
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
A Numerical Comparison of Rule Ensemble Methods and Support Vector Machines

Permalink
https://escholarship.org/uc/item/5sj178s3

Author
Meza, Juan C.

Publication Date
2009-12-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5sj178s3
https://escholarship.org
http://www.cdlib.org/

A Numerical Comparison of Rule Ensemble Methods and Support

Vector Machines

Juan Meza∗ Mark Woods†

December 18, 2009

Abstract

Machine or statistical learning is a growing field that encompasses many scientific problems
including estimating parameters from data, identifying risk factors in health studies, image
recognition, and finding clusters within datasets, to name just a few examples. Statistical
learning can be described as “learning from data”, with the goal of making a prediction of some
outcome of interest. This prediction is usually made on the basis of a computer model that
is built using data where the outcomes and a set of features have been previously matched.
The computer model is called a learner, hence the name machine learning. In this paper, we
present two such algorithms, a support vector machine method and a rule ensemble method. We
compared their predictive power on three supernova type 1a data sets provided by the Nearby
Supernova Factory and found that while both methods give accuracies of approximately 95%,
the rule ensemble method gives much lower false negative rates.

1 Introduction

Machine or statistical learning is a growing field that encompasses many scientific problems includ-
ing estimating parameters from data, identifying risk factors in health studies, image recognition,
and finding clusters within datasets, to name just a few examples. In the recent book on statistical
learning by Hastie, Tibshirani, and Friedman [9], they describe this field as “learning from data”,
with the goal of making a prediction of some outcome of interest. This prediction is usually made
on the basis of a computer model that is built using data where the outcomes and a set of features
have been previously matched. The computer model is called a learner, hence the name machine
learning. In this paper, we present two such algorithms and compare their predictive power on
three supernova type 1a data sets provided by the Nearby Supernova Factory [1].

The general form of a machine learning problem can be described as follows: given a set of
training data {xi, yi}N1 where each xi ∈ Rn is an observation with a set of n attributes, each yi
is the ith observation’s response, and N is the number of observations, find a mapping that will
predict the response y. That is, the goal is to produce a function F (x) that minimizes the risk over
all future predictions defined as:

R(F (x)) = ExyL(y, F (x)), (1)

∗Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop 50B-4230, Berkeley, CA 94720,
JCMeza@lbl.gov; Supported in part by the Director, Office for Advanced Scientific Computing Research, Division
of Computational Science Research and Partnerships(SciDAC) of the U.S. Department of Energy, under contract
number DE-AC02-05CH11231.
†Lawrence Berkeley National Laboratory, MWoods@lbl.gov

1

where L(y, F (x)) is the loss associated with predicting a value ŷ = F (x) when the actual value is
y [8]. Thus, we wish to find the target function

F ∗(x) = arg min
F (x)

ExyL(y, F (x)). (2)

For a binary classification problem, the responses are usually denoted by yi ∈ {−1, 1}, where yi
is the ith observation’s class. Predictions are denoted by ŷ = sign[F (x)].

The main goal of this report is to implement the rule based learning ensemble method proposed
by Friedman and Popescu [8] and to compare its accuracy against another well known technique
known as a support vector machine (SVM). Section 2 gives some background information on support
vector machines and rule ensemble methods. In section 3, we describe the algorithms we used and
the software we implemented. Each section is divided into two subsections: one for support vector
machines and one for rule ensembles. At the end of this paper, numerical results are presented and
compared.

2 Background

Before describing our implementation, we first present some background information on classifica-
tion and support vector machines. Here we follow the derivation presented in the book on statistical
learning by Hastie, Tibshirani, and Friedman [9]. More details on support vector machines can also
be found in the literature, see for example, [4, 5].

2.1 Support Vector Machines

A support vector machine (SVM) is a technique for classifying data, that attempts to find an
optimal separation between two classes [9] from a given labeled “training” data set, through the
use of a loss function. One such example is the hinge loss function defined by:

L(y, F (x)) = max[0, 1− yF (x)]. (3)

Once an SVM has been trained on the labeled data, it can then be used to predict the class of
specific observations from a different unlabeled data set [7].

Although the training data can be mapped in an n-dimensional space, separating the classes
can sometimes be difficult to parameterize, as shown in Fig. 1. A standard trick is to map the
training data into a higher dimensional space where separation may be simpler. As shown in Fig.
2, separation can be achieved through the use of a hyperplane defined as

F (x) = wTφ(x) + β, (4)

where w ∈ Rq (q ≥ n) is a normal vector to the hyperplane, φ(x) ∈ Rq is a function that maps the
predictor variables to a higher dimensional space, and β ∈ R1 is an offset [2].

Figure 2 shows the ideal case where all observations can be separated into their respective
classes. Let d+ and d− be the perpendicular distance from the separating hyperplane to the closest
positive and negative observation, respectively. We can then define the margin of the hyperplane
to be d+ + d−, where d+ = d− (the hyperplane is equidistant from both points). The optimal
separating hyperplane is the hyperplane with the largest margin [4]. The hyperplane, then, has the
constraints

wTφ(xi) + β ≥ +1 if yi = +1, (5)

wTφ(xi) + β ≤ −1 if yi = −1, (6)

2

Figure 1: An example of how a good separation can be difficult to parameterize in the given
n-dimensional space [2].

for i = 1, 2, . . . , N . More succinctly, this can be expressed as

yi(wTφ(xi) + β)− 1 ≥ 0 ∀i. (7)

Notice that all the points that lie exactly on the hyperplane satisfy wTφ(x) + β = 0. Thus, the
perpendicular distance to the origin is |β|/||w||. Now, take a positive point on the margin (5) so
that wTφ(xi) + β = +1. The perpendicular distance from this point to the origin is |1− β|/||w||.
Therefore, the distance between the hyperplane and the positive margin is 1/||w||. A similar
argument can be made for the negative margin [4], making the total width of the margin 2/||w||.
The optimal separating hyperplane is then defined to be the hyperplane that maximizes the margin,
or equivalently, the hyperplane that minimizes ||w||. This can be formulated as

min
1
2
||w||2 subject to yi(wTφ(xi) + β) ≥ 1 ∀i. (8)

This formulation works well for the case when the observations are separable. An alternative
approach is required however when the classes have some overlap. One way to do this is to modify
the constraints (5)-(6), to allow some observations to lie on the wrong side of the hyperplane.
One technique is to define positive slack variables ξi, i = 1, 2, . . . , N and introduce them into
equations (5)-(6), resulting in:

wTφ(xi) + β ≥ +1− ξi if yi = +1, (9)

wTφ(xi) + β ≤ −1− ξi if yi = −1, (10)
ξi ≥ 0 ∀i. (11)

Now, an observation is on the wrong side of the hyperplane if its corresponding ξi is greater
than 1 [4]. Hence, the objective function can be re-stated as

min
1
2
||w||2 + C

N∑
i=1

ξi subject to

{
yi(wTφ(xi) + β) ≥ (1− ξi) ∀i
ξi ≥ 0,

∑N
i=1 ξ ≤ 0 ∀i

, (12)

3

Figure 2: Mapping the training data in a higher dimensional space can lead to a simpler separation
[2].

where C > 0 is a cost parameter specified by the user. A larger value of C penalizes the error more
than a lower value of C [4].

For computational reasons, it is more convenient to express this problem in terms of Lagrange
multipliers. Let us first define the Lagrangian primal function by

LP =
1
2
||w||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(wTφ(xi) + β)− (1− ξi)]−
N∑
i=1

µiξi, (13)

where each αi and µi is a positive Lagrange multiplier. Our goal is to minimize the primal function
(13) with respect to w, β, and ξi for i = 1, 2, . . . , N . The Karush-Kuhn-Tucker optimality conditions
can be written as:

w −
N∑
i=1

αiyiφ(xi) = 0, (14)

N∑
i=1

αiyi = 0, (15)

C − αi − µi = 0, (16)

yi(wTφ(xi) + β)− (1− ξi) ≥ 0, (17)
ξi ≥ 0, (18)
αi ≥ 0, (19)
µi ≥ 0, (20)

αi[yi(wTφ(xi) + β)− (1− ξi)] = 0, (21)
µiξi = 0. (22)

Substituting (14)-(16) into the primal function (13), we obtain the Lagrangian dual function

LD =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′φ(xi)Tφ(xi′). (23)

4

Details of this substitution are shown in Appendix A.
The dual function is maximized subject to 0 ≤ αi ≤ C for i = 1, 2, . . . , N and

∑N
i=1 αiyi = 0.

All observations i where αi 6= 0 are called support vectors [4]. We can see from (14) that the
hyperplane normal vector w can be represented in terms of only the support vectors. The solution
can then be given by

w =
NS∑
i=1

αiyiφ(xi), (24)

where NS is the number of support vectors.
If we solve (16) for µi and substitute the result into (22), we can see that ξi = 0 if αi < C.

Therefore, to find the offset β, we can take any observation i for which 0 < αi < C and solve (21)
for β. Geometrically, this is a support vector not on its own margin. For numerical stability, one
usually takes the mean value of β resulting from all such observations [4].

To implement this algorithm, we are now left with the interesting question of how to choose
the mapping φ(x). Looking at the dual function (23), we see that the mapping only appears as
a dot product. Thus, we can use a kernel function, which defines an inner product in a higher
dimensional space K(u,v) = φ(u)Tφ(v) [2]. There are several choices for a kernel function that
can be found in the literature, including the radial basis function kernel and the polynomial kernel.

The final classification rule can now be computed as

ŷ = sign
[
wTφ(x) + β

]
. (25)

2.2 Rule Ensembles

While support vector machines have many advantages, it can sometimes be difficult to choose
an appropriate kernel that works well over a wide range of data. Another approach is to use
simpler models and then take an average from the results produced by the individual models. This
approach, called an ensemble method, can be used to describe any method that combines individual
base learners into a single model F (x) [8]. Here, the loss function used to determine the final model
is the squared error ramp loss

L(y, F (x)) = [y −H(F (x))]2, (26)

where
H(F (x)) = max[−1,min(1, F (x))]. (27)

When each of the base learners is given by a rule rm(x), the resulting method is known as a rule
ensemble method. Each rule can be viewed as a parameterized function rm(x) = r(x, sm) where
each sm characterizes the corresponding rule.

One way to generate rules is to build a decision tree and let each interior and terminal node of
that tree define a rule [8]. Each rule would take the form of the conjunctive rule

rm(x) =
n∏
j=1

I(xj ∈ sjm), (28)

where the parameters sjm define a subset of values for the corresponding xj and I(·) is an indicator
function whose value is in {0, 1}. To help illustrate this idea, consider the following example
depicted by Fig. 3. Each rule can be written as:

5

Figure 3: A decision tree.

r1(x) = I(x3 < −0.18),
r2(x) = I(x3 ≥ −0.18),
r3(x) = I(x3 < −0.18) · I(x1 < 1.3),
r4(x) = I(x3 < −0.18) · I(x1 ≥ 1.3),
r5(x) = I(x3 ≥ −0.18) · I(x1 < −0.85),
r6(x) = I(x3 ≥ −0.18) · I(x1 ≥ −0.85),
r7(x) = I(x3 < −0.18) · I(x1 < 1.3) · I(x6 < −1.6),
r8(x) = I(x3 < −0.18) · I(x1 < 1.3) · I(x6 ≥ −1.6).

Thus, each rule takes on values rm(x) ∈ {0, 1}. Notice that there is no rule associated with the
root node. Also notice that for a single (binary) tree, the total number of rules is 2(t− 1) where t
is the number of terminal nodes.

The prescription for generating a rule ensemble is described in Algorithm 1.
At each iteration, M trees are generated. As stated above, each tree contains 2(tm − 1) rules,

where tm is the number of terminal nodes for the mth tree. The memory function fm(x) contains
information about each previous rule. This is controlled by the value of the shrinkage parameter
0 ≤ υ ≤ 1, where υ = 0 generates each rule without regard to the previous rules, υ = 1 maximizes
the effect of each previous rule, and 0 < υ < 1 is in between [8].

Line 3 of Algorithm 1 is an expression asking for the best set of rules in combination with the
previously generated rules, where Sm(η) is a subset of size η < N randomly drawn without replace-

6

Algorithm 1 Rule Ensemble Generation [8]

1: f0(x) = arg minc
∑N

i=1 L(yi, c)
2: for m = 1 to M do
3: sm = arg mins

∑
i∈Sm(η) L(yi, fm−1(xi) + r(x, s))

4: rm(x) = r(x, sm)
5: fm(x) = fm−1(x) + υ

∑2(tm−1)
k=1 rkm(x)

6: end for
7: Set ensemble = {rm(x)}M1

ment from the training data. This represents an optimization problem for which fast algorithms
are difficult to obtain for the loss function given by (26)-(27).

One possible solution to this as suggested by [9] is to use a steepest descent method for tree
induction. That is, calculate the negative gradient evaluated at fm−1(x) and fit a regression tree
to the result. These are called the pseudo residuals pm and are defined by:

pm =

{
−
[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

}N
i=1

After the rule ensemble generation is complete, the total number of rules will be

K =
M∑
m=1

2(tm − 1). (29)

From Fig. 3 and (29), we can see that the number of rules is directly related to the size of each tree.
Larger trees can capture higher order interaction effects, but may overfit the data. Smaller trees
only capture low order interaction effects and may underfit the data. Since each target function
(2) is different, it is difficult to know a priori how large to grow each tree.

A solution to this problem is to let the number of terminal nodes in each tree be randomly
drawn from some distribution (for example an exponential distribution). Let L̄ be the average
number of terminal nodes for all M trees. Then

Pr(δ) =
1

L̄− 2
exp

(
−δ
L̄− 2

)
, (30)

so that
tm = 2 + bδc. (31)

Letting the number of terminal nodes for each tree be a random number from an exponential
distribution has the effect of including high and low order interaction effects in the model. Most
trees will have tm < L̄ terminal nodes, but some trees will have tm ' L̄ terminal nodes. A few
trees will have tm � L̄ terminal nodes.

The next step in this procedure is to determine an approach for building a regression tree.
The algorithm is presented below. Note that this algorithm is for the general case of building a
regression tree. For the actual implementation, replace each y with pm as stated above.

In Algorithm 2, ns is a subset of attributes ns ⊆ n randomly selected for each split. Also, N(t)
is the number of observations in the parent node (the node being split) and N(tL) and N(tR) are
the respective number of observations in the left and right child nodes. N in lines 14 and 15 is still
the total number of observations in the entire data set.

7

Algorithm 2 Build a Regression Tree [3]
1: Find a terminal node that can be split
2: for j = 1 to ns do
3: for i = 1 to N(t) do
4: Determine each split S = {xij + (x(i+1)j − xij)/2}

N(t)−1
i=1

5: end for
6: for all splits S do
7: if xij < S then
8: Go to the left child node tL
9: else

10: Go to the right child node tR
11: end if
12: FL(x) = 1/(N(tL))

∑
i∈tL yi′

13: FR(x) = 1/(N(tR))
∑

i∈tR yi′

14: R(tL) = 1/N
∑

i∈tL [yi − FL(x)]2

15: R(tR) = 1/N
∑

i∈tR [yi − FR(x)]2

16: R̃ = R(tL) +R(tR)
17: end for
18: end for
19: Choose the split S and attribute j that yields the minimum R̃

Algorithm 2 is repeated until there are tm terminal nodes (31) in the tree or there is a specified
number of observations in each terminal node, whichever comes first. For instance, the user may
not want to split a node with fewer than five observations in it. In this case, any node with five or
fewer observations would not be split.

Now, we need a way to combine the rules together to obtain the final model F (x). One of the
most popular ways to combine base learners is through a linear combination

F (x) = a0 +
K∑
k=1

akrk(x), (32)

where each ak is a weighting coefficient for its corresponding rule rk(x) and a0 is an offset [7]. To
find each coefficient {ak}K1 and the offset a0, one could solve

{âk}K0 = arg min
{ak}K0

1
N

N∑
i=1

L

(
yi, a0 +

K∑
k=1

akrk(xi)

)
. (33)

However, it is known [7] that this often provides a poor estimate to the optimal values

{a∗k}K0 = arg min
{ak}K0

ExyL

(
y, a0 +

K∑
k=1

akrk(x)

)
, (34)

especially when the number of observations N is not large compared to the number of rules K.
One way to remedy this is to regularize (33) by adding a lasso penalty. This is formulated as

{âk}K0 = arg min
{ak}K0

1
N

N∑
i=1

L

(
yi, a0 +

K∑
k=1

akrk(xi)

)
+ λ

K∑
k=1

|ak|. (35)

8

The “lasso” has the effect of penalizing larger values of ak. A larger value of λ produces more
regularization, and often times, the majority of the coefficients are set to zero. Of course, (35)
represents a more difficult optimization problem and the time required to solve this problem is
computationally prohibitive for most problems.

One solution to this is to use a gradient descent approach starting with the point corresponding
to λ =∞. The algorithm is summarized below.

Algorithm 3 Gradient Directed Regularization [7]

1: a0 = arg mina
∑N

i=1 L(yi, a), {ak = 0}K1
2: while ||g(`)|| 6= 0 do
3: F (x) = a0 +

∑K
k=1 akrk(x)

4: g(`) = − d
da

1
N

∑N
i=1 L(yi, F (xi))

∣∣∣
a=a(`)

5: k∗ = arg max0≤k≤K |gk(`)|
6: G(`) = {k : |gk(`)| ≥ |gk∗(`)|}

7: hk(`) =

{
gk(`) for k ∈ G(`)
0 otherwise

8: a(`+ ∆`) = a(`) + ∆` · h(`)
9: end while

The step size value ∆` should be small (usually, ∆` = 0.01 is sufficient) The final coefficient
values {ak}K0 are selected so that the risk (1) is minimized on a separate sample not used in
Algorithm 3 [7]. To accomplish this, calculate the prediction risk based on an independent test
sample of size NT at each iteration. This can be done with

RT (`) =
1
NT

NT∑
i=1

L(yi, F (xi)). (36)

Once Algorithm 3 terminates, one can pick the coefficient values {ak}K0 that correspond to the
smallest test risk RT (`).

Notice that λ is not used in Algorithm 3. This is because Algorithm 3 gives an approximation
of the solution to (35). It has been shown, however, that the two solutions are quite similar [9].

2.3 Computational Details

In order to increase computational efficiency, a few modifications can be applied to Algorithm 3.
For the first calculation of the negative gradient (step 4 of Algorithm 3), one can use

gk(`) = c̃(y, rk(x), `)−
K∑
k′=0

ak′(`)c̃(rk(x), rk′(x), `), (37)

where {ri0(x) = 1}N1 and c̃(·) is an approximate covariance matrix with elements

c̃(u, v, `) =
1
N

N∑
i=1

uiviI(|F (xi)| < 1). (38)

After the first calculation, one can update the negative gradient with

gk(`+ ∆`) = gk(`)−∆`
∑

k′∈G(`)

hk′(`)c̃(rk(x), rk′(x), `), (39)

9

at step 4 of Algorithm 3.
First, let us define a milestone to be every 100 iterations. At every milestone, one can calculate

the indicators
{ρ(`) = I(|F (xi)| < 1)}N1 (40)

and

zi(`0, `) =

−1 if ρi(`0) = 1 & ρi(`) = 0

0 if ρi(`0) = ρi(`)
+1 if ρi(`0) = 0 & ρi(`) = 1

(41)

to update the approximate covariances

c̃(u, v, `) = c̃(u, v, `0) +
1
N

∑
zi(`0,`)6=0

uivizi(`0, `), (42)

where `0 indexes the previous milestone. Now, one can use the previous milestones’s values for the
approximate covariances c̃ in the updating step (39). We note that a column of c̃ only needs to be
calculated (38) and updated (42) when its corresponding coefficient ak is nonzero (ak 6= 0) [7].

In addition, instead of calculating the empirical risk (36) at each iteration, one can calculate it
only at every milestone in conjunction with an early stopping strategy. Define a threshold parameter
ζ > 1, and terminate calculation at the point ` = ˜̀ for which

RT (˜̀) > ζ ·min
`<˜̀

RT (`). (43)

Again, use the coefficient values {ak}K0 that correspond to the smallest RT (`). Usually, ζ = 1.1 is
sufficient [7].

Once the calculation is complete, we have everything we need to make a prediction. A prediction
is simply ŷ = sign[F (x)] with F (x) given by (32).

It is well known that a decision tree has trouble approximating a linear function [9]. Since each
base learner in Algorithm 1 is derived from a tree, the resulting model (32) will also have trouble
approximating a linear function. A simple solution is to add linear terms into the model.

However, one first needs to guard against outliers by winsorizing the data1. This is accomplished
through the function

l(xj) = min(ψ+
j ,max(ψ−j , xj)), (44)

where ψ−j and ψ+
j are the τ and 1 − τ quantiles, respectively for each attribute j = 1, 2, . . . , n.

Typically, τ = 0.025 is sufficient, but it depends on the data [8].
A common practice is to standardize the data so that each attribute has the same influence.

This means that the data l(xj) should be transformed so that var(l(xj)) = 1 for j = 1, 2, . . . , n.
The transformation is given by {

l(xj)← 0.4
l(xj)

std(l(xj))

}n
1

, (45)

with 0.4 included so that each attribute takes on the average value of the rules {rk(x)}K1 .
We thus obtain the new model

F (x) = a0 +
K∑
k=1

akrk(x) +
n∑
j=1

bjl(xj), (46)

1Named after Charles P. Winsor for his idea to replace extreme observations with more reasonable ones [6] –
http://jeff560.tripod.com/w.html (accessed on September 16, 2009)

10

using

({âk}K0 , {b̂j}n1) = arg min
{ak}K0 ,{bj}n1

1
N

N∑
i=1

L

yi, a0 +
K∑
k=1

akrk(xi) +
n∑
j=1

bjl(xij)

+ λ

 K∑
k=1

|ak|+
n∑
j=1

|bj |

 .

(47)

This quantity can be calculated as before using Algorithm 3 and the suggested computational
improvements (37)–(43). For more information on the rule ensemble procedure, see [7, 8, 9].

3 Experimental Setup

This section describes the procedures used for testing both the support vector machines and the
rule ensemble method along with the software used for each.

3.1 SVM Procedure

The SVM software used for testing was LIBSVM written by Chang and Lin [5]. Data sets were
provided by the Nearby Supernova Factory [1]. Two different SVMs were tested along with two
different kernel functions. The two SVMs were the C-support vector classification (C-SVC) machine
and the ν-support vector classification (ν-SVC) machine. The two kernel functions were the radial
basis function (RBF) kernel and the polynomial kernel.

The SVMs and the kernel functions all have parameters that can be adjusted. For C-SVC, the
adjustable parameter is C, which is the upper bound for α in (23). For ν-SVC, the adjustable
parameter is ν, which is an upper bound on the fraction of training errors and a lower bound on
the number of support vectors. For the RBF kernel, the adjustable parameter is γ (a constant in
the kernel function), and for the polynomial kernel, the adjustable parameters are the polynomial
degree and the polynomial offset. For each test, one or two of these were sequentially adjusted to
find an optimal accuracy.

Three supernova data sets were used. These data sets all contained 24 attributes. The first
two are sets that each contain 5,000 supernovae or other objects of interest (positive examples) and
5,000 other celestial bodies of no interest (negative examples). The third data set contains 20,000
positive examples and 200,000 negative examples. The first two data sets were used to test all the
different parameters and combinations of parameters. The third data set was only used to test the
final set of parameters and validate the previous tests.

Each test was done by randomly choosing observations for training and testing and then av-
eraging the accuracies and run times over 100 trials. The point selection was done by arbitrarily
choosing a ratio of positive examples to negative examples for training (N+/N−)train and a ratio of
positive examples to negative examples for predicting (N+/N−)predict.

To illustrate, suppose a training ratio of 0.5 was chosen. Then, (N+/N−)train could contain 50
positive examples and 100 negative examples, 150 positive examples and 300 negative examples,
etc. One might wonder which one to choose. Testing results showed that it didn’t matter as
long as the training data was large enough to capture all of the main effects. Five hundred total
observations for training worked quite well. If the ratio (N+/N−)train was held constant, then the
accuracies were well within one standard deviation of each other. The major difference between two
different numbers of total training observations were run times. The run times increased with N2,

11

which discouraged choosing an overly large number of training observations. For the testing data,
250 total observations were randomly selected. The main justification for only 250 total testing
observations is that each test was performed 100 times and the average was taken. So even if a few
tests were bad (a poor selection of random points was chosen), there were many others to make up
for it.

In each test, a variety of prediction ratios (N+/N−)predict were selected and compared to each
other. It was soon discovered that prediction accuracy vastly increased when (N+/N−)predict de-
creased (the opposite is true as well). Accuracies were typically above 95% (sometimes above 97%)
when (N+/N−)predict was less than 0.1. Unfortunately, it is difficult to say what (N+/N−)predict is
for unknown data. The only estimate came from the third data set. This set is called the “valida-
tion” data set and has (N+/N−)predict = 0.1, so it was assumed that this would be similar to an
actual data set. The next step is to then find which set of SVM parameters performs the best for
this data set.

According to [10], a reasonable way to begin is to start with the C-SVC machine and select
pairs of values for C and γ. They suggest picking C = 2−5, 2−3, . . . , 215 and γ = 2−15, 2−13, . . . , 23

and using every combination of these two sets with cross validation to find the best pair with
which to train the machine. For this test, five-fold cross validation was used, and the resulting
accuracies were plotted on a contour map. The grid was visually searched for the area with the
highest accuracies. In the event of equal (or close to equal) accuracies, the area with the lowest
run time was used. This produced a rectangle with which to create another set of pairs of C and γ
to test. This process was repeated with the resulting grid until a single pair of C and γ was found.
This pair was then used to train the machine and testing was performed. The resulting accuracies
were plotted against (N+/N−)predict to test the robustness of this pair.

The parameters C and γ were also adjusted independently of each other. One parameter was
held constant at its default value while the other was altered. The default values are C = 1 and
γ = 1/n (recall that n is the number of attributes). This was done in order to see the individual
effects and if a more robust pair could be found.

Once a sufficient number of pairs of C and γ were tested, attention was directed toward ν-SVC
and the parameter ν was manipulated. This turns out to be much simpler than the aforementioned
process. Both C and γ are infinite in range of values, but ν ∈ (0, 1]. Thus, a more exhaustive
search is possible. The results of these tests were compared with the results of previous tests.

After this, both support vector machines were tested by varying the kernel function. For the
polynomial kernel, its intercept and degree could also be varied. All of these were tested and the
accompanying accuracies and run times were recorded.

This process was carried out to determine whether a robust set of parameters could be found.
It was never assumed that this would be the best set of parameters for all data sets, just these
particular supernova data sets.

After the final set of parameters was found, they were tested on the entire validation data set.
Again, this set consisted of 20,000 positive examples and 200,000 negative examples. This would
serve to validate the previous tests.

3.2 Rule Ensemble Procedure

Our version of the rule ensemble procedure as described in Section 2.2 was written in Matlab version
7.4.0.287 (R2007a). The only exception was the code for building regression trees. That code was
developed by W. L. Martinez and A. R. Martinez [11] and modified to work with our code.

Five parameters were adjusted to find the optimal values for the supernova data sets. These
parameters were adjusted one at a time to find the optimal accuracy for each one. The adjusted

12

parameters were the shrinkage parameter υ, the total number of trees in the ensemble M , the size
of the subset of attributes used to determine each split ns, the average number of terminal nodes
in each tree L̄, and the sample size used to build each tree η.

Each parameter adjustment used 1,000 total observations selected at random for training and
1,000 different observations selected at random for testing. This process was repeated 25 times and
the average accuracy was taken. The reason for only averaging over 25 trials (as opposed to 100
used for the SVMs) was due to the increased run times. Each run would take between one and ten
minutes (it varied due to the nature of the algorithm).

As before, after the final set of parameters was found for the training data set, they were tested
on the entire validation data set.

4 Numerical Results

All tests were run on an iMac with a 2.93 GHz Intel Core 2 Duo processor, and a MacBook Pro
with a 2.4 GHz Intel Core 2 Duo processor.

4.1 SVM Results

Throughout all of the tests, the kernel function K(u,v) used for the SVMs had little effect on
performance. There was never any observed difference between accuracies and run times for the
RBF kernel and the polynomial kernel. For this reason, the polynomial kernel was arbitrarily
chosen for the rest of the tests.

The polynomial kernel is of the form

K(u,v) =
(
γuTv + r0

)d
, (48)

where d is the degree and r0 is the intercept. The tested degrees were d = 2, 3, 4. The tested
intercepts were r0 ∈ [−100, 100]. For both support vector machines, the degree did not change the
accuracies or run times. The default value for the degree is 3, so it was left at this value for the
remainder of the tests.

The intercept had a substantial effect on accuracy for C-SVC. A typical plot of accuracy vs.
r0 is shown in Fig. 4. For each value of (N+/N−)predict, the corresponding plot showed that the
maximum accuracy was achieved when r0 was zero. Unfortunately, the default value for r0 is zero,
so no increase in accuracy or robustness was achieved. However, from this test, it was known to
keep r0 at zero for the remainder of the tests.

The grid search for a C and γ pair as described in the previous section was the only test where
the results were not the average of 100 trials. Rather, these were averaged over 25 trials. The
reason for this was because using cross validation greatly increased the run times. For some pairs
of C and γ, the run times would be over a minute. Each test would contain somewhere between
110 and 225 pairs of C and γ, so running this 100 times was too costly. However, the vast majority
of run times were on the order of 10−1 seconds. The run times that were over a minute resulted
from the largest values of C and γ (recall that these were around C = 215 and γ = 23). The final
pair chosen from this was C = 0.22 and γ = 0.58.

To see what the individual effects were, C and γ were adjusted independently in two separate
tests. Varying γ produced a surprising result. Smaller, nonzero magnitudes yielded higher accura-
cies and run times. There was no downside to choosing a small value for γ. However, no change
was observed for γ smaller than the default value (1/n). Thus, it was decided to leave γ at its
default value.

13

Figure 4: Plot of accuracy vs. r0 for C-SVC with (N+/N−)predict = 1.

Adjusting the parameter C showed that the maximum accuracy was attained usually when C ∈
[14, 27]. For higher values of (N+/N−)predict, this was typically the case, but when (N+/N−)predict >
1, the accuracy could be as low as 74%. For the lowest values of (N+/N−)predict, C ∈ [14, 27]
produced accuracies above 95%.

Interestingly enough, ν-SVC was not affected by kernel parameter changes. Altering r0 and γ
did not produce any change in accuracy or run time. For each (N+/N−)predict, this held true. So,
it must be concluded that ν-SVC is not sensitive to kernel parameter changes.

The parameter that did affect ν-SVC was ν. Altering ν produced some promising results. The
highest accuracies of all of the tests were attained when ν = 0.8 and (N+/N−)predict . 0.15. For
the smallest values of (N+/N−)predict, the accuracies could be greater than 97%. Unfortunately,
for higher values of (N+/N−)predict, the accuracies fell.

The interesting choice for ν is 0.2. This produced the most robust result of any of the tests.
For all values of (N+/N−)predict, the accuracy stayed between 89% and 91%. These accuracies may
not be as high as one might like, but knowing the accuracy in advance may be useful.

The results for the four best SVMs are shown in Fig. 5. Clearly, the worst SVM of these four
corresponds to C = 0.22 and γ = 0.58 (the result of the grid search). Nowhere does it have the
greatest accuracy and its accuracy drops off quicker than the others.

The other three SVMs all have the greatest accuracy for a portion of (N+/N−)predict values.
As mentioned above, the ν-SVC machine with ν = 0.8 gives the greatest overall accuracy. If one
has strong reasons to believe that (N+/N−)predict is less than 0.15, this should be used over the
other SVMs. If one has no indication of what (N+/N−)predict is, then one should consider using
the ν-SVC machine with ν = 0.2. In doing so, the analyst would know that the accuracy will be
approximately 90%.

The core issue is finding a way to estimate the value of (N+/N−)predict. It is unlikely that
this ratio will be very high because a type 1a supernova occurs only about once or twice every
millennium in a given galaxy [2].

The validation test set that was provided contains 20,000 positive examples and 200,000 negative

14

Figure 5: Accuracy vs. (N+/N−)predict with a polynomial kernel of degree 3 (each point is the
average of 100 trials).

examples, yielding (N+/N−)predict = 0.1. Thus, it was decided to test this data set with the ν-SVC
machine with ν = 0.8. Based on the previous tests, it was expected that the accuracy would be
close to 95%. In fact, the accuracy was computed to be 95.4950%. The false positive rate was
0.916%, but the false negative rate was 40.395%. The other SVMs all had worse false negative
rates and worse accuracies. This produces a stellar false positive rate, but a poor false negative
rate. The decision boundary (25) is predicting almost all of the observations to be negatives (not
a supernova type 1a).

It was later suggested that not every attribute in the data set might contribute to creating a
good model for prediction. Out of the 24 given attributes from the data set, 19 were suggested
that should improve performance [12]. In other words, 5 attributes were deleted from the data
sets for training and predicting. This conjecture was tested on the validation test with the ν-SVC
using ν = 0.8 (the same conditions that yielded 95.4950% above). The simulations indicated that
the accuracy decreased to 89.7845%, while the false positive rate increased to 1.3735% and the
false negative rate increased to 98.635%. Clearly, using all attributes in the data set yielded better
results for these data sets.

4.2 Rule Ensemble Results

The shrinkage parameter υ was varied between 0 and 1 to determine the optimal value. It had a
significant effect on the accuracy of the resulting model. For the larger values of υ, accuracies were
as low as 79%. For the lower, nonzero values of υ, accuracies were as high as 93%. In [8], it is
stated that υ = 0.01 performs best for most situations. Thus, it was decided to set υ to 0.01 for

15

the remainder of the tests.
The average number of terminal nodes L̄ also had an effect on the model accuracy. However,

it did not yield any improvements to accuracy. Ensembles using stumps for each tree lowered the
overall accuracy to about 90%. The accuracies were best when six terminal nodes were used as
averaged over all trees.

The other parameters did not affect the model accuracy much. However, they did affect the
total run times. Taking into account the run times and marginal gains in accuracy (∼ 1%), the
final parameter values chosen were M = 200 trees, ns = 12 sampled attributes at each split, and
η = 250 observations for each tree.

For the rule ensemble program, the same validation test set was used with υ = 0.01, M = 200,
ns = 12, L̄ = 6, and η = 250 as stated in section 4.2. Due to the inherent randomness in the
algorithm, a different result was obtained each time. Each test required about fifteen minutes. The
results are given in Table 1.

Table 1: Rule Ensemble Results

Accuracy False Positive Rate False Negative Rate
Trial 1 94.44% 5.16% 9.58%
Trial 2 94.60% 4.71% 12.28%
Trial 3 92.74% 7.32% 6.64%
Trial 4 94.51% 5.10% 9.40%
Trial 5 87.75% 12.99% 4.88%

5 Conclusions and Future Work

Although the accuracies from the rule ensemble method are slightly lower than those obtained
from the SVMs, false positive and false negative rates are more balanced. That is, they are both
reasonably low. If one had to choose between using SVMs and the rule ensemble models, the rule
ensemble models would be the better choice. They can give accuracies in the mid 90% range and
give much better false negative rates. The mere fact that the rule ensemble program gives varying
results poses a dilemma. How is one to know a priori which model is better? One solution to this
problem could be to take out the uncontrolled randomness in the program and replace it with a
controlled randomness. This should cause the program to give the same results every time. Also,
for future work, it may be beneficial to combine the two methods. That is, create a program that
generates an ensemble of SVMs. Post processing (47) could be performed on the resulting ensemble
in the same way as with the rules and linear terms.

Acknowledgements

Helpful discussions with and suggestions from David Bailey and Daniela Ushizima are greatly
appreciated.

16

Appendix A – Primal to Dual

We want to obtain the dual function

LD =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′φ(xi)Tφ(xi′)

by substituting

0 = w −
N∑
i=1

αiyiφ(xi),

0 =
N∑
i=1

αiyi,

0 = C − αi − µi

into the primal function

LP =
1
2
||w||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(wTφ(xi) + β)− (1− ξi)]−
N∑
i=1

µiξi.

To begin, let us focus on the first term in the primal function.

A1 =
1
2
||w||2

A1 =
1
2

q∑
j=1

w2
j

w =
N∑
i=1

αiyiφ(xi)

wj =
N∑
i=1

αiyiφ(xij)

A1 =
1
2

q∑
j=1

(
N∑
i=1

αiyiφ(xij)

)2

A1 =
1
2

q∑
j=1

N∑
i=1

N∑
i′=1

αiαi′yiyi′φ(xij)φ(xi′j)

A1 =
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′φ(xi)Tφ(xi′)

17

Next, we move on to the second fourth terms in the primal function.

A2 = C
N∑
i=1

ξi −
N∑
i=1

µiξi

A2 =
N∑
i=1

(Cξi − µiξi)

C = αi + µi

A2 =
N∑
i=1

[(αi + µi)ξi − µiξi]

A2 =
N∑
i=1

(αiξi + µiξi − µiξi)

A2 =
N∑
i=1

αiξi

Finally, we have the third term of the primal function.

A3 = −
N∑
i=1

αi[yi(wTφ(xi) + β)− (1− ξi)]

A3 = −
N∑
i=1

(αiyiwTφ(xi) + αiyiβ − αi + αiξi)

A3 = −

(
N∑
i=1

αiyiwTφ(xi) +
N∑
i=1

αiyiβ −
N∑
i=1

αi +
N∑
i=1

αiξi

)

0 =
N∑
i=1

αiyi

A3 = −

(
N∑
i=1

αiyiwTφ(xi)−
N∑
i=1

αi +
N∑
i=1

αiξi

)

w =
N∑
i=1

αiyiφ(xi)

A3 = −

(
N∑
i=1

N∑
i′=1

αiαi′yiyi′φ(xi)Tφ(xi′)−
N∑
i=1

αi +
N∑
i=1

αiξi

)
Now, if we combine these three results A1 +A2 +A3, we will get

A1 +A2 +A3 =
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′φ(xi)Tφ(xi′) +
N∑
i=1

αiξi

−

(
N∑
i=1

N∑
i′=1

αiαi′yiyi′φ(xi)Tφ(xi′)−
N∑
i=1

αi +
N∑
i=1

αiξi

)

A1 +A2 +A3 =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′φ(xi)Tφ(xi′),

18

which is identical to the dual function.

References

[1] G. Aldering. The nearby supernova factory, May 2009. http://snfactory.lbl.gov/index.html.

[2] S. Bailey, C. Aragon, R. Romano, R. C. Thomas, B. A. Weaver, and D. Wong. How to
find more supernovae with less work: Object classification techniques for difference imaging.
Astrophysical Journal, 665:1246–1253, 2007.

[3] L. Brieman, J. H. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Chapman & Hall, 1984.

[4] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2:121–167, 1998.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines.
Computer Science Dept., National Taiwan University, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[6] W. J. Dixon. Simplified estimation from censored normal samples. The Annals of Mathematical
Statistics, 31:385–391, 1960.

[7] J. H. Friedman and B. E. Popescu. Gradient directed regularization for linear regression and
classification. Technical report, Statistics Dept., Stanford University, 2004.

[8] J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3):916–954, 2008.

[9] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, chapter 9, 10, 12, pages 316–331, 371–379. Springer Science, 2001.

[10] C. Hsu, C. Chang, and C. Lin. A practical guide to support vector classification. Technical
report, Computer Science Dept., National Taiwan University, 2009.

[11] W. L. Martinez and A. R. Martinez. Computational Statistics Handbook with Matlab. Chapman
& Hall, 2002.

[12] C. Wickham. Classifying the supernova data, 2007. Private communication (PowerPoint
presentation).

19

