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ABSTRACT OF THE DISSERTATION 

 

 

Machine Learning-Based Decision Support to Enhance the Seismic Resilience of  

Distributed Infrastructure 

 

by 

 

Honglan Huang 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2021 

Professor Henry J. Burton, Chair 

 

Seismic resilience of infrastructure has received growing attention in the past decades. This 

dissertation aims to propose a general decision support framework for the post-earthquake damage 

and recovery of distributed infrastructures in order to improve their resilience. A damage 

assessment framework is first proposed that incorporates a neural network-based pre-event 

assessment model, and a graph neural network-based model for dynamically updating the damage 

estimates in the recovery process. Next, a spatially explicit model is developed to quantify and 

estimate the possible recovery trajectory based on the Gaussian Process model. Finally, a deep 

reinforcement learning based framework is proposed to optimize the repair actions in the recovery 

process. The framework can provide critical insights to the recovery of distributed infrastructure 

and improve pre-event planning and post-earthquake recovery tasks. 
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1. Introduction 

1.1 Motivation and Background 

Lifeline systems (e.g., water distribution, electric power, gas supply and transportation 

systems) consist of interdependent structures or components distributed in a large area. Following 

a major earthquake, multiple components of a distributed infrastructure system can undergo 

different levels of damage or inoperability, which affect the functionality of the entire system. The 

loss of functionality can cause significant disruption to the service it provides for living and 

industrial purposes (Tabucchi et al. 2008), which further impact the economy and society (Lee et 

al. 2018; Nozhati et al. 2020; Tabucchi et al. 2008, 2010a; Xu et al. 2019).  

Infrastructure resilience, i.e., the ability of an infrastructure to withstand, adapt and recover 

rapidly from disruptive events (Bruneau et al. 2003) has received increasing attention in the two 

past decades.  To achieve the goal of improving resilience, reasonable decisions need to be made 

regarding the mitigation and response of the system, for example, the design or strengthening of 

the system for better performance, pre-event planning for potential future hazards, and scheduling 

of recovery tasks for efficient post-event restoration. 

This dissertation focuses on the decision-making for the post-earthquake restoration of 

distributed infrastructures to improve their resilience. Various types of decision-making tasks are 

involved in the post-earthquake recovery process that have significant impact on the recovery. Pre-

event assessment of the possible damage distribution is critical to risk mitigation and emergence 

planning, and providing updates to the original damage estimation during the recovery phase can 

provide suggestions on how plans can be adapted. Quantification and estimation of the possible 

recovery trajectory can also help the pre-event planning. The optimization of the restorative actions 

can accelerate the recovery process and reduce the cumulative functionality loss. Modern data-
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driven and machine learning methodologies provide an integrated way to solve these problems and 

improve infrastructure resilience.  

1.2 Objectives 

The objective of this research is to develop a general decision support framework for 

reliable damage assessment, recovery trajectory estimation and repair action optimization 

following earthquakes, based on data-driven and machine learning methodologies. The broader 

objective of this research is realized through the completion of following tasks: 

1. Develop a pre-event damage assessment model using neural networks, for effective 

estimation of the component-level damage in future earthquakes. 

2. Propose a general framework for dynamically updating the damage estimation during 

the post-earthquake recovery process, to inform and update the inspection and repair 

plans. The framework is implemented using a graph neural network that incorporates a 

semi-supervised learning approach. 

3. Develop a spatially explicit recovery model to quantify and estimate the recovery of the 

system following earthquakes. The Gaussian Process model is utilized to model the 

spatial correlation of the recovery among the system components. 

4. Establish a mathematical formulation of the post-earthquake recovery (repair) action as 

an optimization problem. Propose a deep reinforcement learning based framework for 

solving the problem and validate the applicability of the methodology. 

5. Expand the proposed deep reinforcement learning methodology to address the challenge 

of a large discrete action space, and evaluate the framework on a realistic system. 
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1.3 Outlines 

Seven chapters are used to present the proposed decision support framework for the post-

earthquake damage and recovery assessment of distributed infrastructure.  

Chapter 1 provides the background and motivation of the research, as well as an outline for 

the framework.  

A review of the common methods for the damage assessment, recovery modeling and loss 

and risk assessment of distributed infrastructure, as well as methods for optimizing the post-

earthquake recovery, is provided in Chapter 2. 

Chapter 3 presents a framework for performing dynamic seismic damage assessment of 

distributed infrastructure systems using graph neural networks and semi-supervised machine 

learning. First, pre-event damage assessment is performed using both traditional fragility-based 

models and a machine learning classification algorithm trained on historical damage data. Then, a 

graph-neural network is implemented to perform semi-supervised learning and update the pre-

event predictions as observations of actual damage become available during the post-earthquake 

inspection process. The methodology is demonstrated on the pipe network for the City of Napa, 

California water distribution system. A dataset of pipes damaged during the 2014 M 6.0 

earthquake is used for validation purposes. A conventional neural network classification model is 

first trained on a portion of the observed pipe damage and used to perform the pre-event damage 

assessment i.e., supervised learning. Following the earthquake, a graph neural network model is 

employed to update the damage estimates given the information incrementally collected during 

the inspection process.  

Chapter 4 proposes a spatially explicit recovery model based on the Gaussian Process 

machine learning model. The proposed model is first trained to replicate the restoration process of 
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the water distribution system in the city of Napa following the 2014 Mw 6.0 earthquake. The 

transfer learning ability of the model for predicting the recovery for future events is demonstrated 

through a hypothetical Mw 6.7 earthquake scenario. 

Chapter 5 establishes a formulation of post-earthquake restoration based on the Markov 

Decision Process and proposes a general deep reinforcement learning based framework for 

optimizing the repair action sequence. Two commonly-used deep reinforcement learning models: 

Deep Q Network and Deep Actor Critic are implemented to learn the optimal repair actions 

through interactions with a simulation-based water network environment. The proposed 

methodology is tested on a small hypothetical water network system to demonstrate the 

applicability of the reinforcement learning method.  

Chapter 6 expands the methodology by introducing an actor-critic based model, 

Wolpertinger, to further address the challenge of a large discrete action space in the recovery 

optimization of realistic systems. The modified model is evaluated on a water distribution network 

in the city of Novato, California following selected earthquake scenario to demonstrate the 

effectiveness.  

Chapter 7 summarizes the research that is detailed in the previous chapters, discusses the 

limitations and highlights future directions for the research. 
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2. Review of Performance Assessment and Recovery Optimization 

of Distributed Infrastructure 

2.1 Performance Assessment of Distributed Infrastructure 

2.1.1 Damage Assessment 

Damage assessment models are critical to the seismic resilience of distributed 

infrastructure. The damage assessment model can be used (1) to provide reasonable estimation of 

the physical degradation caused to the infrastructure in future earthquakes, which is useful for pre-

event planning and risk mitigation; (2) to better understand the influential attributes of the ground 

motion, site and the system components that are related to the damage, which may provide 

suggestions for design and strengthening of the system; (3) to be integrated as a part of a regional 

risk assessment model. 

2.1.1.1 Fragility Function-Based Model 

Conventional damage assessment models developed in the past decades are often based on 

fragility functions. The fragility function is developed based on one or more historical earthquakes, 

and a function is fitted to represent the probability that a component exceeds certain damage states, 

conditioned on earthquake intensity parameters.  

For water distribution networks, the most-commonly used approach is the repair rate (RR) 

model. Specifically,  a statistical model is developed to capture the empirical relationships between 

the repair rate (e.g., number of damaged points per unit length of the pipeline) and the earthquake 

intensity parameter (e.g., Peak Ground Velocity (PGV),  Peak Ground Acceleration (PGA) and 

Peak Ground Displacement (PGD)) (Isoyama et al. 2000), and a probabilistic model of the 

component damage states is developed using the repair rate as parameter (Pineda-Porras and Najafi 

2010). The RR model adopted in American Lifelines Alliance (ALA) takes the form of a linear 
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model (American Lifelines Alliance 2001) 

𝑅𝑅 ൌ 𝑎 ∙ 𝑃𝐺𝑉 (2.1) 

or a power model 

𝑅𝑅 ൌ 𝑏 ∙ 𝑃𝐺𝑉௖ (2.2) 

where 𝑎, 𝑏, 𝑐 are coefficients fitted from the historical earthquake data. Next, for a pipe segment 

of length 𝐿 with a given 𝑅𝑅, the probability that 𝑛 repairs are needed is estimated using a Poisson 

distribution: 

𝑃ሺ𝑁 ൌ 𝑛ሻ ൌ  
ሺ𝑅𝑅. 𝐿ሻ௡

𝑛!
. 𝑒ିோோ.௅ (2.3) 

Similarly, for the seismic damage assessment of power distribution systems, a repair rate- 

based fragility model is often adopted. Eidinger et al. (2016) proposed the repair rate model for 

overhead distribution components as  

𝑅𝑅 ൌ 𝑘ଵ ∙ 𝑘ଶ ∙ 𝑘ଷ ∙ ሺ1.388 ∙ 𝑃𝑆𝐴்ୀଷ.଴ െ 0.0415ሻ, 𝑃𝑆𝐴்ୀଷ.଴ ൒ 0.03𝑔; 

0.0, otherwise 
(2.4) 

where 𝑃𝑆𝐴்ୀଷ.଴  is the peak spectral acceleration at period 𝑇 ൌ 3.0  seconds, 𝑘ଵ  reflects the 

primary construction type, 𝑘ଶ is the secondary construction type and 𝑘ଷ is a factor for age effect. 

The repair rate of underground distribution components is estimated in a similar way as those of 

the buried pipelines as in Eqs. 2.1-2.2.  

2.1.1.2 Machine Learning-Based Model 

Researchers in civil engineering have been applying machine learning to estimate or model 

the damage to infrastructure systems in the past decade. In general, these damage models take in 

characteristics of the earthquake, site property, and attributes of the components as explanatory 

variables, and the damage states of the individual components are treated as the response/target 

variable. A machine learning model is then trained to capture the complex nonlinear relationship 
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between the target and explanatory variables. The general form can be expressed as 

𝑌෠ ൌ 𝑓ሺ𝑋ሻ (2.5) 

where 𝑌෠ is the estimated damage state of the component, and 𝑋 is the feature vector that includes 

the earthquake parameters (e.g., intensity on the location of the component), site properties (e.g., 

𝑉௦30), and attributes of the component (e.g., age, material and length of pipelines). 

Several studies have explored the capability of tree-based machine learning models (e.g., 

Random Forests, Boosted Regression Trees) in modeling and estimating the damage and 

performance of water distribution systems (Bagriacik et al. 2018; Winkler et al. 2018; Wu and 

Baker 2020). In Bagriacik et al. (2018), an in-depth comparative study of statistical and machine 

learning based modeling for pipeline damage following the 2011 earthquakes in Christchurch, 

New Zealand is carried out. The study uses a set of earthquake related parameters and pipe 

attributes as explanatory variables, evaluates and compares the city, individual pipe, and suburb 

level predictive performance of the repair rate (RR), logistic regression (logit), boosted regression 

trees (BRT) and random forests (RF) models under three data balancing schemes and on multiple 

metrics. Machine learning models have also been applied to power system faults (Goswami and 

Roy 2019) and power grid outage (Eskandarpour and Khodaei 2017). For bridge systems, 

Mangalathu et al. (Mangalathu et al. 2020; Mangalathu and Jeon 2019) applied and compared a 

series of machine learning models for regional damage assessment.   

2.1.2 Recovery Modeling  

Post-earthquake recovery models are used to estimate the possible trajectories for future 

earthquakes and are therefore useful for pre-event risk management and post-event planning. A 

comprehensive state-of-the-art review of the recovery modeling for socio-technical systems can 

be found in to Kang (2018). A review of several common modeling methods within the scope of 
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post-earthquake recovery of distributed infrastructure is provided in this subsection. Several other 

modeling methods, for example, agent-based modeling (Nejat and Damnjanovic 2012a) and 

network-based method (Didier et al. 2015), are used more often in the scope of recovery of housing 

or general community, hence, they are not included. 

2.1.2.1  Data-Driven Statistical Model 

Statistical recovery models aim to provide recovery time estimates or a restoration 

probability (Martell et al. 2020). These models are learned on recovery datasets from past 

earthquakes and intend to predict for future earthquakes.  

Various regression-based methods have been studied to model post-earthquake recovery 

trajectories. MacKenzie and Barker (2012) proposed a dynamic inoperability input-output model 

(DIIM) to quantify the resilience of distributed infrastructure. A mixed-effect model is developed 

to include the influence of different scenarios. The proposed framework is used to model the power 

outage and recovery of the electric power system in Oklahoma. Monsalve and de la Llera (2019) 

introduced a time-series based statistical model for evaluating and simulating the restoration of 

complex interdependent systems, while modeling their restoration as interdependent processes. 

The model is fitted on restoration data from six iconic earthquakes and evaluated against a suite of 

service restoration curves associated with different infrastructure. In Cao et al. (2020), a 

framework for estimating the recovery curve of infrastructure is proposed based on the Gaussian 

Process Regression and utilizing the expert-elicit data. 

Several researchers also explored the use of survival analysis for modeling infrastructure 

recovery. Mojtahedi et al. (2017) used Cox's proportional hazards model to estimate the recovery 

of transport infrastructure across regional areas in New South Wales, Australia. Barker and Baroud 

(2014) proposed a proportional hazards model for the recovery of infrastructure systems. A case 
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study on electric power outage in the US from January 2002 to June 2009 is presented to illustrate 

the proposed methodology. In both studies, the type of event was included as a covariate, and the 

proportional hazards model was used to provide estimates of the instantaneous rate of recovery of 

an infrastructure system and the likelihood that recovery occurs prior to a given point in time.  

2.1.2.2 Discrete Event Simulation Model 

In the Discrete Event Simulation (DES) models,  the response of a system is modeled as a 

sequence of events that occur at discrete time (Fishman 1978; Tomar et al. 2020; Varga 2001). 

The DES models have several core elements: entities, attributes, events, resources and time. 

Entities represent specific objects within the system. Events are occurrences that can affect the 

state of an entity. Resources are objects that provide services to entities (Fishman 2001; Kang 2018; 

Tomar et al. 2020). In terms of post-earthquake restoration of distributed infrastructure, the 

physical components of the systems are modeled as entities (e.g., pipelines, tanks and pumps of 

water networks, transmission substations and power plants of power networks), the 

inspection/repair crews and materials are represented as resources, and the activities involved in 

the restoration process (e.g., inspection, repair and travel) are represented as events. 

Çaǧnan and Davidson (2007) used DES to model the restoration of the Los Angeles 

Department of Water and Power (LADWP) electric power system, following the 1994 Northridge 

earthquake. Tabucchi et al ( Tabucchi and Davidson 2008; Tabucchi et al. 2010b) also used DES 

to model the restoration of the LADWP water network following the 1994 Northridge earthquake. 

In their study, The Graphical Iterative Response Analysis of Flow Following Earth-

quakes(GIRAFFE) was used to model the hydraulic performance and serviceability of the water 

system. Kang and Lansey (2013) proposed a DES based restoration framework for water networks, 

which includes six main steps: (1) Identify initial damage state; (2) Calculate resources required; 
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(3) Prioritize and allocate resources; (4) System recovery according to prioritization rules; (5) 

Calculate system serviceability; and (6) Plot restoration curve. Tomar et al. (2020) used DES 

model for the recovery of water distribution systems, using the water network of the city of Napa 

as the case study. The Water Network Tool for Resilience (WNTR) was used to perform hydraulic 

analysis of the water system. The DES model was first calibrated to replicate the recovery 

trajectory from the 2014 south Napa Mw 6.0 earthquake. The authors then developed a pipe 

fragility function based on data from the 2014 event. The tuned DES model was used to access the 

recovery of the Napa network in a hypothetical Mw 6.7 earthquake scenario occurring on the West 

Napa Fault. 1000 realizations of damage maps were sampled and the corresponding restoration 

process and hydraulic performance was assessed. The uncertainty is the restoration was also 

quantified. 

2.1.2.3 Stochastic Simulation Model 

Stochastic simulation models represent the response of a system through random variables 

that change with individual probabilities. The recovery of distributed infrastructure can be modeled 

in two ways: discrete-time, discrete-state-based models that capture the probability of the system 

transitioning to a different state at a given discrete time; time-based models capture the probability 

density of the time it takes for the system to leave the current state once entered (Kang 2018; 

Mishalani and Madanat 2002) 

A discrete-time, discrete-state Markov Process based model is proposed by Kozin and 

Zhou (1990) to model the post-earthquake restoration of lifeline systems. Decò et al. (2013) 

proposed a probabilistic framework for the pre-event assessment of bridges. A model was 

proposed to describe the initial loss and restoration of functionality. Fragility analysis was 

performed to evaluate the damage induced to bridges by a seismic event. A six-parameter 
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sinusoidal  function was then used to describe the restoration process. Dhulipala et al. (2021) 

proposed a generalized framework for modeling post-event recovery of individual system and 

system of systems (SoS) under multiple hazards based on the Markov Processes. Four of Markov 

type processes were considered in the framework: Markov chains, Markov processes, semi-

Markov processes (SMP), and semi-Markov processes with non-renewal (SMP-NR) features. The 

framework was applied to a spectrum of problems including hindcasting recovery, updating 

recovery in light of new data, accounting for hazard intensity and system damage states in recovery 

forecasting, and capturing temporal interactions between multiple hazards while forecasting 

recovery. 

2.1.3 Loss and Risk Assessment 

Different from the single-location facilities, the performance assessment of the distributed 

infrastructure should incorporate the spatial correlation among the system components, therefore 

a scenario-based simulation approach is often adopted, in which the joint performance of all system 

components/facilities are accessed for one earthquake at a time (Soleimani et al. 2021).  

Extensive studies have been carried out for the loss assessment following a single event or 

a small set of events consisting of significant historical earthquakes in order to estimate the impact 

from these destructive scenarios and inform emergence planning (Crowley and Bommer 2006). 

Some studies aim at developing frameworks to estimating the economic or serviceability loss 

associated with a single event.  Yuan (2008) conducted a study to estimate the direct economic 

loss caused by the 2008 Mw 8.0 Wenchuan earthquake in China. The damage to buildings and 

infrastructure account for about 36% and 22% of the total direct loss. Miano et al. (2015) proposed 

a loss assessment framework for a potfolio of bridges using the 1980 Irpinia earthquake in Italy as 

a case study. The fragility function was developed using a Bayesian updating scheme where the 
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bridge-specific fragility data available in the literature are used as a prior. The probability density 

function of the repair cost given the damage state is also developed using Bayesian updating using 

the cost for collapsed and  damaged bridges in past earthquakes as a prior. 3000 Monte Carlo 

simulations of the PGA field are performed to estimate the probability distribution of the repair 

cost. On the other hand, many of the studies reviewed in Section 2.1.2 focused on quantifying the 

immediate functionality loss and the restoration of a distributed infrastructure in a historical 

earthquake (Masoomi et al. 2020; Tabucchi et al. 2010a; Tabucchi and Davidson 2008; Tomar et 

al. 2020).   

For the purpose of decision making practice such as insurance applications, however, it is 

often required to assess the infrastructure performance for a large number of or all possible future 

events (Crowley and Bommer 2006; Tomar and Burton 2021a). In this regard, Mehralian and 

Azarbakht (2020) proposed a framework for the loss assessment of power distribution system in 

Arak city, Iran. The main steps involve: (1) performing Probabilistic Seismic Hazard Analysis 

(PSHA) for the study region using a seismic catalogue of earthquakes with a radius of 150 km; (2) 

developing component fragility curves using historical data; and (3) using the HAZUS framework 

(Federal Emergency Management Agency (FEMA) 2003) to estimate the direct loss. Farahani et 

al. (2020) used a similar approach to assess the loss to the gas pipeline network in Asaluyeh, Iran. 

In the analysis, physical damage, direct economic and human impacts are considered. Laucelli and 

Giustolisi (2015) proposed a framework for risk assessment of water distribution systems. In the 

study, the pipe fragility functions are adopted from the American Lifelines Alliance (2001). A 

multi-objective optimization program was formulated to search for the most destructive scenarios. 

The risk and vulnerability of the water network was assessed based on the unsupplied water 

demand obtained from pressure-driven hydraulic simulation. It is noteworthy that the restoration 
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process and resilience metrics were not considered in these studies.  

The risk-based assessment framework proposed by Tomar and Burton (2021a) integrates 

the previous approaches, in which the immediate loss and the restoration process are assessed 

based on a selected stochastic event catalogue. The key steps in the framework are as follows: (1) 

generate a set of stochastic earthquake events; (2) for each event, a set of ground motion maps is 

produced using one or more appropriate ground motion and spatial correlation models; (3) for each 

map, several realizations of the system damage are sampled from a fragility-based damage 

assessment models as reviewed in Section 2.1.1; (4) Use a DES-based recovery model to simulate 

the recovery trajectory following each damage case; (5) Compute the resilience metrics associated 

with the restoration; (6) Integrate over the events to obtain the risk-based metrics (e.g., annual 

exceedance rate).  

2.2 Recovery Optimization of Distributed Infrastructure 

Various tasks, e.g., inspection, damage assessment, resource allocation and repair are 

involved in the post-earthquake restoration of distributed infrastructure. Optimizing the scheduling 

of these tasks can have significant influence on the rapidity and effectiveness of the restoration. 

Two common types of optimization formulations are studied in the literature. The first is based on 

integer programming (IP) or mixed integer linear programming (MILP). In this formulation, a set 

of decision variables are introduced and the optimization objective is established (e.g., minimize 

the total loss of serviceability), and a series of constraints are then imposed which incorporate the 

resource availability, task precedence and the description of how the system operates or updates. 

Because the problem scale of the recovery optimization is large, heuristic algorithms are usually 

developed to solve such programs. This type of formulation often involves a complex set of 

equations, and are often system-specific. The second formulation is based on the Markov Decision 



14 
 

Process (MDP), where a decision maker/agent interacts with an environment/system in finite time 

steps and learns to improve the policy for making decisions. The system is characterized by a finite 

set of states, and the agent can take an action from a finite set of actions in each time step and 

receive some rewards as feedback. In this formulation, a physical simulator model of the system 

is often used, which gives the response once an action is taken. Such a formulation is often simple, 

as long as the state, action and reward function are appropriately defined. 

2.2.1 Mixed Integer Linear Programming 

Mixed Integer Linear Programming (MILP) is a mathematical optimization program in 

which some of the variables are constraints to be integers while the other variables can be non-

integers. MILP can be used in many general task scheduling problems.  

Xu et al. (2007) proposed a stochastic integer program to optimize the inspection, damage 

assessment and repair tasks for the post-earthquake recovery of power distribution systems. The 

optimization objective is to minimize the average time each customer is without power, and a 

genetic algorithm is used to solve the program. The optimization model outputs the recommended 

set of schedules, and the priority of actions are input to a DES model for the more complex 

restoration process to evaluate the performance. The proposed method is tested on the LADWP 

power distribution system subjected to 47 earthquake scenarios, and three metrics: the average 

time each customer is without power, time required to restore 90% of customers, and the time 

required to restore 98% of customers.  

Nayak and Turnquist (2016) proposed an integer programming model for scheduling the 

repair tasks to minimize the cost of the recovery for water distribution systems. The objective 

consists of two parts: the disruption cost of unmet water demand, and the cost of repair actions. 

The constraints include resource availability and task precedence. In addition, the objective 
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function requires evaluation of the water demand of the system in each time step, hence a flow 

problem is embedded, i.e., the hydraulic equations are calculated given the current state of the 

system. A simulated annealing (SA) algorithm is proposed to solve the program. The proposed 

model is tested on the hypothetical Anytown network system for several hypothetical scenarios.  

Xu et al. (2019) further proposed a MILP-based general formulation for the repair sequence 

scheduling for the post-disaster recovery of critical infrastructure. The formulation is based on 

three assumptions: (1) the repair teams have the same work efficiency; (2) each damaged 

component requires only one repair team; (3) the repair time for each component is known and 

given beforehand. A flow operation model is adopted and included in the constraints. Two novel 

heuristic methods (NHM) are proposed by the authors which combines the time index-based 

heuristic methods (TIBHMs) and the component index-based exact solution method (CIBESM). 

The proposed NHMs were tested on the electric power trans-mission system in Shelby County, 

Tennessee. The damage maps were generated by assuming earthquake magnitudes from Mw 6.0 

to Mw 9.0 with a step of 0.5, and 500 scenarios are generated for each magnitude. The proposed 

solutions were compared with three component importance-based methods  (CIBMs),  a  genetic  

algorithm-based method (GABM), the TIBHM and CIBESM.  

Bellagamba et al. (2019) proposed a decision support algorithm for the restoration of water 

supply networks. The priority list of pipe inspection is first generated using a fragility-based 

measure. A MILP model is then formulated to optimize the pipe repairs, which is solved using a 

GA algorithm. A case study based on the Christchurch water supply network recovery following 

the 22 February 2011 Mw 6.2 earthquake is carried out for demonstration purposes. The evaluation 

results show that the proposed method successfully reduced the proportion of disruption after two 

days by approximately 30% and reduced the overall system resilience loss by 20%. 
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2.2.2 Markov Decision Process  

The Markov Decision Process (MDP) is a general mathematical framework for modeling 

sequential decision-making problems. In MDP, a decision maker (agent) interacts with an 

environment in finite time steps and receives some reward/feedback as a result of each action. The 

output of the MDP is a good decision-making policy. Small scale MDPs can be solved by dynamic 

programming (DP), while large scale MDPs are often intractable and solved by approximate 

solutions such as the rollout algorithm, reinforcement learning (RL), and deep reinforcement 

learning (DRL) methods. The optimization for scheduling of restorative tasks in the post-

earthquake recovery can be viewed as a sequential decision-making problem, in which different 

sequences of restorative actions result in different system resilience outcomes (e.g., restoration 

curves). Therefore, such problems can be modeled as an MDP, where the state represents the 

damage to the system, and the action represents the scheduled restorative action, and the reward 

can be formulated based on certain metrics that represent the current functionality of the system.  

Sarkale et al. (2018 )proposed a MDP-based modeling approach for the restoration of water 

distribution systems. The formulation includes a simulator for the response of the water network 

after a repair action is executed, and the repair time is stochastic. The objective is to have the 

maximum people get water in the minimum amount of time.  In the MDP formulation, the state is 

defined as the vector of component damage levels, the action is defined as a vector of the repair 

actions to be carried out at the current time step, and the reward is defined as the number of people 

who have water after executing the current action divided by the total repair time up to current 

time step. The rollout algorithm was adopted for solving the MDP. The portable water network in 

Gilroy, California was considered for case study, subjected to an Mw 6.9 earthquake at the San 

Andreas Fault. Evaluation results for 100 scenarios show that the rollout algorithm outperforms 
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the base policy. The authors later applied a similar formulation for the recovery optimization of 

the electric power distribution system in Gilroy, California (Nozhati et al. 2019). Two objectives 

were considered: minimizing the number of days needed to restore electricity to a certain fraction 

of the total population and maximizing the number of people who have electricity per unit of time. 

A more general formulation was further proposed in Nozhati et al. (2020) with the scope of 

community recovery, which integrates the recovery of water, power networks and food retailers.  

Gol et al. (2019) proposed a MDP-based framework for the electric system operators to 

restore electricity following earthquakes. In the formulation, the state represents the damage status 

of the branches in the network, the action represents the set of branches to be energized at the 

current time step, and the transition probabilities are computed based on Peak Ground Acceleration 

(PGA) data. The outcome of the model is an optimal strategy to energize the power lines after 

earthquake damage.  

In Memarzadeh and Pozzi (2019b), a MDP based framework was proposed for managing 

pre-event operations and the post-event restoration of infrastructure. A Safe Q-Learning algorithm 

was proposed which is based on the Q-Learning method (Watkins 1989) and incorporates 

constraints on the action exploration. Examples of management under the risk of extreme events 

on a hypothetical infrastructure system, a water reservoir, and a reinforced concrete bridge were 

used to illustrate the methodology.  
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3. Dynamic Seismic Damage Assessment of Distributed 

Infrastructure Systems using Graph Neural Networks and Semi-

Supervised Machine Learning 

3.1 Introduction 

Comprehensive and reliable estimation of the damage to distributed infrastructure systems 

following earthquakes is critical to risk mitigation and emergency planning of the affected 

community (Bagriacik et al. 2018; Tomar et al. 2020). Existing damage estimation models 

commonly establish empirical relationships between the damage/repair rate and seismic intensity 

parameters (Pineda-Porras and Najafi 2010). The development of an empirical model relies on 

learning to extract the complex relationships from the representative datasets collected from past 

earthquakes, and advanced machine learning methods have been shown to be effective for this 

purpose.  

The development of the traditional repair rate (RR) based fragility model involves selecting 

damage scenarios from historical earthquakes, fitting a statistical model for the empirical 

relationships between the repair rate and the earthquake intensity parameter, and proposing a 

probabilistic model of damage with the repair rate as parameter (Pineda-Porras and Najafi 2010). 

The most commonly used intensity parameter for buried pipelines is Peak Ground Velocity (PGV), 

while several other parameters (e.g., Peak Ground Acceleration, Peak Ground Displacement 

(Isoyama et al. 2000)) have also been used in previous studies. The American Lifelines Alliance 

(ALA) model (American Lifelines Alliance 2001) uses PGV as the intensity measure, and the 

effects of pipe material, joint type, and soil corrosiveness are considered when computing the 

fragility for the pipelines. 

In the civil engineering community, researchers have been exploring the application of 
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statistical and machine learning methods. Sun et al. (2020) summarizes the application of machine 

learning in structural design and performance assessment into four categories, one of which is 

predicting damage following the occurrence of a hazard event. To date, a large amount of effort 

have been placed on developing models for individual infrastructure (e.g., buildings). Limited 

studies have explored the application of machine learning to distributed infrastructure systems. In 

this regard, Winkler et al. (2018) applied tree-based methods for predicting pipe failures due to 

deterioration in a medium sized city in Austria. Wu and Baker (2020) utilized the Random Forest 

machine learning model to estimate the performance and reliability of water distribution networks. 

Bagriacik et al. (2018) performed an in-depth comparative study of statistical and machine learning 

based modeling for pipeline damage following the 2011 earthquakes in Christchurch, New Zealand. 

The study uses a set of earthquake related parameters and pipe attributes as explanatory variables, 

evaluates and compares the city, individual pipe, and suburb level predictive performance of the 

repair rate (RR), logistic regression (logit), boosted regression trees (BRT) and random forests (RF) 

models under three data balancing schemes and on multiple metrics. It is worth noting that these 

studies utilize classical machine learning methods and focus on tree-based models. Mangalathu 

and Jeon (Mangalathu and Jeon 2019; Mangalathu et al. 2020) applied a series of machine learning 

models for the failure mode prediction of bridge columns and the regional damage assessment of 

bridge systems.  

Most of the current applications are aimed at developing models to predict damage for the 

future earthquakes i.e., pre-event predictions. On the other hand, less effort has been put on 

studying models that can help improve or update the inspection and damage assessment processes 

during the recovery. Specifically, a question of interest is whether the information collected at 

certain time points and a few locations within the network can inform the damage estimation of 
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the entire system, i.e., inferring the unknown damage from the known damage. If so, the estimation 

could be better than only using a model previously developed based on prior earthquakes. A semi-

supervised learning-based model can potentially address the problem. Since a system network can 

be modeled as a graph, the damage estimation model can utilize the information provided by the 

connections among the system components. The graph neural network (Wu et al. 2019c), which 

has been proposed in recent years, is useful for this type of modeling. 

This study presents a methodology that uses a graph-based neural network model to 

dynamically update pre-event seismic damage assessments in distributed infrastructure systems. 

The pre-event assessment can be performed using the traditional fragility-based approaches or a 

supervised machine learning classification model (e.g., random forests, decision trees). 

Incremental information collected during the inspection is then used to update damage estimates 

by implementing semi-supervised learning via the graph neural network. The pipe network for the 

City of Napa, California water distribution system is used as an application testbed. However, it is 

worth noting that the developed methodology is generalized and can be applied to other types of 

distributed infrastructure (e.g., bridge networks, building portfolios, power networks). The 

remainder of the paper is organized as follows: An overview of the framework is presented in 

Section 3.2. The theoretical foundations of neural networks including graph neural networks are 

discussed in Section 3.3. A brief description of the Napa water network and the pipe damage 

dataset from the 2014 Mw 6.0 South Napa earthquake is provided in Section 3.4 and Section 3.5 

presents the results of the pre-event damage assessment using the neural network-based model 

trained on this dataset, which are compared to results from an existing repair rate-based fragility 

model. Section 3.5 applies the graph neural network-based model for informing the damage of the 

entire network given the partial information provided during the inspection process. Finally, 
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Section 3.6 summarizes the contributions of this study and discussions directions for future work.  

3.2 Overview of Methodology 

An overview of the proposed methodology is presented in Fig. 3.1 where the overall goal 

is to provide real-time updates to damage predictions to better inform resource-allocation and 

planning decisions in the post-earthquake environment.  

The framework is comprised of two main steps. It starts with a pre-event assessment 

immediately following the earthquake (day 0), which provides an initial estimate of the possible 

damage 𝑦ොሺ0ሻ  to the distributed infrastructure system. The pre-event assessment model is 

developed using "labeled data", where the features are the earthquake attributes (e.g., epicentral 

distance, intensity) and system component attributes (e.g., material, age), and the damage labels 

for all system components are given. The prior damage information can be obtained from 

reconnaissance datasets of historical earthquakes that are reported on websites, reports and journal 

papers. The data is then used to train a supervised learning-based machine learning models (e.g., 

random forests, neural networks), or to develop/calibrate a traditional fragility-based model. The 

learned model then produces an initial damage estimate given the attributes of the system 

components and the information of the current earthquake. 

Next, a post-event assessment model provides dynamic updates of the damage estimation 

given the information incrementally collected during the inspection process following the 

earthquake. The model is developed using "partially labeled data", where the features are the 

earthquake and system component attributes, and a subset of the damage labels for the system 

components is given.  Specifically, the case where the subset of damage labels collected up to day 

𝑡 is available. A graph neural network model is trained using the collected data via the semi-

supervised learning approach, which utilizes the network connectivity information in the training 
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process to better infer the unknown damage from the known ones. The learned model then 

produces an updated estimate 𝑦ොሺ𝑡ሻ for the damage map of the entire system, which can help adjust 

and update the current inspection and repair plans, and therefore improve the overall recovery 

process. This dynamic learning and updating process continues with the restoration process (e.g., 

repeats weekly), as shown in Fig. 3.1.  

 

Figure 3.1 Schematic overview of the proposed methodology 

3.3 Neural Networks and Graph Neural Networks 

This section presents the theoretical formulation of the neural network-based machine 

learning method and its graph variants.  

3.3.1 Neural Networks 

Machine learning (ML) is a category of algorithms that are able to learn from data the 

underlying patterns in order to make predictions and support decision making (Sun et al. 2020). 

Artificial Neural Networks (ANN) is a type of machine learning/pattern recognition model 
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inspired by information processing in biological systems. The goal of the ANN is to approximate 

the function that defines the complex relationship between the input and output. As the first and 

simplest type of neural network, a feed-forward neural network (or multi-layer perceptron) takes 

the input features 𝑥 and extracts information through a series of layers (Wu et al. 2018):   

ℎ௟ ൌ 𝑎௟ሺ𝑊௟ℎ௟ିଵ ൅ 𝑏௟ሻ (3.1) 

where ℎ௟ is the 𝑙th hidden layer, 𝑊௟ is the weight matrix, 𝑏௟ is the bias vector, and 𝑎௟ሺ∙ሻ is the 

activation function. The final layer outputs the predicted response 𝑦ො, as shown in Fig. 3.2. 

There are various advantages of neural networks. First, by stacking multiple layers, the 

neural network is able to extract new comprehensive representations of the input features. Second, 

the  model is able to flexibly capture complex nonlinear relationships between the input and output 

and is sometimes described as a "universal function approximator" (Csáji 2001). 

 

Figure 3.2 Schematic representation of neural networks 

3.3.2 Graph Neural Network 

Within the last decade, neural networks have achieved unprecedented successes in tasks 
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involving information retrieval from Euclidean data (image, video, and text). Recently, neural 

networks have been used to perform predictions on graphs, which is a more complex and general 

data type (Zhou et al. 2018). For example, there is increasing interest in learning from a knowledge 

graph, where entity nodes (e.g., author, paper, conference) are connected by links which represent 

their relationships (e.g., whether a paper is cited by the other) (Wu et al. 2019c). Graph Neural 

Networks (GNNs) were developed to learn from such complex graph data. Fig 3.3 shows a 

schematic representation of the GNNs. 

 

Figure 3.3 Schematic representation of graph neural networks 

3.3.3 Graph Convolutional Network 

Convolutional neural networks (CNNs) have led to big breakthroughs in computer vision 

tasks because of their ability to learn feature representations and extract information from raw 

images. The basic idea of the convolution operation is to slide a filter though the pixels to create 

feature maps of lower-dimension and summarize particular aspects of information from the input. 

Similar to the convolution applied to images (grid data), a convolution operation can be applied to 

graph data to generate node representations by aggregating information from a neighborhood (Wu 

et al. 2019b). Kipf and Welling (2016) proposed the Graph Convolutional Network (GCN) which 
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takes the form  

𝑍 ൌ 𝑓ሺ𝑋,𝐴ሻ ൌ softmaxሺ𝐴መReLU൫𝐴መ𝑋𝑊ሺ଴ሻ൯𝑊ሺଵሻሻ (3.2) 

where 𝑋 ∈ 𝑅ேൈ஼  is the input graph with 𝑁 nodes and 𝐶 features (channels), 𝐴 is the adjacency 

matrix which encodes the connections among the nodes, 𝑍 ∈ 𝑅ேൈி is the output representation 

with 𝐹 features, which in this form is a probabilistic distribution of the classes over the nodes. 𝐴መ ൌ

𝐷෩ି
భ
మ𝐴ሚ𝐷෩ି

భ
మ, where 𝐴ሚ ൌ 𝐴 ൅ 𝐼ே is the adjacency matrix with a self-loop, 𝐼ே is the identity matrix, 

and 𝐷෩௜௜ ൌ ∑ 𝐴ሚ௝ ௜௝
. 𝑊ሺ଴ሻ ∈ 𝑅஼ൈு is the input-to-hidden weight matrix, where 𝐻 denotes the number 

of feature maps in the hidden layer, 𝑊ሺଵሻ ∈ 𝑅ுൈி is the hidden-to-output matrix. The softmax 

function is defined by softmaxሺ𝑥௜ሻ= 
௘ೣ೔

∑ ௘ೣೕ಼
ೕసభ

. In summary, the GCN takes the original graph and 

produces a new representation over the nodes. 

3.3.4 Graph Attention Network 

When aggregating the information from neighborhoods, the GCN does not evaluate the 

importance of the information from different neighbors. In other words, for a given node, the 

messages from all neighbors are considered to be equally important. To improve the model, there 

is an interest in learning to determine which neighbors are more important, which are then 

weighted to produce a new representation. The Graph Attention Network (GAT) (Veličković et al. 

2018) provides this improvement  by utilizing the idea of an attention mechanism, which  was 

introduced in natural language processing tasks (e.g., machine reading, machine translation), and 

has achieved great success in combination with Recurrent Neural Networks (RNN), a type of 

neural network for processing variable length sequences like texts (Sherstinsky 2018). In machine 

translation tasks, for example, a sentence in English is input to the model to be translated to Spanish, 

and the attention mechanism within the model learns to put different weights on the words of the 
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input sequence when producing each word in the output sequence. In GAT, attention weights are 

put on a node's neighbor when producing its new representation. Specifically, for node 𝑗 ∈ 𝑁௜, 

where 𝑁௜ is the set of neighbor nodes of node 𝑖, the attention score can be computed by  

𝑒௜௝ ൌ 𝑎ሺ𝑊ℎ௜ ,𝑊ℎ௝ሻ (3.3) 

where 𝑎ሺ∙ሻ is the attention score, ℎ௜  is the input feature representation of node 𝑖, and 𝑊 is the 

weight matrix. The coefficients are further normalized to have 𝛼௜௝ ൌ softmax௝൫𝑒௜௝൯. After the 

attention coefficients are computed, we can generate the new representation for node 𝑖 as 

ℎ௜′ ൌ 𝜎ሺ෍ 𝛼௜௝𝑊ℎ௝
௝∈ே೔

ሻ (3.4) 

where 𝜎ሺ∙ሻ is the sigmoid function. 

3.3.5 Supervised and Semi-supervised learning 

In supervised learning, we have the labeled data ሼሺ𝑥௜ ,𝑦௜ሻ|𝑖 ൌ 1, … ,𝑛ሽ, where 𝑥௜ ∈ 𝑅௣ is 

the feature vector of instance 𝑖, 𝑦௜ is the label, which can be continuous in regression problems 

and discrete in classification problems. The objective of supervised learning is to minimize the 

empirical loss function defined by (Murphy 2012) 

argmin
஘

1
𝑛
෍𝜙൫𝑦௜ ,𝑓ሺ𝑥௜;𝜃ሻ൯ ൅ 𝜆Ωሺ𝜃ሻ
௡

௜ୀଵ

 (3.5) 

For semi-supervised learning, we have the labeled data ሼሺ𝑥௜ , 𝑦௜ሻ|𝑖 ൌ 1, … , 𝐿ሽ , and 

unlabeled data ሼ𝑥௜|𝑖 ൌ 𝐿 ൅ 1, … ,𝑛ሽ, and the objective is to learn a predictive model which not only 

utilizes the labeled data, but also takes useful information provided by the unlabeled data. Semi-

supervised learning on graphs further considers the connections among all nodes, and the objective 

is to learn an embedding over the nodes, given the data and a subset of labels. For example, in 

GCN, the loss function is constructed by (Kipf and Welling 2016) 
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𝐿 ൌ െ෍෍𝑌௟௙ ln𝑍௟௙

ி

௙ୀଵ௟∈௬ಽ

 (3.6) 

where 𝑍 is the output representation computed based on the information from all nodes and the 

edges, 𝑦௅  is the set of available labels. The loss function evaluates the cross-entropy over the 

labeled instances. 

3.4 Overview of Napa Water Network and Pipe Damage from 2014 South 

Napa Earthquake 

The methodology is applied to the pipe network in the water distribution system that serves 

the City of Napa, California. The relevant information is provided by Napa Water Division (NWD). 

The Napa water network serves a population of approximately 88,000 people. The system includes 

3 water treatment plants, approximately 612 km (380 mi) of pipeline (7365 pipe segments), 15 

storage tanks with a total of 113,562 mଷ storage, and 10 pump stations. Additional details of the 

topology and components that encompass the system are provided in (Napa Water Division 2017; 

Tomar et al. 2020).  

A Mw 6.0 earthquake occurred in South Napa on August 24, 2014, with an epicenter 

location of 38°13′12′′N;122°18′36′′W. The earthquake caused a total of 250 pipeline leaks (203 

pipe segments, 2.76% of the total pipelines) to the water system. Fig. 3.4 shows the spatial 

distribution of the pipe damage, most of which is distributed evenly on the west side of the system. 

Approximately 75% of the damaged pipes were made from Cast Iron (CI) and the remaining 25% 

were made from Asbestos Cement (AC), Polyvinyl Chloride (PVC), Ductile Iron (DI), Steel (STL), 

and other unknown materials (mostly reinforced concrete). Pipe leaks were repaired relatively 

quickly with 120 leaks fixed in 5 days, and during that time, only 5% of the customers were without 

water. Within a day of the earthquake, NWD was able to assemble repair materials (e.g., pipe, 
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repair clamps, fittings) valued at approximately $250,000. Within a month after the earthquake, 

the roof system of the damaged tank was replaced (Napa Water Division 2017). 

 

Figure 3.4 Spatial distribution of the pipe damage in the Napa water network following the 

2014 earthquake 

3.5 Supervised Learning Model for Pre-Event Damage Assessment 

3.5.1 Feature Selection 

The features used for this study can be divided to earthquake related parameters and pipe 

attributes (Bagriacik et al. 2018). The earthquake parameters include PGV and epicentral distance. 

The PGV data is interpolated using Kriging from the recorded sites to the pipe locations (Tomar 

et al. 2020). Fig. 3.5 shows the spatial distribution of PGV over the Napa water pipe network. Fig. 

3.6 shows the distribution of the earthquake related features, grouped by the damage state 

following the 2014 event. It can be observed that the damage tends to occur at locations with higher 

PGV. However, it is also noteworthy that there are a great portion of pipes with high PGV values 

did not suffer from damage.  This might suggest a limitation of the commonly used repair rate-

based fragility model, in which PGV is used as the primary indicator of damage.  
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Figure 3.5 Distributions of the PGV (cm/s) 

 

 

(a) 

 

(b) 

Figure 3.6 Distribution of (a) PGV and (b) epicentral distance for the pipe damage states 

The pipe attributes are selected based on their correlation with earthquake-induced damage 

as evidenced by historical events (Bagriacik et al. 2018). The selected pipe attributes include the 

material, roughness, diameter, length, installation year and pipe type. The distribution of pipe 

materials is shown in Fig. 3.7. Most of the pipes are made of Ductile Iron (DI) and Cast Iron (CI). 

In the analysis, the pipe material types with less than 100 pipes are lumped together to the "Other" 
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category. Therefore, the final types used are Ductile Iron (DI), Cast Iron (CI), Steel (STL), 

Asbestos Cement (AC), C900 and Other. Fig. 3.8 shows the distribution of pipe attributes for the 

two damage classes. According to Fig. 3.8 (a), damage is more likely to occur for pipes with 

smaller roughness coefficient. Fig. 3.8 (b) and 3.8 (c) shows the distribution of the pipe diameters. 

The box plot in Fig. 3.8 (c) includes large outlier points, and Fig. 3.8 (d) zooms closer to the 

statistically meaningful part. It can be observed that the distributions of pipe diameter are almost 

the same within damaged and undamaged pipes, even considering the outlier points. However, 

based on previous studies (Bagriacik et al. 2018), pipe diameter is an important factor. Specifically, 

it was found that smaller diameter pipes have a higher likelihood of damage. Fig. 3.8 (e) and 3.8 

(f) show the distribution of pipe lengths. Fig. 3.8 (e) contains large outlier points. When the 

distribution of pipe length for undamaged pipes is examined, it is determined that many long pipes 

did not fail. However, if the focus is placed on the  main statistical component of the distributions, 

it can be concluded that longer pipes are more prone to damage, which is consistent with the 

HAZUS model (FEMA 2012). Fig. 3.8 (g) shows the distribution of the year of installation for the 

pipes where it is noted that older pipes are more likely to be damaged. From Fig. 3.8 (h), which 

shows the counts for two different pipe types for the two damage classes, it can be concluded that 

most damage occurs on distribution lines.  
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Figure 3.7 Distribution of pipe material type in the Napa water network 

 

 

(a) 

 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) (g) 

Figure 3.8 Distribution of pipe attributes for the two damage classes: (a) roughness, (b) 

diameter, (c) diameter, (d) length, (e) length, (f) year of installation and (g) transmission 

versus distribution 

For training, the data is preprocessed as follows: the categorical variables (pipe material 

and pipe type) are one-hot encoded (a standard approach for preprocessing categorical data) 

whereby, for each possible value from a categorical variable, a new binary column is created where 

1 indicates taking the value and 0 otherwise. The numerical variables are standardized to have 

zero-mean and unit variance for each variable. 



33 
 

3.5.2 Data Resampling and Model Implementation 

The dataset consists of 7162 (97.24%) undamaged and 203 (2.76%) damaged pipe 

segments, which is highly imbalanced. Without further operation, a statistical model trained on 

this data is likely to predict all the pipes as undamaged. There are several ways to improve the 

model development on highly imbalanced classes, such as data resampling techniques (e.g., 

over/down sampling), algorithmic methods (e.g., boosting based ensemble methods), and loss-

sensitive methods (e.g., introducing class weights in computing the loss function). In this study, 

the Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. 2002) is adopted to deal 

with the imbalance issue. The basic idea of SMOTE is to generate synthetic minority instances 

similar to the real minority instances using the k nearest neighbor method (Chawla et al. 2002).  

The dataset is split to 70% training and 30% testing data with stratified sampling such that 

both training and testing sets preserve the same imbalance ratio (203/7262), which makes the 

testing set representative for the practical scenario. The SMOTE method is applied for resampling 

on the training data, and the trained model is tested on the imbalanced testing data.  

The neural network model is implemented using PyTorch (Paszke et al. 2019). The model 

consists of two hidden layers each with 64 units, and leaky rectified linear units for activation. The 

output layer consists of 2 units (corresponding to the number of classes) and log-softmax activation 

which outputs the log probabilities of the class being 0 or 1. The training is performed using the 

Adam optimizer with a learning rate of 0.001, and 𝑙ଶ regularization is applied with weight 0.01.  

3.5.3 Model Performance Evaluation 

The evaluation of the imbalanced dataset also requires special treatment. For example, the 

typically adopted accuracy could be uninformative since the model would achieve excellent 

accuracy even if it predicts all pipelines as undamaged. Typically, the Precision and Recall metrics 
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are examined. Precision is the proportion of true positives among those positive predictions 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 (3.7) 

where 𝑇𝑃 is the number of true positive instances, and 𝐹𝑃 is the number of false positive instances. 

Recall is the proportion of true positives among those actual positives 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 (3.8) 

where 𝐹𝑁 is the number of false negatives. In the context of damage prediction, we may put more 

emphasis on the Recall, since identifying damage is a major concern, and for the most part, over-

prediction (false positives) is more tolerable that the opposite (false negatives).  

Since the accuracy is no longer effective in evaluating the imbalanced data, the Balanced 

Accuracy is computed instead, which is the average recall obtained from all classes, and can serve 

as a measure for accuracy of the imbalanced data: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
1
𝐾
෍𝑅𝑒𝑐𝑎𝑙𝑙௞

௄

௞ୀଵ

 (3.9) 

where 𝑘 denotes the 𝑘th class. 

Finally, we look at the F-beta score which is a harmonic mean of precision and recall 

𝐹ఉ ൌ ሺ1 ൅ 𝛽ଶሻ
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

ሺ𝛽ଶ ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛ሻ ൅ 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.10) 

When a larger 𝛽 is used, the score weights more importance on Recall than Precision. 

Typically, 0.5, 1, and 2 are used as the 𝛽 value depending on the focus of the evaluation (Baeza-

Yates and Ribeiro-Neto 2011). In this study, 𝛽 ൌ 2 is used because more focus is put on Recall. 

The evaluation result on the testing set is presented in Table 3.1. The model performs well 

in the Recall score, meaning that the predictions cover most of the true damage. The low precision 

suggests that the model is likely to over-predict damage for future earthquakes. This is primarily 
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due to the issue of imbalance. Although the SMOTE is able to balance the distribution in the 

training data, and thus producing a more reasonable model than directly training on the highly 

imbalanced data, when applying the model to the imbalanced test data, it is likely to overpredict 

the damage. Later in this section, we apply the same procedure to a simulated damage dataset that 

is less imbalanced to demonstrate the capability of the model. In addition, from the model's 

perspective, the predicted damaged pipes share very similar features, and they are indeed equally 

likely to suffer from damage if the neural network model is able to capture the underlying true 

probabilistic model of the damage, but in the 2014 event these pipes did not actually undergo the 

damage. The model has reasonable performance on balanced accuracy, which indicates it is able 

to predict most of the instances accurately in each class, i.e., most of the damaged pipes are 

accurately predicted and most of the undamaged pipes are correctly predicted as well. Although 

there are some actual undamaged pipes predicted as damaged, the proportion is small among the 

large number of undamaged pipes. 

Table 3.1 Evaluation results on the imbalanced testing dataset 

Metric 

 

Recall Precision F2 Score Balanced 

Accuracy 

Value  0.66 0.07 0.241 0.701 

 

3.5.4 Comparison with the Repair Rate Model 

The gain a better understanding of the performance of the neural network model compared 

with currently available models for pipe damage estimation, the repair rate-based model is also 

accessed. In Tomar et al. (2020), a repair rate model was fitted to the actual damage data from the 

2014 South Napa Event, which is a linear model of the form  
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𝑅𝑅 ሺper kmሻ  ൌ  0.01053 ൈ PGV ሺcm/sሻ  െ  0.33649 (3.11) 

According to HAZUS-MH model proposed by the American Lifelines Alliance (ALA) 

(FEMA 2012), for a pipe segment of length 𝐿 with a given 𝑅𝑅, the probability that 𝑛 repairs are 

needed is estimated using a Poisson distribution: 

𝑃ሺ𝑁 ൌ 𝑛ሻ ൌ  
ሺ𝑅𝑅. 𝐿ሻ௡

𝑛!
. 𝑒ିோோ.௅ (3.12) 

Previous studies have found that the repair rate model can reasonably predict the total 

number of damaged components in the network (i.e., the repair/damage rate prediction is accurate), 

but fails to identify the actual damage state of the individual pipes (Bagriacik et al. 2018). It was 

also noted in Tomar et al. (2020) that there is inconsistency between the spatial distribution of 

PGV and the actual damage. 

The repair rate model outputs the fragility (probability of failure) for each pipe. To use the 

model to make a damage prediction, we can place a threshold on the estimated probability and 

classify a pipe as damaged if its associated probability of failure is larger than the threshold. On 

the other hand, we can also sample from the probability and obtain a damage realization. Therefore, 

the repair rate model is evaluated in two ways. First, the prediction is performed by placing a 

threshold on the estimated probability of failure from the repair rate model. The thresholds are set 

such that the predicted total number of damaged pipes is (1) the same as the observed damaged 

(203); (2) the same as total number of damaged pipes predicted by the NN model (1284) (to 

compare the two models when they predict the same total number of damages). Second, 1000 

damage realizations are generated from the fragility curve, and the prediction performance for each 

realization is evaluated.  

Table 3.2 shows the evaluation of the two models on the entire dataset, and the average 

performance metrics from the 1000 simulations are presented in Table 3.3.  It can be concluded 
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that the NN model significantly outperforms the RR model in all metrics for the 2014 South Napa 

damage dataset. The precisions from both models are far from ideal, but the neural network model 

achieves consistent good performance in Recall, F2 Score and Balanced Accuracy whether by 

thresholding or by simulation. 

Table 3.2 Evaluation results for entire dataset by thresholding 

Metric 

 

Recall Precision F2 Score Balanced 

Accuracy 

NN Model 0.61 0.10 0.315 0.745 

RR Model 1 0.054 0.048 0.053 0.511 

RR Model 2 0.270 0.0427 0.130 0.549 

 

Table 3.3 Performance on entire dataset from the 1000 simulations 

Metric 

 

Recall Precision F2 Score Balanced 

Accuracy 

NN Model 0.656േ0.03 0.062േ0.0028 0.225േ0.01 0.687േ0.015 

RR Model 0.03േ0.012 0.037േ0.014 0.031േ0.012 0.504േ0.0059 

To summarize, the neural network performs well on the Recall, F2 Score and Balanced 

Accuracy metrics, which are of most concern for this specific application, i.e., to develop a model 

to have a good estimation of the pipe damage given the pipe attributes, location, site properties 

and earthquake information. In this regard, the preference would be for the model to provide 

sufficient coverage of the actual damage. Given the imbalanced data and features, the trained 

model overestimates the damage to the network. This finding reinforces the well-known fact that  

the data determines the upper limit of the predictive performance of the statistical and machine 
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learning model, and the specific algorithm only helps in approaching the upper limit.  

3.5.5 Additional Evaluation on a Simulated Damage Dataset 

To further evaluate the potential of the neural network model when less imbalanced 

datasets are included, an experiment is performed on a dataset generated from scenario-based 

simulation. A Mw 6.7 event occurred at West Napa fault with an epicentral location of 38°13′12′′

N; 122°18′36′′W is used as the scenario event. The median shaking intensities are computed using 

the Campbell and Bozorgnia ground motion attenuation model (Campbell and Bozorgnia 2014). 

The inter- and intra-event residuals are taken to be 0.322 and 0.576 for PGV. 1000 spatially 

correlated PGV maps are generated using the model by Jayaram and Baker (2009), and 1 damage 

realization is performed on each PGV map. Next, the single realization which results in the 

maximum number of damaged cases is selected, which results in 2820 damaged pipes. The 

train/test split and resampling procedures are performed the same as earlier. Table 3.4 shows the 

evaluation results of the trained model on the test set. It can be seen that for the more balanced 

data, the precision achieved by the model is significantly improved and is comparable to the recall. 

The F2 score and Balanced Accuracy also correspondingly improved.  

Table 3.4 Evaluation results on the simulated dataset 

Metric 

 

Recall Precision F2 Score Balanced 

Accuracy 

NN Model 0.74 0.68 0.724 0.759  

3.6 GNN Based Semi-supervised Pipe Damage Prediction  

In this section, we consider the case of utilizing partial information collected about the 

component damage following the earthquake to propagate and predict damage to all components 
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in the system. This can be useful for updating plans for inspection and repairs given the known 

information in the current phase, and further reduce the time and resource needed for the recovery. 

To this end, a graph neural network model is trained in a semi-supervised learning setting.  More 

specifically, given the features of the components and the damage observations (labels) for a subset 

of the network, we seek to predict the damage to the entire network while considering the 

connections among the system components.  

3.6.1 Graph Representation and Model Implementation 

For illustration, the Napa water network model is developed using the WNTR package 

(Klise et al. 2017), and the network map is transformed into an undirected graph 𝐺 ൌ ሺ𝑁,𝐸ሻ where 

𝑁 is the set of nodes which present the junctions of the water network, 𝐸 is the set of edges which 

present pipelines of the water network. Because the objective of the study is not to perform 

inference on the junction nodes, but to learn and update the information of the components 

(pipelines), the graph representation uses the center of the pipelines as nodes. For this purpose, a 

line graph transformation is applied to the original graph: for each edge (pipeline) in 𝐺, we make 

the center point as a node in the new graph 𝐿ሺ𝐺ሻ; for every two edges in 𝐺 that have a common 

node, we make an edge between their corresponding nodes in 𝐿ሺ𝐺ሻ . Fig. 3.9 provides an 

illustration of the line graph transformation process. Therefore, the new graph 𝐿ሺ𝐺ሻ  is a 

representation of the connections among the pipelines.  
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Figure 3.9 Line graph transformation 

The GCN is implemented with a single hidden layer with 128 units, the output layer is a 

log-softmax layer with 2 units (corresponding to the number of classes). The GAT is implemented 

with two hidden attention layers: the first hidden layer has 128 units and 8 attention heads 

computing a total of 1024 features; the second hidden layer has 64 units and 4 attention heads 

computing a total of 256 features; the output layer consists of a single attention head that computes 

2 features (corresponding to the number of classes) as the final representation of the graph, 

followed by a log-softmax activation. Both graph networks are trained using stochastic gradient 

descent with the Adam Optimizer. The learning rate is set to 0.001 and  𝐿ଶ regularization of 5e-4 

is used. For the semi-supervised learning, full-batch training is performed (i.e., all data are fed to 

the network in a single pass), and 5000 epochs are used for training.  

3.6.2 Evaluation of GNN Performance 

A set of experiments are performed where subsets containing damage labels from 10% to 

100% are generated for training, and the imbalance ratio of damage/undamaged are preserved for 

all subsets. The damage prediction for the entire network is performed in each case. For evaluation, 

the metrics used in the previous section (Recall, Precision, Balanced Accuracy and 𝐹ଶ score) are 
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adopted. Additionally, the "Additional Damage Predicted" metric is introduced and computed as 

the difference between the correctly predicted and known damages normalized by the known 

damages, which provides a measure of how the model can produce additional information of 

damage. 

The evaluation results are shown in Fig. 3.10. The performance of the two models are 

comparable in Recall, and the score increases almost linearly with the subset ratio. The models are 

also equally good in Balanced Accuracy. It is worth noting that, from Fig. 3.10 (b), the GAT 

performs significantly better in Precision than the GCN. In addition, the Precision of the GAT 

continuously improves when the size of the subset of known damage increases, while the Precision 

of the GCN only improves slightly and remains below 0.2. This is attributed to the advantage of 

the attention mechanism which considers different weights from the neighbors. As a result, the F2 

scores from the GAT are also much higher than those from GCN. Starting with a small subset of 

10%, the models can already learn quite helpful information, achieving approximately 0.6 in 

Balanced Accuracy. Using a 10% subset of the actual damage for training, both models are able 

to capture an additional 10% of actual damage. Using training subsets with ratios ranging from 20% 

to 50%, the GCN is able to capture approximately 20% additional damage in each case, while the 

percent of additional damage the GAT model able to capture remains around 10%. Using more 

than 60% of the damage, the additional damage the model able to capture starts to decrease. This 

means that the learning is more effective in the early stages. To sum up, the models are able to 

provide informative predictions for at least 5% more damage at each stage before 80% damage 

information is collected.  

If the prediction on the entire dataset is used as the standard, using a 50% subset, the GNN 

models are able to achieve Recall scores comparable to those in NN models (Table 3.2), and have 
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much better Precision. Using a subset of 70%, which is what is used in supervised learning, the 

models are able to achieve approximately 0.75 in Recall, and the GAT reaches 0.36 in precision, 

which is much better than the supervised learning model based on Table 3.3. This suggests that if 

we use the semi-supervised learning approach when partial information following a specific 

earthquake is given, the GNN based approach is better than using a NN model trained on previous 

earthquakes, since the NN model trained on the same data could not achieve the same performance 

as the GNN. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

 

Figure 3.10 Evaluation results for the GNN models trained using different subsets of 

observations (labels) 

3.6.3 Learned Graph Representation from the GNN Models 

As noted in Section 3.3, the GNNs generate a new representation over the nodes of the 

graph, which are then used for classification. In many cases, the node representations (or 

embeddings), which are one of the final products of a GNN model, can be used to further 

understand the data. Therefore, we plot the node representations from the GAT models to 

demonstrate how it works to produce the output.  

To illustrate how the GNN model learns to separate the damaged from undamaged 

instances, Fig. 3.11 shows the representations of the output graph using t-distributed Stochastic 

Neighbor Embedding (t-SNE) (Van Der Maaten and Hinton 2008), a method for visualization. It 

needs to be noted that the 2D representation is unrelated to the topology of the original network 

graph. The blue color represents the undamaged data, and the orange color represents the damaged 

data. It can be observed that when trained with a 10% subset, the damaged nodes are scattered, 

and there is no obvious pattern to distinguish them from the undamaged nodes; When trained with 

a 50% subset, we can see a cluster of damaged nodes forms clearly on the bottom-right corner of 



44 
 

the graph, which indicates that the model is able to find a pattern that can be used to separate the 

two classes of nodes. However, we also observe that the cluster is overlapped with some nodes 

from the undamaged class. Also, there are some damaged nodes scattered in different parts of the 

network. When all the data is used, the damaged nodes form a cluster on the bottom of the output 

graph. Again, the cluster is overlapped with undamaged nodes. Therefore, we can further conclude 

that from the model's perspective, these nodes (representing pipelines) clustered together are very 

similar, and they would be classified as damaged when we place a classification rule on the output 

graph.  
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Figure 3.11 Graph representations from the models trained using (a) 10%; (b) 50%; and 

(c) 100% subsets 

3.6.4 Additional Evaluation on a Simulated Damage Dataset 

The simulated dataset described in Section 3.5.5 is used again for additional evaluation of 

the GNN models, using different subsets of observations (labels). Fig. 3.12 shows the evaluation 

results. It can be seen that all scores are improved for the balanced data, and the Precision and  

Recall scores are comparable and mostly higher than 0.5.  
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(a) (b) 

 

(c) 

 

(d) 

 

(e) 

 

 

Figure 3.12 Evaluation results for the GNN models trained using different subsets of 

observations (labels) from the simulated dataset 

3.7 Conclusion 

This study presented a general methodology for improving pre-event component damage 

assessment of distributed infrastructure systems using information collected during inspections. A 

neural network model was trained from historical earthquake data to estimate the distribution of 
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damage immediately following the earthquake (i.e., the pre-event assessment), although, it was 

noted that this step can also be performed using a fragility-based model. Semi-supervised learning 

was then performed using a graph neural network model to update the damage estimate given the 

information incrementally collected during the inspection process.  

A case study was performed on the pipe network for the City of Napa water distribution 

system, using a component-damage dataset from the 2014 earthquake. For the pre-event 

assessment, the data was randomly split into 70% training set and 30% test set, the neural network 

was trained on the training set and evaluated on the test set, considering four metrics: recall, 

precision, F2 score and balanced accuracy. The evaluation results suggested that the neural 

network performs better than the repair rate fragility-based model fitted on the same dataset in 

classifying individual pipeline damage. Among the evaluated metrics, the recall, F2 score and 

balanced accuracy all have reasonable values, but the precision was relatively low, which was due 

to the high imbalance of the classes in the dataset. The lower precision suggested that the model 

is likely to overpredict the number of damaged components in future earthquakes. For post-event 

assessment, the Graph Convolutional Network (GCN) and Graph Attention Network (GAT) were 

utilized to learn to predict the damage map for the entire water network given the damage 

information of 10% to 100% subsets i.e., semi-supervised learning. The results showed that GAT 

had much better precision than the GCN, which can be attributed to the attention mechanism. From 

the prediction increment metric, it suggested that when the GNNs are used during the post-

earthquake recovery, an additional 10% of damage is captured given the known information 

collected during inspection.  

The study demonstrated the applicability of graph neural network models for real-time 

updating of component-level seismic damage in distributed infrastructure systems. The proposed 
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methodology can be extended for assessment on other types of natural hazards and infrastructures. 

Furthermore, the study showed their potential in informing and updating resource-allocation and 

recovery plans in the post-event environment. Several limitations are acknowledged which require 

special attention for future studies. The performances of the NN model, although better than the 

commonly used repair rate model, still has significant room for improvement. Future studies 

should focus on how to improve the learning with imbalance, which is valuable especially for the 

infrastructure damage estimation problem, because most of the real data in this aspect is highly 

imbalanced. Because of data availability, we did not study the performance of the models on other 

events and system types. Another related future research thread couple explore the use transfer 

learning to address the general lack of data within each system type. Lastly, the current study 

focused on predicting binary classes (damaged and undamaged). Therefore, future studies should 

explore the viability of the GNN when more than two damage classes are present (e.g., multiple 

levels of damage).  
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4. A Spatially Explicit Post-earthquake Recovery Model for 

Distributed Infrastructure  

4.1 Introduction 

Post-earthquake recovery models can provide useful decision support for pre-event 

planning (Kang et al. 2018). The increasing attention on infrastructure resilience has spurred calls 

for the development of models to quantify the post-earthquake recovery of infrastructure systems. 

In the past two decades, researchers have been studying post-event recovery models for 

built infrastructure (e.g., buildings and lifelines). Various methods have been proposed. For 

example, Nejat and Damnjanovic (2012) proposed a multi-agent framework to model the recovery  

accounting  for  neighbors’  dynamic  interactions. Kang et al. (2018) used stochastic process-

based model for the housing recovery in 2014 south Napa earthquake, with time parameters 

predicted by the random forest machine learning model. Tomar et al. (2020) used the discrete event 

simulation method to model and hindcast the recovery of water distribution system following the 

2014 Napa earthquake.  

Most of the previously proposed stochastic process-based recovery models establish the 

relationship between recovery time parameters and various explanatory variables, while the spatial 

correlations of the recovery time for different components over the region is often not explicitly 

modeled. A spatially explicit recovery model can better capture recovery at the system or regional 

level. Gaussian Process (GP) is a stochastic process-based machine learning model which can 

capture the spatial dependence over the responses. Previous studies have demonstrated the 

capability of the GP model in capturing the spatial correlation. For example, Sun et al. (2018) 

studied the interpolation of structural response demands across buildings using the Kriging model 

(an application of the GP model in spatial statistics); Sheibani and Ou (2020) used the GP model 
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to infer the damage to buildings over a region following earthquakes.  

This study presents a methodology that uses a GP model to estimate the spatial distribution 

of the recovery time of the components over the infrastructure system. The remainder of this 

chapter is presented as follows. Section 4.2 provides a review of the Gaussian Process; An overall 

description of the 2014 Napa earthquake dataset used in this study, including the key explanatory 

variables and observed recovery trajectory is presented in Section 4.3; Section 4.4 presents the 

development of a GP based spatially explicit recovery model, and discusses the alternative ways 

of using the model and the effect of different kernels in the performance of the GP model; Section 

4.5 studies the capability of the learned GP in estimating the recovery trajectory for other (future) 

events. Finally, the contributions of this study are summarized, and the limitations are discussed 

in Section 4.6. 

4.2 Review of Gaussian Process and Machine Learning 

Gaussian Process is a stochastic process of multivariate normally distributed random 

variables (Seeger 2004). It is a non-parametric model based on Bayesian inference. The Gaussian 

Process Regression model defines a distribution over unknown functions, where the values of the 

functions at any finite number of points follows joint Gaussian distribution (Seeger 2004; Sheibani 

and Ou 2020; Tomar and Burton 2021b) 

𝑓ሺ𝑥ሻ~𝐺𝑃൫𝑚ሺ𝑥ሻ, 𝑘ሺ𝑥, 𝑥ᇱሻ൯ (4.1) 

where 𝑥 is the input vector, 𝑚ሺ𝑥ሻ ൌ 𝐸ሾ𝑓ሺ𝑥ሻሿ is the mean function,  and 𝑘ሺ𝑥, 𝑥ᇱሻ ൌ 𝐸ሾሺ𝑓ሺ𝑥ሻ െ

𝑚ሺ𝑥ሻሺ𝑓ሺ𝑥ᇱሻ െ 𝑚ሺ𝑥ᇱሻሻ  is the covariance or kernel function. Given a set of training data 

ሼሺ𝑥௜ ,𝑦௜ሻ | 𝑖 ൌ 1 … ,𝑛ሽ, we represent the features 𝑥௜  as the matrix 𝑋, given the new (test) input 

matrix 𝑋∗, the training outputs 𝑦 and the test functions 𝑓∗ follows joint distribution  
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ቀ
𝑦
𝑓∗ቁ~𝑁 ൬0, ൤

𝐾ሺ𝑋,𝑋ሻ ൅ 𝜎௡ଶ𝐼 𝐾ሺ𝑋,𝑋∗ሻ
𝐾ሺ𝑋∗,𝑋ሻ 𝐾ሺ𝑋∗,𝑋∗ሻ

൨൰ (4.2) 

where 𝐾ሺ𝑋,𝑋∗ሻ denotes the kernel (covariance) between training and testing data. Therefore, the 

posterior predictive distribution of 𝑓∗ can be derived as  

𝑓∗|𝑋,𝑦,𝑋∗~𝑁ሺ𝐸ሾ𝑓∗ሿ,𝐶𝑜𝑣ሺ𝑓∗ሻሻ (4.3) 

where 𝐸ሾ𝑓∗ሿ ൌ 𝐾ሺ𝑋,𝑋∗ሻሾ𝐾ሺ𝑋,𝑋ሻ ൅ 𝜎௡ଶ𝐼ሿିଵ𝑦, and 𝐶𝑜𝑣ሺ𝑓∗ሻ ൌ 𝐾ሺ𝑋∗,𝑋∗ሻ െ 𝐾ሺ𝑋,𝑋∗ሻሾ𝐾ሺ𝑋,𝑋ሻ ൅

𝜎௡ଶ𝐼ሿିଵ𝐾ሺ𝑋,𝑋∗ሻ. 

Selecting an appropriate form of the kernel function is important for the specific application 

of interest. In this study, several commonly used kernel functions are assessed and compared. The 

radial-basis function (RBF) if defined as (Seeger 2004) 

𝑘ሺ𝑥, 𝑥ᇱሻ ൌ 𝜎௙
ଶ expቆെ

|𝑥 െ 𝑥ᇱ|ଶ

2𝑙ଶ
ቇ (4.4) 

where 𝑙 is the length scale parameter, 𝜎௙
ଶ is the signal variance which controls the scale of the 

covariance.  

The Matern kernel is defined as  (Seeger 2004) 

𝑘ሺ𝑥, 𝑥ᇱሻ ൌ 𝜎௙
ଶ ଶ

భషഌ

௰ሺఔሻ
ቀ√

ଶఔห௫ି௫ᇲห

௟
ቁ
ఔ
𝐾ఔ (

√ଶఔห௫ି௫ᇲห

௟
ሻ (4.5) 

where 𝐾ఔሺ∙ሻ is a modified Bessel function 𝛤ሺ∙ሻ is the Gamma function. 

The Rational Quadratic (RQ) kernel is defined as  (Seeger 2004) 

𝑘ሺ𝑥, 𝑥ᇱሻ ൌ 𝜎௙
ଶ ቆ1 ൅

|𝑥 െ 𝑥ᇱ|ଶ

2𝛼𝑙
ቇ
ିఈ

 (4.6) 

where 𝛼 is a scale mixture parameter.  

4.3 Description of the data 

This study uses the water distribution system that serves the City of Napa, California as the 
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test bed. The relevant information is provided by the Napa Water Division (NWD). The Napa 

water network serves a population of approximately 88,000 people. The system includes 3 water 

treatment plants, approximately 612 km (380 mi) of pipeline (7365 pipe segments), 15 storage 

tanks with a total of 113,562 mଷ storage, and 10 pump stations. Additional details of the topology 

and components that encompass the system are provided in (Napa Water Division 2017; Tomar et 

al. 2020).  

The selected data used is the damage and recovery data from the 2014 south Napa 

earthquake, which contains a total of 250 pipeline leaks on 203 pipe segments of the water system. 

Fig. 4.1 shows the spatial distribution of the pipe damage.   

 

Figure 4.1 Spatial distribution of the pipe damage in the Napa water network in the 2014 

event 

4.3.1 Observed Recovery Trajectory  

Fig. 4.2 shows the recovery trajectory over time for the 2014 event. As the key component is 

the pipes, this study defines the recovery in terms of the number of pipe repairs completed. It can 

be observed that there is a steep slope in the initial phase of the recovery. Pipe leaks were repaired 
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relatively quickly with 120 leaks fixed in 5 days  (Napa Water Division 2017; Tomar et al. 2020). 

At 20 days after the earthquake, approximately 70% of the pipelines has already been repaired. 

The rate of repair then decreases significantly, and continue to decrease over time, due to the 

reduction of inspection and repair crews. All pipes are repaired after 156 days. 

 

Figure 4.2 Observed recovery trajectory from the 2014 event 

4.3.2 Target and Explanatory Variables 

The post-event recovery model starts with a physical damage assessment (Kang et al. 2018). 

The damage information is treated as an input to the recovery model. Therefore, given the damage 

information, the earthquake information does not need to be taken as input for the model. The 

features included for the model are the location information of the components: latitude and 

longitude, which are used to inform the spatial correlation of the recovery; and several key 

characteristics of the individual component (pipe). For the pipe system used in this study, the 

selected pipe attributes include the material, roughness, diameter and length. The detailed 

description of the pipe attributes can be referred to Chapter 3. 

Fig. 4.3 shows the distribution of the features for the damaged pipe subsets. The 

distributions on the entire set is described in Chapter 3. To be consistent with the distribution over 
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the entire system, the pipe material types with less than 100 pipes are lumped together to the 

"Other" category. The final types used are Ductile Iron (DI), Cast Iron (CI), Steel (STL), Asbestos 

Cement (AC), C900 and Other. It can be observed that most damaged pipes are made of Cast Iron 

(CI), Ductile Iron (DI) and Steel (STL). The pipe lengths range from 0 to 1200 feet. Most of the 

pipes have a diameter less than 15 inches. The values of the Hazen-Williams roughness coefficient 

(unitless) for most pipes are larger than 100.  

The target (label) is the recovery time, which is taken as the number of days from the date 

of the earthquake to the date when the pipe is repaired.  

Hence, the objective of the recovery model is to establish a statistical relationship between 

the input features and the repair completion time, while developing the spatial distribution of the 

repair over the considered region. The underlying assumption is that components that are closer in 

distance would tend to have similar recovery times. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.3 Distribution of key attributes for the damaged pipe subset: (a) material, (b) 

length, (c) diameter and (d) roughness 

4.4 Model Development  

In this section, the goal is to develop a general model for predicting the spatial distribution 

of the recovery time over the network and recovery trajectory of the system in future earthquakes. 

We do this by building g a Gaussian Process model which captures the statistical relationship 

between the recovery time and explanatory variables influential to the pace of the recovery, while 

accounting for the spatial distribution of the repair time over the region.  

4.4.1 Gaussian Process Model with RBF kernel 

A GP model with the most commonly-used RBF kernel is first developed. The model is 

implemented using the scikit-learn machine learning library (Pedregosa et al. 2011). The L-BGFS 

algorithm is used to optimize the kernel parameters. For the learning purpose, both the input 

features are normalized to have zero mean and unit variance before training. The damage dataset 

is randomly split into 70% training set and 30% testing set. A GP model is developed on the 

training set and evaluated on the test set to demonstrate its capability in predicting unseen data.  
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Given the developed posterior distribution over the test functions 𝑓∗, we first consider the 

mean 𝐸ሾ𝑓∗ሿ as the prediction 𝑦ො. Given the mean prediction, the corresponding recovery trajectory 

is generated and then compared to the actual recovery curve, as shown in Fig. 4.4. The prediction 

captures the overall trend of the recovery trajectory, including the gradual reduction in the rate of 

recovery with time. However, the model underestimates the repair rate in the early stage and 

underpredicts the recovery level up to about the time when 70% of the pipes have recovered. Fig. 

4.5 plots the recovery rate in terms of the number of pipes repaired per day. It can be observed that 

the model significantly underestimates the rate in the first 10 days. Nevertheless, the predicted 

recovery rates after 10 days are generally in the same level with the actual rates. 

 

(a) 

 

(b) 

Figure 4.4 Predicted versus actual recovery trajectory: (a) test set; (b) entire set 
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(a) 

 

(b) 

Figure 4.5 Predicted versus actual recovery rate: (a) test set; (b) entire set 

Fig. 4.6 (a) and Fig. 4.6 (b) show the recovery time for the damaged pipelines in the 2014 

event and the predictions from the GP model, respectively. The spatial distribution of the recovery 

time is captured well by the GP model. The developed spatial distribution can be used for 

estimating the recovery time for future events with scale and type similar to the 2014 south Napa 

earthquake. 
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(a) 

 

(b) 

Figure 4.6 Spatial distribution of the recovery time (days) 

4.4.2 Sampling from the Developed Recovery Model 

As the GP model develops a probabilistic distribution of the recovery time, the uncertainty 

in the recovery can be observed by generating multiple realizations of the recovery trajectory. In 

this study, 1000 realizations are obtained by sampling from the posterior distribution from the GP 

model, as shown in Fig. 4.7. The grey lines show individual recovery trajectories, and the black 

line represents the average recovery curve. Fig. 4.8 (a) shows the probability mass function (PMF) 

and fitted normal probability density function (PDF) for the recovery time, and the cumulative 

distribution of the total recovery time is shown in Fig. 4.8 (b). The average total recovery time is 

150.8 days, and the standard deviation is 15.9 days.  
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Figure 4.7 Sampled recovery trajectories from the GP model 

 

(a) 

 

(b) 

Figure 4.8 Distribution for the time to repair all pipes: (a) probability density and (b) 

cumulative distribution 

4.4.3 Comparison of the Effect of Different Kernels 

To investigate the influence of the selection of kernel functions on the performance of the 

GP model, a comparison study is performed. RBF, Matern and RQ kernels are considered for the 
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comparison. GP models developed with different kernels are evaluated using 10-fold cross-

validation. Specifically, in K-fold cross validation, the dataset is randomly split into K equal-sized 

sub-folds and a train-and-validate process is performed K times: in the kth round, the kth sub-fold 

is used as a validation set to calculate the performance of the model trained on the other (K-1) sub-

folds of data. The root mean squared error (RMSE) is used to evaluate performance. 

𝑅𝑀𝑆𝐸 ൌ ඩ
1
𝑛
෍ሺ𝑦௜ െ 𝑦ො௜ሻଶ
௡

௜ୀଵ

  (4.7) 

where 𝑦௜  and 𝑦ො௜  are the actual and estimated response of the 𝑖th data point, respectively. The 

median absolute relative deviation (MARD) is also used as a performance metric 

𝑀𝐴𝑅𝐷 ൌ 𝑀𝑒𝑑𝑖𝑎𝑛 ൬
𝑦௜ െ 𝑦ො௜
𝑦௜

൰ (4.8) 

The cross-validation results are shown in Fig. 4.9. It can be concluded that, the performance of the 

RBF kernel is similar to the Matern kernel for the dataset used. The RQ kernel has better average 

performance in 𝑅𝑀𝑆𝐸 than the other two kernels, while having larger dispersion across the 10 

folds. For the 𝑀𝐴𝑅𝐷 score, the RQ kernel has both lower average value and lower dispersion 

compared to the other kernels.  
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Figure 4.9 Performance of GP models with different kernel from 10-fold cross-validation 

4.4.4 Within Event Prediction Using Location Parameters 

The previously developed GP model includes the location and features of the individual 

components, which is useful for extrapolating the recovery estimate to future events and other 

network systems.  

On the other hand, within the scope of estimating/interpolating the recovery time of 

individual components for the same event using available recovery time information, it is possible 

to consider the spatial correlations only, and the input features can include the location parameters. 

For example, during the recovery process, the repair time of a subset of the damaged pipes have 

been collected, we can use the spatial correlation to interpolate the repair time to other damaged 

pipes. 

Therefore, a GP model is fitted using only the latitude and longitude of the pipes. The 

train/test split scheme is the same as in Section 4.4.1. The generated recovery trajectories are 

shown in Fig. 4.10. It can be observed that when considering only the spatial correlation of the 

recovery time, the prediction on both test set and entire set is better in the early stages of the 

recovery but overestimates the recovery rate in the later stage.  
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(a) 

 

(b) 

Figure 4.10 Predicted versus actual recovery trajectory using only location parameters: (a) 

test set; (b) entire set 

4.5 Recovery Estimation for Future Earthquakes 

For the developed GP recovery model, its ability to generalize to unseen data has been 

demonstrated in Section 4.4. For the purpose of applying the model, however, it is desirable to 

examine the performance of the model in future events, where the data does not necessarily follow 

the same distribution to the data we trained the model on. Due to data availability, this can be done 

on simulation of an earthquake that represents potential future event. A Mw 6.7 earthquake 

occurring on the West Napa fault with an epicentral location of 38°13′12′′N; 122°18′36′′W is used 

as the scenario event, as mentioned in Section 3.5.5. The Campbell and Bozorgnia (Campbell and 

Bozorgnia 2014) ground motion attenuation relationship is used to obtain the median shaking 

intensities. The inter- and intra-event residuals for PGV are taken as 0.297 and 0.578 cm/s, 

respectively. Spatially correlated shaking intensities are generated using the model by Jayaram and 

Baker (2009). 1000 damage maps are generated from the spatially correlated shaking intensities. 

Additional details about generating the shaking intensities can be found in  (Tomar et al. 2020). 
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For the 1000 simulated maps, the one with the maximum number of damaged pipes is 

selected for demonstration. A GP model is then fitted to the simulated dataset, using procedures 

described in Section 4.4. Fig. 4.11 shows the predicted versus actual recovery trajectory from the 

simulated data. 

 

Figure 4.11 Predicted versus actual recovery trajectory for the simulated Mw 6.7 event 

The capability of the GP models for predicting future earthquakes is examined as follows: 

we denote the fitted model in section 4.4 as Model 1, and the model fitted in this section as Model 

2. Then we estimate the recovery trajectory of the 2014 Event using Model 2 and estimate the 

recovery trajectory of the simulated event using Model 1. To consider the effect of the different 

available inspection and repair sources, the initial number of inspection and repair crew are added 

to the features. 

Fig. 4.12 (a) shows the restoration trajectories for the 2014 event. Model 2 underpredicts 

the recovery rate in the initial phase (first 10 days), which is similar to the issue mentioned in 

Section 4.4. In addition, the model overestimates the recovery time of several pipes, which results 
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in the longer total recovery time. However, the estimated recovery rate is close to the actual after 

90 days following the earthquake. Fig. 4.12 (b) shows the restoration curve of the simulated 6.7 

event. Model 1 underestimates the recovery rate in the first 30 days and overestimates the recovery 

rate in 30 days to 60 days. To sum up, the model developed on a large number of damaged pipes 

tends to overestimate the total recovery time for realistic events with less damage. Nevertheless, 

the estimated recovery rate is relatively accurate.  

 

(a) 

 

(b) 

Figure 4.12 Predicted versus actual recovery trajectories: (a) 2014 event; (b) simulated M 

6.7 event 
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(a) (b) 

Figure 4.13 Predicted versus actual recovery rates: (a) 2014 event; (b) simulated M 6.7 

event 

4.6 Conclusion 

This study developed a spatially explicit recovery model for the post-earthquake restoration 

of distributed infrastructure. To encode the spatial correlation of the recovery time over the system 

components, the Gaussian Process (GP) was utilized for modeling.  

The GP model took the location information of the components and several key attributes 

as input, and output the spatial distribution of the recovery time over the network. The evaluation 

results showed that the model was able to capture the overall recovery trajectory for the 2014 event, 

but underestimated the high recovery rate observed in the initial phase of the recovery. An 

alternative way of utilizing the GP model was proposed that used only the location parameters, to 

represent the case of interpolating the recovery time for the network within the same event given 

available recovery time information for some damaged pipelines. 

To further demonstrate the capability of the GP model for predicting the recovery for future 

earthquakes, a hypothetical Mw 6.7 scenario was simulated. A GP model was fitted to the simulated 
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data. Next, the prediction from the model fitted to the simulated data was applied to the 2014 event, 

and the prediction from the model fitted using the 2014 event was applied to the simulated data. 

In both cases, comparisons were made with the actual recovery trajectory. The results showed that 

both models were able to make a reasonable prediction of the trajectory for the data coming from 

another event. It can also be concluded that increasing the number of data points can improve the 

extrapolation capability of the model. 

The developed spatially-explicit recovery model can be used to estimate the recovery for 

future earthquakes while incorporating the uncertainty, which is helpful for pre-event planning and 

enhancing community resilience. For future applications, the accuracy of the model can be further 

improved by incorporating the data from a set of different events and including more useful 

explanatory features. 
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5. Optimizing Post-earthquake Functional Restoration of 

Distributed Infrastructure Through Deep Reinforcement 

Learning 

5.1 Introduction 

Water distribution networks (WN) have been identified as one of several critical 

infrastructure systems (CIS) (DHS 2013). Following a major seismic event, the physical damage 

to a water distribution network can cause significant disruption to its core functions (e.g. delivering 

water to residential commercial and industrial facilities), resulting in adverse  socioeconomic 

impacts to the affected population (Lee et al. 2018; Tabucchi et al. 2008, 2010a). Resilience has 

been defined as the ability of a social and/or physical entity to withstand, adapt to and recover 

rapidly from disruptive events (Bruneau et al. 2003). The growing societal expectations towards  

infrastructure resilience urges for better post-hazard-event restoration policies (Sarkale et al. 2018). 

Therefore, developing reliable frameworks and tools to support optimal decision-making for the 

post-earthquake recovery of water distribution systems is one of the critical steps towards 

enhancing infrastructure resilience.  

The post-earthquake recovery of CIS usually involves several tasks: inspection, damage 

assessment and repair. The repair task usually takes the longest duration and requires significant 

allocation of resources (Xu et al. 2019). In the literature, the repair scheduling problem for CIS 

typically takes on one of two formulations. The first utilizes mixed integer linear programming 

(MILP), whereby the system operation model (equations) is embedded within the optimization 

constraints. Such formulation is usually seen in applications to electric power transmission and 

transportation systems. This approach was adopted by Cavdaroglu et al. (2013), who formulated 

the restoration planning and scheduling of power and telecommunication infrastructure as a mixed-
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integer program and proposed a heuristic solution. Xu et al. (2019) reviewed a series of 

optimization methods based on mixed integer linear programming and proposed two novel 

heuristic methods for optimizing the repair sequence of electric power transmission systems. 

Gomez and Baker (2019) employed two-stage stochastic mixed-integer programming to optimize 

the retrofit and post-event repair of transportation networks.  

Another approach is to formulate the repair scheduling as a Markov Decision Process 

(MDP), which is characterized by a decision maker (agent) that interacts with an environment in 

finite time steps with the goal of improving its policy actions. The MDP-based formulation is 

straightforward once the core elements (state, action, transition rule) are identified.  When a 

model/simulator of the environment is available (e.g. a water network environment) to provide the 

reward/feedback at each time step, the MDP formulation is feasible because the numerous 

variables/constraints inside the system operation model do not need to be considered explicitly in 

the optimization. Numerous studies have demonstrated the suitability of MDP for modeling 

infrastructure decision-making problems and the capability of reinforcement learning/approximate 

dynamic programming to achieve a solution: Nozhati et al. (2018, 2019, 2020) and Sarkale et al. 

(2018) formulated the post-earthquake restoration planning of various CISs in the MDP framework 

and used the rollout algorithm to obtain near-optimal repair policies. A stochastic dynamic 

programming solution was proposed by Lee and Labadie (2007) to optimize water allocation in a 

multi-reservoir system. Medury and Madanat (2013) used approximate dynamic programming to 

optimize the maintenance, rehabilitation and replacement of a pavement system. However, the 

classical dynamic programming and reinforcement learning methods often suffer from the curse 

of dimensionality (Nozhati et al. 2019; Sutton and Barto 2018), which limit their effectiveness in 

large scale problems (Arulkumaran et al. 2017).  
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Recently, the classical reinforcement learning methods achieved significant breakthrough 

after being combined with deep learning methods, which is described as deep reinforcement 

learning (DRL). The DRL methodology has accelerated the progress of reinforcement learning 

agents in large-scale complex decision-making problems, e.g., the games of Go (Silver et al. 2016, 

2017) and StarCraft II (Vinyals et al. 2017), as well as various robotic control problems (Das and 

Yip 2020; Wu et al. 2019a; Zhu et al. 2017). The deep neural networks addressed the challenge 

associated with having a large state space through a layered representation of the high dimensional 

states (e.g., images, video frames). Also, the deep neural networks are used as function 

approximators for the value or policy functions, which is key to solving the MDP. Because of these 

advantages, the engineering community has started to explore DRL in applications such as drug 

design (Popova et al. 2018; Sanchez-Lengeling and Aspuru-Guzik 2018) and electric circuit design 

(Liao et al. 2019). Current applications of DRL in civil engineering are mostly on the maintenance 

and operation management of infrastructure systems. Andriotis and Papakonstantinou (2019) 

proposed a Deep Centralized Multi-agent Actor Critic (DCMAC) algorithm to optimize the 

maintenance policy of multi-component systems. Memarzadeh and Pozzi (2019) proposed a Safe 

Q-Learning algorithm for the optimal management of infrastructure systems considering the risk 

of extreme events. Yao et al. (2020) applied Deep Q Network (DQN) algorithm to optimize the 

maintenance and rehabilitation of pavement.  

To the authors’ knowledge, the DRL methodology has not yet been applied to the post-

earthquake restoration of water distribution networks. Therefore, this study serves as one of the 

initial attempts to address this specific challenge. The remainder of the paper is structured as 

follows: First, we briefly reviews the Markov Decision Process for sequential decision-making 

problems and the solution via reinforcement learning; Next, we formulate the restoration process 
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for water networks based on the Markov Decision Process, presents the model implementation 

details and a general framework for training the model and obtaining the post-earthquake repair 

policy; A case study on a hypothetical water network is then presented and discussed; Lastly, we 

summarize the contributions of this paper and provides suggestions for future studies. 

5.2 Review of the Markov Decision Process and Reinforcement Learning 

Methodology 

5.2.1 Markov Decision Process 

The finite Markov Decision Process (MDP) is a mathematical framework that is used to 

represent a random process where a decision maker (agent) interacts with an environment at finite 

time steps 𝑡 ൌ 0,1,2 … ,𝑇  (Sutton and Barto 2018). The finite MDP is characterized by the 

following elements: 𝒮 is the finite set of states; 𝒜 is the finite set of actions; 𝒫:𝒮 ൈ 𝒮 ൈ𝒜 →

ሾ0,1ሿ  is the state transition matrix with each entry 𝑝ሺ𝑠௧ାଵ ൌ 𝑠ᇱ|𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎ሻ  defining the 

probability of transitioning from 𝑠 to 𝑠′ after taking action 𝑎; ℛ is the reward function, 𝑟ሺ𝑠,𝑎ሻ ൌ

𝐸ሾ𝑟௧ାଵ|𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎ሿ represents the expected reward received after taking action 𝑎 at state 𝑠; 𝛾 

is the discount factor for controlling the decay of importance for future rewards. At each time step 

𝑡 , the agent observes the current state 𝑠௧ , takes action 𝑎௧ , receives a reward 𝑟௧ାଵ from the 

environment, which then transitions to the next state 𝑠௧ାଵ. The process continues until a terminal 

state is reached. The process from an initial to a terminal state is called an episode. On the other 

hand, some MDP-based applications involve modeling a continuing task without a terminal state, 

e.g., real-time process control of a water distribution system. The scope of this study is on episodic 

tasks. 

In the MDP, the goal is to learn the policy 𝜋 , which maps states to a probabilistic 

distribution over the actions: 𝜋ሺ𝑎|𝑠ሻ  denotes the probability of choosing action 𝑎  at state 𝑠 . 
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Defining the return function 𝐺௧ ൌ ∑ 𝛾௞𝑟௧ା௞ାଵ
்ି௧ିଵ
௞ୀ଴  as the total discounted reward from time step 

𝑡 to the terminal state 𝑇, the goal of the agent is to maximize the expected return  

𝜋∗ ൌ argmax
గ

 𝐸௦~௣, ௔~గሾ𝐺଴ሿ (5.1) 

where 𝑝 is the state transition probability. This  implies the philosophy of long term planning.  

The other core component of the MDP is the value function. Specifically, the state value 

function 𝑉గሺ𝑠ሻ is defined as the expected return starting from state 𝑠 and following 𝜋 onwards 

(Bellman 2003; Sutton and Barto 2018): 

𝑉గሺ𝑠ሻ ൌ 𝐸గሾ𝐺௧|𝑠௧ ൌ 𝑠ሿ (5.2) 

Similarly, the state-action value function 𝑄గሺ𝑠,𝑎ሻ is the expected return after executing 

action 𝑎 at state 𝑠 and following 𝜋 (Bellman 2003; Sutton and Barto 2018): 

𝑄గሺ𝑠, 𝑎ሻ ൌ 𝐸గሾ𝐺௧|𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎ሿ (5.3) 

5.2.2 Reinforcement Learning  

The value functions have a recursive property that is reflected in the Bellman equation 

(Bellman 2003; Sutton and Barto 2018): 

𝑉గሺ𝑠ሻ ൌ 𝐸గሾ𝑟௧ାଵ ൅ 𝛾𝑉గሺ𝑠௧ାଵሻ|𝑠௧ ൌ 𝑠ሿ (5.4) 

which is fundamental to the MDP solution. When all properties (the transition matrix 𝒫 and reward 

function ℛ ) of the MDP are explicitly defined, it can be solved by dynamic programming. 

Specifically, starting from an initial policy, we iterate the policy between two steps (Bellman 2003; 

Sutton and Barto 2018): 

1. Policy evaluation: evaluate the values for all states 𝑠଴, … , 𝑠௡ by the Bellman equation. 

At iteration step 𝑘 ൅ 1, update the value 𝑉௞ାଵ
గ ሺ𝑠ሻ by  

𝑉௞ାଵ
గ ሺ𝑠ሻ ൌ 𝐸గሾ𝑟௧ାଵ ൅ 𝛾𝑉௞

గሺ𝑠௧ାଵሻ|𝑠௧ ൌ 𝑠ሿ (5.5) 
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2. Policy improvement: improve the policy based on the estimated values  

𝜋ᇱሺ𝑠ሻ ൌ argmax
௔

 𝐸గሾ𝑟௧ାଵ ൅ 𝛾𝑉గሺ𝑠௧ାଵሻ|𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎ሿ (5.6) 

When the properties are unavailable, we need to let the agent learn by interacting with the 

environment, which is referred to as model-free reinforcement learning. There are two general 

paradigms for model free reinforcement learning: value-based methods and policy-based methods.  

The value-based methods focus on estimating the value functions introduced in Eqs. 5.2 

and 5.3. A non-parametric policy is adopted here and updated with respect to the value function, 

which is similar to Eq. 5.6 but with additional stochastic exploration (𝜖-greedy) (Sutton and Barto 

2018). Common methods for estimating value functions include Monte Carlo (MC) and Temporal 

Difference (TD) methods. The key idea behind the MC method is using the empirical return to 

approximate the expected return. High variance is associated with the MC estimate because of the 

sampling from complete episodes (Arulkumaran et al. 2017). Regarding applications in post-

hazard-event recovery, Nozhati et al. (2018, 2019, 2020) and Sarkale et al. (2018) performed a 

series of studies that use MC value estimation and the rollout algorithm (Bertsekas 1999) to solve 

the MDP for interconnected water, electric power, and food retailer networks within a testbed 

community located in Gilroy, California. It is worth noting that rollout algorithms are considered 

as an optimization (decision-time planning) algorithm instead of a learning algorithm, because 

they do not store the value or policy estimates, and the aim is to find an improved rollout policy 

(Sutton and Barto 2018). The property of the improved policy depends on factors such as the 

adopted base policy (Sutton and Barto 2018). 

TD methods do not generate samples of episodes, instead, the estimate 𝑄෠గሺ𝑠௧ ,𝑎௧ሻ  is 

updated towards the “target” Q value  
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𝑦ො ൌ 𝑟௧ାଵሺ𝑠௧ ,𝑎௧ሻ ൅ 𝛾max
௔ᇲ

𝑄෠గሺ𝑠௧ାଵ,𝑎ᇱሻ (5.7) 

which can be constructed immediately after executing 𝑎௧~𝜋, thus 𝛿 ൌ 𝑦ො െ 𝑄෠గሺ𝑠௧ ,𝑎௧ሻ is called 

the TD error. The update is given by 

𝑄෠గሺ𝑠௧ ,𝑎௧ሻ  ← 𝑄෠గሺ𝑠௧ ,𝑎௧ሻ  ൅ 𝛼𝛿 (5.8) 

where α denotes the step size. Eqs. 5.7 and 5.8 are essentially the value function update steps in 

the Q-learning algorithm (Watkins 1989), which is the foundation for various value-based deep 

reinforcement learning methods proposed in recent years. The TD method embeds less variance, 

but high bias is introduced by bootstrapping, which is likely to cause instability in the learning 

process (Arulkumaran et al. 2017).  

In contrast to the value-based methods like Q-learning, the policy-based methods express 

the policy explicitly as a parametric distribution 𝜋ఏሺ𝑎|𝑠ሻ, and the agent takes actions by sampling 

from 𝜋ఏሺ𝑎|𝑠ሻ (Sutton et al. 1999). The objective is expressed as a function of 𝜃 (Sutton et al. 1999): 

𝐽ሺ𝜃ሻ ൌ 𝐸గഇሾ𝐺଴ሿ (5.9) 

Taking the derivative with respect to 𝜃 produces the policy gradient (Sutton et al. 1999): 

∇ఏ𝐽ሺ𝜃ሻ ൌ 𝐸గഇሾ∇ఏlog𝜋𝜃ሺ𝑎|𝑠ሻ𝑄𝜋𝜃ሺ𝑠,𝑎ሻሿ  (5.10) 

and 𝜃 is updated through (Sutton et al. 1999): 

𝜃 ← 𝜃 ൅ 𝛼𝛻ఏlog𝜋ఏሺ𝑎|𝑠ሻ𝑄గഇሺ𝑠,𝑎ሻ (5.11) 

Policy-based methods have better convergence properties as the policy is parameterized 

and the algorithm approaches a local maximum. However, high variance is imposed on the 

gradient (Arulkumaran et al. 2017), as the value needs to be estimated by the MC methods 

discussed earlier.  
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5.2.3 Deep Reinforcement Learning 

The Q-learning algorithm and many other classical reinforcement learning methods require 

the value function to be stored for all possible state-action pairs in a tabular form, which is 

iteratively updated. Hence, the storage requirement grows exponentially with the expansion of the 

state and action spaces and becomes intractable for large-scale problems. Mnih et al. (2015) 

introduced the Deep Q Network (DQN) algorithm, which is a benchmark for embedding deep 

neural networks as function approximators in the reinforcement learning agents. Fig. 5.1 shows 

the schematic structure for the DQN model, where the solid lines represent the interaction process, 

and the dashed lines represent the learning process.  

In the interaction process,  at each time step, the agent observes the current state 𝑠, which 

is input to the Q network to approximate the value 𝑄ఏሺ𝑠, 𝑎ሻ for possible actions, then takes action 

𝑎 based on the Q value, receives a reward 𝑟 from the environment, and transitions to the next state 

𝑠′. The deep neural network enables layered representation of the high dimensional states such as 

the raw pixels of video games, and outputs the values 𝑄ఏሺ𝑠, 𝑎ሻ for all available actions 𝑎 at state 

𝑠 via a forward pass. Moreover, instead of storing the Q values for large state-action pairs, only 

the parameters of the neural networks need to be saved and updated. Each transition tuple 

ሺ𝑠, 𝑎, 𝑟, 𝑠′ሻ is stored to a replay memory buffer with storage capacity 𝑁, i.e., new transitions are 

taken in and old transitions are expelled.  

In the learning process, a target Q network 𝑄ఏషሺ𝑠′,𝑎′ሻ is used to construct the “target” Q 

value for learning (Arulkumaran et al. 2017; Mnih et al. 2015): 

𝑦ො ൌ 𝑟ሺ𝑠,𝑎ሻ ൅ 𝛾 argmax
௔ᇲ

 𝑄ఏషሺ𝑠′,𝑎ᇱሻ (5.12) 

The parameters 𝜃ି of the target network are inherited from the Q network at delayed steps. 

Through temporal fixation, the target network provides a more stable target that addresses the main 
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issue with classical Q learning. At each learning step, the agent randomly samples a mini-batch, 

𝐵 ൌ ሼሺ𝑠௜ ,𝑎௜ , 𝑟௜ , 𝑠௜
ᇱሻሽ, from the replay memory buffer, and updates 𝜃 through stochastic gradient 

descent on the loss function (Mnih et al. 2015) 

𝐿ሺ𝜃ሻ ൌ
1
𝐾
෍ሺ𝑟௜ ൅ γ argmax

௔ᇲ
 𝑄ఏషሺ𝑠௜

ᇱ, 𝑎௜
ᇱሻ െ 𝑄ఏሺ𝑠௜ , 𝑎௜ሻሻ ଶ

௄

௜ୀଵ

 (5.13) 

where 𝐾 denotes the batch size. This modification reduces the correlation of samples used for 

computing the TD error, thus reducing the bias in the update. 

 

Figure 5.1 Schematic representation of the Deep Q Network 

The Deep Actor Critic (DAC) combines the value-based methods with policy-based 

methods. More specifically, it considers the trade-off between the bias introduced in the value-

based methods and the variance in policy-based methods (Grondman et al. 2012; Konda and 

Tsitsiklis 2003). The model consists of the two main components shown in Fig. 5.2: an actor 
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network that approximates the policy function 𝜋ఏೌሺ𝑎|𝑠ሻ and takes action by sampling from the 

policy 𝑎௧~𝜋ఏೌሺ𝑎|𝑠ሻ; a critic network that approximates the value function 𝑉ఏ೎ሺ𝑠ሻ and evaluates 

the advantage of the action taken by the actor.      

The actor is updated through a policy gradient with respect to 𝜃௔ 

𝜃௔ ← 𝜃௔ ൅ 𝛼௔𝛻ఏೌlog𝜋ఏೌሺ𝑎|𝑠ሻ𝐴గഇೌሺ𝑠, 𝑎ሻ (5.14) 

where 𝐴గഇೌሺ𝑠, 𝑎ሻ ൌ 𝑄గഇೌሺ𝑠,𝑎ሻ െ 𝑉గഇೌሺ𝑠ሻ is called the advantage function, which measures the 

advantage of taking action 𝑎 with respect to the average value of state s. Subtracting the baseline 

𝑉గഇೌሺ𝑠ሻ reduces the variance in the policy gradient methods (Grondman et al. 2012; Konda and 

Tsitsiklis 2003; Sutton et al. 1999). Note that the advantage function can be estimated by 

𝐴መగഇೌሺ𝑠,𝑎ሻ ൌ 𝑟ሺ𝑠,𝑎ሻ ൅ 𝛾𝑉ఏ೎
గഇೌሺ𝑠ᇱሻ െ 𝑉ఏ೎

గഇೌሺ𝑠ሻ, i.e., the values of the current state 𝑠 and next state 

𝑠′ are both outputs by the critic, as shown in Fig. 5.2. 

The critic is updated through the gradient of the squared TD error with respect to 𝜃௖ 

(similar to the Q network):  

𝜃௖  ← 𝜃௖  ൅ 𝛼௖𝛿𝛻ఏ೎ 𝑉ఏ೎ ሺ𝑠ሻ (5.15) 
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Figure 5.2 Schematic representation of the Deep Actor Critic 

5.3 Implementation of the Deep Reinforcement Learning Methodology 

5.3.1 Formulation of Post-earthquake Recovery Optimization Problem 

The components of a water distribution network can remain intact or undergo damages 

after the occurrence of earthquakes. Different decisions on the sequence of the available set of 

repair actions from the time immediately after the earthquake (𝑡̃଴) to when the system  recovers to 

full functionality ( 𝑡̃௘௡ௗ ) results in different restoration curves. Fig. 5.3 shows a schematic 

representation of the restoration curves, where the horizontal axis is the time following the seismic 

event, and the vertical axis is the System Serviceability Index (SSI). For the water distribution 

system, the SSI is defined as the ratio between the actual water supply to a junction to the desired 

demand (Lee et al. 2018): 
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𝑆𝑆𝐼ሺ𝑡̃ሻ ൌ
∑ ∑ 𝑞௜,௝ሺ𝑡̃ሻ

௅
௝ୀଵ

ே
௜ୀଵ

∑ 𝑑௜ே
௜ ሺ𝑡̃ሻ

 (5.16) 

where 𝑞௜,௝ሺ𝑡̃ሻ denotes the actual flow of water from pipe 𝑗 into junction 𝑖, 𝑑௜ሺ𝑡̃ሻ is the expected 

demand (desired flow) of junction 𝑖. 

  

Figure 5.3 Schematic representation of a restoration curve for the system serviceability 

index 

In this study, we consider the primary optimization objective as minimizing the cumulative 

loss of serviceability normalized by the total recovery time 𝑇 (denoted as Objective 1) 

minimize
గ

 𝐸గሾ
׬ ሺ1 െ 𝑆𝑆𝐼ሺ𝑡̃ሻሻ𝑑𝑡̃
௧ሚ೐೙೏
௧ሚబ

𝑇
ሿ (5.17) 

subject to implicit constraints from the hydraulic simulation model. Eq. 5.17 can be equivalently 

expressed as maximizing the normalized area under the restoration curve (Cimellaro et al. 2010): 

maximize 
గ

𝐸గሾ
׬ 𝑆𝑆𝐼ሺ𝑡̃ሻ𝑑𝑡̃
௧ሚ೐೙೏
௧ሚబ

𝑇
ሿ (5.18) 

If 𝑆𝑆𝐼ሺ𝑡̃ሻ is a tractable function (with explicit expression) of the damaged state of the 

network, the solution can be obtained by dynamic programming. However, SSI is obtained from 
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real-time hydraulic analysis on the physical model of the water network. Hence, feasible solution 

need to be obtained by learning from interactions. 

In this study, two damage states are considered: 𝐷𝑆଴ (Undamaged) and 𝐷𝑆ଵ (Major Leak) 

(Lee et al. 2018). The MDP framework described earlier is adapted to model the restoration process 

of the water network, as follows: 

• State: 𝑠௧ ൌ ሾ𝑠௧ଵ, 𝑠௧ଶ, … , 𝑠௧௅ሿ 

where 𝑠௧௝ ∈ ሼ0, 1ሽ, 0 corresponds to 𝐷𝑆଴ and 1 corresponds to 𝐷𝑆ଵ 

• Action: 𝑎௧ ൌ ሾ𝑎௧ଵ, 𝑎௧ଶ, … ,𝑎௧௄ሿ,  

where 𝐾  denotes the number of available repair crews, 𝑎௧௝ ∈ ሼ1,2, … , 𝐿ሽ  determines the 

corresponding pipe to be repaired. 

• Reward: 𝑟௧ାଵሺ𝑠௧ , 𝑎௧ሻ ൌ 𝑆𝑆𝐼ሺ𝑠௧ ,𝑎௧ሻ ∙ 𝑡̃௥௘௣ሺ𝑎௧ሻ, where 𝑆𝑆𝐼ሺ𝑠௧ ,𝑎௧ሻ is the 𝑆𝑆𝐼 after executing 

action 𝑎௧  at state 𝑠௧  (obtained from hydraulic simulation), and 𝑡̃௥௘௣ሺ𝑎௧ሻ  denotes the 

duration of the repair action 𝑎௧. In this formulation, only two damage states are considered, 

and the time needed to repair a pipeline from 𝐷𝑆ଵ to 𝐷𝑆଴ is assumed to be the same for all 

teams.  In future studies, this formulation can be modified to incorporate stochastic repair 

duration for each team and more than two damage states.  

• Discount factor: 𝛾 ൌ 0.99 is used for the agents. 

5.3.2 Solution Framework 

A general framework for implementing the proposed DRL methodology, which 

incorporates the seismic hazard model for obtaining the shaking intensity and initial damage. The 

main steps are as follows: 

Step 1: Damage simulation: simulate a representative number of possible damage cases to the 
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WN using a suite of earthquake scenarios. 

Step 2: Model training: starting from each damage case as the initial state of the environment, 

let the DRL agent learn by interacting with the environment for multiple episodes. Within each 

episode,  

1. Episode start: the water distribution network is reset to the state 𝑠଴, which represents the 

initial damage case;  

2. At each time step of the episode: 

• The agent observes the water system state 𝑠௧ and decides the next repair action 𝑎௧;  

• The environment receives the repair action 𝑎௧ , repairs the corresponding pipe, 

transitions to the next state 𝑠௧ାଵ  and obtains the 𝑆𝑆𝐼ሺ𝑠௧ ,𝑎௧ሻ  through hydraulic 

simulation, which is then transformed and passed to the agent as the reward 𝑟௧ାଵ;  

• The agent learns and updates its policy. 

3. Episode terminates: all pipes are repaired, and the serviceability of the water distribution 

network is fully restored (100%). 

Step 3: Obtain repair policy: after training is complete, given a damage case of interest, the 

model outputs the optimal repair sequence and the associated restoration curve. 

For the damage simulation step, the repair rate (𝑅𝑅) is computed as a function of the peak 

ground velocity (𝑃𝐺𝑉) using the empirical equation recommended by the American Lifelines 

Alliance (2001), which takes the form of a linear model 

𝑅𝑅 ൌ 𝐾ଵ ∙ 0.002416 ∙ 𝑃𝐺𝑉 (5.19) 

or a power model 

𝑅𝑅 ൌ 𝐾ଵ ∙ 0.001187 ∙ 𝑃𝐺𝑉ଵ.ଵ଻ଷ (5.20) 
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where the units of 𝑅𝑅  and 𝑃𝐺𝑉  are the number of repairs/km and cm/s, respectively. 𝐾ଵ  is a 

modification factor based on the type of material, connection, soil and pipe diameter. In practice, 

the fragility function of the pipelines is determined from the repair rate. Specifically, the number 

of repairs 𝑋  for a pipeline of length 𝐿  is assumed to follow a Poisson distribution given by 

(Eidinger 2001): 

𝑃ሺ𝑋 ൌ 𝑘ሻ ൌ
ሺ𝑅𝑅 ∙ 𝐿ሻ௞

𝑘!
𝑒ିோோ∙௅ (5.21) 

Hence, the probability of failure (without specifying the extent) for a single pipe with 

length 𝐿 is expressed as follows (Choi et al. 2018): 

𝑃௙ ൌ 1 െ 𝑃ሺ𝑋 ൌ 0ሻ ൌ 1 െ 𝑒ିோோ∙௅ (5.22) 

For a given 𝑃𝐺𝑉 value, Eq. 5.19-22 is used to perform multiple damage simulations to the 

water network.  

5.3.3 Description of the Environment and the Deep Reinforcement Learning Model 

In this study, the water distribution system model is constructed using the Python-based 

Water Network Tool for Resilience (WNTR) (Klise et al. 2018). The damage state 𝐷𝑆ଵ (Major 

Leak) is realized by creating a leak area with a diameter that is 90% of the pipe diameter (Lee et 

al. 2018) and the leak demand 𝑑௟௘௔௞ is computed as follows (Crowl et al. 2002; Lee et al. 2018): 

𝑑௟௘௔௞ ൌ 𝐶ௗ𝐴𝑝ఈඨ
2
𝜌

 (5.23) 

where 𝐶ௗ  is the discharge coefficient taken as 0.75, 𝐴 is the leak area, 𝑝 is the pressure in the 

pipeline, 𝛼 is the discharge coefficient, 𝜌 is the fluid density. It is worth noting that the water 

network model is used to relate the system state to its damaged condition, and provides an outcome 

that is a function of the real-time hydraulic simulation analysis.  
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To implement the DRL methodology, a simulation-based environment needs to be 

constructed which embeds the water distribution network model. The water network environment, 

named “WaterNet-v0”, is implemented as a customized environment (subclass) of the OpenAI 

gym environments (Brockman et al. 2016), which is a platform for developing and testing 

reinforcement learning models. The corresponding class methods are written in the standard format 

of gym environments (e.g, a “Step” method to perform state transition after receiving an action). 

The DRL models (Deep Q Network and Deep Actor Critic) are implemented in Python using the 

TensorFlow framework (Abadi et al. 2016). The model structures are implemented as follows: 

Q network: 

• Input layer: 14 units (corresponding to the state dimension, the state is a vector 

recording whether each pipe is damaged, as defined earlier) 

• Hidden layer 1: fully-connected layer with 128 units and rectified linear unit 

activation 

• Hidden layer 2: fully-connected layer with 128 units and rectified linear unit 

activation 

• Output layer: fully-connected layer with 14 units and linear activation  

Actor network: 

• Input layer: 14 units  

• Hidden layer 1: fully-connected layer with 128 units and leaky rectified linear unit 

activation 

• Hidden layer 2: fully-connected layer with 128 units and leaky rectified linear unit 

activation 
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• Output layer: fully-connected layer with 14 units (corresponding to the number of 

pipes) and softmax activation 

Critic network: 

• Input layer: 14 units  

• Hidden layer 1: fully-connected layer with 128 units and rectified linear unit 

activation 

• Hidden layer 2: fully-connected layer with 128 units and rectified linear unit 

activation 

• Output layer: fully-connected layer with a single unit and linear activation 

The Adam optimizer (Kingma and Ba 2014) is used to perform the gradient descent on the 

neural network parameters. For DQN, a learning rate of 5e-4 is used, and for DAC, 8e-4 is used 

for the actor and 8e-3 is is used for the critic. 

It is worth noting that the action space 𝒜  is not constant because after repairing each 

pipeline, the corresponding action becomes ineffective at the next time step. To address this issue, 

two approaches are explored when implementing the models. For the DQN agent, no constraints 

are imposed on the action space at each time step. Instead, a negative reward is introduced to 

punish the selected illegal action. For the Actor Critic model, when sampling an action, a filter is 

added to the output distribution from the actor by removing the illegal actions and renormalizing 

the distribution by  

𝜋′ሺ𝑎|𝑠ሻ ൌ
𝜋ሺ𝑎|𝑠ሻ

∑ 𝜋ሺ𝑎′|𝑠ሻ௔ᇱ∈𝒜ಽ

 (5.24) 

where 𝜋′ሺ𝑎|𝑠ሻ is the adjusted legal policy, 𝒜௅ is the legal action space at state 𝑠. Although this 

adjustment would potentially impose ill-conditions for the exact convergence of the policy, it 
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updates the policy towards the near optimal direction.  

5.4 Case Study on a Hypothetical Water Network 

In this section,  a case study is performed where the DRL methodology is applied to the 

hypothetical water distribution network shown in Fig. 5.4, which has been used in several prior 

studies (Jayaram and Srinivasan 2008; Larock et al. 2010; Lee et al. 2018). Additional details on 

the configuration and composition of the network can be found in the aforementioned references. 

 

Figure 5.4 Hypothetical water distribution network (adapted from Jayaram and Srinivasan 

(2008), Larock et al. (2010), and Lee et al. (2018)) 

5.4.1 Evaluation Results  

The hypothetical water distribution network consists of 14 distribution pipelines. Therefore, 

the number of possible damage cases is 2ଵସ െ 1 ൌ 16383, which is a tractable number. For this 

evaluation, a single repair team is assumed. Hence, the total recovery time for a given case is 

deterministic, the objective in Eq. 5.18 is equivalent to maximizing the expected area under the 

restoration curve. As mentioned in Section 5.3.3, a random sample of damage cases is first 

generated, and the agents are trained using multiple episodes for each damage case. In this study, 

1200 damage cases are used for the DQN agent and 1000 cases for the DAC agent. The number 

of episodes per case is set at 50. Once the training is completed, the performance of the agent is 
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evaluated and compared with a “random” agent, i.e., an agent with no knowledge that selects a 

random pipeline to repair at each step. The evaluation results are presented in two ways:  

1. Test on all possible (16383) cases. This evaluation does not require an earthquake ground 

motion simulation model. It simply compares the relative performances of the DRL agents and 

random agent starting from any initial state of the water distribution system. When the DRL 

method is applied to larger systems, the number of possible damage cases can be intractable. In 

cases like these, a reasonable number of damage cases can be generated from scenario-based 

simulation.  

2. Test on the damage cases simulated by taking 𝑃𝐺𝑉 values from 91.92 to 900 cm/s. 1000 

damage cases are simulated for each 𝑃𝐺𝑉 value. The range of 𝑃𝐺𝑉 is adopted from the site hazard 

curve at Los Angeles City Hall (Lee et al. 2018). Because the focus of this study is not on life-

cycle assessment, an integration over the entire range of the hazard curve is not performed. The 

goal here is to perform the evaluation by considering an extensive range of 𝑃𝐺𝑉 values under 

which the hypothetical network starts to exhibit significant component damage (from a preliminary 

simulation).  

Among the 16383 evaluated cases on metric 1 (area under the restoration curve ( 𝐴௥௘௦)), 

the DQN agent outperforms the random agent in 13834 cases (winning rate 84.4%), while the 

DAC outperforms random in 14029 cases (winning rate 85.6%). Fig. 5.5 shows the distribution of 

the ratio of the area under the restoration curve following the DRL policy to that following the 

random policy. 
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(a) 

 

(b) 

Figure 5.5 Ratio of the area under the restoration curve: (a) Deep Q Network to random; 

(b) Deep Actor Critic to random 

Fig. 5.6 presents the evaluation results for the DRL and random agents considering all 

possible cases, where the light grey lines are the restoration curves for individual cases, and the 

blue line presents an average restoration curve computed by averaging the required time to reach 

a given SSI level (at an increment of 0.01). It can be shown that the restoration curves following 

the repair policy by the DQN agent have much smaller dispersion and the area under the restoration 

curves are all greater than half of the area associated with full functionality, i.e., exhibits a 

“concave” shape. The restoration curves from the DAC agent exhibit slightly larger dispersion 

than those of the DQN, which is expected since the Actor outputs a distribution over actions and 

samples from the distribution, while DQN takes greedy actions with respect to the Q value. 

Nevertheless, the DAC has much better performance than the random agent.  
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Figure 5.6 SSI-based restoration curves for all possible damage cases: (a) Deep Q Network; 

(b) Deep Actor Critic; and (c) Random Agent 

A comparison of the average performances of the three agents is shown in Fig. 5.7. Fig. 

5.7 (a) presents the results given by averaging the required time to reach a given SSI level. On 

average, the performance of the DAC is similar to the DQN. The average time required to recover 

to full serviceability following the policy from the DRL agents are approximately 5 days, while 6 

days are needed on average when following the random agent policy. Despite the small difference 

in terms of absolute values (because of the small network), the average recovery time for the 

random agent is 20% higher than the DQN. Fig. 5.7 (b) presents the restoration curves computed 

by averaging the SSI at specific time-points after damage has occurred. The average SSIs achieved 

following the DQN and DAC are much higher than the random agent case. 

 

(a) 

 

(b) 

 

(c) 
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The test results on the hazard-generated damage cases are presented in Figs. 5.8 and 5.9, 

from which similar conclusions to the ones discussed earlier are drawn.  

 

Figure 5.7 Results from all possible cases: (a) average days required to achieve a given SSI 

level; (b) average SSI achieved at a given day 

 

(a) 

 

(b) 

 

 

 

(a) 

 

(b) 
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(c) 

Figure 5.8 Restoration curves for damage cases generated from the hazard model: (a) Deep 

Q Network; (b) Deep Actor Critic; and (c) Random Agent 

 

(a) 

 

(b) 

Figure 5.9 Restoration curves for damage cases generated from different PGVs: (a) 

Average days required to achieve a given SSI level; (b) Average SSI achieved at a given 

time-point 

The proposed method using the Deep Q Network can be applied to small to moderate-sized 

networks and when the number of repair teams is relatively small, since the Q network needs to 

evaluate the value of all possible actions at a given state. For a WN with 𝐿 pipelines and 𝐾 repair 

teams, the output dimension of the Q network is ቀ𝐿
𝐾
ቁ , thus the computation could become 

intractable when 𝐿 and 𝐾 become large. In general, the actor critic model structure would be a 

more suitable choice when scaling to a large discrete action space. While the exact model of the 

actor critic network implemented in this study cannot be directly applied to tasks of large discrete 

action space, some modifications that include employing a multi-actor single-critic structure 

(Lowe et al. 2017), using a single actor critic with a deterministic policy gradient and mapping the 

continuous action space to a discrete one ( Silver et al. 2014; Dulac-Arnold et al. 2015), can 

potentially address the challenge. 
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5.4.2 Influence of the Training Scheme on the Performance of the Deep Q Network Model 

To gain a better understanding of the influence of the training scheme of the performance 

of the DQN agent (with respect to the random agent), a series of experiments is performed using 

number of randomly sampled damage cases from 200 to 1600, and with 50 and 100 episodes per 

case, as shown in Fig. 5.10.  

When trained for 50 episodes per case (blue line), the performance improves from 200 to 

1200 cases, then starts to decrease. This can be due to the stochastic exploration mechanism now 

adds noise to the near-optimal behavior of the agent at 1200 cases, thus leading to over-exploration. 

On the other hand, increasing the episodes per case to 100, the agent tends to over-exploit the 

experience (overfitted the policy on a sub-environment) from each case. Although the performance 

becomes better after 1200 cases, but still worse than the performance with 1200 cases and 50 

episodes. Therefore, using 1200 cases and 50 episodes per case achieves a reasonable trade-off 

between exploration and exploitation. 

 

Figure 5.10 Sensitivity analysis on the number of training cases and episodes 

5.4.3 Additional Experiments Using the Time to Reach 90% SSI as the Resilience Metric 

In the previous analyses, the objective was to maximize the normalized area under the 
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restoration curve and the performance of the DRL agents was evaluated on all possible damage 

cases. In practice, it is of interest to consider other objectives, for example, minimizing the time to 

restore the system to a pre-defined percentage of functionality, or the time for certain percentage 

of housing units to have access to water. In this subsection, we consider the objective (denoted as 

Objective 2) of minimizing the time to reach 90% SSI (denoted as Metric 2: 𝑇෨ଽ଴). The optimization 

problem can be formulated as follows:   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
గ

   𝐸గሾ෍ 𝑡̃௥௘௣ሺ𝑎௧ሻሿ

்

௧ୀ଴

 

      Subject to          𝑆𝑆𝐼ሺ𝑠் ,  𝑎்ሻ ൒ 90% 

(5.25) 

where 𝑇 is the terminal time step and 𝑡̃௥௘௣ሺ𝑎௧ሻ is the duration for repair action 𝑎௧. Hence, we can 

define an MDP with the following objective function: Maximize
గ

   𝐸గሾെ∑ 𝑡̃௥௘௣ሺ𝑎௧ሻሿ்
௧ୀଵ .  

The reward function is then designed as 𝑟௧ାଵሺ𝑠௧ ,𝑎௧ሻ ൌ െ𝑡̃௥௘௣ሺ𝑎௧ሻ , and the episode is 

terminated once reaching 90% SSI. Other elements are the same as the MDP defined in Section 

5.3.1. 

Based on Metric 2, the DQN agent is trained for 1600 cases with 50 episodes per case. For 

evaluation, 13912 cases are used because there are 2471 cases in which the initial SSIs are higher 

than 90%, and the performance of the DQN is compared to the random agent (in this case, the 

focus is having the time for the DQN to reach 90% SSI being less than that for the random agent). 

Fig. 5.11 shows the distribution of the ratio of the time to reach 90% SSI following the DRL policy 

to that following the random policy. The DQN agent outperforms random in (67.6%), while the 

performance is the same for both agents in 28.8% cases, which suggests that for this small system, 

the time to reach 90% SSI might not vary significantly in many cases (the sequences can vary 

significantly, but the total time tends to be stable).   
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Figure 5.11 Distribution of the ratio of the time to reach 90% SSI following the DRL policy 

to that following the random policy. 

Next, a series of experiments of training the DQN on Objective 2 with 1200 to 2000 

training cases is performed with 50 episodes per case (because from the previous sensitivity 

analysis 1200 was the best), and evaluated on both Metric 1 and Metric 2. As shown in Fig. 5.12, 

the performance of the DQN agent improves significantly from 1200 to 1400 cases, but does not 

improve much afterwards.  

 

Figure 5.12 Sensitivity analysis on the number of training cases and episodes 

5.5 Conclusion 

This study explored the application of the deep reinforcement learning methodology to 
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address the challenge of post-earthquake repair scheduling for water distribution systems. The 

Markov Decision Process was adapted to define the restoration process. A system model was 

constructed using the Water Network Tool for Resilience (WNTR) package and used to perform 

real-time hydraulic analysis. The network model was then embedded in a customized 

reinforcement learning environment written using the OpenAI gym platform. Two types of deep 

reinforcement learning algorithms, namely Deep Q Network (DQN) and Deep Actor Critic (DAC) 

were adopted to learn the near optimal repair policy by interacting with the water network 

environment. A general framework for applying the deep reinforcement learning methodology was 

proposed which can be extended to large water networks while incorporating scenario-based 

earthquake simulation. 

The proposed methodology was applied to a hypothetical network consisting of 14 

pipelines. During the model training phase, 1200 and 1000 damage cases were randomly sampled 

from the entire space (16383 damage cases) for the DQN and DAC agents respectively, and 50 

episodes are considered in each case. The trained model was then evaluated on all possible damage 

cases for the water network and compared with an agent that has no knowledge and employs a 

random assignment policy of repair actions. Evaluation results demonstrated that the deep 

reinforcement learning agents successfully learned better repair policies than the random 

assignment policy, both in terms of application across a wide range of damage scenarios and the 

average performance.  

Next, a sensitivity analysis was conducted to explore the influence of the number of cases 

and episodes per case used for training on the performance of the DQN agent. It was determined 

that using 1200 training cases and 50 episodes per case results in the best performance. A similar 

procedure can be used to determine a reasonable training scheme when applying the DRL method 
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to other systems. To gain better understanding of the effectiveness of different resilience metrics 

used to design the model, a series of additional experiments were performed by training the DQN 

agent with the objective of minimizing the time needed to restore to 90% of the system 

serviceability index (SSI) for the water distribution system. The evaluation results showed that the 

best DQN agent outperforms the random agent in 67% cases, while the restoration time for the 

two agents were the same in 29% cases, which suggested that the variation in the time to reach 90% 

SSI for this water system is small.  

As one of the initial applications of the deep reinforcement learning methodology to inform 

decisions associated with water network systems, this study showed its capability to enhance 

infrastructure resilience. Nevertheless, there remain several limitations that need to be addressed 

in future studies. The proposed framework was evaluated on a simple hypothetical water network 

for demonstration purposes and only pipeline damage and a single repair team are considered. 

Evaluations on larger networks should be performed with realistic consideration of the possible 

damage states, number of repair crews, repair time. In addition, theoretical modifications of the 

implemented Actor Critic model need to be carefully studied to further enhance its scalability to 

large water networks and other infrastructure systems. Finally, aftershocks could happen during 

the restoration process which can cause new damage to the components of the infrastructure. 

Therefore, accounting for a representative mainshock-aftershock pattern would enhance the 

robustness of the proposed methodology. 
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6. A Deep Actor Critic Based Framework to Support the Repair 

Optimization for Distributed Infrastructure 

6.1 Introduction 

Earthquakes and other natural hazards can cause damages and undesirable functionality 

loss to critical infrastructure systems (CIS) (Nozhati et al. 2019). To meet the growing societal 

expectations towards infrastructure resilience, it is important to developing efficient decision 

making for post-earthquake recovery of water distribution systems and other CISs (Bruneau et al. 

2003; Sarkale et al. 2018).  

In the literature of developing decision-making frameworks for post-earthquake recovery 

of CIS, the emphasis is often placed on optimizing the scheduling of repair actions to minimize 

the resilience loss over the restoration time horizon, which is a sequential decision making problem. 

Therefore, the restoration process can be modeled as a Markov Decision Process (MDP), which is 

characterized by a decision maker (agent) that interacts with an environment with the goal of 

improving its strategy for taking actions. The MDP-based formulation is straightforward once the 

core elements (state, action, transition rule) are identified. When a model/simulator of the 

environment is available (e.g., a water network model) to provide the reward/feedback at each time 

step, the MDP formulation is feasible because the numerous variables/constraints inside the system 

operation model do not need to be considered explicitly in the optimization and can be generalized 

to different systems. The suitability of this approach has been demonstrated in various studies for 

optimizing the restoration of CIS (Lee and Labadie 2007; Nozhati et al. 2018, 2019, 2020; Sarkale 

et al. 2018).  

The deep reinforcement learning (DRL) method provides a strong tool for solving complex 

large-scale MDP problems (Silver et al. 2016, 2017; Vinyals et al. 2017). Chapter 5  explored the 
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applicability of the DRL method in optimizing the repair actions for the post-earthquake recovery 

on a hypothetical small water distribution network. It needs to be noted that the typical setting of 

DRL applications usually involves a large state space (e.g., video frames, images), but a small to 

moderate discrete action space (e.g., action set in the Atari games), or a continuous action space 

(e.g., movements of robots). In the application of post-earthquake restoration, a large discrete 

action space is often encountered, which is less studied in typical DRL applications. For example, 

for a system consisting of 100 pipelines and 5 repair teams are available, the action space is on the 

order of 10ଵ଴. Starting from the actor critic structure, some modifications can be made to address 

such challenge, such as the Wolpertinger model, in which the continuous actions produced by the 

actor are mapped to discrete legal actions (Dulac-Arnold et al. 2015; Silver et al. 2014). 

In this study, we develop a deep reinforcement learning based framework to improve repair 

scheduling for the post-earthquake restoration of water distribution systems. Section 6.2 provides 

the general formulation of the post-earthquake recovery optimization problem. The technical 

background of the MDP and DRL is briefly reviewed in Section 6.3; A MDP based formulation 

of the restoration process and a general framework for training the model and obtaining the post-

earthquake repair policy are presented in Section 6.4; To demonstrate the capability of the DRL 

framework for problems with large state and action space, the Wolpertinger algorithm is adapted 

in Section 6.5 and evaluated on a realistic system in Novato, CA, based on damage cases generated 

from scenario-based damage simulation. Section 6.6 provides a summary of the work and 

limitations. 

6.2 Formulation of Post-earthquake Recovery Optimization Problem 

The components of an infrastructure system can remain intact or undergo damage after the 

occurrence of an earthquake. Different decisions on the sequence of the available set of repair 
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actions from the time immediately after the earthquake (𝑡̃଴) to when the system recovers to full 

functionality (𝑡̃௘) results in different restoration curves. 𝐹ሺ𝑡̃ሻ is the functionality at time 𝑡̃. In this 

study, we consider the optimization objective as the area under the restoration curve 𝐴௥௘௦ ൌ

׬ 𝐹ሺ𝑡̃ሻ𝑑𝑡̃
௧ሚ೐
௧ሚబ

 normalized by the duration 𝑇 , following the earthquake scenario and a repair 

scheduling policy 𝜋:  

𝐽ሺ𝜋ሻ ൌ 𝐸గሾ𝐴௡௢௥௠ሿ (6.1) 

where 𝐴௡௢௥௠ ൌ ஺ೝ೐ೞ
்

. Note that this formulation is not restricted to the water distribution system, 

but can be generalized to other infrastructure systems. 

 

Figure 6.1 Schematic representation of the restoration curves of an infrastructure system 

after earthquake damage 

6.3 Description of the Solution Methods 

6.3.1 Markov Decision Process 

The Markov Decision Process (MDP) is used to model the restoration process. The MDP 

is a general framework for sequential decision making, which is defined by the set of states 𝒮, the 

set of actions 𝒜, the probabilistic transition rule 𝒫:𝒮 ൈ 𝒮 ൈ𝒜 → ሾ0,1ሿ and the reward function 

ℛ. The decision maker (agent) interacts with an environment at finite time steps 𝑡 ൌ 0,1,2 … ,𝑛. 
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At each time step 𝑡, the agent observes the current state 𝑠௧, takes action 𝑎௧, as a result receives a 

reward 𝑟௧ାଵ from the environment, and then observes the next state 𝑠௧ାଵ. The process continues 

until a terminal state is reached (in episodic MDP) (Sutton and Barto 2018). The detailed review 

of MDP and reinforcement learning is provided in Chapter 5. 

6.3.2 Deep Deterministic Policy Gradient Model 

As an extension to the actor critic model as described in Chapter 5, Silver et al. 2014 

proposed the deterministic policy gradient (DPG) algorithm, in which the actor utilizes a 

deterministic policy 𝜇ఏሺ𝑠ሻ, and it is proved that a deterministic policy gradient exists (Silver et al. 

2014). Lillicrap et al. (2015) further proposed the Deep Deterministic Policy Gradient (DDPG) 

algorithm to embed neural networks as function approximators in DPG. The algorithm includes 

an actor network 𝜇ሺ𝑠|𝜃௔ሻ, a critic network 𝑄ሺ𝑠,𝑎|𝜃ொሻ, and utilizes a replay buffer for learning. In 

addition, target networks are used for both actor and critic, denoted by 𝜇′ሺ𝑠|𝜃ఓᇱሻ and 𝑄′ሺ𝑠,𝑎|𝜃ொᇱሻ. 

At each learning step, a random mini-batch is sampled, and the actor network is updated by the 

sampled gradient 

∇ఏഋ𝐽 ൌ
1
𝑁
෍∇௔𝑄ሺ𝑠, 𝑎|𝜃ொሻ|௦ୀ௦೔,௔ୀఓሺ௦೔ሻ∇ఏഋ𝜇ሺ𝑠|𝜃ఓሻ|௦೔
௜

 (6.2) 

The critic is updated similar to DQN, except that the target value is calculated using target 

the actor and critics 

𝐿 ൌ
1
𝑁
෍ቀ𝑟௜ ൅ 𝛾𝑄′ሺ𝑠௜ାଵ, 𝜇′ሺ𝑠௜ାଵ|𝜃ఓ

ᇲ
ሻ|𝜃ொ

ᇲ
ሻ െ 𝑄ሺ𝑠௜ ,𝑎௜|𝜃ொሻቁ

ଶ

௜

 (6.3) 

 

6.3.3 Extension to Problems with Large Discrete Action Space 

In the application of post-earthquake restoration, a large discrete action space is 
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encountered, which is uncommon in typical DRL applications. For example, for a system 

consisting of 100 pipelines and 5 repair teams, the action space is on the order of 10ଵ଴. The 

problem then requires the output dimension of the network to be 10ଵ଴, and this can easily explode, 

and the softmax is not able to capture such huge set of actions.  

The Wolpertinger algorithm proposed by  Dulac-Arnold et al. (2015) is aimed at addressing 

the challenge of a large discrete action space. The core idea is to use DDPG as a base model which 

outputs a "proto" continuous action 𝑎ො ൌ 𝑓ఏഏሺ𝑠ሻ, and find a k-nearest neighbor mapping to the 

discrete action space by the 𝐿ଶ distance: 𝐴௞ ൌ 𝑔௞ሺ𝑎ොሻ ൌ argmin
௔∈஺

௞
 ‖𝑎 െ 𝑎ො‖ଶ. The final output action 

is selected from 𝐴௞ which has the highest Q value  

𝑎 ൌ argmax 
௔ೕ∈஺ೖ

𝑄ఏೂሺ𝑠, 𝑎௝ሻ (6.4) 

For our application problem, we made several adaptations to the original Wolpertinger 

algorithm, as shown in Fig. 6.2: 

1. When searching for candidate actions, first select 𝑘 closest sub-actions dimension-wise 

𝐴௖௜ ൌ argmin
௔೔

௞
 |𝑎௜ െ 𝑎ො௜| (6.5) 

where 𝑎ො௜ is the 𝑖th element of the proto action. Then construct the candidate action set using the 

Cartesian product 

𝐴௖ ൌ ሼሺ𝑎௖ଵ, … 𝑎௖ௗሻ|𝑎௖௜ ∈ 𝐴௖௜ ሽ (6.6) 

In other words, the action forming step is decentralized and the action evaluation step is 

centralized.  

2. The epsilon-greedy mechanism is used for action exploration. DDPG and Wolpertinger 

use a random process for exploration in the continuous action space, which is more appropriate 

when subsequent actions are highly correlated and within a neighboring region in nature. Such 
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exploration could be ineffective when the goal is to select from a set of discrete actions not 

necessarily correlated with the previous one. Hence, we apply epsilon-greedy mechanism directly 

in the discrete legal action space for exploration.  

 

Figure 6.2 Schematic representation of the adapted Wolpertinger model 

6.4 Framework 

For the optimization of repair scheduling of the water network, a Markov Decision Process 

can be formulated as follows: 

State: 𝑠௧ ൌ ሾ𝑠௧ , 𝑠௧ଶ, … , 𝑠௧௅ሿ, where 𝑠௧௝ is the damage state of the 𝑗th pipeline 

Action: 𝑎௧ ൌ ሾ𝑎௧ଵ, 𝑎௧ଶ, … ,𝑎௧ௗሿ, where 𝑑  denotes the number of available repair crews, 

𝑎௧௝ ∈ ሼ1,2, … , 𝐿ሽ determines the corresponding pipe to be repaired. 

Reward: 𝑟௧ାଵሺ𝑠௧ , 𝑎௧ሻ ൌ ∑ 𝐹ሺ𝑠௧ , 𝑎௧ሾ௝ିଵሿሻ ∙ ቀ𝑡̃௥௘௣൫𝑎௧ሾ௝ሿ൯ െ 𝑡̃௥௘௣൫𝑎௧ሾ௝ିଵሿ൯ቁ
ௗ
௝ୀଵ , where 

𝑡̃௥௘௣ሺ𝑎௧௝ሻ denotes the duration of the repair of the 𝑗th team at time step 𝑡, ሼ𝑎௧ሾଵሿ, … , 𝑎௧ሾௗሿሽ is the 

ordered set of 𝑎௧  such that 𝑡̃௥௘௣൫𝑎௧ሾଵሿ൯ ൑ 𝑡̃௥௘௣൫𝑎௧ሾଶሿ൯ ൑ ⋯ ൑  𝑡̃௥௘௣൫𝑎௧ሾௗሿ൯ , 𝐹ሺ𝑠௧ , 𝑎௧௝ሻ  is the 

functionality after executing action 𝑎௧௝  at state 𝑠௧  (obtained from hydraulic simulation). Let 

𝐹൫𝑠௧ ,𝑎௧ሾ଴ሿ൯ ൌ 𝐹൫𝑠௧ିଵ, 𝑎௧ሾௗሿ൯  and 𝑡̃௥௘௣൫𝑎௧ሾ଴ሿ൯ ൌ 0. 

We present a general framework for implementing the proposed DRL methodology as 

shown in Fig. 6.3:  
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Figure 6.3 Framework of the DRL-based optimization 

1. Preliminary analysis  
Based on the infrastructure system of interest, determine a reasonable initial distribution or 

method for resetting the system state at the beginning of each MDP episode, such that the 

trained agent can be generalized to a wide range of damage cases.  Based on the size of the 

system, determine the appropriate model structure. 

2. Model training  
Once the model is created, we train the model in the following process to the specified 

number of episodes: 

1) Episode start: the water distribution network is reset to the state 𝑠଴ from the designed 

initial distribution;  

2) At each time step of the episode: 

• The agent observes the water system state 𝑠௧ and decides the next repair action 𝑎௧;  

• The environment receives the repair action 𝑎௧, repairs the corresponding pipes, obtains 

the 𝐹ሺ𝑠௧ , 𝑎௧௝ሻ through hydraulic simulation, and transitions to the next state 𝑠௧ାଵ, and 

gives 𝑟௧ାଵ to the agent  

• The agent learns and updates its policy 

3) Episode terminates: all pipes are repaired, and the functionality of the water distribution 

network is fully restored (100%). 

3. Application 
Generate a representative number of damage cases based on a possible suite of earthquake 
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scenarios for the network system of interest, apply the trained agent on each case. 

6.5 Case study: Net3 water network  

6.5.1 Network Description 

In this section, the proposed DRL framework is illustrated using a case study on the 

benchmark system called "Net3", which is a skeleton version of the actual water distribution 

system in the city of Novato, Marin County, California. The Net3 system is used as examples by 

EPANET, WNTR and various studies for hydraulic and topological analysis (Diao et al. 2016; 

Klise et al. 2018; Meng et al. 2018).  

The Novato Water System serves primarily the City of Novato and surrounding 

unincorporated areas in Marin County (North Marin Water District 2019). The estimated service 

area population is 61,381. The North Marin Water District (NMWD) water supply for the Novato 

Service area is derived from two sources: 1) surface water stored in Stafford Lake; and 2) Russian 

River water supplied by Sonoma County Water Agency (SCWA). The transmission system 

consists of 16- through 30-inch diameter pipelines strategically located to convey water supply to 

the distribution system. Larger diameter transmission system piping is generally constructed of 

steel or reinforced concrete pressure pipe. The majority of the distribution system is comprised of 

6-, 8-, 10- and 12-inch diameter pipelines to distribute water from the transmission mains. 

Distribution system pipelines are constructed primarily of PVC, asbestos cement, and cast iron 

(North Marin Water District 2019). 

The configuration of the Net3 system is shown in Fig. 6.4. The system has 2 Reservoirs, 3 

tanks, 2 pump stations and 115 distribution pipelines. For the purpose of the current study, we need 

to generate damage from realistic earthquake scenarios. In this regard, the original hypothetical 

coordinates in the EPANET model of Net3 are calibrated to match with the Novato region to obtain 



103 
 

realistic locations of the components. The calibrated network coordinates ranges from 38.06° N to 

38.12° N and 122.51°W to 122.61°W.  

 

Figure 6.4 Water network system (Net3) in the City of Novato (Map data © 2021 Google) 

In this case study, damage to pipelines are considered, and 3 repair teams are used for 

demonstration. The repair time for the pipeline are assumed to follow a triangular distribution with 

parameters listed in Table 6.1, as recommended by HAZUS-MH (FEMA 2012).  

Table 6.1 Triangular distribution for the pipeline repair time 

Damage State Min Mode Max 

Minor leak 3 hours 4 hours 6 hours 

Break 4 hours 6 hours 12 hours 

 

6.5.2 Model Implementation and Training 

The simulation environment, named “WaterNet-v1”, is implemented using OpenAI gym 

(Brockman et al. 2016). The core functionalities are similar to those of the environment described 
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in Section 5.3.3. 

Based on a preliminary analysis, the DRL model is implemented as follows: 

Actor Network: 3 fully connected hidden layers with 512, 256, 128 units and leaky ReLU 

activation. The output layer contains a single unit with sigmoid activation to limit the value to 

ሺ0,1ሻ, and multiplied by the number of pipelines of the network to produce a proto action 𝑎ො in the 

continuous space. 

Critic Network: The hidden layer structure is similar to the actor network, except that the 

1st hidden layer contains 512 units and concatenate with the input action. ReLU activation is used 

and a 𝐿ଶ regularization is applied on the weights with parameter 0.1. The output layer contains a 

single unit with linear activation to produce the Q value 𝑄ሺ𝑠, 𝑎|𝜃ொሻ. 

For the training of the agent, the initial state of the environment is generated such that the 

initial damage can capture a wide range of possible cases, while focusing on a reasonable number 

of damaged components for effectiveness of training. At the beginning of each episode, the initial 

state is reset as follows: 

1. The number of leaks is generated from Triangularሺ10,  60,  80ሻ and round to the nearest 

integer 

2. The number of breaks is set to 20% of the number of leaks 

3. The corresponding number of damaged components is randomly assigned to the pipes  

The training process stops after 10000 episodes following the defined initial distribution. 

6.5.3 Scenario-based Damage Simulation 

The performance of the proposed methodology is evaluated based on damage cases 

generated from scenario-based damage simulation. The Mw 7.9 event occurring on the San 

Andreas fault, with an epicenter location of 37.75° N, 122.55° W (included in UCERF2 maps) is 
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used as the scenario for demonstration. The median Peak Ground Velocity (PGV) for the grid of 

the pipelines are computed using Campbell and Bozorgnia (2014) ground motion attenuation 

equation, and the spatially correlated PGVs are generated using the model by Jayaram and Baker 

(2009) model considering the inter- and intra-event standard deviations as 0.297 and 0.494, 

respectively. Fig. 6.5 shows the generated spatially correlated PGV for the Net3 system, where the 

PGV values range from 66.51 to 334.62 cm/s.  

For the Net3 system, three pipe damage states are considered: Undamaged (𝐷𝑆଴ሻ, Leak 

(𝐷𝑆ଵ) and Break (𝐷𝑆ଶ). The fragility curve of each damage state is defined by an exponential 

distribution over 𝑅𝑅 ∙ 𝐿, where 𝑅𝑅 is the repair rate, and 𝐿 is the pipe length, as described in Eq 

5.22. According to HAZUS (FEMA 2012), 80% of pipe damage is assumed as leaks and 20% is 

assumed as breaks. Given 𝑅𝑅 ∙ 𝐿, the probabilities of exceeding 𝐷𝑆ଵ and 𝐷𝑆ଶ can be determined, 

and multiple damage realizations can be generated. For the evaluation, 1000 Monte Carlo damage 

realizations are generated from the selected scenario. Fig 6.6 shows the distributions of the number 

of leaks and breaks among the 1000 simulated damage cases. The number of leaks ranges from 30 

to 60 and the number of breaks ranges from 11 to 36. 
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Figure 6.5 Distribution of the simulated PGV values 

Figure 6.6 Distributions of (a) number of leaks; and (b) number of breaks in 1000 damage 

simulations 

6.5.4 Evaluation Results 

For the evaluation, each damage case is input to the DRL-based optimization model to 

obtain a recommended sequence of repair, then a hydraulic recovery simulation is performed with 

the recommended repair sequence as input, assuming that the repair teams work from 9 a.m. to 6 

 

(a) 

 

(b) 
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p.m. Among the 1000 evaluated cases, the proportion of Wolpertinger agent winning is 90.9% 

(909/1000). Fig. 6.7 (a) shows the distributions of 𝐴௡௢௥௠ following the policies by the 

Wolpertinger and the random agents. The normalized area for the random agent has mean 0.227 

and standard deviation 0.082, while the normalized area following Wolpertinger agent has mean 

0.354 and standard deviation 0.066. In terms of the expected normalized area under the restoration 

curve following the earthquake scenario 𝐸గሾ𝐴௡௢௥௠ሿ , which is the optimization objective, the 

Wolpertinger agent improves over random agent 56.1%. In addition, the Wolpertinger agent 

reduces the dispersion of the normalized area among 1000 cases by 18.8%.  Fig. 6.7 (b) presents 

the distribution of the area ratio (𝐴௡௢௥௠
௪௢௟௣ /𝐴௡௢௥௠௥௔௡ௗ௢௠ሻ. Here we observed that  most of the area ratios 

are larger than one, and a great proportion are significantly larger than one. 

 

(a) 

 

(b) 

Figure 6.7 Distributions of (a) area under the restoration curve; and (b) area ratio between 

Wolpertinger and Random agent from the 1000 evaluated damage cases 

Fig. 6.8 plots the restoration curves for the 1000 damage cases, where the repair crew are 

assumed to work continuously (day and night). It can be concluded that, the Wolpertinger agent 

successfully "pushes" the curves towards the upper-left direction. The curves distribute compactly 

around the diagonal line. The Wolpertinger agent significantly improves the restored SSI at given 
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time points during the restoration process. Fig. 6.9 shows the restoration curves for final evaluation 

where the repair crews are assumed to only allowed to work from 9 a.m. to 6 p.m. The 

improvement of the Wolpertinger agent over the random agent is as significant as in Fig. 6.8. 

Therefore, the recommended schedules from the optimization model can work well for real 

situations with more constraints. 

  

Figure 6.8 Restoration curves for 1000 evaluated damage cases (working continuously): (a) 

Random Agent; (b) Wolpertinger Agent 

 

  

Figure 6.9 Restoration curves for 1000 evaluated damage cases (working from 9 a.m. to 6 

p.m.) : (a) Random Agent; (b) Wolpertinger Agent 
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6.6 Conclusion 

This study proposed a general framework for improving the post-earthquake repair 

scheduling policy based on the deep reinforcement learning (DRL) method. The Markov Decision 

Process was used to model the restoration process. A system model was constructed using the 

Water Network Tool for Resilience (WNTR) package and used to perform real-time hydraulic 

analysis. The network model was then embedded in a customized reinforcement learning 

environment written using the OpenAI gym platform. The actor-critic based model, Wolpertinger, 

was adapted to address the challenge of a large discrete action space and learn the near optimal 

repair policy by interacting with the water network environment.  

To evaluate the proposed methodology, a water distribution network in the city of Novato, 

North Marin, California was used for demonstration, which consists of 115 pipelines. 1000 damage 

cases were simulated from the scenario-based simulation, and the normalized area under the 

restoration curve from the DRL policy is compared with the base policy of randomly repairs from 

the damaged pipes. The Wolpertinger won in 90.9% (909/1000) of the cases, and improved the 

objective value by 56.1%. The evaluation results demonstrated the effectiveness of the DRL 

framework for the repair optimization for realistic systems. The proposed framework can be 

generalized to other hazards (e.g., flood) and distributed infrastructure (e.g., power networks). 

For future work, several challenges need to be addressed. The deep reinforcement learning 

methodology is computationally expensive, which comes from two aspects: learning the 

parameters of a deep agent model and interaction with a physical model of the system. To address 

these challenges, the simplification of the agent model structure can be studied; A surrogate model 

of the system can be developed, to alleviate the expensive computation of the real time response 

of the system in each interaction. In addition, the framework assumes the damage evaluation phase 
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has been completed before the repair, and the optimization focuses on the repair sequence. It is 

important to explore the possibility of incorporating the inspection decision in the optimization.  
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7. Conclusion 

7.1 Overview 

Decision-making in the post-earthquake environment is critical to infrastructure and 

community resilience. The main objective of the research is to develop a general framework that 

supports reliable damage assessment, recovery estimation and repair action optimization for 

distributed infrastructure following earthquakes, based on data-driven and machine learning 

methodologies. The framework can provide insights on the post-earthquake state of infrastructure, 

improve pre-event planning, and inform optimal decisions for the tasks involved in the recovery 

process. The methodology was validated through two infrastructure systems: the water distribution 

networks in the City of Napa and the City of Novato, subjected to real and simulated earthquake 

scenarios.  

7.2 Findings 

Chapter 3 presented a general framework for dynamically-updating damage assessments 

for post-earthquake recovery of distributed infrastructure. The water distribution network for the 

City of Napa, California was used as an application testbed. Previous studies mostly aimed at 

developing models to predict damage for future earthquakes i.e., pre-event assessments. However, 

less effort has been placed on utilizing the information collected at certain time points and a few 

locations within the network during the recovery to inform the damage estimation of the entire 

system, and further help update the inspection and repair plans. As a first step of this work, a neural 

network-based pre-event assessment model was developed, using the data for the pipeline damage 

from the 2014 south Napa earthquake. Next, a graph neural network model was applied to update 

the damage estimate via semi-supervised learning given the information incrementally collected 

during the inspection process. 
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Chapter 4 developed a spatially explicit recovery model for the water distribution network. 

Previous models often establish the statistical relationships between the time parameters for 

recovery and several explanatory variables of individual components. The accuracy of the 

modeling can be further improved by incorporating the spatial correlations between the 

components in a distributed infrastructure. The recovery was assessed in this work using the 

Gaussian Process model where the spatial correlation was explicitly considered. The recovery data 

from the 2014 south Napa earthquake was used for demonstration purposes. The capability of the 

model to predicting the recovery for future earthquakes is demonstrated using a simulated Mw 6.7 

event.  

Chapter 5 proposed a deep reinforcement learning (DRL) based methodology to optimize 

the repair scheduling for the post-earthquake recovery of distributed infrastructure. A 

mathematical formulation of the restoration process and the optimization problem was established 

based on the Markov Decision Process (MDP). To study the applicability of the methodology, two 

commonly used DRL models: Deep Q Network (DQN) and Deep Actor Critic (DAC) were applied 

to a hypothetical water network. Chapter 6 further expanded the proposed methodology by 

considering the challenge of a large discrete action space for the repair optimization in the recovery 

of realistic large systems. The Wolpertinger based DRL model was adapted to address the 

challenge. The water distribution system in Novato was used and 1000 damage cases were 

generated from scenario-based simulation to evaluate the modified framework. 

7.3 Limitations and Future Work 

The main objective of this dissertation is to develop a machine learning-based framework 

that supports various types of assessments and decision-making procedures (damage assessment, 

recovery estimation and repair optimization). The framework was demonstrated through a series 
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of scenarios and systems. The potential and effectiveness of the machine learning methodology 

has been demonstrated through the case studies in the dissertation.  

It needs to be noted, however, that the performance of the machine learning methodology 

largely depends on the quality of data and the selection of appropriate model, and the applicability 

of such methods in practice is limited by the complexity of use and computational expense.  

For the scenario earthquake simulations, the ground motion intensity at mid-point of the 

pipeline was used to represent the intensity over the entire length. In other words, variations in the 

intensity along the pipe length were not considered. This assumption may be appropriate for 

shorter pipes but for the ones with significant length, this could reduce the reliability of the damage 

assessment. Future work should use a higher fidelity distribution to characterize the shaking 

intensities. 

For the highly imbalanced dataset of earthquake damage in Chapter 3, which is 

representative for other real earthquake scenarios where only a small portion of the infrastructure 

is damaged, the machine learning model tends to overestimate the damage, which may lead to 

conservative decisions and plans. Further studies need to be carried out to address the challenge of 

imbalanced data.  

The damage information used to train the graph neural networks was assumed to be 

obtained by inspection, but the reliability of the inspection was not considered. In other words, the 

information from the inspection was assumed to be perfect. Future work should focus on 

accounting for the possibility of mis-classification of damage during inspections. 

Detailed discussions on the interpretation of the graph neural network model and the 

relative importance of the features were not carried out. 

The recovery model in Chapter 4 was developed on a single earthquake scenario, and the 
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capability for estimating the trajectories from future earthquakes was demonstrated through a 

simulated scenario. It was found that the transfer learning or extrapolation capability highly 

depends on the number of data points on which the model is developed. Hence, the model can be 

further improved by learning from a series of different scenarios. The very high recovery rate in 

the early stage of the recovery was not well-captured by the Gaussian Process model. Future 

studies can incorporate information regarding the change of repair resources as a feature in the 

recovery model to better address this challenge. 

The reinforcement learning based optimization model proposed in Chapter 5 and Chapter 

6 is computationally expensive, because the model was trained by interacting with an environment. 

In the case for infrastructure systems, this means performing a response simulation of the complex 

model of the real system in each interaction, which limits the applicability of the model in practice. 

Therefore, in this study, the methodology was evaluated on a moderate system where the number 

of components was on the order of hundreds. To further improve the applicability of the model, 

measures need to be proposed for both the agent and the environment models. For example, a 

surrogate model can be used to predict the response of the infrastructure system instead of running 

real simulations, and the structure of the reinforcement learning model can be simplified to reduce 

the learning time. In addition, further studies can be carried out to combine the suggestions from 

the reinforcement learning model and the actions of human engineers in deciding the final repair 

sequences. 
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