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Automa4c Reconstruc4on, Synthesis, and Processing of Musculoskeletal Magne4c Resonance 

Images Using Deep Learning 

Aniket Tolpadi 

Abstract 

Musculoskeletal (MSK) diseases are widespread, with the World Health OrganizaBon esBmaBng 

in 2019 that 1.71 billion people worldwide are afflicted with the condiBon [1]. MSK condiBons 

include low back pain, knee osteoarthriBs, and rheumatoid arthriBs, among others, all of which 

induce debilitaBng pain and require early diagnosis to improve prognosis of treatment 

outcomes. Imaging is a crucial tool for diagnosis, and among available opBons, MagneBc 

Resonance Imaging (MRI) is a preferred modality for its sharp soE-Bssue contrast, high-

resoluBon images, and lack of ionizing radiaBon. However, acquisiBon and processing of MR 

images has numerous challenges: (1) acquisiBons are Bme-consuming, and therefore expensive 

and suscepBble to moBon arBfacts; (2) special sequences require toxic contrast agent 

administraBon, which have safety concerns; and (3) analysis of acquired images to idenBfy 

paBents most requiring clinical intervenBon is laborious. This work proposes using deep 

learning to address various aspects of these challenges. I will be presenBng 5 applicaBons and 

uses of deep learning algorithms: 

1. To accelerate a 3D fat-suppressed knee MR sequence, showing that opBmizing 

reconstrucBon algorithms for one Bssue of clinical interest can improve its performance 

in other Bssues of clinical interest. 
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2. For image reconstrucBon of accelerated composiBonal MR acquisiBons in the knee, hip 

and lumbar spine, opBmizing reconstructed images for Bssues of heightened clinical 

interest (carBlage and intervertebral discs). 

3. To automaBcally segment bone and carBlage from 8X accelerated knee MR acquisiBons. 

4. To synthesize post-contrast wrist MR images from pre-contrast scans in rheumatoid 

arthriBs paBents. 

5. To predict if paBents would require a total knee replacement within 5 years, using MR 

imaging and demographic variables. 
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Chapter 1 - Overview 

Chapter 2 will serve as a basic introducBon to the musculoskeletal (MSK) joints and Bssues that 

will be further examined in the thesis. Next, chapter 3 will introduce MagneBc Resonance 

Imaging (MRI), an essenBal imaging modality commonly used to bePer understand these 

Bssues, while chapter 4 will provide background on deep learning (DL) and how it can be 

applied to various aspects of the clinical imaging workflow. Finally, chapters 5-9 are self-

contained studies, complete with relevant background, methods, results, and conclusions, each 

of which details some applicaBon of deep learning to streamline, accelerate, or automate some 

porBon of the imaging workflow. 
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Chapter 2 - Relevant Musculoskeletal Anatomy 

The MSK system is a complex framework consisBng of various Bssue types, responsible for 

crucial tasks that include load bearing, posture maintenance, and facilitaBng locomoBon. 

Hierarchically, the organ system is straBfied into numerous joints and sub-anatomies such the 

ankle and shoulder, each of which can be broken down into components such as carBlage, 

bones, muscles, and ligaments. This thesis will center around four such anatomies: knee, hip, 

lumbar spine and wrist.  

 

2.1 Knee 

2.1.1 Knee Anatomy 

The knee is a modified hinge joint allowing for sagiPal flexion and extension, and varus and 

valgus rotaBon in the frontal plane [2]. As one of the largest joints in the human body, it has 

substanBal weight-bearing responsibiliBes, carried out through a complex configuraBon of 

bones, ligaments, carBlage, and muscles. Four bones are observed within the knee: the femur, 

Bbia, fibula, and patella. Among these, the Bbiofemoral joint is parBcularly important in weight-

bearing, whereas the patellofemoral joint is responsible for fricBonless transfer of flexion and 

extension forces about the knee, facilitaBng moBlity. These muscles are stabilized primarily by a 

series of ligaments, and secondarily by surrounding muscles. Ligaments connect bone to bone, 

and within the knee, the anterior cruciate ligament (ACL) is the most important stabilizer, 

responsible for up to 85% of the joint’s stability [3]. In conjuncBon with the posterior cruciate 

ligament (PCL), the ACL prevents anteroposterior moBon of the femur with respect to the Bbia, 

whereas the medical collateral ligament (MCL) and lateral collateral ligament (LCL) prevent 
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mediolateral relaBve moBon between the bones. Other relevant stabilizing ligaments include 

the popliteal ligament. To withstand compressive and shear forces observed in weight-bearing, 

flexion, extension, varus rotaBon, and valgus rotaBon, the arBculaBng surfaces of the 

Bbiofemoral and patellofemoral joints are lined with hyaline carBlage and encased in a fibrous, 

synovial fluid filled capsule. CarBlage is a well-hydrated, collagen-rich Bssue that reduces fricBon 

and acts as a shock absorber for the enBre knee. Moreover, the Bbiofemoral joint is also 

equipped with medical and lateral fibrocarBlaginous structures known as menisci. Like carBlage, 

menisci also funcBon as a shock absorber, while also designed to prevent excessive varus or 

valgus rotaBon [4]. 

 

2.1.2 Knee Pathophysiology 

Among the most common pathophysiological knee anomalies is osteoarthriBs (OA), for which 

incidence rate esBmates range from 14 to 30 million in the United States alone [5,6]. In OA, the 

knee undergoes structural changes that may include carBlage loss, alteraBons in subchondral 

bone properBes, and narrowing of the Bbiofemoral joint space, among others [7]. UlBmately, 

these changes can cause inflammaBon, debilitaBng pain, and generally reduced quality of life. 

Unfortunately, however, knee OA is irreversible: while treatments exist for early-stage OA that 

can miBgate symptoms, late-stage OA has no noninvasive treatments, underscoring the 

importance of regular monitoring of joint health for early OA idenBficaBon and treatment 

iniBaBon [8,9]. Other anomalies that can occur as a precursor, concurrently, or due to OA 

include carBlage and meniscal lesions, which can compromise the ability of both Bssues to 

withstand compressive forces and generally induce pain [10]. Aside from these lesions, bone 
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marrow edema is also common, in which fluid collects in extracellular marrow spaces, possibly 

due to trauma, infecBon, or cancer [11,12]. Diagnosis of these anomalies is typically done with a 

combinaBon of medical imaging and monitoring symptoms, necessitaBng automaBc tools to 

track paBent health and idenBfy at-risk populaBons for these condiBons. 

 

2.2 Hip 

2.2.1 Hip Anatomy 

Like the knee, the hip also carries substanBal weight-bearing responsibiliBes, but differs in that 

it is a ball-and-socket joint rather than a hinge joint. Three bones—the ilium, ischium, and 

pubis—intersect to form the “socket” of the hip joint, known as the acetabulum [13]. The 

proximal head of the femur forms a ball that inserts into this socket, allowing for flexion, 

extension, abducBon, adducBon, and internal and external rotaBon. The joint is stabilized by a 

series of ligaments, the most significant of which are the iliofemoral, pubofemoral, and 

ischiofemoral, all of which thicken the hip joint capsule and limit internal rotaBon, abducBon 

and extension, and extension, respecBvely [13]. The femoral head and acetabulum are both 

lined with carBlage, which has similar roles in the hip as in the knee: resist compressive forces 

and reduce fricBon associated with moBon. Also as in the knee, the hip is a synovial joint, 

contained in a fibrous sac and lubricated with synovial fluid [14]. 

 

2.2.2 Hip Pathophysiology 

OA is a similarly common pathology in the hip as in the knee. In the hip, chronic usage and 

general wear-and-tear of the hip joint can see damage to femoral and acetabular arBcular 
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carBlage, the formaBon of bony osteophytes that induce pain, and addiBonal damage to 

stabilizing ligaments and muscles [15]. Hip OA is widespread: in the United Kingdom, 10-25% of 

those older than 55 suffer from the condiBon, and its effects are not solely limited to the elderly 

populaBon [16]. Also very commonly observed are hip fractures, observed in one (or more) of 

the bones consBtuBng the hip joint. Due to poor blood supply, healing from hip fractures is 

oEen slow and afflicBon with the condiBon very painful, with potenBally dire consequences: 5-

10% of those with hip fracture die within one month of the fracture date [17]. While OA and 

fractures are both ongoing areas of research, parBcularly related to their detecBon from 

medical images, this thesis will focus more so on Bssues implicated in hip OA. 

 

2.3 Lumbar Spine 

2.3.1 Lumbar Spine Anatomy 

The lumbar spine is a crucial structure in the lower back with numerous responsibiliBes, 

including protecBng the spinal cord and the numerous nerves that emerge from it, and 

providing structural support for the spinal column and torso. The vertebral column features 

alternaBng intervertebral discs (IVDs) and vertebral body bones. IVDs are avascular Bssues lying 

between adjacent vertebrae, and are responsible for resisBng spinal compression while 

absorbing axial and torsional stresses that may be imparted on the spine. These funcBons are 

accomplished due to the IVD structure, which can be straBfied into three regions: the nucleus 

pulposus (NP), annulus fibrosis (AF), and carBlaginous end plates (CEP). The NP is centrally 

located within the IVD, rich with proteoglycans that have negaBvely charged side chains, 

allowing the region to be well hydrated and deform reversibly, thereby resisBng axial loads. The 
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AF is radially located, consisBng of 10-20 concentric rings of “lamellae” composed primarily of 

collagen I, with each concentric ring having fibers oriented roughly 60-65 degrees from the 

verBcal in an alternaBng fashion [18]. This structure allows the AF to resist tensile stresses 

exerted by the radial pressure of the NP. CEPs lie at the superior and inferior ends of the IVD, 

composed of hyaline carBlage at early stages of development and fibrocarBlage in adults, and is 

crucial in delivering nutrients to the disc [19]. Vertebral bodies consist of anteriorly located 

bodies that sit on top of IVDs, and several processes located posterior to the discs: the 

transverse processes protrude laterally, limiBng leE/right rotaBon of the spine; the spinous 

process protrudes posteriorly, limiBng anteroposterior moBon of the spine. Each vertebra also 

consists of two superior and inferior arBcular processes, allowing adjacent vertebra to sit on top 

of one another. The spinal cord itself passes through the central canals of vertebrae, whereas 

adjacent vertebrae form foramen on the leE and right sides of the spinal column at each 

vertebral level, through which nerves pass that innervate various muscles (primarily in the lower 

body for the lumbar spine). The spinal column is stabilized by numerous paraspinal muscles 

[20–22]. 

 

2.3.2 Lumbar Spine Pathophysiology 

The overarching anomaly observed in the lumbar spine is low back pain (LBP), which is the fiEh 

most common reason why Americans seek medical care and is the naBon’s second leading 

cause of disability [23]. A precise cause for LBP can be difficult to idenBfy, as 90 percent of all 

LBP cases are non-specific [24]: causes can be anatomic or psychosocial. In anatomic cases, 

degeneraBon of IVDs is one possibility: NP proteoglycan side chains can degrade or shiE from 
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chondroiBn sulfate to keraBn sulfate [25], decreasing the relaBve proteoglycan content within 

the NPs, reducing their ability to stay hydrated, thereby reducing its ability to resist axial loads 

[26]. AF changes with aging and trauma can include cracking or tears in the lamellae, allowing 

the NP to protrude through the AF and breaking down the barrier between the NP and AF in the 

Bssue. This further reduces the disc’s ability to resist axial compression and torsion and may also 

lead to a herniated disc that impinges on the spinal cord or other nerves, causing pain [27,28]. 

The lumbar spine work in this thesis will focus primarily on the IVDs, but various other 

anomalies can arise within the lumbar spine that cause pain. For instance, lesions can emerge 

between vertebral and carBlaginous endplates at the intersecBon of IVDs and vertebral bodies, 

possibly causing the bony marrow to inflame and convert into fat, while the end plates can 

undergo some degree of ossificaBon; these are known as Modic changes [29,30]. Elsewhere, the 

central canal of the spinal cord or the foramen can constrict for various reasons, impinging on 

the spinal cord and/or foraminal nerves, causing pain that can radiculate to regions innervated 

by the nerves [31,32]. Fractures can also be observed within the vertebral bodies, altering the 

load bearing mechanics of the spine while also causing pain [33]. Other sources of pain can 

include misalignment of the spine, which is observed in scoliosis, lordosis and kyphosis [34–36]. 

Beyond anatomic factors, psychosocial factors such as depression, stress, and reliving pain 

episodes can also induce pain [37]. 
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2.4 Wrist 

2.4.1 Wrist Anatomy 

The wrist joint is one of the most complex in the human body, encompassing a wide assortment 

of relaBvely small bones. Proximally, the wrist joint begins at the forearms, where two bones 

are found: the medially located ulna, and the laterally located radius. Moving distally into the 

wrist is the distal carpal row (DCR) of bones: the trapezium, trapezoid, capitate and hamate [38]. 

Proximal to the DCR is the proximal carpal row (PCR) bones: the scaphoid, lunate, triquetrum 

and pisiform [39]. The PCR then aPaches to the metacarpal bones of the hand by strong 

ligaments, causing the DCR to funcBon fundamentally as a single unit. RelaBve moBon of these 

carpal bones is restricted by a complex system of 33 intraarBcular and intracapsular ligaments 

[40]. Six total forearm extensor and flexor muscles aPach distally within the wrist into the DCR 

through a network of tendons, allowing for wrist moBon [41]. 

 

2.4.2 Wrist Pathophysiology 

Numerous anomalies can occur in the wrist, including fractures of the many bones and ligament 

tears, all of which can cause pain and joint instability [42]. While not a weight-bearing joint, the 

wrist can also become afflicted with OA, the causes of which are unknown but likely involve 

biomechanical factors, as well as biochemical factors such as proteinases and proinflammatory 

cytokines [43]. The wrist-related work in this thesis, however, will focus on Rheumatoid ArthriBs 

(RA), a widespread autoimmune disorder observed in 0.5-1.0% of Americans, with an incidence 

rate in women that is 2-3 Bmes higher than that of men [44]. RA is systemic, mainly affecBng 

joints (parBcularly the feet and hands), and is characterized by synovial joint inflammaBon, 
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bone Bssue erosion and soE Bssue breakdown [45]. In addiBon to synovial inflammaBon, bone 

marrow edema (BME) can also result from RA, all of which can cause pain and severely degrade 

quality of life [46]. RA is typically treated using Disease-Modifying AnB-RheumaBc Drugs 

(DMARDs), which see 75-80% of paBents aPain intended treatment outcomes within a year of 

treatment iniBaBon. However, this spikes to 90% when treatments are iniBated in early RA 

stages, underscoring the importance of early diagnosis [47]. 
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Chapter 3 - Clinical and Quan4ta4ve Imaging of Musculoskeletal Tissues 

Diagnosing anomalies such as knee OA, hip OA, and wrist RA require holisBc assessment of 

symptoms such as pain and quality of life, and in the case of wrist RA, laboratory tests for C-

reacBve protein (CRP) and erythrocyte sedimentaBon rate (ESR). However, central to diagnosBc 

schemes for these condiBons and lumbar spine anomalies, is medical imaging. Imaging provides 

a noninvasive means of depicBng anomalies and can help idenBfy potenBal pain sources and 

guide treatment courses. Widely used clinical imaging modaliBes include X-ray, Computed 

Tomography (CT), Ultrasound (US), and MagneBc Resonance Imaging (MRI). Compared to its 

counterparts, MR has advantages with its sharp contrast, exquisite depicBon of soE Bssue, 

ability to image three-dimensional volumes, and lack of ionizing radiaBon [48]. Its primary 

drawbacks, however, are long acquisiBon Bmes, high costs, and limited accessibility in low-

resource regions. Much of the work in this thesis will center around addressing MR drawbacks 

with an eye towards its faster, cheaper, and more widespread clinical use. This chapter will 

begin by discussing the fundamentals of MR imaging, aEer which standard clinical MR 

sequences and contrast mechanisms will be described. To conclude, composiBonal MR will be 

introduced, and the advantages it offers over convenBonal approaches. 

 

3.1 Basic MR Physics 

MR entails imaging one of several biologically acBve atomic nuclei with nonzero nuclear 

magneBc moments. Nuclear magneBc moments form in an atomic nucleus: for a nucleus with 

an equal number of protons and neutrons, nuclear charges can be distributed roughly evenly, 

causing the nucleus to have a nuclear magneBc moment of essenBally zero [49]. Alternately, 
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nuclei with unequal numbers of protons and neutrons necessarily will have at least one 

“unpaired” proton or neutron, impairing the atom’s ability to evenly distribute nuclear charges 

and causing it to have a nuclear magneBc moment [50]. Such atoms, such as 1H, 23Na, and 31P, 

therefore are suscepBble to extrinsic magneBc fields [51].  While not detectable for a single 

nucleus, these nuclei behave as small magneBc dipoles that, when gathered in sufficiently large 

numbers (~1015), yield a nuclei conglomerate that generates an observable magneBc signal, 

forming the basis of MR signal [52]. Due to its abundance in the human body, 1H MR is by far 

the most widely used nucleus for MR, and is the basis of both clinical MR imaging and the 

imaging analyzed in this thesis. 

 

In the absence of an external magneBc field, these dipoles are randomly oriented, essenBally 

cancelling one another out and not generaBng net magneBzaBon. In the presence of an external 

magneBc field, however, some alignment of the dipoles is observed: most along the direcBon of 

the magneBc field, but some in a high-energy state, anBparallel to the external field, generaBng 

net magneBzaBon [53]. In MR imaging, this alignment is induced with the B0 field, a 1.5 or 3 

Tesla (T) field for most current clinical imaging applicaBons, although higher strength B0 fields 

are being invesBgated in research seHngs. Crucially, when placed in an external B0 field, these 

nuclei begin precessing about the B0 field at a specific frequency known as the Larmor 

frequency (ω0 = B0 × γ, where ω0 is the Larmor frequency, B0 is the strength of the external B0 

field, and γ is the gyromagneBc raBo, or a constant for every nucleus at a given field strength) 

[54]. Control of this frequency, and the locaBon of spins within their precession cycles (“phase”) 

are crucial to localizing MR signals. 
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3.2 Components of a MR Pulse Sequence 

In scanners, paBents are subjected to strong B0 fields, inducing net magneBzaBon along the 

longitudinal axis (along the B0 field direcBon) [55]. To iniBate imaging, a radiofrequency (RF) 

pulse is applied at frequency ω0 perpendicular to the B0 field axis; this applies a torque that 

“Bps” the net magneBzaBon away from the B0 axis by an angle determined by pulse strength 

and duraBon (“flip angle”) [56]. This separates the net magneBzaBon into longitudinal (along 

the B0 axis) and transverse (perpendicular to the B0 axis) components. Once the RF pulse 

concludes, net magneBzaBon begins recovering along the longitudinal axis (“longitudinal 

recovery”) and decaying along the transverse axis (“transverse decay”) [53]. Due to the 

heterogeneity in intrinsic macromolecular properBes such as free and bound water content 

across Bssues, longitudinal recovery and transverse decay occur at different rates across a Bssue 

sample, which are exploited to produce MR images [57]. Also due to this heterogeneity, 

however, the phase coherence observed in nuclei immediately aEer an RF pulse is quickly lost 

and must be reestablished during signal acquisiBon. Typically, phase coherence is induced aEer 

excitaBon RF pulses by using 180° refocusing RF pulses or addiBonal gradients [58]. Receiving 

coils then measure signal in the transverse plane. In modern MR, several coils are usually used 

and located around the periphery of the anatomy being imaged; the use of mulBple coils allows 

for considerably bePer spaBal sensiBvity to regions throughout the imaged volume than a single 

coil setup. Receiving coils are tuned to the Larmor frequency and acquire the coherent signal. 

The Bme between the iniBal RF pulse and signal acquisiBon is known as echo Bme (TE), whereas 

the Bme between successive non-refocusing RF pulses is known as repeBBon Bme (TR). 
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Signal is generated and recorded using these mechanisms but must also be localized in the 

Bssue. Receiving coils can be tuned a parBcular frequency and phase of spins within their 

precession. As such, if signal from only a parBcular voxel is desired, its frequency and phase 

must be modulated such that receiving coils can be tuned to isolate the voxel. Gradient coils 

accomplish this frequency and phase modulaBon: most MR scanners are equipped with two 

gradient coils along the transverse axes and one along the longitudinal axis. For 2D MR imaging, 

a slice-selecBng gradient coil is acBvated simultaneously with the excitatory RF pulse (“slice-

selecBng pulse”); when the slice-selecBng gradient coil is acBvated, it causes slight local 

variaBons in magneBc field strength (from the original B0), thereby locally altering the Larmor 

frequency. When applied, the RF pulse is tuned to the desired frequency, thereby only “Bpping” 

longitudinal magneBzaBon into the transverse plane for a slice of Bssue. AEer excitaBon, phase 

is encoded along an orthogonal axis by the phase encoding gradient coil: when applied, the 

local alteraBons in Larmor frequency cause nuclei along the phase-encoding direcBon to reach 

slightly differing starBng points in their precession cycles. When the phase-encoding gradient is 

turned off, the Larmor frequency returns to its original frequency, but due to the phase 

encoding, nuclei along the phase-encoding axis now lie at different phases within their 

precession cycles despite subsequently precessing at the same frequency. This accounts for 

localizaBon in two dimensions, and the third is accomplished with the frequency encoding 

gradient coil. The frequency encoding gradient is applied while signal is read by the receiving 

coils: just as the previous gradient coils, it induces local variaBons in the frequency of nuclei 

precession by modulaBng the Larmor frequency, thereby allowing for localizaBon of signal along 
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the remaining axis [53]. In 3D imaging, an enBre volume of Bssue is instead excited rather than 

a slice, with the slice-selecBng gradient coil instead used as a second phase-encoding gradient 

coil [59]. 

 

A standard MR sequence has several components: an RF pulse to excite Bssue, refocusing pulses 

or gradients to induce spaBal coherence while signal is recorded, and a series of gradient coils 

to localize signal to given voxels. Numerous parameters can affect resulBng image appearance, 

such as gradient coil strength, RF pulse strength and duraBon, and the bandwidth of frequencies 

accepted by receiving coils during acquisiBon. AddiBonal techniques can be added, for example, 

to suppress or saturate signal from Bssues such as fat or fluid [60–62]. The most important 

parameters, however, are TR and TE: by controlling RF pulse and/or refocusing gradient Bming, 

the degree of longitudinal recovery and transverse decay undergone by a Bssue prior to signal 

acquisiBon can be adjusted. Strategic selecBon of TR and TE therefore controls which properBes 

are accentuated, and thus, the structures a resulBng image will illuminate. 

 

3.3 Standard Postprocessing of MR Acquisi4ons 

An underreported aspect of the MR acquisiBon pipeline are the many steps involved in 

postprocessing MR scanner data to arrive at images ulBmately used in the clinic. First off, MR 

images are acquired in the frequency domain, which is also described as k-space. A series of 

postprocessing steps must be performed in k-space and image space to aPain desired images. 
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In k-space, standard clinical sequences may be accelerated using parallel imaging (PI)— briefly, it 

exploits the redundancy in acquiring signal in mulBple receiving coils to acquire fewer less data 

in k-space, thereby reducing acquisiBon Bme. Some PI methods will impute unacquired k-space 

points, and if so, they must be imputed in an iniBal step [63]. Subsequently, many MR 

acquisiBons will acquire data using a given size of k-space (the “acquisiBon matrix”), but the 

intended dimensions of the output resoluBon could be larger to increase the sequence’s 

apparent spaBal resoluBon. To accomplish this, images are zero-padded in k-space to the 

desired dimensions. When transformed into Cartesian space (also called “image space,” or the 

domain in which medical images are viewed by clinicians), the sharp boundaries between 

nonzero acquired k-space points and the peripheral zeros can induce undesired Gibbs arBfacts. 

This is miBgated by filtering the k-space, oEen with a Fermi or Hamming filter, that soEens the 

boundary between nonzero and zero points within k-space, miBgaBng the Gibbs arBfacts at the 

expense of some sharpness in the resultant image [64,65]. Processed k-space is subsequently 

inverse Fourier transformed (IFFT) into image space. 

 

Upon IFFT, one image remains for each of the receiving coils; these must be integrated into one 

coil-combined image, thereby improving signal-to-noise (SNR) raBo of the resulBng image. Coil 

combinaBon can be accomplished with various approaches, the simplest of which summing the 

squares of corresponding pixels across coils, while more complicated approaches will rely on 

scanner calibraBon data to opBmize the coil combinaBon approach [66,67]. AEer coil-

combinaBon, mulBple correcBons are applied: surface coil intensity correcBon (SCIC) and 

gradient coil inhomogeneity correcBon. SCIC entails pixel intensity adjustment across the image 
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to allow for more uniform contrast and SNR throughout the image [68], whereas gradient coil 

inhomogeneity correcBons warp images to adjust for nonlineariBes that may be observed in the 

localizing gradient coils [69]. Pixel magnitudes are typically stored and images scaled to a 

desired range of pixel values, yielding standard images used in clinical applicaBons. More 

sophisBcated MR sequences may require further processing, such as potenBal separaBon of 

phase and magnitude signals, but these baseline steps will be required for nearly every 

sequence. 

 

3.4 Conven4onal MR Protocols 

T1, T2 and proton density (PD) weighted images dominate current clinical MR protocols. T1 

relaxaBon Bme is also referred to as longitudinal relaxaBon Bme, and is a Bme constant 

describing the rate at which magneBzaBon will recover along the longitudinal axis aEer an 

excitatory RF pulse is applied [70]. T1-weighted images then select parameters to accentuate 

differences in these relaxaBon Bmes across a given slice of Bssue; this is accomplished by a 

sequence with a short TR and TE. In doing so, T1 images will see fat appear as very bright, soE 

Bssues such as muscles and ligaments appear moderately bright, while fluid will be dark [71]. 

Contrarily, T2 relaxaBon Bme is also referred to as transverse relaxaBon Bme; in this case, T2 is a 

Bme constant describing the rate of magneBzaBon decay along the transverse axis aEer RF 

pulse applicaBon [72]. T2-weighted images are aPained by using a long TR and TE, instead 

aPaining images in which fluid is very bright, fat appears moderately bright, and soE Bssues 

generally appear less bright [71]. The final of these major sequences, PD, does not refer to a 

given type of relaxaBon, but instead selects parameters to maximize signal imaged in the 
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transverse plane, doing so using a long TR and short TE. As such, Bssues with the highest 

concentraBons of protons will appear brightest in PD imaging: fat and fluid will be very bright, 

while soE Bssue will appear gray and bones dark. 

 

Clinical imaging protocols will administer mulBple sequences to acquire mulBple weighBngs of 

Bssue for radiologist assessment. Furthermore, current clinical sequences are overwhelmingly 

acquired in 2D; as such, clinical imaging protocols will acquire the aforemenBoned sequences in 

mulBple planes (axial, sagiPal and coronal) [73]. Furthermore, signal from fat, parBcularly from 

Bssues such as bone, can obscure the idenBficaBon of more nuanced and clinically relevant 

findings such as bone marrow edema and inflammaBon; as such, fat suppression or short tau 

inversion recovery (STIR) can be integrated into these sequences to null fat signal. Lastly, in 

extreme cases, a contrast agent such as Gadolinium (Gd) can be administered to improve the 

diagnosBc quality of MR images. Here, Gd is injected intravenously into a paBent and, due to its 

paramagneBc properBes, will shorten both T1 and T2 relaxaBon Bmes. This means that, with 

otherwise idenBcal acquisiBon parameters, all Bssues would appear brighter in a T1-weighted 

scan and darker in a T2-weighted scan [74]. Specific Bssues will see Gd uptake at differing rates, 

meaning that resulBng images will exhibit enhancement (alteraBon in pixel intensiBes with 

respect to non-contrast baselines) in accordance with underlying anatomy, making anomalies 

such as tumors and acBve sites of inflammaBon easier to idenBfy. 

 

These convenBonal sequences provide rich structural informaBon that has formed the basis of 

modern radiology. It is important to note, however, that all the sequences discussed to this 
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point are fundamentally qualitaBve sequences: that is, while the intrinsic T2 relaxaBon Bmes of 

Bssues in a sample affect how that sample appears in T2-weighted MR scans, those exact T2 

relaxaBon Bmes are not idenBfied from a convenBonal sequence. In other words, convenBonal 

MR sequences are weighted such that the relaBve intensiBes of pixels give rise to anatomy (i.e. 

fluid is known to be brighter than soE Bssue in T2 imaging), but actual pixel intensiBes 

themselves are meaningless. This is the fundamental difference between convenBonal and 

composiBonal MR scans, the laPer of which is described in the next secBon. 

 

3.5 Composi4onal MR Imaging 

ComposiBonal MR scans yield maps of MR parameters such as T1 and T2, allowing the intrinsic 

parameters to be visualized rather than qualitaBve images weighted by these parameters. 

Longitudinal magneBzaBon can be represented by the following equaBon: 

𝑀!,#$ = 𝑀! #1 − 𝑒
%	!"!#'; where Mz,TE is the longitudinal magneBzaBon observed at echo Bme 

TE, Mz is the baseline longitudinal magneBzaBon before the iniBal RF excitaBon pulse is applied, 

and T1 is the intrinsic T1 of the given Bssue [75]. Contrarily, transverse magneBzaBon is given by 

the following: 𝑀'(,#$ = 𝑀'(,) #𝑒
%	!"!$', where Mxy,TE is the transverse magneBzaBon at echo 

Bme TE, Mxy,0 is the transverse magneBzaBon Bme at echo Bme 0 (maximal transverse 

magneBzaBon), and T2 is the intrinsic Bssue T2 [75]. ConvenBonal MR uses predefined TR and TE 

to enable the desired weighBng of an acquired image. In a single composiBonal MR sequence, 

however, a given volume is essenBally acquired mulBple Bmes using mulBple TEs (or in the case 

of a more complex intrinsic MR parameter such as T1p, mulBple spin-lock Bmes), making for a 
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substanBally lengthier acquisiBon than a convenBonal MR sequence with similar parameters 

[76,77]. AEer acquisiBon, an image obtains intensiBes and corresponding TEs for each pixel, 

which are then fit pixelwise to the appropriate magneBzaBon equaBon, possibly using a 

technique like Levenberg-Marquardt fiHng [78]. This allows solving voxel-wise for an MR 

parameter such as T1 or T2, yielding maps of these parameters. 

 

This approach affords composiBonal MR sequences (including T1 and T2 mapping) many 

advantages over convenBonal MR. First off, pixel values resulBng from composiBonal MR 

acquisiBons carry physiological meaning: elevated T2 values, for example, can be an indicaBon 

carBlage degeneraBon in the knee and hip, while low T2 values can indicate degeneraBon in 

IVDs [79–82]. AddiBonally, convenBonal MR images are sensiBve to morphological changes in 

Bssues, but composiBonal MR can be sensiBve to biochemical changes that precede 

morphological changes. These changes may include alteraBons in collagen, proteoglycan, and 

water content, and have most thoroughly been characterized in the knee [83,84]. Despite these 

advantages, however, acquisiBon Bmes for composiBonal MR are necessarily longer than 

convenBonal sequences, and at least to this point are too long to reasonably be implemented in 

clinical imaging protocols. Furthermore, while substanBal progress has been made in 

composiBonal MR scan-rescan reproducibility, addiBonal improvements are needed before 

widespread clinical adopBon [85–87]. Nonetheless, composiBonal sequences offer a promising 

alternaBve to deliver useful and quanBtaBve informaBon to clinical imaging protocols with 

further development, complemenBng the informaBon obtained from convenBonal sequences. 
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Between these convenBonal and quanBtaBve sequences, the work in this thesis will use the 

following: 3D fat-saturated PD knee scans, coronal 2D fat-suppressed T1-weighted scans, and 

coronal 2D fast-suppressed Gd T1-weighted scans. An addiBonal project will use the 

magneBzaBon-prepared angle-modulated parBBoned k-space spoiled gradient-echo snapshots 

(MAPSS) composiBonal MR sequence that simultaneously acquires images to calculate T1p and 

T2 maps, focusing on the T2 mapping acquisiBons [88]. The final work will use 3D double-echo 

steady-state (DESS) knee MR images, a more complex sequence that acquires two signals per 

slice that can be sum-of-squares combined into a single morphological MR sequence [89]. The 

acquisiBon of two echo images per slice has the added advantage of allowing for composiBonal 

imaging along with the more convenBonal structural MR, but that facet of DESS is not explored 

in this thesis.  
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Chapter 4 - Deep Learning in Medical Imaging 

Deep Learning (DL) has brought overwhelming changes to medical imaging, and more broadly, 

radiology. Its applicaBons have spanned the enBre imaging lifecycle, with ongoing avenues of 

research applying DL for assigning MR protocols to paBents (the full list of MR sequences to be 

acquired), acceleraBng image acquisiBon, and automaBng the processing and interpretaBon of 

medical images. This chapter will introduce the basics of DL, with parBcular focus on the 

computer vision architectures. It will then overview medical imaging applicaBons in which 

computer vision has been uBlized and that consBtute the core works of this thesis. 

 

4.1 Basics of Deep Learning 

DL entails efficient usage of large amounts of data to train mulBlayered, deep architectures and 

solve tasks such as classificaBon and regression. Conceptually, one of the simplest DL 

architectures is an arBficial neural network (ANN), which accepts input variables such as age, 

BMI and OA severity, and can predict binary variables such as whether a paBent experiences 

pain or conBnuous variables such as pain severity. Each ANN layer consists of a series of nodes, 

with the number of nodes in each layer being predetermined and intrinsic to precise network 

design [90]. Each node performs two operaBons: a weighted sum of node outputs from the 

previous layer (for the first layer, a weighted sum of the input variables), and applies a 

nonlinearity such as a sigmoid operator, hyperbolic tangent, or recBfied linear unit (ReLU) [91]. 

The nonlinearity applicaBons are crucial in allowing network generalizaBon to a wider variety of 

data than a strictly linear approach would permit. Furthermore, weights used in weighted 

summaBons are learned during network training: this is typically accomplished using an 
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opBmizaBon approach and a loss funcBon. A loss funcBon is a penalty term that describes the 

degree to which network predicBons are incorrect: widely used examples include categorical 

cross entropy for classificaBon tasks and mean-squared error for regression tasks such as age 

predicBon [92,93]. Given network weights, a model can be inferred on a batch of data, allowing 

loss funcBon calculaBon; an opBmizaBon approach determines how to update network weights 

in accordance with the loss. Conceptually, the simplest of these approaches is gradient descent: 

gradients are calculated with respect to each network weight, essenBally determining the 

direcBon in which individual weights will be updated at the next network step. Furthermore, a 

learning rate is set prior to model training, and is mulBplied by the network gradients (all 

mulBplied by -1 to ensure correct direcBon of weight updates), determining the size of steps 

used to update model weights [94]. In stochasBc gradient descent, one data point is randomly 

selected from a training batch to evaluate gradients, whereas in batch gradient descent, all data 

points of a training batch are used [95]. More sophisBcated approaches exist such as Adam 

OpBmizer that use higher-level gradient informaBon and automaBcally adjust learning rate to 

update network weights, whereas other approaches such as AdaGrad, AdaDelta, and RMSProp 

are also available for this purpose [96–98]. 

 

These ANN principles are crucial and form the foundaBon of more sophisBcated DL approaches. 

ParBcularly in medical image analysis, however, architectures oEen must be adapted to handle 

visual inputs. Referred to as “computer vision” algorithms in the literature, the most used family 

of algorithms in this space are convoluBonal neural networks (CNNs), which are used 

extensively in this thesis. While overarching ANN principles apply to CNNs, some components 
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are modified for visual input. Appropriately, the basis of CNNs are convoluBons, which take the 

place of ANN nodes in architectures. Here, fixed-size filters do elementwise mulBplicaBon of 

filter values with a region of corresponding size from an input image, summing outputs to 

obtain an output pixel value. The filter is then shiEed to a new region within the input image, 

also of corresponding size, in a process known as “striding.” Here, the process repeats, yielding 

another output pixel value. By striding the filter throughout an enBre image, filters yield a 

feature map representaBon of the input image, which is fundamentally another image sensiBve 

to the filter’s properBes [99]. In classical approaches, filters were handcraEed to maximize 

sensiBvity to desired aPributes such as horizontal lines, verBcal lines, or higher-level features 

[100]. In DL, however, the filter weights are learned, generally yielding far superior performance 

to handcraEed features for similar tasks. Just as nonlineariBes needed to be applied to nodes in 

ANNs to more accurately model intricate paPerns, nonlineariBes are applied to convoluBon 

outputs, or feature maps. Also as was the case in ANNs, CNN feature maps of a given layer serve 

as inputs to the convoluBons and resulBng feature maps of the next layer. By convolving images 

in this manner, CNNs learn increasingly complex image representaBons: for instance, while 

filters in the first layer may be sensiBve to lines at different orientaBons, filters in the second 

layer may be sensiBve to corners, and so on, unBl a final layer may be sensiBve to something as 

specific as animal species [101]. Many ANN loss funcBons and opBmizaBon techniques that held 

are applicable to CNNs, but working with images allows for usage of image-processing metrics 

such as structural similarity index (SSIM) as a loss funcBon during training [102]. 
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Properly training CNNs, or any DL network, has a series of required steps and challenges. First, a 

dataset must be understood and split into mulBple datasets: (1) a training set, seen by the 

model during training and used to update model weights; (2) a validaBon set, seen by the model 

during training but only used to evaluate model performance and not update weights; (3) a test 

set, not seen by the network unBl final parameters have been selected and only inferred on 

once to evaluate model performance. ParBcularly with images, pre-processing of images is 

required to ensure consistent scaling and distribuBon of pixel values. AEer data spliHng and 

preprocessing, a network architecture must be designed, a loss funcBon idenBfied and an 

opBmizaBon approach selected to carry out training. ConsideraBons to improve training include 

learning rate opBmizaBon: a small learning rate will cause training to be slow, while a large one 

can cause difficulBes opBmizing network parameters. Data augmentaBon techniques such as 

random rotaBon, translaBon, and addiBon of noise to training set images are common to 

improve robustness of learned features, likely improving network performance on the test set 

and external data. Also worth of considering are a stopping criterion and the number of epochs 

to train the model: an “epoch” refers to a complete cycle of the network seeing all training data, 

and while some approaches train for a fixed number of epochs, others may stop early in 

accordance with criteria such as limited improvement in validaBon set performance. Some 

medical imaging-specific challenges include robustness of trained algorithms to different MR 

sequences, to MR images acquired from mulBple scanners, and to MR images acquired from 

different vendors. 
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4.2 Anomaly Detec4on and Prognosis Predic4on 

Considerable effort from radiologists goes into mundane tasks: staging IVD degeneraBon 

severity, assessing knee OA severity, and staging lumbar spine stenosis are among the most 

common for MSK radiologists. These tasks are extremely repeBBve, placing immense loads on 

radiologists and possibly contribuBng to burnout [103]. Furthermore, radiologist experBse is 

most needed in a limited number of cases with truly unique and subtle findings, such as small 

Bssue lesions, as opposed to other cases in which anomalies are common and more easily 

spoPed. As such, the medical imaging community has spent years training algorithms to 

automate anomaly detecBon, imagining a future in which, given a lumbar spine MR scan, as an 

example, a radiologist is provided automated assessments of IVD health, Modic changes in 

vertebral endplates, detecBon of vertebral fractures, classificaBon of stenosis, and so on. In this 

manner, radiologists could edit model predicBons as needed, but having them as a baseline 

rather than grading from scratch can ease burden and redirect their aPenBon to paBents where 

their experBse is most needed. 

 

Examples of DL anomaly detecBon algorithms in MSK work are widespread. A Siamese-network 

style architecture was used to automaBcally diagnose knee OA from radiographic images, 

achieving strong test set performance, with an area under the receiver operaBng characterisBc 

curve of 0.93 [9]. For more detailed analysis, another approach used a 3D V-Net architecture to 

segment Bssues such as carBlage and menisci compartments, which were then fed into 3D CNN 

architectures with residual connecBons, showing strong performance in diagnosing anomalies 

in carBlage, bone marrow, menisci and the ACL [104]. Another approach used an MRNet-style 
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architecture to automaBcally diagnose ACL and meniscal tears [105]. Outside the knee, hip 

fractures can be difficult to idenBfy in medical imaging, but a DenseNet architecture saw strong 

sensiBvity and specificity in doing so from radiographic images [106]. The lumbar spine has 

similarly seen substanBal ongoing work: Modic changes have classically been used to track 

conversions between different states within vertebral endplates, but a recent work used a V-Net 

to develop a voxel-wise, more nuanced assessment of these changes throughout enBre vertebra 

[107]. Similarly, Faster R-CNN and ResNet architectures have been used to effecBvely classify 

degree of lumbar spinal stenosis from MR images [108]. One of the first works to thoroughly 

assess numerous spinal anomalies was SpineNet, which automaBcally classifies IVD 

degeneraBon, vertebral endplate defects and changes, and stenosis, among others [109]. 

 

Numerous aspects of MSK imaging have thus seen DL algorithms applied for anomaly detecBon. 

From a data science perspecBve, prognosis predicBon can be framed as a very similar problem: 

rather than training algorithms to automaBcally diagnose current anomalies, they can instead 

predict if the anomaly will be present in the future, requiring longitudinal datasets. PracBcally, 

prognosis predicBon algorithms have obvious applicaBons: algorithms predicBng otherwise 

healthy paBents have some length of Bme unBl they develop an anomaly such as OA can be the 

impetus for iniBaBng treatments that extend the Bme to disease or invasive treatment. In this 

vein, prognosis predicBon is of clear clinical interest, and ongoing works doing so in MSK include 

predicBon of OA progression from MR images using an EfficientNet-B0 architecture [110] and 

invesBgaBng knee phenotypes associated with risk of radiographic knee OA [111]. AddiBonal 
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work is required to develop similar predicBve models to inform preventaBve measure iniBaBon 

in clinical decision making, which this thesis addresses in one project. 

 

4.3 Image Segmenta4on 

Tissue segmentaBon is a booming area of MSK and DL research, with widespread clinical 

applicaBons. For instance, segmentaBons are crucial in surgical planning, idenBfying incision 

paths that minimally damage Bssue peripheral to an anomaly [112]. Beyond this, emerging 

avenues of MSK research include idenBfying imaging biomarkers for OA, while composiBonal 

MR research conBnues to characterize soE Bssue mass composiBon, among numerous others 

[113–115]. A necessary step in idenBfying imaging biomarkers is Bssue segmentaBon: before 

evaluaBng, for instance, if T2 values within knee carBlage or specific femoral bone shape 

phenotypes are imaging biomarkers for OA risk, carBlage and bones must be segmented. 

Probably more than any other medical image processing task, Bssue segmentaBons are 

laborious and slow when done manually. As such, substanBal research has gone into designing 

and training DL segmentaBon algorithms to automate this process. 

 

Any discussion of medical imaging DL segmentaBon approaches must start with the UNet, 

whose development in 2015 revoluBonized segmentaBon and image synthesis algorithms alike 

[116]. The key innovaBon with the UNet was the introducBon of skip connecBons: the network 

has an encoding path that creates low-resoluBon, high-dimensional representaBons of input 

images, and a decoding path that decodes the high-dimensional representaBon into a predicted 

segmentaBon. Importantly, at corresponding levels on the encoding and decoding paths, skip 
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connecBons concatenate informaBon from the encoding path to the decoding path, providing 

crucial contextual informaBon to the decoding path that helps localize predicted segmentaBons. 

UNets and closely related architectures have seen substanBal applicaBons in segmenBng knee 

carBlage and lumbar spine IVDs from MR scans and have been repurposed into flexible 

frameworks that streamline much of the data preprocessing and hyperparameter tuning 

involved in training segmentaBon models [117–120]. More recently, advanced DL approaches 

such as transformers have also seen applicaBon in Bssue segmentaBon [121]. 

 

DL has seen considerable development for medical imaging Bssue segmentaBon, and these 

approaches show extremely promising performance. Many current approaches, however, show 

human-like performance for healthy paBents but can fail in rare cases such as carBlage lesion 

anomalies, making this fine-tuning an area of ongoing research.  

 

4.4 Image Synthesis 

Image synthesis entails predicBng the appearance of one image from another. In the context of 

MR imaging, it will usually involve using at least one MR sequence to predict the appearance of 

another (i.e. using axial T1 images to predict axial T2 images). This is of clinical interest for 

several reasons, the most basic of which is saving Bme and costs. Properly trained image-to-

image translaBon algorithms can synthesize, for example, a T2 image from a T1, eliminaBng the 

need to acquire a T2 weighted image in the scanner, shortening the MR imaging protocol length. 

A more exciBng reason, however, is its potenBal to eliminate the need to administer toxic 

contrast agents such as Gd. OEen required for imaging inflammaBon or when a tumor is 
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suspected, Gd is toxic and shows evidence of deposiBon within the bone and brain, meaning its 

administraBon should be avoided whenever possible [122]. In this vein, image-to-image 

translaBon algorithms can be applied to predict post-contrast MR image appearance from a pre-

contrast image. As such, a properly trained image synthesis algorithm here could dramaBcally 

improve paBent safety and possibly eliminate the need for toxic contrast agents. 

 

Most applicaBons of image synthesis algorithms for post-contrast images have come in brain 

MR, where Gd is usually administered to rule out tumors. 2D and 3D UNets, and UNet-style 

architectures have been applied to eliminate or reduce Gd dosage required in brain post-

contrast imaging applicaBons, synthesizing post-Gd images with minimal loss in image quality 

and similar uBlity of images for downstream tasks such as tumor segmentaBon compared to 

full-dose post-contrast images [123–125]. Outside of brain applicaBons, cardiac imaging can also 

entail Gd administraBon to diagnose myocardial infarcBon, where DL has seen applicaBons to 

eliminate required Gd dosage [126]. Due to the temporal component inherent in cardiac 

imaging, however, the proposed pipeline was more complex than convenBonal approaches. 

MSK, however, has seen less widespread applicaBon of image synthesis algorithms than brain 

imaging, with essenBally no work done in synthesizing post-contrast imaging of inflammaBon. 

This stands as a limitaBon of previous literature that one of the works in this thesis will address. 

 

4.5 Image Reconstruc4on 

Image reconstrucBon refers to converBng MR imaging from k-space, the frequency-based 

domain in which MR signals are acquired, into the image-space DICOM images that are 
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interpreted by radiologists. A major drawback in MR imaging is long acquisiBon Bme; 

consequently, much of recent image reconstrucBon research has entailed devising k-space 

undersampling schemes and reconstrucBon algorithms. More specifically, undersampling 

schemes sample fewer points in k-space by sampling fewer phase-encoding lines, resulBng in a 

faster MR acquisiBon that produces blurry and aliased images. ReconstrucBon algorithms, on 

the other hand, accept the aliased image and/or the undersampled k-space and predict the 

appearance of a full-length acquisiBon image. In combining the two, image reconstrucBon 

schemes reduce MR acquisiBon Bme while aPempBng to minimally sacrifice image quality. 

 

A wide array of reconstrucBon approaches has gained tracBon, not all of which use DL. Some 

such approaches include parallel imaging (PI), in which the redundance of acquiring k-space 

using mulBple coils is exploited to unalias undersampled images, reducing acquisiBon Bme at 

the expense of SNR [63]. In compressed sensing (CS), image reconstrucBon is done in an 

iteraBve manner, minimizing an objecBve funcBon that ensures a predicted image maintains 

fidelity to acquired k-space points while preserving sparsity of the predicted image in an 

alternate domain, such as wavelets [127,128]. Low rank and spare modeling approaches share 

some similariBes to CS in requiring minimizaBon of an objecBve funcBon but have some other 

methodological differences and are best studied for dynamic MR acceleraBon [129]. MR 

FingerprinBng (MRF) has also shown considerable promise, and marks a fundamentally different 

approach: here, MR images are acquired by pseudorandomizing acquisiBon parameters such as 

TR, TE and flip angle, aEer which acquired images are compared against a lookup dicBonary to 

simultaneous predict mulBple MR image weighBngs for the paBent [130]. MRF acquisiBons can 
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be combined with classical reconstrucBon approaches to further accelerate the acquisiBon 

scheme. 

 

These non-DL approaches all show substanBal promise and will be described in further detail in 

Chapter 6. That said, DL applicaBons in image reconstrucBon have exploded in recent years, 

with the subject maPer gathering considerable interest annually at major medical imaging 

conferences. Here, image-to-image DL architectures are trained in one of several manners: they 

can predict fully-sampled image space from an aliased image space, fully-sampled k-space from 

undersampled k-space, or fully-sampled image space directly from undersampled k-space [131–

133]. Loss funcBon selecBon is crucial: reconstrucBon algorithms oEen use a data consistency 

loss, ensuring k-space of predicted images corresponds with acquired k-space points, just as CS 

does in its objecBve funcBon [134]. Data consistency aside, other common terms include a 

pixel-based loss funcBon, structural similarity index, and feature based loss funcBons. In this 

manner, many of the same image-to-image architectures used in image segmentaBon and 

image synthesis can be adapted for reconstrucBon, which fundamentally is a special image-to-

image translaBon problem. UNet style networks and skip connecBons formed the basis of early 

DL works for reconstrucBon, but recent advances have popularized variaBonal and unrolled 

architectures, in which input aliased images/undersampled k-space/coil sensiBvity maps are fed 

through mulBple versions of the same architecture, slightly improving predicBons each iteraBon 

and ulBmately predicBng final reconstructed images [135]. 
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There is no quesBon that reconstrucBon has made substanBal progress in recent years. Some 

challenges remain, however: as it pertains to DL, it is important to note that CNNs are typically 

translaBonally invariant. While this is useful when in image space, it is cumbersome in k-space, 

where points at the center of k-space are orders of magnitude higher than peripheral k-space 

points; properly training a network that operates directly in k-space and having peripheral k-

space points contribute meaningfully to final network parameters is therefore challenging, 

making some DL approaches difficult to train. Beyond this, small, sharp features are easily lost in 

the undersampling process, and are usually among the most important clinically yet the most 

difficult for a reconstrucBon algorithm to recapture [136]. The stability of architectures in 

reconstrucBng these features have also been challenged [137,138]. GANs have oEen been 

added to training schemes to bePer preserve these features, but their retenBon remains a 

challenge [139]. As with other DL applicaBons in imaging, robustness of trained algorithms to 

mulBple vendors and MR sequences remains challenging, as does robustness to different 

undersampling paPerns [140]. Lastly, convenBonal metrics used to assess algorithm 

performance such as SSIM, peak signal-to-noise raBo (PSNR), and normalized root mean 

squared error (nRMSE) correlate poorly with gold-standard radiologist annotaBons, making 

opBmizaBon of algorithms and assessment of their efficacy difficult [141,142]. The image 

reconstrucBon works in this thesis will address some of these challenges.  
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Chapter 5 - A Car4lage-Specific Loss Func4on Improves Image Reconstruc4on Performance in 

Mul4ple Tissues of Clinical Interest 

The following has been reformaPed and reproduced with full permission from the publisher. It 

was a conference presentaBon that appeared as: 

 Tolpadi A. A., Calivà F., Han M., Bahroos E., Larson P. Majumdar S & Pedoia V. A CarBlage-

Specific Loss FuncBon Improves Image ReconstrucBon Performance in MulBple Tissues of 

Clinical Interest. In Proceedings of the 30th Annual MeeDng of ISMRM, London, England, United 

Kingdom. 948 (2022). 

 

5.1 Introduc4on 

For musculoskeletal imaging, MRI is a premier opBon, offering high-resoluBon images with 

exquisite soE Bssue contrast [143]. A major drawback, however, is long acquisiBon Bme. 

Consequently, image reconstrucBon has been a major recent research focus, with deep 

learning, compressed sensing, and model-based approaches among those under development 

to accelerate acquisiBon [144–148]. However, most published approaches are opBmized for 

enBre imaging volumes rather than specific Bssues of interest. While not necessarily a 

drawback, musculoskeletal imaging oEen necessitates strong image quality most so in a specific 

Bssue such as carBlage [149]. Moreover, most reconstrucBon algorithms are assessed with 

metrics like structural similarity index (SSIM) [102] that are agnosBc to Bssues of interest and 

may not accurately capture a model’s clinical uBlity [141]. As such, opBmizaBon of 

reconstrucBon algorithms for specific Bssues remains an open quesBon, and the limitaBons of 

standard image reconstrucBon metrics is worth invesBgaBng. 
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5.2 Methods 

5.2.1 Image Acquisi4on 

For 3D-Fast-Spin-Echo fat suppressed CUBE images acquired at a UCSF GE Signa 3T MRI scanner, 

an in-house pipeline was developed that leveraged GE Orchestra 1.10 and other postprocessing 

tools to reconstruct images from raw scanner data, allowing mulBcoil k-space, pre-processed 

coil-combined images, post-processed coil-combined images, and other intermediate files from 

the image processing pipeline to be stored. AcquisiBon parameters were as follows: 

FOV=15cm2; acquisiBon matrix=256×256×200; ±62.5kHz readout bandwidth; TR=1002ms; 

TE=29ms; ARC acceleraBon by a factor of 4 [150]. Images are zero-filled in k-space to obtain final 

512×512×200 resoluBon. Scans from 62 paBents were split 38/12/12 into training, validaBon, 

and test. 

 

5.2.2 Undersampling and Pre-Processing 

3D mulBcoil k-space was undersampled in ky-kz with a center-weighted Poisson paPern while 

fully sampling the 5% central square in k-space, projecBng the paPern along kx. Both 

undersampled and fully-sampled k-space were 1D inverse Fourier transformed along the slice 

direcBon, yielding undersampled and corresponding ground truth kx-ky-z 2D k-space for each 

coil, along with associated mulBcoil images. Root sum of squares coil combinaBon of fully 

sampled coil images was used to calculate ground truth coil-combined images. A 5-class 3D V-

Net pipeline obtained segmentaBons for 4 knee carBlage compartments and the menisci [151]. 
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5.2.3 Training 

A KIKI-Net [132] inspired architecture was designed to take 2D undersampled mulBcoil images 

as input, predict fully sampled mulBcoil images, and do root sum of squares coil combinaBon, 

yielding a coil-combined predicBon (Figure 5.1).  A 4-component loss funcBon was used to train 

baseline networks at R=4 and R=8: (1) mulBcoil image space L1 loss; (2) mulBcoil k-space L1 data 

consistency loss; (3) coil-combined image space L1 loss; (4) 1 - coil-combined SSIM. In addiBon, 

separate networks were trained with an addiBonal loss component: coil-combined L1 loss in 

carBlage. Training was done for 20 epochs, with loss funcBon weighBngs and learning rate being 

opBmized in a hyperparameter search. Standard reconstrucBon metrics such as SSIM, as well as 

Bssue-specific metrics like normalized root mean square error (nRMSE) and peak signal-to-noise 

raBo (PSNR) were used to assess performance [152]. 

 



 36 

Figure 5.1 KIKI-Net inspired architecture for reconstrucBon. KIKI-Net inspired architecture 
predicts coil-combined images from undersampled mulBcoil image-space inputs. Undersampled 
coil images were fed through feature extractors for real and imaginary channels, inference 
convoluBons, and a reconstrucBon convoluBon, and subsequently sum of squares combined to 
yield single-coil predicBons. Weights were shared across coils, and N=10 inference layers used. 
Baseline networks were trained with a mulB-component loss: mulBcoil image space L1, mulBcoil 
k-space L1, coil-combined L1, coil-combined SSIM. 

 
5.3 Results 

Standard reconstrucBon metrics show that at R=4 and R=8, baseline models perform well in 

recovering ground truth images, with reasonably high SSIM and low nRMSEs (Table 5.1). At a 

Bssue level, these metrics clearly show addiBon of the carBlage L1 loss reduced nRMSE and 

increased PSNR not only within carBlage, but also within menisci. 

Table 5.1 Model performance metrics in test set. ReconstrucBons within carBlage and menisci 
show slight to substanBally lower errors and higher PSNR at expense of slight drops in full-slice 
performance with carBlage-specific loss usage. Tissue-specific losses can thus improve 
reconstrucBon performance in mulBple clinically relevant Bssues. Lower SSIM compared to 
other published models is likely in part due to the challenges associated with reconstrucBng 
such a high-resoluBon, fat suppressed sequence. 

    R=4 R=8 

    No Cartilage 
Loss 

With Cartilage 
Loss 

No Cartilage 
Loss 

With Cartilage 
Loss 

SSIM (± 1 
s.d.)   0.712 ± 0.09 0.703 ± 0.09 0.612 ± 0.07 0.599 ± 0.07 

nRMSE 
(% ± 1 
s.d.) 

Full Volume 1.24 ± 0.62 1.28 ± 0.71 2.0 ± 0.84 2.08 ± 0.9 
Cartilage 1.03 ± 0.31 0.91 ± 0.32 1.68 ± 0.53 1.55 ± 0.59 
Meniscus 2.93 ± 1.98 2.81 ± 2.05 4.18 ± 2.24 4.04 ± 2.39 

PSNR (± 
1 s.d.) 

Full Volume 27.5 ± 1.54 27.4 ± 1.53 25.4 ± 1.53 25.3 ± 1.52 
Cartilage 22.1 ± 1.36 22.7 ± 1.54 20.0 ± 1.45 20.5 ± 1.67 
Meniscus 21.8 ± 1.61 22.0 ± 1.7 20.1 ± 1.52 20.3 ± 1.5 

 
VisualizaBons of reconstrucBons at R=4 show both pipelines recover fine details and yield 

dramaBc improvements in image quality over zero-filling (Figure 5.2). Moreover, reconstrucBons 

show the carBlage L1 loss miBgates spurious signal elevaBons in menisci present in baseline 
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models while more accurately reconstrucBng sharp, local signal elevaBons. While trends were 

similar at R=8, the carBlage L1 loss also miBgated aliasing arBfacts in menisci slightly bePer than 

the baseline model (Figure 5.3). 

 

Figure 5.2 R=4 pipeline performances. In both paBents, nRMSEs show improvement in carBlage 
and menisci reconstrucBons with use of a carBlage-specific loss. In paBent A, standard 
reconstrucBon reveals a slight, spurious elevaBon in posterior meniscal horn signal that is less 
apparent with carBlage-specific loss. Similarly in paBent B, a sharp signal elevaBon in lateral 
femoral carBlage is bePer reconstructed with carBlage-specific loss. 
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Figure 5.3 R=8 pipeline performances. ReconstrucBons at R=8 show similar or improved nRMSE 
in carBlage and menisci with carBlage-specific loss use. In paBent A, an aliasing arBfact in both 
reconstrucBons is bePer managed, although not eliminated, in the posterior meniscal horn with 
use of carBlage specific loss. In paBent B, similar to the R=4 pipeline, the sharp local elevaBon in 
lateral femoral carBlage signal is bePer reproduced with a carBlage-specific loss, indicaBng 
improvements in both carBlage and menisci reconstrucBons with the Bssue-specific loss. 

 
5.4 Discussion and Conclusions 

In tandem with the proposed architecture, a carBlage L1 loss term improved reconstrucBon 

performance not only within carBlage, but also within menisci. While the former is interesBng 

and useful, it is unsurprising. However, a carBlage loss term that improves meniscal 

reconstrucBon in addiBon to carBlage indicates adding Bssue-specific loss terms can improve 

reconstrucBon performance in the mulBple clinically crucial Bssues, offering a simple means of 



 39 

improving reconstrucBon performance for clinical seHngs worthy of exploraBon for all 

reconstrucBon algorithms. Also noteworthy is that at R=4 and R=8, full-slice SSIM, nRMSE, and 

PSNR worsened despite improvements in carBlage and menisci reconstrucBons. This indicates 

that, just as pulse sequence techniques such as fat suppression improve image quality in one 

Bssue at the expense of another, reconstrucBon pipelines too can and perhaps should be 

opBmized for Bssue-specific performance. Another opBon may be training mulBple Bssue-

specific pipelines and aggregaBng predicBons to obtain improved full-volume reconstrucBons. 

Beyond these possibiliBes, that full-volume metrics worsened as carBlage and meniscal 

reconstrucBons improved raises the quesBon of whether these standard metrics are opBmal to 

evaluate clinical uBlity of reconstrucBon pipelines, seeing that the most clinically useful pipeline 

is likely one with very strong carBlage and menisci reconstrucBons.  

 

This work elucidates the potenBal of Bssue-specific losses to improve clinical uBlity of 

reconstrucBon models. To further invesBgate this, future work will include extension of this 

approach to other anatomies. Lastly, parBcularly for 3D sequences, finding innovaBve ways to 

exploit all dimensions of the acquisiBon in training while managing computaBonal constraints is 

another avenue of future exploraBon. 
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Chapter 6 - Region of Interest-Specific Loss Func4ons Improve T2 Quan4fica4on with Ultrafast 

T2 Mapping MRI Sequences in Knee, Hip and Lumbar Spine 

The following has been reformaPed and reproduced with full permission from the publisher. It 

appeared in Nature ScienDfic Reports as: 

 Tolpadi, A.A., Han, M., Calivà, F. et al. Region of interest-specific loss funcBons improve 

T2 quanBficaBon with ultrafast T2 mapping MRI sequences in knee, hip and lumbar spine. Sci 

Rep 12, 22208 (2022). hPps://doi.org/10.1038/s41598-022-26266-z 

 

6.1 Abstract 

MRI T2 mapping sequences quanBtaBvely assess Bssue health and depict early degeneraBve 

changes in musculoskeletal (MSK) Bssues like carBlage and intervertebral discs (IVDs) but 

require long acquisiBon Bmes. In MSK imaging, small features in carBlage and IVDs are crucial 

for diagnoses and must be preserved when reconstrucBng accelerated data. To these ends, we 

propose region of interest-specific postprocessing of accelerated acquisiBons: a recurrent UNet 

deep learning architecture that provides T2 maps in knee carBlage, hip carBlage, and lumbar 

spine IVDs from accelerated T2-prepared snapshot gradient-echo acquisiBons, opBmizing for 

carBlage and IVD performance with a mulB-component loss funcBon that most heavily penalizes 

errors in those regions. QuanBficaBon errors in knee and hip carBlage were under 10% and 9% 

from acceleraBon factors R=2 through 10, respecBvely, with bias for both under 3 ms for most 

of R=2 through 12. In IVDs, mean quanBficaBon errors were under 12% from R=2 through 6. A 

Gray Level Co-Occurrence Matrix-based scheme showed knee and hip pipelines outperformed 

state-of-the-art models, retaining smooth textures for most R and sharper ones through 
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moderate R. Our methodology yields robust T2 maps while offering new approaches for 

opBmizing and evaluaBng reconstrucBon algorithms to facilitate bePer preservaBon of small, 

clinically relevant features. 

 

6.2 Introduc4on 

MagneBc Resonance Imaging (MRI) has emerged as a crucial part of diagnosing pathologies 

such as osteoarthriBs, ligament damage, tumors, and others [153–155]. Within MRI, several 

sequences can be deployed that exploit intrinsic Bssue properBes, providing images of varying 

weighBngs that effecBvely visualize Bssues such as muscle, ligaments, bone marrow, and others 

[156]. In musculoskeletal (MSK) applicaBons, clinical imaging protocols consist mostly of 2D fast 

spin echo (FSE) acquisiBons with T1 or T2 weighBng in various acquisiBon planes, which do well 

in depicBng the structure and morphology of the underlying anatomy [157]. However, 

composiBonal MRI (cMRI) techniques to assess actual Bssue parameters are gaining more 

aPenBon as a complement of qualitaBve imaging. 

 

cMRI techniques like T2 relaxometry can provide maps of T2 values (or another intrinsic MR 

parameter) across an imaging volume rather than a morphological image. For MSK applicaBons, 

T2 relaxometry offers sensiBvity to water content, collagen content, and collagen fiber 

orientaBon in carBlage [149], making it sensiBve to biochemical changes that can precede 

morphological changes across several Bssues and anatomies [158,159]. Pre-morphological 

change sensiBvity has been best characterized in the knee, where T2 values are significantly 

higher across most carBlage compartments in healthy paBents that later develop osteoarthriBs 
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(OA) compared to controls [160,161]. AddiBonally, T2 relaxometry offers quanBtaBve MSK Bssue 

health assessments, correlaBng with measures of hip carBlage and intervertebral disc (IVD) 

health [81,162–164], whereas in convenBonal clinical imaging, only semiquanBtaBve Bssue 

health assessments are obtainable with expert annotaBon [27,165]. All of this makes cMRI a 

promising potenBal addiBon to clinical imaging protocols. 

 

A major challenge facing clinical adopBon of cMRI, however, is acquisiBon Bme: while mapping 

sequences like the magneBzaBon-prepared angle-modulated parBBoned k-space spoiled 

gradient echo snapshots (MAPSS) can provide robust MR parameter maps, their acquisiBon 

Bmes can exceed 5-6 minutes, making their addiBon to a clinical scan protocol difficult [88]. 

AcquisiBons can be accelerated by sampling fewer points in k-space, inducing aliasing arBfacts 

in resulBng images that must be removed through subsequent postprocessing. Some proposed 

approaches to these ends are reconstrucBon strategies such as parallel imaging (PI), 

compressed sensing (CS), model-based reconstrucBons, deep learning (DL), low-rank and sparse 

modeling methods, and MR FingerprinBng (MRF). Most of these approaches design an 

algorithm or exploit the redundancy of k-space acquisiBon across mulBple coils to predict the 

appearance of the fully-sampled reconstructed image.  

 

PI was one of the earliest techniques to accelerate MRI acquisiBon and has seen clinical 

adopBon. Here, the redundancy of a mulBple coil acquisiBon is leveraged to miBgate aliasing 

arBfacts [63,166,167], reducing clinical scan Bme up to acceleraBon factor R=3 for MSK 

applicaBons [168,169]. CS [128] has also shown promise, where aliased images are iteraBvely 
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reconstructed by minimizing an objecBve funcBon, retaining fidelity to acquired k-space and 

imposing sparsity on the reconstructed image in another domain. CS has aPained clinically 

acceptable MSK image quality through roughly R=4 [168–171], and up to R=8 in research 

seHngs for knee carBlage T1r mapping [172]. Similarly, PI and CS have also been applied 

sequenBally (and simultaneously) for further acceleraBon [173]. 

 

For cMRI acceleraBon, model-based reconstrucBons have gained tracBon, integraBng the 

physics of T2/T2
* decay and T1 recovery into an objecBve funcBon iteraBvely opBmized to 

reconstruct maps, showing promise in brain and lumbar spine T2 mapping [174–176]. More 

generally, incorporaBon of the physics of MRI parameter recovery/decay has seen applicaBons 

not just in model-based approaches, but in various aspects of other methodologies as well 

[177]. DL approaches have gained prominence in solving inverse problems such as 

reconstrucBon, allowing for cMRI reconstrucBons at higher R than other methods. Standalone 

DL approaches have seen promising results in knee MAPSS acceleraBon, T1 mapping, and T2 

mapping sequences [116,178–181]. In other methodologies, DL has been integrated with 

model-based approaches while introducing loss funcBons to maintain fidelity to acquired k-

space, seeing promise up to R=8 in knee and brain T1 and T2 mapping [134,139,140]. DL has 

been applied to accelerate T2 mapping in MR FingerprinBng, where DL can remove aliasing 

arBfacts from undersampled acquisiBons and/or replacing Bme-consuming dicBonary lookup 

steps to predict MR parameter maps, and exploiBng spaBal correlaBons within maps to improve 

reconstrucBons [182,183]. Lastly, aside from DL, low-rank and sparse modeling methods have 

emerged as a means of acceleraBng acquisiBons, where several MRI images acquired at 
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different echo Bmes are decomposed into temporal basis funcBons and spaBal coefficients to 

model an MRI parameter, showing promise through R=8 [184]. 

 

These works represent great progress, although avenues for improvement remain. Above all, 

these methods have opBmized reconstructed images for full-volume performance; however, in 

MSK applicaBons, clinical assessment relies on the inspecBon of precise anatomic features in 

specific anatomic regions, and consequently, the reconstrucBon quality cannot be compromised 

within these regions. Put differently, given clinical context, strong image quality may be most 

important in specific regions of an image, leaving room for algorithm opBmizaBon. 

Furthermore, most recent published approaches leverage k-space data in formal reconstrucBon 

approaches, but for niche applicaBons such as region of interest (ROI)-focused opBmizaBon, 

such approaches may be outperformed by DL-based post-processing algorithms that denoise 

and fit undersampled T2-weighted images without using raw k-space. Moreover, performance of 

standard reconstrucBon algorithms is typically evaluated using metrics such as structural 

similarity index (SSIM), normalized root mean square error (NRMSE), and peak signal-to-noise 

raBo (PSNR), but recent works show these metrics may not provide the best correspondence 

with radiologist annotaBons [141,142], leading other groups to propose alternate metrics to fill 

this niche [185]. 

 

To these ends, this study proposes a recurrent UNet pipeline to postprocess undersampled coil-

combined T2-weighted echo images, fiHng and predicBng T2 maps from accelerated MAPSS 

acquisiBons in the knee, hip and lumbar spine [186,187]. These algorithms are trained with 
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mulB-component, ROI-specific losses that opBmize predicted maps for T2 value and textural 

retenBon in carBlage and IVDs. In doing so, our approach allows for ROI-specific opBmizaBon, 

facilitaBng retenBon of small, crucial clinical features in Bssues of interest while building on past 

applicaBons of weighted loss funcBons for image processing tasks [188]. 

 

To summarize, the contribuBons of this work are as follows: 

• By using a 4-component loss funcBon in network training, we introduce the concept of 

“ROI-specific opBmizaBon” of cMRI accelerated acquisiBon pipelines. 

• We conduct a thorough ablaBon study of these 4 loss funcBon components, proving the 

value of all in retaining textures in predicted maps while retaining high fidelity to ground 

truth T2 values. 

• Acknowledging that standard evaluaBon metrics such as SSIM and NRMSE provide 

subopBmal sensiBvity to clinically relevant metrics, we conduct a thorough Gray Level 

Co-Occurrence Matrix (GLCM)-metric-based analysis of smooth and sharp textural 

retenBon in predicted maps, with an eye towards bePer evaluaBon of retenBon of small 

features crucial to clinical diagnoses [189,190]. 

• We build on limited literature in hip and lumbar spine cMRI accelerated acquisiBon 

schemes by developing and evaluaBng our pipeline not only in knee carBlage, as several 

other works have done, but also for hip carBlage and lumbar spine IVD in ultrafast 

acquisiBons. 
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6.3 Methods 

6.3.1 MAPSS Acquisi4ons 

RetrospecBve datasets including MAPSS in the knee (n=244 paBents, 446 scans), hip (n=67 

paBents, 89 scans), and lumbar spine (n=21 paBents, 24 scans) acquired from clinical 3T MRI 

scanners was used. PaBents were scanned in accordance with all perBnent guidelines, including 

approval from the University of California, San Francisco InsBtuBonal Review Board (Human 

Research ProtecBon Program), and informed consent was obtained from all study parBcipants. 

MAPSS simultaneously acquired mulBple T1r and T2 weighted images, using T1r or T2 

preparaBon followed by 3D RF-spoiled gradient-echo Cartesian acquisiBon in a segmented radial 

centric view ordering during a transient state. A fat-selecBve inversion pulse was applied before 

either T1r
 [191,192] or T2 preparaBon [193]. Each acquisiBon included T1r-prepared images at 

four spin-lock Bmes (TSLs) for T1r quanBficaBon, and three addiBonal T2-prepared images for T2 

quanBficaBon (TSL=0 ms images were shared for TE=0 ms images). In this study, only T2-

prepared images at four different TEs and corresponding T2 maps from the MAPSS sequence 

were used. ky-kz space was acquired within an ellipBcal coverage (area=0.7 compared to 

rectangular ky-kz, not acquiring corner space). Knee images were acquired from paBents having 

ACL injuries, with scans taken at baseline and 3 years post-reconstrucBon. Hip images were 

acquired from paBents having hip OA. Lumbar spine images were acquired from healthy 

subjects or paBents with low back pain. Table 6.1 shows acquisiBon parameters. 

Table 6.1 Knee, hip and lumbar spine datasets and splits. MAPSS acquisiBon parameters for all 
datasets, with corresponding training, validaBon and test splits. ARC refers to Auto-calibraBng 
ReconstrucBon for Cartesian Imaging [150]. For hip acquisiBons, no phase wrap was applied: ky 
was oversampled by a factor of 2X, with space outside the prescribed y-FOV eliminated aEer 
reconstrucBon. In some cases, mulBple acquisiBons were taken per paBent due to having 
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mulBple knees/hips scanned, or due to having follow-up scans for the same paBent. Age and 
weight are reported mean ±1 standard deviaBon (s.d.). Datasets were split into training, 
validaBon and test, ensuring all scans of a parBcular paBent were only placed into one of the 
three datasets. Unless otherwise noted, all results are reported on the test set are described by 
this table; to ensure robustness of trained pipeline to data splits, addiBonal versions were 
trained on 2 more splits detailed in Supp. Tables A.2 and A.13, with results on those splits 
described in Supp. Tables A.14-A.16. 

    Knee Hip Lumbar Spine 

Acquisi3on 
Parameters 

Scanner(s) 

GE Discovery 
MR750w (GE 
Healthcare, 

Waukesha, WI),  
GE Discovery MR750 

(GE Healthcare, 
Waukesha, WI) 

GE Discovery 
MR750w (GE 
Healthcare, 

Waukesha, WI),  
GE Discovery MR750 

(GE Healthcare, 
Waukesha, WI) 

GE Discovery 
MR750w (GE 
Healthcare, 

Waukesha, WI),  
GE Signa PET/MR (GE 

Healthcare, 
Waukesha, WI) 

Coil(s) 
8-channel T/R knee 

array (Invivo, 
Gainesville, FL) 

32-channel cardiac 
array (Invivo, 

Gainesville, FL) 

Geometry embracing 
method (GEM) 

posterior array (GE 
Healthcare, Aurora, 

OH) 
FOV 14×14 cm2 14×14 cm2 20×20 cm2 

Acq. Matrix 256×128 256×128 256×128 
Slice 

Thickness 4.0mm 4.0mm 8.0mm 

Slices 22 28 12 

TEs 0 ms, 12.9 ms,  
25.7 ms, 51.4 ms 

0 ms, 10.4 ms,  
20.8 ms, 41.7 ms 

0 ms, 12.9 ms,  
25.7 ms, 51.4 ms 

Readout BW ±62.5kHz  ±62.5kHz  ±62.5kHz  
Magne^za^on 

Recovery  
Time 

1.3 s 1.2 s 1.5 s 

ARC 2X 2X None 
No Phase 

Wrap None 2X ky oversampling None 

Other 
64-view 

acquisi^on/T2 
prepara^on 

64-view 
acquisi^on/T2 
prepara^on 

64-view 
acquisi^on/T2 
prepara^on 

Demographics 
Informa3on 

Sex (M/F) 140/104 35/32 10/11 
Age 29.7±12.9  48.9±13.2 45.3±14.7 

Weight 74.3±12.7 kg 69.8±12.4 kg  69.6±11.0 kg  
Training 

Informa3on 
Details 

Learning Rate 0.001 0.001 0.001 

Batch Size 1 1 1 

Training 
Pa^ents 144 39 13 

Scans 265 59 14 
Slices 5,591 1,533 112 



 48 

    Knee Hip Lumbar Spine 

Valida3on 
Pa^ents 50 15 4 

Scans 91 15 5 
Slices 1,952 390 42 

Test 
Pa^ents 50 13 4 

Scans 90 15 5 
Slices 1,928 390 40 

Total 
Pa^ents 244 67 21 

Scans 446 89 24 
Slices 9,471 2,313 194 

 
6.3.2 T2 Fibng and Spa4al Undersampling 

Later T2 weighted echo Bme images for each slice were registered to corresponding TE=0 ms 

images using a 3D rigid registraBon algorithm with a normalized mutual informaBon criterion 

[194]. Levenberg-Marquardt fiHng of registered T2 weighted images yielded ground truth T2 

maps [195]. 

 

To simulate accelerated acquisiBon, coil-combined T2 weighted magnitude images aEer 

reconstrucBon (ARC for knee and hip) were Fourier transformed and retrospecBvely 

undersampled using a center-weighted Poisson disc paPern, fully sampling a central 5% square 

in ky-kz (R=2, 3, 4, 6, 8, 10, 12). AcquisiBon Bmes associated with ground truth and accelerated 

MAPSS acquisiBons in each body part can be found in Supp Table A.1. As MAPSS acquires 

phase-encode lines with ellipBcal coverage in ky-kz (relaBve area of 0.7 compared to rectangular 

coverage), phase encoding lines solely within the sampling ellipse were undersampled. 

Although working with synthesized k-space data generated from coil-combined magnitude 

images, retrospecBve undersampling was done and R reported with respect to ellipBcal 

coverage in ky-kz to accurately simulate an actual undersampling paPern and not overstate 

model performance [196]. However, for hip acquisiBons, reconstructed space outside the y-FOV 
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had already been discarded; thus, simulaBng acquisiBons with applicaBon of ‘no phase wrap’ 

was not possible and undersampling paPerns would differ from those implemented on a 

scanner. T2 weighted images from each echo Bme were undersampled with a unique paPern. 

For ky-kz lines not sampled at a given echo Bme, those ky-kz lines were iniBalized with the 

corresponding ky-kz from the image with the temporally closest echo Bme for which that ky-kz 

was sampled. Only ky-kz lines not sampled in images acquired at all echo Bmes were zero-filled. 

k-Space was subsequently inverse Fourier transformed, yielding undersampled, aliased images. 

 

6.3.3 DL Pipeline Training 

6.3.3.1 DL Architecture 

An overview of the data processing and training schemes is shown in Figure 6.1, while a detailed 

diagram depicBng our proposed network architecture is in Supp. Fig. A.1 (“Full Model”; 

39,808,710 trainable parameters). Magnitude images from data undersampled as specified 

were fed into a recurrent UNet network. The network contains an iniBal recurrent porBon: 

aliased images from each T2 echo Bme have a 5-layer processing stream of 2D 3×3 convoluBons 

with stride 1, yielding layers of depth 64, 128, 256, 512, and 1. Residual connecBons connect 

input aliased images with processing stream outputs. 2D 3×3 convoluBons with stride 1 and 

residual connecBons transfer informaBon between temporally adjacent corresponding hidden 

echo Bme processing layers with weighBng parameter λw=0.2 [197]. This soE-weighted view-

sharing of neighboring T2 weighted echo Bme images facilitated sharing of feature map 

informaBon between temporally adjacent echo Bme images, which can augment sharing of ky-kz 

iniBalizaBons to improve network image predicBons. Outputs of all 4 echo Bme image 
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processing streams were concatenated and fed to a UNet that predicted T2 maps. 2D 3×3 

convoluBons with stride 2 were used for the encoder, and 2D 4×4 transpose convoluBons with 

stride 2 for the decoder. Two addiBonal architecture versions were also trained: one UNet with 

no recurrent porBon (“No RNN”; 35,116,037 trainable parameters) and a second in which all 

layers apart from inputs to the recurrent porBon and UNet had half the depth listed in Supp. 

Fig. A.1 (“Reduced Parameters”; 9,958,246 trainable parameters). 

 

Figure 6.1 Proposed MAPSS AcceleraBon Pipeline. Proposed MAPSS AcceleraBon Pipeline. 
Experiments in proposed study entail generaBng ground truth T2 maps from MAPSS, simulaBng 
accelerated acquisiBon of T2-weighted MAPSS images, and training a network to predict T2 
maps from undersampled images. (1) MAPSS contains 7 images, 3 that are T2 weighted, 3 T1r 
weighted, and 1 shared; the T2 and shared image weighBngs are extracted, registered, and fiPed 
slice-wise to yield ground truth T2 maps. To simulate accelerated acquisiBon, each volume of 
coil-combined magnitude T2 weighted images acquired at a given echo Bme are Fourier 
transformed, undersampled along the ky-kz plane with a center-weighted Poisson disc paPern, 
and inverse Fourier transformed to yield a simulated accelerated acquisiBon of a volume. 
Finally, undersampled T2 weighted images acquired at all echo Bmes for the same anatomic slice 
are concatenated and fed to the proposed recurrent UNet architecture, which predicts the T2 
map appearance for the slice. Training is done slice-wise with a mulB-component loss funcBon 
that includes a novel ROI-specific L1 loss that opBmizes predicted T2 maps in carBlage and IVD 
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ROIs, with other components that improve training stability and encourage retenBon of 
textures. 

 
6.3.3.2 Loss Func@on 

Networks were trained with the mulB-part loss funcBon shown in EquaBon 6.1: 

𝐿*+,-./0 =	𝜆1#𝐿1# + 𝜆1#,&𝐿1#,& + 𝜆2234𝐿2234 + 𝜆5+6,7/+𝐿5+6,7/+  

Equa4on 6.1 𝐿1# is a scaled global loss funcBon detailed in equaBon 6.2, 𝐿1#,&  is the ROI-specific 
L1 loss described in equaBon 6.4, 𝐿2234 is an SSIM loss described in equaBon 6.5, and 𝐿5+6,7/+  is 
a feature-based loss funcBon designed to retain sharper textures and described in equaBon 6.6. 
𝜆1#,	𝜆1#,&, 𝜆2234, 𝜆5+6,7/+  are loss component weighBngs opBmized through a hyperparameter 
search. 
 
𝐿1#  is a scaled global L1 loss: 

𝐿1# = ,𝑆(𝑇8) − 𝑆(𝑇18), 

Equa4on 6.2 𝑇8 represents ground truth T2, 𝑇18 represents predicted T2, and 𝑆(𝑥) is a translated 
and scaled sigmoid operator that assigns more weight to higher T2 values. Sharp contrasts and 
high 𝑇8 values can easily be lost in accelerated acquisiBon schemes, so 𝑆(𝑥) proved useful 
through empirical tesBng in focusing networks to preserve these details. 𝑆(𝑥) is defined below 
in EquaBon 6.3: 
 
The translated and scaled sigmoid operator 𝑆(𝑥) is calculated as follows: 

𝑆(𝑥) = 𝑦9 + (𝑦: − 𝑦9) 41 + 𝑒𝑥𝑝6−(10 (𝑥: − 𝑥9)⁄ )(𝑥 − (𝑥9 + 𝑥:) 2⁄ 	):;
%;

 

Equa4on 6.3 𝑥9  and 𝑥: are the low and high T2 value limits where the sigmoid operator 
weighBng will transiBon from 𝑦9  to 𝑦:. Parameters selected for the knee were as follows: 𝑥9=0 
ms, 𝑥:=100 ms, 𝑦9=0.1, 𝑦:=1.0. In the hip: 𝑥9=0 ms, 𝑥:=60 ms, 𝑦9=0.5, 𝑦:=1.0. In the lumbar 
spine: 𝑥9=0 ms, 𝑥:=150 ms, 𝑦9=0.25, 𝑦:=1.0. A schemaBc of the operator that results from 
parameters of all three anatomies can be found as Supp. Fig. A.2. 
 
𝐿1#,& is the ROI-specific L1 loss: 

𝐿1#,& = ,𝑆6𝑇8,<: − 𝑆6𝑇18,<:), 

Equa4on 6.4  𝑇8,< represents ground truth T2 values in the Bssue of interest 𝜙 (IVD or carBlage), 
scaled by 𝑆(𝑥) (EquaBon 6.3), and 𝑇18,< is the same for predicted T2. Pixels corresponding to 𝜙 
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are obtained from segmentaBon masks, the generaBon of which is described in secBon 6.3.3.3. 
For both 𝐿1#and 𝐿1#,&, L1 norms were used instead of L2 due to reduced sensiBvity to outliers, 
leading to more stable trainings. 
 
𝐿2234 is an SSIM loss: 

𝐿2234 = 1 − 𝑆𝑆𝐼𝑀 

Equa4on 6.5 SSIM is the structural similarity index between predicted and target maps. 
𝐿5+6,7/+  is a feature-based loss funcBon designed to retain sharper textures: 
 

𝐿5+6,7/+ = ,𝑉𝐺𝐺#$ − 𝑉𝐺𝐺#=$, 

Equa4on 6.6 𝑉𝐺𝐺#$  and 𝑉𝐺𝐺#=$  were the outputs of the 21st layer of a VGG-19 [198] network 
pretrained on ImageNet when fed resized and normalized target and predicted T2 maps, 
respecBvely. Maps were resized to 224×224×1, concatenated with themselves along the 
channel axis to yield 224×224×3 inputs, and normalized such that the channels had mean pixel 
values of 0.485, 0.456 and 0.406, with standard deviaBons of 0.229, 0.224, and 0.225, 
respecBvely.  
 
Loss component weighBngs were opBmized through constrained random hyperparameter 

searches with the following ranges: 

• Knee: 𝜆1#=1,	𝜆1#,& = 50 − 150, 𝜆2234 = 0 − 2, 𝜆5+6,7/+ = 0 − 0.5 

• Hip: 𝜆1#=1,	𝜆1#,& = 0 − 3, 𝜆2234 = 0 − 2, 𝜆5+6,7/+ = 0 − 1 

• Spine: 𝜆1#=1,	𝜆1#,& = 1 − 10, 𝜆2234 = 10 − 100, 𝜆5+6,7/+ = 5 − 55 

 

6.3.3.3 Training and Segmenta@on Details 

Scans of all three anatomies were split into training, validaBon and test sets as shown in Table 

6.1. In the knee, carBlage was segmented manually. In the hip, carBlage was segmented 

manually for 4 central slices per volume. SegmentaBon in both was performed by research 

assistants trained by radiologists with over 20 years of experience. Since the hip dataset had 

substanBally fewer segmented than unsegmented slices, the hip training set was bootstrapped 
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to equalize the number of slices with and without segmentaBons (1,068 bootstrapped slices). 

Finally, in the lumbar spine, IVDs were segmented with an ensemble of coarse-to-fine context 

memory (CFCM) networks [117]. To calculate performance metrics and implement ROI-specific 

training losses, these segmentaBon masks were leveraged to idenBfy pixels in Bssues of interest 

(carBlage or IVD). 

 

Signal values were scaled per slice for the middle 95% of pixel values to fall between 0 and 500 

for the knee and lumbar spine, and 0 and 100 for the hip; these ranges were opBmized 

empirically. During training, imaging volumes were augmented with random translaBon (±10 

pixels across phase and frequency direcBons) and random rotaBon (±5 degrees about slice 

direcBon). All models were trained with learning rate 0.001 and Adam opBmizer on an NVIDIA 

Titan Xp 12 GB GPU with batch size of 1 so the model would fit on a single GPU. Separate 

pipelines were trained for all 3 anatomies at R=2, 3, 4, 6, 8, 10, and 12. For each pipeline, and at 

each trained R, a constrained random hyperparameter search was done for 15 iteraBons at 10 

epochs per iteraBon to opBmize 𝜆1#,	𝜆1#,&, 𝜆2234, and 𝜆5+6,7/+  for visual fidelity of predicted 

maps to ground truth. Visual fidelity was assessed in the search using NRMSE and Pearson’s r in 

the Bssue of interest [199]. 

(7)	𝑁𝑅𝑀𝑆𝐸 = G𝑇8 − 𝑇8H G8,<6‖𝑇8‖8,<:
%;

 

Equa4on 6.7 CalculaBon of NRMSE in Bssues of interest, where 𝑇8 are ground truth T2 values 
and 𝑇8H  are predicted T2 values. L2 norms are calculated in both only for pixels in Bssues of 
interest 𝜙. 
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Final pipelines across all anatomies and R were trained using opBmized parameter sets unBl 

validaBon loss did not decrease for 10 epochs. Key training details are summarized as part of 

Table 6.1. 

 

6.3.4 Experiments 

6.3.4.1 Loss Func@on Abla@on Study 

An ablaBon study is key to understand contribuBons of loss components. Given opBmized loss 

funcBon weights, every combinaBon of loss components was ablated and corresponding 

models were retrained unBl validaBon loss no longer decreased. “No RNN” and “Reduced 

Parameters” networks were also trained while maintaining loss funcBon components at 

opBmized values to assess the uBlity of simpler architectures. NRMSE and Pearson’s correlaBon 

coefficient (r) were calculated in Bssues of interest across the test set for original and ablated 

models to determine loss component contribuBons to performance. Pearson’s r was deemed an 

appropriate staBsBcal test for this and subsequent experiments, as it is useful in assessing the 

linear relaBonship between related pairs of interval data. While no formal NRMSE test was 

done, it nonetheless allows for quanBtaBve assessment of T2 quanBficaBon quality and easy 

comparison with results from other approaches. NRMSE is reported ±1 standard deviaBon (s.d.); 

Pearson’s r was deemed significant in accordance with corresponding P values, α=0.001, 0.01, 

and 0.05. NRMSEs within Bssues of interest of a given scan were also mulBplied by mean T2 

values within the Bssue of interest of that paBent, generaBng T2 value equivalents of error rates. 
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To more specifically evaluate the uBlity of the ROI-specific loss component, two loss funcBon 

configuraBons from the ablaBon study were further analyzed at all R: no ROI-specific loss 

component (𝜆1#,& = 0;		𝜆1# , 𝜆2234 , 𝜆5+6,7/+ ≠ 0) and no ROI-specific or feature-based 

components (𝜆1#,& , 𝜆5+6,7/+ = 0;		𝜆1# , 𝜆2234 ≠ 0). These models were intended to represent 

baselines in which all loss funcBons were preserved except the ROI-specific component, and a 

standard reconstrucBon loss funcBon of pixel and SSIM-based loss components, respecBvely. 

Pearson’s r—evaluated in Bssues of interest and globally—was calculated to determine the 

degree and significance of correlaBon between predicted maps and ground truth, both globally 

and within Bssues of interest, α=0.001, 0.01, and 0.05. 

 

6.3.4.2 Evalua@on of Accelerated Acquisi@on Scheme Performance 

Three versions of our pipeline (full pipeline, “No RNN,” and “Reduced Parameters”) were 

compared to state-of-the-art CS, DL, and DL/model-based soluBons. At each R, MANTIS 

(54,413,056 trainable parameters) and MANTIS-GAN (54,413,056 [Generator] and 2,763,648 

[Discriminator] trainable parameters) pipelines were trained using published network 

architectures, loss funcBons and undersampling strategies [134,139]. Loss funcBon weighBngs 

for both were opBmized through grid hyperparameter searches yielding the following: (MANTIS) 

𝜆>6,6=0.1, 𝜆?**=1; (MANTIS-GAN) 𝜆>6,6=0.1, 𝜆?**=1, 𝜆@AB=0.01. To apply CS reconstrucBon, 

original MAPSS T2-prepared images were Fourier transformed into coil-combined k-space, 1D-

inverse Fourier transformed along the readout direcBon, and individual slices in 𝑘(−𝑘! 

reconstructed using an 𝐿; wavelet-based algorithm with regularizaBon coefficient 0.001 [148]. 

CS reconstructed images were registered to the TE=0 ms echo Bme image using a 3D rigid 
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registraBon algorithm with a normalized mutual informaBon criterion and fiPed using 

Levenberg-Marquardt fiHng to yield 𝑇8 maps. Performance of these approaches and our 

proposed methods was evaluated through the following: 

 

6.3.4.2.1 Comparison of Global and ROI-Specific Performance 

To test for completeness of training, performance of our proposed pipelines was compared 

against state-of-the-art models that did not use ROI-specific components in predicBng T2 maps. 

Pearson’s r (α=0.001, 0.01, and 0.05) was used to compare model performances and assess 

strength of correlaBons to ground truth T2. 

 

6.3.4.2.2 Standard Reconstruc4on Metrics 

Performance was reported in Bssues of interest with standard reconstrucBon metrics: NRMSE 

(mean ±1 s.d.) and Pearson’s r (α=0.001, 0.01, and 0.05). NRMSEs were also converted into T2 

value equivalents by Bssue compartment as in the ablaBon study. 

 

6.3.4.2.3 T2 Value Reten4on 

Fidelity of predicted maps to ground truth T2 was also assessed. First, predicted and ground 

truth T2 values were compared across Bssues of interest within the test set (mean ±1 s.d.), 

generaBng violin plots for all three anatomies with overlaid boxplots for T2 value distribuBon 

comparison. T2 agreement was also assessed through Bland-Altman analysis. 
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6.3.4.2.4 Texture Reten4on 

Gray Level Co-Occurrence Matrix (GLCM) [200] metrics were used to assess texture retenBon 

within Bssues of interest. GLCM contrast and dissimilarity are maximized by large local pixel 

value changes and thus by sharper textures. GLCM homogeneity is maximized by small local 

pixel value changes, while GLCM energy and angular second moment (ASM) are maximized by 

few total pixel values within an image; hence, all three are maximized by smoothness. For each 

anatomy and R, we calculated these texture metrics at 4 orientaBons (q=0°, 45°, 90° and 135°; 

d=1 pixel) and averaged across all orientaBons. Finally, we calculated intraclass correlaBon 

coefficients (ICCs) for all metrics with respect to ground truth (two-way mixed effects, single 

rater [201]) and reported 95% ICC confidence intervals (α=0.001, 0.01, and 0.05). These tests 

were chosen as appropriate, as they assess both reliability and agreement of associated 

metrics, and in this use case, individual GLCM metric values themselves are considered the only 

rater, jusBfying the ICC test type selected. 

 

6.3.4.3 Repeatability Study 

To assess the robustness of pipelines to different datasets, two addiBonal splits of the knee, hip 

and spine datasets were made, ensuring no paBent was part of mulBple validaBon and/or test 

datasets and that all scans from a given paBent were only in one of training, validaBon and test 

for each split (folds 2 and 3 in Supp. Table A.2, where fold 1 is the original split). AddiBonal 

hyperparameters searches opBmized loss funcBon weights on the two new splits. OpBmized 

loss weights and corresponding T2 quanBficaBon and texture retenBon performance for each 

splits is presented at all tested R in the same manner as for the primary split. 
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6.3.4.4 Raw Mul@coil Data Assessment 

An in-house pipeline was developed that leveraged GE Orchestra 1.10 and other postprocessing 

tools to reconstruct coil-combined images from raw k-space data. As a proof of concept, knee 

MAPSS scans were performed on 3 volunteers, hip scans for 2, and lumbar spine for 2, all using 

the acquisiBon parameters listed for the retrospecBve datasets used for algorithm training, with 

raw k-space data saved for all. MulBcoil k-space data (aEer ARC for knee and hip) was 

undersampled with the same center-weighted Poisson disc paPern described earlier, with each 

coil seeing the same undersampling paPern and ky-kz lines being shared across different T2 

weighted echo Bme k-spaces as previously described. Coil-combined images resulBng from 

undersampled mulB-coil data at all tested R were fed through corresponding post-processing 

pipelines to predict T2 map appearance. A radiologist with 2 years of experience segmented 

knee carBlage, hip carBlage, and intervertebral discs from these acquisiBons, allowing for 

visualizaBons of predicted T2 maps and NRMSE calculaBons in ROIs. 

 

6.4 Results 

6.4.1 Abla4on Study Results 

Voxel-wise performance metrics for ablaBon study models at R=8 are shown in Supp. Table A.3, 

with T2 value NRMSE equivalents in Supp. Table A.4. Within the knee and hip, all loss 

components were necessary to obtain the opBmal combinaBon of high Pearson’s r and low 

NRMSE in carBlage. For the lumbar spine, while all loss components proved vital in maximizing 

Pearson’s r and minimizing NRMSE in IVDs, performance improved when the iniBal recurrent 
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network was omiPed. Though quanBtaBve analysis is shown for all three pipeline versions in 

subsequent experiments, the full model is designated as best for knee and hip, and the no RNN 

for the spine. 

 

ROI-specific and global assessments of best models and corresponding models trained without 

an ROI-specific loss (λ1,f=0) and models trained with a generic loss (λ1,f=0, λFeat=0) are shown in 

Supp. Table A.5. In the knee and hip, across nearly all R, ROI-specific loss addiBon leads to 

improved correlaBons between predicted and ground truth carBlage T2, with diminished 

performance globally. In the lumbar spine, which was trained with a substanBally fewer batches 

than the knee and hip pipelines, these trends were inconsistent across tested R. Example 

predicBons and ground truth for one slice of a paBent in each pipeline are shown in Supp. Fig. 

A.3, showing that paPerns of local T2 value elevaBons in carBlage and IVDs are bePer preserved 

with an ROI-specific loss as opposed to pipelines trained without the loss component. 

 

6.4.2 Visuals of Network Performance and Comparison with State-of-the-Art Models 

Predicted T2 maps are displayed at select R for knee, hip and lumbar spine models in Figure 6.2 

for our three pipelines and three methods from the literature. In knee, hip, and lumbar spine, T2 

quanBficaBon performance is strongest with our proposed methods, maintaining low error 

rates, showing promising results compared with state-of-the-art methods through R=10. 

OpBmal architecture performances are further explored in Figures 6.3-6.5. As shown in Figure 

6.3, predicted T2 knee maps retained strong fidelity to ground truth within Bbiofemoral joint 

carBlage. PaPerns within predicted maps became slightly more diffuse as R increased to 10, as 
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indicated by a slight rise in NRMSE for carBlage in the slice, but visually, T2 values and map 

paPerns are preserved. As seen in Figure 6.4, hip predicted maps preserve T2 values well in 

femoral and acetabular carBlage through R=10, although T2 paPerns become more diffuse by 

R=10. Figure 6.5 shows T2 map predicBons in the lumbar spine. The L4-L5 IVD is shown in more 

detail, where T2 quanBficaBon performance was acceptable at R=3, moderate at R=6, and worse 

at R=10, as indicated by rising IVD NRMSEs. 

 

ROI and global performance comparisons of our selected pipelines against state-of-the-art 

approaches are in Supp. Table A.5. Across piplines trained with relaBvely large dataset (knee 

and hip), DL and model-based approaches (MANTIS and MANTIS-GAN) outperformed our 

proposed pipeline globally, but within carBlage ROIs, our pipeline exhibited stronger Pearson’s r 

at each tested R. These trends were not as strong in the lumbar spine pipelines, possibly owing 

to the randomness of training with a smaller dataset. Global and ROI-specific T2 predicBons are 

further visualized in Supp. Fig. A.4, showing predicted T2 values exhibit substanBally more visual 

fidelity to ground truth and lower NRMSE in state-of-the-art models compared to our pipeline, 

but a reversal of that trend in carBlage. In the lumbar spine, at some but not all R, those trends 

held, yielding similar conclusions to the Pearson’s r analysis. 
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Figure 6.2 Comparison of predicted T2 maps with ROI-specific methodologies to past 
approaches. (a) Predicted T2 maps in knee carBlage for a representaBve paBent within test set. 
T2 quanBficaBon performance was best in pipelines trained with ROI-specific losses (Full Model, 
Reduced Parameters, and No RNN), where strong fidelity to T2 values and paPerns of local 
elevaBons within carBlage were maintained through R=10, while other tested approaches did a 
poorer job in predicBng T2 values in these maps. (b) Predicted hip carBlage T2 maps showed 
similar trends, where performance of the full model was especially strong, showing low T2 

quanBficaBon error and bePer retaining local T2 elevaBons through R=10 than other 
approaches. (c) Predicted T2 maps in lumbar spine IVDs show higher T2 quanBficaBon errors 
than in hip and knee carBlage, but ROI-specific loss pipelines best preserved map textures and 
values. 

 

 

Figure 6.3 T2 quanBficaBon performance of opBmal ROI-specific pipeline in knee carBlage. T2 

quanBficaBon performance of opBmal ROI-specific pipeline in knee carBlage. (a) Visual pipeline 
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performance within the knee for a representaBve paBent, with corresponding NRMSEs for 
carBlage in the predicted T2 map slice. Performance remains strong through R=10, maintaining 
T2 paPerns in the medial Bbiofemoral carBlage, indicaBng pipeline uBlity. Predicted maps 
generated by the network are masked using a carBlage segmentaBon mask and superimposed 
on the ground truth, fully sampled TE=0 ms MAPSS echo Bme image. (b) Bland-Altman plots for 
all scans within test set for which mulBclass carBlage compartment segmentaBons were 
available (n=16, 6 carBlage compartments for each). Predicted T2 values demonstrate minimal 
bias and Bght limits of agreement across most tested R, with best performance coming from 
patellofemoral carBlage. 

 

 

Figure 6.4 T2 quanBficaBon performance of opBmal ROI-specific pipeline in hip carBlage. T2 

quanBficaBon performance of opBmal ROI-specific pipeline in hip carBlage. (a) Visual pipeline 
performance within the hip for a representaBve paBent, with corresponding NRMSEs for 
carBlage in the predicted T2 map slice. Predicted maps are masked using a carBlage 
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segmentaBon mask and superimposed on the ground truth, fully sampled TE=0 ms MAPSS echo 
Bme image. For this paBent, T2 paPerns maintain through R=10, although local T2 elevaBons are 
more diffusely predicted at higher R. (b) Bland-Altman plots for all scans within test set (n=15, 2 
carBlage compartments for each). Plots demonstrate very limited bias and even Bghter limits of 
agreement from R=2 through R=12 than knee pipeline, showing hip pipeline effecBveness in 
reproducing T2 values from accelerated MAPSS acquisiBons. 

 

 

Figure 6.5 T2 quanBficaBon performance of opBmal ROI-specific pipeline in lumbar spine 
intervertebral discs. T2 quanBficaBon performance of opBmal ROI-specific pipeline in lumbar 
spine intervertebral discs. (a) Visual pipeline performance within the lumbar spine IVDs for a 
representaBve paBent, with corresponding NRMSEs for IVDs in the predicted T2 map slice. 
Predicted maps are masked using an IVD segmentaBon mask and superimposed on the ground 
truth, fully sampled TE=0 ms MAPSS echo Bme image. Network performance is best through 
R=6, aEer which local T2 elevaBons are diffuse and underesBmated. (b) Bland-Altman plots for 
all scans within test set (n=5, 5 IVDs ploPed for each if segmentaBon of disc available). T2 value 
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predicBons reflect some bias and fairly wide limits of agreement, parBcularly above R=4. These 
results indicate progress but the need for improvement. Smaller lumbar spine dataset and test 
set size are likely responsible for poorer model when compared to hip and knee performance, 
as well as the relaBvely smaller number of slices in kz, which exacerbates undersampling effects. 

 
6.4.3 Evalua4on of T2 Quan4fica4on Performance and Comparison with State-of-the-Art 

Models 

6.4.3.1 Voxel-wise T2 Evalua@on Fidelity 

Pearson’s r and NRMSE across all anatomies and R for our approaches and state-of-the-art 

methods are in Table 6.2. T2 value NRMSE equivalents are in Supp. Table A.6. For all anatomies 

and across nearly all R, T2 quanBficaBon performance is strongest in our methods, parBcularly in 

the No RNN and full model pipelines, compared to state-of-the-art models. 

 

An exhausBve examinaBon of knee T2 quanBficaBon performance, straBfied by carBlage 

compartments, is in Supp. Tables A.7 and A.8. For the full model, across all carBlage 

compartments, T2 esBmaBon errors remained under 10% through R=10 across all carBlage 

compartments while Pearson’s r ranged from 0.748 at R=2 to 0.491 at R=12, indicaBng strong 

correlaBons between predicBons and ground truth at R=2 and moderate correlaBons through 

R=12 [202]. For some carBlage compartments and R, performance was stronger in the No RNN 

pipeline. InteresBngly, quanBficaBon performance was strongest in patellofemoral joint 

carBlage, generally exhibiBng lower NRMSE and stronger correlaBons. Our ROI-specific loss 

pipelines outperformed state-of-the-art models in each carBlage compartment. 
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Supp. Tables A.9 and A.10 show hip T2 quanBficaBon performance across carBlage 

compartments. As in the knee, quanBficaBon performance was strong, with error rates across 

all carBlage under 9% through R=12 for the no RNN and full model pipelines. While the no RNN 

pipeline had stronger quanBficaBon errors, the full model had higher Pearson’s r, which ranged 

from 0.794 at R=2 to 0.517 at R=12, showing strong correlaBons between predicBons and 

ground truth through R=3 and moderate correlaBons through R=12. T2 quanBficaBon 

performance was slightly stronger in femoral than acetabular carBlage. Our pipelines again 

outperformed state-of-the-art models in each carBlage compartment. 

 

Supp. Tables A.11 and A.12 show lumbar spine T2 quanBficaBon performance, which was mixed. 

Pearson’s r across all discs was very high, ranging from 0.884 at R=2 to 0.643 at R=12 for the no 

RNN model, indicaBng strong correlaBons through R=8 and moderate correlaBons through R=12 

to ground truth. That said, IVD error rates were markedly higher across all R than in hip and 

knee carBlage, ranging from 4.86% to 18.8%. Though there was some volaBlity, error rates and 

Pearson’s r generally showed poorest T2 quanBficaBon in L1/L2 and L2/L3 discs. Through R=8, 

ROI-specific loss pipelines outperformed state-of-the-art models at nearly all disc levels, with 

stronger Pearson’s r in most IVD levels through R=12. 

Table 6.2 ROI-specific model performance in standard metrics from R=2 through R=12. 
Performances of pipelines trained with ROI-specific losses and other state-of-the-art methods in 
T2 quanBficaBon error rates in knee carBlage, hip carBlage, and lumbar spine IVDs. NRMSEs are 
reported ±1 s.d., and Pearson’s r is reported with significances as follows: * P < 0.05, ** P < 0.01, 
*** P < 0.001 (knee: n=90; hip: n=15; lumbar spine: n=5). Across all anatomies, performances 
were strongest in ROI-specific loss pipelines (Full Model, Reduced Parameters, and No RNN): in 
the knee, the No RNN and Full Model pipelines parBcularly excelled across all tested R; in the 
hip, the No RNN pipeline was strong in maintaining minimal T2 quanBficaBon errors, while the 
Full Model and Reduced Parameters models had strongest correlaBons between predicted maps 
and ground truth; in the lumbar spine, the No RNN pipeline especially had strong T2 
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quanBficaBon performance. Performance in the knee and hip pipelines is strong and below 
clinically significant T2 changes across nearly all tested R, while Pearson’s r indicates strong T2 

value preservaBon in the lumbar spine through R=6. T2 quanBficaBon performance is thus 
promising in all three pipelines, but parBcularly for the knee and hip. 

 R Metric Full Model Reduced 
Parameters No RNN MANTIS MANTIS-GAN CS 

Kn
ee

 C
ar

^l
ag

e  

2 NRMSE 5.52 ± 1.25 6.07 ± 3.21 4.76 ± 1.78 14.4 ± 2.85 13.5 ± 3.3 8.92 ± 3.2 
Pearson's r 0.748*** 0.736*** 0.807*** 0.587*** 0.611*** 0.620*** 

3 NRMSE 6.52 ± 2.17 7.18 ± 3.08 6.39 ± 2.59 16.5 ± 3.43 15.1 ± 2.89 9.92 ± 3.23 
Pearson's r 0.695*** 0.668*** 0.722*** 0.467*** 0.502*** 0.559*** 

4 NRMSE 7.54 ± 2.96 9.56 ± 5.47 7.56 ± 3.19 16.6 ± 3.73 15.7 ± 4.5 11.8 ± 3.73 
Pearson's r 0.651*** 0.637*** 0.677*** 0.451*** 0.467*** 0.486*** 

6 NRMSE 8.09 ± 2.65 10.7 ± 6.67 8.44 ± 3.49 15.2 ± 2.33 16.3 ± 3.91 12.4 ± 4.1 
Pearson's r 0.612*** 0.610*** 0.629*** 0.397*** 0.378* 0.445*** 

8 NRMSE 8.94 ± 2.66 9.59 ± 3.83 10.1 ± 4.42 16.7 ± 2.73 17.3 ± 2.39 12.9 ± 3.93 
Pearson's r 0.585*** 0.574*** 0.609*** 0.352*** 0.364** 0.410*** 

10 NRMSE 9.77 ± 3.44 10.2 ± 3.61 9.35 ± 3.5 17.6 ± 2.48 16.7 ± 3.44 13.4 ± 3.76 
Pearson's r 0.555*** 0.514*** 0.565*** 0.327*** 0.333*** 0.386*** 

12 NRMSE 10.7 ± 2.32 9.93 ± 3.76 10.5 ± 3.37 18.2 ± 4.5 20.5 ± 5.58 13.4 ± 3.96 
Pearson's r 0.491*** 0.545*** 0.511*** 0.290*** 0.287*** 0.381*** 

Hi
p 

Ca
r^

la
ge

 

2 NRMSE 3.97 ± 1.03 4.1 ± 1.1 3.79 ± 0.807 4.58 ± 0.993 8.21 ± 1.42 14.8 ± 2.78 
Pearson's r 0.794*** 0.782*** 0.770*** 0.716*** 0.514*** 0.310*** 

3 NRMSE 6.53 ± 1.63 5.63 ± 1.68 5.25 ± 1.13 6.41 ± 1.31 10.0 ± 1.57 12.9 ± 3.15 
Pearson's r 0.705*** 0.726*** 0.703*** 0.596*** 0.372*** 0.332*** 

4 NRMSE 6.15 ± 1.01 6.17 ± 1.47 5.84 ± 0.891 7.33 ± 1.67 9.97 ± 1.74 11.8 ± 2.03 
Pearson's r 0.646*** 0.665*** 0.648*** 0.510*** 0.333*** 0.339*** 

6 NRMSE 8.1 ± 1.85 8.22 ± 2.06 7.48 ± 1.52 8.63 ± 2.32 9.68 ± 1.92 11.8 ± 2.14 
Pearson's r 0.587*** 0.597*** 0.570*** 0.382*** 0.321*** 0.334*** 

8 NRMSE 6.97 ± 1.93 6.33 ± 1.33 6.98 ± 1.45 10.2 ± 2.72 12.0 ± 2.64 10.5 ± 2.3 
Pearson's r 0.598*** 0.588*** 0.558*** 0.334*** 0.237*** 0.347*** 

10 NRMSE 8.99 ± 2.65 8.12 ± 1.28 8.7 ± 3.46 9.74 ± 2.24 10.5 ± 1.91 10.2 ± 2.4 
Pearson's r 0.558*** 0.534*** 0.522*** 0.279*** 0.268*** 0.335*** 

12 NRMSE 7.75 ± 1.5 8.27 ± 2.19 7.34 ± 1.38 9.74 ± 2.23 11.5 ± 2.36 10.3 ± 2.52 
Pearson's r 0.517*** 0.566*** 0.512*** 0.280*** 0.228*** 0.349*** 

Lu
m

ba
r S

pi
ne

 IV
D 

2 NRMSE 6.71 ± 1.7 6.86 ± 1.57 4.86 ± 1.16 8.78 ± 2.08 8.95 ± 1.91 10.1 ± 3.06 
Pearson's r 0.865*** 0.866*** 0.884*** 0.784*** 0.785*** 0.802*** 

3 NRMSE 9.92 ± 2.39 8.76 ± 2.16 7.13 ± 1.69 11.0 ± 1.17 11.3 ± 1.74 9.48 ± 1.4 
Pearson's r 0.836*** 0.823*** 0.832*** 0.717*** 0.712*** 0.777*** 

4 
NRMSE 10.3 ± 3.02 9.73 ± 3.07 7.42 ± 1.1 12.1 ± 1.24 12.6 ± 1.35 11.3 ± 2.31 

Pearson's r 0.799*** 0.813*** 0.819*** 0.680*** 0.671*** 0.723*** 

6 
NRMSE 12.1 ± 3.58 12.2 ± 4.11 10.3 ± 3.31 15.6 ± 2.65 12.1 ± 1.9 12.0 ± 2.76 

Pearson's r 0.776*** 0.764*** 0.771*** 0.660*** 0.658*** 0.728*** 

8 
NRMSE 13.4 ± 3.89 13.0 ± 2.63 12.0 ± 3.07 13.2 ± 1.42 12.7 ± 1.7 12.8 ± 2.53 

Pearson's r 0.742*** 0.723*** 0.742*** 0.631*** 0.645*** 0.695*** 
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 R Metric Full Model Reduced 
Parameters No RNN MANTIS MANTIS-GAN CS 

IV
Ds

 10 NRMSE 15.3 ± 3.22 14.8 ± 2.78 14.8 ± 2.26 13.8 ± 1.57 13.2 ± 1.81 15.0 ± 3.77 
Pearson's r 0.695*** 0.700*** 0.672*** 0.647*** 0.636*** 0.648*** 

12 NRMSE 18.1 ± 1.95 23.1 ± 2.71 18.8 ± 2.76 14.8 ± 3.03 14.1 ± 1.88 24.8 ± 11.2 
 Pearson's r 0.664*** 0.320*** 0.643*** 0.651*** 0.614*** 0.586*** 
 
6.4.3.2 T2 Value Reten@on on Region of Interest Averages 

Bland-Altman plots are provided for the knee, hip and lumbar spine in Figures 6.3-6.5. In knee 

and hip, T2 values are predicted with minimal bias with respect to ground truth. The ±1.96 s.d. 

limits of agreement were less than approximately ±6 ms with mean biases under ±3 ms through 

R=8 for knee carBlage (Figure 6.3). Among carBlage compartments, predicBons in trochlear and 

patellar carBlage showed the least bias, while Bbiofemoral carBlage T2 was generally slightly 

overesBmated. In the hip (Figure 6.4), ±1.96 s.d. limits of agreement were less than 

approximately ±5 ms with mean biases under ±3 ms through R=12, although T2 quanBficaBon 

performance was similar across femoral and acetabular carBlage. In the lumbar spine (Figure 

6.5), limits of agreement were considerably wider than the hip and knee pipelines, parBcularly 

above R=4. While the line of equality was contained in these limits at all R, spine pipelines 

generally overesBmated T2 values. While at some parBcular R, a disc level saw poorer T2 

quanBficaBon than others (i.e. L2/L3 at R=6), on balance, predicted maps yielded similar bias 

and error across all discs. 

 

Supp. Figure A.5 shows T2 value distribuBons in violin and boxplots. Plots reveal minimal bias in 

hip carBlage predicted T2 maps and slight but limited bias towards overesBmaBng T2 in knee 

carBlage. In the lumbar spine, more volaBlity was observed in predicted T2 distribuBons, likely 
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due to small test set size (n=5), but at least through R=6, these deviaBons had limited 

magnitude. 

 

6.4.3.3 Texture Reten@on 

ICCs ±1 s.d. for GLCM metrics are in Table 6.3 for our best performing pipelines: no RNN and full 

model. In knee carBlage, ICCs showed significant correlaBons between predicted and ground 

truth GLCM metrics at all R for smooth textures and many R for sharp textures, indicaBng good 

to excellent reliability in preserving smooth textures (ASM and energy) at all R and moderate 

reliability in preserving sharper textures at low R (dissimilarity). In hip carBlage, ICCs showed 

significant correlaBons across all R in preserving smooth textures, and at low to moderate R for 

sharper textures. Reliability in smooth texture preservaBon ranged from good to excellent for all 

R and moderate for sharper textures at low to medium R. In both knee and hip carBlage, the full 

pipeline saw substanBally higher GLCM ICCs for smooth and sharper texture across nearly all R. 

Within the lumbar spine, ICCs were significant across nearly all R for smoother textures. While 

ICCs were reasonable high for some R in contrast metrics, confidence intervals were wide, 

limiBng findings of significant correlaBons. ICCs showed moderate to excellent reliability in 

preserving smoother textures, and poor to moderate reliability for sharper textures. For the 

spine, the No RNN model yielded opBmal texture retenBon. 

Table 6.3 Texture retenBon analysis in No RNN and Full Model pipelines. Intraclass correlaBon 
coefficients (ICCs) of Gray Level Co-Occurrence Matrix (GLCM)-based metrics. Contrast and 
dissimilarity are most sensiBve to sharper image textures, while homogeneity, ASM, and energy 
are most sensiBve to smoother image textures. Significance in correlaBons is noted as follows: * 
P < 0.05, ** P < 0.01, *** P < 0.001 (knee: n=16; hip: n=15; lumbar spine: n=5). In the knee and 
hip, Full Model pipelines outperformed No RNN versions in retenBon of smooth and sharp 
textures. In the lumbar spine, the No RNN pipeline outperformed the Full Model version, 
possibly because the smaller lumbar spine dataset size made training a larger network with a 
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mulB-component loss more difficult. In conjuncBon with standard reconstrucBon metrics, the 
Full Model pipeline was selected as the best knee and hip model, whereas the No RNN pipeline 
was selected as the best lumbar spine model. Top models in all anatomies preserved smoother 
textures at nearly all tested R, while dissimilarity texture metrics showed sharper textures were 
significantly correlated with ground truth and preserved in the knee and hip at low to medium 
R. In the lumbar spine, mean ICCs for sharper textures at many tested R also were high, but 
small dataset size likely led to wide standard deviaBons, prevenBng significant conclusions from 
being reached. Many textures are preserved in predicted T2 maps, parBcularly knee and hip. 

    R GLCM Texture Metric 
    Contrast Dissimilarity Homogeneity ASM Energy 

Kn
ee

 
Fu

ll 
M

od
el

 

2 0.307 ± 0.18** 0.638 ± 0.12*** 0.734 ± 0.09*** 0.966 ± 0.015*** 0.954 ± 0.02*** 
3 0.153 ± 0.2 0.521 ± 0.15*** 0.735 ± 0.09*** 0.962 ± 0.015*** 0.95 ± 0.02*** 
4 0.11 ± 0.2 0.387 ± 0.17*** 0.61 ± 0.12*** 0.973 ± 0.01*** 0.95 ± 0.02*** 
6 0.0667 ± 0.2 0.22 ± 0.19* 0.382 ± 0.17*** 0.97 ± 0.015*** 0.94 ± 0.025*** 
8 0.061 ± 0.2 0.111 ± 0.2 0.0615 ± 0.2 0.952 ± 0.02*** 0.9 ± 0.04*** 

10 0.0594 ± 0.2 0.218 ± 0.19* 0.307 ± 0.18** 0.961 ± 0.015*** 0.928 ± 0.03*** 
12 0.0032 ± 0.2 -0.066 ± 0.2 -0.178 ± 0.19 0.927 ± 0.03*** 0.861 ± 0.055*** 

N
o 

RN
N

 

2 0.455±0.16*** 0.599 ± 0.13*** 0.32 ± 0.18*** 0.898 ± 0.04*** 0.904 ± 0.04*** 
3 0.394±0.17*** 0.523 ± 0.15*** 0.383 ± 0.17*** 0.709 ± 0.11*** 0.802 ± 0.07*** 
4 0.262 ± 0.18** 0.305 ± 0.18** 0.244 ± 0.18** 0.646 ± 0.12*** 0.754 ± 0.09*** 
6 0.103 ± 0.2 0.0574 ± 0.2 0.061 ± 0.2 0.874 ± 0.045*** 0.869 ± 0.05*** 
8 0.0645 ± 0.2 0.0411 ± 0.2 0.0435 ± 0.2 0.922 ± 0.03*** 0.911 ± 0.035*** 

10 0.0474 ± 0.2 0.0382 ± 0.2 0.093 ± 0.2 0.92 ± 0.035*** 0.913 ± 0.035*** 
12 0.0568 ± 0.2 0.0315 ± 0.2 0.0885 ± 0.2 0.818 ± 0.065*** 0.862 ± 0.055*** 

Hi
p 

Fu
ll 

M
od

el
 

2 0.312 ± 0.34* 0.633 ± 0.23*** 0.837 ± 0.12*** 0.945 ± 0.04*** 0.957 ± 0.035*** 
3 0.369 ± 0.32* 0.671 ± 0.21*** 0.816 ± 0.14*** 0.976 ± 0.02*** 0.98 ± 0.015*** 
4 0.328 ± 0.33* 0.597 ± 0.25*** 0.801 ± 0.15*** 0.957 ± 0.035*** 0.954 ± 0.04*** 
6 0.235 ± 0.35 0.475 ± 0.3** 0.645 ± 0.23*** 0.939 ± 0.05*** 0.941 ± 0.045*** 
8 0.199 ± 0.36 0.487 ± 0.28** 0.823 ± 0.13*** 0.923 ± 0.06*** 0.933 ± 0.055*** 

10 0.127 ± 0.36 0.308 ± 0.34 0.48 ± 0.29** 0.862 ± 0.11*** 0.855 ± 0.11*** 
12 0.198 ± 0.36 0.38 ± 0.32* 0.523 ± 0.28** 0.927 ± 0.06*** 0.914 ± 0.07*** 

N
o 

RN
N

 

2 0.285 ± 0.34 0.399 ± 0.32* 0.406 ± 0.31* 0.855 ± 0.11*** 0.841 ± 0.12*** 
3 0.15 ± 0.36 0.241 ± 0.35 0.292 ± 0.34 0.867 ± 0.1*** 0.85 ± 0.12*** 
4 0.113 ± 0.36 0.202 ± 0.36 0.282 ± 0.34 0.836 ± 0.12*** 0.813 ± 0.14*** 
6 0.0394 ± 0.36 0.0504 ± 0.36 0.0785 ± 0.36 0.793 ± 0.15*** 0.767 ± 0.16*** 
8 0.0229 ± 0.37 0.000593 ± 0.37 -0.0583 ± 0.37 0.682 ± 0.21*** 0.653 ± 0.22*** 

10 -0.00292 ± 0.36 -0.0328 ± 0.37 -0.196 ± 0.36 0.644 ± 0.23*** 0.621 ± 0.24*** 
12 -0.00208 ± 0.37 -0.0312 ± 0.36 -0.0646 ± 0.36 0.712 ± 0.2*** 0.687 ± 0.2*** 

Lu
m

ba
r S

pi
ne

 
Fu

ll 
M

od
el

 

2 0.557 ± 0.7 0.695 ± 0.62 0.744 ± 0.57* 0.892 ± 0.35** 0.923 ± 0.27** 
3 0.499 ± 0.73 0.615 ± 0.67 0.644 ± 0.66 0.819 ± 0.48* 0.872 ± 0.39* 
4 0.236 ± 0.8 0.421 ± 0.76 0.497 ± 0.73 0.67 ± 0.64 0.775 ± 0.54* 
6 0.341 ± 0.78 0.428 ± 0.76 0.262 ± 0.8 0.566 ± 0.7 0.67 ± 0.64* 
8 0.0633 ± 0.81 0.152 ± 0.8 0.276 ± 0.79 0.685 ± 0.62 0.728 ± 0.58* 

10 -0.0393 ± 0.81 -0.0631 ± 0.81 -0.0699 ± 0.81 0.403 ± 0.76 0.479 ± 0.74* 
12 -0.0697 ± 0.81 -0.156 ± 0.8 -0.424 ± 0.76 0.16 ± 0.8 0.198 ± 0.8* 
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    R GLCM Texture Metric 
    Contrast Dissimilarity Homogeneity ASM Energy 

Lu
m

ba
r S

pi
ne

 
N

o 
RN

N
 

2 0.496 ± 0.73 0.731 ± 0.58* 0.883 ± 0.37** 0.967 ± 0.14*** 0.975 ± 0.11*** 
3 0.357 ± 0.78 0.615 ± 0.67 0.807 ± 0.5* 0.909 ± 0.31** 0.934 ± 0.24** 
4 0.336 ± 0.78 0.607 ± 0.68 0.771 ± 0.54* 0.874 ± 0.38* 0.91 ± 0.31** 
6 0.307 ± 0.78 0.53 ± 0.72 0.604 ± 0.68 0.903 ± 0.32** 0.916 ± 0.29** 
8 0.2 ± 0.8 0.4 ± 0.76 0.59 ± 0.68 0.847 ± 0.44* 0.871 ± 0.39* 

10 0.0696 ± 0.81 0.184 ± 0.8 0.386 ± 0.76 0.692 ± 0.62 0.726 ± 0.59* 
12 0.0157 ± 0.82 0.0858 ± 0.81 0.325 ± 0.78 0.561 ± 0.7 0.591 ± 0.68* 

 
6.4.4 Repeatability Study 

OpBmal loss weighBngs from hyperparameter searches on the two addiBonal splits are in Supp. 

Table A.13. Results of trainings on addiBonal splits in T2 quanBficaBon error, Pearson’s r, and 

texture metrics are in Supp. Tables A.14-A.16. In the knee and hip pipelines, experiments show 

comparable results across all folds for these metrics. In the lumbar spine, Pearson’s r exhibited 

similar values across all folds, but in some cases, mean texture metric ICCs and NRMSEs 

exhibited substanBal differences. However, confidence intervals were very wide for ICCs and 

NRMSEs in the lumbar spine, likely due to limited test set size (n=5). 

 

6.4.5 Raw Mul4coil Data Assessment 

Supp. Fig. A.6 shows T2 maps predicted from our proposed pipelines on retrospecBvely 

undersampled raw k-space data. In the knee, T2 quanBficaBon errors were low through R=12, 

with local T2 elevaBons preserved and liPle dip in performance compared to corresponding 

retrospecBvely undersampled coil-combined knee data. In the hip, T2 quanBficaBon errors were 

low, with local T2 elevaBons reproduced at most R; while performance at higher R matched 

expected performance from coil-combined experiments, lower R quanBficaBon errors were 

slightly higher. Performance was more volaBle in the lumbar spine, where through R=4, T2 
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quanBficaBon errors matched expected results and local T2 paPerns were generally preserved, 

but performance degraded substanBally above R=4. 

 

6.5 Discussion and Conclusions 

In this work, we present data-driven pipelines that leverage recurrent UNet architectures and 

mulB-component losses to accelerate MAPSS T2 mapping for anatomies where a subset of 

Bssues is of parBcular clinical interest. By image processing and standard reconstrucBon 

metrics, through R=10, our knee pipelines retained fidelity to T2 values with Bght limits of 

agreement, preserving smooth textures with good to excellent reliability and sharper ones with 

moderate reliability for most tested R. While the no RNN pipeline delivered lower NRMSEs and 

higher Pearson’s r across many carBlage compartments and R than full model, its texture 

retenBon was poorer, making the full model bePer suited to preserve small, key diagnosBc 

features. In hip carBlage, predicted maps retained T2 fidelity through R=12 with Bght limits of 

agreement, preserved smooth textures with good to excellent agreement across tested R, and 

maintained sharper textures at low to moderate R. As with the knee, texture retenBon was 

strongest in the full pipeline despite lower no RNN NRMSEs. In IVDs, the no RNN pipeline 

delivered best standard reconstrucBon metric and texture retenBon performance. Despite 

maintaining smoother textures with moderate to excellent agreement across tested R and 

preserving sharper textures at lower R, the IVD pipeline revealed biases and fairly wide limits of 

agreement in T2 preservaBon, parBcularly at R=6 and higher. When assessed on retrospecBvely 

undersampled mulBcoil raw k-space data, the knee and hip pipelines saw minimal degradaBon 

in performance as compared to results from images undersampled via syntheBc k-space, 
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whereas the lumbar spine pipeline exhibited similar performance through R=4. Furthermore, 

repeatability studies indicated that, parBcularly for the hip and knee, performance was stable 

with respect to datasets. All told, these metrics indicate promise for the knee and hip pipelines 

in MAPSS T2 mapping acceleraBon, and progress but room for improvement in IVDs. 

 

Assessments of ROI-specific loss component uBlity showed its potenBal for improving 

predicBons in accelerated acquisiBon schemes. When trained with sufficiently large datasets, as 

our knee and hip pipelines were, its inclusion saw stronger fidelity to local T2 paPerns in 

carBlage ROIs and reduced T2 quanBficaBon errors compared to analogous pipelines trained 

without the ROI-specific loss component. Compared to state-of-the-art DL pipelines, knee and 

hip pipelines saw improved Pearson’s r in carBlage ROIs but poorer global Pearson’s r, as 

expected from the focused training approach. InteresBngly, CS approaches exhibit relaBvely 

strong NRMSEs while generaBng relaBvely smooth predicted T2 maps; this is possibly because in 

training, DL-based approaches simultaneously removed aliasing arBfacts and performed T2 

fiHng, and could aPempt to preserve finer details than a CS approach performing those steps 

sequenBally. While our approaches outperformed state-of-the-art methods at many R and 

Bssue compartments in the lumbar spine, global Pearson’s r indicated this may have been 

parBally due to some models being more completely trained than others. These results may 

have been different with a larger lumbar spine training set. Nonetheless, the value of ROI-

specific loss funcBons in accelerated acquisiBon pipelines is clear: with sufficiently large 

datasets, they can opBmize for ROIs and outperform state-of-the-art approaches at high R, as 

exisBng approaches are opBmized for global and not ROI-specific performance. 
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We can contextualize performance by comparing quanBficaBon errors to clinically significant T2 

changes. In the knee, T2 increases 13.4% in lateral femoral condyle (LFC) carBlage, 12.3% in 

medical femoral condyle (MFC) carBlage, and 8.1% in medial Bbial condyle (MTC) carBlage 

among paBents with mild OA compared to controls [203]. Our top-performing knee pipeline saw 

errors below this benchmark through R=12 in the LFC and at R=2 in the MTC. In IVDs, T2 

decreases 36.3% in the nucleus pulposus and 24.2% in the annulus fibrosus from healthy to 

degeneraBve discs [204]. Our top-performing pipeline saw quanBficaBon errors for each disc 

below the more stringent 24.2% through R=12. In the hip, T2 values among healthy paBents that 

progress to OA within 18 months are 7.3% higher in femoral and 5.2% higher in acetabular 

carBlage compared to controls [205]. Our top-performing hip pipeline had errors below these 

benchmarks at all R in femoral carBlage and at R=2 in acetabular carBlage. Clinical metrics thus 

depict promise for pipelines in all three anatomies in maintaining sub-clinical-significance 

quanBficaBon errors. 

 

Clinical and standard metrics show knee and hip pipeline performances to be parBcularly 

promising—the T2 values, map texture preservaBon, and error rates relaBve to clinical 

benchmarks all mark meaningful progress towards reducing cMRI acquisiBon Bme for eventual 

clinical use. That said, while lumbar spine performance was strong by clinical metrics, it lagged 

the knee and hip by standard reconstrucBon metrics. One explanaBon is dataset size: the 

lumbar spine dataset had substanBally fewer scans and imaging slices than the knee and hip. 

This has twofold impact: (1) the strength of a model trained from a smaller dataset is inherently 
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limited, and (2) having only 5 test set scans limits staBsBcal power and induces wide standard 

deviaBons of metrics, prevenBng significant conclusions from being reached. The effects of this 

small dataset size parBcularly surface in repeatability studies. Furthermore, lumbar spine 

acquisiBons were more suscepBble to breathing arBfacts and had fewer slices than the hip and 

knee; undersampling therefore leE fewer lumbar spine ky-kz lines sampled compared to the hip 

and knee, inducing worse iniBalizaBons and possibly poorer performance. Nonetheless, to our 

knowledge, this is the first DL applicaBon to accelerate lumbar spine cMRI, marking progress 

that must be furthered with addiBonal data procurement and algorithm development for 

clinical uBlity. 

 

The GLCM-based textural retenBon evaluaBon demonstrated a framework through which 

reconstrucBon performance can be bePer evaluated than through standard metrics like SSIM, 

NRMSE, and PSNR. ICCs of GLCM metrics between predicted and ground truth T2 maps allow for 

intuiBve, scaled measurements that can reflect how well a parBcular texture was preserved: for 

example, visual inspecBon of predicted T2 maps in knee and hip carBlage in Figures 3-4 indicate 

that sharp textures are preserved bePer by the hip pipeline. This qualitaBve observaBon is 

confirmed by the GLCM Dissimilarity ICCs observed for the full model in the hip and knee 

pipelines in Table 3 at several tested R. This work could be furthered by extending this analysis 

to addiBonal GLCM metrics for an even more thorough assessment of textural feature retenBon.  

AddiBonal future improvements could also include pre-processing carBlage and IVD Bssues 

prior to GLCM metric calculaBon to improve stability of these metrics, as other groups have 

started to do [206].  
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Moreover, by showing results at 7 acceleraBon factors instead of the 2-3 typical in the literature, 

we found performance did not always degrade steadily as R increased. Networks therefore may 

be sensiBve not just to general undersampling paPerns, but also the specific nature of the 

paPern. Thus, when future DL reconstrucBon pipelines are trained, a library of undersampling 

paPerns may be advisable to encourage robustness to sampling paPerns [140]. 

 

This study has limitaBons. First, we used retrospecBvely undersampled coil-combined 

magnitude echo Bme images that, in the knee and hip, had undergone ARC processing in their 

reconstrucBon, with 4 edge slices discarded for all data. Due to coil combinaBon and post-

processing, the k-space being undersampled would not match the acquisiBon’s mulB-coil k-

space. AddiBonally, while we undersampled the MAPSS acquisiBon ellipse for each anatomy, the 

hip acquisiBons had ‘no phase wrap’ applied, meaning that tested undersampling paPerns 

would differ from those implemented on the scanner. While our raw k-space experiments show 

performance degradaBon was limited compared to coil-combined magnitude image 

experiments, models would be stronger if trained with a similarly sized mulBcoil k-space 

dataset. Second, this network is specific to our sampling paPerns and acquisiBon parameters, 

and new pipelines would need to be trained should parameters like MAPSS T2 echo Bmes be 

substanBally changed. Finally, the lumbar spine dataset size is rather small, limiBng the power of 

conclusions. 
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To conclude, this study shows a novel means of training DL pipelines to accelerate cMRI in 

anatomies where specific Bssues are of heightened clinical importance. In knee and hip, 

pipelines were effecBve at high R in maintaining textures, keeping fidelity to T2 values, and 

minimizing T2 quanBficaBon errors, whereas in the lumbar spine, the pipeline performed 

reasonably by those same criteria, but poorer in T2 value fidelity and quanBficaBon errors. This 

reflects progress towards clinically useful pipelines that specialize in MSK T2 mapping. The 

GLCM-based textural retenBon analysis elucidates an alternate to standard reconstrucBon 

metrics, allowing for intuiBve measures of the types of features best preserved by a accelerated 

acquisiBon schemes, potenBally allowing for bePer quanBtaBve assessment of model 

performance. Future direcBons include mulBcoil k-space training, simultaneous MAPSS T1r and 

T2 acceleraBon, and temporal undersampling of T2 weighted echo Bme images. 
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Chapter 7 - K2S Challenge: From Undersampled K-Space to Automa4c Segmenta4on 

The following has been reformaPed and reproduced with full permission from the publisher. It 

appeared in Bioengineering as: 

 Tolpadi, A.A., Bharadwaj, U., Gao, K.T., et al. K2S Challenge: From Undersampled K-Space 

to AutomaBc SegmentaBon. Bioengineering 10:267 (2023). 

hPps://doi.org/10.3390/bioengineering10020267 

 

7.1 Abstract 

MagneBc Resonance Imaging (MRI) offers strong soE Bssue contrast but suffers from long 

acquisiBon Bmes and requires tedious annotaBon from radiologists. TradiBonally, these 

challenges have been addressed separately with reconstrucBon and image analysis algorithms. 

To see if performance could be improved by treaBng both as end-to-end, we hosted the K2S 

challenge, in which challenge parBcipants segmented knee bones and carBlage from 8× 

undersampled k-space. We curated the 300-paBent K2S dataset of mulBcoil raw k-space and 

radiologist quality-checked segmentaBons. 87 teams registered for the challenge and there 

were 12 submissions, varying in methodologies from serial reconstrucBon and segmentaBon to 

end-to-end networks to another that eschewed a reconstrucBon algorithm altogether. Four 

teams produced strong submissions, with the winner having a weighted Dice Similarity 

Coefficient of 0.910 ± 0.021 across knee bones and carBlage. InteresBngly, there was no 

correlaBon between reconstrucBon and segmentaBon metrics. Further analysis showed the top 

four submissions were suitable for downstream biomarker analysis, largely preserving carBlage 

thicknesses and key bone shape features with respect to ground truth. K2S thus showed the 
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value in considering reconstrucBon and image analysis as end-to-end tasks, as this leaves room 

for opBmizaBon while more realisBcally reflecBng the long-term use case of tools being 

developed by the MR community. 

 

7.2 Introduc4on 

MagneBc Resonance Imaging (MRI) has emerged as one of the strongest medical imaging 

modaliBes for clinical use, offering exquisite soE Bssue contrast for visualizing Bssues such as 

ligaments, carBlage, and muscle [207,208]. ConvenBonal MR sequences see the weighBng of 

images in accordance with intrinsic MR parameters such as T1 and T2 and allow for suppression 

or saturaBon of signal from Bssue types such as fat or fluid [57,61]. As such, MR images can be 

tailored for a given clinical context. Furthering this are recent developments of advanced 

sequences such as zero echo Bme (ZTE) and ultrashort echo Bme (UTE), which allow for high-

resoluBon imaging of addiBonal Bssues such as tendons in musculoskeletal imaging [209–212]. 

MR has the added advantage of not exposing subjects to ionizing radiaBon compared to 

alternaBves such as radiographs and computed tomography (CT). Despite these advantages, 

however, MR faces several challenges, including (1) long acquisiBon Bmes and (2) the 

requirement of Bme-consuming and laborious radiologist annotaBon and interpretaBon of 

images to extract clinical meaning [213,214]. 

 

Fortunately, several tools have been developed to address these concerns. In the case of long 

MR scan Bmes, acquisiBons can be accelerated by sampling fewer points in k-space, the raw 

frequency-based domain in which MRI signals are obtained. This undersampling induces aliasing 
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arBfacts in resulBng images that can be removed by image reconstrucBon algorithms. In recent 

years, considerable effort has been put into developing several families of reconstrucBon 

approaches: (1) compressed sensing (CS) algorithms iteraBvely reconstruct images by ensuring 

consistency with acquired k-space and imposing sparsity on the reconstructed image in an 

alternate domain [128,170,171,215]; (2) parallel imaging (PI) algorithms exploit the redundancy 

of using mulBple coils to acquire the same imaging volume to reduce acquisiBon Bmes at the 

expense of signal-to-noise raBo (SNR) [63,166,167]; (3) deep learning (DL) approaches use 

complex, nonlinear models to impute full-length acquisiBon images from aliased images and/or 

undersampled k-space [134,216]. Other approaches growing in popularity include magneBc 

resonance fingerprinBng (MRF) and low-rank and sparse modeling approaches [172,217,218]. 

On the other hand, a host of DL tools have emerged to automate mundane MR image-

processing tasks. For instance, the introducBon of the U-Net in 2015 seeded major advances in 

medical image segmentaBon from limited data, paving the way for more complicated 

architectures that have been applied for accurate lumbar spine and knee carBlage 

segmentaBon, among others [116,219–221]. Yet other DL applicaBons include automaBc 

assessments of carBlage thickness, staging of anterior cruciate ligament injury severity, 

diagnosis of lumbar spine anomalies, and analysis of bone shape [109,222–224]. 

 

This body of work unquesBonably reflects substanBal advances made by the MR research 

community. But it is noteworthy that with extremely few excepBons, the challenges of long 

acquisiBon Bmes and image analysis have been treated as separate enBBes [225]. The long-

term vision, however, would be a soEware package that addresses these challenges 
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simultaneously, raising a niche for opBmizaBon. Namely, image analysis algorithms are designed 

for full-length acquisiBon of MR image inputs, but there is no guarantee and liPle invesBgaBon 

that they would perform similarly well on reconstructed images from the accelerated 

acquisiBon. On the other hand, image reconstrucBon algorithms are overwhelmingly opBmized 

for metrics such as normalized root mean square error (nRMSE), peak signal-to-noise raBo 

(PSNR), and structural similarity index (SSIM), which correlate to the perceptual quality of a 

reconstructed image [226–228]. In other words, reconstrucBon algorithm image outputs are 

opBmized for visually appealing images and radiologist interpretaBon, but what if their outputs 

were instead intended as features for subsequent image analysis pipeline input? Could the 

features required for accurate radiologist readings with respect to ground truth differ from 

those required for DL image analysis pipeline input to yield strong performance? More 

generally, if image reconstrucBon and annotaBon are viewed as end-to-end rather than serial 

tasks, is it possible to aPain stronger image analysis performance? 

 

To answer these quesBons, we hosted the K2S challenge at the 25th InternaBonal Conference 

on Medical Image CompuBng and Computer-Assisted IntervenBon (MICCAI) in Singapore. 

Previously, challenges and/or the releases of large datasets have spurred major advances in the 

MR research community. The release of the OsteoarthriBs IniBaBve (OAI) and MulBcenter 

OsteoarthriBs Study (MOST) precipitated substanBal advances in understanding osteoarthriBs, 

total knee replacement, and knee pain, among others [110,229–232]. On the other hand, the 

fastMRI challenge was crucial in (1) making image reconstrucBon more accessible to the MR 

research community by releasing large datasets including raw k-space, and (2) seeding major 
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advances in reconstrucBon research such as popularizing unrolled DL architectures 

[131,233,234]. Our objecBve was to fill a similar niche in the end-to-end reconstrucBon and 

image analysis space. As such, we curated the K2S dataset, which consists of 300 paBents that 

underwent 3D fat-suppressed knee scans, for each of whom k-space data and radiologist-

approved 6-compartment Bssue segmentaBons were released. The use of Fourier-transformed 

DICOM images as k-space would be problemaBc, not maintaining consistency with the mulBcoil 

nature of most MR acquisiBons and the numerous post-processing steps to convert raw 

mulBcoil k-space into DICOM images, while also likely overstaBng performance [196]; 

importantly, our released dataset thus was of raw mulBcoil k-space data. Challenge parBcipants 

were to train algorithms that segmented knee bones and carBlage from 8× undersampled 

acquisiBons. Winners were selected using a weighted dice similarity coefficient (DSC) that 

assessed the accuracy of resulBng segmentaBons, but addiBonal analyses were conducted to 

assess segmentaBon quality, determine if strong image reconstrucBon was a prerequisite for 

strong segmentaBon, and gage the suitability of submiPed segmentaBons for biomarker 

analysis [235]. 

 

In short, the contribuBons of the K2S challenge and this paper are as follows: 

Reframing image reconstrucBon and annotaBon as end-to-end tasks for an eventual clinical 

workflow rather than sequenBal steps. 

• CuraBng a large dataset (n = 300) with 3D raw k-space data and Bssue segmentaBons to 

allow training of segmentaBon algorithms directly from undersampled k-space, and 
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whatever addiBonal research objecBves may emerge from having raw k-space and 

segmentaBons in the same dataset. 

• InvesBgaBng whether strong image reconstrucBons are a prerequisite for strong Bssue 

segmentaBons. 

• Assessing if segmentaBon algorithms trained from 8× undersampled data are suitable for 

biomarker analysis. 

 

7.3 Methods 

7.3.1 Challenge 

K2S challenge parBcipants were responsible for predicBng 6-class knee Bssue segmentaBons 

(femur, Bbia, patella, femoral carBlage, Bbial carBlage, and patellar carBlage) from 8× 

undersampled k-space data. An overview of the steps involved in dataset curaBon, the 

challenge objecBve, and the Bmeline can be viewed in Figure 7.1, with details on all steps and 

evaluaBon criteria described below. 
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Figure 7.1 K2S challenge schemaBc. Overview of steps involved in human-in-the-loop training of 
models to generate ground truth bone and carBlage segmentaBons, and the process for 
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radiologist approval of final 300 segmentaBons to be included in K2S dataset. The K2S challenge 
was for parBcipants to segment knee bones and carBlage from 8× undersampled k-space, with 
the training set released on 15 April, the test set released on 6 July, and the submission deadline 
on 21 July. 

 
7.3.2 Dataset 

7.3.2.1 Subject Eligibility and Sequence Informa@on 

Subjects at the UCSF Orthopedic InsBtute between 14 June 2021 and 21 June 2022 were 

scanned with an imaging protocol that included 3D fat-suppressed CUBE acquisiBons (n = 816). 

There were no exclusion criteria placed on paBents for inclusion in the eventual K2S dataset, 

and paBents were scanned in accordance with all perBnent guidelines, including approval from 

the UCSF InsBtuBonal Review Board (Human Research ProtecBon Program), obtaining informed 

consent from all study parBcipants. The 3D fat-suppressed CUBE sequence was selected for K2S, 

as 3D sequences have higher SNR compared to 2D imaging, allowing for higher resoluBon 

acquisiBons that can be reformaPed into mulBple planes for subsequent research objecBves. 

Scans were performed on a GE Discovery MR750 3T Scanner using an 18-channel knee 

transmit/receive coil. The full-length acquisiBon Bme of the sequence was 4 min and 58 s. 

Complete acquisiBon parameters are listed in Table 7.1. 

Table 7.1 AcquisiBon parameters for 3D fat-suppressed CUBE sequence used in K2S dataset, and 
for this challenge. 

MR Acquisition Information 
Scanner: GE Discovery MR750 3T Scanner (GE Healthcare, Milwaukee, WI) 

Gradient System Max Strength: 50 mT/m 
Max Slew Rate: 200 mT/m/ms 

Coil: 18-channel knee transmit/receive coil (Quality Electrodynamics (QED), Mayfield Village, OH) 

TR/TE: 1002/29 ms FOV: 150 mm Slice Thickness: 0.6 mm (0.6 mm 
spacing between slices)  

Flip Angle: 90 SAR: 0.0939 Echo Train Length: 36 
Frequency: 128 Bandwidth: 244 ARC [150]: 4 (R = 2 in ky, kz) 
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MR Acquisition Information 

Acquisition Matrix:  
256 × 256 × 200 

Image Dimensions: 512 × 512 × 200 
Resolution: 0.586 mm × 0.586 mm × 0.6 mm 
Voxel Size: 0.293 mm × 0.293 mm × 0.6 mm 

 

7.3.2.2 Extrac@on of ARC-Reconstructed Mul@coil Raw k-Space Data 

An in-house pipeline was developed replicaBng all post-processing steps done on an MR 

scanner to go from raw k-space data to DICOM images viewed by clinicians for diagnosBc 

decisions. To the best of the authors’ knowledge, no centralized resource is available describing 

all these steps, which can make it difficult for those interested in reconstrucBon to familiarize 

themselves with the process before model development. The authors thus saw value in 

describing these steps, shown schemaBcally in Figure 7.2, with examples of pipeline 

intermediates at several steps in Figure 7.3. Unless otherwise specified, all post-processing steps 

were implemented using funcBons in GE Orchestra 1.10. 

 

Figure 7.2 k-Space and image space post-processing steps for the in-house pipeline to 
reconstruct DICOM images from raw scanner data. Briefly, the steps in k-space are as follows: 
ARC reconstrucBon (parallel imaging), Fermi filtraBon to remove Gibbs arBfacts, and zero-
padding to bring the image to the intended output resoluBon. Image-space processing included 
coil combinaBon, surface coil intensity correcBon, and gradient coil inhomogeneity correcBon. 
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Figure 7.3 Intermediate outputs within the post-processing pipeline going from raw k-space to 
DICOM images. Each pane of the image reflects the output of the image aEer the step described 
by the pane Btle. 

 
7.3.2.2.1 k-Space Post-Processing 

Some sequences may leverage PI techniques (such as ARC or GeneRalized AutocalibraBng 

ParBal Parallel AcquisiBon (GRAPPA)) to acquire fewer lines within k-space, instead exploiBng 

already acquired data across mulBple coils to miBgate aliasing arBfacts at the expense of SNR 

[63,150]. This was the case for our sequence; consequently, the first step in post-processing raw 

mulBcoil k-space data was applying ARC to impute unacquired k-space lines. Subsequently, 

Fermi filtraBon was applied: given MR images are oEen zero-padded in k-space, ringing arBfacts 

can emerge from the sharp boundary in k-space between nonzero and zero points [236]. A 
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Fermi filter smooths this boundary, reducing ringing arBfacts at the expense of sharpness in the 

reconstructed image. A custom Fermi filtraBon funcBon was used, using the Fermi filtraBon 

radius and width parameters extracted from raw sequence metadata. AEer Fermi filtraBon, k-

space was zero-padded to the intended image dimensions (in our case, from 256 × 256 × 200 to 

512 × 512 × 200), compleBng k-space post-processing. All k-space post-processing was on 

mulBcoil data. 

 

7.3.2.2.2 Image Space Post-Processing 

Post-processed k-space was 3D inverse Fourier transformed to image space for each of the 18 

coils and coil-combined to yield a single-coil image. The most basic means of coil combinaBon is 

root sum-of-squares, but GE provides another method based on Array coil SpaBal SensiBvity 

Encoding (ASSET), which leverages sensiBvity maps in a PI-inspired technique to do coil 

combinaBon [237]. Magnitude images were then calculated, aEer which GE’s Phased array 

Uniformity Enhancement (PURE) was used to perform surface coil intensity correcBon 

[238,239]. This was followed by GRADWARP, which warps images to correct for inhomogeneiBes 

in gradient coils [240]. A final step in post-processing was correcBng image orientaBon and 

scaling pixel values, yielding DICOM images used by clinicians for diagnosBc purposes. 

 

In the context of segmenBng undersampled images, one complicaBon emerges: in GRADWARP, 

the MR image is warped such that it no longer corresponds to k-space. As such, the post-

processing pipeline intermediate prior to GRADWARP must be segmented, or the GRADWARP 

funcBon must be integrated into model training itself while segmenBng DICOM images. Due to 
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the difficulBes of implemenBng the laPer (backpropagaBng through GRADWARP would not be 

trivial), our soluBon was the former. 

 

7.3.2.3 Ground Truth Segmenta@on Genera@on 

Ground truth knee carBlage and bone segmentaBons were generated by separate DL pipelines 

and post-processing techniques, each trained with a radiologist in the loop. 

 

7.3.2.3.1 Car4lage Segmenta4on Pipeline 

480 3D fat-suppressed CUBE sequences were acquired across three sites (UCSF, San Francisco, 

CA, USA; Hospital for Special Surgery, New York, NY, USA; Mayo Clinic, Rochester, MN, USA) with 

similar acquisiBon parameters to the 3D fat-suppressed CUBE sequences ulBmately used in K2S. 

These volumes were manually segmented by readers trained by a senior radiologist with over 

25 years of experience, split 400/80 into training and validaBon, and used to train a 3D V-Net for 

mulBclass carBlage segmentaBon [104,241]. This iniBal pipeline was inferred on 20 3D fat-

suppressed CUBE sequences from the UCSF Orthopedic InsBtute with K2S acquisiBon 

parameters, but on volumes acquired prior to the eligibility window for K2S inclusion. The 20 

inferred segmentaBons were manually corrected and quality checked (QC) by an intern under 

radiologist supervision. 15 of the 20 cases were used to fine-tune the pipeline in a second 

training, seeing convergence reached aEer 5 epochs, and the remaining 5 cases were used to 

select final model parameters. 
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AEer the second training, the V-Net was inferred on all 816 cases eligible for K2S. The following 

post-processing steps were selected and applied under radiologist supervision: 3D 

morphological opening, 3D connected components analysis (preserving the largest femoral and 

patellar and the 2 largest Bbial carBlage components), and 2D sagiPal connected components 

analysis (preserving all connecBng components larger than 150 pixels). 

 

7.3.2.3.2 Bone Segmenta4on Pipeline 

40 3D fat-suppressed CUBE sequences acquired at the UCSF Orthopedic InsBtute prior to the 

eligibility window for K2S inclusion were manually segmented by a trained reader for bone, 

Bbia, and patella. These cases were used to train a baseline 3D U-Net for a binary bone 

segmentaBon model. An addiBonal 15 cases acquired using the K2S acquisiBon parameters 

were also manually segmented by three radiologists with three (J.L.), three (P.G.), and four (F.G.) 

years of experience. The trained baseline model was inferred from these cases, which were 

used for model fine-tuning. 

 

The fine-tuned U-Net was inferred on the 816 cases with the following post-processing steps, 

applied under radiologist supervision: filling holes, morphological opening, and connected 

components analysis (preserving all connecBng components larger than 1000 voxels and with 

centroids in central 50% of slices). Finally, the sizes of connected components were used to 

extract bone labels (femur, Bbia, and patella). 
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7.3.2.4 Selec@on of Cases for K2S Dataset 

Of the 816 potenBal cases, the target was selecBng 300, with the intent of maintaining sufficient 

cases for training reconstrucBon and segmentaBon models, maintaining some variety of 

anomalies in included cases, and ensuring a reasonable memory footprint given computaBonal 

constraints. Radiologists with three (J.L.) and four (F.G.) years of experience developed 5-point 

LIKERT scales to assess segmentaBon quality: (1) unusable; (2) poor, with some mislabeling of 

bones or carBlage; (3) useable, with some major issues, but correct labeling of bone or 

carBlage; (4) good, with some minor but acceptable issues; (5) (near) human-like. Examples of 

carBlage segmentaBon LIKERT scores for the 5 classes are seen in Figure 7.4, and for bone in 

Figure 7.5. SegmentaBon LIKERT scores were calculated for bone and carBlage from videos of 

the segmentaBons that cycled through all sagiPal slices. Cases with acceptable segmentaBon 

quality for both carBlage and bone were selected as the K2S dataset. CarBlage LIKERT scores for 

K2S were as follows: 5:14; 4:175; 3:110; 1:1. Bone LIKERT scores were as follows: 5:112; 4:179; 

3:9. 
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Figure 7.4 1–5 LIKERT carBlage segmentaBon scores overlaid on ground truth knee scans. In this 
example, the LIKERT of 5 indicates human-like segmentaBon; the LIKERT of 4 shows a slight 
underesBmaBon of patellar and Bbial carBlage; the LIKERT of 3 is assigned due to minor 
underesBmaBon of patellar and Bbial carBlage, with soE Bssue detected as femoral carBlage; 
the LIKERT of 2 is assigned due to missing mask areas for patellar and Bbial carBlage, with 
femoral carBlage overesBmaBon; the LIKERT of 1 is missing a Bbial carBlage mask. 
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Figure 7.5 1–5 LIKERT bone segmentaBon scores overlaid on ground truth knee scans. In this 
example, the LIKERT of 5 indicates human-like segmentaBon; the LIKERT of 4 shows minor 
missing components in the femoral bone; the LIKERT of 3 shows missing components of the 
patellar bone mask; the LIKERT of 2 shows major missed regions within the Bbial and patellar 
bone; the LIKERT of 1 has patella and Bbia masks misassigned. 

 
7.3.2.5 Final K2S Dataset Characteris@cs 

The K2S training dataset (n = 300) had the following demographic characterisBcs: age of 44.3 ± 

13.9 years, weight of 75.6 ± 14.9 kg, 160/140 male to female. The test dataset followed the 
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same described steps (n = 50): age of 44.5 ± 14.4 years, weight of 70.5 ± 16.6 kg, 26/24 male to 

female (all mean ± standard deviaBon). 

 

The training dataset included the following: mulBcoil ARC-reconstructed k-space and mulBclass 

segmentaBon for each paBent (n = 300), 8× center-weighted Poisson undersampling mask with 

a fully sampled central 5% square of k-space in ky-kz, and a file detailing the quality of the 

segmentaBons and any radiologist notes associated with each paBent. The released test dataset 

was solely the 8× undersampled mulBcoil ARC-reconstructed k-space. 

 

7.3.3 Evalua4on Process 

Submissions were evaluated using a weighted sum of DSC. Namely, DSC was calculated in each 

of the 6 Bssue compartments, and combined as follows into a weighted DSC that assigned each 

compartment a weight inversely proporBonal to the size of the Bssue compartment, as shown 

in EquaBon 7.1: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐷𝑆𝐶 = 	
∑ 𝐷𝑆𝐶,

𝑛,,

∑ 1
𝑛,,

 

 

Equa4on 7.1 Weighted DSC calculaBon, where t refers to the Bssue compartment, DSCt refers to 
the DSC within that Bssue compartment, and nt is the number of pixels in the ground truth 
segmentaBon for Bssue t [235]. 
 
7.3.4 Timeline 

• 15 April 2022: Training dataset release 

• 30 April 2022: ParBcipant registraBon close 
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• 27 June 2022: Release of code used to evaluate submissions 

• 6 July 2022: Test dataset release 

• 21 July 2022: Submission deadline 

• 28 July 2022: InvitaBon of top 4 teams for in-person presentaBons 

• 18 September 2022: In-person workshop at MICCAI 2022, winners announced 

All told, 87 teams registered for the K2S challenge from 19 countries, and 12 teams made 

submissions for the challenge. 

 

7.3.5 Overview of Top Submission Methodologies 

7.3.5.1 K-nirsh (University of Tübingen, Tübingen, Germany) 

K-nirsh’s submission involved two cascaded nnUNet architectures, a first for reconstrucBon and 

a second for segmentaBon [242]. MulBcoil k-space was inverse Fourier transformed and coil-

combined using root sum-of-squares coil combinaBon, yielding coil-combined 8× undersampled 

images. An iniBal nnUNet was pretrained to predict fully-sampled coil-combined images from 8× 

undersampled coil-combined inputs using a mean square error (MSE) loss. A second nnUNet 

was pretrained to predict mulBclass carBlage and bone segmentaBons from a 2-channel input 

(8× undersampled coil-combined image and fully sampled coil-combined image), using DSC 

segmentaBon loss. AEer pretraining, these models were trained end-to-end, with the iniBal 

nnUNet regression output replacing the fully sampled coil-combined image as input for the 

second segmentaBon nnUNet. The model was fine-tuned for over 1000 epochs on NVIDIA V100 

GPUs, using only the segmentaBon loss and implemenBng a weight scheduler that linearly 

increased small class weighBng (carBlage). The weighted DSC loss used to evaluate the 
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challenge submission was used as a validaBon loss and the best model according to this metric 

was chosen for the challenge submission. The output of the first nnUNet was considered the 

reconstrucBon output of this pipeline, whereas the output of the second nnUNet was the 

segmentaBon submission. 

 

7.3.5.2 UglyBarnacle (Skolovo Ins@tute of Science and Technology, Moscow, Russia) 

UglyBarnacle’s submission differed from other top submission methodologies by leveraging CS 

as opposed to DL for reconstrucBon. An iniBal reconstrucBon pipeline accepted as input the 18-

channel, 256 × 256 × 200 8× undersampled k-space array, performing a CS reconstrucBon with a 

combined L1-wavelet and total variaBon (TV) regularizaBon funcBon, imposing 3 Bmes the 

weight on TV as opposed to L1-wavelet. The CS reconstrucBon was solved as an opBmizaBon 

problem: the goal was to find the undersampled part of the k-space that minimized the target 

value funcBon (weighted sum of L1-wavelet and TV of volumetric image). The opBmizaBon 

problem was solved using the Adam opBmizaBon algorithm over 50 iteraBons for each scan. 

Reconstructed images were fed to an architecture similar to V-Net for Bssue segmentaBon. The 

segmentaBon network was implemented in 3D, with the following feature map depths at V-Net 

stages: 16, 32, 64, 128, 256. Max-pooling was used to compress the representaBon of feature 

maps in the encoder, and upsampling to increase resoluBon in the decoder, with skip 

connecBons transferring informaBon from the encoder to corresponding parts of the decoder. 

The network output was fed through two final convoluBons (one with a feature map depth of 7 

and the last with a depth of 1) to yield predicted segmentaBons. 
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7.3.5.3 FastMRI-AI (University Medical Center Groningen, Groningen, The Netherlands) 

As with K-nirsh, k-space was zero-padded to 512 × 512 along kx and ky, inverse Fourier 

transformed, and root sum-of-squares combined, yielding coil-combined 8× undersampled 

image space. Unlike other top submissions, FastMRI-AI did not implement a reconstrucBon 

framework, choosing instead to directly segment the undersampled image; the root sum-of-

squares coil combined images were thus considered the reconstrucBon outputs for this 

approach in subsequent analysis. A 3D U-Net featuring a squeeze and excite aPenBon layer was 

trained on 160 × 160 × 48 patches, selected with stride 51 × 51 × 16, yielding around 27 

predicBons per voxel [243]. Networks were trained with weighted DSC loss, giving twice the 

weight to carBlage afforded to bone and background. PredicBons were post-processed with 

simulated extended image boundaries by mirror padding, self-ensembling for overlapping 

sliding window predicBon, and connected component analysis for each class, removing objects 

that were less than 60% the size of the largest object in the given class. 

 

7.3.5.4 NYU-Knee AI (New York University Grossman School of Medicine, New York, USA) 

NYU-Knee AI trained mulBple components individually: a VariaBonal Network (VN) for image 

reconstrucBon, followed by an ensemble of 2D U-Nets to predict Bssue segmentaBons 

[119,135,244–246]. For reconstrucBon, eSPIRIT was used to calculate coil sensiBvity maps for 

undersampled and ground truth data using the central 24 × 24 region in k-space [67]. Zero-filled 

k-space was then fed through a VN for K = 10 iteraBons, at each iteraBon using calculated coil 

sensiBvity maps and acquired k-space to ensure data consistency with intermediate 

reconstructed images, while also feeding iteraBon outputs through a convoluBonal, ReLU, and 
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transpose convoluBonal layer to encourage recovery of details lost from undersampling. The VN 

was trained with an MSE loss funcBon between the 256 × 256 ground truth and the 

reconstructed coil-combined images for 200 epochs. VN outputs were fed to 2D U-Nets, 

predicBng 256 × 256 segmentaBons that were upsampled and convolved to the intended 512 × 

512 output resoluBon. MulBple networks were trained with either focal loss, cross-entropy loss, 

or a hybrid of both for 300 epochs; an internal validaBon set was used to choose the best-

performing network for each of the 6 Bssue classes, ulBmately using 3 focal loss networks and 1 

weighted cross entropy loss network in the final submission. 

 

7.3.6 Further Analysis of Submissions 

7.3.6.1 Intermediate Pipeline Reconstruc@on Performance 

The objecBve of the challenge was segmenBng bones and carBlage, and no part of the 

evaluaBon criteria nor any communicaBon between organizers and challenge parBcipants prior 

to submissions discussed a requirement for reconstrucBon submissions. However, at some level, 

each of the top-performing pipelines fed some image (either directly undersampled for 

FastMRI-AI, or aEer reconstrucBon for the other 3 top submissions) through a segmentaBon 

pipeline. As such, it was instrucBve to see how reconstrucBon metrics of images fed to 

segmentaBon pipelines compared to segmentaBon metrics. Challenge organizers thus 

requested the top four teams provide intermediate reconstrucBon outputs for the test set. 

Using these images, standard reconstrucBon metrics were calculated: nRMSE, PSNR, and SSIM. 
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7.3.6.2 Comparison of Reconstruc@on and Segmenta@on Performance 

In addiBon to the visual comparison of reconstrucBons and segmentaBons, Pearson’s r was 

calculated between weighted DSC and nRMSE, PSNR, and SSIM for each of the top 4 teams 

[199]. Given the wide variety of approaches used by the teams, these experiments invesBgated 

a correlaBon between reconstrucBon and segmentaBon performance. 

 

7.3.6.3 Biomarker Analysis: Car@lage Thickness 

Previously developed tools were used to calculate carBlage thicknesses for ground truth and 

submissions [222]. Briefly, Euclidean distance transforms on each carBlage compartment of 

each paBent were used to generate skeletonizaBons. The skeletonizaBons were sampled and 

distances from skeletonized points to carBlage surfaces were calculated for each compartment 

and each paBent. Skeleton-to-surface distances were averaged across a carBlage compartment 

for a given paBent to obtain mean carBlage thickness measurements, which were then 

compared between ground truth and each of the submissions in Bland-Altman and correlaBon 

plots. Pearson correlaBon coefficients were calculated for each submission to assess the 

correlaBon of submiPed carBlage thicknesses to ground truth, as a proxy for assessing the 

suitability of submissions for biomarker analysis. 

 

To visualize carBlage thickness maps, voxel-based segmentaBons were converted into 

triangulated meshes using a Marching Cubes algorithm, and carBlage thickness maps were 

projected onto bones for select cases [232]. Maps were then compared for a qualitaBve 

assessment of regions best and most poorly preserved by sample submissions. 



 100 

 

7.3.6.4 Biomarker Analysis: Bone Shape 

To analyze the bone shape, previously developed tools again were applied [224]. Triangulated 

meshes of each bone of the ground truth segmentaBons were generated using a Marching 

Cubes algorithm, aEer which Euclidean coordinates of each point in the mesh were flaPened 

into a 1D vector for each test set case. Principal component analysis (PCA) was used to reduce 

the dimensionality of these vectors, preserving the top 5 PCs, which consBtuted bone shape 

features. StaBsBcal parameterizaBon was used to extract the mean and standard deviaBon of 

each PC. For visualizaBon purposes, mean +3 standard deviaBons (s.d.) and mean −3 s.d. bone 

shapes were generated for each PC, with qualitaBve interpretaBons of the features varying most 

with each PC being described (i.e., volume). SegmentaBons of each submission were similarly 

transformed into 1D Euclidean coordinate vectors and projected into the PC space generated 

from the ground truth. CorrelaBons between submissions and ground truth along these shape 

features were calculated for each. 

 

7.4 Results 

12 submissions were received for the K2S, for which weighted DSC was calculated across the 

test set as described in EquaBon 7.1. The top four submissions by weighted DSC were analyzed 

further, with results discussed below. 
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7.4.1 Segmenta4on Metrics 

SegmentaBon results are shown in Table 7.2, straBfied by Bssue compartment but also showing 

the weighted DSC that determined challenge winners. K-nirsh delivered strong segmentaBon 

performance in each Bssue compartment, closely rivaling ground truth, and interesBngly did so 

from intermediate reconstrucBon outputs exhibiBng poor reconstrucBon metrics. FastMRI-AI 

also yielded high-quality segmentaBons despite not implemenBng any reconstrucBon 

framework. Overarchingly, segmentaBon performance for all four pipelines was strong, given 

that severely aliased images served as model input. To differenBate between the top two 

submissions, which showed similar weighted DSC, a paired t-test was run to assess for 

significant difference in performance: K-nirsh performance indeed was significantly bePer than 

UglyBarnacle, even aEer adjusBng for Bonferroni correcBon (n = 50, α = 0.05). 

Table 7.2 SegmentaBon performance across test set (n = 50) for each of the top 4 pipelines, 
straBfied by Bssue compartment. Results are presented mean ± 1 s.d. K-nirsh showed the 
strongest results in each Bssue compartment and overall, and is shown in bold. 

 Cartilage Bone Full 

Team Femoral Tibial Patellar Femur Tibia Patella Weighted 
DSC 

K-nirsh 0.904 ± 
0.014 

0.899 ± 
0.015 

0.910 ± 
0.034 

0.989 ± 
0.002 

0.985 ± 
0.004 

0.966 ± 
0.012 

0.910 ± 
0.021 

UglyBarnacle 0.895 ± 
0.016 

0.890 ± 
0.017 

0.903 ± 
0.032 

0.984 ± 
0.004 

0.980 ± 
0.004 

0.961 ± 
0.015 

0.903 ± 
0.021 

FastMRI-AI 0.845 ± 
0.124 

0.862 ± 
0.126 

0.843 ± 
0.124 

0.964 ± 
0.078 

0.952 ± 
0.138 

0.834 ± 
0.306 

0.849 ± 
0.123 

NYU-Knee AI 0.798 ± 
0.029 

0.756 ± 
0.04 

0.796 ± 
0.043 

0.980 ± 
0.004 

0.975 ± 
0.005 

0.939 ± 
0.014 

0.795 ± 
0.030 

 
7.4.2 Reconstruc4on Metrics 

Example sagiPal slices of intermediate pipeline reconstrucBon outputs are shown in Figure 7.6, 

with corresponding reconstrucBon metrics. NYU-Knee AI and parBcularly UglyBarnacle 
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produced intermediate reconstrucBon outputs with strong fidelity to ground truth, recovering 

fine details lost to aliasing. On the other hand, K-nirsh yielded an image with more disBnct 

Bssue boundaries, but with noise and pixel intensity distribuBons that clearly differed from the 

ground truth. Complete metrics of reconstrucBon performance are shown in Table 7.3. 

 

Figure 7.6 Intermediate pipeline reconstrucBon outputs for each of the top 4 submissions in an 
example sagiPal slice, as well as ground truth, with reconstrucBon metrics displayed for the 
volume including the visualized slice. For this volume, UglyBarnacle delivers the highest quality 
reconstrucBon, followed closely by NYU-Knee AI, recovering sharpness and many fine details 
lost to aliasing during 8× Poisson undersampling. K-nirsh delivers an intermediate 
reconstrucBon that was poor by standard reconstrucBon metrics, but perceptually, made 
boundaries between Bssues much more disBnct and perhaps easier to segment. This is likely 
due to K-nirsh fine-tuning the reconstrucBon and segmentaBon networks in an end-to-end 
manner, unlike other top submissions. 
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Table 7.3 Standard reconstrucBon metrics for intermediate pipeline outputs from all top 
submissions across the released test set (n = 50). Results are presented mean ± 1 s.d. The top 
pipeline by each of these metrics was UglyBarnacle, shown in bold. 

Team nRMSE PSNR SSIM 
K-nirsh 31.2 ± 4.26 19.7 ± 0.68 0.217 ± 0.059 

UglyBarnacle 2.07 ± 0.25 31.5 ± 0.87 0.693 ± 0.043 
FastMRI-AI 3.05 ± 0.68 29.8 ± 0.99 0.681 ± 0.061 

NYU-Knee AI 2.18 ± 0.33 31.3 ± 0.87 0.672 ± 0.029 
 
7.4.3 Comparison of Reconstruc4on and Segmenta4on Performance 

Example slices of predicted segmentaBons, overlaid on intermediate reconstrucBon outputs, 

are shown for all four teams alongside ground truth in Figure 7.7. For each reconstrucBon 

metric, and for each of the top 4 performing pipelines, weighted DSC was ploPed against the 

reconstrucBon metric in Figure 7.8, with Pearson’s correlaBon coefficients being calculated for 

each pair. The highest correlaBon coefficient in this study was between nRMSE and weighted 

DSC for the NYU-Knee AI submission, at 0.284, with all other correlaBon coefficients being 

substanBally lower. This indicates that, at the absolute best, there was a weak correlaBon 

between segmentaBon and reconstrucBon metrics, and in most cases, there was a negligible or 

even slightly negaBve correlaBon between the two. 
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Figure 7.7 SagiPal slice segmentaBons overlaid on intermediate pipeline reconstrucBons, with 
reconstrucBon and segmentaBon metrics for the volume including the slice displayed. 
Background anatomy slices were thus blurrier for some teams than for others, as different 
teams had different quality intermediate pipeline reconstrucBon outputs. In this example, 
segmentaBon quality was strong for all top submissions, with only some overesBmaBon of 
carBlage thickness from the NYU-Knee AI pipeline being apparent. K-nirsh maintains a slight 
edge over UglyBarnacle in reconstrucBon metrics for this volume. 
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Figure 7.8 ReconstrucBon metrics (nRMSE, PSNR, SSIM) ploPed against weighted DSC for each 
of the top four submissions, with each point denoBng a subject in the test set (n = 50). Pearson’s 
correlaBon coefficient was calculated for each pair and is displayed on the chart, indicaBng that 
at absolute best, there was a weak correlaBon between segmentaBon and reconstrucBon 
metrics, and that in most cases, there was no or even negaBve correlaBon. 

 
7.4.4 Biomarker Analysis: Car4lage Thickness 

Example femoral carBlage thickness maps projected onto the femur are shown in Figure 7.9, 

with corresponding femoral carBlage segmentaBon DSCs. These results elucidate added 

complexity: while FastMRI-AI and NYU-Knee AI lagged K-nirsh and UglyBarnacle in weighted 

DSC, they did a bePer job preserving certain thick and thin carBlage regions. QualitaBvely, 

however, these maps show K-nirsh, UglyBarnacle, and FastMRI-AI perform especially well in 

reconstrucBng carBlage thicknesses; Bland-Altman plots in Figure 7.10 confirm these results, 

showing carBlage thicknesses across all three compartments were predicted with minimal bias 

and strong fidelity to ground truth by these three teams. InteresBngly, bias in retaining femoral 

carBlage thicknesses decreased with larger ground truth carBlage thicknesses, regardless of 

submission. More granularly, while fastMRI-AI slightly overesBmated patellar carBlage 
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thicknesses, they also reflected the least bias in maintaining femoral carBlage thickness, 

showing some discordance between weighted DSC and downstream biomarker analysis. 

Contrarily, thicknesses were overesBmated by NYU-Knee AI, parBcularly in Bbiofemoral regions. 

In comparing the top two challenge finishers, K-nirsh and UglyBarnacle, biases in predicted 

carBlage thicknesses were slightly lower for UglyBarnacle in femoral and Bbial carBlage, and 

slightly higher in patellar carBlage (UglyBarnacle: femoral: 0.088 ± 0.07, Bbial: 0.036 ± 0.09, 

patellar: 0.114 ± 0.13; K-nirsh: femoral: 0.096 ± 0.08, Bbial: 0.049 ± 0.09, patellar: 0.097 ± 0.11; 

all in units of mm, mean ± 1 s.d.). However, paired t-tests showed none of these differences 

were significant even aEer Bonferroni correcBon (n = 50, α = 0.05). 

 

Figure 7.9 Femoral carBlage thickness maps projected onto voxel-based femoral bone shapes 
for each of the top 4 teams, as well as ground truth. While all submissions exhibit a degree of 
smoothness that is not reflected in the ground truth, the top three especially were strong in 
preserving carBlage thicknesses (K-nirsh, UglyBarnacle, FastMRI-AI), with NYU-Knee AI slightly 
overesBmaBng carBlage thicknesses but sBll preserving key features in some regions. 

 
CorrelaBon plots in Figure 7.10 showed K-nirsh, UglyBarnacle, and NYU-Knee AI yielded high 

Pearson correlaBon coefficients with respect to ground truth, indicaBng high-quality 
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segmentaBons. InteresBngly, UglyBarnacle showed a slightly higher correlaBon to ground truth 

carBlage thickness in Bbiofemoral carBlage than K-nirsh, despite lower DSCs in both Bssues. 

Visually, FastMRI-AI also appeared to show a strong correlaBon between predicted and ground 

truth carBlage thickness, although poor predicBon in one case appeared to severely degrade 

the correlaBon coefficient. 

 

Figure 7.10 Bland-Altman and correlaBon plots between predicted and ground truth carBlage 
thicknesses for each of the top 4 submissions, across each of the 3 carBlage compartments. The 
mean and standard deviaBons for these plots were calculated using the data points from K-
nirsh, UglyBarnacle, and FastMRI-AI, given the thickness overesBmaBons seen from NYU-Knee 
AI. The top three submissions saw minimal bias and strong fidelity to ground truth, while NYU-
Knee AI appeared to slightly overesBmate parBcularly Bbial and femoral carBlage thicknesses. 
That said, correlaBon plots showed strong correlaBons between predicted and ground truth 
thicknesses for K-nirsh, UglyBarnacle, and NYU-Knee AI. FastMRI-AI visually appeared to have 
strong correlaBon as well, but an outlier case appears to have severely degraded the correlaBon 
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coefficient. All told, these results collecBvely are quite promising that submissions are suitable 
for some downstream biomarker analysis. 

 
7.4.5 Biomarker Analysis: Bone Shape 

StaBsBcal shape modeling idenBfied 5 femoral shape features most contribuBng to variaBon 

within the test set, as illustrated in Figure 7.11: femoral volume, medial wall incline slope, 

condylar posterior protrusion, intercondylar notch width, and width-to-height raBo. Similar 

features were idenBfied for the patella and Bbia, and the correlaBon between submiPed bone 

shapes and ground truth was calculated for the top PCs (and thus, top shape features) for each 

submission. Those correlaBon coefficients are shown in Figure 7.12: while each of the top four 

submissions performed best in at least one of the 15 shape features across the 3 bones, 

generally K-nirsh had the strongest performance among the teams in the femur, while NYU-

Knee AI did best within the Bbia and patella. CorrelaBons for all teams were moderate to strong 

for many of the shape features. 
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Figure 7.11 Femoral bone shape features, visualized aEer staBsBcal parametrizaBon, with 
qualitaBve descripBons of shape features. Similar features were also generated for the Bbia and 
patella by the same procedure: extracBng Euclidean points of bone surfaces, converBng them 
into 1D vectors, using PCA to compress the resulBng matrix into a 5-dimensional one, and 
visualizing each of the PCs. 
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Figure 7.12 CorrelaBons along femoral, Bbial, and patellar bone shape features between 
submissions and ground truth. For many of the bone shape features, correlaBons were 
moderate to strong, indicaBng another means in which submiPed segmentaBons from 8× 
undersampled images at Bmes were suitable for downstream biomarker analysis. K-nirsh and 
NYU-Knee AI appeared to have strong correlaBons most consistently between predicted and 
ground truth bone shapes among the top 4 submissions. 

 
7.5 Discussion and Conclusions 

In this work, we describe the K2S challenge, which aims to reframe image reconstrucBon and 

image analysis as end-to-end rather than serial tasks, opening room for opBmizaBon. We 

curated the K2S dataset of 300 paBents that had undergone 3D fat-suppressed knee MRI 

acquisiBons, each with 3D raw k-space and bone and carBlage segmentaBons, challenging 

parBcipants to segment the Bssues directly from 8× undersampled k-space. A variety of 

soluBons were submiPed for the challenge. Some, like NYU-Knee AI and UglyBarnacle, spent 

considerable Bme opBmizing reconstrucBon networks, leveraging VN and CS frameworks to 

aPain high-quality reconstrucBons that served as inputs for standard segmentaBon networks. 

InteresBngly, FastMRI-AI did not pursue a reconstrucBon network at all, choosing exclusively to 

opBmize the segmentaBon network and develop unique postprocessing techniques, aPaining 
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very compeBBve results. K-nirsh, on the other hand, pretrained separate reconstrucBon and 

segmentaBon networks, performing end-to-end opBmizaBon of both for weighted DSC. The 

end-to-end opBmizaBon made this the only approach that implicitly opBmized reconstrucBon 

outputs for segmentaBon inputs, possibly playing a role in their top finish within the challenge. 

All told, however, all top submissions produced high-quality segmentaBons in knee carBlage and 

bone, maintaining accuracy with respect to ground truth despite working originally from 8× 

undersampled mulBcoil k-space. 

 

Beyond strong DSC metrics, predicted segmentaBons from all top submissions produced 

carBlage thickness maps that either maintained minimal bias or strong correlaBon to ground 

truth carBlage thicknesses. StaBsBcal shape modeling generated five features that captured the 

most variance in bone shape for each of the patella, Bbia, and femur. Each of the top 

submissions was most correlated to ground truth along at least one of the features, with 

moderate to good correlaBons seen in many, while K-nirsh and NYU-Knee AI generally showed 

the best performance in retaining bone shape. As such, for both bone and carBlage, all top 

submissions yielded carBlage and bone segmentaBons that to varying degrees were suitable for 

subsequent biomarker analysis. An added observaBon was that downstream biomarker 

performance did not always correspond with segmentaBon metrics: for instance, NYU-Knee AI 

delivered among the best correlaBons between predicted and ground truth bone shape 

features despite obtaining the poorest weighted DSC among the top 4 submissions, with 

segmentaBons that oEen appeared slightly dilated compared to ground truth but preserved 

shape. Likewise, UglyBarnacle slightly outperformed K-nirsh in correlaBons between 
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Bbiofemoral carBlage thicknesses and ground truth despite slightly poorer weighted DSCs, but 

its slightly reduced bias was not staBsBcally significant. This accentuates the complexity of 

segmentaBon as an image analysis task: there is no all-encompassing, perfect metric to quanBfy 

segmentaBon quality. 

 

A noteworthy finding from this challenge was that strong reconstrucBon performance was not a 

prerequisite for strong segmentaBon performance. K-nirsh had by far the poorest metrics of the 

submiPed pipeline reconstrucBon intermediates, poorer even than the root sum-of-squares 

coil-combined 8× undersampled images that FastMRI-AI used as pipeline inputs. Despite this, K-

nirsh yielded the strongest segmentaBon performance; visual inspecBon of K-nirsh 

reconstrucBons reveals sharp images that enhance contrast at boundaries between different 

Bssues such as carBlage/bone boundaries, yielding an image that is perhaps easier to segment 

than ground truth. This demonstrates that ideal features for radiologist interpretaBon of an MR 

image can differ from those opBmal for processing by an image analysis algorithm. That 

FastMRI-AI showed compeBBve segmentaBon performance despite directly segmenBng 

undersampled images is a testament to this. Furthering this, was there essenBally no correlaBon 

between reconstrucBon and segmentaBon metrics for any of the top submissions on a per-

paBent basis. There is therefore room for opBmizing image analysis algorithms when trained 

end-to-end with reconstrucBon algorithms instead of training separate algorithms and inferring 

serially. It is important to note that segmentaBon performance from undersampled k-space 

depends not only on the segmentaBon algorithm but also on the undersampling paPern, which 

was fixed in this challenge. More complicated joint opBmizaBon of segmentaBon and 
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undersampling can further improve end-to-end MRI reconstrucBon and image analysis 

outcomes [247,248]. 

 

Apart from the specific challenge, the curaBon and release of the K2S dataset marks an 

important iniBaBve that can seed advances in both reconstrucBon and image analysis algorithm 

development. To our knowledge, this is the largest released dataset that pairs raw k-space data 

with Bssue segmentaBons (n = 300 paBents, each with an 18-coil, 200-slice k-space). While a 

dataset of this size is more than sufficient for training most reconstrucBon algorithms, image 

annotaBon algorithms generally require considerably larger datasets to sufficiently represent 

rare anomaly classes. Our hope is that the release of this dataset can allow research groups to 

invesBgate objecBves such as ROI-specific image reconstrucBon, end-to-end reconstrucBon and 

segmentaBon, and more generally end-to-end reconstrucBon and image analysis tasks. 

 

This challenge had some limitaBons. First off, the k-space provided to challenge parBcipants had 

undergone R = 4 ARC, and thus does not reflect the full-length acquisiBon k-space that would 

ordinarily be undersampled. Given that the full 3D fat-suppressed CUBE sequence without ARC 

would require nearly 20 min for acquisiBon, this compromise was made to make curate a larger 

dataset suitable for algorithm development. AddiBonally, while substanBal work was done by 

challenge organizers and radiologists (J.L. and F.G.) in inspecBng segmentaBon quality, bone and 

carBlage segmentaBons ulBmately were model generated, and were not the gold-standard 

manual annotaBons that are desired for training models. It is therefore more accurate to 

describe the challenge objecBve as achieving on 8× undersampled data the same segmentaBon 
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performance seen on fully sampled data, albeit the laPer was carefully monitored and quality 

checked by radiologists. This tradeoff was taken to obtain a substanBally larger dataset than 

would have been possible if exclusively using manual segmentaBons. We would expect these 

findings to hold on a dataset with purely manual segmentaBons but confirming so would 

require inferring trained models on such a dataset. Furthermore, this challenge provided a fixed 

undersampling paPern: a center-weighted Poisson paPern with a fully-sampled center. This 

undersampling paPern was selected such that potenBal challenge soluBons would not be 

biased towards or against a given reconstrucBon backbone (i.e., compressed sensing, deep 

learning), but there conceivably would be room for further opBmizaBon of segmentaBons with 

respect to the undersampling paPern. AddiBonally, since all submissions were trained and 

tested on a fixed undersampling paPern, the robustness of soluBons to other R = 8 

undersampling paPerns was not assessed and is an important research objecBve for the 

reconstrucBon community to pursue. Lastly, there is no perfect soluBon to the gradient 

inhomogeneity correcBon step (GRADWARP) in the standard processing pipeline of raw scanner 

data. Once applied, correspondence between k-space and image space is lost, meaning ordinary 

DICOM image segmentaBons would not match k-space. In the K2S dataset, segmentaBons were 

provided on images prior to GRADWARP applicaBon, meaning that gradient coil 

inhomogeneiBes manifested themselves into segmentaBons. Due to the difficulty in 

backpropagaBng through GRADWARP, this was viewed as the easier choice for pipeline 

development, with the understanding that resulBng segmentaBons could be processed by 

GRADWARP to perform necessary correcBons. Nonetheless, this is an unavoidable limitaBon 



 115 

that must be discussed at greater length for this and other datasets that may be released 

pairing k-space and Bssue segmentaBons. 

 

In conclusion, the K2S challenge curated a landmark dataset, tasking parBcipants with 

segmenBng bone and carBlage from 8× undersampled knee MRI images. Through it, the top 

four teams produced submissions that yielded high-quality segmentaBons, showing highly 

varied methodologies and very strong performance that was suitable for downstream 

biomarker analysis in carBlage thickness and bone shape assessments. Through the submissions 

of two teams with unconvenBonal approaches—K-nirsh and FastMRI-AI—we clearly see that 

features required for radiologist annotaBon differ from those required for DL model input, there 

is room for image analysis pipeline opBmizaBon when trained end-to-end with reconstrucBon, 

and strong reconstrucBon is not a prerequisite for strong segmentaBon. These findings can 

moBvate similar efforts for end-to-end opBmizaBon of image analysis and reconstrucBon tasks, 

not only for segmentaBon, but for anomaly detecBon, prognosis predicBon, bone shape 

assessment, and others. 
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Chapter 8 - Synthe4c Inflamma4on Imaging with PatchGAN Deep Learning Networks 

The following has been reformaPed and reproduced with full permission from the publisher. It 

appeared in Bioengineering as: 

Tolpadi, A.A., Luitjens, J., Gassert, F.G., et al. SyntheBc InflammaBon Imaging with PatchGAN 

Deep Learning Networks. Bioengineering 10:516 (2023). 

hPps://doi.org/10.3390/bioengineering10050516 

 

8.1 Abstract 

Background: Gadolinium (Gd)-enhanced MagneBc Resonance Imaging (MRI) is crucial in several 

applicaBons, including oncology, cardiac imaging, and musculoskeletal inflammatory imaging. 

One use case is rheumatoid arthriBs (RA), a widespread autoimmune condiBon for which Gd 

MRI is crucial in imaging synovial joint inflammaBon, but Gd administraBon has well-

documented safety concerns. As such, algorithms that could syntheBcally generate post-

contrast peripheral joint MR images from non-contrast MR sequences would have immense 

clinical uBlity. Moreover, while such algorithms have been invesBgated for other anatomies, 

they are largely unexplored for musculoskeletal applicaBons such as RA, and efforts to 

understand trained models and improve trust in their predicBons have been limited in medical 

imaging.  

 

Methods: A dataset of 27 RA paBents was used to train algorithms that syntheBcally generated 

post-Gd IDEAL wrist coronal T1-weighted scans from pre-contrast scans. UNets and PatchGANs 

were trained, leveraging an anomaly-weighted L1 loss and global generaBve adversarial network 
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(GAN) loss for the PatchGAN. Occlusion and uncertainty maps were also generated to 

understand model performance.  

 

Results: UNet syntheBc post-contrast images exhibited stronger normalized root mean square 

error (nRMSE) than PatchGAN in full volumes and the wrist, but PatchGAN outperformed UNet 

in synovial joints (UNet nRMSEs: volume = 6.29 ± 0.88, wrist = 4.36 ± 0.60, synovial = 26.18 ± 

7.45; PatchGAN nRMSEs: volume = 6.72 ± 0.81, wrist = 6.07 ± 1.22, synovial = 23.14 ± 7.37; n = 

7). Occlusion maps showed that synovial joints made substanBal contribuBons to PatchGAN and 

UNet predicBons, while uncertainty maps showed that PatchGAN predicBons were more 

confident within those joints.  

 

Conclusions: Both pipelines showed promising performance in synthesizing post-contrast 

images, but PatchGAN performance was stronger and more confident within synovial joints, 

where an algorithm like this would have maximal clinical uBlity. Image synthesis approaches are 

therefore promising for RA and syntheBc inflammatory imaging. 

 

8.2 Introduc4on 

Rheumatoid arthriBs (RA) is a widespread autoimmune disorder observed in 0.5–1.0% of the 

American populaBon, with incidence rates being two to three Bmes higher in women than in 

men [44]. RA mainly affects the joints, typically the hands and feet, and is characterized by 

synovial joint inflammaBon. In the joints it can lead to bone Bssue erosions and soE Bssue 

breakdown, oEen inducing sBffness and debilitaBng pain, but may also show systemic effects in 
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the skin, heart or lungs if leE untreated [45]. It is typically diagnosed through a holisBc 

assessment that begins with a medical history examinaBon, paying parBcular aPenBon to pain, 

swelling, peripheral joint pain, and swelling/tenderness, all of which can be indicaBve of RA. 

Furthermore, laboratory tests for rheumatoid factor (RF), C-reacBve protein (CRP), and 

erythrocyte sedimentaBon rate (ESR) are oEen performed to confirm other RA indicaBons. 

Lastly, medical imaging plays a crucial role in disBnguishing inflammatory phenotypes, providing 

addiBonal evidence to confirm RA [249]. Once diagnosed, RA is usually treated with Disease-

Modifying AnB-RheumaBc Drugs (DMARDs), which see 75–80% of paBents aPain intended 

treatment outcomes, but 90% when iniBated in the early stages of RA [47]. Robust tools such as 

imaging are thus necessary for screening and diagnosing RA at early stages, maximizing the 

odds of successful treatment. 

 

Radiographs have tradiBonally been the clinical standard imaging modality for RA diagnosis, as 

their acquisiBon is quick, inexpensive, and widely accessible, yielding two-dimensional images 

that are effecBve in visualizing late-stage bone erosions [250]. In recent years, however, 

MagneBc Resonance Imaging (MRI) has gained prominence despite its higher costs and longer 

acquisiBon Bme, producing three-dimensional anatomic images with excellent depicBon of soE 

Bssues and sharp details [251]. As a result, it has emerged as a superior opBon for visualizing 

early-stage bone erosions and bone marrow edema (BME) that can result from RA [46]. An 

added advantage of MR is the ability to administer contrast agents such as Gadolinium (Gd) 

prior to scans, altering the magneBc properBes of underlying Bssue to improve the visualizaBon 

of numerous pathologies [252]. In RA imaging, a post-contrast Gd MRI can bePer disBnguish 
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acBve soE Bssue RA sites in joints, such as synoviBs, from general effusion [253], conveying 

criBcal informaBon that convenBonal MRI cannot provide [254]. However, Gd administraBon 

has long-term concerns such as deposiBon in brain and bone [255,256], is contra-indicated in 

paBent subgroups such as those with renal diseases and pregnant women [257], and, more 

generally, adds scan Bme, cost, and paBent discomfort to the imaging protocol. As such, if post-

contrast MR images could be syntheBcally generated without Gd administraBon, the 

implicaBons for RA diagnosis and other musculoskeletal (MSK) inflammatory condiBons or even 

sarcomas would be significant. 

 

The problem posed by this clinical context is one of “image synthesis,” or the designing of 

algorithms to generate images from some input. While these inputs can be mulBmodal, 

including text or patches of images, the focus here will be on synthesis algorithms that accept 

full image inputs [258,259]. For image synthesis tasks, deep learning (DL), and parBcularly 

convoluBonal neural networks (CNNs) [260], have taken on an outsized role in recent years. 

When trained with sufficiently large datasets, CNN filters can be opBmized for a given task, with 

filters in early network layers typically being sensiBve to generic features such as edges, while 

those in later layers are typically sensiBve to far more complex, task-specific features [261]. The 

UNet is a commonly used image synthesis algorithm in which inpuPed images are encoded by 

convoluBonal filters into a low-resoluBon, high-dimensional representaBon that is decoded 

using deconvoluBonal filters, yielding an output image. Originally designed for segmentaBon, 

the UNet has seen substanBal applicaBon in image synthesis for its ease of training and 

relaBvely low dataset size requirements compared to other DL approaches [116]. Another 
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prominent approach is generaBve adversarial networks (GANs), where an image-to-image 

translaBon network such as a UNet (“generator”) is paired with a discriminator network that is 

trained to disBnguish between syntheBc and real images [262]. By seHng up training as a min-

max game in which generator and discriminator networks conBnually try to fool one another, 

substanBally sharper images can be obtained, although GANs are more difficult to train and are 

prone to hallucinaBng arBfacts compared to convenBonal approaches [263]. Other approaches 

such as variaBonal autoencoders (VAEs) and transformer networks have been invesBgated in 

this space [264,265]. 

 

These methods have seen considerable applicaBon for medical imaging tasks. In brain MRI, 

image synthesis has been studied for the reducBon or eliminaBon of the Gd dosage required for 

post-contrast tumor imaging. In several studies, standard UNet or encoder-decoder style 

architectures accepted reduced-dose Gd post-contrast images and/or other MR sequences as 

inputs, were trained to predict full-dose post-contrast Gd images, and quanBfied model efficacy 

through radiologist assessment or the suitability of syntheBc images for downstream tasks 

[123–125]. Another approach in eliminaBng Gd dosage for brain MRI used an innovaBve training 

scheme, training a network for tumor detecBon and passing convoluBonal feature maps from 

that network as inputs to a convenBonal image synthesis architecture. This allowed the image 

synthesis architecture to focus on pathologic regions when opBmizing parameters to produce 

syntheBc post-contrast images [266]. Some approaches beyond image synthesis have also been 

invesBgated to eliminate the need for Gd administraBon. For instance, Gd is administered in 

cardiac MRI to idenBfy regions of myocardial infarcBon. Here, DL pipelines have been developed 
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to accept exclusively non-contrast MR images as inputs, localize the leE ventricle, extract 

moBon-based features inherent to cardiac MRI, and integrate both to predict if a paBent 

suffered from infarcBon [126,267]. On the other hand, features from non-contrast MR 

sequences such as syntheBc MRI and diffusion weighted imaging (DWI) have proven effecBve in 

differenBaBng benign and metastaBc retropharyngeal lymph nodes, a task that usually requires 

a post-contrast MRI [268]. Also worthy of menBon are recent image synthesis applicaBons in 

biomedical imaging outside of MRI: in histopathology, standard image synthesis generator 

networks have been paired with mulBple discriminators to generate syntheBc stained images, 

while in microscopy, GAN image synthesis pipelines have been applied for syntheBc cell 

painBng, idenBfying cellular components from brigh�ield microscopy images [269,270]. 

 

These works mark substanBal progress, with well-validated frameworks yielding promising 

results on a wide variety of biomedical image synthesis tasks, including post-contrast MR image 

synthesis. That said, there are some clear gaps in the literature. For RA imaging, the authors are 

not aware of any previous work developing post-contrast MR image synthesis algorithms. Such 

algorithms would have immense clinical uBlity, synthesizing post-Gd images that could be used 

to idenBfy synoviBs and acBve inflammaBon sites in RA paBents, while eliminaBng the risks 

associated with administering Gd. More generally, Gd is used in brain imaging to idenBfy tumors 

and disBnguish tumor types, while in cardiac imaging it helps idenBfy myocardial infarcBon 

sites, among others; in MSK, however, it is administered to image inflammaBon. SyntheBc 

inflammatory MSK imaging has seen liPle to no invesBgaBon in previous works. ParBcularly in 

comparison with brain applicaBons, syntheBc Gd dosage reducBon in MSK applicaBons, such as 



 122 

wrist imaging, brings about addiBonal challenges such as severe moBon arBfacts, reduced 

signal-to-noise raBo (SNR), and considerably smaller datasets [271]. Lastly, despite all these 

image synthesis works in biomedical applicaBons, efforts to understand the basis of model 

predicBons have been limited; this work would be criBcal for radiologists to gain confidence in 

model predicBons, a prerequisite for eventual clinical deployment. As such, post-contrast MSK 

MR image synthesis confers numerous unique challenges that must be managed 

methodologically, and has been largely unexplored, making it ripe for an iniBal proof-of-concept 

study. 

 

This is precisely the niche this work seeks to fill: the purpose of this study was to develop DL 

pipelines that generate syntheBc post-contrast wrist MR images from their pre-contrast 

counterparts [272], thereby marking the first known effort for syntheBc MSK inflammatory 

imaging. We use image quality metrics to assess the diagnosBc and perceptual quality of model-

generated syntheBc post-contrast images relaBve to true post-contrast images. We also 

generate occlusion and uncertainty maps to bePer understand model performance, making its 

predicBons more trustworthy. More specifically, the contribuBons and novelty of our work are 

as follows: 

 

1. To our knowledge, this proof-of-concept study is the first applicaBon of DL techniques 

for generaBng syntheBc post-contrast images for MSK inflammatory imaging. 
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2. We show that our trained pipelines perform strongly with regards to predicBng post-

contrast image appearance, parBcularly in regions afflicted with synoviBs, where these 

models would see the most clinical uBlity. 

3. We invesBgate the deconvoluBon operator, checkerboarding arBfacts that can be 

intrinsic to architectures that use it, and how they surface in convenBonal and 

adversarial network training schemes. 

4. We conduct a rigorous analysis of model predicBons, idenBfying regions in pre-contrast 

image inputs that were most important to predicted post-contrast images, and regions 

in which predicBons were most uncertain. This provides a straigh�orward framework 

that can be used to understand predicBons made by image synthesis architectures in 

biomedical imaging applicaBons. 

 

8.3 Methods 

8.3.1 Study Group 

All studies performed in this retrospecBve study were Health Insurance Portability and 

Accountability Act (HIPAA) compliant, approved by the UCSF InsBtuBonal Review Board (Human 

Research ProtecBon Program, IRB# 12-10418) and registered under Clinical Trial NCT01773681. 

Informed consent was obtained from all study parBcipants. Twenty-seven UCSF paBents with RA 

were recruited that met the following criteria: at least 18 years old and fulfilled the 2010 

ACR/EULAR criteria for the classificaBon of RA. PaBents were treated with either methotrexate 

or a combinaBon of methotrexate and tumor necrosis factor alpha inhibitors (anB-TNFα) based 

on RA disease acBvity; intended sample sizes were thus as large as feasible given the exclusion 
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criteria and the requirements of informed consent from study parBcipants. Data was collected 

from paBents as part of this cohort from 20 March 2014 to 8 February 2018. PaBents were 

imaged at baseline, 3-months, and 1-year follow-up Bme points, conducBng MR imaging, 

sampling serum to measure ESR, and recording clinical notes at each Bme point. As the dataset 

used in this study was from a UCSF clinical trial, data privacy and paBent confidenBality 

concerns prevent its public release, but codes used in generaBng results can be obtained from 

the authors upon reasonable request. 

 

8.3.2 MR Acquisi4on 

All paBents underwent a standardized protocol that included coronal T1 IDEAL scans pre- and 

post-Gd administraBon on a 3.0-T wide bore scanner (MR Discovery 750w, GE Healthcare, 

Waukesha, WI, USA) using 8-channel HD wrist array coils (GE Healthcare, Waukesha, WI, USA). 

Scans were done with acquisiBon matrices of 384 × 256 (n = 58) or 256 × 224 (n = 6), a slice 

thickness of 2 mm, a TR of 457 to 793 ms, and a TE of 10.06–12.48 ms. Complete acquisiBon 

parameters for both sequences can be found in Supp. Table B.1. 

 

8.3.3 Anomaly Segmenta4ons and Evalua4ons 

In post-contrast images, synoviBs was segmented in the following synovial joints: intercarpal 

joints, carpometacarpal joints, the radioulnar joint, and radiolunar joints. Regions with bone 

marrow edema (BME) were segmented in the following bones: the first to fiEh metacarpals, 

capitate, hamate, lunate, pisiform, scaphoid, trapezium, trapezoid, triquetrum, ulna, and radius. 

Anomaly segmentaBons were performed by a radiologist with over 30 years of experience (T.L.) 
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using the Image Processing Package (version 6.43.01) developed by the University of California, 

San Francisco Musculoskeletal QuanBtaBve Imaging Research Group. 

 

T.L. also quanBfied synoviBs severity for each paBent at each Bme point with the Rheumatoid 

ArthriBs MagneBc Resonance Imaging Score (RAMRIS) for synoviBs [273], a 0–9 scale in which a 

higher score is associated with more severe imaging findings of RA. 

 

Lastly, bounding boxes delineaBng wrist Bssue and background were drawn using the soEware 

MD.ai by a radiologist with two years of experience (J.L.), such that reconstrucBon metrics for 

syntheBc post-Gd images could be evaluated solely in wrist Bssue and not be sensiBve to 

textures and noise in background pixels. 

 

8.3.4 Image Preprocessing 

Six of 64 acquired imaging volumes had slices that were 256 × 256 pixels, with the remainder 

being 512 × 512; the slices of these six volumes were upsampled to 512 × 512 using third-order 

b-spline interpolaBon. Pre-Gd volumes were then registered to post-Gd volumes with a three-

step process: (1) translaBon, (2) affine, and (3) third order b-spline registraBon (maximum 

iteraBons = 256, 256, 512, respecBvely; Advanced MaPes Mutual InformaBon [274] criterion for 

all). B-spline registraBon was only done for scans where the structural similarity index (SSIM) 

[228] between pre and post-Gd acquisiBons was above 0.5; other scans had moBon arBfacts so 

severe that non-rigid registraBon was not possible. All registraBons were performed using 

SimpleITK 2.0.0 in Python (version 3.7.11) [275–277]. Example slices before and aEer 
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registraBon can be found in Supp. Fig. B.1. Pixel values in the slices of pre-Gd scans were scaled 

such that the middle 95% of pixel values were between 0 and 1. The unscaled pixel values in 

pre-Gd slices that corresponded to 0 and 1 in the scaled slices were also mapped to 0 and 1 in 

the post-Gd slices, thereby scaling post-Gd slices while preserving the relaBve enhancement 

across the volume. 

 

8.3.5 Data Par44oning 

The data were parBBoned into training, validaBon, and test datasets, spliHng such that all scans 

from a given paBent were in only one of the three datasets. Furthermore, four paBents without 

imaging findings of synoviBs were in the dataset (RAMRIS synoviBs of 0); splits ensured at least 

1 of these paBents were in each of training, validaBon and test. Splits were intended to 

maintain similar age, BMI, and ESR across the three datasets, but the relaBvely small overall 

dataset required some compromise. The full characterisBcs of the data splits can be found in 

Table 8.1. 

Table 8.1 Full Dataset and Splits InformaBon. Demographics and paBent informaBon for the 
enBre dataset and splits into training, validaBon and test. All data are presented as mean ± 1 
s.d. The dataset consisted of 27 paBents diagnosed with RA, each of whom were scanned up to 
three Bmes (baseline, 3-month, and 1-year follow-up aEer one of two treatments). Data 
spliHng was done at a paBent level while ensuring each of the training, validaBon and test 
datasets included at least one paBent with a RAMRIS synoviBs of 0. The small dataset size and 
spliHng condiBons caused slight imbalances in demographic and health variables across the 
splits. 

 Train Validation Test Full 
Age 53.38 ± 13.50 45.94 ± 16.16 52.12 ± 18.60 52.41 ± 14.65 
BMI 29.35 ± 8.90 25.32 ± 3.06 28.33 ± 1.26 28.79 ± 8.03 

ESR [mm/hr] 29.06 ± 26.07 32.00 ± 24.00 27.00 ± 20.12 29.05 ± 25.32 
RAMRIS Synovitis 4.57 ± 2.13 2.33 ± 2.62 1.67 ± 1.25 4.00 ± 2.37 

Slices 783 87 105 975 
Volumes 51 6 7 64 
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8.3.6 Network Architecture 

All network architectures were implemented in PyTorch (version 1.10.2). Two-dimensional UNet 

[116] architectures were used as image-to-image synthesizers in our approaches, accepBng as 

input a pre-processed pre-Gd coronal T1 IDEAL slice and outpuHng the corresponding syntheBc 

post-Gd slice. A baseline UNet model was trained, and in a separate pipeline version, an 

idenBcal UNet was treated as a PatchGAN generator and paired with a PatchGAN discriminator 

[278]. The PatchGAN discriminator accepted concatenated inputs of the pre-processed pre-Gd 

slice and either the corresponding syntheBc post-Gd slice or the ground truth post-Gd slice, 

yielding a 16 × 16 output in which each output pixel had a corresponding recepBve field “patch” 

in the concatenated inputs. The 16 × 16 outputs were trained to predict whether syntheBc post-

Gd generator outputs were real or syntheBc. MulBple baseline UNet and PatchGAN generator 

versions were trained: one set in which all steps of the UNet/generator decoding path used a 

deconvoluBon operator, and another in which the deconvoluBons were replaced by either a 2 × 

2 bilinear upsampling interpolaBon operator followed by a convoluBon [279], or just the 2 × 2 

bilinear interpolaBon. The exact network architecture and layers can be seen in Figure 8.1. 

Weights for the UNets, UNet generators, and PatchGAN discriminators were iniBalized randomly 

to have a mean of 0 and a standard deviaBon of 0.02. 
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Figure 8.1 Network Architectures. The baseline UNet and PatchGAN generators used idenBcal 
architectures, while the PatchGAN pipeline also trained a discriminator whose architecture is 
pictured. All generator encoding path convoluBons had a stride of 2 and a padding 1, while all 
decoding path convoluBons had a stride and padding of 1. The first three discriminator 
convoluBons had a stride of 2 and a padding of 1, while the final two had a stride and a padding 
of 1. For PatchGAN and UNet pipelines with deconvoluBons, all “2X interpolate, 4 × 4 Conv2D” 
steps would be replaced by 4 × 4 2D transposed convoluBons with a stride of 2 and a padding of 
1. All leaky ReLU layers had a negaBve slope of 0.2. 

 
8.3.7 Training Details 

The baseline UNets were trained with a weighted L1 loss, as shown below in EquaBon 8.1, with 

loss funcBon variables as follows: 𝑛 = number of samples; 𝑆C  = anomaly segmentaBon mask for 

slice i; 𝑦DX  = syntheBc post-Gd image slice; 𝑦C  = ground truth post-Gd slice. The anomaly 

segmentaBon mask 𝑆C  used to weight the L1 loss was calculated as follows: anomaly 

segmentaBons were turned into binary masks, any pixel more than 20 pixels from the nearest 

anomaly was set to a background value 𝜆E, pixels within anomalies were set to 1, and 

intermediate pixels were set to a range from 𝜆E to 1 based on their Euclidean distance from an 

anomaly segmentaBon. A sample distance map can be found in Supp. Fig. B.2. 
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𝐿FB+, = 	
1
𝑛Y𝑆C(𝑦DX − 𝑦C)

*

CG)

 

Equa4on 8.1 Baseline UNet, pixel-based loss funcBon. Variables: 𝑛 = number of samples; 𝑆C  = 
anomaly segmentaBon mask for slice i; 𝑦DX  = syntheBc post-Gd image slice; 𝑦C  = ground truth 
post-Gd slice. 
 
On the other hand, PatchGAN generators were trained with the same weighted L1 loss and a 

GAN loss, as shown in EquaBon 8.2, while PatchGAN discriminators were trained with the loss 

funcBon shown in EquaBon 8.3. AddiBonal variables for these loss funcBons are as follows: 𝑥C  = 

pre-Gd image slice; 𝐷(𝑎, 𝑏) = PatchGAN discriminator output for concatenated inputs a and b; 

𝜆1#  = anomaly-weighted L1 loss weighBng for generator; 𝜆@AB = discriminator loss weighBng for 

generator. With this loss funcBon setup, the discriminator was trained to predict values of 1 

when fed ground truth data and 0 when fed generator predicBons, while the generator was 

trained to do the opposite. For any training batch, the following scheme was followed: (1) 

syntheBc post-Gd generator predicBons were calculated; (2) pre-Gd, syntheBc post-Gd, and 

ground truth post-Gd images were used to calculate 𝐿HCI and update discriminator parameters; 

(3) syntheBc post-Gd generator predicBons and corresponding discriminator outputs were 

recalculated with new model parameters, 𝐿@+* was calculated, and generator parameters were 

updated; (4) steps (1) and (2) were repeated again to update the discriminator parameters. This 

approach of two discriminator steps and one generator step per training batch was empirically 

useful in yielding similar generator and discriminator strength during training. 

𝐿@+* = 	
1
𝑛Y𝜆1#𝑆C(𝑦DX − 𝑦C)

*

CG)

− 	 𝜆@ABlog𝐷(𝑥C , 𝑦DX) 

Equa4on 8.2 PatchGAN generator loss funcBon. Variables: 𝑛 = number of samples; 𝑆C  = anomaly 
segmentaBon mask for slice i; 𝑥C  = pre-Gd image slice; 𝑦DX  = syntheBc post-Gd image slice; 𝑦C  = 
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ground truth post-Gd slice; 𝐷(𝑎, 𝑏) = PatchGAN discriminator output for concatenated inputs a 
and b; 𝜆1#= anomaly-weighted L1 loss weighBng for generator; 𝜆@AB = discriminator loss 
weighBng for generator. 

𝐿HCI = 	
1
2𝑛Ylog𝐷(𝑥C , 𝑦DX) − 𝑙𝑜𝑔𝐷(𝑥C , 𝑦C)

*

CG)

 

Equa4on 8.3 PatchGAN discriminator loss funcBon. Variables: 𝑛 = number of samples; 𝑥C  = pre-
Gd image slice; 𝑦DX  = syntheBc post-Gd image slice; 𝑦C  = ground truth post-Gd slice; 𝐷(𝑎, 𝑏) = 
PatchGAN discriminator output for concatenated inputs a and b. 
 
Baseline UNets, PatchGAN generators, and PatchGAN discriminators were all trained with a 

learning rate of 0.001, an Adam opBmizer (β1 = 0.5, β2 = 0.999), and batch size of 1 to ensure 

that full batches fit on a single GPU [97]. All pipelines were trained on an NVIDIA Titan Xp 12 GB 

GPU. For baseline UNet and PatchGAN generator inputs, the following augmentaBons were 

done on the training set, each with a probability 0.5: [−2,2] degree random rotaBon, [−10,10] 

pixel random translaBon along both direcBons in a slice, [−5,5] percent random zoom, and 

Gaussian noise addiBon with a mean of 0 and standard deviaBon of 0.02. Training was done in 

two stages: iniBally for 10 epochs in a hyperparameter search to opBmize 𝜆@AB and 𝜆E (more 

thoroughly described in the following subsecBon), and finally for 35 epochs with opBmized 

parameters. With 783 pairs of pre and post-Gd slices seen in the training set, this means that 

27,405 total slices were seen by all selected models during training (3,045 addiBonal slices for 

validaBon). 

 

8.3.8 Hyperparameter Search and Model Selec4on 

For each of the four pipelines trained (UNet and PatchGAN, both with and without 

deconvoluBons), grid hyperparameter searches were carried out to opBmize the background 

pixel weighBng in segmentaBon distance maps (0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2) and 𝜆@AB 
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(0.001–0.01, spaced by 0.001). 𝜆1#  was held constant at 1 for all searches. In hyperparameter 

searches, models were trained for 10 epochs and model performances were evaluated on the 

validaBon set. The most promising parameter set for each of the four pipelines was then trained 

from scratch for 35 epochs to yield the final models. 

 

The selecBon of opBmal parameter sets was done through a combinaBon of standard 

reconstrucBon metrics and visual inspecBon. For each of the four pipelines, SSIM and 

normalized root mean square error (nRMSE) were used to screen for top candidate models, 

whose performance on the validaBon set was then assessed by visual inspecBon. The primary 

criteria for evaluaBng model performance were (1) the synthesis of new informaBon not 

obvious from pre-Gd scans, (2) the preservaBon of sharp textures in syntheBc post-Gd scans 

compared to ground truth post-Gd scans, and (3) the absence of obvious algorithm-generated 

arBfacts that may cause a radiologist to lose confidence in the reconstructed image quality. 

 

8.3.9 Model Performance Evalua4on 

The assessment of whether to use or omit the deconvoluBons in the UNet decoding path was 

done visually for the UNet and PatchGAN approaches; the best performing models for both 

methods were then used for a more rigorous analysis. The quanBtaBve assessment of syntheBc 

post-Gd image quality was performed using three standard reconstrucBon metrics: SSIM, 

nRMSE, and peak signal-to-noise raBo (PSNR) [227]. Due to the slight misregistraBon of 

corresponding slices that may have been present even aEer previous preprocessing, metrics 

were presented both with and without slice-wise registraBon: ((1) 256-iteraBon translaBon, (2) 
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256-iteraBon affine, and then (3) 512-iteraBon third order b-spline with a transformaBon 

bending penalty of 500, all with the Advanced MaPes Mutual InformaBon criterion). The slice-

wise registraBon was solely for the calculaBon of model performance metrics; only unregistered 

model outputs are presented in figures. The reconstrucBon metrics were evaluated per-volume 

in the following regions: full imaging volumes, wrist anatomy bounding boxes, and synovial 

joints. While these metrics do not correlate well with gold-standard radiologist annotaBons 

when evaluated on full image volumes or slices, they are widely used in the image 

reconstrucBon and image synthesis literature, and thus facilitate easy comparison of model 

performance with those performing similar tasks [141,142]. Furthermore, our dataset affords us 

wrist and anomaly bounding boxes; the calculaBon of these metrics specifically in these 

regions—one discarding background, and another focusing specifically on Bssues of highest 

clinical interest when administering Gadolinium—can overcome the limitaBons of these metrics 

when used convenBonally, affording them more clinical significance. 

 

8.3.10 Enhancement Maps 

For UNet, PatchGAN, and ground truth post-Gd images, pixels among the top 10% in predicted 

signal enhancement were idenBfied. Enhancement maps were shown as follows: pre-Gd slice, 

post-Gd slice, and post-Gd slice with the degree of enhancement overlaid for the most 

enhancing pixels (top 10%), colored by the predicted extent of the enhancement. For visual 

consistency, colormap ranges for the enhancement map were calculated with respect to the 

enhancement observed in ground truth, with the same ranges being used for the maps 

regardless of algorithmic approach. 



 133 

 

8.3.11 Occlusion Maps 

For each slice, pre-contrast IDEAL T1 images were pre-processed using previously described 

techniques, which were used as inputs for UNet and PatchGAN generator architectures, 

generaBng network outputs. The pixel values were then set to zero in a 32 × 32 occlusion, and 

the occluded image was fed through the same architecture, recording the absolute difference in 

predicted pixel magnitude as compared to the unoccluded image. This procedure was repeated 

for all 32 × 32 occlusions throughout the slice (with a stride length of 8), summing up the 

predicted changes in pixel magnitudes in an aggregate array and dividing each pixel by the 

number of occlusions in which it was contained. The aggregate array values were then min-max 

normalized, divided by pre-contrast IDEAL T1 pixel values (to incorporate into resulBng maps 

informaBon for regions other than areas of high pixel intensity), and again min-max normalized, 

yielding occlusion maps. For display purposes, the maps are thresholded such that only the top 

5% of the occlusion map magnitudes were visualized. 

 

8.3.12 Uncertainty Maps 

The uncertainty maps of the model predicBons were generated by corrupBng the latent 

representaBons of a given slice [280]. Namely, for 100 iteraBons, Gaussian noise with a mean of 

0 and a standard deviaBon of 0.5 was added to the encoding path outputs at each of the eight 

levels (seven layers that were concatenated to the corresponding decoding path levels and the 

boPom of the encoder). The variance of the predicted pixel intensiBes from these 100 

perturbed latent spaces was then calculated, min-max normalized, and thresholded for display 



 134 

purposes such that only the 15% most variant pixels would display, thereby generaBng 

uncertainty maps for each slice. 

 

8.3.13 Sta4s4cal Analysis 

To assess if syntheBc post-Gd scans provided significant improvements over baseline pre-Gd 

images, 2-sample t-tests [281] were conducted. On a per-scanned-volume-basis, these tests 

compared the metrics of model outputs (nRMSE, SSIM, PSNR) to those of the pre-Gd scanned 

volumes; a Bonferroni correcBon [282] was applied when necessary to adjust for mulBple 

comparisons. 

 

8.4 Results 

The hyperparameter search results are presented on the validaBon set, which was used to 

select opBmal values for 𝜆@AB and 𝜆E in training loss funcBons. The results from finalized 

models are presented on the test set, on which finalized models were run just one Bme. Key 

demographic informaBon on the test set is available in Table 8.1. 

 

8.4.1 Model Parameter Selec4on 

The reconstrucBon performance metrics evaluaBng the similarity of the syntheBc post-Gd 

model outputs to ground truth were calculated for all 70 tested hyperparameter combinaBons 

for each of the four model type configuraBons (PatchGAN and baseline UNet, with and without 

decoding path deconvoluBons). Sample results are shown for PatchGAN without generator 

deconvoluBons for SSIMs in Supp. Table B.2, and for nRMSEs in Supp. Table B.3. 
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Hyperparameter combinaBons with strong performances in either approach were carried onto a 

visual inspecBon of post-Gd synthesis performance, an example of which is shown for several 

hyperparameter combinaBons in Supp. Fig. B.3, also for the PatchGAN without deconvoluBons. 

Hyperparameters associated with the selected best models through this process are listed 

below: 

• PatchGAN, no deconvoluBons: λB=0.05, λGAN=0.01; 

• PatchGAN, with deconvoluBons: λB=0.15, λGAN=0.001; 

• UNet, no deconvoluBons: λB=0.05; 

• UNet, with deconvoluBons: λB=0.15. 

 

8.4.2 U4lity of Deconvolu4on Operators in UNet Decoders 

A comparison of sample syntheBc post-Gd slices with and without deconvoluBons in the UNet 

decoding path can be found in Figure 8.2, while a comparison of syntheBc post-Gd slices with 

and without deconvoluBons in the PatchGAN generator decoding path can be found in Figure 

8.3. In baseline UNet pipelines, checkerboarding arBfacts were apparent when deconvoluBons 

were used, parBcularly in regions of relaBvely homogenous pixel values, such as the muscles 

around the radius and ulna. When those deconvoluBons were replaced by 2 × 2 upsampling and 

standard convoluBons, the checkerboarding arBfacts were largely absent. These 

checkerboarding arBfacts were less apparent in both PatchGAN pipelines, but in the version that 

used deconvoluBons, they were evident at the extended boundaries of sharp changes in pixel 

intensiBes. Checkerboarding was thus best avoided by PatchGAN and UNet pipelines without 
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deconvoluBons, and these pipeline versions were selected as top-performing pipelines for both 

approaches in the remaining experiments. 

 

 

Figure 8.2 Network Performance with and without DeconvoluBons in Decoding Path of Baseline 
UNet. The performance on example test set slices for baseline UNet, with and without decoding 
path deconvoluBons, with zoomed insets. The use of decoding path deconvoluBons in baseline 
UNets induces checkerboarding arBfacts in larger regions of relaBvely homogenous pixel values, 
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such as the forearm muscle insets (parBcularly evident in paBent 1). When replaced with 
convoluBon and interpolaBon operators, these arBfacts were substanBally miBgated, making 
this the preferred architecture when training baseline UNets. 

 

 

Figure 8.3 Network Performance with and without DeconvoluBons in Decoding Path of 
PatchGAN Generator. The performance on example test set slices for PatchGAN pipelines, with 
and without generator decoding deconvoluBons, with zoomed insets. At sharp transiBons in 
pixel intensiBes, such as intersecBons of the radius and ulna with muscles displayed in insets, 
clear checkerboarding is observed when deconvoluBons are used. This was substanBally 
reduced when deconvoluBons were replaced with convoluBons and interpolaBon; PatchGAN 
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generators with these decoding path operaBons were thus used when training PatchGAN 
pipelines in the remainder of this paper. 

 
8.4.3 Standard Reconstruc4on Metrics Performance 

Standard reconstrucBon metrics across the test set are shown in Table 8.2 for full imaging 

volumes, wrist volumes, and synovial joints. Both syntheBc post-Gd volumes had showed 

significant improvements over pre-Gd volumes in PSNR and nRMSE, with the baseline UNet 

pipeline also showing significantly higher SSIM. While the UNet baseline model showed 

stronger performance in all metrics within full volumes and the wrist, the PatchGAN showed 

stronger reconstrucBon performance in synovial joints when measured by nRMSE and PSNR. 

Table 8.2 Coronal IDEAL Post-Gd T1 Image Synthesis Performance for Select Pipelines. Standard 
reconstrucBon metrics of the PatchGAN and baseline UNet pipelines were evaluated on a per-
paBent basis within the test set (n = 7) for enBre imaging volumes (“full”), wrist Bssue in each 
volume (“wrist”), and synovial joints. Metrics were calculated with and without three-stage 
nonlinear registraBon of syntheBc post-Gd volumes to ground truth. UNet pipelines reflect the 
stronger bulk reconstrucBon metrics in full volumes and within wrist Bssue, but the PatchGAN 
pipeline shows stronger performance in synovial joints in which an algorithm like this would see 
most clinical uBlity. Bonferroni-corrected 2-sample t-tests showed nearly all pipelines offered 
significantly bePer metrics than Pre-Gd baselines (n = 7; * p < 0.05, ** p < 0.01, *** p < 0.001). 

  Full Wrist Only Synovial Joints 

Pre-Gd 
nRMSE 26.30 ± 9.16 17.82 ± 6.31 260.24 ± 158.56 
PSNR 17.77 ± 0.95 22.99 ± 0.91 8.94 ± 1.64 
SSIM 0.60 ± 0.03 0.94 ± 0.00  

PatchGAN 
Registered  

nRMSE 6.72 ± 0.81*** 6.07 ± 1.22*** 23.14 ± 7.37** 
PSNR 20.77 ± 0.65*** 25.40 ± 1.24** 12.10 ± 1.34** 
SSIM 0.58 ± 0.02 0.94 ± 0.01  

PatchGAN 
Unregistered 

nRMSE 8.46 ± 1.03*** 7.68 ± 1.41** 28.96 ± 10.57** 
PSNR 19.85 ± 0.69*** 24.38 ± 1.21* 11.23 ± 1.52* 
SSIM 0.56 ± 0.02* 0.94 ± 0.01  

UNet Registered  
nRMSE 6.29 ± 0.88*** 4.36 ± 0.60*** 26.18 ± 7.45** 
PSNR 22.03 ± 0.60*** 27.13 ± 0.69*** 11.58 ± 0.93** 
SSIM 0.69 ± 0.02*** 0.95 ± 0.00**  

UNet Unregistered 
 

nRMSE 7.73 ± 1.03*** 5.38 ± 0.73*** 29.69 ± 7.60** 
PSNR 21.20 ± 0.62*** 26.20 ± 0.77*** 10.98 ± 0.87* 
SSIM 0.68 ± 0.02*** 0.95 ± 0.01*  
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8.4.4 Comparison of Reconstruc4on Performance Across Synovi4s Severity 

The image quality metrics for syntheBc post-Gd volumes are shown in Supp. Table A.4 for test 

set paBents without imaging findings of RA synoviBs (RAMRIS synoviBs = 0, n = 2) and those 

with imaging findings of RA synoviBs (RAMRIS synoviBs > 0, n = 5). Though the sample size limits 

the power of these conclusions, the metrics were slightly stronger for RAMRIS > 0 than for 

RAMRIS = 0. Visual examples of the reconstructed post-Gd volumes for a RAMRIS = 0 and 

RAMRIS > 0 paBent are shown in Figure 8.4. In the RAMRIS = 0 paBent with no imaging findings 

of synoviBs, the absence of synovial enhancement was captured by both pipelines, whereas in 

the RAMRIS > 0 paBent, UNet and PatchGAN pipelines illuminated similar enhancement 

paPerns in intercarpal regions, with the PatchGAN pipeline depicBng sharper enhancement 

paPern contours, parBcularly in the muscles and bones. 
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Figure 8.4 Visual Comparison of Reconstructed Post-Gadolinium Images with and without 
Imaging Findings of RA. Two example test set slices reconstructed by baseline UNet and 
PatchGAN pipelines for paBents with and without imaging findings of RA (RAMRIS = 3, RAMRIS = 
0, respecBvely). There was liPle to no enhancement in the synovial joints of the RAMRIS = 0 
paBent, which is captured by both pipelines, as seen in the zoomed insets. In the RAMRIS = 3 
paBent, the contours of enhancement in the zoomed inset were captured well within the 
intercarpal joint for both pipelines, with noise distribuBon paPerns bePer reconstructed by the 
PatchGAN. The reconstrucBon performance thus shows promise for paBents with and without 
imaging findings of RA. 
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8.4.5 Enhancement Maps Analysis 

Enhancement maps are shown for an example slice for the PatchGAN and UNet models, as well 

as ground truth, in Figure 8.5. The enhancement maps show that for the PatchGAN model, 

general magnitudes of uptake were much more accurately preserved than for the UNet, most 

notably across intercarpal joints. The predicted enhancement locaBons were visually very 

similar for both pipelines. 

 

8.4.6 Occlusion and Uncertainty Maps Analysis 

Occlusion maps for the UNet and PatchGAN pipelines in sample test set slices are shown in 

Figure 8.6. Encouragingly, occlusion maps for both pipelines show a substanBal focus on 

intercarpal joint regions in terms of their relaBve importance to the predicted pixel values. 

Peripherally to the intercarpal joint, the occlusion maps show some focus on muscles as well, 

perhaps slightly more so for the UNet than for the PatchGAN. On the other hand, the 

uncertainty maps are shown in an example test set slice for UNet and PatchGAN pipelines in 

Figure 8.7. The UNet shows considerable uncertainty in intercarpal joint region predicted pixel 

values, whereas for the PatchGAN, uncertainty was highest in the background and within the 

muscles. PatchGAN also showed some uncertainty in predicBons within bones such as the 

radius and ulna, as well as within bone marrow edema regions; notably, however, uncertainty 

was limited in the synovial joints. 
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Figure 8.5 Predicted Gadolinium Enhancement Maps with PatchGAN, UNet, and Ground Truth 
Models. Enhancement maps were generated by idenBfying the magnitude of pixel intensity 
increase from syntheBc or ground truth Post-Gd slices compared to corresponding pre-Gd slices, 
and by highlighBng the top 10%. While the performance in preserving the locaBon of these top 
10% of enhancing pixels was similar for the baseline UNet and PatchGAN, the enhancement 
magnitudes were far bePer preserved globally by the PatchGAN, including intercarpal regions 
suscepBble to synoviBs. These maps reflect the long-term vision of a pipeline like this: given a 
pre-Gd scan, the algorithm can idenBfy locaBons suscepBble to synoviBs and disBnguish acBve 
inflammatory sites from general effusion with addiBonal model development. 
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Figure 8.6 Occlusion Maps for PatchGAN and UNet Pipelines. Occlusion maps were generated 
for PatchGAN and UNet by occluding 32 × 32 patches of the input slices and assessing changes 
in predicted pixel values compared to unoccluded slices. Occlusion maps were then normalized 
by pre-Gd pixel intensiBes and thresholded to idenBfy hotspots most impac�ul in model 
predicBons. For UNet and PatchGAN, hotspots primarily included intercarpal joint regions. 
ParBcularly for the UNet, the maps also showed some emphasis on the forearm muscles. Given 
that the synovial joints are where an inflammatory imaging algorithm would see the most 
uBlity, the fact that both algorithms placed heavy emphasis on the intercarpal regions was 
promising, indicaBng that both focused on synoviBs-relevant regions to make predicBons. 
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Figure 8.7 Uncertainty Maps for PatchGAN and UNet Pipelines. Uncertainty maps for the 
PatchGAN generator and baseline UNet were generated by corrupBng the latent space of all 
encoding path outputs, adding Gaussian noise with a mean of 0 and a standard deviaBon of 0.5 
for 100 iteraBons, and calculaBng the variance in the predicted pixel magnitudes for each 
output pixel across these iteraBons. The most variant pixels were designated as the most 
uncertain ones. For the PatchGAN, the uncertain regions were mainly in the background, 
muscles, and within bones. For baseline UNet, the uncertainty maps placed a heavy emphasis 
on the intercarpal joint, with some residual highlighBng of background. In conjuncBon with 
occlusion maps, PatchGAN generator predicBons were more confident and less uncertain within 
intercarpal joint regions compared to the baseline UNet. Considering that the intercarpal joint is 
crucial for synoviBs diagnosis and is where both algorithms would be the most useful, the 
PatchGAN’s confident predicBons within it were promising. 

 
8.5 Discussion 

In this work, we developed mulBple strong-performing DL pipelines that syntheBcally generate 

post-contrast coronal IDEAL T1 wrist MR images from pre-contrast coronal IDEAL T1 wrist 

images, marking steps toward syntheBc inflammatory imaging of MSK Bssues for condiBons 

such as RA. ReconstrucBon metrics show reasonably strong performances for UNet and 
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PatchGAN pipelines without generator decoding path deconvoluBons—PatchGAN nRMSEs in 

the wrist were 7.68 ± 1.41 (6.07 ± 1.22 aEer registraBon, mean ± standard deviaBon (s.d.)) and 

for the UNet they were 5.38 ± 0.73 (4.36 ± 0.60 aEer registraBon, mean ± s.d.). Standard 

reconstrucBon metrics—nRMSE, PSNR, and SSIM—showed the UNet to have superior 

performance across full volumes and within the wrist, but purely in the synovial joints, where a 

pipeline like this would see the most uBlity, the PatchGAN outperformed the UNet. These 

findings provide yet addiBonal evidence to a growing body of literature which suggests that 

standard reconstrucBon metrics do not provide great correlaBon with clinically useful metrics 

when evaluated in a classical fashion (across an enBre Bssue) [141,142,185]. This, in addiBon to 

a perceptually stronger performance replicaBng sharper textures (parBcularly within muscles 

and bones, but at Bmes in the synovial joints as well), shows the PatchGAN pipeline without 

deconvoluBons to be the strongest tested version and with the most potenBal for eventual 

clinical use with further development. AddiBonally, enhancement maps showed that while both 

pipelines exhibited similar performance in idenBfying the locaBon of the top 10% of enhancing 

pixels, the PatchGAN did a substanBally bePer job in preserving the enhancement magnitudes. 

These trends parBcularly held in the muscles and vessels, but also in many synovial joints. 

 

To build clinicians’ trust in medical image processing algorithms, experiments such as the 

proposed occlusion map and uncertainty analyses are vital to address the criBcism of deep 

learning algorithms being “black boxes.” These techniques yielded notable insights in the 

PatchGAN and UNet pipelines: occlusion maps showed that both pipelines focused heavily on 

intercarpal regions and synovial joints as a basis for generaBng model predicBons. At the same 
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Bme, uncertainty maps yielded diverging conclusions: whereas the PatchGAN was most 

uncertain in background, muscles, and within bones, the UNet pipeline was the most uncertain 

within the intercarpal joints themselves. Given that intercarpal joints—and more generally 

synovial joints—are where a syntheBc inflammatory imaging algorithm would see maximal 

uBlity in RA imaging, it is extremely encouraging that the PatchGAN based much of its 

predicBons on the intercarpal joints and was relaBvely confident in its predicBons. This, 

combined with the superior reconstrucBon metrics obtained in synovial joints by the PatchGAN 

as compared to the UNet, confirms it to be the pipeline with the most potenBal for clinical 

uBlity, and indicates that the combinaBon of a GAN and a focused, ROI-based loss can yield 

promising results for opBmizing image synthesis algorithms. Uncertainty and occlusion map 

approaches such as those applied in this work are straigh�orward to implement and can be 

extended to other deep learning applicaBons such as image synthesis, image segmentaBon, and 

image reconstrucBon. In doing so, they can make the findings of such algorithms easier to 

interpret while providing valuable insights into how they work. From a clinical perspecBve, they 

can not only build trust in algorithm outputs, but also direct a radiologist’s aPenBon to 

uncertain regions in an image that require closer examinaBon. 

 

The exploraBon of architectural designs also yielded interesBng insights. Checkerboarding 

arBfacts have long been reported as a shortcoming of CNNs, and more specifically UNets, with 

many strategies being proposed to miBgate them [283–285]. Our invesBgaBon of UNet pipelines 

with and without one such miBgaBng strategy—replacing deconvoluBons with interpolaBon and 

standard convoluBons—showed checkerboarding arBfacts to be widespread in larger areas of 
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relaBvely homogenous pixel intensity with the standard deconvoluBons, but absent with the 

miBgaBng strategy implemented. When paired with a PatchGAN discriminator, even a UNet 

generator with deconvoluBons resolved the checkerboarding arBfacts in larger homogenous 

pixel intensity areas, but saw minor checkerboarding emerge at the boundaries between pixel 

intensiBes. Checkerboarding arBfacts are thus intrinsic to the standard UNet architecture, and 

among the tasks a discriminator must learn in adversarial training is their removal. When 

deconvoluBons are replaced with interpolaBon and standard convoluBons, the arBfact removal 

responsibility is simplified for a GAN discriminator, in theory allowing the discriminator to focus 

on more minute differences between real and syntheBc images and, thus, possibly producing 

stronger syntheBc images. These lessons can be translated to GAN training strategies in other 

seHngs—training schemes may yield stronger results aEer the thorough inspecBon of generator 

architectures to ensure that obvious arBfacts are not intrinsic to the network design. 

 

It is clear from our work that larger sample sizes are needed to derive staBsBcal conclusions 

with more power and to assess algorithm efficacy straBfying by race, RA status, and others. 

However, this study nonetheless serves as a strong proof-of-concept indicaBng the potenBal for 

DL algorithms to synthesize post-contrast images for inflammatory imaging in MSK applicaBons. 

Importantly, these algorithms can synthesize images in a negligible amount of Bme, essenBally 

providing free informaBon for radiologists examining inflammaBon, even for the many paBents 

for whom contrast MR sequences would otherwise not be prescribed. With addiBonal 

validaBon, and through building clinicians’ trust in these algorithms, they can allow for safer, 

more comfortable, and less Bme-consuming RA diagnosis and treatment through syntheBc 
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imaging. Beyond the proof-of-concept wrist RA post-contrast synthesis, this work can seed new 

efforts in other MSK applicaBons such as syntheBc RA imaging in other joints [286], syntheBc 

screening for sarcoma [287], more thorough invesBgaBons associaBng contrast and non-

contrast MRI of Hoffa’s fat pad with pain [288], larger cohort studies assessing bone perfusion 

[289], and safer imaging techniques to diagnose spondylodisciBs [290]. In all these applicaBons, 

Gd is administered in standard imaging protocols, so similar datasets can be curated and used to 

train syntheBc post-contrast imaging algorithms to reduce and hopefully eliminate the need for 

Gd administraBon. Furthermore, validated algorithms could synthesize post-contrast images 

from exisBng large datasets such as the OsteoarthriBs IniBaBve (OAI), K2S, and fastMRI+ to 

allow for large cohort studies to facilitate a bePer understanding of inflammaBon [229,291,292]. 

 

This study had several limitaBons. Ideally, there would be a true comparison of algorithm 

performance in paBents with and without RA to ensure strong performance in both, but ethical 

consideraBons prevented us from administering Gd to healthy controls. In the absence of this, 

we used RAMRIS scores to straBfy RA paBents into subgroups of those with and without 

imaging findings of RA for a pseudo-control study, but this is not a true control study. 

Furthermore, the desire to compare algorithm performance in paBents with and without 

imaging findings of RA in a pseudo-control study, combined with the small dataset size, led to 

some imbalance in demographic characterisBcs across training, validaBon, and test datasets. 

Namely, test set paBents had the least severe RA. AddiBonally, pre-Gd coronal IDEAL images 

were registered to corresponding post-Gd images in data preprocessing. Radiologist anomaly 

segmentaBons were performed only on post-Gd images, so doing so allowed segmentaBons to 
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be used in weighBng loss funcBons and assessing model performance in anomalous regions, but 

this registraBon step would not be possible at the inference Bme. There was thus a tradeoff 

between opBmizing trained algorithms for strong performance in synovial joints and using a 

realisBc workflow for eventual clinical uBlity; the authors viewed the former as more important 

in a proof-of-concept approach. Lastly, standard imaging protocols would typically use T1 pre-

contrast scans and fat-saturated post-contrast T1 scans for RA imaging. Our approach used IDEAL 

scans before and aEer contrast administraBon, as these sequences were available in our 

dataset, but for true clinical translaBon an algorithm should be trained on these other 

sequences. The structure of our dataset thus conferred many limitaBons on our work, but 

nonetheless, it represents a meaningful first step towards making syntheBc inflammatory 

imaging a larger research focus for the MSK community. 

 

8.6 Conclusions 

To the best of the authors’ knowledge, our work marks the first concerted effort at leveraging 

DL for syntheBc inflammaBon imaging for an MSK applicaBon. We developed PatchGAN and 

baseline UNet pipelines that showed strong performance synthesizing post-contrast IDEAL T1 

images from corresponding pre-contrast IDEAL T1 images, with the PatchGAN pipeline 

outperforming the UNet in synovial joints, generaBng more accurate and confident predicBons 

where a model would have the most uBlity. The PatchGAN also showed magnitudes of signal 

enhancement that more closely match that of ground truth images and retained sharp textures 

in syntheBc images. As such, the PatchGAN model was parBcularly promising in synthesizing 

post-contrast inflammatory images, and with further development, it could reduce or eliminate 
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the need for Gadolinium administraBon in treaBng paBents with RA. There are numerous future 

direcBons for research: (1) more sophisBcated GANs such as CycleGAN can be implemented to 

improve the sharpness in reconstructed images; (2) generator architectures that learn 

registraBon transforms and predict images can also be invesBgated, eliminaBng the need for the 

registering of pre-Gd images to post-Gd images, which would not be possible at inference Bme 

in the clinic; (3) invesBgaBng other loss funcBons, such as other types of GAN distances; and (4) 

assessing model robustness by inferring from convenBonal wrist coronal T1 scans to evaluate 

predicted post-contrast scans on convenBonally used clinical sequences in inflammatory 

imaging. For substanBal progress, however, the MSK field will require concerted efforts to 

curate larger datasets for inflammatory RA condiBons that will allow for more staBsBcally 

powerful conclusions, more complicated models, and comparisons across populaBon 

subgroups. Our hope is that the promise of our results can moBvate efforts to do so. 
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Chapter 9 - Deep Learning Predicts Total Knee Replacement from MR Images 

The following has been reformaPed and reproduced with full permission from the publisher. It 

appeared in Nature ScienDfic Reports as: 

 Tolpadi, A.A., Lee, J.J., Pedoia, V. et al. Deep Learning Predicts Total Knee Replacement 

from MagneBc Resonance Images. Sci Rep 10, 6371 (2020). hPps://doi.org/10.1038/s41598-

020-63395-9 

 

9.1 Abstract 

Knee OsteoarthriBs (OA) is a common musculoskeletal disorder in the United States. When 

diagnosed at early stages, lifestyle intervenBons such as exercise and weight loss can slow OA 

progression, but at later stages, only an invasive opBon is available: total knee replacement 

(TKR). Though a generally successful procedure, only 2/3 of paBents who undergo the 

procedure report their knees feeling “normal” post-operaBon, and complicaBons can arise that 

require revision. This necessitates a model to idenBfy a populaBon at higher risk of TKR, 

parBcularly at less advanced stages of OA, such that appropriate treatments can be 

implemented that slow OA progression and delay TKR. Here, we present a deep learning 

pipeline that leverages MRI images and clinical and demographic informaBon to predict TKR 

with AUC 0.834 ± 0.036 (p < 0.05). Most notably, the pipeline predicts TKR with AUC 0.943 ± 

0.057 (p < 0.05) for paBents without OA. Furthermore, we develop occlusion maps for case-

control pairs in test data and compare regions used by the model in both, thereby idenBfying 

TKR imaging biomarkers. As such, this work takes strides towards a pipeline with clinical uBlity, 
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and the biomarkers idenBfied further our understanding of OA progression and eventual TKR 

onset. 

 

9.2 Introduc4on 

Knee OsteoarthriBs (OA) is one of the most common musculoskeletal disorders in the United 

States, with esBmates of its incidence rate ranging from 14 to 30 million [5,6]. Annual arthriBs-

related medical expenditures are nearly $140 million, and hip and knee OA together are the 11th 

highest contributor to global disability [293,294]. The propensity of knee OA to induce eventual 

disability can be aPributed to structural changes in the joint that characterize the disease, as 

well as symptoms that can include inflammaBon, debilitaBng pain, and funcBonal limitaBons 

[295,296]. Progression of the full-joint disease is typically assessed using the Kellgren-Lawrence 

(KL) scale, a 0-4 scale in which a higher score is associated with narrowing of the Bbiofemoral 

joint (TFJ) space and other radiographic changes, and thus, a more advanced stage of knee OA 

[165]. When diagnosed at early stages (KL = 0, 1), knee OA can be managed through nonsurgical 

treatment opBons, including exercise and/or weight loss, oral medicaBons such as 

acetaminophen or NSAIDs, or intra-arBcular injecBons such as corBcosteroids and hyaluronic 

acid, all of which have varying degrees of success in reducing pain [8]. At late stages (KL = 4), 

however, no noninvasive opBon exists [9]; here, the only opBon is total knee replacement (TKR). 

 

TKR is an elecBve procedure in which the knee joint is resurfaced with a metal or plasBc implant 

intended to restore funcBon, provide pain relief, and improve quality of life [297]. In the United 

States, esBmates of TKR incidence lie at 400,000 each year, a figure expected to grow 143% by 
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2050 even through conservaBve projecBons [298]. While TKR is considered one of the most 

effecBve procedures in orthopedic surgery, elecBng for it is far from straigh�orward: 

noninvasive alternaBves such as weight loss, physical therapy, and NSAIDs are first exhausted. If 

unsuccessful, a paBent will undergo a thorough examinaBon of clinical history and 

comprehensive imaging of the joint to determine if a TKR is feasible, and if so, the desired 

implant design and size [299,300]. The procedure is also imperfect: only 66% of paBents report 

their knees feeling “normal,” and 33% of paBents report some degree of pain post-implant 

[301]. Furthermore, the implant can fail under some circumstances: periprostheBc joint 

infecBon and wound complicaBons can be observed, and implant instability can occur due to 

asepBc loosening, malposiBoning of the implant, and wear of joint components [302,303]. It is 

thus much preferable to prolong the good health of the knee, parBcularly in paBents where OA 

has not advanced to the most severe stages, thereby delaying TKR as long as possible. This 

necessitates a model to idenBfy paBents at higher risk of TKR such that appropriate treatment 

opBons can be pursued. 

 

Given the mulBtude of factors on which a decision to pursue TKR is made, devising a model to 

predict if the invasive intervenBon will be necessary is a difficult task, but with obvious uBlity. 

For a paBent in earlier stages of OA, a model predicBng the paBent to be at risk of TKR can be 

the impetus for a more aggressive nonsurgical treatment. Meanwhile, for a late-stage OA 

paBent, a model predicBng them to undergo TKR may facilitate a doctor and paBent opBng for 

the treatment earlier than they otherwise would, thereby reducing Bme spent pursuing 

nonsurgical alternaBves with minimal probability of success while dealing with serious pain. 
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Beyond this, if the model were to draw from medical images of the knee, it could idenBfy 

anatomic regions most correlated with a TKR predicBon. To this point, few studies have been 

conducted in this space, and those that have primarily invesBgate the importance of carBlage 

volume loss, subchondral bone defects, and bone marrow lesions [304–306]. An idenBficaBon 

of more such biomarkers for TKR, however, could greatly improve understanding of both OA and 

TKR, and ulBmately guide treatment strategies. 

 

PredicBve modeling of TKR, however, has a limited history, parBcularly with models that use 

medical images. A few studies have leveraged random forest regression, Cochran-Armitage tests 

for trend, and t-tests to idenBfy demographic, general health, and physical examinaBon 

measurements that most strongly correlate with TKR or total joint arthroplasty (TJA) [307,308]. 

Others have taken these efforts further, using techniques such as mulBple regression and 

mulBvariate risk predicBon models to predict TKR outright [309,310]. To our knowledge, only 

one group has developed a predicBve model of TKR that accepts image inputs, aPaining 

performance that surpasses that of models using only clinical and demographic informaBon 

[311]. Notably, past TKR predicBve models largely measure performance by evaluaBng the area 

under the receiver operaBng characterisBc (ROC) curve, which plots true posiBve rate against 

false posiBve rate [312]. However, in most datasets used in this space, the number of paBents 

who eventually undergo TKR is dramaBcally higher among those who have advanced OA as 

opposed to those with no or moderate OA. Consequently, this performance metric (AUC), while 

effecBvely capturing a model’s combinaBon of sensiBvity and specificity, can be inflated for TKR 

predicBon by indiscriminately predicBng paBents without OA not to undergo TKR, while more 
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accurately predicBng paBents with severe OA to undergo TKR, the laPer of which is easier. As a 

result, while past works have made clear progress in predicBng TKR, none have overcome 

datasets imbalanced with respect to OA severity to report sensiBve and specific predicBon at 

these early stages, where a model would have the most uBlity. 

 

One technique that has shown promise in delivering such performance is deep learning (DL). DL, 

especially convoluBonal neural networks (CNNs), has made strides in image classificaBon tasks, 

aPaining performances on the popular ImageNet classificaBon challenge that approach or 

surpass human performance [313–315]. DL shines when afforded large datasets, as its 

automated feature extracBon allows one to solve problems too complex for convenBonal 

approaches29. Given the complex prognosBc features in TKR recommendaBon, CNNs become 

more promising for TKR predicBon. In the past, DL had seen limited uBlity in OA and TKR 

predicBon due to the large dataset requirement for efficacy; that limitaBon has been somewhat 

miBgated by the curaBon of large-sized cohort studies such as the OsteoarthriBs IniBaBve (OAI) 

[229]. Consequently, DL has recently been applied for knee OA classificaBon and progression 

predicBon [9,316–318]. The success of these works further suggests the feasibility of leveraging 

DL to predict TKR. 

 

In this study, we formulate a DL-based pipeline that incorporates knee joint images in addiBon 

to clinical and demographic informaBon to predict the onset of TKR (Figure 9.1). We 

demonstrate that the pipeline’s predicBons using solely MagneBc Resonance Imaging (MRI) 

images matches that of past work, while the integraBon of MRI image-based predicBons with 
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non-imaging variables facilitates TKR predicBon with especially high sensiBvity and specificity 

for paBents without radiographic OA. Furthermore, we show the increase in pipeline 

performance when using 3D MRI images as opposed to 2D radiographs, suggesBng MRI may 

have a role in TKR risk screening despite higher costs and more limited availability. And finally, 

we leverage occlusion maps to conduct a thorough analysis of Bssues that most significantly 

affect the output model metric associated with TKR predicBon confidence, thereby idenBfying a 

set of imaging biomarkers for eventual TKR onset. 

 

Figure 9.1 Pipeline predicBng if paBent will undergo TKR within 5 years from MRI/X-ray images 
and non-imaging variables. MRI and X-ray images are center-cropped and cropped to a region 
centered around the joint, respecBvely, and normalized. DenseNet-121 is pretrained to predict 
OA and fine-tuned to predict TKR. Image-based predicBons and clinical informaBon are fed to a 
logisBc regression (LR) ensemble based on OA severity. Each ensemble, whose hyperparameters 
were opBmized for Youden’s index in a hyperparameter search, averages predicBons of LR 
models in its OA severity for final TKR predicBon. Pipeline is subsequently analyzed through 
occlusion map analysis to idenBfy imaging biomarkers of TKR. 

 
9.3 Novelty 

This work reports a methodology and results that are novel in the following manners:  

1. This model is the first to apply a 3-dimensional DenseNet CNN for predicBon of TKR from 

MRI. 
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2. The TKR predicBon model is evaluated for paBents straBfied by OA severity, which has 

not been reported in previous studies.  

3. With the aim of improving model interpretability and clinical uBlity, we report the first 

comprehensive, case-control study to idenBfy imaging biomarkers for TKR. 

 

9.4 Methods 

9.4.1 Data 

Data was acquired from a prospecBve observaBonal study conducted by OAI. The dataset 

followed 4,796 paBents and acquired images including 2D posteroanterior radiographs and 3D 

SagiPal Double Echo Steady-State (DESS) MRI images over the course of 10 years. Details of data 

collecBon and study design have been previously reported [229]. The OAI study protocol was 

approved by the NaBonal InsBtute of ArthriBs and Musculoskeletal and Skin Diseases (NIAMS) 

and is registered on ClinicalTrials.gov as “OsteoarthriBs IniBaBve (OAI): A Knee Health Study”, 

NCT#00080171. The study was carried out in accordance with all perBnent guidelines and 

regulaBons, and wriPen and informed consent was obtained from parBcipants prior to each 

clinical visit in the study.  

 

Both posteroanterior radiographs and DESS MRI images were evaluated as data sources for TKR 

predicBon models. PaBents for whom KL grade was not recorded at any point in the longitudinal 

study were excluded. To homogenize datasets, radiograph and MRI images were only taken 

from paBents and Bme points at which both were available (n = 35,482). We labeled entries as 

cases if the paBent underwent a first TKR within 5 years of the given Bme point (n = 1,043). We 
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labeled entries as controls if paBents did not undergo a TKR or eventually underwent one but 

the Bme to it was longer than 5 years (n = 34,439). Contralateral TKRs were not considered. 

 

The radiographs and MRI images were preprocessed for training and model evaluaBon. 

Radiographs were cropped to a 500 ´ 500 region centered around the knee joint. Briefly, 2D 

cross-correlaBon template matching was used to idenBfy a 500 ´ 500 bounding box centered 

around the knee joint in 450 joints, and these cases were used to train a U-Net architecture that 

idenBfied this region for all posteroanterior radiographs from the OAI study [318].  DESS MRIs 

were center-cropped to a 120 ´ 320 ´ 320 region, aEer which both sets of cropped images were 

normalized. Normalized MRI pixel values were then rounded to nearest integers, compressing 

the MRI image to 14 possible pixel values. This rounding approach was iniBally tested as a 

strategy to accelerate training of a 3D CNN, given the large imaging volumes and large dataset 

on which it was being trained, believing the approach could suppress informaBon extraneous to 

eventual TKR. Empirically, this approach yielded superior validaBon performance to leaving pixel 

values unrounded, so it was uBlized. Examples of the results of this compression strategy are in 

Supp. Fig. C.1.  

 

Non-imaging variables were screened for among studies and reviews detailing risk factors for 

knee OA progression and TKR onset [308–310,319–322]. Variables such as KL grade known to be 

deducible directly from MRI images and radiographs were not considered. From these studies, 

40 non-imaging variables of interest were idenBfied (Supp. Table C.1). The OAI database was 

then parsed for corresponding variables, and these corresponding variables were added as 
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potenBal non-imaging variables for our study, yielding 44 potenBal non-imaging variables. In 

some cases, mulBple OAI metrics corresponded to non-imaging variables of interest, causing 

the number of OAI non-imaging variables to exceed what was idenBfied from literature. Missing 

data points were imputed with k-nearest neighbors. These potenBal variables were used to train 

a random forest with 100 trees to predict onset of TKR within 5 years, and the minimum depth 

at which each feature was used across all trees in the forest was idenBfied. Features whose 

minimum depth was below the average minimum depth of all features were preserved as non-

imaging variables [323]. This yielded 27 non-imaging variables that are displayed in Table 9.1. 

Table 9.1 List of non-imaging variables fed into logisBc regression models to make predicBons of 
whether a paBent would undergo TKR within 5 years. AbbreviaBons used: Body Mass Index 
(BMI), Nonsteroidal AnB-inflammatory drugs (NSAIDS), Blood Pressure (BP), Physical AcBvity 
Scale for the Elderly (PASE), Knee Injury and OsteoarthriBs Outcome Score (KOOS), Quality of 
Life (QOL), Western Ontario and McMaster UniversiBes ArthriBs Index (WOMAC), Short Form 12 
(SF-12). 

Non-imaging variables used to augment image-based predic4ons 
Age Comorbidity score 
BMI InjecBons to treat arthriBs in previous 6 months 
EducaBon Seen physician for arthriBs in previous year 
Ethnicity Knee valgus negaBve alignment (degrees) 
Income Isometric leg strength 
NSAID usage Back pain in previous 30 days 
Analgesics usage Difficulty squaHng in previous 7 days 
Systolic BP Difficulty kneeling in previous 7 days 
Considering TKR Baseline frequent knee pain status 
PASE Previous knee injury that limited walking 
KOOS QOL 0-10 global raBng assessing effect of knee pain 
KOOS pain SF-12 physical component score 
WOMAC pain SF-12 mental component score 
WOMAC disability   

 
The data were then split into training, validaBon, and test with a 65%/20%/15% split, ensuring 

entries of any paBent were only in one of the three datasets to prevent data leakage. Within the 
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training set, imbalance between TKR and non-TKR cases was addressed with data 

augmentaBon, drawing bootstrap samples from the rare class with replacement [324]. A 

summary of the data prior to augmentaBon is provided in Table 9.2, detailing the number of 

cases and controls while showing descripBve staBsBcs regarding demographics in each of the 

three datasets. 

Table 9.2 Data used to train 3D DESS MRI and 2D radiograph architectures. AEer exclusion 
criteria were applied, 35,482 qualifying entries were found in the OAI dataset across 4,790 
unique paBents, all of which were split into training, validaBon, and test sets as displayed in 
table. To prevent data leakage, all entries from any given paBent were only allowed to be in one 
of the three sets. S.d. is reported for age, BMI, and KOOS pain score within the table. 

  Training Validation Test 
  Control Case Control Case Control Case 
 Age 62.5 ± 

9.15 
66.3 ± 
8.38 

62.4 ± 
9.21 

66.1 ± 
8.76 

62.8 ± 
9.55 

66.4 ± 
7.78 

 BMI 28.3 ± 
4.75 

29.6 ± 
4.79 

28.4 ± 
4.64 

29.8 ± 
4.61 

28.4 ± 
4.81 

29.9 ± 
3.96 

 KOOS Pain 87.2 ± 
16.2 

67.2 ± 
19.6 

87.6 ± 
15.9 

66.2 ± 
19.1 

87.4 ± 
16.5 

68.7 ± 
20.6 

 Male 9,708 291 2,876 70 2,126 59 
 Female 12,731 396 4,035 134 2,963 93 

O
A 

St
at

us
 None 12,721 41 4,118 13 2,892 12 

Moderate 8,950 357 2,611 93 2,056 83 
Severe 768 289 182 98 141 57 

 Total 
Entries 23,126 0 7,115 0 5,241 0 

 Unique 
Patients 3,114 0 957 0 719 0 

 
9.4.2 Pipeline Architecture 

The DL-based pipeline is based on a DenseNet-121 with the following parameters: 16 filters in 

iniBal layer, growth rate of 32, pooling block configuraBon of [6, 12, 24, 16], 4 boPleneck layers, 

2 classes. The same architecture was used for the radiograph and MRI pipelines, but for the MRI 

pipeline, we modified the convoluBonal layers, batch normalizaBon layers, pooling layers, and 
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leaky recBfied linear unit (ReLU) layers to allow for 3D image input [325]. The network yielded a 

scalar reflecBng certainty of TKR within 5 years, which was added to the non-imaging variables. 

The 28 resulBng variables were fed into one of three sets of LogisBc Regression (LR) ensembles, 

with each ensemble opBmized to maximize sensiBvity and specificity in cases of no (KL = 0, 1), 

moderate (KL = 2, 3), and severe OA (KL = 4). Based on the KL grade of a sample, it was fed into 

an LR ensemble, yielding a predicBon as to whether the paBent will undergo a TKR within 5 

years. 

 

9.4.3 Training 

A DenseNet-121 was iniBally pretrained to predict knee OA using the enBre training set, 

assessing cross-entropy loss and accuracy on the validaBon set aEer compleBon of each epoch. 

The pre-train was stopped when validaBon loss began to increase. The pretrained model was 

subsequently fine-tuned to predict TKR. We uBlized a random search to determine opBmal 

learning rate, dropout rate, weights of the cross-entropy loss funcBon, and number of layers to 

freeze during fine-tuning. The search was carried out for 25 iteraBons, aEer which a set of 

parameters were selected that yielded the best combinaBon of accuracy, sensiBvity, and 

specificity on the validaBon set. Due to computaBonal intensity, the hyperparameter search was 

not conducted on the enBre dataset: for the 2D DenseNet-121, 10% of training and validaBon 

sets were used, whereas for the 3D DenseNet-121, 2.5% of both were used. AEer the search, 

the model fine-tuned using the subset of the training set was further fine-tuned on the enBre 

training set using opBmal parameters unBl validaBon loss began to increase. The test set was 
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held out during training and predicBons for it evaluated just once aEer fine-tuning, which 

marked the end of model opBmizaBon. 

 

9.4.4 Integra4on of Imaging and Non-Imaging Data 

Random forest regression, support vector machine, neural network, and LR architectures were 

assessed for efficacy of integraBng imaging and non-imaging predicBons, with LR providing best 

results on validaBon data. The LR architecture was thus used: all 28 imaging and non-imaging 

models were fed into an LR model, the opBmal parameters of which were also idenBfied 

through a random search. The search was conducted for 100 iteraBons, seeking to opBmize the 

cross-entropy loss funcBon weights afforded to both classes. For the cases of no, moderate, and 

severe OA, ideal parameters were idenBfied by selecBng those that maximized Youden’s index 

within each OA classificaBon in the search [326]. PredicBons of the best few models in each 

classificaBon were averaged to yield final TKR predicBons. The number of predicBons averaged 

in each classificaBon was selected by finding a value that opBmized validaBon accuracy, AUC, 

and Youden’s index. The resulBng LR models were ensembled and run on test data just once. 

Confidence intervals of accuracy, sensiBvity, and specificity for each OA severity were obtained 

by bootstrapping, sampling 100% of test data with replacement (B = 100). Confidence intervals 

for AUC were calculated in the same manner. Results are reported on 3 versions of each model: 

the sole DenseNet-121 output (image only), output of a single LR model trained to predict TKR 

using solely the 27 non-imaging variables while not weighBng the loss funcBon class weights 

(non-imaging info. only), and output of the LR ensemble with image predicBons (integrated 

model). 
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9.4.5 Sta4s4cal Analysis 

The accuracies of X-ray and MRI pipeline performances within each OA classificaBon and overall 

were compared using McNemar’s test [327,328]. This test was appropriate because it 

specifically tests for differences in a dichotomous variable in matched groups. In our case, the 

variable was correct TKR predicBon and the groups were the X-ray and MRI pipelines. IniBally, 

the McNemar test staBsBc was modeled with a chi-squared distribuBon to test for significant 

differences between the pipelines, and if one existed, a binomial distribuBon was used to 

interrogate which pipeline yielded the significantly higher performance. All tests were carried 

out at a = 0.05.  

 

RelaBve sensiBvity and specificity of the X-ray and MRI pipelines were assessed by comparing 

their AUCs within each OA classificaBon and overall. This test is appropriate because the ROC 

curve plots true posiBve rate (sensiBvity) against false posiBve rate (1 – specificity); 

consequently, the closer the AUC is to 1, the bePer the combinaBon of sensiBvity and 

specificity. 100% of test data was sampled with replacement (B = 100), and for each 

corresponding pair of X-ray and MRI pipelines (matched by OA classificaBon and use of images 

only or both image and non-image informaBon), AUCs were calculated. To test if one 

outperformed the other, differences in AUCs were calculated at each iteraBon, and the mean 

and standard deviaBon of the differences used to conduct a student’s t-test with 99 degrees of 

freedom. This test is applicable on each matched pair of X-ray and MRI pipelines due to the 

number of iteraBons for which test data was sampled, allowing the central limit theorem to 
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apply. For confidence intervals, mean and standard deviaBon of AUCs of individual models were 

calculated and used to report 95% intervals.  

 

9.4.6 Imaging Biomarker Iden4fica4on 

For all 124 true posiBves in the test data for the integrated MRI pipeline, corresponding controls 

were idenBfied by randomly sampling from test data true negaBves, keeping OA status 

distribuBons idenBcal and using a student’s t-test with 123 degrees of freedom to ensure no 

significant difference in KOOS pain scores across cases and corresponding controls at a = 0.05. 

Occlusion maps were generated for all cases and controls using voxel size of 12 ´ 32 ´ 32 and 

stride of 12. For each pixel, the value displayed represented the magnitude of change in the 

scalar pipeline output resulBng when that pixel was occluded, averaged across all occlusions in 

which that pixel existed. Pixels for which scalar pipeline output change lied in the top 5% were 

designated as “hotspots.” Anatomic regions of these hotspots were idenBfied and odds raBos 

(OR) calculated to interrogate possible imaging biomarkers of TKR. 95% OR confidence intervals 

were calculated for each anatomic region invesBgated in this analysis using Cornfield’s method, 

as this method performs well with relaBvely small sample sizes [329]. P values of ORs were 

calculated using a two-tailed Fisher’s exact test [330]. Tissues where p values fell below the 

significance level of a = 0.05 and in which 95% OR confidence intervals did not include 1 were 

deemed significant. These test selecBons were appropriate, as they allowed for direct 

comparison of the frequencies at which several Bssues were hotspots across cases and controls, 

and as such, idenBfied significant Bssues with regards to TKR onset. 
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9.5 Results 

9.5.1 OA Pretrain U4lity in TKR Predic4on 

To test informaBon learned from the OA pretrain, pretrained models themselves were used to 

predict TKR, with results depicted in Table 9.3. Predictably, the radiograph OA pretrain model 

had poor sensiBvity for paBents without OA, and poor specificity in moderate and severe cases 

of OA. While the MRI OA pretrain model expectedly yielded more balanced sensiBvity and 

specificity across all OA stages, it too leE room for improvement, parBcularly in sensiBvity at no  

OA and specificity at severe OA. This confirmed the pretrain provided useful informaBon to both 

architectures but fine-tuning and integraBon of non-imaging variables were necessary to aPain 

desired TKR predicBon performance.  

Table 9.3 Performance in TKR predicBon of OA pretrained models for radiographs and MRI, 
straBfied by severity of OA. Pretraining strategy yields useful informaBon to both models, but 
performance at no OA in parBcular leaves room for improvement, jusBfying subsequent model 
fine-tuning. Standard errors used to calculate confidence intervals. 

OA status Model type Accuracy 
(95% CI) 

Sensi4vity 
(95% CI) 

Specificity 
(95% CI) 

Non-TKR 
cases 

TKR 
cases 

None 
Radiograph 92.1 ± 0.083 25.2 ± 2.16 92.4 ± 0.081 

2,892 12 
MRI 94.3 ± 0.070 48.7 ± 2.48 94.4 ± 0.070 

Moderate 
Radiograph 29.3 ± 0.151 93.8 ± 0.439 26.7 ± 0.156 

2,056 83 
MRI 65.4 ± 0.154 65.5 ± 0.848 65.4 ± 0.158 

Severe 
Radiograph 29.7 ± 0.488 100.0 ± 0.000 1.4 ± 0.180 

141 57 
MRI 33.4 ± 0.523 82.2 ± 0.824 14.0 ± 0.441 

All 
Radiograph 64.2 ± 0.124 90.7 ± 0.378 63.4 ± 0.126 

5,089 152 
MRI 80.2 ± 0.079 70.4 ± 0.595 80.5 ± 0.082 

 
9.5.2 X-Ray Pipeline Op4miza4on and Performance 

For the X-Ray model, hyperparameter tuning steps found the following to yield the best 

combinaBon of validaBon accuracy, sensiBvity, and specificity: learning rate of 3.981 ´ 10-6, TKR 
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class weight in cross-entropy loss funcBon of 0.927 and non-TKR class weight of 0.073, dropout 

rate of 0.375, and only the last 2 layers fine-tuned aEer OA pretrain. 

 

A radiograph model was fine-tuned to predict TKR with these parameters, and its predicBons 

fed into an LR ensemble. Averaging predicBons of the best 5 LR models found through random 

search in the 3 OA categories yielded best validaBon performance, so this ensemble was used 

on the test set. Test accuracy, sensiBvity, and specificity are provided in Table 9.4, and ROC 

curves of all three versions of this pipeline are found in Figure 9.2. AUCs are as follows: 0.848 ± 

0.039 (image only), 0.868 ± 0.028 (non-imaging info. only), 0.890 ± 0.021 (integrated model). 

Furthermore, AUCs for the image-only and combined versions of the pipeline at no OA are as 

follows: 0.514 ± 0.087 (image only); 0.799 ± 0.055 (integrated model). At moderate OA: 0.788 ± 

0.025 (image only); 0.865 ± 0.016 (integrated model). At severe OA: 0.552 ± 0.040 (image only); 

0.641 ± 0.044 (integrated model). All AUC intervals are calculated using standard deviaBon 

(s.d.), p < 0.05. 
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Figure 9.2 ROC curves for X-ray and MRI architectures on test data. X-ray pipeline ROC curves 
are shown in (a), with AUCs as follows, p < 0.05: 0.848 ± 0.039 (image only), 0.868 ± 0.028 (non-
imaging info. only), 0.890 ± 0.021 (integrated model). MRI pipeline ROC curves are shown in (b), 
with AUCs as follows, p < 0.05: 0.886 ± 0.020 (image only), 0.868 ± 0.028 (non-imaging info. 
only), 0.834 ± 0.036 (integrated model). Standard deviaBons used to calculate confidence 
intervals. ROC curves with AUCs within 1 standard deviaBon of the mean for each model type 
during bootstrapping are also shown on plots. 

Table 9.4 Performance of X-ray and MRI architectures on test data. While integrated X-ray 
pipeline delivers higher accuracy than integrated MRI pipeline, integrated MRI pipeline yields 
improved sensiBvity over integrated X-ray pipeline across all stages of OA, markedly so at no OA. 
Standard errors used to calculate confidence intervals. 

OA status Image 
source Model type Accuracy 

(95% CI) 
Sensi3vity 
(95% CI) 

Specificity 
(95% CI) 

Non-
TKR 

cases 

TKR 
cases 

None 

X-ray 

Non-imaging 
info. only 89.1 ± 0.139 49.7 ± 2.80 89.3 ± 0.140 

2,892 12 

Image only 95.0 ± 0.089 7.8 ± 1.64 95.4 ± 0.089 
Integrated 

model 95.4 ± 0.081 8.6 ± 1.95 95.8 ± 0.077 

MRI 

Non-imaging 
info. only 89.1 ± 0.139 49.7 ± 2.80 89.3 ± 0.140 

Image only 95.2 ± 0.088 66.9 ± 3.23 95.3 ± 0.089 
Integrated 

model 82.4 ± 0.171 92.2 ± 1.68 82.4 ± 0.173 

0.848 ± 0.039
0.868 ± 0.028
0.890 ± 0.021
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OA status Image 
source Model type Accuracy 

(95% CI) 
Sensi3vity 
(95% CI) 

Specificity 
(95% CI) 

Non-
TKR 

cases 

TKR 
cases 

Moderate 

X-ray 

Non-imaging 
info. only 72.9 ± 0.208 70.0 ± 1.16 73.0 ± 0.212 

2,056 83 

Image only 79.9 ± 0.196 66.7 ± 1.23 80.4 ± 0.195 
Integrated 

model 81.4 ± 0.178 76.0 ± 1.12 81.6 ± 0.179 

MRI 

Non-imaging 
info. only 72.9 ± 0.208 70.0 ± 1.16 73.0 ± 0.212 

Image only 68.8 ± 0.225 78.3 ± 0.952 68.4 ± 0.227 
Integrated 

model 74.9 ± 0.216 78.9 ± 0.974 74.7 ± 0.228 

Severe 

X-ray 

Non-imaging 
info. only 51.3 ± 0.744 89.4 ± 0.864 35.8 ± 0.925 

141 57 

Image only 32.1 ± 0.714 94.5 ± 0.735 7.2 ± 0.467 
Integrated 

model 60.5 ± 0.775 64.0 ± 1.57 59.0 ± 0.959 

MRI 

Non-imaging 
info. only 51.3 ± 0.744 89.4 ± 0.864 35.8 ± 0.925 

Image only 34.6 ± 0.775 98.3 ± 0.390 9.2 ± 0.632 
Integrated 

model 59.6 ± 0.770 84.0 ± 1.03 49.6 ± 1.04 

All 

X-ray 

Non-imaging 
info. only 81.1 ± 0.118 75.6 ± 0.776 81.2 ± 0.122 

5,089 152 

Image only 86.4 ± 0.095 72.5 ± 0.864 86.9 ± 0.095 
Integrated 

model 88.4 ± 0.094 66.3 ± 0.924 89.1 ± 0.090 

MRI 

Non-imaging 
info. only 81.1 ± 0.118 75.6 ± 0.776 81.2 ± 0.122 

Image only 82.1 ± 0.118 84.9 ± 0.636 82.1 ± 0.119 
Integrated 

model 78.5 ± 0.134 81.8 ± 0.643 78.4 ± 0.138 

 
9.5.3 MRI Pipeline Op4miza4on and Performance 

Similarly, a hyperparameter search was carried out for the MRI pipeline to opBmize parameters 

for eventual fine-tuning. The following hyperparameters were found opBmal: learning rate of 

1.906 ´ 10-2, TKR class cross-entropy weight of 0.902 and non-TKR class weight of 0.098, 

dropout rate of 0.329, only last layer of model fine-tuned aEer OA pretrain. 
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An MRI-based model was fine-tuned from these parameters. The resulBng predicBons were fed 

into an LR ensemble, where averaging predicBons of the best 4 models in each OA category 

opBmized validaBon performance. Performance of the resulBng architecture on test data is 

reported in the same manner as the radiograph pipeline, in Table 9.4 and Figure 9.2. AUCs are 

as follows: 0.886 ± 0.020 (image only), 0.868 ± 0.028 (non-imaging info. only), 0.834 ± 0.036 

(integrated model). AUCs for the image-only and combined pipeline versions at no OA are as 

follows: 0.897 ± 0.039 (image only); 0.943 ± 0.029 (integrated model). At moderate OA: 0.764 ± 

0.020 (image only); 0.830 ± 0.024 (integrated model). At severe OA: 0.560 ± 0.042 (image only); 

0.726 ± 0.038 (integrated model). Again, all AUC intervals are calculated using s.d., p < 0.05. 

 

9.5.4 Comparison of MRI and Radiograph Pipeline Performances 

A comparison of overall AUCs aPained by the integrated MRI and X-ray pipelines across OA 

grades and overall shows that at no OA and severe OA, the MRI pipeline outperformed the X-ray 

pipeline (No OA, B = 100: p = 3.04 ´ 10-2; Moderate OA, B = 100: p = 9.55 ´ 10-1; Severe OA, B = 

100: p = 4.57 ´ 10-2; Overall, B = 100: p = 9.94 ´ 10-1). The MRI pipeline thus has a superior 

combinaBon of sensiBvity and specificity than does the X-ray pipeline for paBents without OA 

and those with severe OA. The AUCs obtained by the image-only pipelines also were compared, 

and showed the MRI pipeline to outperform the X-ray pipeline for paBents without OA and 

overall (No OA, B = 100: p = 6.10 ´ 10-5; Moderate OA, B = 100: p = 7.58 ´ 10-1; Severe OA, B = 

100: p = 4.37 ´ 10-1; Overall, B = 100: p = 1.16 ´ 10-2). These results follow intuiBon: while 

radiographic imaging is primarily capable of illuminaBng bones in the joint, MRI can visualize 

soE Bssues such as carBlage, muscle, and meniscus [143,331]. It follows that an MRI model will 
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exhibit a bePer combinaBon of sensiBvity and specificity, especially in early OA stages at which 

few radiographic changes in the knee have occurred. ROC curves for pipeline versions and OA 

classificaBons in which the MRI architecture yielded a significantly bePer AUC than its X-ray 

counterpart are shown in Figure 9.3. 

 

McNemar’s test assessed relaBve accuracies of these pipelines. There was a staBsBcally 

significant difference between the accuracies of the integrated X-ray and MRI pipelines for 

paBents at no OA, moderate OA, and overall (No OA, n = 537: p = 1.65 ´ 10-59; Moderate OA, n = 

521: p = 1.13 ´ 10-9; Severe OA, n = 47: p = 8.84 ´ 10-1; Overall, n = 1,105: p = 1.52 ´ 10-54), and 

in each of those 3 staBsBcally significant cases, the X-ray pipeline outperformed the MRI 

pipeline (No OA, n= 537: p = 1.11 ´ 10-16; Moderate OA, n = 521: p = 5.97 ´ 10-10; Overall, n = 

1,105: p = 1.11 ´ 10-16). In interpreBng these tests and the AUC tests holisBcally, it is evident 

that the X-ray pipeline is able to aPain superior accuracy in several OA classificaBons by 

compromising on its combinaBon of sensiBvity and specificity. This is further supported by the 

accuracies and sensiBviBes reported for the respecBve pipelines in Table 9.4, which show that 

while the X-ray pipeline is more accurate than its MRI counterpart at every OA classificaBon, the 

opposite is true for sensiBvity—drasBcally so for paBents without OA. In the clinic, where 

sensiBvity as to whether a paBent is at risk of eventual TKR is paramount, these results would 

show the MRI pipeline to be the more useful model. 
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Figure 9.3 ROC curves for MRI and X-ray pipelines at selected OA classificaBons and pipeline 
versions in which MRI performance was significantly bePer than that of X-ray. MRI pipeline 
outperforms X-ray pipeline at no OA for both image-only and integrated models, as seen in (a) 
and (c). As shown in (b), integrated MRI pipeline also outperformed integrated X-ray pipeline for 
paBents with severe OA, while (d) shows image-only MRI pipeline outperformed image-only X-
ray pipeline across all OA stages. AUCs are displayed in the figure with p < 0.05. Standard 
deviaBons used to calculate confidence intervals. ROC curves with AUCs within 1 standard 
deviaBon of the mean for each pipeline version during bootstrapping are also shown on plots. 
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It is also worthy to note the improvement in performance that occurs for paBents without OA 

when imaging predicBons are added to non-imaging variables in both pipelines. In the X-ray 

pipeline, the model’s AUC increased from 0.514 ± 0.087 to 0.799 ± 0.055 when non-imaging 

variables were added to the radiographs, a sizeable increase when compared to the MRI 

pipeline performance, which saw AUC increase from 0.897 ± 0.039 to 0.943 ± 0.029 (p < 0.05 for 

all). This demonstrates that non-imaging variables such as various pain scales seem to add 

criBcal informaBon to the X-ray pipeline, while the same informaBon is less important in the 

MRI pipeline. 

 

9.5.5 Biomarker Iden4fica4on and Analysis 

Of the 152 paBents in test data who underwent a TKR, 124 were detected by the MRI pipeline. 

Occlusion maps were generated for these cases and their corresponding true negaBve controls, 

an example of which is shown in Figure 9.4. Tissues and their hotspot percentages across these 

true posiBves and corresponding true negaBve controls can be found in Supp. Table C.2 and 

Supp. Table C.3 online, respecBvely. ORs, 95% confidence intervals, and associated p values for 

each Bssue can be found in Table 9.5. 
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Figure 9.4 Slices of occlusion map of true posiBve detected by MRI pipeline, overlaid on 
corresponding slices of DESS MRI. Such maps were generated and analyzed for all 124 true 
posiBves and corresponding true negaBve controls of the integrated MRI pipeline. 

 
Three Bssues saw ORs and 95% confidence intervals that lied above 1 and p values below a = 

0.05: the medial patellar reBnaculum, gastrocnemius tendon, and plantaris muscle. Thus, we 

conclude there is a substanBal and staBsBcally significant difference in the risk of TKR within 5 

years when these Bssues are idenBfied as hotspots by the pipeline. From the ORs, we see that 

the risk of TKR increases when any of the three are idenBfied as hotspots: for the medial 

patellar reBnaculum, the risk is 1.98 Bmes higher with a 95% confidence interval from 1.02 to 

3.99; for the gastrocnemius tendon, it is 2.97 Bmes higher with a 95% confidence interval from 

1.12 to 10.0; and for the plantaris muscle, it is 2.84 Bmes higher with a 95% confidence interval 
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from 1.47 to 5.82. As such, these results provide evidence that all are imaging biomarkers of 

TKR. 

Table 9.5 Summary of occlusion map analysis comparing frequencies with which selected knee 
joint Bssues were indicated as hotspots in analysis. Hotspots were defined as pixels that, when 
occluded, were among the top 5% of all pixels in change of pipeline TKR predicBon output 
metric when occluded. Odds raBos, 95% confidence intervals calculated using Cornfield’s 
method, and p values calculated using Fisher’s exact test are displayed. Tissues that were 
significant at a = 0.05 are designated with a *. N value for all tests was n = 124. 

Tissue type Tissue OR (95% CI, n = 124) P value (n = 124) 
CarBlage TFJ medial* 0.05 (0.00  -  0.48) 3.36 ´ 10-3 

TFJ lateral* 0.03 (0.00  -  0.25) 3.89 ´ 10-5 
PFJ 1.03 (0.60  -  1.77) 1.00 ´ 100 

Meniscus Medial anterior* 0.33 (0.12  -  0.79) 1.04 ´ 10-2 
Medial posterior* 0.40 (0.16  -  0.89) 2.37 ´ 10-2 
Lateral anterior* 0.23 (0.05  -  0.67) 5.05 ´ 10-3 
Lateral posterior* 0.26 (0.06  -  0.80) 1.49 ´ 10-2 

Bone TFJ medial* 0.17 (0.00  -  0.91) 3.57 ´ 10-2 
TFJ lateral* 0.02 (0.00  -  0.22) 8.48 ´ 10-6 

PFJ 1.11 (0.64  -  1.92) 7.93´ 10-1 
Ligament ACL* 0.49 (0.23  -  0.99) 4.72 ´ 10-2 

PCL 1.58 (0.89  -  2.87) 1.27 ´ 10-1 
Popliteal 1.62 (0.96  -  2.77) 7.51 ´ 10-2 

Tendon Medial patellar reBnaculum* 1.98 (1.02  -  3.99) 4.19 ´ 10-2 
Lateral patellar reBnaculum 1.08 (0.60  -  1.96) 8.88 ´ 10-1 

Popliteal 1.49 (0.87  -  2.57) 1.56 ´ 10-1 
Patellar 1.76 (0.92  -  3.48) 9.00 ´ 10-2 

Gastrocnemius* 2.97 (1.12  -  10.0) 2.67 ´ 10-2 
Semimembranosus 0.50 (0.23  -  1.03) 6.17 ´ 10-2 

Quadriceps 3.18 (0.88  -  20.4) 8.38 ´ 10-2 
Gracilis 4.52 (0.74  -  290) 1.20 ´ 10-1 

Fat pad Hoffa 2.38 (0.92  -  7.38) 7.80 ´ 10-2 
Muscle Popliteus 1.98 (1.00  -  4.14) 5.11 ´ 10-2 

Vastus medialis 1.26 (0.54  -  3.00) 6.93 ´ 10-1 
Gastrocnemius 1.35 (0.73  -  2.54) 3.76 ´ 10-1 

Plantaris* 2.84 (1.47  -  5.82) 1.29 ´ 10-3 
Biceps femoris 4.52 (0.74  -  290) 1.20 ´ 10-1 
Tibialis anterior 2.37 (0.24  -  161) 6.22 ´ 10-1 

Semimembranosus 0.35 (0.05  -  1.32) 1.36 ´ 10-1 
Synovium General 1.17 (0.50  -  2.82) 8.41 ´ 10-1 
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On the other hand, several Bssues located within or near the Bbiofemoral joint—namely, 

carBlage and bone in both medial and lateral locaBons of the joint, menisci in all tested regions, 

and the ACL—saw ORs and 95% confidence intervals enBrely below 1 and p values below a = 

0.05. Consequently, for all of these Bssues, we find a staBsBcally significant difference in the risk 

of TKR within 5 years when these Bssues are idenBfied as hotspots. In the case of each, the risk 

of TKR appears to decrease when these Bssues are idenBfied as hotspots. InteresBngly, each of 

these Bssues have either been implicated as imaging biomarkers of OA progression, or damage 

within them is associated with OA onset [332–334]. These results, in conjuncBon with the three 

Bssues in which risk of TKR increased when idenBfied as hotspots, suggest that compared to OA 

progression, TKR onset relies less on Bssues in and around the Bbiofemoral joint and more on 

Bssues in other locaBons of the joint to make predicBons. TKR has been considered an outcome 

of OA progression, but these results demonstrate in part how it is a more nuanced problem.  

 

9.6 Discussion and Conclusions 

In this work, we present a pipeline that integrates MR imaging and non-imaging features to 

aPain strong TKR predicBon performance, reporBng accuracy of 78.5 ± 0.134%, sensiBvity of 

81.8 ± 0.643%, and specificity of 78.4 ± 0.138% (intervals calculated with standard error of  

measurement (s.e.m.), p < 0.05). Comparisons of AUCs showed the MRI pipeline to outperform 

the X-ray pipeline for paBents without OA and with severe OA, thereby showing the MRI model 

to have a bePer combinaBon of sensiBvity and specificity in these OA classificaBons. That it did 

so parBcularly for paBents without OA shows the uBlity of the MRI pipeline in screening for 

paBents at risk of TKR despite higher costs. It was also interesBng that, parBcularly among 
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paBents with no OA, the X-ray model improved drasBcally more than the MRI model when non-

imaging informaBon was added, judging by dispariBes in AUCs. This suggests the MRI-trained 

DenseNet-121 may have learned to predict some of the non-imaging features from the images 

themselves, indicaBng that MRI images may intrinsically contain informaBon regarding pain, 

quality of life, and physical performance, among other non-imaging variables used in this study. 

The uBlity of MRI in predicBng these variables through DL is certainly worth further 

invesBgaBon. 

 

A comparison of the MRI pipeline performance to past work is insigh�ul. The closest analog to 

our work was conducted by Wang, T. et al. [311], who trained independent residual networks to 

predict TKR from both DESS and Turbo Spin Echo (TSE) MRI images, integraBng both predicBons 

with non-imaging variables in an LR model to yield a final TKR predicBon. This yielded a model 

with AUC of 0.86 ± 0.01 (p < 0.01) when solely DESS or TSE images were used, and 0.88 ± 0.02 (p 

< 0.01) when both images and non-imaging features were integrated. Our MRI image-only 

model saw AUC of 0.886 ± 0.020 (image only, p < 0.05) and an integrated AUC of 0.834 ± 0.036 

(combined, p < 0.05). Our image-only model thus yields performance superior to its image-only 

counterpart, with a 95% confidence interval lying enBrely above the mean AUC of the image-

only model by Wang, T. et al. [311]. Our integrated model, as discussed previously, was 

opBmized to maximize Youden’s index within each OA classificaBon rather than overall AUC, 

explaining why our integrated model has a lower overall AUC than our image-only model. 

However, due to this decision, we obtained strong performance at early and moderate OA 

stages, with sensiBvity and specificity of 92.2 ± 1.68% and 82.4 ± 0.173% at no OA, respecBvely, 
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and 78.9 ± 0.974% and 74.7 ± 0.228% at moderate OA (intervals calculated using s.e.m., p < 

0.05). In parBcular, the AUC of 0.943 ± 0.029 (interval calculated with s.d., p < 0.05) obtained by 

the MRI pipeline for paBents without OA, the most difficult OA classificaBon from which to 

predict TKR, by far surpasses that of past TKR predicBve models that include paBents across all 

stages of OA. This performance marks progress towards a model that idenBfies paBents at risk 

for TKR such that nonsurgical treatment strategies can be implemented to delay TKR. 

 

The biomarker analysis conducted also has implicaBons, as it idenBfied several Bssues located 

within or near the Bbiofemoral joint as reducing risk of TKR when idenBfied as hotspots by the 

full MRI pipeline—namely, these were medially and laterally located carBlage and bone, all 

examined meniscal regions, and the ACL. These Bssues or damage within them all have been 

associated with progression or onset of OA, and that our model shows TKR onset to be less 

reliant on these imaging features in cases compared to controls demonstrates TKR onset to be a 

more complicated problem than OA progression, despite the relaBonship between the two. On 

the other hand, the model idenBfies three Bssues as increasing risk of TKR when idenBfied as 

hotspots in the pipeline: the medial patellar reBnaculum, gastrocnemius tendon, and plantaris 

muscle. The medial patellar reBnaculum is crucial for lateral stabilizaBon of the knee joint, and 

as such, damage to it results in a patella that more easily dislocates [335]. Past work has shown 

patellar dislocaBon increases risk for OA, and TKR can be an effecBve procedure to treat 

inveterate patellar dislocaBon, showing a previous link between this Bssue’s funcBonality and 

eventual OA and TKR [336,337]. The gastrocnemius tendon and plantaris muscle, on the other 

hand, are both posteriorly located Bssues within the knee that play a key role in knee flexion 
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[338]. While literature regarding the plantaris muscle is rather sparse, injuries to the muscle can 

be implicated in knee and calf pain felt by a paBent [339]. Given their related funcBonality and 

locaBon, the gastrocnemius tendon and plantaris muscle can jointly be implicated in condiBons 

such as “tennis leg,” which refers to mid-calf pain felt during extension of the leg, usually due to 

damage to one of these Bssues or their associated muscles or tendons [340]. The significance of 

the plantaris muscle and gastrocnemius tendon to OA progression and TKR, however, have not 

been well characterized, and these results jusBfy future studies to these ends. 

 

This study had some limitaBons. The first is specific to the OAI dataset, which tends towards 

older, female paBents, all from the United States: across 4,796 paBents, the mean age is 61 

years and 58% of paBents are female. This is not emblemaBc of the general populaBon, so the 

robustness of the pipeline could be strengthened by tesBng on a dataset such as the 

MulBcenter OsteoarthriBs Study (MOST). A further limitaBon of the dataset is that, despite the 

fairly large size, there are a very limited number of paBents with the classificaBon of most 

interest: those without radiographic OA that sBll undergo TKR within 5 years. Only 66 such cases 

existed in the enBre OAI dataset, and 12 were in the test set. As such, the OAI dataset and the 

number of comparison experiments we ran within and across OA classificaBons limits the 

staBsBcal power of our conclusions. Furthermore, in this study, pixels in MRI images were 

compressed to 14 possible values to opBmize performance—a version of the pipeline was also 

constructed and evaluated without the compression, but its TKR predicBon performance was 

not as strong. Ideally, a model that uses all available informaBon would be used in occlusion 

map analysis to draw more precise conclusions regarding anatomic regions that associate with 
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TKR, but this compromise was necessary to improve performance. A final limitaBon was 

computaBonal intensity in occlusion map generaBon: the voxel size and stride used were 12 ´ 

32 ´ 32 and 12, respecBvely. These ideally would be smaller so maps could yield more precise 

insights but doing so was infeasible in a reasonable amount of Bme. 

 

To conclude, this work presents a predicBve model that delivers performance not previously 

seen in predicBng TKR, especially for paBents without OA. By delivering such performance, this 

pipeline can idenBfy paBents at risk of TKR with high sensiBvity and specificity, and for paBents 

with no or moderate OA, this can allow a non-invasive treatment to be implemented that 

prolongs good health of the knee and delays TKR. The biomarker analysis idenBfies the medial 

patellar reBnaculum, gastrocnemius tendon, and plantaris muscle as increasing risk of TKR when 

idenBfied as a hotspot by the model, while its assessment that several Bssues within and near 

the Bbiofemoral joint appear to reduce risk of TKR helps demonstrate the added complexity of 

predicBng TKR onset as opposed to OA progression. Beyond this, addiBonal direcBons include 

invesBgaBng a more effecBve means of integraBng non-image informaBon with image 

predicBons to improve TKR predicBon performance, assessing the efficacy of alternate network 

architectures, and reducing computaBonal Bme to make predicBons.  
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Appendix A - Supplementary Informa4on to Chapter 6 

Supp. Table A.1 AcquisiBon Bmes for MAPSS at tested R. AcquisiBon Bmes for the full MAPSS 
sequence if the proposed undersampling paPerns were implemented for T1r and T2 preparaBon 
and image acquisiBon. If acquisiBon Bmes were desired solely for T2 weighted images acquired 
from MAPSS, all acquisiBon Bmes in this table would need to be mulBplied by 0.571. 

Acquisi4on Type Knee Hip Lumbar Spine 

Ground Truth 5 minutes, 53 
seconds 

8 minutes, 15 
seconds 

5 minutes, 17 
seconds 

R=2 2 minutes, 56 
seconds 4 minutes, 8 seconds 2 minutes, 39 

seconds 

R=3 1 minute, 58 seconds 2 minutes, 45 
seconds 1 minute, 46 seconds 

R=4 1 minute, 28 seconds 2 minutes, 4 seconds 1 minute, 19 seconds 
R=6 59 seconds 1 minute, 23 seconds 53 seconds 
R=8 44 seconds 1 minute, 2 seconds 40 seconds 

R=10 35 seconds 50 seconds 32 seconds 
R=12 29 seconds 41 seconds 26 seconds 

 
Supp. Table A.2 InformaBon for cross-validaBon splits in knee, hip and lumbar spine datasets. 
Training, validaBon, and test data splits of MAPSS acquisiBons for all three folds, by paBent and 
by total number of scans. In lumbar spine, total scans exceeded number of paBents because 
some paBents had spines scanned mulBple Bmes, whereas for knee and hip, both knees or both 
hips of some paBents may have been scanned. To prevent data leakage, all scans of a parBcular 
paBent was only placed into one of the three datasets. Unless otherwise specified, all results in 
paper are reported from fold 1 split; addiBonal splits 2 and 3 were made to assess robustness of 
T2 quanBficaBon performance and texture retenBon to different datasets used, as described in 
subsequent Supplementary informaBon tables.  

Anatomy Fold Training Valida3on Test 
Pa3ents Scans Slices Pa3ents Scans Slices Pa3ents Scans Slices 

Knee 
1 144 265 5,591 50 91 1,952 50 90 1,928 
2 144 262 5,619 50 93 1,960 50 90 1,892 
3 144 259 5,480 50 81 1,739 50 106 2,252 

Hip 
1 39 59 1,533 15 15 390 13 15 390 
2 39 59 1,533 12 15 390 13 15 390 
3 40 59 1,533 13 15 390 15 15 390 

Lumbar spine 
1 13 14 112 4 5 42 4 5 40 
2 15 16 130 4 4 32 4 4 32 
3 14 16 130 4 4 32 4 4 32 
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Supp. Table A.5 ROI and global correlaBons between predicted and ground truth T2 maps. 
Pearson’s r between predicted and ground truth T2 maps for proposed model trained with full 4-
component loss funcBon, proposed model trained with just the ROI-specific loss component 
ablated (λ1,f=0), and proposed model trained with an ordinary loss funcBon of L1 and SSIM 
(λ1,f=0, λFeat=0) as part of ablaBon study. CorrelaBons are also provided between predicBons and 
ground truth for 3 state-of-the-art models. Significance of Pearson’s r is denoted as follows: * P < 
0.05, ** P < 0.01, *** P < 0.001 (knee: n=90; hip: n=15; lumbar spine: n=5). For any given R, the 
strongest correlaBon within the ROI is highlighted in red, whereas the strongest correlaBon 
globally is highlighted in blue. Across the hip and knee pipelines, each of which had large 
datasets available for training, correlaBons are strongest within carBlage ROIs for the proposed 
pipelines across all R, while for all R, state-of-the-art DL pipelines (MANTIS, MANTIS-GAN) 
exhibited stronger correlaBons globally to ground truth. Similarly, when the ROI-specific loss 
funcBon was ablated, for nearly all tested R in hip and knee, correlaBons became stronger 
globally than for the proposed pipelines. This is indicaBve of successful training and the role of 
the ROI-specific loss funcBon: with a sufficiently large training set, it improves results within 
carBlage ROIs at the expense of global performance, allowing for ROI-specific model 
opBmizaBon. These trends were inconsistent inn the lumbar spine, likely owing to the very 
small dataset size that added randomness to the training process; some results thus may be a 
result of more complete training rather than the specific uBlity of the ROI-specific loss. If trained 
with a larger dataset, the lumbar spine results would be expected to mirror the knee and hip. 

Tissue R Tissue Proposed 
Model λ1,f=0 λ1,f=0, 

λFeat=0 MANTIS MANTIS-GAN CS 

Kn
ee

 

2 Car^lage 0.748*** 0.658*** 0.685*** 0.587*** 0.611*** 0.620*** 
Global 0.667*** 0.675*** 0.677*** 0.700*** 0.703*** 0.581*** 

3 Car^lage 0.695*** 0.491*** 0.573*** 0.467*** 0.502*** 0.559*** 
Global 0.383*** 0.618*** 0.683*** 0.681*** 0.693*** 0.566*** 

4 Car^lage 0.651*** 0.376*** 0.558*** 0.451*** 0.467*** 0.486*** 
Global 0.149*** 0.575*** 0.693*** 0.672*** 0.670*** 0.554*** 

6 Car^lage 0.612*** 0.465*** 0.442*** 0.397*** 0.378* 0.445*** 
Global 0.487*** 0.663*** 0.687*** 0.667*** 0.659*** 0.547*** 

8 Car^lage 0.585*** 0.383*** 0.450*** 0.352*** 0.364** 0.410*** 
Global 0.440*** 0.661*** 0.672*** 0.659*** 0.654*** 0.548*** 

10 Car^lage 0.555*** 0.124** 0.346*** 0.327*** 0.333*** 0.386*** 
Global 0.165*** 0.540*** 0.623*** 0.651*** 0.653*** 0.552*** 

12 Car^lage 0.491*** 0.339*** 0.396*** 0.290*** 0.287*** 0.381*** 
Global 0.559*** 0.613*** 0.630*** 0.659*** 0.656*** 0.557*** 

Hi
p 

2 Car^lage 0.794*** 0.562*** 0.655*** 0.716*** 0.514*** 0.310*** 
Global 0.683*** 0.713*** 0.727*** 0.755*** 0.699*** 0.534*** 

3 Car^lage 0.705*** 0.541*** 0.612*** 0.596*** 0.372*** 0.332*** 
Global 0.607*** 0.669*** 0.660*** 0.723*** 0.659*** 0.549*** 

4 Car^lage 0.646*** 0.459*** 0.540*** 0.510*** 0.333*** 0.339*** 
Global 0.609*** 0.594*** 0.610*** 0.707*** 0.641*** 0.562*** 

6 Car^lage 0.587*** 0.458*** 0.480*** 0.382*** 0.321*** 0.334*** 
Global 0.555*** 0.595*** 0.643*** 0.690*** 0.634*** 0.573*** 
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Tissue R Tissue Proposed 
Model λ1,f=0 λ1,f=0, 

λFeat=0 MANTIS MANTIS-GAN CS 
Hi

p 

8 Car^lage 0.598*** 0.344*** 0.437*** 0.334*** 0.237*** 0.347*** 
Global 0.630*** 0.577*** 0.627*** 0.684*** 0.660*** 0.574*** 

10 Car^lage 0.558*** 0.355*** 0.434*** 0.279*** 0.268*** 0.335*** 
Global 0.412*** 0.429*** 0.551*** 0.686*** 0.615*** 0.569*** 

12 Car^lage 0.517*** 0.427*** 0.423*** 0.280*** 0.228*** 0.349*** 
Global 0.619*** 0.625*** 0.622*** 0.682*** 0.622*** 0.578*** 

Lu
m

ba
r S

pi
ne

 

2 IVDs 0.884*** 0.850*** 0.879*** 0.784*** 0.785*** 0.802*** 
Global 0.836*** 0.673*** 0.772*** 0.816*** 0.821*** 0.812*** 

3 IVDs 0.832*** 0.823*** 0.846*** 0.717*** 0.712*** 0.777*** 
Global 0.797*** 0.707*** 0.711*** 0.784*** 0.786*** 0.788*** 

4 IVDs 0.819*** 0.804*** 0.827*** 0.680*** 0.671*** 0.723*** 
Global 0.783*** 0.696*** 0.743*** 0.771*** 0.774*** 0.772*** 

6 IVDs 0.771*** 0.764*** 0.761*** 0.660*** 0.658*** 0.728*** 
Global 0.766*** 0.737*** 0.712*** 0.764*** 0.770*** 0.760*** 

8 IVDs 0.742*** 0.245*** 0.747*** 0.631*** 0.645*** 0.695*** 
Global 0.749*** 0.664*** 0.720*** 0.756*** 0.757*** 0.752*** 

10 IVDs 0.672*** 0.651*** 0.698*** 0.647*** 0.636*** 0.648*** 
Global 0.728*** 0.707*** 0.669*** 0.762*** 0.761*** 0.747*** 

12 IVDs 0.643*** 0.581*** 0.654*** 0.651*** 0.614*** 0.586*** 
Global 0.707*** 0.661*** 0.686*** 0.760*** 0.762*** 0.746*** 

 
Supp. Table A.6 T2 value equivalents of quanBficaBon errors in carBlage, IVDs across all models. 
AddiBonal details on model performance from R=2 through R=12 within carBlage 
compartments and at disc levels. As in Supp. Table A.4, NRMSE was calculated across carBlage 
or IVD compartment on a paBent level for all ablated models, and these NRMSEs were 
mulBplied by corresponding mean reference T2 values to convert quanBficaBon error rates into 
T2 esBmaBon errors. EsBmaBon errors are reported mean ±1 s.d. [ms] (knee: n=90; hip: n=15; 
lumbar spine: n=5). 

Tissue R Full Model Reduced 
Parameters No RNN MANTIS MANTIS-

GAN CS 

Kn
ee

 C
ar

^l
ag

e  

2 1.75 ± 0.449 1.92 ± 1.1 1.5 ± 0.62 4.56 ± 0.631 4.28 ± 0.726 2.84 ± 0.951 
3 2.06 ± 0.773 2.27 ± 1.07 2.02 ± 0.884 5.23 ± 0.694 4.79 ± 0.652 3.15 ± 1.08 
4 2.38 ± 1.01 3.02 ± 1.81 2.39 ± 1.08 5.24 ± 0.869 4.95 ± 1.03 3.74 ± 1.26 
6 2.56 ± 0.933 3.38 ± 2.18 2.67 ± 1.21 4.82 ± 0.709 5.16 ± 0.903 3.93 ± 1.44 
8 2.82 ± 0.93 3.03 ± 1.29 3.21 ± 1.52 5.28 ± 0.673 5.46 ± 0.689 4.1 ± 1.41 

10 3.09 ± 1.14 3.21 ± 1.26 2.95 ± 1.24 5.55 ± 0.654 5.29 ± 0.822 4.26 ± 1.38 
12 3.37 ± 0.822 3.14 ± 1.3 3.31 ± 1.21 5.77 ± 1.0 6.48 ± 1.22 4.27 ± 1.46 

Hi
p 

Ca
r^

la
ge

 

2 1.16 ± 0.34 1.2 ± 0.349 1.11 ± 0.229 1.34 ± 0.287 2.4 ± 0.327 4.31 ± 0.745 
3 1.91 ± 0.516 1.64 ± 0.519 1.54 ± 0.332 1.87 ± 0.363 2.93 ± 0.382 3.74 ± 0.814 
4 1.8 ± 0.348 1.8 ± 0.525 1.71 ± 0.273 2.14 ± 0.465 2.91 ± 0.467 3.42 ± 0.593 
6 2.37 ± 0.598 2.4 ± 0.676 2.19 ± 0.484 2.52 ± 0.643 2.83 ± 0.497 3.43 ± 0.559 
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Tissue R Full Model Reduced 
Parameters No RNN MANTIS MANTIS-

GAN CS 
Hi

p 
Ca

rt
.  8 2.04 ± 0.676 1.85 ± 0.418 2.04 ± 0.488 2.98 ± 0.789 3.52 ± 0.767 3.04 ± 0.681 

10 2.63 ± 0.873 2.37 ± 0.4 2.54 ± 1.22 2.85 ± 0.637 3.05 ± 0.563 2.96 ± 0.685 
12 2.26 ± 0.499 2.42 ± 0.737 2.14 ± 0.433 2.85 ± 0.614 3.35 ± 0.685 3.0 ± 0.748 

Lu
m

ba
r S

pi
ne

 IV
Ds

 2 3.15 ± 0.602 3.22 ± 0.571 2.28 ± 0.4 4.12 ± 1.06 4.2 ± 1.06 4.74 ± 1.93 
3 4.66 ± 0.854 4.11 ± 0.434 3.35 ± 0.478 5.17 ± 0.931 5.29 ± 1.14 4.45 ± 1.14 
4 4.85 ± 0.736 4.57 ± 0.859 3.48 ± 0.473 5.7 ± 1.17 5.91 ± 1.29 5.3 ± 1.65 
6 5.68 ± 1.74 5.75 ± 1.24 4.84 ± 1.3 7.32 ± 2.28 5.7 ± 1.07 5.62 ± 1.63 
8 6.28 ± 0.967 6.11 ± 1.15 5.62 ± 1.26 6.22 ± 1.27 5.96 ± 0.983 6.02 ± 1.53 

10 7.18 ± 0.725 6.95 ± 0.705 6.93 ± 1.1 6.48 ± 1.56 6.19 ± 1.29 7.04 ± 2.35 
12 8.48 ± 1.18 10.8 ± 2.82 8.84 ± 2.24 6.94 ± 2.18 6.62 ± 1.53 11.7 ± 7.04 

 

Supp. Table A.7 T2 quanBficaBon errors in knee carBlage compartments for 6 tested models. 
Performances of all methods – our ROI-specific loss approaches, other DL and DL/model-based 
approaches, and a CS approach in predicBng T2 maps in knee carBlage. NRMSEs are reported ±1 
s.d., with the top performing model in each carBlage compartment at a given R shown in bold 
(n=16).  Top performing pipelines were all pipelines with ROI-specific loss funcBons used in 
training, parBcularly with our full pipeline and its no RNN version being strongest. In the lateral 
and medial femoral condyles, T2 quanBficaBon performance was below clinically significant 
thresholds for all tested R of the full pipeline, and for nearly all tested R for the no RNN pipeline. 
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Supp. Table A.8 CorrelaBon between predicted and ground truth T2 in knee carBlage 
compartments for all tested pipelines. Pearson’s r between predicted and ground truth T2 maps 
in knee carBlage, the significance of which is noted as follows: * P < 0.05, ** P < 0.01, *** P < 
0.001 (n=16). The top performing model in each carBlage compartment at each R is shown in 
bold. The no RNN pipeline is the best across most carBlage compartments and R, but the 
pipelines with ROI-specific losses substanBally outperform their counterparts in most cases, 
exhibiBng strong map performance at high R. 
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Supp. Table A.9 T2 quanBficaBon errors in hip carBlage compartments for 6 tested models. 
Performances of all methods in predicBng T2 maps in hip carBlage. NRMSEs are reported ±1 s.d., 
and the top performing model in each carBlage compartment at a given R is bolded (n=15). The 
no RNN pipeline version performs strongest at most R and carBlage compartments, and ROI-
specific losses see stronger performance at most R and carBlage compartments than 
alternaBvely. In femoral carBlage, T2 quanBficaBon errors are below clinically significant 
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thresholds at nearly all tested R for the full model and no RNN pipelines. In acetabular carBlage, 
error rates were below clinically significant thresholds at R=2. 

R Tissue Full Model Reduced 
Parameters No RNN MANTIS MANTIS-

GAN CS 

2 
Femoral 3.69 ± 1.0 3.94 ± 1.05 3.33 ± 0.65 3.85 ± 0.746 7.05 ± 1.09 9.56 ± 2.82 
Acetab. 4.4 ± 1.46 4.37 ± 1.72 4.54 ± 1.52 5.8 ± 1.92 9.89 ± 2.99 18.9 ± 5.8 
All Cart. 3.97 ± 1.03 4.1 ± 1.1 3.79 ± 0.807 4.58 ± 0.993 8.21 ± 1.42 14.8 ± 2.78 

3 
Femoral 6.14 ± 1.61 5.54 ± 1.71 4.72 ± 1.07 5.55 ± 0.94 9.06 ± 1.21 8.56 ± 2.21 
Acetab. 7.16 ± 2.31 5.78 ± 2.44 6.15 ± 2.07 7.8 ± 2.37 11.3 ± 2.95 16.5 ± 5.75 
All Cart. 6.53 ± 1.63 5.63 ± 1.68 5.25 ± 1.13 6.41 ± 1.31 10.0 ± 1.57 12.9 ± 3.15 

4 
Femoral 5.66 ± 1.01 5.81 ± 1.53 5.23 ± 0.8 6.27 ± 1.23 9.09 ± 1.68 8.78 ± 2.94 
Acetab. 7.0 ± 1.76 6.84 ± 2.06 6.79 ± 1.55 8.88 ± 3.0 11.1 ± 3.23 14.5 ± 3.76 
All Cart. 6.15 ± 1.01 6.17 ± 1.47 5.84 ± 0.891 7.33 ± 1.67 9.97 ± 1.74 11.8 ± 2.03 

6 
Femoral 7.99 ± 1.9 8.26 ± 2.47 7.1 ± 1.57 7.42 ± 1.79 8.31 ± 1.64 8.32 ± 2.03 
Acetab. 8.23 ± 2.52 8.15 ± 2.58 8.01 ± 2.4 10.2 ± 3.53 11.3 ± 3.69 15.2 ± 3.91 
All Cart. 8.1 ± 1.85 8.22 ± 2.06 7.48 ± 1.52 8.63 ± 2.32 9.68 ± 1.92 11.8 ± 2.14 

8 
Femoral 6.54 ± 2.22 5.75 ± 1.55 6.19 ± 1.61 9.25 ± 2.67 12.2 ± 3.45 8.17 ± 2.32 
Acetab. 7.67 ± 2.48 7.22 ± 2.37 8.2 ± 2.4 11.4 ± 3.26 11.8 ± 2.98 12.9 ± 3.52 
All Cart. 6.97 ± 1.93 6.33 ± 1.33 6.98 ± 1.45 10.2 ± 2.72 12.0 ± 2.64 10.5 ± 2.3 

10 
Femoral 8.77 ± 3.12 7.6 ± 1.46 8.63 ± 4.69 8.38 ± 1.96 9.88 ± 2.35 8.1 ± 2.83 
Acetab. 9.26 ± 3.04 9.03 ± 2.49 8.8 ± 2.92 11.4 ± 3.5 11.1 ± 3.47 12.4 ± 3.37 
All Cart. 8.99 ± 2.65 8.12 ± 1.28 8.7 ± 3.46 9.74 ± 2.24 10.5 ± 1.91 10.2 ± 2.4 

12 
Femoral 7.13 ± 1.78 7.92 ± 2.44 6.49 ± 1.34 8.34 ± 1.71 10.9 ± 2.92 8.69 ± 3.09 
Acetab. 8.64 ± 2.24 8.77 ± 2.5 8.59 ± 2.29 11.5 ± 3.72 12.1 ± 3.6 11.9 ± 3.37 
All Cart. 7.75 ± 1.5 8.27 ± 2.19 7.34 ± 1.38 9.74 ± 2.23 11.5 ± 2.36 10.3 ± 2.52 

 
 

Supp. Table A.10 CorrelaBon between predicted and ground truth T2 in hip carBlage 
compartments for 6 tested models. Pearson’s r between predicted and ground truth T2 maps in 
hip carBlage with significances reported as follows: * P < 0.05, ** P < 0.01, *** P < 0.001 (n=15). 
The top performing model in each carBlage compartment at each R is shown in bold. The full 
model and reduced parameters pipelines generally show highest correlaBons between 
predicted and ground truth maps, but similar to the knee, networks with ROI-specific losses all 
show strong performance at high R. 

R Tissue Full 
Model 

Reduced 
Parameters No RNN MANTIS MANTIS-

GAN CS 

2 
Femoral 0.773*** 0.765*** 0.760*** 0.717*** 0.540*** 0.399*** 
Acetab. 0.788*** 0.780*** 0.753*** 0.676*** 0.481*** 0.309*** 
All Cart. 0.794*** 0.782*** 0.770*** 0.716*** 0.514*** 0.310*** 
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R Tissue Full 
Model 

Reduced 
Parameters No RNN MANTIS MANTIS-

GAN CS 

3 
Femoral 0.711*** 0.723*** 0.712*** 0.587*** 0.420*** 0.414*** 
Acetab. 0.660*** 0.709*** 0.663*** 0.545*** 0.315*** 0.331*** 
All Cart. 0.705*** 0.726*** 0.703*** 0.596*** 0.372*** 0.332*** 

4 
Femoral 0.628*** 0.635*** 0.641*** 0.528*** 0.368*** 0.408*** 
Acetab. 0.620*** 0.656*** 0.616*** 0.440*** 0.294*** 0.328*** 
All Cart. 0.646*** 0.665*** 0.648*** 0.510*** 0.333*** 0.339*** 

6 
Femoral 0.589*** 0.608*** 0.593*** 0.422*** 0.371*** 0.428*** 
Acetab. 0.551*** 0.558*** 0.521*** 0.316 0.296*** 0.292*** 
All Cart. 0.587*** 0.597*** 0.570*** 0.382*** 0.321*** 0.334*** 

8 
Femoral 0.579*** 0.564*** 0.555*** 0.402*** 0.331*** 0.423*** 
Acetab. 0.576*** 0.579*** 0.517*** 0.229* 0.177** 0.323*** 
All Cart. 0.598*** 0.588*** 0.558*** 0.334*** 0.237*** 0.347*** 

10 
Femoral 0.523*** 0.528*** 0.511*** 0.369*** 0.333*** 0.416*** 
Acetab. 0.542*** 0.482*** 0.490*** 0.177* 0.242*** 0.308* 
All Cart. 0.558*** 0.534*** 0.522*** 0.279*** 0.268*** 0.335*** 

12 
Femoral 0.521*** 0.563*** 0.508*** 0.336*** 0.299*** 0.416*** 
Acetab. 0.471*** 0.521*** 0.455*** 0.192* 0.187** 0.333** 
All Cart. 0.517*** 0.566*** 0.512*** 0.280*** 0.228*** 0.349*** 

 

Supp. Table A.11 T2 quanBficaBon errors in lumbar spine IVD levels for 6 tested models. 
Performances of all methods in predicBng T2 maps in lumbar spine IVDs. NRMSEs are reported 
±1 s.d., and the top performing model in each carBlage compartment at a given R is bolded 
(n=5). Through R=8, the no RNN pipeline performs best in predicBng T2 maps, while at R=10, the 
MANTIS-GAN pipeline performs best. It’s possible that, given the substanBally smaller lumbar 
spine dataset from which DL models were trained, the more complicated loss funcBons of the 
ROI-specific loss approaches make it difficult to train at ultrafast R, and collecBon of a larger 
dataset is required to see higher quality predicBons. Regardless, all pipeline versions saw 
predicBons with error rates below clinically significant thresholds aggregated across all discs for 
all tested R, except CS at R=12. 

R Tissue Full Model Reduced 
Parameters 

No RNN MANTIS MANTIS-
GAN 

CS 

2 

L1/L2 6.11 ± 1.3 6.17 ± 1.64 5.36 ± 1.16 6.91 ± 1.63 7.54 ± 2.19 10.0 ± 5.72 
L2/L3 9.08 ± 4.57 9.55 ± 5.41 7.71 ± 5.98 12.6 ± 11.1 13.0 ± 10.6 13.5 ± 6.28 
L3/L4 5.93 ± 1.1 5.82 ± 0.731 3.99 ± 1.27 7.93 ± 2.43 7.77 ± 2.56 10.1 ± 4.69 
L4/L5 5.86 ± 2.29 6.02 ± 2.22 3.66 ± 0.817 9.51 ± 3.23 9.71 ± 3.2 9.64 ± 3.82 
L5/S1 6.37 ± 2.1 7.77 ± 2.57 4.18 ± 1.46 7.48 ± 1.57 7.28 ± 2.04 6.31 ± 3.5 
All Discs 6.71 ± 1.7 6.86 ± 1.57 4.86 ± 1.16 8.78 ± 2.08 8.95 ± 1.91 10.1 ± 3.06 

3 
L1/L2 9.4 ± 1.83 8.16 ± 1.25 7.37 ± 1.86 9.59 ± 1.06 10.4 ± 2.51 10.9 ± 3.45 
L2/L3 12.6 ± 5.13 11.3 ± 6.64 10.4 ± 7.42 14.0 ± 7.2 15.4 ± 10.2 12.5 ± 5.32 
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R Tissue Full Model Reduced 
Parameters 

No RNN MANTIS MANTIS-
GAN 

CS 

3 

L3/L4 9.0 ± 2.76 7.96 ± 2.67 6.14 ± 2.07 10.8 ± 2.62 9.34 ± 2.1 9.75 ± 3.15 
L4/L5 8.57 ± 2.29 7.31 ± 1.84 5.41 ± 0.985 11.1 ± 1.86 12.1 ± 3.33 8.2 ± 1.33 
L5/S1 10.1 ± 2.22 10.7 ± 2.63 5.9 ± 2.02 8.9 ± 2.56 8.93 ± 2.32 5.82 ± 2.37 
All Discs 9.92 ± 2.39 8.76 ± 2.16 7.13 ± 1.69 11.0 ± 1.17 11.3 ± 1.74 9.48 ± 1.4 

4 

L1/L2 12.4 ± 3.58 10.3 ± 3.95 9.21 ± 1.43 11.3 ± 2.9 11.6 ± 4.09 13.2 ± 5.38 
L2/L3 12.1 ± 6.67 11.9 ± 7.16 10.4 ± 7.1 16.0 ± 8.03 18.9 ± 12.0 15.3 ± 5.64 
L3/L4 8.68 ± 3.86 8.42 ± 2.69 6.14 ± 1.37 11.1 ± 1.56 10.7 ± 3.07 9.66 ± 3.77 
L4/L5 9.64 ± 2.48 9.44 ± 2.74 5.85 ± 1.11 12.2 ± 2.82 13.2 ± 3.08 10.1 ± 2.94 
L5/S1 10.3 ± 2.44 9.86 ± 2.73 6.49 ± 2.15 9.55 ± 2.29 9.38 ± 1.96 6.78 ± 2.28 
All Discs 10.3 ± 3.02 9.73 ± 3.07 7.42 ± 1.1 12.1 ± 1.24 12.6 ± 1.35 11.3 ± 2.31 

6 

L1/L2 16.7 ± 14.0 13.2 ± 4.88 11.9 ± 5.19 14.0 ± 4.9 10.9 ± 2.36 14.4 ± 5.43 
L2/L3 15.7 ± 9.23 14.5 ± 8.95 13.6 ± 9.98 22.6 ± 12.1 17.7 ± 12.3 15.3 ± 7.14 
L3/L4 11.0 ± 3.69 11.5 ± 3.46 9.0 ± 2.42 13.6 ± 4.32 10.2 ± 1.65 11.3 ± 4.24 
L4/L5 10.5 ± 1.14 11.5 ± 4.11 8.4 ± 2.1 15.7 ± 5.61 12.2 ± 2.86 11.3 ± 2.61 
L5/S1 11.5 ± 1.73 12.5 ± 2.76 8.82 ± 2.77 12.5 ± 3.21 10.8 ± 3.11 8.19 ± 2.29 
All Discs 12.1 ± 3.58 12.2 ± 4.11 10.3 ± 3.31 15.6 ± 2.65 12.1 ± 1.9 12.0 ± 2.76 

8 

L1/L2 15.3 ± 3.94 15.9 ± 5.87 13.6 ± 4.45 12.8 ± 4.49 12.3 ± 3.96 13.3 ± 3.8 
L2/L3 17.2 ± 8.8 17.1 ± 8.64 16.3 ± 8.99 19.5 ± 9.27 20.0 ± 14.2 16.8 ± 6.38 
L3/L4 12.3 ± 4.85 11.7 ± 3.84 10.9 ± 3.22 11.6 ± 2.54 10.4 ± 1.87 13.5 ± 6.05 
L4/L5 12.3 ± 4.25 11.6 ± 2.18 10.3 ± 2.79 11.7 ± 2.63 12.4 ± 3.83 11.6 ± 2.44 
L5/S1 12.6 ± 3.94 10.5 ± 2.74 9.01 ± 2.43 10.8 ± 1.87 9.97 ± 3.12 9.18 ± 3.05 
All Discs 13.4 ± 3.89 13.0 ± 2.63 12.0 ± 3.07 13.2 ± 1.42 12.7 ± 1.7 12.8 ± 2.53 

10 

L1/L2 17.2 ± 3.6 18.2 ± 3.37 18.0 ± 2.72 15.2 ± 5.16 12.9 ± 3.58 16.4 ± 6.34 
L2/L3 19.7 ± 6.8 17.9 ± 5.99 18.1 ± 7.09 20.5 ± 10.9 19.5 ± 12.8 18.9 ± 8.12 
L3/L4 14.9 ± 4.38 14.0 ± 2.94 14.7 ± 3.62 11.8 ± 3.72 12.3 ± 3.79 15.5 ± 6.71 
L4/L5 14.1 ± 5.13 13.9 ± 4.83 12.8 ± 3.39 12.6 ± 1.79 12.2 ± 1.84 14.0 ± 3.9 
L5/S1 12.1 ± 5.09 12.3 ± 3.77 10.5 ± 4.38 11.6 ± 3.35 10.5 ± 2.69 9.97 ± 2.36 
All Discs 15.3 ± 3.22 14.8 ± 2.78 14.8 ± 2.26 13.8 ± 1.57 13.2 ± 1.81 15.0 ± 3.77 

12 

L1/L2 26.9 ± 10.1 25.5 ± 4.78 26.8 ± 12.0 14.3 ± 4.15 14.3 ± 3.96 33.0 ± 19.8 
L2/L3 23.2 ± 5.89 25.2 ± 3.31 23.3 ± 7.19 24.7 ± 18.7 19.6 ± 12.2 30.1 ± 11.3 
L3/L4 16.8 ± 4.11 24.5 ± 3.2 18.1 ± 3.88 14.1 ± 4.45 13.2 ± 2.61 26.1 ± 14.2 
L4/L5 15.3 ± 4.13 21.9 ± 5.59 15.3 ± 3.43 14.0 ± 5.81 13.5 ± 5.25 22.7 ± 11.0 
L5/S1 13.6 ± 4.66 17.9 ± 3.72 13.1 ± 4.29 9.84 ± 1.98 10.5 ± 2.49 11.3 ± 2.7 
All Discs 18.1 ± 1.95 23.1 ± 2.71 18.8 ± 2.76 14.8 ± 3.03 14.1 ± 1.88 24.8 ± 11.2 

 

Supp. Table A.12 CorrelaBon between predicted and ground truth T2 in lumbar spine IVDs for 6 
tested models. Pearson’s r between predicted and ground truth T2 maps lumbar spine IVDs with 
significances reported as follows: * P < 0.05, ** P < 0.01, *** P < 0.001 (n=5). The top performing 
model at each IVD level at each R is shown in bold. The full model and no RNN pipelines show 
highest correlaBons between predicted and ground truth maps, and all pipelines with ROI-
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specific losses performed well, apart from the reduced parameters pipeline at R=12. T2 
quanBficaBon performances of our methods were therefore strong across in IVDs across all R. 

R Tissue Full Model Reduced 
Parameters No RNN MANTIS MANTIS-

GAN CS 

2 

L1/L2 0.849*** 0.855*** 0.853*** 0.782*** 0.782*** 0.749*** 
L2/L3 0.826*** 0.830*** 0.832*** 0.750*** 0.745*** 0.751*** 
L3/L4 0.861 0.869*** 0.886*** 0.764*** 0.755*** 0.830*** 
L4/L5 0.859*** 0.856*** 0.888*** 0.738*** 0.739*** 0.823*** 
L5/S1 0.793*** 0.771*** 0.832*** 0.696*** 0.671*** 0.712*** 
All Discs 0.865*** 0.866*** 0.884*** 0.784*** 0.785*** 0.802*** 

3 

L1/L2 0.796*** 0.802*** 0.778*** 0.668*** 0.644*** 0.703*** 
L2/L3 0.791*** 0.782*** 0.779*** 0.654*** 0.658*** 0.715*** 
L3/L4 0.824*** 0.809*** 0.830*** 0.673*** 0.695*** 0.759*** 
L4/L5 0.841*** 0.826*** 0.853*** 0.696*** 0.676*** 0.795*** 
L5/S1 0.710*** 0.682*** 0.763*** 0.584*** 0.611*** 0.741*** 
All Discs 0.836*** 0.823*** 0.832*** 0.717*** 0.712*** 0.777*** 

4 

L1/L2 0.732*** 0.766*** 0.745*** 0.623*** 0.641*** 0.579*** 
L2/L3 0.749*** 0.756*** 0.751*** 0.610*** 0.596*** 0.622*** 
L3/L4 0.810*** 0.814*** 0.826*** 0.652*** 0.666*** 0.747*** 
L4/L5 0.818*** 0.828*** 0.853*** 0.654*** 0.618*** 0.751*** 
L5/S1 0.675*** 0.694*** 0.730*** 0.557*** 0.542*** 0.672*** 
All Discs 0.799*** 0.813*** 0.819*** 0.680*** 0.671*** 0.723*** 

6 

L1/L2 0.722*** 0.717*** 0.689*** 0.626*** 0.612*** 0.653*** 
L2/L3 0.735*** 0.718*** 0.724*** 0.586*** 0.584*** 0.677*** 
L3/L4 0.762*** 0.745*** 0.762*** 0.608*** 0.641*** 0.708*** 
L4/L5 0.794*** 0.772*** 0.797*** 0.656*** 0.626*** 0.727*** 
L5/S1 0.642*** 0.618*** 0.661*** 0.462*** 0.472*** 0.620*** 
All Discs 0.776*** 0.764*** 0.771*** 0.660*** 0.658*** 0.728*** 

8 

L1/L2 0.659*** 0.613*** 0.637*** 0.583*** 0.574*** 0.599*** 
L2/L3 0.699*** 0.686*** 0.696*** 0.513*** 0.544 0.652*** 
L3/L4 0.737*** 0.719*** 0.734*** 0.591*** 0.644*** 0.674*** 
L4/L5 0.745*** 0.731*** 0.752*** 0.613*** 0.624*** 0.725*** 
L5/S1 0.606*** 0.578*** 0.627*** 0.464*** 0.501*** 0.557*** 
All Discs 0.742*** 0.723*** 0.742*** 0.631*** 0.645*** 0.695*** 

10 

L1/L2 0.586*** 0.610*** 0.514*** 0.587*** 0.557*** 0.563*** 
L2/L3 0.656*** 0.660*** 0.632*** 0.557 0.518* 0.590*** 
L3/L4 0.681*** 0.681*** 0.652*** 0.636*** 0.614*** 0.644*** 
L4/L5 0.715*** 0.706*** 0.701*** 0.649*** 0.614*** 0.686*** 
L5/S1 0.564*** 0.568*** 0.557*** 0.426*** 0.498*** 0.502*** 
All Discs 0.695*** 0.700*** 0.672*** 0.647*** 0.636*** 0.648*** 

12 

L1/L2 0.545*** 0.202** 0.513*** 0.566*** 0.509*** 0.453*** 
L2/L3 0.607*** 0.237*** 0.572*** 0.561*** 0.513*** 0.488*** 
L3/L4 0.652*** 0.273*** 0.616*** 0.586*** 0.527*** 0.542*** 
L4/L5 0.684*** 0.435*** 0.668*** 0.654*** 0.585** 0.669*** 
L5/S1 0.508*** 0.233*** 0.525*** 0.569*** 0.507*** 0.436*** 
All Discs 0.664*** 0.320*** 0.643*** 0.651*** 0.614*** 0.586*** 
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Supp. Table A.13 OpBmized loss funcBon weighBngs for best pipelines in each anatomy. Loss 
funcBon weighBngs found to yield opBmal pipeline performance through constrained 
hyperparameter searches in each anatomy, across each of the three folds. Across different folds 
at a given R in the same anatomy, opBmized loss funcBon weights generally, although not 
always, exhibited consistency with one another, indicaBng stability of the enBre training 
procedure. 

      R 
  Fold Loss Component 2 3 4 6 8 10 12 

Kn
ee

 

1 

𝜆1#  1 1 1 1 1 1 1 
𝜆1#,&  123.5 144.5 145.6 120.8 144 110.8 78.9 
𝜆2234 1.151 0.803 0.507 0.561 0.542 0.029 0.297 
𝜆5+6,. 0.101 0.499 0.447 0.132 0.128 0.138 0.131 

2 

𝜆1#  1 1 1 1 1 1 1 
𝜆1#,&  117.5 100.2 124.3 120.8 61.8 64.7 76 
𝜆2234 1.574 0.635 0.62 0.561 0.447 0.45 0.655 
𝜆5+6,. 0.433 0.423 0.395 0.132 0.451 0.367 0.134 

3 

𝜆1#  1 1 1 1 1 1 1 
𝜆1#,&  144.4 100.2 145.6 137.9 118.4 134.9 106.9 
𝜆2234 0.469 0.635 0.507 1.363 0.793 0.371 0.403 
𝜆5+6,. 0.119 0.423 0.447 0.429 0.389 0.115 0.035 

Hi
p 

1 

𝜆1#  1 1 1 1 1 1 1 
𝜆1#,&  1.275 0.778 0.789 1.221 1.376 2.82 1.227 
𝜆2234 0.27 1.7 1.609 1.727 1.253 0.948 0.961 
𝜆5+6,. 0.313 0.487 0.632 0.995 0.296 0.996 0.101 

2 

𝜆1#  1 1 1 1 1 1 1 
𝜆1#,&  1.275 1.294 1.322 2.575 0.784 2.82 1.445 
𝜆2234 0.27 0.728 1.215 1.749 1.27 0.948 0.917 
𝜆5+6,. 0.313 0.43 0.873 0.798 0.01 0.996 0.265 

3 

𝜆1#  1 1 1 1 1 1 1 
𝜆1#,&  1.275 1.294 0.789 2.575 0.782 2.82 1.445 
𝜆2234 0.27 0.728 1.609 1.749 1.576 0.948 0.917 
𝜆5+6,. 0.313 0.43 0.632 0.798 0.348 0.996 0.265 

Lu
m

ba
r S

pi
ne

 1 

𝜆1#  1 1 1 1 1 1 1 
𝜆1#,&  2.107 7.607 6.787 8.269 6.952 3.284 9.145 
𝜆2234 40.336 69.261 95.355 70.068 19.915 72.269 88.492 
𝜆5+6,. 9.16 20.149 19.651 6.368 6.347 21.222 33.647 

2 

𝜆1#  1 1 1 1 1 1 1 
𝜆1#,&  1.961 3.057 3.33 1.737 3.284 9.234 9.964 
𝜆2234 73.233 87.205 67.15 94.58 72.269 85.043 62.233 
𝜆5+6,. 37.602 48.727 5.506 28.705 21.222 44.598 22.239 
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      R 
  Fold Loss Component 2 3 4 6 8 10 12 

L.
 S

pi
ne

 

3 

𝜆1#  1 1 1 1 1 1 1 
𝜆1#,&  9.914 3.057 8.09 8.942 7.613 4.565 3.551 
𝜆2234 49.478 87.205 41.3 67.49 61.799 69.246 72.122 
𝜆5+6,. 35.377 48.727 26.156 20.46 15.093 19.953 13.167 

 

Supp. Table A.14 T2 quanBficaBon error rates across 3 splits in Bssues of interest. NRMSEs 
reported reported ±1 s.d. between ground truth and predicted T2 maps in across carBlage 
compartments and IVD levels in 3 data splits (knee: n=16, n=9, n=16 for folds 1-3, respecBvely; 
hip: n=15 for each of folds 1-3; lumbar spine: n=5, n=4, n=4 for folds 1-3, respecBvely). 
ParBcularly for knee and hip pipelines, performance is consistent across data splits in carBlage 
compartments and overall at all tested R. In lumbar spine, performance showed increased 
variability compared to knee and hip pipelines, but mean T2 quanBficaBon errors were all within 
a standard deviaBon of one another. RelaBvely small lumbar spine dataset size relaBve to knee 
and hip dataset sizes are likely responsible for considerably wider confidence intervals and 
increased variance in performance for lumbar spine. 
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Supp. Table A.15 CorrelaBons between predicted and ground truth T2 maps across 3 splits in 
Bssues of interest. Pearson’s r between predicted and ground truth T2 maps in Bssues of interest 
for knee, hip and lumbar spine pipelines, with significances reported as follows: * P < 0.05, ** P < 
0.01, *** P < 0.001 (knee: n=16, n=9, n=16 for folds 1-3, respecBvely; hip: n=15 for each of folds 
1-3; lumbar spine: n=5, n=4, n=4 for folds 1-3, respecBvely). Performance is reported across 
each of the 3 data splits. With few excepBons across some IVD levels for some R, deviaBons in 
Pearson’s r were relaBvely small across splits for the same Bssue of interest at a given R, 
indicaBng stability of pipelines to datasets used. 
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Supp. Table A.16 Texture retenBon performance of knee, hip and lumbar spine pipelines across 
3 splits in Bssues of interest. Intraclass correlaBon coefficients (ICCs) of Gray Level Co-
Occurrence Matrix (GLCM)-based metrics for knee, hip and lumbar spine pipelines across 3 data 
splits. Significance of ICCs is reported as follows: * P < 0.05, ** P < 0.01, *** P < 0.001 (knee: n=16, 
n=9, n=16 for folds 1-3, respecBvely; hip: n=15 for each of folds 1-3; lumbar spine: n=5, n=4, n=4 
for folds 1-3, respecBvely). DeviaBon in ICCs for texture metrics is minimal in the hip and knee 
pipelines for all carBlage compartments at all tested R. In the lumbar spine pipeline, more 
deviaBon existed in texture metrics, although due to small test set sizes (n=4), confidence 
intervals for ICCs are very wide, so at least some of the differences in texture retenBon 
performance can be aPributed to this. 

 

Kn
ee
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Supp. Figure A.1 Network architecture. Recurrent UNet network to predict T2 map appearance 
from spaBally undersampled T2-specific MAPSS acquisiBon echo Bme images. T2 weighted 
images at each echo Bme have a unique, 5-layer processing stream, with informaBon passed 
between corresponding layers in adjacent temporal processing streams through RNN 
connecBons: ReLU, 2D convoluBonal layer, batch normalizaBon, and elementwise mulBplicaBon 
by weighBng parameter λw=0.2 before being added to corresponding layers of the next stream. 
Processing stream outputs are concatenated and fed to the UNet, which predicts T2 maps. 
Depths and dimensions are provided at each layer. This schemaBc reflects the “full model”; 
addiBonal versions were trained without the iniBal RNN and solely with the UNet network (No 
RNN) and a streamlined version in which the depth of each layer was half what is depicted in 
this full model schemaBc (Reduced Parameters). 
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Supp. Figure A.2 Modified sigmoid funcBon for knee, hip and lumbar spine pipelines. T2 values 
in each architecture were fed through these sigmoid funcBons to determine an equivalent S(x) 
for the given pixel to be used for ROI-specific L1 losses in network training. Sigmoid funcBons 
thus assign higher weight to correct predicBon of higher T2 values, which can be lost due to 
aliasing when undersampling images, parBcularly in local T2 value elevaBons. AddiBonally, S(x) 
saturates signal above some threshold, allowing network training to focus on correct predicBons 
in T2 value ranges that are more physiologically realisBc for carBlage and IVDs.  
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Supp. Figure A.3 Predicted T2 maps for proposed models and equivalent pipelines trained 
without ROI-specific loss. Top-performing pipelines for knee (recurrent UNet), hip (recurrent 
UNet), and lumbar spine (UNet, or “No RNN”), with corresponding versions trained with ablated 
loss funcBons. Middle column (λ1,f=0) was trained with proposed loss funcBon with ROI-specific 
component ablated (global L1, SSIM, feature-based losses remained). Right column (λ1,f=0, 
λFeat=0) with an ordinary loss funcBon (global L1 and SSIM). Results show that full loss pipelines 
have lower T2 quanBficaBon error rates across all anatomies at R=3, 6, and 10 for visualized 
slices than do pipelines trained without ROI-specific loss, demonstraBng its value in maintaining 
low errors and maintaining visual fidelity to ground truth. 
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Supp. Figure A.4 Global T2 value retenBon performance for proposed pipelines and state-of-the-
art models. ROI and global T2 quanBficaBon errors are shown for a slice within the test set for 
each of the knee, hip and lumbar spine pipelines. In the knee and hip, both visually and 
quanBtaBvely, T2 maps predicted by global approaches show substanBally lower global errors 
than do our proposed pipelines, but within carBlage ROIs, our pipelines exhibit stronger 
performance. These results are as expected—the ROI-specific loss funcBon improves 
predicBons in carBlage ROIs and degrades them globally, indicaBng successful training of these 
pipelines. In the lumbar spine, these trends are more inconsistent, possibly due to the 
substanBally larger datasets and number of batches seen in knee and hip pipeline training as 
compared to the lumbar spine; some of the lumbar spine findings thus may be aPributed to the 
randomness of training with a small dataset. Nonetheless, when afforded a sufficiently large 
dataset for training, the ROI-specific loss performs as expected. 
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Supp. Figure A.5 Comparison of biases in predicted T2 maps in knee carBlage, hip carBlage, and 
intervertebral discs. Violin plots of T2 values for reference and each tested pipeline, R=2 through 
R=12, for (a) knee (n=90), (b) hip (n=15), and (c) lumbar spine (n=4). Boxplots are overlaid on 
violin plots, and the T2 values are also displayed mean ±1 s.d. In conjuncBon with Bland-Altman 
plots in Figures 3-4, violin plots show that for knee and hip pipelines, T2 values with are 
preserved with minimal bias. In the lumbar spine, while violin plots indicate some volaBlity in T2 
value preservaBon in predicted performance, bias in predicted maps was minimal at most 
tested R. Knee and hip pipelines thus generally maintain strong fidelity to T2 values, whereas 
lumbar spine pipeline retains reasonable fidelity to T2 values. 

 



 253 

 



 254 

Supp. Figure A.6 Assessment of proposed pipeline performance on mulBcoil raw k-space data. 
MAPSS sequences were acquired for 3 knee, 2 hip, and 2 lumbar spine volunteers. MulBcoil raw 
k-space data (aEer ARC reconstrucBon for knee and hip) was undersampled with the same 
paPerns applied on retrospecBvely undersampled coil-combined images used during training, 
and k-space lines were also shared as with the coil-combined approach. ResulBng k-space was 
filtered, inverse Fourier transformed, and processed with an in-house pipeline developed to 
replicate all image post-processing steps normally used in generaBng DICOM images, thereby 
generated coil-combined magnitude images of mulB-coil undersampled images. These coil-
combined equivalents of undersampled data were fed through corresponding pipelines, yielding 
predicted T2 maps. Visually, and by T2 quanBficaBon errors, knee and hip pipelines exhibit strong 
performance through R=12, preserving local T2 value elevaBons at most R. Slight degradaBon in 
performance was observed at lower R for hip pipelines relaBve to benchmarks aPained on coil-
combined magnitude undersampled images, but at other R for knee and hip, performance 
matched expectaBons. In the lumbar spine, performance matched expectaBons through R=4, 
declining sharply at R=6 and higher. This may be due to the smaller dataset used for lumbar 
spine pipeline training fewer kz slices in lumbar spine MAPSS acquisiBons that exacerbated 
effects of undersampling as compared to knee and hip, yielding much lower SNR in aliased 
model input images. 
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Appendix B - Supplementary Informa4on to Chapter 8 

Supp. Table B.1 MR AcquisiBon Parameters. AcquisiBon parameters for the 64 scanned volume 
pairs in the 27-paBent dataset of RA paBents. Parameters for any given paBent at any given Bme 
point were the same for both pre and post-Gadolinium coronal T1 IDEAL wrist scans. 

Scanner GE Signa Discovery MR750w 
Coil 8-channel HD Wrist Array 
Field Strength 3T 
Slice Thickness 2 mm 
Spacing between Slices 2 mm 
TR 457-793 ms 
TE 10.06-12.48 ms 
Frequency 127.8 Hz 
Bandwidth 195.3 Hz (384x256, n=58), 390.6 Hz (256x224, n=6) 
Acquisi4on Matrix 384x256 (n=58), 256x224 (n=6) 
Flip Angle 90 (n=2) or 111 (n=62) 
SAR 1.578-3.259 
Pixel Spacing 0.234x0.234 mm (n=58), 0.469x0.469 mm (n=6) 
 

Supp. Table B.2 SSIM for full volumes and wrist Bssue from hyperparameter search. SSIMs 
obtained for 10-epoch trains of all 70 hyperparameter combinaBons for the PatchGAN pipeline 
without generator decoding deconvoluBons. The top-12 performing parameter sets by SSIMs 
are highlighted in bold and were examined further visually to find the best-performing 
parameter set. 

  λB 
λGAN    0 0.025 0.050 0.075 0.100 0.150 0.200 

0.001 Full 0.596 0.590 0.593 0.560 0.584 0.573 0.572 
Wrist 0.713 0.713 0.718 0.708 0.711 0.712 0.705 

0.002 
Full 0.555 0.553 0.548 0.537 0.567 0.557 0.556 

Wrist 0.697 0.709 0.673 0.662 0.715 0.694 0.690 

0.003 
Full 0.538 0.577 0.541 0.590 0.538 0.634 0.592 

Wrist 0.681 0.703 0.689 0.712 0.665 0.747 0.725 

0.004 
Full 0.496 0.550 0.582 0.594 0.548 0.555 0.581 

Wrist 0.713 0.680 0.705 0.711 0.709 0.707 0.709 

0.005 
Full 0.591 0.554 0.585 0.575 0.584 0.622 0.578 

Wrist 0.721 0.698 0.708 0.692 0.721 0.738 0.716 

0.006 Full 0.519 0.527 0.596 0.583 0.565 0.505 0.577 
Wrist 0.695 0.687 0.705 0.703 0.698 0.687 0.703 

0.007 
Full 0.557 0.587 0.607 0.491 0.579 0.555 0.56 

Wrist 0.712 0.714 0.722 0.682 0.703 0.695 0.685 
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  λB 
λGAN    0 0.025 0.050 0.075 0.100 0.150 0.200 

0.008 Full 0.561 0.567 0.585 0.553 0.565 0.526 0.567 
Wrist 0.694 0.732 0.715 0.688 0.717 0.675 0.681 

0.009 
Full 0.560 0.510 0.624 0.550 0.571 0.580 0.507 

Wrist 0.684 0.674 0.748 0.705 0.693 0.704 0.703 

0.010 
Full 0.518 0.496 0.574 0.582 0.502 0.567 0.632 

Wrist 0.689 0.720 0.733 0.701 0.646 0.694 0.737 
 
Supp. Table B.3 nRMSEs for full volumes and wrist Bssue from hyperparameter search. nRMSEs 
obtained for 10-epoch trains of all 70 hyperparameter combinaBons for the PatchGAN pipeline 
without generator decoding deconvoluBons. The top-12 performing parameter sets by nRMSEs 
are highlighted in bold and were examined further visually to find the best-performing 
parameter set. 

  λB 
λGAN    0 0.025 0.050 0.075 0.100 0.150 0.200 

0.001 Full 11.5 6.1 11.4 7.8 14.8 8.7 24.1 
Wrist 11.1 5.8 10.8 7.4 14.5 8.2 23.1 

0.002 Full 12.6 9.7 6.2 10 23.9 20.3 20.3 
Wrist 12 9.1 5.9 9.5 23.7 20 20.1 

0.003 Full 10.6 12 9.9 10.6 38.4 10.1 12.6 
Wrist 10.2 11.2 9.5 10 38.1 9.6 11.7 

0.004 Full 9.2 18.5 22.5 11.6 10 33.8 10 
Wrist 8.8 18 21.8 11.1 9.7 33.4 9.5 

0.005 Full 12.8 16.7 11.8 11.3 15.3 24.5 18.9 
Wrist 12.4 15.9 11.3 10.6 14.9 24.2 18.3 

0.006 Full 21.2 6.2 17.9 13.1 5.8 14.5 12.3 
Wrist 20.9 5.9 17 12.6 5.5 13.9 11.1 

0.007 Full 10.1 6.4 22 11.4 10.4 8.9 19.1 
Wrist 9.5 6.1 21.4 11 9.9 8.4 18.1 

0.008 Full 9.9 11.4 9.4 8.9 9.6 9.8 7.9 
Wrist 9.3 10.9 9 8.4 9.2 8.9 7.5 

0.009 Full 15.3 47 10.5 12.7 9.9 10.7 13.2 
Wrist 14.7 7.4 10 12.4 9.5 10.3 12.6 

0.010 Full 10.9 12.9 11 10.6 15.4 6.8 8.7 
Wrist 10.5 12.6 10.4 10.1 14.7 6.4 8.4 

 

Supp. Table B.4 ReconstrucBon Metrics for PaBents with and without Imaging Findings of RA. 
Bulk reconstrucBon metrics in full imaging volumes, wrist Bssue, and synovial joints in paBents 
without imaging findings of synoviBs (RAMRIS=0, n=2) and paBents with imaging findings of 
synoviBs (RAMRIS>0, n=5) within the test set. All metrics are evaluated on a per-paBent basis. 
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Sample sizes are quite small, making proper staBsBcal comparisons difficult, but reconstrucBon 
metrics are generally stronger for the paBents with RAMRIS>0, as is expected given most 
paBents within this dataset prior to data spliHng (24 of 28 paBents) had RAMRIS synoviBs 
scores greater than 0. Performance thus seems slightly bePer in paBents with imaging findings 
of synoviBs, but that may be more a funcBon of the dataset used for training than the 
methodology. 

  RAMRIS = 0 RAMRIS > 0 
    Full Wrist Only Synovial Joints Full Wrist Only Synovial Joints 

Pre-Gd 
nRMSE 23.95 ± 4.71 23.72 ± 4.83 133.52 ± 43.31 27.24 ± 10.27 26.94 ± 10.43 310.93 ± 159.54 
PSNR 17.76 ± 0.38 17.89 ± 0.38 9.38 ± 0.40 17.77 ± 1.10 17.95 ± 1.23 8.77 ± 1.90 
SSIM 0.62 ± 0.03 0.75 ± 0.01   0.59 ± 0.03 0.73 ± 0.01   

PatchGAN 
Reg. 

nRMSE 7.13 ± 0.80 6.85 ± 0.77 28.20 ± 11.85 6.55 ± 0.75 6.26 ± 0.73 21.12 ± 2.37 
PSNR 20.44 ± 0.52 20.68 ± 0.51 11.53 ± 2.19 20.90 ± 0.64 21.16 ± 0.65 12.33 ± 0.64 
SSIM 0.58 ± 0.02 0.72 ± 0.00   0.58 ± 0.02 0.73 ± 0.01   

PatchGAN 
Unreg. 

nRMSE 8.93 ± 0.69 8.65 ± 0.68 36.44 ± 17.23 8.28 ± 1.09 7.96 ± 1.06 25.98 ± 2.54 
PSNR 19.54 ± 0.34 19.73 ± 0.33 10.60 ± 2.45 19.98 ± 0.75 20.21 ± 0.75 11.49 ± 0.76 
SSIM 0.56 ± 0.02 0.70 ± 0.00   0.56 ± 0.02 0.71 ± 0.01   

UNet Reg. 
nRMSE 7.26 ± 0.20 7.00 ± 0.17 28.74 ± 10.61 5.90 ± 0.73 5.67 ± 0.76 25.15 ± 5.39 
PSNR 21.36 ± 0.07 21.57 ± 0.04 11.26 ± 1.58 22.30 ± 0.49 22.54 ± 0.51 11.71 ± 0.40 
SSIM 0.68 ± 0.02 0.78 ± 0.01   0.69 ± 0.02 0.79 ± 0.01   

UNet 
Unreg. 

nRMSE 8.35 ± 0.45 8.11 ± 0.45 31.51 ± 9.96 7.48 ± 1.09 7.24 ± 1.09 28.96 ± 6.28 
PSNR 20.82 ± 0.15 21.00 ± 0.14 10.67 ± 1.36 21.36 ± 0.67 21.57 ± 0.67 11.10 ± 0.51 
SSIM 0.67 ± 0.02 0.77 ± 0.01   0.68 ± 0.02 0.78 ± 0.01   
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Supp. Figure B.1 Example RegistraBons. Coronal IDEAL Pre-Gd slices being registered to coronal 
IDEAL Post-Gd slices, with absolute difference maps of registraBon shown for 3 paBents. 
RegistraBon was done to account for moBon and slight alteraBons to paBent posiBon that may 
have occurred between the sequences. RegistraBon was done on a per-volume basis in a 3-
stage algorithm: (1) translaBon, (2) affine, and (3) 3rd order b-spline registraBon (maximum 
iteraBons = 256, 256, 512, respecBvely; Advanced MaPes Mutual InformaBon criterion for all). 
B-spline registraBon was done only for paBents where SSIM between unregistered Pre-Gd and 
Post-Gd scans was above 0.5, which was used as a proxy for detecBng moBon arBfacts so severe 
that any non-linear registraBon would lead to overfiHng. 
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Supp. Figure B.2 Example Anomaly Distance Map. Example anomaly segmentaBons and 
corresponding anomaly segmentaBon maps that would result and be used to weight pixel-
based L1 loss funcBons during training. 
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Supp. Figure B.3 Sample Hyperparameter Search Slices. Examples of 10-epoch training results 
across one slice for 20 hyperparameter combinaBons; results are shown for the PatchGAN 
pipeline without generator decoding path deconvoluBons. AEer iniBal screening using SSIM and 
nRMSE, opBmal hyperparameter combinaBons were selected based visual inspecBon, with 
primary criteria being synthesis of new informaBon, fidelity of reconstructed volumes to ground 
truth, and absence of obvious algorithm-generated arBfacts that could cause a radiologist to 
lose confidence in the quality of the syntheBc post-Gd images. Models with opBmal 
hyperparameter sets were then trained from scratch for 35 epochs. 
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Appendix C - Supplementary Informa4on to Chapter 9 

Supp. Table C.1 Non-imaging variables idenBfied from literature as correlated with OA 
progression or eventual TKR. These non-imaging variables were taken to the OAI database, and, 
if present, added as potenBal non-imaging variables to supplement image-based predicBons. 

Variable grouping Variable Source 

Demographics 

Age (Lewis, 2013) [309] 
Obesity/BMI (Lewis, 2013) [309] 
Gender (Heidari 2011) [319] 
Ethnicity (Yu, 2019) [310] 
Income (Hawker, 2006) [308] 
Educa^on level (Pisters, 2012) [321] 

Previous knee trauma and 
pain 

Knee pain (Lewis, 2013) [309] 
Previous knee trauma (Heidari 2011) [319] 
Repe^^ve knee trauma (Heidari 2011) [319] 
Previous meniscal injuries (Heidari 2011) [319] 
Previous knee injury (Cooper, 2000) [320] 

Knee physical ac^vity and 
func^onality 

Mechanical forces exerted on knee (Heidari 2011) [319] 
Frequent kneeling (Heidari 2011) [319] 
Frequent squanng (Heidari 2011) [319] 
Physical ac^vity level (Pisters, 2012) [321] 
Muscular weakness (Heidari 2011) [319] 
Joint range of mo^on (Pisters, 2012) [321] 
Lower knee extension muscle strength (Pisters, 2012) [321] 

Previous ac^ons to treat 
knee pain 

Previous joint injec^ons (Yu, 2019) [310] 
Previous knee arthroscopy (Yu, 2019) [310] 
Previous analgesics or opioid usage (Lewis, 2013) [309] 
Previous NSAID usage (Yu, 2019) [310] 
Number of previous knee referrals (Yu, 2019) [310] 
Number of previous consulta^ons (Yu, 2019) [310] 
Willingness to consider TJA as treatment (Hawker, 2006) [308] 
Seen physician for arthri^s in previous year (Hawker, 2006) [308] 

Preexis^ng health 
condi^ons 

Heberden's nodes (Cooper, 2000) [320] 
Recorded diagnosis of joint-specific OA (Yu, 2019) [310] 
Low back pain (Yu, 2019) [310] 
Hypertension (Yu, 2019) [310] 
Smoking status (Yu, 2019) [310] 
Drinking status (Yu, 2019) [310] 
Asthma (Yu, 2019) [310] 
COPD (Yu, 2019) [310] 
Diabetes mellitus (Yu, 2019) [310] 
Comorbidi^es (Pisters, 2012) [321] 

Miscellaneous Knee joint laxity (Heidari 2011) [319] 
Gene^c suscep^bility to knee OA (Heidari 2011) [319] 
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Variable grouping Variable Source 

Miscellaneous Mental health measures (Sharma, 2003) [322] 
SF36 score (Hawker, 2006) [308] 

 
Supp. Table C.2 Percentages of selected Bssues idenBfied as hotspots among 124 true posiBves 
detected by integrated MRI pipeline, straBfied by OA severity. 

 

Tissue 
type Tissue No OA 

(n = 11) 
Moderate OA 

(n = 65) 
Severe OA 

(n = 48) 
Total  

(n = 124) 

CarBlage 
TFJ medial 100.0 95.4 87.5 92.7 
TFJ lateral 100.0 87.7 85.4 87.9 

PFJ 27.3 43.1 41.7 41.1 

Meniscus 

Medial anterior 100.0 84.6 75.0 82.3 
Medial posterior 90.9 87.7 70.8 81.5 
Lateral anterior 100.0 87.7 81.3 86.3 
Lateral posterior 100.0 90.8 81.3 87.9 

Bone 
TFJ medial 100.0 95.4 89.6 93.5 
TFJ lateral 90.9 87.7 83.3 86.3 

PFJ 27.3 35.4 45.8 38.7 

Ligament 
ACL 100.0 81.5 64.6 76.6 
PCL 72.7 73.8 77.1 75.0 

Popliteal 54.5 56.9 58.3 57.3 

Tendon 

Medial patellar 
reBnaculum 90.9 78.5 91.7 84.7 

Lateral patellar 
reBnaculum 54.5 21.5 33.3 29.0 

Popliteal 36.4 49.2 43.8 46.0 
Patellar 27.3 27.7 25.0 26.6 

Gastrocnemius 36.4 9.2 14.6 13.7 
Semimembranosus 27.3 13.8 6.3 12.1 

Quadriceps 0.0 4.6 14.6 8.1 
Gracilis 0.0 4.6 6.3 4.8 

Fat pad Hoffa 100.0 90.8 97.9 94.4 

Muscle 

Popliteus 18.2 35.4 10.4 24.2 
Vastus medialis 18.2 7.7 18.8 12.9 
Gastrocnemius 36.4 26.2 27.1 27.4 

Plantaris 27.3 32.3 31.3 31.5 
Biceps femoris 0.0 4.6 6.3 4.8 
Tibialis anterior 0.0 4.6 0.0 2.4 

Semimembranosus 0.0 3.1 2.1 2.4 
Synovium General 81.8 87.7 93.8 89.5 
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Supp. Table C.3 Percentages of selected Bssues idenBfied as hotspots among 124 true negaBve 
controls detected by integrated MRI pipeline, straBfied by OA severity. 

Tissue 
type Tissue No OA 

(n = 11) 
Moderate OA 

(n = 65) 
Severe OA 

(n = 48) 
Total  

(n = 124) 

CarBlage 
TFJ medial 100.0 100.0 100.0 100.0 
TFJ lateral 100.0 100.0 100.0 100.0 

PFJ 18.2 27.7 62.5 40.3 

Meniscus 

Medial anterior 100.0 92.3 93.8 93.5 
Medial posterior 100.0 96.9 83.3 91.9 
Lateral anterior 90.9 96.9 97.9 96.8 
Lateral posterior 100.0 100.0 91.7 96.8 

Bone 
TFJ medial 100.0 100.0 97.9 99.2 
TFJ lateral 100.0 100.0 100.0 100.0 

PFJ 9.1 26.2 56.3 36.3 

Ligament 
ACL 100.0 90.8 79.2 87.1 
PCL 45.5 63.1 72.9 65.3 

Popliteal 54.5 46.2 41.7 45.2 

Tendon 

Medial patellar 
reBnaculum 54.5 66.2 87.5 73.4 

Lateral patellar 
reBnaculum 18.2 23.1 35.4 27.4 

Popliteal 45.5 33.8 37.5 36.3 
Patellar 9.1 16.9 18.8 16.9 

Gastrocnemius 0.0 9.2 0.0 4.8 
Semimembranosus 36.4 26.2 12.5 21.8 

Quadriceps 0.0 0.0 6.3 2.4 
Gracilis 0.0 1.5 0.0 0.8 

Fat pad Hoffa 81.8 81.5 95.8 87.1 

Muscle 

Popliteus 18.2 15.4 10.4 13.7 
Vastus medialis 0.0 7.7 16.7 10.5 
Gastrocnemius 45.5 29.2 6.3 21.8 

Plantaris 18.2 15.4 10.4 13.7 
Biceps femoris 0.0 1.5 0.0 0.8 
Tibialis anterior 9.1 0.0 0.0 0.8 

Semimembranosus 27.3 7.7 2.1 7.3 
Synovium General 90.9 87.7 87.5 87.9 
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Supp. Figure C.1 Sample slices of DESS MRI and their corresponding compressed versions when 
rounding pixel values aEer normalizaBon. 
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