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Abstract
The ability to categorize visual information is essential for hu-
man cognition. Often, this categorization is achieved via inter-
nalized rules. In rule-based categorization tasks, participants
categorize stimuli according to given decision rules. In this
study, we created a framework aimed at measuring the respec-
tive impact of single memory operations on task performance.
We present a study investigating two central mental operations
– the addition of a new and the update of an existing rule –
by confronting participants with Alien images they needed to
assign to planets. Both conditions showed interference effects
for task performance with previously learned ones. We found
improved categorization task performance when old and new
rules were in accordance, but no significant effect for conflict-
ing situations. Our experimental setting promises to be well-
suited to investigate the impact of memory operations on par-
ticipants’ behavior in a controlled environment.
Keywords: Category learning; rule-based learning; memory
operations; updating rules

Introduction
Facing unknown objects and situations on a daily basis, we
are challenged to conduct an ensemble of cognitive manoeu-
vres in order to make sense of incoming visual information.
For instance, when we need to judge whether a mushroom is
edible or poisonous, we rely on our ability to combine visual
input with prior knowledge to derive a decision (e.g., red +
white spots = poisonous). A widespread paradigm to explore
the cognitive mechanisms behind our ability to categorize in-
formation are category learning tasks.

In typical category learning experiments, exemplars of sev-
eral categories are presented, showing relevant and irrele-
vant features of their respective group. Participants then
have to assign the exemplars to a category, typically followed
by feedback on whether their response was correct or not
(e.g., Ashby & Waldron, 2000; Erickson & Kruschke, 2002;
Hughes & Thomas, 2021; Zeithamova & Maddox, 2006).

There is still an ongoing debate about whether only a sin-
gle system (Nosofsky & Johansen, 2000; Nosofsky & Kr-
uschke, 2002; Nosofsky & Zaki, 1998), revolving around
processes of storing instances or exemplars (e.g., Medin &
Schaffer, 1978; Nosofsky, Clark, & Shin, 1989; Nosofsky,
Kruschke, & McKinley, 1992) or multiple cognitive systems
(e.g., Ashby, Alfonso-Reese, Waldron, et al., 1998; Ashby &
O’Brien, 2005; Erickson & Kruschke, 1998; E. E. Smith &
Grossman, 2008) are involved in solving such categorization
tasks. The latter propose at least one separate system based
on implicit learning during observation of exemplars as well
as an explicit reasoning system for processing of rules.

Looking further into explicit rule-based categorization,
simple rules (e.g., ”All blue exemplars belong to group A. All
red exemplars belong to group B.”), and conjunctions or dis-
junctions of logical statements will lead to categories that are
usually easy to describe verbally in a subsequent recall test.
In contrast, categories generated using more complex, inte-
grated information or implicit learning are harder or even im-
possible to verbalize (Ashby et al., 1998). Even though there
is a lot of evidence regarding the role of working memory and
executive attention in rule-based categorization tasks (Ashby
et al., 1998; Maddox, Ashby, Ing, & Pickering, 2004; Wal-
dron & Ashby, 2001; Zeithamova & Maddox, 2006), neither
single operations of working memory like keeping informa-
tion active, prioritizing, modification or protection from inter-
ference (Bledowski, Kaiser, & Rahm, 2010), nor their impact
on performance have been engaged in previous studies.

The aim of the present study was to investigate the cogni-
tive costs of altering previously-learned rules in a rule-based
categorization task. As a starting point, we conducted a study
assessing the influence of adding a new rule as well as a
change to an existing rule on participants’ performance. We
estimated cognitive costs by the differences in error rates and
reaction times between different memory operations. With
this, we are laying the foundation for subsequent experimen-
tal testing aimed at investigating the effects of rule-updating
and corresponding cognitive costs in a controlled framework.
We conducted a study comparing two operations in a rule-
based categorization scenario: Performing a change to an ex-
isting rule and adding an additional rule. Our analyses pro-
vided insights into the differences between the operations as
well as the effects that occur for them. However, the experi-
mental setting will also allow us to systematically assess and
compare a variety of other operations.

The remainder of the paper is structured as follows: First,
we will present an overview over moderators that have been
found to affect performance in rule-based categorization tasks
that have to be considered our the study design.

Second, we will describe our study design in detail. Third,
we will present the analyses and results, leading to a discus-
sion of the limits and potentials of this new experimental set-
ting.

Moderators of category learning
Several previous studies investigating category learning have
been designed to target suspected moderators affecting task
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performance. One method is to manipulate similarity be-
tween exemplars with shared features, in order to raise or
lower the likelihood of them being associated (Rosch, Mervis,
Gray, Johnson, & Boyes-Braem, 1976), distinguishing be-
tween emphasizing commonalities or differences within and
between categories (see Brunel, Carvalho, & Goldstone,
2015; Carvalho & Goldstone, 2014; Kornell & Bjork, 2008;
Zulkiply & Burt, 2013).

Another method is to vary complexity of typizations, mean-
ing that participants have to either apply simple, category-
defining rules or integrate more complex information implic-
itly (e.g. Ashby & Valentin, 2017; Hughes & Thomas, 2021;
Maddox, Ashby, & Bohil, 2003; E. E. Smith, Patalano, &
Jonides, 1998). Distinctions in category types are well es-
tablished by findings that, for example, only implicit learning
processes profit from an increased amount of trials (Hélie,
Waldschmidt, & Ashby, 2010). This suggests that when
focusing on explicit rule learning, the influence of implicit
learning can be reduced by keeping the amount of trials low.

Moreover, even though participants receive feedback on
their responses in standard designs, it has been shown that this
typically enhances only learning of information-integration-
based but not of rule-based categories (Filoteo, Maddox, Ing,
Zizak, & Song, 2005; Maddox et al., 2004). Studies varying
the delay or type of feedback further support this differenti-
ation (Dunn, Newell, & Kalish, 2012; Maddox et al., 2003;
Maddox, Love, Glass, & Filoteo, 2008; J. D. Smith et al.,
2014).

Beside of that, it has been demonstrated that even minimal
prior knowledge can influence category learning (Kaplan &
Murphy, 2000). In order to reduce such influences, Carvalho
and Goldstone (2017) recommend to use a scenario with no
available background knowledge (e.g., a fantasy scenario) to
investigate category learning.

Method
The goal of this study was to investigate how changing an
established rule affected participants’ performance in terms
of their accuracy and response times compared to the addition
of a new categorization rule.

Furthermore, for the addition of a new rule, we aimed at
comparing two different variants: By designing the rules in
a hierarchical manner, they can be understood as a decision
tree. Rules that are located in the same sub-tree are therefore
closer to each other and form a group, which we will call a
division for the rest of this article. A new rule could either
be consistent with the existing divisions (within division) or
conflict with the existing hierarchy, linking features from dif-
ferent sub-trees (across divisions). Based on these operations,
we used three conditions in our study: rule change, additional
rules within division and additional rules across divisions.

Generally, across all conditions, situations can occur in
which the rules interfere/interact with each other. If at least a
part of the rule’s precondition is fulfilled, it can be considered
to be applicable or mix-ups between rules can become appar-

ent. This can happen in two ways: First, the rules can con-
tradict each other, leading to a conflict. Second, they could
both lead to the same result, which we call a consensus situ-
ation. As the conflict will be most affected by mix-ups, we
expect these situations to be substantially more challenging,
while the consensus situations could actually improve the per-
formance due to multiple rules being available to classify the
item correctly. Furthermore, we expect a change of an exist-
ing rule to be easier than an additional rule, as it holds the to-
tal number of rules that have to be memorized and considered
for classification constant, by allowing to forget the old rule.
The reduced number of rules should not only improve the per-
formance in terms of correctness, but also in terms of the time
needed to classify an item. While the rule change might be
more prone to mix-ups, e.g., artefacts of the old rule incorpo-
rated in the updated rule, even a slightly wrong memorization
might still be sufficient to solve most tasks. Therefore, the
performance for classifying items affected by a rule change
is better compared to rule additions. Finally, for additions
across divisions or within a division, there are two possibil-
ities. On the one hand, it could be easier to stay within the
same division, as it only requires to extend an already exist-
ing hierarchy. On the other hand, it might lead to more con-
fusion and mix-ups, which could be reduced when breaking
the hierarchies.

Figure 1: Example for the aliens used as stimuli. The de-
picted alien would have the following features: 1 antenna, 3
eyes, 2 arms, 6 legs, stripes and teeth.

Study Design
Participants needed to have an age between 18 and 35 years
and be native English speakers in order to participate. Af-
ter obtaining consent, participants were asked about their de-
mographics and had to pass an attention-check before pro-
ceeding with the main study. The main study consisted of
a rule-based classification task, in which participants were
asked to categorize items based on several features using pre-
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Table 1: Rules for the different phases and conditions as logi-
cal terms. Note that implicitly assumed negations originating
from mutual exclusion of the rules are omitted.

Feature Possible values

Antennae None, One, Two
Arms None, Two, Four
Eyes One, Two, Three
Legs None, Two, Four, Six
Teeth Yes, No

Pattern Plain, Striped, Dotted

viously memorized rules. In order to reduce influences of
background knowledge (for more information, see Kaplan &
Murphy, 2000), we used a fantasy scenario based on the stim-
uli used by Carvalho and Goldstone (2017). In our scenario,
different aliens had to be assigned to one out of four planets
based on their appearance (see Figure 1 for an example of the
presented aliens).

The participants were presented with instructions and the
rules needed to classify the aliens. Each planet had an unique
combination of two features that allowed to categorize the
aliens unambiguously. The features and the possible values
are shown in Table 1. However, the rules were created in
a hierarchical manner, so that one of the two features was
shared with another planet and were presented. The initial set
of rules was presented as follows:

If an alien has 2 antennae, it comes from either planet 1 or
planet 2.

If an alien has 2 arms, it comes from planet 1.
If an alien has 4 arms, it comes from planet 2.

If an alien has stripes, it comes from either planet 3 or
planet 4.

If an alien has 3 eyes, it comes from planet 3.
If an alien has 2 eyes, it comes from planet 4.

The hierarchy divides the planets into two divisions (Planet
1 & 2 and Planet 3 & 4). Planets were named Sala, Diro,
Kemi and Laru with a randomized order of the names. Par-
ticipants were instructed to give their response using the key-
board only, by pressing the letter S, D, K or L (in accordance
to the first letter of the name of the respective planet). Af-
ter the rules were presented, the participants were given one
example task for each planet, which showed the respective
rule again after the response was given. After that, a training
phase with 20 tasks (5 of each planet) started. Throughout
the whole study, after each given response, it was indicated
for 0.5s if the response was correct, and if not, what the cor-
rect response was.

When the training phase was completed, participants were
assigned to one of three conditions:

1. Rule Change: The rules for planet 1 and planet 2 are
changed, now relying on teeth instead of arms.

2. Additional Rule (within division): An additional rule for
planet 3 and planet 4, relying on a dotted pattern and the
number of legs.

3. Additional Rule (across divisions): An additional rule for
planet 1 and planet 4, relying on a dotted pattern and the
number of legs.

Table 2 provides an overview of the rules for all conditions
and phases. The aliens in the training phase were random-
ized, but constructed in a way that they avoided situations in
which they would be categorized differently according to the
changed rules later on (in order to avoid memory effects acci-
dentally carrying over from the training phase). Following the
instructions containing the new rules, another set of 28 tasks
had to be completed by the participants (test phase). Depend-
ing on the condition, the set contained a special selection of
tasks to investigate the effects of the rule change or the addi-
tion of a new rule. These test tasks will be described in detail
in the following sections.

Rule Change
In the rule change condition, the old rules for distinguishing
between planet 1 and planet 2 had to be replaced, while the
high-level rule remained unchanged. In doing so, three differ-
ent situations could occur: First, only the updated rule could
be applicable to an alien. Second, the old rules and the up-
dated rule could both be applicable, with both rules yielding
the same categorization (Consensus). Third, the old and the
updated rules could both be applicable, but would result in a
different categorization (Conflict). A total of 6 tasks for each
of the three cases was included, each with 3 tasks for planet
1 and planet 2, respectively. The remaining 10 tasks con-
sisted of aliens from planet 3 and planet 4 and thus were not
affected by the rule changes.

Additional Rule within division
The addition of a new rule yielded more options than the rule
changes. As both the new and the old rule are still valid, both
rules had to be tested without interference of the other. For
each, the new and the old rules, 4 tasks were included. Al-
though the rules are mutual exclusive when not crossing the
divisions (as the old and the new rule rely on the same fea-
ture), the tasks for testing single rules were constructed in a
way that if one rule matched, the other rule was not match-
ing with any feature (i.e., not only relying on the striped pat-
tern, but also restricting the possible number of legs to 2 and
4 when testing the old rule in order to avoid matching parts
of the new rule). Due to the rules being mutual exclusive,
the conflicts and the cases with consensus also differ from
the rule change condition. Therefore, interference could only
occur partially on one feature. When referring to these situa-
tions, the conflict and consensus is annotated by the applica-
ble rule. For consensus, a total of 4 tasks were included (with
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Table 2: Rules for the different phases and conditions as logical terms. Note that implicitly assumed negations originating from
mutual exclusion of the rules are omitted.

Phase Planet 1 Planet 2 Planet 3 Planet 4

Training 2 Antenna ∧ 2 Arms 2 Antenna ∧ 4 Arms Stripes ∧ 3 Eyes Stripes ∧ 2 Eyes
Rule Change 2 Antenna ∧ Teeth 2 Antenna ∧ No Theeth Stripes ∧ 3 Eyes Stripes ∧ 2 Eyes

New Rule (within) 2 Antenna ∧ 2 Arms 2 Antenna ∧ 4 Arms
(Stripes ∧ 3 Eyes)
∨ (Dots ∧ 6 Legs)

(Stripes ∧ 3 Eyes)
∨ (Dots ∧ No legs)

New Rule (across)
(2 Antenna ∧ 2 Arms)
∨ (Dots ∧ 6 Legs) 2 Antenna ∧ 4 Arms Stripes ∧ 3 Eyes

(Stripes ∧ 3 Eyes)
∨ (Dots ∧ No legs)

2 tasks for the old and the new rule, respectively), while a to-
tal of 8 tasks was used for the conflicts, as we expected those
to have a higher variance. The remaining 8 tasks were, again,
used as baseline, consisting of planet 1 and planet 2.

Additional Rule across divisions
When testing the old and the new rules on their own, we re-
lied on the same number of tasks as in the previous condition,
using 4 tasks for each, new and old rules. When crossing
divisions, a major difference occurs compared to conditions
staying withing a division: As the rules are no longer mu-
tually exclusive for all planets (for planet 1 both rules are
applicable at the same time), the consensus can now also be
tested accordingly. This leads to a total of 3 tasks for test-
ing the consensus, as new- and old-rule cases collapse into a
single task for planet 1. However, for the conflicting cases,
it must still be warranted that tasks can be solved unambigu-
ously, which requires to avoid fulfilling the criteria for one of
the rules. As in the previous condition, 8 tasks were used to
test the conflict situations. The remaining 9 tasks provided
the baseline, consisting of planet 2 and planet 3.

Dataset
The data was acquired via online study on the platform Pro-
lific1. Two studies were conducted, obtaining data from 85
participants in the first and 113 participants in the second
study. Due to an error, the data for the third condition (ad-
ditional rule across divisions) could not be used, leading to
a total of 55 participants remaining from the first run. To re-
balance conditions, assignment to the conditions was adjusted
accordingly in the second run. Besides correction of the er-
ror, the only difference between our studies was an additional
survey at the end of the second study, where participants had
to write down how they remember the rules for each planet in
free text. After combining both datasets and excluding par-
ticipants with a sub-random performance (n = 3) in training
phase, we obtained data from 165 participants (102 female,
62 male, 1 diverse). Over all three conditions, there are 53, 57
and 55 participants for rule change, rule addition within divi-
sion and rule addition across divisions, respectively. Datasets
and materials are publicly available on GitHub2.

1https://www.prolific.co/
2https://github.com/Shadownox/cogsci-2022-rulebasedcat
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Figure 2: Proportion of correct responses for the different
phases and conditions. Dots indicate individual participants.

Results
First, we analyze the general performance for the conditions.
Figure 2 shows performance for the training phase and the
test phases for all three conditions. Note that only training
performance was used to exclude participants, which is why
sub-random performances can occur in the test phase (e.g.,
by participants mixing up different rules, leading to system-
atic errors). The training performance is the best (M = 0.9,
MAD = 0.1) by a substantial margin, followed by the rule
change condition (M = 0.82, MAD= 0.18), the new rule con-
ditions across divisions (M = 0.82, MAD = 0.14) and finally
the addition of a new rule within the same division (M = 0.79,
MAD = 0.11). This is not surprising, as all conditions put
additional cognitive load on the participants and the rules
learned in the training phase will slowly fade out over time.

Between the two conditions for rule additions, the perfor-
mance was better across divisions than within a division, but
showing a higher variance. This indicates that the hierarchy
has a small effect on the performance, but it is not clear if the
effect is stable or comes down to inter-individual differences
in representing the rules.

The performance in the rule change condition was slightly
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Figure 3: Mean reaction times for the different phases and
conditions. Dots indicate individual participants. Participants
with mean reaction times that deviate by more than two stan-
dard deviations were excluded.

better compared to the addition of a new rule, however the
effect was much weaker than expected (mean performance:
change = 0.78, addition = 0.74) and did not reach signifi-
cance (Mann-Whitney U test: U = 2524.5, p = 0.24, all p-
values are Bonferroni corrected to correct for multiple com-
parisons). However, when taking the time needed for clas-
sifying an item into account, another picture emerges. Fig-
ure 3 shows the mean reaction times for the different condi-
tions. While there are only slight differences between training
and the rule addition conditions, indicating that possible prac-
tice effects get cancelled out by the additional rule, the rule
change condition had significantly faster response times com-
pared to the additional rule conditions (mean = 3508ms com-
pared to mean = 3838ms, Mann-Whitney U test: U = 2295,
p = 0.04). We assume that this is due to the lower number of
rules that have to be considered and thus allowing participants
to become faster with more practice.

Figure 4 shows the performances for all conditions bro-
ken down by the task category. For comparison, the training
performance of participants in the respective condition group
(training) and the test performance for tasks not affected by
the condition (baseline) are included in blue. The first thing
that becomes apparent is that there seems to be a recency ef-
fect. The baseline performance is substantially worse com-
pared to the training performance, indicating that the mem-
ory strength for the rules faded out over time. This is also
supported by the fact that the performance for new rules is
always superior compared to the old rule.

In the following, we investigate the effects of interfering
rules, i.e., conflicts and consensus. Generally, we can see
in Figure 4 that the consensus always has the best perfor-
mance (even compared to the training performance in some
cases), while the conflicting situations are on the oppos-
ing side of the spectrum. However, for conflicting situa-

tions, an interaction with the previously described recency
effect seems to occur: For the third condition (rule addi-
tion across divisions), the conflicting situation based on the
new rule shows a higher performance compared to the the
old rules. Overall, the consensus situations has a significantly
better performance compared to the non-interfering situations
(mean = 0.816 compared to mean = 0.75, Mann-Whitney U
test: U = 10908.5, p = 0.002). For the conflicting situations,
the opposite effect seems to be weaker due to the interac-
tion with the recency effect and thus not reaching significance
level (mean= 0.71 compared to mean= 0.75, Mann-Whitney
U test: U = 12729.5, p = 0.6). This shows that the positive
effects of multiple rules in this scenario seem to have a greater
impact than potential conflicts emerging from them. A possi-
ble explanation would be a race-condition between rules. For
the consensus situations, it would be beneficial if either rule
wins. For conflicting situations, there is still the chance that
a wrong rule is rejected, even if it won the race condition,
limiting the negative impact.

At last, we analyze the results from the end-survey, where
participants had to recall the rules (see Table 3). Note that
these results required some interpretation, as the participants
were allowed to provide free-text responses. For example,
some participants reformulated the rules based on other rules
utilizing the exclusion principle (e.g., instead of has two an-
tennae, it would also be valid to use has not stripes or dots)
and therefore also be counted as correct (about 7% of the
participants provided such rules). Responses that provided
a conjunction of parts from the old and the new rule were
counted as a mix-up, while mentions of the old rule without
parts of the new rule are counted as old (same holds for new
rules, respectively). Optionally mentioned parts of rules (e.g.,
might also have dots) were omitted. Due to the survey being
added in the second iteration of the study, the responses are
not available for all participants. As the across-divisions con-
dition was only conducted in the second iteration of the study,
the condition is over-represented in this analysis. However,
while the results should not be used for strong quantitative
statements, some tendencies can be seen. Across all condi-
tions, the recall rate of the rules are similar for the manipu-
lated rules: the rules are only recalled correctly in about 50%
of the cases. The baseline rules were recalled slightly bet-
ter with about 60%. This contradicts the assumed recency
effect. When looking at the type of errors it also becomes
apparent that most errors originate from the participants only
being able to recall mixed rules, or the old rule. At first, these
findings seem to contradict the performance, as the classi-
fication performance for new rules is generally better. How-
ever, when analyzing if the participants do indeed follow their
rules, a different picture emerges. To do this, we derived log-
ical rules comparable to the ones shown in Table 2 as literally
as possible from the written responses and applied the rules in
order to obtain the responses from the rules. Overall, partici-
pants only selected an option in line with their recalled rules
in about 61% of the tasks on average. Only 15% of the errors
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Figure 4: Mean correctness in the test phase for the three conditions. Baseline refers to the classification performance for items
that were not affected by the changed rules, Training denotes the performance of the participants in the training phase.

Table 3: Number of correctly and incorrectly recalled rules
for rules affected by the condition (left) and the baseline
(right). Additionally, the errors for the condition-affected
rules are broken down by potential pitfalls (mix-ups where
both rules formed a wrong rule, only recalled the old/new
rule correctly).

Correct Wrong Mix Old New

Change 24 37 26 13 12 2
Within 28 38 28 18 8 7 3
Across 53 83 53 23 15 18 4

where due to the rule. When having recalled a wrong rule,
for about 64% of the cases the correct answer was selected
nevertheless. This indicates that participants were not able to
verbalize learned rules in a logically correct form.

Discussion
The ability to manipulate prior category knowledge (e.g.,
learning new and update existing categories in the light of
new information) is an essential cognitive ability. In this
work, we developed an experimental setting that allows to in-
vestigate the impact of different rule-updating operations on
recalling and applying memorized rules. As a starting point,
we assessed the influence of an addition of a new rule as well
as a change to an existing rule. Although we expected the rule
change to have less impact on categorization performance
compared to the rule addition (due to the reduced complexity
of rules that have to be remembered), our results did not sup-
ported this assumption. However, participants were signifi-
cantly faster to apply a changed as compared to a new rule,
which still indicates that processes depending on the number
or complexity of the rules were present. There were no sig-
nificant differences between the different addition conditions
that stayed within or broke the initial hierarchy.

When investigating the interactions between old and new
rules after a change, we found that accuracy was enhanced
in situations where both rules resulted in the same classifica-
tion. This was in line with our expectation, that both rules
can contribute to the categorization (e.g., due to race condi-
tions between rules). For the case of a rule change, this means

that the old rule left some cognitive artefacts that affected par-
ticipants’ decisions. However, for a conflicting situation, the
effect was no longer apparent. We assume that this is due to
the interaction with another effect: Assuming a recency ef-
fect, new rules might be more active compared to old ones,
potentially counteracting the influence of cognitive artefacts
from the old rule.

When looking at participants’ ability to verbally recall the
applied rules, we found that participants were only able to
recall about 50% of the rules for categories that required to
add or update rules and 60% of the rules that remained un-
changed. Furthermore, when the recalled rules would lead
to an incorrect categorization, participants applied the cor-
rect rule instead of their recalled rule in about 64% of the
cases. This is surprising, as the rules did not have to be (im-
plicitly) learned over time, but where explicitly given to the
participants. As Ashby et al. (1998) showed, participants are
usually able to verbalize their decisions, they might use a sim-
ilar strategy when recalling the rules and verbalize their deci-
sions for typical instances. While the self-reports should be
interpreted with caution, the general trend suggests that par-
ticipants implicitly encoded rules that were not necessarily in
line with the instructed ones but allowed them to categorize
the images, more often than not, accurately. We speculate
that those implicitly learned rules interfered (or replaced) the
explicitly-instructed rules. Changing the free-text to a more
constraint way to query for the rules should be considered for
further investigations in this direction. Participants need to be
queried for the rules at several stages of the study, allowing to
gain insight into the processes behind the effect.

Put together, the main contribution of this work lies in the
presented experimental setting, which allows a systematical
investigation of rule-manipulations. Our findings hint at sev-
eral possible processes that we plan to further investigate by
using the presented experimental scenario. By proceeding
with our investigations, we aim to establish an estimation
of the cognitive costs of mental operations involved in rule-
updating.
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