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Radiomic Signatures Derived
from Diffusion-Weighted Imaging
for the Assessment of Breast Cancer Receptor
Status and Molecular Subtypes
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Abstract
Purpose: To compare annotation segmentation approaches and to assess the value of
radiomics analysis applied to diffusion-weighted imaging (DWI) for evaluation of breast cancer
receptor status and molecular subtyping.
Procedures: In this IRB-approved HIPAA-compliant retrospective study, 91 patients with
treatment-naïve breast malignancies proven by image-guided breast biopsy, (luminal A, n =
49; luminal B, n = 8; human epidermal growth factor receptor 2 [HER2]-enriched, n = 11; triple
negative [TN], n = 23) underwent multiparametric magnetic resonance imaging (MRI) of the
breast at 3 T with dynamic contrast-enhanced MRI, T2-weighted and DW imaging. Lesions were
manually segmented on high b-value DW images and segmentation ROIS were propagated to
apparent diffusion coefficient (ADC) maps. In addition in a subgroup (n = 79) where lesions were
discernable on ADC maps alone, these were also directly segmented there. To derive radiomics
signatures, the following features were extracted and analyzed: first-order histogram (HIS), co-
occurrence matrix (COM), run-length matrix (RLM), absolute gradient, autoregressive model
(ARM), discrete Haar wavelet transform (WAV), and lesion geometry. Fisher, probability of error
and average correlation, and mutual information coefficients were used for feature selection.
Linear discriminant analysis followed by k-nearest neighbor classification with leave-one-out
cross-validation was applied for pairwise differentiation of receptor status and molecular
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subtyping. Histopathologic results were considered the gold standard.
Results: For lesion that were segmented on DWI and segmentation ROIs were propagated to
ADC maps the following classification accuracies 9 90% were obtained: luminal B vs. HER2-
enriched, 94.7 % (based on COM features); luminal B vs. others, 92.3 % (COM, HIS); and
HER2-enriched vs. others, 90.1 % (RLM, COM). For lesions that were segmented directly on
ADC maps, better results were achieved yielding the following classification accuracies: luminal
B vs. HER2-enriched, 100 % (COM, WAV); luminal A vs. luminal B, 91.5 % (COM, WAV); and
luminal B vs. others, 91.1 % (WAV, ARM, COM).
Conclusions: Radiomic signatures from DWI with ADC mapping allows evaluation of breast cancer
receptor status and molecular subtyping with high diagnostic accuracy. Better classification accuracies
were obtained when breast tumor segmentations could be performed on ADC maps.

Key words: Radiomics, Diffusion-weighted, Magnetic resonance imaging, Breast cancer,
Molecular subtypes, Receptors

Introduction
With the revelation that breast cancer is a genetic disease, it has
become evident that traditional classifications based on tumor
histology, size, grade, and receptor status cannot fully capture its
characteristics. Gene expression profiling has revealed four main
intrinsic molecular subtypes of breast cancer that show substantial
differences in phenotypic presentation, prognosis, treatment
response, and outcome [1–5]: luminal A, luminal B, human
epidermal growth factor receptor 2 (HER2)-enriched, and triple
negative (TN) [6–8]. The assessment of molecular subtypes to
guide treatment selection is currently performed by gene
expression profiling or immunohistochemical surrogates from
tissue samples [8–10]. However, this approach can be limited, as
biopsy can only capture a small part of a potentially heterogeneous
lesion. Additionally, tumor biology may change over time and
during treatment due to epithelial–mesenchymal transition [11].

The emerging field of radiomics relies on the extraction
of mathematical patterns that are hidden within medical
images, some of which the human eye may not be able to
assess, let alone quantify; these patterns may potentially
predict disease genotypes and enable spatio-longitudinal
monitoring of the entire tumor. Previous radiomic studies in
breast cancer have primarily focused on features derived
from dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) and their utility for the prediction of
molecular subtype [12–15], as well as tumor histology
[16], risk of recurrence [17, 18], response to chemotherapy
[19], and potential to metastasize [20, 21]. While DCE-MRI
is undoubtedly the most sensitive modality for the assess-
ment of breast cancer, complementary techniques such as
diffusion-weighted imaging (DWI) that provides additional
functional information have been developed to increase its
specificity. DWI with apparent diffusion coefficient (ADC)
mapping visualizes diffusivity, which indirectly reflects cell
density in solid tumors.

Nevertheless, little is known about radiomic signatures derived
from DWI for breast cancer characterization: the small number of
previous studies of radiomics of DWI primarily evaluated

differentiation between benign and malignant lesions [22–24] or
solely used histogram features for the differentiation of TN
cancers vs. other breast cancer subtypes [25]. Moreover, the actual
parameters used to perform DWI radiomics are not yet well
established, i.e., whether only the actual solid tumor itself should
be measured or if the inclusion of edema, necrosis, and
inflammation is essential for the differentiation between sub-
groups [26, 27].

Due to the recent controversy about the safety of
gadolinium-based contrast agents, there is considerable interest
to develop unenhanced MRI techniques for improved breast
cancer diagnosis and characterization [28–30]. Therefore
investigation of DWI radiomic signatures for the differentiation
of molecular subtypes is of interest and may have manifold
applications such as unenhanced assessment of tumor hetero-
geneity for improved biopsy planning to better guide treatment
decisions or the non-invasive tumor monitoring.

We hypothesized that the spatial heterogeneity of tissue
diffusivity differs between molecular breast cancer subtypes.
Therefore, the aim of this study was to evaluate the
diagnostic performance of radiomic features extracted from
standardized DWI data, using different approaches of tumor
segmentation, for the assessment of breast cancer receptor
status and molecular subtypes.

Material and Methods
This single-institution retrospective study conforms to
Health Insurance Portability and Accountability Act guide-
lines and was approved by the Institutional Review Board
with a waiver of written informed consent.

Patients

A database search was performed for patients who
underwent state-of-the-art multiparametric MRI of the breast
including DCE-MRI and DWI from January 2011 to January
2013. Inclusion criteria were the following: age ≥ 18 years;
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biopsy-proven invasive breast cancer; not pregnant or
breastfeeding; and lesion size ≥ 1 cm to reduce the influence
of partial volume effect on radiomic analysis [31]. One
hundred and seventeen consecutive patients matched the
inclusion criteria. Of those, twenty-six were excluded due to
prior treatment, poor image quality, or histopathology results
showing types of cancer other than invasive ductal carci-
noma and invasive lobular carcinoma. Exclusion criteria also
included personal history or breast cancer and high-risk
status. Therefore 91 women were included in the study.

MR Imaging

All MRI examinations were performed using a 3 Tesla
system (Discovery MR750; GE Healthcare, Milwaukee, WI)
with the body coil as transmitter and a dedicated 16-channel
phased-array breast coil (Sentinelle Vanguard, Toronto,
Canada) as a receiver. The state-of-the-art MRI protocol
included the following DWI sequence; a 2D, single-shot,
dual spin echo-planar DWI sequence (TR 6.000 ms; mini-
mum TE; flip angle 90o; acquisition matrix 98 × 98 or 128 ×
128; reconstructed matrix 256 × 256; FOV 28–38 cm; slice
thickness 4 or 5 mm; NEX 3; slice gap 0–1 mm; fat
suppression, enhanced; parallel imaging, ASSET; acquisi-
tion time approximately 2 min for 2 b-values 0 and 1000).
The details of the full MRI sequence protocol are provided
in a different study [32].

Radiomic Analysis

Feature extraction was performed semi-automatically using
the publicly available software package MaZda 4.6 (http://
www.eletel.p.lodz.pl/programy/mazda/), which was devel-
oped within the COST (European Cooperation in The Field
of Scientific and Technical Research) projects B11 and B21
and has been used in previous studies in the field [31, 33]. In
the present study, radiomic analysis was performed exclu-
sively using ADC maps—the latter were chosen over high b-
value images as they are less prone to some type of artifacts
such as dielectric artifacts.

Two different approaches of tumor segmentation were
compared: A single two-dimensional region of interest

(ROI): (a) drawn along the visible tumor margins on high
b-value DWI and subsequently copied to the corresponding
ADC map; and (b) drawn directly along the visible tumor
margins on the ADC map. The first approach was performed
in all patients, while the second was applied only when an
area of decreased ADC values was confidently identifiable
on the ADC maps alone without the need for correlation
with the high b-value images. Two radiologists (K.P,
13 years of experience; D.L, 4 years of experience) in
consensus drew all ROIs on the slice with the largest
transaxial lesion diameter on high b-value images or the
ADC map (Fig. 1). Adequate distance was kept from the
surrounding anatomic structures and biopsy markers. Every
tumor was segmented using a freehand ROI, which could be
adapted freely in the case of artifacts due to biopsy markers.
Artifacts were always excluded from segmentation; even
when no artifacts were visible, a distance of at least 2 mm to
the marker was kept. DCE-MRI was used to confirm tumor
localization in cases that were equivocal on DWI alone.

Gray-level normalization of each ROI was performed
using the limitation of dynamics to μ ± 3σ (μ, gray-level
mean; σ, gray-level standard deviation) to reduce the
influence of contrast and brightness variation which might
otherwise have an influence on feature quantification [34].
Radiomic analysis included calculation of features derived
from first-order histogram (HIS), co-occurrence matrix
(COM), run-length matrix (RLM), absolute gradient,
autoregressive model (ARM), discrete Haar wavelet trans-
form (WAV), and lesion geometry, as previously described
[35–39]. The total time for lesion segmentation and radiomic
analysis was approximately 2–3 min per ROI.

Histopathological Analysis

Tumor samples were analyzed with regard to tumor
histology, grade, and immunohistochemical status including
estrogen receptor, progesterone receptor, and HER2. Estro-
gen or progesterone receptor positive tumors (9 1 % stain-
ing) were classified as hormone receptor positive.
Histological analysis of the surgical specimen was used as
reference standard. Molecular subtypes were classified as
luminal A for hormone receptor positive and HER2
negative, luminal B for hormone receptor positive and
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Fig. 1 a The ADC map for radiomic analysis in a 44-year-old patient with a luminal B invasive ductal carcinoma in the left
breast with b manual region of interest (ROI) placement.
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HER2 positive, HER2-enriched for hormone receptor neg-
ative and HER2 positive, and TN for hormone receptor and
HER2 negative [1, 4, 40]. Fluorescence in situ hybridization
was used to detect gene amplification in patients with
equivocal HER2 status.

Statistical Analysis

Statistical data analysis was done directly within the MaZda
software. Fisher (ratio of between-class to within-class
variance), minimization of probability of classification error
and average correlation (POE + ACC) and mutual informa-
tion (MI) coefficients, as previously described [35], were
used for radiomic feature selection—each technique pro-
vided a set of ten individual features with the highest
discriminatory potential. In the next step, the dimensionality
of the features sets was reduced using linear discriminant
analysis, which generated most discriminatory features
(MDFs). Based on these MDFs, k-nearest neighbor (k-NN)
classification (which assigns a point in data space to the
class to which its k-nearest neighbors belong) with leave-
one-out cross-validation (LOOCV) was used for pairwise
radiomic-based differentiation between molecular subtypes/
receptor status [41, 42]. Hence, the model was trained using
all patients in the sample (n)-1 and validated on the
remaining patient. This process was repeated n times, with
n depending on the number of patients in each sample—e.g.,
for differentiation between luminal A (i patients) and
luminal B (j patients) cancers, n = i + j. This combination
of feature selection, reduction and k-NN with LOOCV has
been used recommended and used in previous studies in the
field [31, 33, 35]. The percentage of misclassified data
vectors based on the MDFs was used as the main outcome
variable, with the true class affiliations, as determined by
histopathological analysis (see below) which served as the
reference standard. Feature maps were reconstructed to
visualize differences in single radiomic features between
breast cancer subgroups. These feature maps were used for
illustrative purposes only.

Results
Of the 91 treatment-naïve, biopsy-proven breast cancers, 57
were hormone receptor positive (62.6 %). Forty-nine cancers
were classified as luminal A (53.8 %), 8 as luminal B
(8.8 %), 11 as HER2-enriched (12.1 %), and 23 as TN
(25.3 %). There were 70 mass lesions and 21 non-mass
enhancing lesions on DCE-MRI. Mean lesion size was 3.5 ±
2.3 cm (range, 1–16.6 cm). Mean patient age was 48 ±
9.7 years (range, 27–68 years).

Of the 91 lesions, in 79 lesions, areas of decreased ADC
values were confidently identifiable on ADC maps alone
without the need for correlation with the high b-value
images (41 luminal A, 6 luminal B, 10 HER2-enriched, 22
TN). Accordingly, in these 79/91 lesions, tumor

segmentation was performed using ROIs constructed on
DWI (and then copied to the ADC maps) on the one hand,
and using ROIs directly drawn on the ADC maps on the
other hand, for comparative analysis. In the remaining 12/91
patients where areas of decreased ADC values were difficult
to identify without correlation with high b-value images,
tumor segmentation was performed exclusively on high b-
value images and then copied to the ADC maps. These
twelve lesions included smaller cancers (mean size, 2.7 vs.
3.7 cm), non-mass enhancement, and/or very dense breasts.

Radiomics-based classification accuracies ≥ 80 % were
considered to be clinically relevant and are listed below:

Molecular Breast Cancer Subtypes

Best results in terms of accuracies using tumor segmentation
directly on the ADC map were achieved for luminal B
cancers: luminal A vs. luminal B, 91.5 % (POE + ACC/
based on COM and WAV features); luminal B vs. HER2-
enriched, 100 % (Fisher/based on COM and WAV features);
luminal B vs. TN, 89.3 % (POE + ACC/based on COM
features); and luminal B vs. all others, 91.1 % (Fisher/based
on WAV, ARM, and COM features).

In addition, the separation of HER2-enriched cancers was
successful, yielding the following accuracies: HER2-
enriched vs. luminal A, 80.4 % (Fisher/based on COM
features); HER2-enriched vs. TN, 81.3 % (POE + ACC/
based on COM features); and HER2-enriched vs. all others,
81 % (MI/based on COM features).

Likewise, using DWI for ROI delineation, best results in
terms of accuracies were achieved for luminal B cancers:
luminal A vs. luminal B, 89.5 % (MI/based on COM
features); luminal B vs. HER2-enriched, 94.7 % (MI/entirely
based on COM features); and luminal B vs. all others,
92.3 % (Fisher/mainly based on COM and HIS features).

The separation of HER2-enriched cancers from other
breast cancers was successful, with the following accuracies:
HER2-enriched vs. luminal A, 83.3 % (Fisher/based on
COM and RLM features); and HER2-enriched vs. all others,
90.1 % (Fisher/based on RLM and COM features).

In summary, luminal B and HER2-enriched breast
cancers show distinct radiomic signatures that enable their
separation from other subtypes. Tumor delineation directly
on the ADC map yielded higher accuracies than on high b-
value images.

Receptor Status

With regard to hormone receptor status, the accuracy for
separating hormone receptor-positive vs. HER2-enriched
cancers was 84.2 % (MI/based on COM features) in the
subgroup with tumor delineation directly on the ADC map.
All other accuracies were below 80 %.

All radiomic-based classification accuracies are given in
Tables 1 and 2.
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Discussion
In this study, we investigated the diagnostic performance of
radiomic signatures derived from DWI for the assessment of
breast cancer receptor status and molecular subtypes. We
hypothesized that the spatial heterogeneity of tissue diffu-
sivity differs between molecular breast cancer subtypes and
could be quantified by radiomic analysis. Our results
demonstrate that DWI radiomic features enable the separa-
tion between breast cancers of different receptor status and
molecular subtypes with high accuracy. Two different
approaches of tumor segmentation were explored in this
context. Tumor segmentation directly on the ADC map
yielded better results in terms of accuracy, suggesting that
the solid tumor components strongly contribute to radiomic
analysis rather than the inclusion of peritumoral or necrotic
tissue. Radiomic signatures derived from DWI may have the
potential to enable contrast agent-free spatio-longitudinal
monitoring of tumor biology before and during treatment.

One of the main findings of our study is the high
accuracy in the radiomic-based discrimination of luminal B
and HER2 enriched breast cancers (accuracies, 100 % and
94.7 %). This specific finding might have a direct clinical
consequence, as it might prevent the incorrect exclusion of
women from hormone therapy when they have heteroge-
neous tumors. The important information that hormone
receptors are present within the tumor might get lost, as
biopsy can only capture a snapshot of a potentially
heterogeneous tumor, and after neoadjuvant chemotherapy,
no tumor cells might be left.

In the first study that investigated the utility of DWI
radiomic signatures, Xie et al. investigated DWI and DCE-
MRI histogram features for the differentiation of TN from
other molecular subtypes with AUCs up to 0.763 [25].
Histogram features do not provide textural information in
terms of spatial relationships between the signal intensities
of pixels/voxels across a region or volume of interest [35].
This may explain why in this first study that investigated the
utility of DWI radiomic signatures, true radiomic feature
groups (e.g., COM) performed better.

Other studies have investigated radiomic signatures
derived from DWI for the differentiation of benign from
malignant breast lesions. Bickelhaupt et al. recently evalu-
ated DWI radiomic signatures for the separation between
benign and malignant breast lesions [22]. Although DWI
radiomics yielded better results than ADC mean alone, a
highly experienced breast radiologist using DCE-MRI could
not be outperformed. Another study by the same group
investigated a radiomic model extracted from kurtosis DWI
for lesion characterization [23]. The model reduced false
positives from 66 to 20 cases at a predefined sensitivity of
greater than 98 %, significantly improving specificity
compared with median ADC and apparent kurtosis coeffi-
cient alone. It has to be noted that in the aforementioned
study, there was heterogeneity in terms of hard- and
software; however, voxel size for DWI was kept constant, T
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which might have influenced results. Parekh, et al. attempted
to separate benign from malignant breast lesions using COM
features derived from feature maps of DWI, DCE-MRI, T1-
weighted, and T2-weighted imaging [24]. The authors found
cellular heterogeneity, evaluated using entropy on the ADC
map, to be significantly different between benign and
malignant lesions.

In the aforementioned studies, different approaches to
derive and investigate DWI radiomic signatures were used
which limits generalizability of results. It stands to reason
that a prerequisite for the widespread application of
radiomics in the future will be the rigorous standardization
in terms of data acquisition and analysis across institutions
and vendors. An alternative would be the use of deep
learning neural networks, i.e., with very large heteroge-
neous datasets in which the classifier has sufficient training
data to learn what the real biological information is. In this
respect, investigation of how tumors should ideally be
segmented is of interest as it remains unclear whether the
ROI should include solid tumor components only or
additionally cover cystic, hemorrhagic, necrotic, or
inflammated regions [43]. Liu, et al. found 95 radiomic
features in cervical cancer to be insensitive to ROI variation
among T2-weighted images, ADC maps of b800 and b1000,
with ADC b1000 features yielding a lower misclassification
error [27]. In the present study, only b1000 ADC maps were
chosen for radiomic analysis. Recently, Wang, et al.
compared whole tumor, solid portion, and peritumoral
edema ROIs for the differentiation between low-grade and
high-grade gliomas [26]. They found that tumor inhomoge-
neity parameters performed better than the ones derived
from solid areas only (P = 0.048); nevertheless, only HIS
and COM features were calculated. In our study, tumor
segmentation directly on ADC maps performed better for
the separation of molecular breast cancer subtypes than
segmentation and ROI transfer from high b-value DWI,
which naturally included more non-solid areas surrounding
the lesion. The ADC map represents areas of tumor with
actual hindered diffusivity and thus might allow a more
accurate assessment of the lesion than high b-value DWI,
where T2 shine through might occur. Our results suggest
that solid tumor components truly contribute to radiomic
analysis; however, further studies with three-dimensional
evaluation of DWI radiomics in larger patient cohorts are
warranted to confirm our findings.

While DWI radiomic features have not been used
clinically in this context yet, many previous studies have
investigated DCE-MRI radiomic signatures for the separa-
tion of breast cancers of different molecular subtypes,
although with mixed results. In our study, a multitude of
radiomic features from different feature categories was
derived from DWI to capture different aspects of image
texture, which might have contributed to the excellent
results. The majority of DCE-MRI radiomic studies for the
separation of molecular subtypes, however, chose to rely
solely on a small, typically COM-based subgroup ofT
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radiomic features [14, 16, 44, 45]. Sutton, et al. demon-
strated accuracies of up to 89.2 % for the differentiation
between molecular subtypes using a combination of
pathology data and COM features [14]. Meanwhile,
Holli-Helenius achieved AUC values of 0.83–0.88 for the
separation of luminal A and B cancers in a small patient
collective (n = 27) using COM-features alone [15]. These
results are in good agreement with those in our own study
(accuracies, 91.5 % and 89.5 %); however, geometric
features for shape description performed better than COM
features in our study (Fig. 2). In contrast to prior DCE-
MRI radiomic studies that show a high level of heteroge-
neity of scanners and sequence protocols and were only
partly successful [4, 12, 13, 16], the acquisition parameters
in the present study were strictly homogeneous, which
might have had a positive impact on our results. Although
DCE-MRI is the most sensitive method for the detection of
breast cancer [46, 47], the evaluation of DWI radiomic
signatures is of special interest, as they might allow for
contrast agent-free tumor biology assessment in times of
concern surrounding the safety of gadolinium-containing
contrast agents [28–30].

We acknowledge the limitations of our study. Due to
the small number of patients in some subgroups, a further
division of our population into a training and validation
dataset was not considered appropriate. Instead, we
decided to apply a k-nn classifier with leave-one-out
cross-validation, an established method that has been used
in multiple studies in the field [31, 48, 49]. Our best results
in terms of accuracies were achieved for luminal B and
HER2-enriched cancers, a finding that may in part be
attributed to the small number of patients in these groups
(n = 11 and 8, respectively). The mean size of breast
cancers included in this study was relatively large, which
could explain the high number of triple-negative cancers;
at the same time, our results might not be generalizable to
smaller lesions in which only few voxel data are available
for analysis. Breast cancers were delineated manually,
which might introduce a certain level of observer-

dependency, and may not be feasible in analyzing large
datasets. Furthermore, lesions were segmented two-
dimensionally and on the slice with the largest lesion
diameter only. Larger prospective studies and multicenter
trials with an equal distribution of molecular subtypes are
needed to evaluate the robustness of DWI radiomics for the
assessment of breast cancer molecular subtypes.

Conclusion
In conclusion, our preliminary data indicate a possible
potential that DWI radiomic signatures enable the assess-
ment of molecular breast cancer subtypes and receptor
status with high accuracy. DWI radiomic analysis showed
higher accuracies when tumor segmentation was performed
directly on ADC maps, indicating that solid tumor areas
are essential to radiomic analysis. Although DWI radiomic
signatures are unlikely to replace formal genetic testing,
with additional validation, they might have the potential to
provide a noninvasive, contrast-agent-free method to
assess tumor biology before and during treatment.
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Fig. 2 a ADC map of a 49-year-old patient with a luminal A cancer in the right breast. b ADC map of a 67-year-old patient with
a luminal B cancer in the right breast. In our patient collective, radiomic signatures derived from DWI differentiated luminal A
from luminal B cancers with an accuracy of 91.5 % when tumor segmentation was performed on the ADC map (89.5 % when
segmented on high b-value DWI and copied to the ADC map). (DWI, diffusion-weighted imaging; ADC, apparent diffusion
coefficient).
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