735:0.09** 0962 =20.015*** 095 +002***
2 3 2 0.097220.26 0.15710.26 0299+ 029 08742 0.07** 0.87520.07"**
* 3 0.256 + 0.18** 041 +£0.17*** 0.474 £ 0.16** 0.885 = 0.045*** 0.895 2 0.04***
1 011+02 0387 20.17*** 0612012 097310.01*** 095 £0.02%**
4 2 0.055420.26 -5.23e0610.27 0.0101£0.26 0.838:0.08** 0.819=0.00"*"
3 0.179+0.2* 0448 £ 0.16%** 0.625 012 0.908 £ 0.04*** 0.908 £ 0.035***
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GLCM Texture Metric

Fold Contrast Dissimilarity Homogeneity ASM Energy
1 0.0667 0.2 022019 03821017""" 097 0015 0.94 £ 0.025"**
2 0.021920.27 -0.0819+0.26 0.12520.26 0819 0.09** 0.808 £+ 0.095***
3 0.304 ¢+ 0.18** 0458 20.16*** 0.525 ¢ 0.15*** 0.879 £ 0.05*** 0.885 £ 0.045°**
1 0061202 0111402 0.061520.2 0952+ 0.02** 09+004***
2 -0.00262 £ 0.26 0.1331026 0.18720.26 0.825:0.085** 0.79920.1%**
g 3 0.0692 0.2 006851402 015402 0.835 £ 0.065*** 0.829 + 0.065***
1 0.058420.2 0218+0.19* 0307 £0.18** 0.96120.015*** 092820.03"**
2 0.027920.26 -0.0231+026 -0.0865 £ 0.26 0.831:0.085** 0.808 £ 0.095***
3 -0.014310.2 0.0469+ 0.2 0.0504£0.2 0.769 £ 0.085*** 0.764 + 0.085***
1 0.003220.2 0.066+02 0.17820.19 0927+ 0.03*** 0.861 £ 0.055***
2 -0.013720.26 0.186 £ 0.26 03272024 0.807 £ 0.095*** 077220.11%**
3 -0.00712+ 0.2 0.133+02 0.16620.19 0.756 + 0.09*** 0.742 £ 0.08***
1 0312 £ 034" 063320.23%* 0.8372012°**" 09451 0.04**~ 0.957 £ 0.035***
2 0.116+035 034510.32* 07220.18*** 0502+ 0.07*** 0.915 £+ 0.065***
3 0.274+033 0.47620.28** 0.658 £+ 0.19*** 0.884 £ 0.085*** 0.889 + 0.085***
1 0.369 £ 0.32% 06712021 08161014 0976+ 0.02*** 0.98 + 0.015***
2 0.146+035 0415103 08361 012** 0923+ 0.06** 0.917 £+ 0.065***
3 0.285+0.33 0.504 £0.28** 0.7210.18*** 0.942 £ 0.045** 0.937 £ 0.05***
1 0.328+033* 0597 20.25*** 0.801+0.15%* 0957 £0.035** 0.954 £ 0.04%**
2 0.0992£0.36 02941033 0.677+0.2%** 09132 0.065** 0.918 £+ 0.065***
3 0.423+03** 0.64920.22%** 0.824 £ 0.12°** 0914 = 0.065*** 0.913 + 0.065***
1 0.235+035 0475203 0.6452 023" 0939+ 0.05%** 0.941 £+ 0.045%**
§ 2 0.124+035 03865103 0.79110.14%* 0.807 £ 0.07*** 0.902 £+ 0075***
3 0.238+0.34 0.464 £0.28** 0.73110.18*** 0.892 £ 0.08*** 0.893 £ 0.068***
1 0.193 £ 0.36 0.487 £0.28** 0.82310.13** 0923+ 0.06*** 0.933 £+ 0.055***
2 0.128+035 0375x031" 0.764 £ 0.16**" 08482 0.11%*" 082+012%*"
3 0.286 +0.33 0.52120.27** 0.772 £ 0.16*** 0.839:0.12** 0.844 £0.11%**
1 0.127 £ 036 03081034 0.4810.29** 0.862+011%** 0.855=20.11"**
2 0.0664 £0.36 02091034 0.438+0.3** 0.809 £ 0.13*** 0.799£0.14%**
3 0.135+0.35 0.2720.33 047310.28** 0.695 £ 0.19*** 0.73 +0.18***
1 0.198 £ 0.36 0.3820.32* 0523+0.28** 0.927 £ 0.06*** 0914 £0.07***
2 012+036 0376+0.31" 0.708 £+ 0.19°** 08181013 08+014%**
3 0.142 +0.34 0317+0.32* 0.5720.25*** 0.795 £ 0.15*** 0.813 20.14%**
1 0557207 0.69510.62 0.744 £ 057 0.892 £+ 0.35°* 09232027
2 0.445+ 083 056891078 0.788+ 0.64 0.859 £ 0.54* 09032 0.44*
3 -0.233 £ 0.86 0.38+0.84 0.376+ 084 0.969+0.2** 0.996=2003**"
1 0.493+0.73 06151067 0.644 ¢ 0.66 0.819 ¢+ 0.48* 0872:0.39*
2 0.419+084 0.659+0.74 0.616+0.77 04141084 0532108
3 -0.163 £ 0.87 -0.195 ¢+ 0.87 0.391+ 084 0.991 £ 0.065** 0.987 £ 0.09***
1 0236208 04211076 04971073 0.67 +0.64 0.77520.54*
2 0.291 £ 0.86 0515+ 081 0.67+074 0551+08 06531075
3 -0.175 = 0.87 -0.186 ¢+ 0.87 0.346 ¢ 0.85 0.942 +0.32** 0954 £0.26**
i 1 0.341+0.78 04281076 0.262+0.8 0.566+0.7 06720.64
2 0.109 £ 0.88 0.356 ¢ 0.85 04171084 03471085 04381084
g 3 -0.189 = 0.68 -0.219 + 0.87 0.159+ 088 0.936 +0.34%* 0.958 £ 0.25**
1 0.063320.81 0.152+08 0.276+0.79 0.68510.62 07281058
2 -0.169+0.87 0043+ 068 0319+ 0.86 0.67+074 0.68110.74
3 -0.061 £ 0.68 0.00747 + 0.88 0.376+0.84 0.938 +0.33** 0958 £0.24**
1 -0.0393 £ 0.61 -0.0631 £+ 081 -0.0699 £ 0.81 0.403+0.76 04791074
2 0393:0.84 -0.361 ¢+ 0.85 0.194:0.88 0.473+ 082 0.496 £ 0.82
3 -0.0191 £+ 0.68 0132088 0.434+ 0384 0.925+ 037 095 +0.29**
1 -0.0697 £ 0.81 0.156+08 04242076 016+08 0158108
2 0.104 £+ 0.88 03771084 0435084 0.505+0.82 0548108
3 -0.0992 + 0.88 -0.000956 = 0.68 0.249 ¢ 0.86 0.968 £ 0.2°* 0958 £0.25**
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Supp. Figure A.1 Network architecture. Recurrent UNet network to predict T, map appearance
from spatially undersampled T,-specific MAPSS acquisition echo time images. T, weighted
images at each echo time have a unique, 5-layer processing stream, with information passed
between corresponding layers in adjacent temporal processing streams through RNN
connections: ReLU, 2D convolutional layer, batch normalization, and elementwise multiplication
by weighting parameter A,=0.2 before being added to corresponding layers of the next stream.
Processing stream outputs are concatenated and fed to the UNet, which predicts T, maps.
Depths and dimensions are provided at each layer. This schematic reflects the “full model”;
additional versions were trained without the initial RNN and solely with the UNet network (No
RNN) and a streamlined version in which the depth of each layer was half what is depicted in
this full model schematic (Reduced Parameters).
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Supp. Figure A.2 Modified sigmoid function for knee, hip and lumbar spine pipelines. T, values
in each architecture were fed through these sigmoid functions to determine an equivalent S(x)
for the given pixel to be used for ROI-specific L1 losses in network training. Sigmoid functions
thus assign higher weight to correct prediction of higher T, values, which can be lost due to
aliasing when undersampling images, particularly in local T, value elevations. Additionally, S(x)
saturates signal above some threshold, allowing network training to focus on correct predictions
in T, value ranges that are more physiologically realistic for cartilage and IVDs.
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Supp. Figure A.3 Predicted T, maps for proposed models and equivalent pipelines trained
without ROI-specific loss. Top-performing pipelines for knee (recurrent UNet), hip (recurrent
UNet), and lumbar spine (UNet, or “No RNN"), with corresponding versions trained with ablated
loss functions. Middle column (A1,y=0) was trained with proposed loss function with ROI-specific
component ablated (global L1, SSIM, feature-based losses remained). Right column (A1,4=0,
Areat=0) with an ordinary loss function (global L1 and SSIM). Results show that full loss pipelines
have lower T, quantification error rates across all anatomies at R=3, 6, and 10 for visualized
slices than do pipelines trained without ROI-specific loss, demonstrating its value in maintaining
low errors and maintaining visual fidelity to ground truth.

249



(a) Knee

Reference
LR \ I

(b) Hip

o
TR

Al

Cart. NRMSE = 2.84% Cart. NRMSE= 3.95% Cart. NRMSE = 3.39% Cart. NRMSE 2.5%

Full NRMSE = 22.3%

-

Full NRMSE = 40.7%

Cart. N 5.8%
Full NR .9%

Cart. NRMSE = 4.57%
=152%

Cart. NRMSE = 7
Full NRMSE = 43.0% Full NRMSE = 42.1%

Full NRMSE = 19.7%

Cart. NRMSE = 6.42% Cart. NRMSE = 6.67% Cart. NRMSE
Full NRMSE = 19.2%

5%
Full NRMSE = 8.67%

‘Cart. NRMS|

5.6%

Full NRMSE = 8.94%

Cart. NRMS|

Full NRMSE = 8.0%

9.67% Cart. NRMSE = 5.77%

Full NRMSE = 7.47%

13.1% Cart. NRMSE = 6.65%

.62%

i

17
Full NRMSE = 8.85%

Full NRMSE

Cart. NRMSE = 7.48%
b

Full NRMSE 52%
CS

8.46%

Proposed (Full) Reducgd

art. NRM

No RNN

art. NRMSE
Full NRMSE

5.99%
9.86%

MANTIS
S

MANTIS-GAN

X

Cart. NRMSE = 4.83% Cart. NRMS|

(c) Lumbar
Spine

Full NRMS

11.1%

Cart. NRMSE = 5.17% Cart. NRMS

=12.2% Full NRMS
; ]

Cart. NRMSE = 5.74% Cart. NRMSE
Full NRMFSE”= 16.5% Full NRMSE = 14.4%
u

6.09% Cart. NRMSE

Full NRMSE = 7.17%

Full NRMSE

art. NRMSE .38%
Full NRMSE = 12.0%
b

0

Cart. NRMSE = 7.1%

Full NRMSE = 28.9%

o RNN)

6.55% Cart. NRMSE =

Full NRMSE = 7.92%
MANTIS

.17% Cart. NRMSE

Full NRMSE = 8.85%

MANTIS-GAN

1%
Full NRMSE = 10.7%
Vv 0

7.52% Cart. NRMSE = 7.07%

Full NRMSE = 11.1%
Cs

IVD NRMSE = 3.46%
Full NRMSE = 5.5

IVD NRMSE = 2.77%
Full NRMSE = 16.0%

IVD NRMSE = 6.72%
Full NRMSE = 9.53%

.86%
=6.78%

=9.51%
Full NRMSE = 6.99%

IVD NRMSE = 8.79%
Full NRMSE = 13.2%

IVD NRMSE = 3.21%
Full NRMSE = 3.96%

6.12%
Full NRMSE = 4.89%

IVD NRMSE = 9.53%
Full NRMSE = 5.88%

IVD NRMSE = 7.2%
Full NRMSE = 4.74%

IVD NRMSE = 7.92%
Full NRMSE = 5.33%

IVD NRMSE = 9.95%
Full NRMSE = 5.21%

IVD NRMSE =
Full NRMSE =

.61%
.48%

IVD NRMSE = 9.78%
Full NRMSE = 5.41%

IVD NRMSE =
Full NRMSE =

79%
.39%

IVD NRMSE
Full NRMSE

IVD NRMSE = 8.15%
Full NRMSE = 5.89%

IVD NRMSE = 10.8%
Full NRMSE = 6.06%

= N w B v
o o o o o
[Sw] sw} uonexe|as ¢

o

[Sw] sw} uonexeau ¢y

= N w B (% o
o o o o o o
[Sw] swi} uonexeaus ¢y

o

250



Supp. Figure A.4 Global T, value retention performance for proposed pipelines and state-of-the-
art models. ROl and global T, quantification errors are shown for a slice within the test set for
each of the knee, hip and lumbar spine pipelines. In the knee and hip, both visually and
guantitatively, T, maps predicted by global approaches show substantially lower global errors
than do our proposed pipelines, but within cartilage ROls, our pipelines exhibit stronger
performance. These results are as expected—the ROI-specific loss function improves
predictions in cartilage ROIs and degrades them globally, indicating successful training of these
pipelines. In the lumbar spine, these trends are more inconsistent, possibly due to the
substantially larger datasets and number of batches seen in knee and hip pipeline training as
compared to the lumbar spine; some of the lumbar spine findings thus may be attributed to the
randomness of training with a small dataset. Nonetheless, when afforded a sufficiently large
dataset for training, the ROI-specific loss performs as expected.
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(a) Knee Reconstruction Pipeline Violin Plot
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(c) Lumbar Spine Reconstruction Pipeline Violin Plot
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Supp. Figure A.5 Comparison of biases in predicted T, maps in knee cartilage, hip cartilage, and
intervertebral discs. Violin plots of T, values for reference and each tested pipeline, R=2 through
R=12, for (a) knee (n=90), (b) hip (n=15), and (c) lumbar spine (n=4). Boxplots are overlaid on
violin plots, and the T, values are also displayed mean 1 s.d. In conjunction with Bland-Altman
plots in Figures 3-4, violin plots show that for knee and hip pipelines, T, values with are
preserved with minimal bias. In the lumbar spine, while violin plots indicate some volatility in T
value preservation in predicted performance, bias in predicted maps was minimal at most
tested R. Knee and hip pipelines thus generally maintain strong fidelity to T, values, whereas
lumbar spine pipeline retains reasonable fidelity to T, values.

252



(a) Knee

(b) Hip

(c) Lumbar
Spine

N
h i

Ground Truth T, Map

NRMSE = 5.99%

Ground Truth T, Map

NRMSE = 8.14%

Ground Truth T, Map

NRMSE = 22.6%

NRMSE = 6.24%

R=2

NRMSE = 8.1%

R=2

NRMSE = 24.0%

i,

NRMSE = 7.73%

R=3

R=10

N

NRMSE = 8.57%

NRMSE = 31.4%

R=3

60

50

r40

NRMSE = 4.32%

r30

20

|10
0

R=4 60

t a0

r30
R=12

r20

k L YEEy
NRMSE = 8.93% 0

R=4 100

60

40

20

NRMSE = 34.4% 0

[sw] awiy uonexelal 2

[sw] awiy uonexelal 2

[sw] swiy uonexeas ¢y

253



Supp. Figure A.6 Assessment of proposed pipeline performance on multicoil raw k-space data.
MAPSS sequences were acquired for 3 knee, 2 hip, and 2 lumbar spine volunteers. Multicoil raw
k-space data (after ARC reconstruction for knee and hip) was undersampled with the same
patterns applied on retrospectively undersampled coil-combined images used during training,
and k-space lines were also shared as with the coil-combined approach. Resulting k-space was
filtered, inverse Fourier transformed, and processed with an in-house pipeline developed to
replicate all image post-processing steps normally used in generating DICOM images, thereby
generated coil-combined magnitude images of multi-coil undersampled images. These coil-
combined equivalents of undersampled data were fed through corresponding pipelines, yielding
predicted T, maps. Visually, and by T, quantification errors, knee and hip pipelines exhibit strong
performance through R=12, preserving local T, value elevations at most R. Slight degradation in
performance was observed at lower R for hip pipelines relative to benchmarks attained on coil-
combined magnitude undersampled images, but at other R for knee and hip, performance
matched expectations. In the lumbar spine, performance matched expectations through R=4,
declining sharply at R=6 and higher. This may be due to the smaller dataset used for lumbar
spine pipeline training fewer k; slices in lumbar spine MAPSS acquisitions that exacerbated
effects of undersampling as compared to knee and hip, yielding much lower SNR in aliased
model input images.
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Appendix B - Supplementary Information to Chapter 8

Supp. Table B.1 MR Acquisition Parameters. Acquisition parameters for the 64 scanned volume
pairs in the 27-patient dataset of RA patients. Parameters for any given patient at any given time
point were the same for both pre and post-Gadolinium coronal T1 IDEAL wrist scans.

Scanner GE Signa Discovery MR750w

Coil 8-channel HD Wrist Array

Field Strength 3T

Slice Thickness 2 mm

Spacing between Slices 2 mm

TR 457-793 ms

TE 10.06-12.48 ms

Frequency 127.8 Hz

Bandwidth 195.3 Hz (384x256, n=58), 390.6 Hz (256x224, n=6)
Acquisition Matrix 384x256 (n=58), 256x224 (n=6)

Flip Angle 90 (n=2) or 111 (n=62)

SAR 1.578-3.259

Pixel Spacing 0.234x0.234 mm (n=58), 0.469x0.469 mm (n=6)

Supp. Table B.2 SSIM for full volumes and wrist tissue from hyperparameter search. SSIMs
obtained for 10-epoch trains of all 70 hyperparameter combinations for the PatchGAN pipeline
without generator decoding deconvolutions. The top-12 performing parameter sets by SSIMs
are highlighted in bold and were examined further visually to find the best-performing
parameter set.

As

Asan 0 0.025 0.050 0.075 0.100 0.150 0.200
0.001 Full 0.596 0.590 0.593 0.560 0.584 0.573 0.572
Wrist 0.713 0.713 0.718 0.708 0.711 0.712 0.705

0.002 Full 0.555 0.553 0.548 0.537 0.567 0.557 0.556
Wrist 0.697 0.709 0.673 0.662 0.715 0.694 0.690

0.003 Full 0.538 0.577 0.541 0.590 0.538 0.634 0.592
Wrist 0.681 0.703 0.689 0.712 0.665 0.747 0.725

0.004 Full 0.496 0.550 0.582 0.594 0.548 0.555 0.581
Wrist 0.713 0.680 0.705 0.711 0.709 0.707 0.709

Full 0.591 0.554 0.585 0.575 0.584 0.622 0.578

0.005 Wrist 0.721 0.698 0.708 0.692 0.721 0.738 0.716
0.006 Full 0.519 0.527 0.596 0.583 0.565 0.505 0.577
Wrist 0.695 0.687 0.705 0.703 0.698 0.687 0.703

0.007 Full 0.557 0.587 0.607 0.491 0.579 0.555 0.56

Wrist 0.712 0.714 0.722 0.682 0.703 0.695 0.685

255



s

Asan 0 0.025 0.050 0.075 0.100 0.150 0.200
0.008 Full 0.561 0.567 0.585 0.553 0.565 0.526 0.567
Wrist 0.694 0.732 0.715 0.688 0.717 0.675 0.681
0.009 Full 0.560 0.510 0.624 0.550 0.571 0.580 0.507
Wrist 0.684 0.674 0.748 0.705 0.693 0.704 0.703
0.010 Full 0.518 0.496 0.574 0.582 0.502 0.567 0.632
Wrist 0.689 0.720 0.733 0.701 0.646 0.694 0.737

Supp. Table B.3 nRMSEs for full volumes and wrist tissue from hyperparameter search. nRMSEs
obtained for 10-epoch trains of all 70 hyperparameter combinations for the PatchGAN pipeline
without generator decoding deconvolutions. The top-12 performing parameter sets by nRMSEs

are highlighted in bold and were examined further visually to find the best-performing

parameter set.

As
Asan 0 0.025 0.050 0.075 0.100 0.150 0.200
0.001 Full 11.5 6.1 11.4 7.8 14.8 8.7 241
Wrist 11.1 5.8 10.8 7.4 14.5 8.2 23.1
0.002 Full 12.6 9.7 6.2 10 23.9 20.3 20.3
Wrist 12 9.1 5.9 9.5 23.7 20 20.1
0.003 Full 10.6 12 9.9 10.6 38.4 10.1 12.6
Wrist 10.2 11.2 9.5 10 38.1 9.6 11.7
0.004 Full 9.2 18.5 22.5 11.6 10 33.8 10
Wrist 8.8 18 21.8 11.1 9.7 33.4 9.5
0.005 Full 12.8 16.7 11.8 11.3 15.3 24.5 18.9
Wrist 12.4 15.9 11.3 10.6 14.9 24.2 18.3
0.006 Full 21.2 6.2 17.9 13.1 5.8 14.5 12.3
Wrist 20.9 5.9 17 12.6 5.5 13.9 11.1
0.007 Full 10.1 6.4 22 11.4 10.4 8.9 19.1
Wrist 9.5 6.1 21.4 11 9.9 8.4 18.1
0.008 Full 9.9 11.4 9.4 8.9 9.6 9.8 7.9
Wrist 9.3 10.9 9 8.4 9.2 8.9 7.5
0.009 Full 15.3 47 10.5 12.7 9.9 10.7 13.2
Wrist 14.7 7.4 10 12.4 9.5 10.3 12.6
0.010 Full 10.9 12.9 11 10.6 15.4 6.8 8.7
Wrist 10.5 12.6 10.4 10.1 14.7 6.4 8.4

Supp. Table B.4 Reconstruction Metrics for Patients with and without Imaging Findings of RA.
Bulk reconstruction metrics in full imaging volumes, wrist tissue, and synovial joints in patients
without imaging findings of synovitis (RAMRIS=0, n=2) and patients with imaging findings of
synovitis (RAMRIS>0, n=5) within the test set. All metrics are evaluated on a per-patient basis.
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Sample sizes are quite small, making proper statistical comparisons difficult, but reconstruction
metrics are generally stronger for the patients with RAMRIS>0, as is expected given most
patients within this dataset prior to data splitting (24 of 28 patients) had RAMRIS synovitis
scores greater than 0. Performance thus seems slightly better in patients with imaging findings
of synovitis, but that may be more a function of the dataset used for training than the
methodology.

RAMRIS =0 RAMRIS > 0
Full Wrist Only Synovial Joints Full Wrist Only  Synovial Joints
NRMSE 23.95 + 4,71 23.72 £ 4.83 133.52 £+ 43.3127.24 + 10.27 26.94 + 10.43 310.93 + 159.54

Pre-Gd PSNR 17.76+0.38 17.89+0.38 9.38+0.40 17.77+1.10 1795+1.23 8.77+1.90
SSIM  0.62+£0.03 0.75+0.01 0.59+£0.03 0.73+£0.01

PatchGAN NnRMSE 7.13+0.80 6.85+0.77 28.20+11.85 6.55+0.75 6.26+0.73  21.12+2.37

Reg. PSNR 20.44 +£0.52 20.68 £+0.51 11.53+2.19 20.90+0.64 21.16+0.65 12.33+0.64
SSIM  0.58 £0.02 0.72+0.00 0.58+0.02 0.73+0.01

PatchGAN NRMSE 8.93+0.69 8.65+0.68 36.44+17.23 8.28+1.09 7.96+106 25.98+254

Unreg. PSNR 19.54+0.34 19.73+0.33 10.60+2.45 19.98+0.75 20.21+0.75 11.49%0.76
SSIM  0.56 £0.02 0.70+0.00 0.56+0.02 0.71+£0.01

NnRMSE 7.26+0.20 7.00+£0.17 28.74+10.61 590+0.73 5.67+0.76 25.15+5.39

UNet Reg. PSNR 21.36 £0.07 21.57+0.04 11.26£1.58 22.30+0.49 22.54+0.51 11.71+0.40
SSIM  0.68£0.02 0.78+0.01 0.69+0.02 0.79+0.01

UNet NnRMSE 8.35+0.45 8.11+045 3151+996 748+1.09 7.24+1.09 28.96+6.28

Unreg. PSNR 20.82 +£0.1521.00+0.14 10.67£1.36 21.36+0.67 21.57+0.67 11.10+0.51
SSIM  0.67+£0.02 0.77+0.01 0.68+0.02 0.78+0.01
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T, Pre-Gd IDEAL Unreg. T, Pre-Gd IDEAL Reg. T:1 Pre-Gd IDEAL Absolute Diff. T1 Post-Gd IDEAL

Patient 1

Patient 2

Patient 3

Supp. Figure B.1 Example Registrations. Coronal IDEAL Pre-Gd slices being registered to coronal
IDEAL Post-Gd slices, with absolute difference maps of registration shown for 3 patients.
Registration was done to account for motion and slight alterations to patient position that may
have occurred between the sequences. Registration was done on a per-volume basis in a 3-
stage algorithm: (1) translation, (2) affine, and (3) 3™ order b-spline registration (maximum
iterations = 256, 256, 512, respectively; Advanced Mattes Mutual Information criterion for all).
B-spline registration was done only for patients where SSIM between unregistered Pre-Gd and
Post-Gd scans was above 0.5, which was used as a proxy for detecting motion artifacts so severe
that any non-linear registration would lead to overfitting.
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T, Pre-Gd IDEAL T, Post-Gd IDEAL Post-Gd, Overlaid Anomaly Seg.
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Supp. Figure B.2 Example Anomaly Distance Map. Example anomaly segmentations and
corresponding anomaly segmentation maps that would result and be used to weight pixel-
based Li loss functions during training.
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Supp. Figure B.3 Sample Hyperparameter Search Slices. Examples of 10-epoch training results
across one slice for 20 hyperparameter combinations; results are shown for the PatchGAN
pipeline without generator decoding path deconvolutions. After initial screening using SSIM and
NRMSE, optimal hyperparameter combinations were selected based visual inspection, with
primary criteria being synthesis of new information, fidelity of reconstructed volumes to ground
truth, and absence of obvious algorithm-generated artifacts that could cause a radiologist to
lose confidence in the quality of the synthetic post-Gd images. Models with optimal
hyperparameter sets were then trained from scratch for 35 epochs.
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Appendix C - Supplementary Information to Chapter 9

Supp. Table C.1 Non-imaging variables identified from literature as correlated with OA
progression or eventual TKR. These non-imaging variables were taken to the OAl database, and,
if present, added as potential non-imaging variables to supplement image-based predictions.

Variable grouping

Variable

Source

Demographics

Age
Obesity/BMI
Gender
Ethnicity
Income
Education level

(Lewis, 2013) [309]
(Lewis, 2013) [309]

(Heidari 2011) [319]

(Yu, 2019) [310]
(Hawker, 2006) [308]
(Pisters, 2012) [321]

Previous knee trauma and
pain

Knee pain

Previous knee trauma
Repetitive knee trauma
Previous meniscal injuries
Previous knee injury

(Lewis, 2013) [309]
(Heidari 2011) [319]
(Heidari 2011) [319]
(Heidari 2011) [319]
(Cooper, 2000) [320]

Knee physical activity and
functionality

Mechanical forces exerted on knee
Frequent kneeling

Frequent squatting

Physical activity level

Muscular weakness

Joint range of motion

Lower knee extension muscle strength

(Heidari 2011) [319]
(Heidari 2011) [319]
(Heidari 2011) [319]
(Pisters, 2012) [321]
(Heidari 2011) [319]
(Pisters, 2012) [321]
(Pisters, 2012) [321]

Previous actions to treat
knee pain

Previous joint injections

Previous knee arthroscopy

Previous analgesics or opioid usage
Previous NSAID usage

Number of previous knee referrals
Number of previous consultations
Willingness to consider TJA as treatment
Seen physician for arthritis in previous year

(Yu, 2019) [310]
(Yu, 2019) [310]
(Lewis, 2013) [309]
(Yu, 2019) [310]
(Yu, 2019) [310]
(Yu, 2019) [310]
(Hawker, 2006) [308]
(Hawker, 2006) [308]

Preexisting health
conditions

Heberden's nodes

Recorded diagnosis of joint-specific OA
Low back pain

Hypertension

Smoking status

Drinking status

Asthma

COPD

Diabetes mellitus

Comorbidities

(Cooper, 2000) [320]
(Yu, 2019) [310]
(Yu, 2019) [310]
(Yu, 2019) [310]
(Yu, 2019) [310]
(Yu, 2019) [310]
(Yu, 2019) [310]
(Yu, 2019) [310]
(Yu, 2019) [310]

(Pisters, 2012) [321]

Miscellaneous

Knee joint laxity
Genetic susceptibility to knee OA

(Heidari 2011) [319]
(Heidari 2011) [319]
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Variable grouping

Variable Source

. Mental health measures
Miscellaneous

SF36 score

(Sharma, 2003) [322]
(Hawker, 2006) [308]

Supp. Table C.2 Percentages of selected tissues identified as hotspots among 124 true positives
detected by integrated MRI pipeline, stratified by OA severity.

Tissue Tissue No OA | Moderate OA Severe OA Total
type (n=11) (n =65) (n=48) (n=124)
TFJ) medial 100.0 95.4 87.5 92.7
Cartilage TFJ lateral 100.0 87.7 85.4 87.9
PFJ 27.3 43.1 41.7 41.1
Medial anterior 100.0 84.6 75.0 82.3
Meniscus Medial posterior 90.9 87.7 70.8 81.5
Lateral anterior 100.0 87.7 81.3 86.3
Lateral posterior 100.0 90.8 81.3 87.9
TFJ) medial 100.0 95.4 89.6 93.5
Bone TFJ lateral 90.9 87.7 83.3 86.3
PFJ 27.3 354 45.8 38.7
ACL 100.0 815 64.6 76.6
Ligament PCL 72.7 73.8 77.1 75.0
Popliteal 54.5 56.9 58.3 57.3
Mrz‘;'sgsjltj:]ar 90.9 78.5 91.7 84.7
Lateral patellar 54.5 21.5 33.3 29.0
retinaculum
Popliteal 36.4 49.2 43.8 46.0
Tendon Patellar 27.3 27.7 25.0 26.6
Gastrocnemius 36.4 9.2 14.6 13.7
Semimembranosus 27.3 13.8 6.3 12.1
Quadriceps 0.0 4.6 14.6 8.1
Gracilis 0.0 4.6 6.3 4.8
Fat pad Hoffa 100.0 90.8 97.9 94.4
Popliteus 18.2 35.4 10.4 24.2
Vastus medialis 18.2 7.7 18.8 12.9
Gastrocnhemius 36.4 26.2 27.1 27.4
Muscle Plantaris 27.3 32.3 31.3 315
Biceps femoris 0.0 4.6 6.3 4.8
Tibialis anterior 0.0 4.6 0.0 2.4
Semimembranosus 0.0 3.1 2.1 2.4
Synovium General 81.8 87.7 93.8 89.5
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Supp. Table C.3 Percentages of selected tissues identified as hotspots among 124 true negative
controls detected by integrated MRI pipeline, stratified by OA severity.

Tissue Tissue No OA | Moderate OA | Severe OA Total
type (n=11) (n =65) (n=48) (n=124)
TFJ medial 100.0 100.0 100.0 100.0
Cartilage TFJ lateral 100.0 100.0 100.0 100.0
PFJ 18.2 27.7 62.5 40.3
Medial anterior 100.0 92.3 93.8 93.5
Meniscus Medial posterior 100.0 96.9 83.3 91.9
Lateral anterior 90.9 96.9 97.9 96.8
Lateral posterior 100.0 100.0 91.7 96.8
TFJ medial 100.0 100.0 97.9 99.2
Bone TFJ lateral 100.0 100.0 100.0 100.0
PFJ 9.1 26.2 56.3 36.3
ACL 100.0 90.8 79.2 87.1
Ligament PCL 45.5 63.1 72.9 65.3
Popliteal 54.5 46.2 41.7 45.2
Mri%'sgsjltfr':]ar 54.5 66.2 87.5 73.4
Lateral patellar
retinaculum 18.2 23.1 354 27.4
Popliteal 45.5 33.8 37.5 36.3
Tendon Patellar 9.1 16.9 18.8 16.9
Gastrocnemius 0.0 9.2 0.0 4.8
Semimembranosus 36.4 26.2 12.5 21.8
Quadriceps 0.0 0.0 6.3 2.4
Gracilis 0.0 1.5 0.0 0.8
Fat pad Hoffa 81.8 81.5 95.8 87.1
Popliteus 18.2 15.4 10.4 13.7
Vastus medialis 0.0 7.7 16.7 10.5
Gastrocnemius 45.5 29.2 6.3 21.8
Muscle Plantaris 18.2 15.4 104 13.7
Biceps femoris 0.0 1.5 0.0 0.8
Tibialis anterior 9.1 0.0 0.0 0.8
Semimembranosus 27.3 7.7 2.1 7.3
Synovium General 90.9 87.7 87.5 87.9

263



Compressed

Original

Patient 1

Patient 2

Supp. Figure C.1 Sample slices of DESS MRI and their corresponding compressed versions when
rounding pixel values after normalization.
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