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ABSTRACT OF THE DISSERTATION 

 
Genotypic and Phenotypic Dynamics of Adaptation in Experimentally Evolved Escherichia coli 

 
By 

 
Shaun Michael Hug 

 
Doctor of Philosophy in Biological Sciences 

 
 University of California, Irvine, 2016 

 
Professor Brandon Gaut, Chair 

 
 

 

 Despite its centrality to Darwin’s theory of evolution by natural selection, the process of 

adaptation is still not fully understood.  In particular, the dynamics of the genotypes and 

phenotypes associated with an adaptive response remain to be fully elucidated.  In my 

dissertation, I utilized laboratory evolution experiments to study how the genotypes and 

phenotypes of Escherichia coli change over time as they adapted to high temperature. 

 Chapter 1 explored how metabolic phenotypes of 115 evolved E. coli clones changed as a 

result of 2,000 generations of adaptation to 42.2°C.  Using phenotypic microarrays (Biolog 

plates), I quantified 94 phenotypes of these evolved clones, as well as their ancestor under 

stressed (42.2°C) and unstressed (37.0°C) conditions.  Comparing the evolved phenotypes to the 

ancestral phenotypes revealed that adaptation was predominantly restorative, shifting evolved 

phenotypes from the stress state toward the unstressed state.  I also uncovered associations 

among common genotypic changes found in the evolved clones and their phenotypes. 

 Chapter 2 investigated the different mutational dynamics in populations traversing two 

different adaptive pathways typified by mutations in the rpoB and rho genes, respectively.  These 

genes were predicted to be differentially pleiotropic, and were therefore expected to create 
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differences in compensatory evolution when mutated.  I used temporal sequencing data of four 

rpoB and four rho populations to reconstruct their mutational trajectories over the course of 

adaptation to 42.2°C.  These trajectories revealed that rpoB and rho mutations occurred early on 

during adaptation, canalizing the adaptive process.  Furthermore, rpoB populations accumulated 

more mutations and experienced more clonal interference over the course of adaptation than rho 

populations. 

 Chapter 3 was a study of the Lazarus effect, a phenomenon of population recovery under 

lethal selection conditions.  I evolved ~300 E. coli populations to the lethal temperature of 

43.0°C and measured their cell density over five days.  I sequenced those populations that 

recovered and found mutations in two operons—hslUV and rpoBC—to be the major drivers of 

Lazarus events.  These mutations differed in their frequency in the experiment, degree of 

parallelism within and between weeks, and fitness tradeoffs at 37.0°C, suggesting different 

origins and adaptive dynamics between them. 

 

 

 

 

 

 

 

 

 



 1 

INTRODUCTION 

 

 Adaptive evolution is the process by which a population improves its phenotype(s) to 

better fit the pressures of the environment, and it encompasses two complementary processes:  

the removal of maladapted individuals, and the spread of better-adapted individuals.  This first 

process, known as purifying selection, has been studied for a long time, and as such, much is 

known about it, especially in the context of disease (Muller, 1950).  Purifying selection also 

makes sense intuitively; there are almost limitless ways in which can organism can be defective 

in its environment, and those organisms are less likely than their compatriots to survive and 

reproduce.  Out of all possible new mutations that might affect an organism, most are deleterious 

(Eyre-Walker and Keightley, 2007), and algorithms have been developed to predict whether or 

not mutations will be maladaptive (Ng and Henikoff, 2001; Adzhubei et al., 2010). 

The second process—positive selection—is not as straightforward.  New beneficial 

mutations are rare (Eyre-Walker and Keightley, 2007), making them intrinsically more difficult 

to study.  Moreover, the characteristics that make a mutation beneficial are often dependent on 

its genetic context and the environment.  What exactly gives an individual an advantage over 

other members of the population?  Are there limitless ways to adapt, just as there are so many 

ways to fail, or is there a finite set of changes that enhance survival and reproduction?  If 

evolution could be replayed, would adaptation repeat itself, or would populations find new and 

different ways to adapt each time? 

Studying adaptive evolution is not always easy.  Natural environments can impose 

different and varying selective pressures, making it difficult to connect the genotypic, 

phenotypic, and fitness effects of adaptation to a specific cause.  The long generation times of 

some organisms can make it nearly impossible to observe evolutionary changes within one 
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human lifetime.  Furthermore, studying extant populations only provides insight into the 

outcome of adaptation; the dynamic process of adaptation cannot be fully accounted for using a 

single snapshot of populations as they currently are.  Laboratory evolution experiments, 

combined with the rise of cheap, high-throughput genome sequencing, now have the power to 

address some of these issues. 

 Bacteria such as Escherichia coli provide an excellent model system for testing 

evolutionary hypotheses for several reasons.  First, they grow rapidly, allowing evolutionary 

changes to be observed at human-friendly timescales.  Second, they maintain relatively large 

population sizes, reducing the importance of genetic drift and enhancing the ability to observe 

beneficial mutations.  Third, they are amenable to being frozen and revived, allowing 

intermediate stages of the evolutionary process to be observed, studied, and even restarted.  

Lastly, E. coli has a relatively small genome size, and its genome is thoroughly annotated, 

facilitating the processes of sequencing and putting mutations into a biologically meaningful 

context.  Subjecting E. coli populations to singular, controlled environmental pressures in the 

laboratory offers us the best opportunity to link genotypes, phenotypes, and fitness, and to 

observe how the adaptive process unfolds over time. 

Arguably the most famous bacterial evolution experiment began in 1988 at the University 

of California, Irvine, under the direction of Richard Lenski.  In this experiment, 12 replicate 

populations of E. coli, which were derived from a single ancestor, were serially propagated under 

low-glucose conditions (Lenski et al., 1991).  This experiment is still running nearly 30 years 

and over 60,000 bacterial generations later, and it continues to provide insights into the workings 

of adaptive evolution.  Albert Bennett, also at the University of California, Irvine, carried out a 

similar evolution experiment with Lenski, evolving six replicate E. coli populations at high 

temperature for one month (Bennett et al., 1990). 
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To better understand the genetics underlying an adaptive response, our lab devised and 

carried out an evolution experiment with Bennett and Anthony Long that was akin to previous 

studies, but with a 10-fold greater level of replication (Tenaillon et al., 2012).  This amount of 

replication provided the statistical power necessary to draw useful conclusions about the 

parallelism, diversity, and interactions of mutations generated during adaptive evolution.  

Following previous established methods (Bennett and Lenski, 1993), this experiment began with 

single colonies of E. coli B possessing a neutral Ara- marker (REL1206) that were inoculated 

into each of 115 independent culture tubes containing 10 mL of Luria-Bertani medium (LB) and 

grown overnight at 37.0°C.  These cultures were each transferred in a 1:100 dilution into 9.9 mL 

of Davis minimal medium supplemented with 25 mg/L glucose (DM25) and grown overnight at 

37.0°C.  For the remainder of the experiment, each culture was transferred daily in a 1:100 

dilution into fresh DM25 and maintained in a shaking water bath at 42.2°C.  This process 

continued for 2,000 generations, or approximately one year.  Additionally, population samples of 

each of the 115 lines were taken at regular intervals (generations 100, 200, and every 200 

generations thereafter) and frozen. 

After 2,000 generations of adaptation, single clones were isolated from each of the 115 

lines for genome sequencing and fitness measurements relative to the ancestor at 42.2°C.  On 

average, evolved clones experienced increases in fitness of ~40% and possessed an average of 

~11 mutations each, most of which were determined to be beneficial (Tenaillon et al., 2012).  

Additionally, two groups of highly parallel genetic changes were found to be in negative 

statistical epistasis with one another.  These mutations constituted two distinct genetic pathways 

to adaptation.  The first was typified by mutations in the rpoB gene, which encodes a subunit of 

the RNA polymerase complex, and the second was typified by mutations in the rho gene, which 

encodes a major transcriptional terminator (Tenaillon et al., 2012).  Although these two 
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pathways led to improved thermal stress tolerance after 2,000 generations, questions about their 

differences, side effects, and mechanisms of action remained largely unanswered. 

 Recently, it has been suggested and shown that a major outcome of adaptation in 

evolution experiments is restoration of an organism’s gene expression from a stressed state to an 

unstressed state (Fong et al., 2005; Carroll and Marx, 2013; Sandberg et al., 2014).  The first 

chapter of my dissertation investigates whether or not restorative adaptation extends beyond gene 

expression to the level of metabolic phenotypes.  Following evolution to thermal stress, are E. 

coli clones more similar metabolically to their stressed or unstressed ancestor, or do they behave 

in completely novel ways?  Moreover, can instances of restoration or novelty be associated to 

specific mutations that occurred during the course of adaptation?  To address these questions, I 

employed Biolog phenotypic microarrays, 96-well plates that colorimetrically measure microbial 

metabolism on a variety of carbon sources and in the presence of a variety of inhibitory 

compounds.  I then connected these phenotypes to genotypes obtained from whole-genome 

sequencing of E. coli clones derived from 115 independent populations evolved at 42.2°C for 

2,000 generations. 

My second chapter explores the dynamics of adaptation over 2,000 generations, building 

specifically upon our lab’s finding of two pathways to thermal stress adaptation—rpoB and rho 

(Tenaillon et al., 2012).  Work by other members of our lab has suggested that the rpoB and rho 

pathways differ in their fitness tradeoffs at low temperature (Rodríguez-Verdugo et al., 2014) 

and their effects on gene expression (Rodríguez-Verdugo et al., 2016; González-González et al., 

in prep.).  Furthermore, work I performed for my first chapter revealed that clones of these two 

different pathways were distinguishable by their phenotypes.  To understand whether these two 

adaptive pathways show distinct evolutionary histories and dynamics, I collected and sequenced 

genomic DNA from eight evolved populations (four rpoB, four rho) across 11 evolutionary time 
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points.  In particular, I was interested in how differing degrees of pleiotropy between these two 

adaptive pathways might lead to differential compensation, and the effect of that phenomenon on 

the number of mutations each type of population accumulates and how much they interact with 

one another via clonal interference. 

 In nature, adaptation does not necessarily occur under the relatively mild stressors 

imposed by scientists in the laboratory.  Environmental changes can sometimes be too great for 

populations to maintain their numbers, leading to crashes and potential extinctions.  Nonetheless, 

some populations do survive these initially lethal pressures, adapting rapidly and recovering 

before going extinct.  This phenomenon has been observed incidentally in laboratory evolution 

experiments and is known as the “Lazarus effect” (Mongold et al., 1999).  My third chapter 

shines a light on the Lazarus effect and the very initial stages of the adaptive process.  How often 

does the Lazarus effect occur?  What are the identity and diversity of mutations that enable 

population recovery?  To answer these questions, I evolve approximately 400 populations of E. 

coli to lethally high temperatures (43.0°C and 44.0°C) over the course of five days.  By 

measuring their cell densities on each day, I can determine whether or not any populations have 

recovered, and if so, I can save those populations for later whole-genome sequencing. 

 Overall, the work I carry out in my thesis elucidates important features of the adaptive 

process and the utility of laboratory evolution experiments.  It reveals that the first beneficial 

mutations to take hold in a population are key to how the remainder of adaptation unfolds, and 

that multiple pathways to adaptation can lead to distinct differences in evolutionary dynamics 

and phenotypic outcomes. 
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CHAPTER 1 - The phenotypic signature of adaptation to thermal stress in Escherichia coli 
 

ABSTRACT 

In the short-term, organisms acclimate to stress through phenotypic plasticity, but in the 

longer term they adapt to stress genetically.  The mutations that accrue during adaptation may 

contribute to completely novel phenotypes, or they may instead act to restore the phenotype from 

a stressed to a pre-stress condition.  To better understand the influence of evolution on the 

diversity and direction of phenotypic change, we used Biolog microarrays to assay 94 

phenotypes of 115 Escherichia coli clones that had adapted to high temperature (42.2°C).  We 

also assayed these same phenotypes in the clones’ ancestor under non-stress (37.0°C) and stress 

(42.2°C) conditions.  We explored associations between Biolog phenotypes and genotypes, and 

we also investigated phenotypic differences between clones that have one of two adaptive 

genetic trajectories: one that is typified by mutations in the RNA polymerase β-subunit (rpoB), 

and another that is defined by mutations in the rho termination factor.  Most (58%) phenotypic 

variation was restorative, shifting the phenotype from the acclimated state back toward the 

unstressed state.  Novel phenotypes were more rare, comprising between 7% and 20% of 

informative phenotypic variation.  Genetic variation associated statistically with phenotypic 

variation, demonstrating a genetic basis for shifted phenotypes.  Finally, clones with rpoB 

mutations differed in phenotype from those with rho mutations, largely due to differences in 

chemical sensitivity.  Our results contribute to previous observations showing that a major 

component of adaptation in microbial evolution experiments is toward restoration to the 

unstressed state.  In addition, we found that a large deletion strongly affected phenotypic 

variation.  Finally, we demonstrated that the two genetic trajectories leading to thermal 

adaptation encompass different phenotypes.  
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INTRODUCTION 

Our understanding of the dynamics of adaptation in populations is incomplete (Orr, 

2005), particularly with respect to the repeatability and the direction of adaptation.  For 

repeatability, the major questions are, first, whether replicated evolutionary events converge on a 

single adaptive phenotype and, second, whether convergent phenotypes are caused by the same 

set of underlying genetic changes.  For the direction of adaptation, the major question is whether 

adaptation commonly leads to novel phenotypes or instead acts to restore phenotypes to pre-

stress states.  To understand this last point, it is important to recognize that adaptation often 

begins with a physiological stress in a new environment.  In the short term, there may be 

acclimation to stress through a physiological response, but genetic and phenotypic adaptation 

occurs in the longer term.  The question is whether adaptation typically restores phenotypes to a 

pre-stress state or more often leads to phenotypic novelty (Figure 1.1).  

Questions about novelty, restoration, and convergence have been addressed in the context 

of experimental evolution (Fong et al., 2005; Carroll and Marx, 2013; Sandberg et al., 2014).  

These studies have found that evolution typically proceeds toward the restoration of the pre-

stress condition.  For example, Carroll and Marx (Carroll and Marx, 2013) evolved eight 

replicate bacterial lineages under stress conditions and then measured gene expression.  They 

found that 93% of all adaptive changes in gene expression restored expression from the 

acclimated (stressed) state back to the wild-type (pre-stress) condition.  Of these restorative 

changes, 70% occurred in parallel across all eight populations.  These studies make the important 

point that characterizing the intermediate acclimation process is essential to understanding the 

repeatability and direction of adaptation.  However, these studies have also been limited to a low 

number (< 10) of experimental replicates.  
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We recently performed a highly replicated experiment in which Escherichia coli evolved 

to high temperature (Tenaillon et al., 2012).  To begin, we inoculated a clone of E. coli strain 

REL1206 (Lenski et al., 1991) into 115 replicate populations, and then allowed the populations 

to evolve independently for 2,000 generations at 42.2°C.  At the end of the experiment, we 

sequenced the genomes of single clones from each of the replicates.  Our sequencing efforts 

revealed a total of 1,331 mutations across a set of 115 evolved clones.  Roughly half of these 

mutations were shared among two or more clones, with many falling into one of two different 

adaptive genetic trajectories.  The first of these includes mutations in rpoB, which codes for the 

β-subunit of RNA polymerase, along with associated mutations in other RNA polymerase 

subunits and the rod genes that define cell shape.  The second trajectory includes mutations in 

rho, which codes for a major transcription termination factor, along with mutations in iclR, a 

transcriptional regulator of the glyoxylate shunt of the Krebs cycle, and cls, a cardiolipin 

synthase gene important for regulating membrane fluidity and permeability.  Mutations in the 

rpoB and rho adaptive trajectories are not mutually exclusive, but they are strongly negatively 

associated, presumably due to negative epistatic interactions (Tenaillon et al., 2012). 

Overall, we have observed adaptive genetic convergence—i.e., mutations in two or more 

independent clones—in ~80 genes (Tenaillon et al., 2012), of which the two adaptive trajectories 

represent only a subset.  We have been left, then, with a large amount of unexplained genetic 

diversity that is presumed to be adaptive at 42.2°C, hundreds more mutations that are unique to 

single evolved clones, and the observation that all 115 of our populations independently evolved 

the ability to persist in the same high-temperature environment.  While our study has provided a 

description of the breadth of genetic change underpinning an adaptive response (Tenaillon et al., 

2012), the extent of phenotypic convergence remains unclear, as does the direction of phenotypic 

evolution.  
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In this study, we assess phenotypic diversity among our 115 evolved E. coli clones using 

high-throughput Biolog arrays.  Biologs are 96-well plates that test metabolic phenotypes 

(Bochner et al., 2001), including 71 carbon utilization assays and 23 chemical sensitivity assays.  

Biologs have been used to discover new links in microbial biochemical pathways (Loh et al., 

2006), to associate genotypes with phenotypes (Zhou et al., 2003; Pommerenke et al., 2010), to 

uncover a decoupling between genotypic and phenotypic diversity across E. coli strains (Sabarly 

et al., 2011), and to validate patterns of long-term phenotypic evolution in diverse groups of 

bacteria (Plata et al., 2015).  They have also been employed in an evolution experiment to 

characterize ecological dynamics and niche displacement in coevolving subpopulations of E. coli 

(Le Gac et al., 2012).   

Using Biolog assays, we have measured 94 phenotypes for each of our 115 evolved 

clones at 42.2°C and for their REL1206 ancestor at two treatment temperatures (37.0°C and 

42.2°C).  With this dataset of phenotypes, our study has four interacting objectives.  The first is 

to assess phenotypic variation among clones based on a Biolog ‘fingerprint’.  The second is to 

measure the direction of phenotypic adaptation in our 115 evolved clones relative to the stressed 

(42.2°C) and non-stressed (37.0°C) ancestor.  Based on previous studies (Fong et al., 2005; 

Carroll and Marx, 2013), we hypothesize that many of the phenotypic changes restore 

phenotypes from the stressed toward the pre-stress state.  The third objective is to assess whether 

phenotypic shifts have a genetic component—i.e., to ascertain that genetic adaptation has 

contributed to the observed phenotypic shifts rather than phenotypic plasticity.  Finally, we 

contrast the two adaptive trajectories typified by rho and rpoB mutations.  Do these two genetic 

trajectories vary in their resultant phenotypes?  

 

MATERIALS AND METHODS 
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Evolution to Thermal Stress 

 Our thermal stress experiment was reported elsewhere (Tenaillon et al., 2012), but we 

cover the experimental design here for the sake of clarity.  Following previously established 

methods (Bennett and Lenski, 1993), we inoculated our ancestor Ara- E. coli clone (REL1206) 

into 115 culture tubes that contained 10 mL of Davis minimal medium supplemented with 25 

mg/L glucose (DM25).  The ancestral REL1206 clone had been propagated previously at 37.0°C 

for 2,000 generations in DM25 and thus was likely to be well adapted to the media.  The 115 

cultures were maintained in a shaking water bath at 42.2°C for 2,000 generations and were 

transferred daily into fresh media via 100-fold dilution.   

 At the end of the experiment, we isolated one clone from each of the 115 populations.  

Each genome was sequenced and the clones were also assessed for their fitness relative to the 

ancestor at 42.2°C (Tenaillon et al., 2012); on average, the evolved clones were ~40% more fit 

than the ancestor.  For further details about genotypes and relative fitness values, please refer to 

(Tenaillon et al., 2012).  

 

Biolog Assays 

We streaked each of the 115 clones from the E. coli thermal stress experiment from 

frozen glycerol stocks onto tetrazolium and arabinose (TA) agar plates and grew them for one 

day at 37.0°C.  Although the clones had evolved at 42.2°C in DM25, it is common practice in 

thermal stress studies to allow clones to recover from freezing under less stressful conditions 

(Bennett and Lenski, 1993; Lenski and Travisano, 1994; Rodriguez-Verdugo et al., 2014).   

For each clone, we chose colonies to assay on a GEN III Biolog MicroPlate.  To perform 

the assay, we followed the manufacturer’s protocol, which included:  i) inoculating bacterial 
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colonies into Inoculating Fluid A (Biolog) to a turbidity between 97% and 99% transmittance, as 

determined by optical density (OD) at 600 nm on a Synergy H1 Hybrid Multi-Mode Microplate 

Reader (Biotek); ii) adding 100 µL of inoculum to each of the 96 wells of a Biolog plate; iii) 

incubating each plate for 22.25 hours at 42.2°C, and iv) developing the assay by measuring 

optical density (OD) at 590 nm.  The OD at 590 nm measured the amount of reduced tetrazolium 

redox dye in each well, providing a quantitative measurement of respiratory activity in each well 

of the plate.  We performed three Biolog assays for each of the 115 evolved clone, for a total of 

115 × 3 = 345 plates. 

We applied the same Biolog procedures to the REL1206 ancestor, but it was incubated at 

one of two different treatment temperatures:  37.0°C and 42.2°C.  Moreover, for each 

temperature we performed two sets of three replicates, with the replicate sets performed on 

different days in order to incorporate potential ‘day effects’ into the experimental design.  Thus, 

we performed 6 × 2 = 12 assays with the REL1206 ancestor.  

Because REL1206 evolved at 37.0°C in DM25 from a lab strain of E. coli B, we assumed 

that 37.0°C represents a non-stress condition, while 42.2°C was a stressful environment.  

  

Statistical and Directional Analysis of Phenotypes 

Each Biolog plate contained 94 assay wells (or ‘tests’) and two control wells.  For each 

plate, the OD for each test was normalized to the OD of the appropriate control well.  For 

example, the 71 tests that measure carbon utilization were normalized to a negative control 

lacking any added metabolic substrates, and the 23 tests that measure chemical sensitivity were 

normalized to a positive control lacking an inhibitor but permitting a baseline level of assay 

development.  We term the normalized OD values as ‘phenotype values,’ or PVs.  
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We first examined Pearson correlation coefficients between all pairs of 94 Biolog tests, 

based on the average PV (PV) for each clone.  Because PVs were highly correlated among tests, 

we reduced the dimensionality of log-transformed PV data using principle components analysis 

(PCA).  PCA analyses were based on the R (Team, 2014) module prcomp, with the flags 

retx=TRUE, center=TRUE, and scale=TRUE.  Thereafter, we considered only principal 

components with significant eigenvectors, as determined by the ‘random average under 

permutation’ metric of Peres-Neto et al. (2005) (Peres-Neto et al., 2005), which was based on 

1,000 permutated datasets.  The significance of loadings was examined with the bootstrap 

eigenvector metric of Peres-Neto et al. (2003) (Peres-Neto et al., 2003), based on 1,000 

resamplings.  Both metrics have been shown to be well behaved on a range of simulated datasets 

(Peres-Neto et al., 2003; Peres-Neto et al., 2005). 

For each retained component of the PCA, we compared the average of scores 𝑆! of each 

evolved clone x to the average scores of REL1206 at 37.0°C (𝑆!"°"  ) and at 42.2°C (𝑆!"°"  ).  We 

used t-tests for these pairwise comparisons, under the null hypothesis that the REL1206 scores 

did not differ from those of an evolved clone.  The p-value for individual t-tests were determined 

by an empirical null distribution, based on 105 permutations.  For each set of comparisons, the 

resultant p-values were adjusted using a false discover rate (FDR) of q < 0.01, based on the 

p.adjust module of R.   

Within each principal component, we categorized the direction of phenotypic evolution 

for each evolved clone by comparing the magnitude and significance of pairwise comparisons 

among 𝑆!"°"  , 𝑆!"°"   and 𝑆!.  Following previous literature (Carroll and Marx, 2013), we defined 

a total of six directional categories, which represent the phenotypic consequences of evolution 

for clone x (Table 1.1 and Figure 1.1).  
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Hierarchical clustering of the clones was based on 𝑆!.  Clustering utilized Euclidean 

distances and an unweighted pair group method with arithmetic mean (UPGMA) (Sneath and 

Sokal, 1973) and was implemented in MATLAB.  Multivariate analysis of variance (MANOVA) 

was used to test for differences in phenotypes between pre-defined groups of clones.  The 

analyses used PV data from each test and each replicate as dependent variables and the groups as 

the independent variables, resulting in the model (PVs ~ groups).  MANOVA was implemented 

in the R function manova, based on the Pillai test of significance. 

 

Associations between Phenotype and Genotype 

To test for associations between phenotypes and genetic mutations, we grouped 

mutations found in our evolved clones into ‘mutational objects.’  These groupings arose by 

classifying mutations into three broad classes:  genic, intergenic, and multigenic.  Genic 

mutations comprised all point mutations, small indels, and IS insertions that affected a single 

gene, and we grouped these into one mutational object whose identifier was the name of the 

affected gene.  For example, an evolved clone possessing a point mutation in the cls gene and 

another evolved clone possessing an IS insertion in the cls gene each received a single identifier, 

‘cls,’ to describe their mutations.  Intergenic mutations comprised point mutations, small indels, 

and IS insertions that fell in noncoding regions between two genes, and we split these into two 

objects, one associated with each neighboring gene. Lastly, multigenic mutations comprised 

deletions and insertions spanning two or more genes; we classified these as their own objects 

whose identifiers were not associated with any specific gene.  All genotypic data were from 

Tenaillon et al. (Tenaillon et al., 2012).  

We grouped mutations into objects because most mutations discovered within the thermal 

stress experiment were found in only a single clone, and hence provided no basis for associating 
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genotype with phenotype.  These groupings likely increased statistical power but may have had 

an unintended trade-off in statistical power if there was allelic heterogeneity.  

For each of the mutational objects present in two or more evolved clones, the PCA scores 

from each evolved clone were placed into one of two groups:  those possessing the mutational 

object (the cases), or those lacking the mutational object (the controls).  A t-test assuming equal 

variance was used to determine whether the cases and controls differed significantly in each of 

the nine principal components.  Results were corrected to q < 0.01.   

 

RESULTS 

Phenotypic Space 

To better understand phenotypic evolution during a previously published evolution 

experiment (Tenaillon et al., 2012), we performed a total of 357 Biolog assays on 115 evolved 

clones and two ancestral treatments.  Each assay included 94 discrete tests.  After normalizing 

OD readings, we first calculated  PV  values for each test and each clone and then measured 

Pearson pairwise correlations between these tests.  Of 8,836 (= 94 × 94) pairwise comparisons 

between tests, 20.8% (1,836) were significantly correlated after sequential Bonferroni correction 

at α = 0.01 (Figure S1.1).  Given substantial correlation between tests, we reduced the 

complexity of PV data by PCA transformation into orthogonal components.  The first component 

of the PCA represented 31% of the variance (Figure S1.2), and the eigenvector of the first nine 

components was significant (Peres-Neto et al., 2005).  Each of the first nine components had 

eigenvectors > 2.0 and together explained 68.7% of variation.  We retained the first nine 

components for further analysis.  

Figure 1.2 plots the first and second principal components and helps convey two pieces 

of information about PCA scores.  First, the ancestral data were typically well differentiated by 
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treatment (37.0°C or 42.2°C).  For example, the first component visually separated the sets of six 

ancestral replicates by treatment (Figure 1.2).  While the separation was less obvious for the 

second component, t-test comparisons between 𝑆!"°"   and 𝑆!"°" indicated that the two ancestral 

treatments were significantly differentiated in seven of nine principal components (pc1, pc2, pc5, 

pc6, pc7, pc8 and pc9; t-test, unequal variances; sequential Bonferroni correction for α = 0.01).  

This differentiation represents the phenotypic effects of acclimation (Figure 1.1).   

A plot of the first two components also provides an opportunity to illustrate features of 

the direction and magnitude of evolutionary change (Figure 1.2).  In the first principal 

component, most score values clustered near the stressed (42.2°C) ancestor, suggesting that most 

of the evolved clones were phenotypically unrestored in pc1.  However, the scores of several 

clones fell intermediate between the two ancestral treatments or near the unstressed (37.0°C) 

ancestor, indicating partial or full phenotypic restoration, respectively.  We consider the direction 

of phenotypic change more formally below.   

PCA also estimated loadings on each axis (Table S1.1); these loadings provide 

information about individual tests that may have contributed variation to an axis. We tested for 

‘significant’ loadings using a published bootstrapping heuristic, but none were significant at p < 

0.05.  The lack of significance reflects the fact that the loadings were fairly even among tests.  

For example, in pc1 the highest loading—in terms of the percent of the total loading values—

was 2.0% for metabolic activity on ‘glucuronamide,’ but altogether 31 of 94 tests contributed 

between 1.5% and 2% to loadings in pc1.  However, 27 of these 31 (87%) were tests that 

measure OD on sugar substrates, suggesting that pc1 primarily reflects variation related to 

carbohydrate metabolism.  The top loadings in pc2 were related primarily to tests either on Krebs 

cycle compounds or on amino acids, while the top loadings in pc3 included assays for chemical 

sensitivity (Table S1.1).  
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The Direction of Adaptation 

 The two ancestral treatments were significantly differentiated for seven of nine principal 

components.  These observations lay the foundation for assessing the direction of evolution—

i.e., did evolution tend to restore phenotypic traits to the non-stressed (37.0°C) state, or did it 

lead to novel phenotypes?  

To assess directionality more formally, we first tested for differences in  𝑆!  between an 

evolved clone and each of the two ancestral treatments.  For example, we compared 𝑆! of each of 

the 115 clones to 𝑆!"°"  in each of the nine axes, for a total of 115 × 9 = 1,035 contrasts, and 

found that 27.2% (or 282 out of 1,035) of tests were significant at q < 0.01.  There were 

nonetheless more differences between the evolved clones and the 37.0°C control, because 53.3% 

(552 of 1,035) of contrasts between 𝑆!  and 𝑆!"°"   were significant (q < 0.01).  These results were 

similar to Figure 1.2 in giving an overall impression that the evolved clones tended to be more 

similar in phenotype to the stressed ancestor than to the non-stressed ancestor.  

We classified the results of t-tests into six categories based on the direction and 

significance of comparisons among 𝑆!, 𝑆!"°"  and 𝑆!"°"   (Table 1.1).  Of 1,035 comparisons, the 

highest number of tests (330 of 1,035) fell into the ‘uninformative’ category, due to a lack of 

significance among comparisons.  Among informative categories, the most comparisons were in 

the ‘unrestored’ (230) category, followed by ‘partially restored’ (151), ‘restored’ (124), 

‘reinforced’ (77), ‘novel’ (61) and ‘over-restored’ (24) (Table 1.1).   

These categorical numbers reflect directionality, but they do not account for the fact that 

the nine principle components explained different proportions of variance (Figure S1.2).  To 

estimate the total proportion of variance explained by each directional category, we weighted 
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results by the proportion of variance explained in each axis (Table S1.2).  Summing across all 

informative comparisons, weighting revealed that the biggest contributor to phenotypic variance 

was ‘partial restoration’ of the unstressed phenotype, which explained 34.6% of observed 

phenotypic variation (Figure 1.3).  The category of ‘partial restoration’ was followed by the 

unrestored (23.2%) and restored phenotypes (22.5%).  In contrast, novel, over-restored, and 

reinforced phenotypes combined to explain 19.8% of variation.  

 

Phenotype-Genotype Associations 

The predominant phenotypic response during our experiment was toward the partial or 

full restoration of the pre-stress condition.  To verify that these shifts in phenotype had a genetic 

component—and therefore resulted from adaptive change rather than phenotypic plasticity—we 

used a case-control approach to associate scores with 165 mutational objects.  In total, we found 

117 significant (q < 0.01) associations with 70 mutational objects distributed across eight of the 

nine principal components (Table 1.2).  We explored the validity of our phenotype-genotype 

associations by performing t-tests on random permutations of our case/control categories for 

each Biolog assay.  When the absolute values of the t-statistics obtained from our observed 

genotypic groups were sorted and plotted against those obtained from randomized groups, there 

was a strong signal of more extreme t-statistics in the observed data (Figure S1.2), suggesting a 

biological signal in our results.   

Among the many significant genotype-phenotype associations (Table 1.2), a few were 

especially notable.  For example, a large deletion variant (ECB_00503_large) that was common 

to 35 of the 115 evolved lines also had the lowest p-values in associations to the first two 

principle components, suggesting it had a major effect on adaptive phenotypes.  Moreover, rpoB 
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and rho, two genes that represent the two major adaptive trajectories (Tenaillon et al., 2012), 

each exhibited significant associations to four and five principal components, respectively.  

 

Contrasting the rho and rpoB Trajectories  

  Like previous experiments (Fong et al., 2005; Sandberg et al., 2014), we have shown that 

most phenotypic variation in our experiment was due to partial or full restoration of the 

unstressed phenotype.  We have gone further to show that some of this variation associates with 

an underlying genetic component.  However, we have not yet addressed the question as to 

whether different adaptive trajectories—particularly those that include rho and rpoB—differ in 

phenotype.  We used two approaches to compare these two trajectories.   

The first was to test for differences between clones with rpoB mutations and clones with 

rho mutations, using MANOVA applied directly to PV data.  The results indicated that the two 

groups differ in phenotype (p < 2.2 × 10-16).  MANOVA also assessed the significance of 

individual tests (or factors) between groups; 23 of the 94 tests differed significantly between the 

rpoB and rho groups at α = 0.01 (sequential Bonferroni correction)  (Table 1.3).  Among these 

23 factors, the five with the lowest p-values were tests of chemical sensitivity.  

The second approach was hierarchical clustering of the 115 clones by phenotype, 

followed by visual examination of the distribution of rho and rpoB mutants on the dendrogram.  

We reasoned clones should group phenotypically according to genetic trajectory if the rpoB and 

rho trajectories lead to different Biolog phenotypes.  The results were intriguing, if not 

completely clear (Figure 1.4).  The dendrogram showed that clones with either mutational object 

fell into clusters; that is, clones with rpoB mutations clustered into discrete groups, and likewise 

for clones bearing rho mutations.  In addition, the clusters of rho- and rpoB clones tended to be 

mutually exclusive, as expected given that few clones carried mutations in both genes (Tenaillon 
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et al., 2012).  However, for each mutational object, there were multiple clusters, without a clear 

delineation between the two genetic groups.  

 

DISCUSSION  

Adaptation moves an organism toward a phenotypic optimum, but the question remains 

as to whether there is a single or several genetic trajectories to one or several optima.  

Previously, we evolved 115 separate E. coli lines under thermal stress (42.2°C) for 

approximately one year (2,000 generations), with the intent to measure the diversity of an 

adaptive response.  This experiment revealed that each of the experimental lines improved in 

fitness by an average of 40% across clones isolated from each line, fueled by the accumulation of 

~11 mutations per clone on average (Tenaillon et al., 2012).  The most frequently mutated genes 

were related to DNA transcription, particularly the rpoB and rho genes. Mutations within these 

two genes tended to be negatively associated.   

It is an open question whether these two adaptive trajectories—or indeed, the > 1,200 

mutations observed during the experiment—lead to convergent phenotypes beyond an increased 

ability to grow at 42.2°C.  Accordingly, this study has been designed to measure phenotypic 

diversity among these 115 E. coli clones using Biolog plates.  These plates assess phenotypic 

characteristics by assaying metabolic activities and chemical sensitivities, but they have at least 

three important limitations.  The first is that many of the phenotypes measured by Biolog plates 

may not have a direct relationship to fitness during the evolutionary experiment; they may 

represent pleiotropic effects.  It is nonetheless an important task to characterize the phenotypic 

diversity generated during an adaptive response, as diversity may impact evolvability (Pigliucci, 

2008; Barrick et al., 2010; Woods et al., 2011).  The second is that many of the assays are not 

independent (Figure S1.1).  The lack of independence necessitated orthogonal transformation of 
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the data, but these transformations resulted in the loss of information and lessened the ability to 

associate a discrete phenotype (i.e., a specific Biolog test) to a causative genotype.  Lastly, 

although Biolog technology measures utilization of carbon sources and resistance to inhibitors, 

bacterial growth and metabolism are complex and environment-dependent; as a result, changes 

in OD (or a lack thereof) are not always reliable indicators of bacterial growth and metabolism in 

each assay (Leiby and Marx, 2014).  Nonetheless, changes in OD are consistent within our 

system, both across replicates and on different days, making the Biolog data a useful indicator of 

a phenotypic ‘fingerprint.’ 

   

Restoration, Not Novelty, Predominates in Our Experiment  

Previous experiments have found that a major component of adaptation to a stressful state 

is the restoration of phenotypes to a non-stressed state (Fong et al., 2005; Carroll and Marx, 

2013; Sandberg et al., 2014). Similar to these experiments, we find that the predominant 

phenotypic shift in our experiment was toward a restored state like that of the 37.0°C ancestor.  

Together, full and partial restoration of phenotypes represents 58% of the phenotypic variation 

among our evolved clones (Figure 1.3).  

In contrast, evolutionary novelty is less common, but the proportion of novel phenotypic 

variation varies by definition.  Writ narrowly, novelty may be defined as an evolved state that 

differs from ancestral treatments that do not differ from each other (Table 1.1).  Under this 

definition, novelty accounts for 7% of phenotypic variation (Figure 1.3).  However, novelty can 

also be described more broadly as a phenotype beyond the limits of the two ancestral treatments, 

so that over-restoration and reinforcement also encompass novelty (Figure 1.1).  With this 

broader definition, novelty encompasses ~20% of variation but is still dwarfed by both partial 

and full restoration.   
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This general result—i.e., that novelty is a less frequent component of adaptation than 

restoration—is also consistent with previous studies.  For example, Sandberg et al. (Sandberg et 

al., 2014) have found that just 13% (101 / 804) of parallel gene expression shifts in their thermal 

stress experiment are reinforcements, a classification that can be considered a type of novelty in 

their system.  Likewise, Carroll and Marx (Carroll and Marx, 2013) have documented that cases 

of parallel novelty are rare in their gene expression data, occurring in just five out of thousands 

of genes.   

Generalizing across studies, the predominant effect within microbial evolution experiments 

appears to be restoration, at least in the short term.  As such, this directional response likely 

indicates pressure to compensate for the metabolic and energy requirements of the stress 

response.  In the case of E. coli thermal stress, the immediate response to thermal stress—i.e., the 

heat shock response (HSR)—has been well characterized.  The HSR up-regulates expression of 

the transcription factor σ32, thereby driving increased expression of heat shock and other 

chaperone proteins (Yura et al., 1993) that then help to guide proper folding of crucial cellular 

proteins at high temperature (Richter et al., 2010).  However, while there are myriad studies of 

HSR in the short term (i.e., on the scale of minutes), the sets of genes that contribute to E. coli 

thermal acclimation over the space of hours and days are not well known.  Acclimation may 

prove to be a distinct physiological state, with specific energetic costs that merit further study.  

  

Genetic Associations and the Effects of a Large Deletion 

To assess whether phenotypic variation is driven by genetic variation that accrued during 

our adaptation experiment, we have associated genotypes with phenotypes.  Our association 

analyses do not find a consequent phenotype for all of the mutational objects.  For example, the 

gene ybaL, which was mutated in 65 of 115 lines, does not associate with any phenotypic axes.  
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Nonetheless, we do find 117 genetic associations across eight PCA axes (Table 4), providing 

compelling evidence that at least some of the measured phenotypic variation has underlying 

genetic causations.   

Among the many associations, the ECB_00503_large deletion is particularly surprising, 

because it is the major associate with the first two principal components of variation.  In total, it 

associates with six of the nine principal components under study (Table 1.2), and it exhibits a 

strong signal of phenotypic differentiation when evolved clones are clustered hierarchically 

(Figure 1.4).  The ECB_00503_large deletion is also unique because it is the most common 

single mutation from the thermal evolution experiment; 35 of 115 evolved clones share this 

mutation.  We previously speculated that the deletion has a high mutation rate due to 

homologous recombination between flanking IS insertions (Tenaillon et al., 2012).  No matter 

the mutation rate, it is likely to have been under strong selection to reach high frequency in 35 

independent populations.  

The ECB_00503_large deletion is 71 kb in length and removes 64 genes (Figure 1.5).  

These genes include the cus operon, which has been shown to be down-regulated in response to 

osmotic and heat stress (Gunasekera et al., 2008), as well as the fep and ent operons, which 

regulate iron acquisition and are regulated by the iron-dependent master transcriptional regulator 

Fur (Escolar et al., 1999).  Interestingly, Fur also regulates enzymes of glycolysis and the Krebs 

cycle, as well as enzymes that combat oxidative stress (McHugh et al., 2003). It seems possible 

that the deletion of iron acquisition genes and their Fur binding sites could, in theory, lead to 

pleiotropic effects by affecting the activation state of Fur or its titration on remaining binding 

sites.  Single genes in the region could also play a role in the stress response, such as the 

transcription factors encoded by appY and envY, and the heat shock protease encoded by ompT 

(Figure 1.5).  
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The ECB_00503_large deletion is one in a series of four overlapping deletions that 

permit preliminary dissection of the phenotypic effects of the appY/envY/ompT cluster, the cus 

operon, and the fep/ent operons (Figure 1.5).  For example, the hokE_large mutation removes the 

fep/ent operons, and this mutation associates with both pc2 and pc5 (Table 1.2).  Hence, deletion 

of the fep/ent operon appears to be sufficient to generate some of the phenotypic variation caused 

by the larger deletion.  Similarly, the ECB_00503_small mutation associates with pc4 (Table 

1.2), suggesting that the region near appY/envY/ompT also contributes to phenotypic variation in 

our system.  

  

Two Adaptive Trajectories:  rho vs. rpoB 

One of our motivating questions is whether the two adaptive trajectories defined by rho 

and rpoB lead to identical phenotypes and fitness optima.  To that end, Rodriguez-Verdugo et al. 

(Rodriguez-Verdugo et al., 2014) have documented that the two trajectories (as well as single 

mutations in the rho and rpoB genes) lead to different fitness trade-offs at low temperatures.  

Thus, the two trajectories do differ in phenotype in a low temperature environment.  However, 

Rodriguez-Verdugo et al. (2014) were also unable to detect a difference in relative fitness 

between the two sets of clones at 42.2°C, suggesting that the two trajectories may ascend ‘fitness 

peaks’ of similar height under thermal stress.   

To better understand differences between the two trajectories, we applied MANOVA to 

our phenotypic data.  The analyses revealed significant overall differences between the rho and 

rpoB trajectories and also identified factors that contribute to the difference. Based on these 

factors, the two trajectories appear to differ most substantially in chemical sensitivity but also in 

other aspects (Table 3).   

Unfortunately, we cannot at this point infer the molecular causes of these phenotypic 



 25 

differences. We can, however, posit reasonable hypotheses.  For example, the rho and rpoB 

trajectories differ in their associations with the cls gene; 23 of 30 clones with mutations in rho 

also contain a cls mutation, most of which interrupt cls function.  In contrast, mutations within 

cls and rpoB are associated less often than expected by chance (Tenaillon et al., 2012); only 19 

of 60 rpoB clones contain a cls mutation.  These associations may be important because the cls 

gene produces a membrane lipid (Nishijima et al., 1988), and changes in membrane lipid 

composition are known to alter sensitivity to antibiotics and other chemicals (Handwerger and 

Tomasz, 1985; Arias et al., 2011).  Hence, the two trajectories may differ in chemical sensitivity 

assays in part because of their different level of association with cls mutations.  We note, 

however, that we have no insights as to why mutations within the rho and cls genes are 

statistically positively associated while mutations in rpoB and cls are not (Tenaillon et al., 2012). 

Another reasonable explanation for differences between the rho and rpoB trajectories is 

pleiotropy, because rho and rpoB mutations are expected to have different pleiotropic effects 

(Rodriguez-Verdugo et al., 2014).  rpoB mutants have the capacity to affect the expression of 

every gene, but rho influences termination in only a subset of genes (Peters et al., 2009; 

Hollands et al., 2014). Even if the two trajectories do differ in pleiotropic effects, the phenotypic 

differences we have documented here may not affect fitness under the conditions of the initial 

thermal stress experiment.  However, they are likely to have consequential fitness effects in other 

environments, such as has been shown at low temperature (Rodriguez-Verdugo et al., 2014). 

 

CONCLUSIONS 

Overall, our data reveal that phenotypes converged predominantly toward states like 

those of the unstressed ancestor during our evolution experiment.  This observation supports 

previous studies, which also document that adaptation in laboratory experiments consists largely 
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of restorations toward the wild-type, pre-stress phenotype. Either plasticity or adaptation could 

drive phenotypic shifts, but phenotype-genotype associations confirm that phenotypic change has 

a genetic component.  In contrast to restoration, phenotypic novelty was less common, but did 

explain as much as ~20% of phenotypic variation. It remains an open question whether such 

novelty is merely a pleiotropic side effect of restorative evolution, or whether it provides some 

adaptive function of its own.  Finally, our contrast of the rho and rpoB adaptive trajectories 

shows that the two represent different phenotypic spaces, but the interpretation of their effects is 

complicated by the compounded effects of several overlapping deletions as well as the genetic 

mutations associated with each trajectory.   
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FIGURES 

 

Figure 1.1.  Schematic of acclimation and the potential directional outcomes of adaptation.  

In addition to restored and unrestored states, which reflect the phenotype of the unstressed and 

stressed ancestor, respectively, evolved clones may exhibit partially restored, over-restored or 

reinforced phenotypes.  Not shown are cases of novelty, in which evolved clones differ from 

ancestral treatments that do not differ.   
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Figure 1.2.  Plot of the first two principal components.  The dots represent scores from the 

115 evolved clones, each of which was replicated three times.  The triangles represent the six 

replicates of the REL1206 ancestral strain at 42.2°C; squares denote the ancestor at 37.0°C.  The 

arrows at the top of the plot illustrate directions of change relative to the two ancestral treatments 

(see Figure 1.1 and Table 1.1).  

 

 

 

 

 



 29 

 

Figure 1.3.  Pie chart reporting estimates of the proportion of phenotypic variation 

attributable to directions of adaptation. 
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Figure 1.4.  Hierarchical clustering of evolved lines by phenotypes.  Dendrograms are labeled 

with the presence (black) or absence (white) of each of mutation in the rho gene, the rpoB gene 

and the large deletion (ECB_00503_large). 
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Figure 1.5.  Schematic of the four overlapping deletion events found during the thermal 

evolution experiments.  A) The largest deletion (ECB_00503_large) removes 64 genes and was 

found in 35 of 115 evolved clones.  B) The smaller deletion (ECB_00503_small) was found in 9 

of 115 clones and removed 38 genes.  C) An even smaller variant was found in 1 of 115 clones 

and removed 18 genes.  D) The hokE_large mutation removed 24 genes and was found in 3 of 

115 clones.  All variants are described in Tenaillon et al. (Tenaillon et al., 2012).  In all 

diagrams, numbers at the 5’ and 3’ end of the schematic represent the base position on the 

reference genome (Jeong et al., 2009). 
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TABLES 

Table 1.1:  Categorizations of phenotypic magnitude and direction. 

 
Category Condition1 Number2 

Partially Restored 𝑆!"°"   < 𝑆!   <   𝑆!"°"   
𝑆!"°"   > 𝑆!   >   𝑆!"°"   

151 

Reinforced 𝑆!   <   𝑆!"°"   <   𝑆!"°"   
𝑆!   >   𝑆!"°"   >   𝑆!"°"   

77 

Over-restored 𝑆!   >   𝑆!"°"   >   𝑆!"°"   
𝑆!   <   𝑆!"°"   <   𝑆!"°"   

24 

Unrestored 𝑆!"°"  ≅ 𝑆!   <   𝑆!"°"   
𝑆!"°"  ≅ 𝑆!   >   𝑆!"°"   

230 

Restored 𝑆!"°"  ≅ 𝑆!   <   𝑆!"°"       
𝑆!"°"  ≅ 𝑆!   >   𝑆!"°"   

124 

Novel 𝑆!"°"   ≅  𝑆!"°"   > 𝑆!   
𝑆!   <   𝑆!"°"   ≅   𝑆!"°"     

61 

Uninformative 𝑆!"°"   ≅   𝑆!   ≅   𝑆!"°"   330 
Inconsistent All Remaining 

Relationships3 
38 

 

1 Throughout the table, the symbol ‘≅’ reflects a comparison between two 𝑆  values that are 

similar enough that they do not differ statistically by t-test; however, ‘>’ and ‘<’ refer to 

significantly different values. 

2 Of 1,035 total comparisons (115 clones × 9 principal components) 

3 Mostly resulting from non-transitive pairwise significance  
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Table 1.2:  Significant (q < 0.01) associations between genetic and phenotypic variation.  

 

Principal 
Component Associated Mutational Objects (Number of Affected Clones)1 

1 ECB_00503_large (35), ESCRE1901 (13), trkD (3), dctA (5), yhjK (5), 
folM (2), yccE (2), metB (2) 

2 
ECB_00503_large (35), hokE_large (3), rpoB (76), rssB (10), yraL (2), 
rho (45), pta (5), fbp (7), cls (56), oppD_large (3), rpsR (5), ilvL (30), 
iclR (37), sdaC (2), kpsD (13), nth (3) 

3 (none) 

4 
mrdA (23), ECB_00503_large (35), rpoB (76), fbaB (26), gatY (26), 
yhdJ (2), rho (45), lon (4), gmr (2), rnb (2), ygjF (6), cysH (2), fis (5), 
rpoH (2), ompR (6), pta (5), kpsE (11), metA (4), ECB_00503_small (9) 

5 

dnaG (15), ompF (10), rpoD (36), trkD (3), atoC (2), asnS (8), 
hokE_large (3), dctA (5), yhjK (5), ESCRE1902 (3), yebO (3), nusA 
(12), IS150_insJ (4), ECB_00503_large (35), yghD (2), yccE (2), mrdA 
(23), cls (56) 

6 
cls (56), rpoB (76), rho (45), glpF (13), mreB (12), rpsA (3), 
ECB_00503_large (35), IS3_insF (3), iclR (37), kpsM (7), pta (5), ygjF 
(6), kpsE (11), ycbC (2), nusA (12) 

7 
fbp (7), ompF (10), asnS (8), glpF (13), cysB (6), dctA (5), yhjK (5), 
dnaG (15), cpsG_large (21), dusB (4), ECB_00503_large (35), dnaA (4), 
IS1_insB (2) 

8 fbp (7), rpsR (5), mreB (12), rho (45), folM (2), rssB (10) 

9 

dctA (5), yhjK (5), rho (45), uspA (8), rssB (10), cls (56), gltP (7), nrfG 
(7), iclR (37), glpT (8), kpsD (13), yifB (25), rhoL (2), ilvL (30), 
ECB_01993 (2), ECB_01994 (2), IS186_insL (2), ycbC (2), rpoB (76), 
ompF (10), IS150_insK (2), glyS (2) 

 

1 Mutational objects are organized by p-value, in ascending order.  
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Table 1.3:  Individual Biolog tests that contribute significantly to differences between 

clones that contain rpoB vs. rho mutations.  

 

Biolog Test p-value Category 

4% NaCl 1.04E-25 Chemical Sensitivity 
Sodium Butyrate 2.85E-22 Chemical Sensitivity 
Lincomycin 1.61E-18 Chemical Sensitivity 
Tetrazolium Blue 2.34E-14 Chemical Sensitivity 
Nalidixic Acid 4.49E-10 Chemical Sensitivity 
p-Hydroxy-Phenylacetic 
Acid 

6.83E-10 Carboxylic Acids, Esters, Fatty 
Acids 

Gelatin 1.53E-09 Amino Acids 
D-Sorbitol 3.72E-08 Carbohydrates, Carbohydrate 

Derivatives 
D-Salicin 9.24E-07 Carbohydrates, Carbohydrate 

Derivatives 
Beta-Hydroxy-D,L-
Butyric Acid 

1.08E-06 Carboxylic Acids, Esters, Fatty 
Acids 

Aztreonam 1.46E-06 Chemical Sensitivity 
L-Arginine 1.57E-06 Amino Acids 
D-Malic Acid 1.62E-06 Carboxylic Acids, Esters, Fatty 

Acids 
Quinic Acid 1.90E-06 Carbohydrates, Carbohydrate 

Derivatives 
L-Histidine 2.05E-06 Amino Acids 
Inosine 3.17E-06 Carbohydrates, Carbohydrate 

Derivatives 
L-Pyroglutamic Acid 5.92E-06 Amino Acids 
N-Acetyl-Neuraminic 
Acid 

6.21E-06 Carbohydrates, Carbohydrate 
Derivatives 

pH 5 7.78E-06 Chemical Sensitivity 
Tween 40 1.01E-05 Carboxylic Acids, Esters, Fatty 

Acids 
D-Raffinose 2.70E-05 Carbohydrates, Carbohydrate 

Derivatives 
Bromo-Succinic Acid 3.85E-05 Carboxylic Acids, Esters, Fatty 

Acids 
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SUPPORTING INFORMATION 

Figure S1.1.  Correlations between tests on the Biolog plates.  A) The Pearson correlation 

coefficient between individual tests across all measured clones.  B) The corresponding p-value 

for correlation coefficients.  For both graphs, the axes represent the 94 tests on the Biolog plates.   
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Figure S1.2.  Scree plot of the percent of variation explained by each principal component.  

The line corresponds to significance level, as determined by a bootstrapping heuristic.   
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Figure S1.3.  Q-Q plots for the results of association analyses.  Each line represents one of the 

nine principal components.  The diagonal represents the line for which there is no enrichment for 

tests with low p-values and therefore no evident biological signal. 

 

 

 

 

 

 

 

 

 

 

 



 38 

Table S1.1.  Loadings for each Biolog test in the first nine principal components (PCs).  

Assays related to carbohydrates/carbohydrate derivatives, amino acids, carboxylic 

acids/esters/fatty acids, antibiotics, and other chemical sensitivities are colored yellow, red, dark 

blue, light blue, and purple, respectively. 

Assay PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 
Dextrin -

0.11048
3403 

-
0.07993
2609 

-
0.06439
7521 

-
0.02129
7971 

0.00210
3801 

-
0.00226
0122 

0.20349
6153 

-
0.19020
3693 

0.18330
7624 

D-
Maltose 

-
0.15071
1901 

0.12299
1675 

0.03726
9933 

-
0.02197
806 

-
0.05111
3167 

0.00796
2457 

0.02653
7019 

0.05208
8649 

-
0.01200
4206 

D-
Trehalose 

-
0.14718
3126 

0.10753
4064 

0.06808
5927 

-
0.03104
235 

-
0.01536
4787 

0.03172
0942 

0.05650
47 

0.08120
6026 

-
0.00654
9077 

D-
Cellobios
e 

-
0.06648
6232 

0.05005
1706 

-
0.08266
2719 

0.04654
4123 

-
0.32833
5221 

-
0.05694
6204 

0.03074
7373 

-
0.04707
2819 

-
0.06114
8995 

Gentiobio
se 

-
0.09288
6126 

0.04378
5139 

-
0.01971
328 

-
0.03677
3307 

-
0.05451
254 

-
0.08205
8558 

0.07074
2526 

0.24753
9369 

-
0.11775
7342 

Sucrose -
0.10437
5094 

0.02909
2219 

-
0.06182
4642 

0.07261
9671 

-
0.12389
6229 

-
0.06682
3298 

0.16937
8676 

0.04053
1292 

0.01361
9188 

D-
Turanose 

-
0.08746
904 

0.04481
6898 

-
0.03671
5941 

0.05629
4191 

-
0.32006
7512 

0.09186
6738 

0.01570
7865 

0.06940
5839 

-
0.03279
849 

Stachyose -
0.11098
5114 

0.05410
5569 

-
0.05058
4262 

0.12296
1979 

-
0.15691
6418 

-
0.08203
5661 

0.00489
5939 

0.08408
6062 

-
0.02781
2489 

pH 6 0.00765
9175 

0.03888
2054 

-
0.24058
7386 

-
0.07507
9893 

0.05484
5264 

0.14339
9945 

-
0.17704
3587 

-
0.02514
7561 

0.10934
6312 

pH 5 0.00466
3512 

0.09939
6298 

-
0.13199
3012 

-
0.08592
0827 

-
0.05700
1837 

-
0.04885
9386 

-
0.12443
5407 

-
0.17945
83 

-
0.07135
7177 

D-
Raffinose 

-
0.05905
0527 

-
0.02521
8256 

-
0.04881
5634 

-
0.15051
4153 

-
0.22639
0357 

-
0.15008
6677 

-
0.04764
3946 

-
0.11097
9995 

-
0.00502
5153 

Alpha-D-
Lactose 

-
0.15501
1323 

0.09201
6001 

0.03064
274 

-
0.04304
5848 

-
0.04478
1366 

0.02291
5722 

0.06485
0718 

-
0.04460
6319 

-
0.04826
2726 

D-
Melibiose 

-
0.16238
6374 

0.10266
8404 

0.03094
6696 

-
0.01677
2087 

0.00029
4402 

0.01316
2476 

0.10174
1052 

0.02083
7588 

0.01216
0659 

Beta-
Methyl-

-
0.09923

-
0.15805

-
0.00796

-
0.19954

-
0.12282

0.00296
7244 

0.03670
9713 

0.08593
9922 

-
0.04787
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D-
Glucoside 

4145 3636 9701 5039 0152 5208 

D-Salicin -
0.09798
9123 

-
0.06103
3444 

-
0.13724
706 

0.10530
617 

-
0.04397
0507 

-
0.05300
7921 

0.13414
9937 

-
0.10936
2317 

-
0.08221
6633 

N-Acetyl-
D-
Glucosam
ine 

-
0.15905
3955 

0.10980
1576 

0.03663
1214 

-
0.06306
4518 

0.01795
8338 

-
0.02507
3451 

0.04419
7602 

0.02034
417 

-
0.04159
7641 

N-Acetyl-
Beta-D-
Mannosa
mine 

-
0.11675
1429 

-
0.03925
5556 

-
0.02374
0678 

-
0.07994
6261 

-
0.19865
4003 

0.08324
1036 

0.03854
2577 

-
0.07638
2616 

0.11656
4294 

N-Acetyl-
D-
Galactosa
mine 

-
0.16307
0728 

0.08038
7996 

0.02525
9133 

-
0.06260
1364 

0.03705
7037 

-
0.00733
3848 

0.04002
6458 

-
0.00235
4993 

-
0.02698
0354 

N-Acetyl 
Neuramin
ic Acid 

-
0.13608
1845 

0.14719
6516 

0.04452
2958 

-
0.07333
3233 

-
0.07077
8217 

-
0.04052
4823 

-
0.03644
5285 

0.11391
6254 

-
0.01966
5573 

1% NaCl -
0.01611
9706 

0.10189
8183 

-
0.20903
3009 

-
0.11759
9238 

-
0.05048
1657 

0.10650
7387 

-
0.11949
9318 

0.04654
0377 

0.05881
6772 

4% NaCl 0.00557
2637 

0.14977
7129 

-
0.06643
5564 

-
0.06895
5398 

-
0.05666
6507 

-
0.27830
1902 

-
0.08201
4324 

0.09056
7908 

0.23855
689 

8% NaCl 0.03106
9191 

0.03257
9853 

-
0.14826
1618 

0.00086
9661 

0.03588
8728 

0.02153
8268 

0.07716
2835 

-
0.12517
7091 

0.19445
7833 

Alpha-D-
Glucose 

-
0.15172
2118 

0.11981
42 

0.05461
2159 

0.00278
3161 

-
0.03034
3863 

0.02974
6311 

0.05055
6013 

0.01881
8006 

-
0.06749
0872 

D-
Mannose 

-
0.15642
3597 

0.11682
2182 

0.02132
4684 

-
0.00940
9756 

0.02133
9331 

-
0.01659
9695 

0.10473
6724 

-
0.01550
2084 

0.08427
1972 

D-
Fructose 

-
0.16079
1579 

0.07279
7327 

0.05341
6396 

-
0.03505
431 

0.01593
0028 

0.02769
2383 

0.06462
1523 

0.03631
6146 

-
0.06124
4296 

D-
Galactose 

-
0.15291
7466 

0.11483
6932 

0.00758
9047 

-
0.02134
865 

0.02300
6652 

-
0.02646
1521 

0.12601
1769 

-
0.03656
5167 

0.02215
7821 

3-Methyl 
Glucose 

-
0.11269
4606 

-
0.12002
8109 

-
0.04507
0185 

-
0.11505
1385 

-
0.05869
6925 

-
0.08583
2969 

0.00561
3238 

0.07481
4513 

-
0.19545
8934 

D-Fucose -
0.13146
3001 

-
0.06298
6375 

0.00287
8383 

-
0.14139
8605 

0.09267
4591 

0.00533
9505 

0.04921
7835 

0.03746
9257 

-
0.08035
5369 

L-Fucose -
0.13739
0607 

0.01195
0346 

0.06248
1594 

-
0.02336
2496 

-
0.04341
0257 

0.02174
6078 

-
0.17834
4735 

-
0.09429
9535 

0.08956
5452 



 40 

L-
Rhamnos
e 

-
0.16289
159 

0.08959
4799 

0.02783
7041 

0.00823
1337 

0.00176
9247 

0.00500
601 

-
0.00121
6912 

-
0.05411
1459 

0.07147
7782 

Inosine -
0.15210
4275 

0.10156
4967 

0.02159
7893 

-
0.01620
283 

0.09460
8753 

-
0.06795
828 

0.01036
3192 

-
0.04756
7667 

0.04843
4695 

1% 
Sodium 
Lactate 

-
0.03648
7279 

0.14770
6656 

-
0.03013
8546 

-
0.07390
6751 

-
0.01432
7729 

0.16871
0579 

-
0.21715
6435 

0.23968
8505 

0.01897
1193 

Fusidic 
Acid 

0.00099
1327 

0.11253
0948 

-
0.21933
9015 

-
0.09832
4201 

-
0.06551
3707 

0.06026
1919 

0.17805
6453 

0.10128
4881 

0.06529
367 

D-Serine 
(Sensitivit
y) 

0.04246
5258 

0.11918
858 

-
0.23592
1044 

0.04209
3526 

0.01040
3628 

-
0.05181
1061 

0.01435
3785 

0.02964
5496 

0.09025
6016 

D-
Sorbitol 

-
0.12399
7692 

0.12291
0642 

0.04871
6396 

-
0.00439
4991 

0.04135
9367 

-
0.03943
4974 

0.01781
9748 

0.07704
7131 

0.06157
7525 

D-
Mannitol 

-
0.15975
6995 

0.08885
2857 

0.04579
6085 

-
0.02275
0531 

0.02221
8509 

0.04894
584 

0.08568
5993 

0.02831
566 

-
0.01878
8243 

D-
Arabitol 

-
0.12775
5707 

-
0.05840
7015 

-
0.09737
7157 

0.04545
0302 

-
0.07159
3247 

-
0.05589
3701 

0.00645
9632 

0.10864
3681 

-
0.08595
5524 

myo-
Inositol 

-
0.15371
4484 

-
0.03690
9334 

-
0.04788
4947 

-
0.01283
3616 

0.08037
3571 

0.00737
0235 

0.04530
3483 

0.05130
3988 

-
0.10053
5615 

Glycerol -
0.13817
1848 

-
0.00416
8348 

-
0.00612
1412 

0.01978
894 

0.03531
8569 

-
0.01843
1022 

0.03285
2311 

-
0.15703
6237 

0.14354
9175 

D-
Glucose-
6-
Phosphate 

-
0.15982
1841 

0.06427
5416 

0.03108
2377 

0.09004
7306 

0.08936
5092 

0.04145
9826 

-
0.01691
3337 

-
0.05505
321 

0.00151
253 

D-
Fructose-
6-
Phosphate 

-
0.16211
8743 

0.07864
157 

0.02183
5238 

0.07878
6737 

0.09876
2441 

0.02098
9702 

-
0.02125
3611 

-
0.05834
7574 

-
0.01862
5663 

D-
Aspartic 
Acid 

-
0.11539
4887 

-
0.07677
3385 

-
0.01381
3691 

-
0.02681
5355 

0.12956
4396 

-
0.08493
986 

0.07652
5859 

0.06677
7254 

-
0.07792
1832 

D-Serine 
(Metaboli
sm) 

-
0.15829
8966 

0.02358
1176 

0.01495
9605 

0.07996
4651 

0.11708
0411 

0.04500
5704 

-
0.08368
3498 

-
0.12463
8947 

-
0.01032
8087 

Troleando
mycin 

0.01938
5892 

0.06544
4398 

-
0.25589
929 

-
0.04853
6628 

0.09976
6626 

0.15168
6988 

-
0.13251
3793 

0.10370
5238 

0.04150
884 

Rifamyci
n SV 

-
0.01038
9667 

0.07368
6596 

-
0.13322
1344 

-
0.06057
465 

0.04859
8507 

0.25489
6274 

-
0.19831
5779 

0.19786
3641 

0.06754
4678 
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Minocycli
ne 

0.04357
0132 

-
0.00323
9375 

-
0.23783
0462 

0.02758
7814 

0.08292
1196 

0.17158
4148 

0.05697
7965 

-
0.01240
2329 

0.00439
0089 

Gelatin -
0.06140
0718 

-
0.11826
2661 

-
0.08703
3548 

0.23713
8705 

0.03943
0209 

0.03617
4821 

-
0.05500
208 

0.05979
4367 

-
0.08484
2338 

Glycyl-L-
Proline 

-
0.09512
1391 

-
0.15171
5332 

-
0.00669
3965 

-
0.11023
4376 

-
0.05110
9641 

-
0.00010
6312 

-
0.20327
0326 

-
0.06943
9341 

-
0.03995
9133 

L-Alanine -
0.07232
3327 

-
0.22946
4648 

-
0.02470
67 

-
0.15178
9292 

-
0.01965
3974 

-
0.01679
4719 

-
0.09658
1187 

0.01877
6724 

-
0.02800
9075 

L-
Arginine 

-
0.00460
1946 

-
0.16388
3056 

-
0.14146
8578 

0.24267
9949 

-
0.11706
5366 

-
0.09212
4957 

-
0.08230
409 

0.02770
616 

0.00837
7801 

L-
Aspartic 
Acid 

-
0.08125
8598 

-
0.21238
7388 

-
0.02844
3909 

-
0.15480
3821 

-
0.00547
4261 

0.09174
6091 

0.00354
8809 

0.00776
3161 

0.13393
0654 

L-
Glutamic 
Acid 

-
0.10070
4127 

-
0.16017
0122 

-
0.00856
7273 

-
0.10863
631 

-
0.07351
2523 

0.06905
9409 

-
0.19911
4818 

-
0.08346
6025 

0.10002
3485 

L-
Histidine 

-
0.10161
2112 

-
0.17098
6326 

-
0.05319
2171 

0.01117
5326 

0.13533
7419 

-
0.00693
0644 

-
0.02826
521 

0.10715
7486 

-
0.16562
8401 

L-
Pyrogluta
mic Acid 

-
0.03065
2784 

-
0.14683
5395 

-
0.13757
4951 

0.19606
1634 

-
0.19526
8713 

-
0.12894
764 

-
0.05038
4034 

-
0.00326
4839 

0.00732
8994 

L-Serine -
0.16035
6204 

0.03662
8796 

0.01100
9829 

0.04605
5878 

0.05761
1735 

0.00787
0135 

-
0.15124
4779 

-
0.11080
1529 

0.05142
1055 

Lincomyc
in 

0.01451
5896 

0.10568
252 

-
0.15800
5761 

-
0.14117
68 

0.13685
3408 

-
0.22430
0354 

0.00669
4112 

-
0.01557
1755 

0.02538
3422 

Guanidin
e HCl 

0.00648
5782 

0.06747
326 

-
0.27679
0186 

-
0.09121
4437 

0.04006
0868 

0.07013
7361 

-
0.01852
9314 

0.12835
3304 

0.15414
0979 

Niaproof 
4 

0.02608
5875 

-
0.05432
1348 

-
0.18812
5016 

0.02761
8125 

0.08688
0605 

0.08446
3191 

-
0.02931
0389 

-
0.10949
0413 

-
0.07364
5468 

Pectin -
0.11463
2361 

0.05696
1021 

0.05892
4162 

-
0.02514
4213 

-
0.15286
9382 

-
0.01182
2711 

-
0.10753
884 

0.23196
326 

-
0.05892
9486 

D-
Galacturo
nic Acid 

-
0.12026
995 

0.02381
434 

0.02837
3683 

0.05168
3417 

0.11097
9427 

0.09141
1154 

-
0.07124
0229 

-
0.04105
3377 

-
0.06799
7495 

L-
Galactoni
c Acid 
Lactone 

-
0.03895
9674 

-
0.09650
9577 

-
0.05915
8023 

0.09349
6551 

0.24909
3952 

-
0.17153
9604 

-
0.13628
1347 

0.08208
9674 

-
0.12243
0178 

D- - 0.01580 - 0.08746 0.19216 0.03989 0.01569 - -
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Gluconic 
Acid 

0.15047
69 

6856 0.01224
246 

5528 5768 3146 2126 0.07025
6518 

0.03576
0981 

D-
Glucuroni
c Acid 

-
0.15745
313 

0.06389
3629 

0.02516
1892 

0.09243
7206 

0.12706
1259 

0.02451
7971 

-
0.09354
7155 

-
0.09343
818 

0.03388
5842 

Glucuron
amide 

-
0.16331
874 

0.05728
4762 

0.00577
1775 

0.09147
9815 

0.07686
0415 

-
0.00328
344 

-
0.03768
6264 

-
0.08277
8465 

0.04351
1181 

Mucic 
Acid 

-
0.12577
0516 

-
0.03382
4528 

0.01021
8218 

0.00078
5491 

-
0.02366
0289 

0.01943
8227 

-
0.19786
2449 

-
0.19241
7528 

0.14967
6608 

Quinic 
Acid 

-
0.04537
4814 

-
0.09984
5187 

-
0.13659
1944 

0.24741
578 

-
0.12331
9757 

-
0.09951
1282 

-
0.05421
8521 

0.06057
4466 

-
0.05864
8886 

D-
Saccharic 
Acid 

-
0.04523
3472 

-
0.16522
0762 

-
0.02322
0976 

-
0.10811
6836 

-
0.04947
6738 

-
0.09176
5974 

-
0.11337
8581 

-
0.14705
9962 

0.07973
1424 

Vancomy
cin 

-
0.00538
8842 

0.04948
7293 

-
0.14810
7292 

-
0.06564
8829 

0.01608
9889 

0.02916
2066 

-
0.02823
9061 

-
0.09236
7522 

-
0.31058
2513 

Tetrazoliu
m Violet 

-
0.02117
1058 

0.06337
3896 

-
0.20946
7385 

-
0.09057
6414 

0.03459
5543 

0.17699
8256 

0.04689
3306 

-
0.07833
3888 

-
0.14658
7283 

Tetrazoliu
m Blue 

0.01021
0435 

0.09897
8792 

-
0.14576
5378 

-
0.14852
0391 

0.08517
8365 

-
0.28764
9448 

-
0.03037
3637 

-
0.03641
5498 

-
0.02306
9975 

p-
Hydroxy-
Phenylace
tic Acid 

-
0.02860
5801 

-
0.06961
8796 

-
0.01556
8506 

0.20128
7303 

-
0.05120
792 

-
0.00139
609 

-
0.28066
0505 

-
0.08696
074 

0.02941
3182 

Methyl 
Pyruvate 

-
0.10117
8866 

-
0.01272
285 

0.03614
807 

0.00669
0493 

-
0.07782
9208 

0.04851
2835 

-
0.13042
1053 

-
0.07518
3889 

-
0.04564
9546 

D-Lactic 
Acid 
Methyl 
Ester 

-
0.09273
4953 

-
0.00705
1542 

-
0.02175
2931 

-
0.18060
4863 

-
0.25702
1598 

-
0.06050
2682 

-
0.13093
6243 

-
0.11146
7679 

0.00819
1788 

L-Lactic 
Acid 

-
0.15392
1764 

0.03485
8428 

0.03207
6534 

0.04210
4528 

0.06885
451 

0.09448
5545 

-
0.19254
4993 

-
0.09599
3247 

-
0.00292
5699 

Citric 
Acid 

-
0.11763
2486 

-
0.03416
8576 

-
0.06561
4346 

0.17513
2145 

-
0.04413
0245 

-
0.04615
4555 

0.02099
2181 

0.12585
0065 

-
0.04309
7517 

Alpha-
Keto-
Glutaric 
Acid 

-
0.09569
7568 

-
0.18266
6259 

-
0.03562
7117 

-
0.04274
268 

-
0.00760
5396 

0.05059
5262 

0.06489
2173 

0.13626
1364 

0.09820
8574 

D-Malic 
Acid 

-
0.07473
3031 

-
0.17803
4401 

-
0.06519
2355 

0.01586
7975 

0.08816
9784 

0.08844
5034 

0.12229
4006 

0.08536
924 

0.20916
6304 
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L-Malic 
Acid 

-
0.07853
7132 

-
0.18421
1834 

-
0.03315
4016 

-
0.03405
9761 

-
0.02623
3869 

0.07941
2993 

0.12837
6917 

0.02549
308 

0.30080
0079 

Bromo-
Succinic 
Acid 

-
0.11058
2483 

-
0.16792
5461 

-
0.03383
5135 

-
0.04272
2674 

0.07395
9993 

0.12754
9617 

0.17523
6733 

0.07162
1397 

0.16180
1423 

Nalidixic 
Acid 

0.00672
083 

0.03854
1528 

-
0.22267
2322 

0.00387
5932 

-
0.10669
2337 

0.15570
5757 

0.19315
6981 

-
0.17394
9428 

-
0.14783
6349 

Lithium 
Chloride 

-
0.00976
5624 

0.09201
5381 

-
0.11752
6337 

-
0.09238
7043 

0.07497
5576 

-
0.16995
4816 

-
0.01692
385 

-
0.08522
0043 

-
0.07955
573 

Potassium 
Tellurite 

0.01888
1882 

0.01365
4884 

-
0.22964
4151 

0.09300
7795 

0.10594
4598 

-
0.00254
4017 

-
0.01046
5776 

0.03581
3926 

-
0.09800
2784 

Tween 40 -
0.09371
8219 

-
0.05967
4287 

-
0.07863
1575 

0.21433
0645 

-
0.06637
1889 

-
0.02435
3977 

0.00340
4443 

0.10563
4834 

0.04980
9214 

Gamma-
Amino-
Butyric 
Acid 

-
0.10480
2743 

0.01993
0752 

-
0.05764
9829 

0.18956
831 

-
0.02125
3849 

-
0.03296
82 

-
0.09609
0065 

0.10795
2808 

-
0.00227
7036 

Alpha-
Hydroxy-
Butyric 
Acid 

-
0.08324
6373 

-
0.13168
8063 

-
0.07027
1786 

0.01586
7539 

-
0.00368
9239 

-
0.09893
8493 

0.16705
1418 

-
0.08166
1232 

0.14671
8533 

Beta-
Hydroxy-
D,L-
Butyric 
Acid 

-
0.03834
2197 

-
0.02743
0448 

-
0.05195
4608 

0.09847
1214 

0.11203
0066 

-
0.27153
053 

0.00064
4185 

0.21281
2167 

0.20985
256 

Alpha-
Keto-
Butyric 
Acid 

-
0.06826
1598 

0.02570
8515 

-
0.06775
7935 

0.22527
7998 

0.08467
1682 

0.03858
3951 

0.07300
3627 

-
0.08134
7416 

0.01778
8787 

Acetoacet
ic Acid 

-
0.08402
5384 

-
0.18972
94 

-
0.03091
1204 

-
0.15546
6071 

0.09182
1145 

-
0.03567
2261 

0.06785
792 

0.03715
9227 

-
0.12766
7797 

Propionic 
Acid 

-
0.05543
1446 

-
0.16069
8297 

-
0.05259
1188 

-
0.10411
1808 

0.17624
5961 

-
0.18377
2329 

0.00029
9206 

0.03320
1008 

-
0.02301
9756 

Acetic 
Acid 

-
0.06053
5182 

-
0.20117
3844 

0.00564
9263 

-
0.17194
0579 

0.05793
5186 

0.00384
6871 

-
0.04642
6597 

0.09182
6908 

-
0.15714
8681 

Formic 
Acid 

-
0.12472
3875 

-
0.11213
4132 

-
0.02841
3545 

-
0.10474
5795 

0.01711
8454 

0.00654
2333 

0.00606
774 

-
0.01772
0188 

-
0.15756
6614 

Aztreona
m 

0.01442
2589 

0.03825
7278 

-
0.19953
4802 

0.01272
401 

-
0.04833
2946 

-
0.10535
0961 

0.13480
3494 

-
0.27895
9594 

-
0.14782
2542 



 44 

Sodium 
Butyrate 

0.00409
2425 

0.10220
6829 

-
0.08589
2021 

-
0.11485
2623 

0.08310
8036 

-
0.35002
2761 

-
0.13357
7685 

0.00191
0982 

0.12005
8474 

Sodium 
Bromate 

-
0.01404
1743 

0.08535
397 

-
0.13403
455 

-
0.02569
6714 

-
0.08064
0025 

0.03022
9106 

-
0.00452
4054 

0.16852
8408 

0.01092
0265 
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Table S1.2.  The number and type of directional comparisons found in each principal 

component, along with the proportion of phenotypic variance (PV%) captured by each 

axis.  

Category1 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 
 The full dataset of 115 clones 
Partial 49 8 0 0 18 18 31 0 31 
Unrestored 6 52 0 0 76 53 32 1 20 
Restored 28 4 0 0 0 3 6 51 31 
Reinforced 0 44 0 0 20 5 7 0 3 
Inconsistent 1 0 0 0 0 4 2 0 4 
Uninformati
ve 29 7 103 64 0 32 33 52 14 
Novel 0 0 12 51 0 0 0 0 0 
Over 2 0 0 0 1 0 4 11 12 

PV% 
0.316

0 0.1064 0.0813 0.0502 
0.0350

3 
0.0291

7 
0.0246

4 
0.0220

1 
0.0216

4 
 The dataset of 67 clones without a deletion overlapping ECB_00503_large 
Partial 36 4 0 0 3 13 0 51 NS1 

Unrestored 5 23 0 0 26 2 36 7 NS 
Restored 11 1 0 0 2 26 0 0 NS 
Reinforced 0 12 0 0 31 2 7 0 NS 
Inconsistent 0 0 0 0 0 0 0 0 NS 
Uninformati
ve 14 27 53 10 5 12 20 1 

NS 

Novel 0 0 14 57 0 0 0 0 NS 
Over-
restored 1 0 0 0 0 12 4 8 

NS 

PV% 
0.348

6 
0.0864

2 
0.0822

8 
0.0480

4 
0.0359

3 
0.0342

6 
0.0290

7 
0.0250

3 NS 
 

1 The directional categories are described Table 1.1 and Figure 1.1.  

2 NS = not significant.  With the reduced data set, only the first 8 principal components had a 

significant eigenvector, and so the ninth component was not considered.   
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CHAPTER 2 - Antagonistic pleiotropy and the compensatory landscapes of distinct 
adaptive trajectories 

 

ABSTRACT 

 Adaptation rarely produces perfect solutions.  Instead, it proceeds through a series of 

mutational steps that often produce pleiotropic side effects.  Hence, a crucial component of 

adaptation is compensating for the antagonistic effects of preceding mutations.  To investigate 

how different degrees of antagonistic pleiotropy shape the dynamics of adapting populations, we 

performed temporal sequencing of eight populations of Escherichia coli at 11 time points 

throughout 2,000 generations of adaptation to high temperature (42.2°C).  The eight populations 

represent two different pathways to high-temperature adaptation typified by mutations in rpoB, 

which encodes a subunit of the RNA polymerase complex, and rho, which encodes a major 

transcriptional terminator.  Previous work has shown that rpoB and rho differ in their pleiotropic 

effects, with single mutations in rpoB causing more gene expression shifts than single mutations 

in rho.  We therefore predicted that rpoB populations should accumulate more mutations than 

rho populations due to a greater capacity for compensatory evolution.  We also predict that the 

greater number of mutations increase the amount of clonal interference in rpoB populations 

relative to rho populations.  By reconstructing and quantifying the mutational trajectories of our 

populations, we found support for both predictions:  rpoB populations indeed accumulate more 

mutations and experience greater clonal interference than their rho counterparts. 
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INTRODUCTION 

 Laboratory evolution experiments provide a powerful way to test both new and 

longstanding questions about how organisms evolve.  In such studies, the use of high-throughput 

DNA sequencing and model microbial organisms, such as the bacterium Escherichia coli or the 

yeast Saccharomyces cerevisiae, facilitates a deeper and biologically meaningful understanding 

of the genomic changes underpinning adaptation to new environments.  Perhaps the most 

exciting prospect of experimental microbial evolution is the ability to freeze populations at 

intermediate stages of adaptation, creating a sort of “fossil record” (Lenski and Travisano, 1994).  

These evolutionary time points can later be revived for a variety of purposes—from sequencing 

to fitness assays to replaying evolution—and studies of saved evolutionary time points have 

illuminated the evolutionary dynamics of microbial systems.  For instance, they have captured 

the emergence and maintenance of ecological interactions (Le Gac et al., 2012; Herron and 

Doebeli, 2013), clonal interference among beneficial mutations (Kao and Sherlock, 2008; Lang 

et al., 2013; Frenkel et al., 2014), diminishing returns epistasis (Chou et al., 2011; Khan et al., 

2011; Kryazhimskiy et al., 2014), the dynamic maintenance of different phenotypes (Traverse et 

al., 2013), and long-term changes in population fitness over time (Wiser et al., 2013).  They have 

even hinted at the predictability and reproducibility of adaptation (Blount et al., 2008; Lang et 

al., 2013; Levy et al., 2015).   

Here we utilize evolutionary time points to study the potential effects of compensatory 

evolution on the dynamics of adaptation.  Our study relies on a previous experiment by Tenaillon 

et al. (2012) in which 115 populations of E. coli were evolved at high temperature for 2,000 

generations (Tenaillon et al., 2012).  At the end of the experiment, a single clone was sequenced 

from each population to describe the genetic outcome of evolution in independent populations.  

Intermediate time points were saved from each of the 115 populations at generations 100, 200, 
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and every 200 generations thereafter.   

 A particularly important facet of the experiment of Tenaillon et al. (2012) was the 

identification of two adaptive pathways to high-temperature adaptation.  These pathways were 

typified by mutations in rpoB and rho, which encode an RNA polymerase subunit and a 

transcriptional terminator, respectively (Tenaillon et al., 2012).  Statistically, mutations in rpoB 

and rho were less likely to occur together in a clone than expected.  This pattern suggests 

negative epistasis between the two genes, possibly due to their related functional impacts on 

transcription (Tenaillon et al., 2012).  Further work has shown that clones possessing certain 

rpoB and rho mutations differ in both fitness tradeoffs at low temperatures (Rodríguez-Verdugo 

et al., 2014) and phenotypic signatures (Hug and Gaut, 2015). 

Although they may both directly impact the process of transcription, mutations in rpoB 

and rho are likely to differ in their pleiotropic side effects, too.  In theory, rpoB mutations have 

the potential to affect the expression of every gene in the genome directly, because it encodes 

part of the core RNA polymerase complex.  By contrast, the Rho protein influences the 

transcriptional termination of between 200 and 2,000 genes (Peters et al., 2009; Hollands et al., 

2014).  Hence, mutations in rho are potentially pleiotropic, but perhaps not to the same extent as 

mutations in rpoB.   

Previous work has addressed the extent of pleiotropic effects by engineering single 

mutations into the rpoB and rho genes and then measuring their effects on fitness and gene 

expression.  The work has examined four single mutants in rpoB (I572F, I572L, I572N, I966S) 

and four mutations in rho (I15F, I15N, A43T, T231A), all of which arose during the thermal 

stress experiment.  Analyses have shown that the fitness benefits of single rpoB and rho 

mutations vary.  All four rpoB mutations are beneficial at 42.2°C, with an average fitness 

advantage of ~20% relative to the REL1206 ancestor (Rodríguez-Verdugo et al., 2014).  
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However, rho mutations have a less straightforward effect on fitness, with two of the four (A43T 

and T231A) conferring ~25% fitness benefits at 42.2°C, and two others (I15F and I15N) being 

effectively neutral (Rodríguez-Verdugo et al., 2014; González-González et al., in prep.).  This 

last fact is surprising, because I15N was observed in 15 out of 115 populations of the thermal 

stress experiment and is thus unambiguously adaptive by the criterion of parallelism. 

Just as single rpoB and rho mutants differ in fitness, they also confer different effects on 

gene expression (GE).  GE in rpoB and rho mutants has been compared to GE in REL1206 at 

42.2°C, demonstrating that rpoB and rho mutations affect expression in a common set of 957 

genes—23% of the genome.  While they affect a similar core group of genes, they also have 

differential effects.  For example, rho mutations affect expression in a set of 183 genes that are 

unaffected by rpoB mutants.  Similarly, 769 genes are differentially expressed only in the rpoB 

mutants.  These differences in the number of differentially expressed genes (183 vs. 769) suggest 

that rpoB mutations cause a greater number of pleiotropic side effects (Rodríguez-Verdugo et al., 

2016; González-González et al., in prep.). 

Overall, fitness and GE data suggest that the benefits of single rpoB and rho mutations 

generally outweigh potentially deleterious pleiotropic effects on GE.  Nonetheless, the greater 

potential for pleiotropic side effects in populations that traverse an rpoB-mediated adaptive 

pathway may expose a larger space of possible compensatory mutations—i.e. genetic changes 

that are adaptive because they correct deleterious side effects of earlier mutations.  Indeed, 

previous work has found evidence for compensation through additional changes to the rpoB gene 

itself (Tenaillon et al., 2012; Rodríguez-Verdugo et al., 2014), and to other genes, such as the flg 

operon that regulates flagellar motility (Rodríguez-Verdugo et al., 2016).  The flg operon 

exhibits the kind of GE dynamics that one might expect from compensatory evolution.  The flg 

operon is downregulated in the REL1206 ancestor under heat stress.  Single mutations in rpoB 
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restore its expression to pre-stress levels, but this expression is likely an energetically costly 

change given that flagellar motility may be unnecessary under the conditions of the experiment.  

Following 2,000 generations of high-temperature evolution, however, the flg operon is once 

again downregulated in some evolved clones due to presumably compensatory mutations.  This 

pattern of GE change over time suggests both that re-expression of the flg operon is a costly side 

effect of a beneficial mutation in rpoB and that subsequent evolution compensates for 

antagonistic pleiotropy by again downregulating flg expression via other mutational events 

(Rodríguez-Verdugo et al., 2016). 

Based on these observations, we hypothesize that rpoB mutations, while strongly 

beneficial overall, cause more antagonistic side effects.  As a result, we predict that populations 

that contain rpoB mutations have access to a larger pool of compensatory mutations.  If this is 

true, it leads to two major predictions.  First, if mutations in rpoB and rho are among the first 

steps a population takes during adaptation, rpoB populations should accumulate more mutations 

than rho populations over the course of adaptation, because they have access to more beneficial 

compensatory genetic changes (Figure 2.1).  Second, rpoB populations should experience more 

clonal interference than rho populations due to competition among a greater number of 

beneficial compensatory mutations (Figure 2.1).  Here we test these predictions by sequencing 

temporal samples from the evolution experiment of Tenaillon et al. (2012) (Tenaillon et al., 

2012), with the larger goal of elucidating features of the relationship between pleiotropy and 

compensatory evolution. 

 

MATERIALS AND METHODS 

Evolution Experiment 

Full details of the thermal stress experiment are reported elsewhere (Tenaillon et al., 
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2012), but for clarity, we describe it here.  Following previously established methods (Bennett 

and Lenski, 1993), a loop was used to inoculate 10 mL of Luria-Bertani medium (LB) with a 

freezer stock of E. coli B possessing a neutral Ara- marker (REL1206), and the culture was 

grown overnight at 37.0°C.  A 0.1 mL aliquot of this culture was plated onto an LB plate and 

grown at 37.0°C, and individual colonies from this plate were used to inoculate each of 115 

independent culture tubes containing 10 mL LB.  These cultures were grown overnight at 

37.0°C, transferred in a 1:100 dilution to 9.9 ml of Davis minimal medium supplemented with 25 

mg/L glucose (DM25), and grown overnight again at 37.0°C.  Thereafter, each culture was 

transferred daily into fresh media via a 1:100 dilution and maintained in a shaking water bath at 

42.2°C for 2,000 generations after the application of thermal stress.  Throughout the experiment, 

population samples of each of the 115 lines were frozen at regular intervals (generations 100, 

200, and every 200 generations thereafter, up to 2,000).  At the end of the 2,000-generation 

experiment, one clone was isolated from each of the 115 populations for genome sequencing, 

and these clones were assessed for their fitness relative to the ancestor at 42.2°C (Tenaillon et 

al., 2012).  Note that the ancestral REL1206 clone had been propagated previously at 37.0°C for 

2,000 generations in DM25 and was thus well adapted to the growth medium (DM25), making 

temperature (42.2°C) the major stress of the experiment.  For additional information, including 

relative fitness values and a table of genotypes, please refer to Tenaillon et al. (2012) (Tenaillon 

et al., 2012). 

 

Populations, DNA Extraction and Sequencing 

We identified eight populations for sequencing based on the genotype of their evolved 

clones.  We chose four populations with mutations in rpoB and four with mutations in rho.  In 

addition, the eight populations were selected to include a range of specific mutations (i.e. rpoB 
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I966S, rho 15N).  The line numbers referenced in this work correspond to Tenaillon et al. (2012) 

(Tenaillon et al., 2012).  We chose to study Lines 3, 9, 16, 26, 33, 56, 60, and 82. 

For each of our eight populations, we inoculated each frozen time point population into 

four separate culture tubes containing 10 mL DM25 and incubated them in an Innova 3100 water 

bath shaker (New Brunswick Scientific) overnight at 42.2°C and 120 RPM.  Cells from all four 

tubes were pooled, and genomic DNA was extracted from these samples using Wizard Genomic 

DNA Purification Kits (Promega).  Genomic DNA libraries were prepared using the TruSeq 

DNA PCR-Free HT Library Preparation Kit (Illumina).  The 88 (8 lines × 11 time points) 

samples were multiplexed and sequenced on one lane of an Illumina HiSeq 3000 at the 

Bioinformatics Core Facility at the UC Davis Genome Center.  All sequence data have been 

submitted to the NCBI Sequence Read Archive (Accession number:  PRJNA339569). 

We called mutations and their frequencies using breseq (Deatherage and Barrick, 2014) 

in polymorphism mode.  The E. coli B REL606 genome was used as a reference.  Six regions 

(topA, spoT, glmU/atpC, pykF, yeiB, and the rbs operon) harbor mutations that differ between 

REL606 and the REL1206 strain used to initiate our evolution experiment (Barrick et al., 2009; 

Tenaillon et al., 2012), so these were excluded from our analyses.  Plotting mutation frequencies 

over the 11 time points revealed a few obvious anomalies:  certain mutations appeared to be 

fixed or extinct for several time points, only to go extinct or become fixed later.  We manually 

corrected the frequencies of these anomalous points using pileup information for these mutations 

in samtools 1.3 with default nucleotide quality score cutoffs (Li et al., 2009).  Frequencies were 

estimated by dividing number of mutant nucleotide calls at that position by the total number of 

nucleotide calls at that position.  Additionally, multiple mutations called within the same region 

in very close proximity (<10 nucleotides apart) and following identical trajectories were 

manually collapsed into single mutations. 
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Larger structural mutations (i.e. duplications and deletions) are reported by breseq using 

novel junction information.  However, the precise nature of the junction sequences (e.g. whether 

they occur cleanly at both ends or in regions of repetitive sequence), together with the difficulty 

of determining these events in mixed populations from sequencing coverage, makes it difficult to 

estimate meaningful mutational frequencies over time.  Therefore, these events were excluded 

from our construction of mutational trajectories.  We did, however, include these events in our 

assessment of mutational numbers.  We did so by calling large duplications and deletions in each 

population by comparing unique reads (mapping quality >5 in samtools 1.3) across 10 kb 

windows of the genome at generation 2,000, when they would most likely have reached 

appreciable frequencies discernable from sequencing coverage alone.  We defined regions with 

more than 1.5× average genome coverage across two or more windows as duplications, and less 

than 0.5× average genome coverage across two or more windows as deletions. 

 

Mutations, Mutational Cohorts, and Mutational Parameters 

 Many mutations were called at very low—and thus unreliable—frequencies, and it was 

necessary to focus only on those mutations with clear signals of population persistence.  

Mutations were considered only if they were called at a nonzero frequency for more than a single 

time point, and if at least two time points exceeded frequencies of 25%.  This cutoff was chosen 

to account for the pooling of four independent cultures for DNA extraction.  We reasoned that a 

new mutation could, in theory, arise and reach appreciable frequency in a single culture during 

growth, but would be less likely to do so independently in multiple cultures, providing an 

empirical frequency cutoff of 1/4 = 25%.  Note that his 25% cutoff is not the only check we have 

against chance artifacts, because these are also mitigated by the fact that we rely on inferences 

from consecutive time points. 
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Sets of mutations with similar temporal trajectories were grouped into cohorts using 

established methods (Lang et al., 2013).  Briefly, each mutation was represented by a vector of 

its frequencies at each of the 11 time points sampled.  These vectors were clustered 

hierarchically using the unweighted pair group method with arithmetic mean (UPGMA) (Sneath 

and Sokal, 1973), and the resulting hierarchy for each population was grouped at a cutoff of 0.5. 

 For each mutation, we determined four parameters used in previous studies (Lang et al., 

2011; Rodríguez-Verdugo et al., 2013):  sup, τup, fmax, and τmax (Figure S2.1).  Among these four 

parameters, sup reflects the initial rate of increase in frequency of a mutation; τup is the generation 

at which a mutation achieves a frequency of 1% in the population, providing an estimate of when 

a mutation first appeared; fmax is the maximum frequency achieved by a given mutation; and τmax 

is the generation at which fmax was initially achieved.  We determined sup by calculating the slope 

of the line passing through the first point at which a mutation was observed at nonzero frequency 

and the previous point.  τup is the generation at which a mutation was at a frequency of 0.01 in 

the population, calculated using its particular value of sup.  fmax is the maximum frequency 

achieved by a given mutation.  τmax is the generation at which a mutation initially hits its 

maximum frequency. 

 

RESULTS 

rpoB and rho Mutations are Beneficial and Arise Early 

 Our differential compensation hypothesis presupposes that rpoB and rho mutations arise 

early in the course of adaptation.  To test this presumption, we turned to population sequencing, 

which revealed a striking degree of parallelism in the timing and rapid rise of rpoB and rho 

mutations (Figure 2.2, Figure S2.2).  In all four rpoB populations, rpoB mutations were the first 

to appear and to rise to appreciable frequency, either singly or as a cohort with other mutations.  
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Fixation of rpoB mutations occurred within < 600 generations for all four populations.   

The same pattern of early, rapid sweeping held true for rho mutations in two of the four 

rho populations.  For these two (Lines 26 and 60), their rho mutations fixed in < 600 

generations.  The other two populations were exceptions, however.  One exception was Line 33, 

in which the defining rho mutation appeared approximately halfway through the population’s 

history (τup = 804 generations), but the mutation still swept rapidly to high frequency once 

present.  It is worth noting that Line 33 was included in our experiment specifically for its lack of 

an accompanying cls mutation, which may play a crucial epistatic role in the rho adaptive 

pathway (Tenaillon et al., 2012) (See Discussion). 

The fourth rho population (Line 82) harbored two subpopulations—one rho and one 

rpoB, with the rpoB subpopulation being numerically dominant.  Because it did not definitively 

contain either a fixed rpoB or rho mutation, we excluded this population from most analyses, but 

it still yielded some interesting qualitative insights.  In this mixed population, an rpoB mutation 

rose rapidly to high frequency initially, only to crash quickly thereafter as a rho mutation 

appeared and swept through the population to near fixation (Figure 2.2).  Thereafter the two 

subpopulations coexisted until the end of the evolution experiment, although at generation 2,000 

the rho subpopulation appears to be nearing extinction. 

 To assess the adaptive benefit of mutations in rpoB and rho compared to other genes, we 

determined four parameters from the mutational frequency trajectories of our populations:  sup, 

τup, fmax, and τmax (Table S2.1, Figure S2.1). All four parameters were significantly different 

between the first rpoB and rho mutations to fix in each population and all other mutations that 

occurred.  Using one-sided Mann-Whitney U tests, sup was significantly greater (p = 0.0030), τup 

significantly lower (p = 0.0035), fmax significantly higher (p = 0.0017), and τmax significantly 

earlier (p = 0.0186) for the first fixed rpoB and rho mutations compared to all others.  Put 
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another way, rpoB and rho mutations tended to appear early (τup), rise in frequency rapidly (sup), 

and achieve their highest frequencies (fmax) quickly (τmax), supporting their status as adaptive 

mutations (Figure 2.2, Figure S2.2).  That this is true even with a population (Line 60) containing 

a rho I15N mutation, which was previously shown to be neutral by itself at 42.2°C (Rodríguez-

Verdugo et al., 2014; González-González et al., in prep.), implying that this mutation might not 

be adaptive alone but as a partner of a mutation in cls (See Discussion). 

 

rpoB Populations Acquire More Mutations than rho Populations 

 Our differential compensation hypothesis makes two predictions.  First, because rpoB 

mutations are more pleiotropic than rho mutations (at least in their effects on GE), it predicts that 

rpoB populations have access to a greater number of compensatory mutations.  Second, as an 

extension of this larger compensatory mutation space, clonal interference may be more severe in 

rpoB populations than rho populations, because more beneficial mutations are available to 

compete. 

 We tested the prediction that rpoB populations have more mutations in two ways.  First, 

we examined the genomic data from clones at generation 2,000.  Comparing all clones that 

possess rpoB mutations only (n = 60) to those possessing rho mutations only (n = 29), we found 

that rpoB clones contained an average of 13.9 mutations, whereas rho clones contained an 

average of 11.5 mutations, a significant difference (one-sided Mann-Whitney U test:  p = 0.0016) 

(Figure 2.4).  Second, we examined the temporal sequencing data. Populations traversing an 

rpoB adaptive pathway had nearly significantly more mutational trajectories (one-sided Mann-

Whitney U test:  p = 0.0572), as well as nearly significantly more mutational cohorts (one-sided 

Mann-Whitney U test:  p = 0.0857), than rho populations.  On average, rpoB populations 

contained 12.75 mutational trajectories and 6.5 mutational cohorts, whereas rho populations 
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contained only 8.33 mutational trajectories and 5.3 mutational cohorts.  Lastly, while we cannot 

make firm conclusions from the dynamics of a single population, Line 82 also supports the 

hypothesis that rpoB trajectories have greater numbers of mutations on average; by generation 

2,000, the rpoB subpopulation possessed eight mutations, whereas the rho subpopulation 

possessed only five (Figure 2.2). 

 

Correlations Among Mutational Parameters in rpoB vs. rho Populations  

The four mutational parameters (sup, τup, fmax, and τmax) provide a quantitative way of 

describing the adaptive dynamics of our populations and a means to compare those dynamics 

between rpoB and rho populations.  Overall, we found that mutational parameters were highly 

correlated in both groups (Figure 2.3, Table 2.1, Table S2.1).  For example, we found that sup and 

τup were both significantly correlated with τmax, and that sup was significantly correlated with fmax 

(Table 2.1).  Put another way, in both rpoB and rho populations, mutations that were more 

beneficial (sup) were more likely to hit their highest frequencies (fmax) earlier (τmax).  In addition, 

earlier mutations (τup) were more likely to hit their maximum frequencies earlier (τmax).  Note, 

however, fmax was not significantly correlated with τmax in either group. 

Although the patterns of correlation were similar between rpoB and rho populations, 

there were notable differences.  sup and τup, as well as τup and fmax, were significantly correlated 

with one another only in rpoB populations, but not in rho populations (Table 2.1).  A test of 

homogeneity of correlation coefficients between sup and τup in rpoB vs. rho populations was 

borderline significant after Fisher’s z-transformation (Fisher, 1950) (one-sided Z-test; p = 

0.0791). 

 Because we analyzed more rpoB populations than rho populations (four vs. three), and 

because rpoB populations generally contained more mutations than rho populations (Figure 2.4), 
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we wanted to be sure that differences in the significance of correlations were due to the type of 

population (rpoB vs. rho), rather than sampling effects.  To address the problem of uneven 

sampling, we treated the data in two ways.  First, we systematically removed each of the four 

rpoB populations from correlation calculations, giving a sample size of three—equivalent to that 

of the rho populations.  In all four comparisons, sup remained significantly correlated with τup, 

which is a relationship not observed in the rho populations.  Second, to correct for the fact that 

rpoB populations possess more mutations, we combined all of the mutations from all four rpoB 

populations and randomly subsampled to 23 mutations, which was equivalent to the total number 

of observed mutations in all of our rho populations.  We performed this subsampling randomly 

100 times and determined pairwise correlations and their p-values among all of our mutational 

parameters.  The p-values and correlations of the rho populations were at the extreme end of the 

values obtained for the subsampled rpoB populations for two of the six pairwise parameter 

comparisons (Figure 2.5), again supporting the idea that population type (rpoB vs. rho), not 

sampling, was responsible for the observed differences in correlations. 

 

rpoB Populations Experience More Clonal Interference than rho Populations 

 If the compensatory mutation space of rpoB populations is larger than that of rho 

populations, we expect them to experience more clonal interference as more compensatory 

mutations arise and compete with one another.  Clonal interference is known to slow the rate of 

adaptation and reverse mutational trajectories, cutting them short of sweeping fully to high 

frequency (Lang et al., 2011).  We found evidence for this limitation of adaptation in fmax, the 

maximum frequency achieved by any given mutation.  When we compared fmax between all 

mutations in rpoB and rho populations (excluding the first rpoB and rho mutations to fix), we 

found that mutations in rpoB populations reached significantly lower maximum frequencies than 
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those in rho populations (one-sided Mann-Whitney U test:  p = 0.0036).  On average, mutations 

in rpoB populations attained a maximum frequency (mean ± standard error) of 66 ± 3.9%, 

whereas mutations in rho populations reached 80 ± 5.5%. 

Additionally, when beneficial mutations are placed in competition with one another 

during clonal interference, their effective benefits are reduced, which should be reflected in their 

sup values.  Excluding the first rpoB and rho mutations to fix, we found a difference in sup 

between rpoB and rho populations, with mutations in rpoB populations having lower average 

values of sup.  This difference was not statistically significant (one-sided Mann-Whitney U test:  

p = 0.1741), but it was in the direction we predicted.  Mutations in rpoB populations had sup 

values (mean ± standard error) of 0.00166 ± 0.00029, whereas mutations in rho populations had 

sup values of 0.00192 ± 0.00040. 

 

DISCUSSION 

 Microbial evolution experiments have revealed that a major outcome of adaptive 

evolution is the restoration of gene expression and phenotypes from a stress state to an ancestral, 

pre-stress state (Fong et al., 2005; Carroll and Marx, 2013; Sandberg et al., 2014; Hug and Gaut, 

2015; Rodríguez-Verdugo et al., 2016; González-González et al., in prep.).  This process, 

however, almost certainly entails pleiotropic costs.  Adapting populations therefore face two 

obstacles:  the primary external stress of a changing environment, and the secondary internal 

stress imposed by less-than-perfect genetic solutions.  How populations evolve to compensate is 

an open question (Fisher, 1930; Poon and Chao, 2005; Costanzo et al., 2010; Szamecz et al., 

2014; Rodríguez-Verdugo et al., 2016) and one that is important for understanding adaptive 

evolution as a whole. 

 The evolution experiment of Tenaillon et al. (2012) (Tenaillon et al., 2012) provides a 
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unique opportunity to test questions of antagonistic pleiotropy and compensation because 

adaptation occurred primarily by two independent genetic pathways:  rpoB and rho.  The 

conditions of the evolution experiment were identical until either an rpoB or rho mutation 

canalized the adaptive trajectories of the populations in which they arose.  At that point, 

adaptation took place upon differential compensatory landscapes.  Based on the effects of rpoB 

and rho mutations on GE, we have predicted that there are more options for compensatory 

evolution available to rpoB populations than to rho populations, and that two expectations follow 

from this.  First, rpoB populations should accumulate more mutations during adaptation than rho 

populations.  Second, the greater number of mutations in rpoB populations should result in more 

clonal interference during adaptation than in rho populations. 

 

rpoB Populations Accumulate More Mutations During Adaptation than rho Populations 

 Temporal sequencing reveals that populations traversing either the rpoB or rho adaptive 

pathway share one important dynamic in common:  a mutation in either gene often occurs early 

in the course of adaptation and rises rapidly to high frequency.  This trend can be seen in the 

mutational trajectories of six of the seven populations we examined, and even in the mixed 

population (Line 82) that contains separate rpoB and rho subpopulations (Figure 2.2, Figure 

S2.2).  The parameters sup and τup for these mutations also confirm that rpoB and rho tend to 

arise earlier and increase in frequency faster than other mutations.  Depending on which of these 

two genes mutates and fixes first, the remainder of the adaptive process may be canalized, owing 

to the different pleiotropic effects of rpoB and rho mutations (Rodríguez-Verdugo et al., 2016; 

González-González et al., in prep.).  The subsequent compensatory landscapes of the rpoB and 

rho populations differ, with the greater pleiotropy of rpoB mutations creating a wider variety of 

potentially compensatory mutations for the population to explore.  This statement is supported by 
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the greater number of mutations that accumulated in rpoB clones than in rho clones in the 

original evolution experiment (Tenaillon et al., 2012), and also by the greater number of both 

individual mutational trajectories and mutational cohorts in rpoB vs. rho populations (Figure 

2.4).  As a result, rpoB populations accumulate more mutations on average than rho populations. 

 If rpoB and rho differ in the amount by which they move a population towards a new 

fitness optimum, then Fisher’s geometric model (Fisher, 1930) predicts that the number of 

additional beneficial mutations available to each adaptive pathway should differ (e.g. rho 

mutations move populations closer to a fitness optimum than rpoB populations, so there are 

fewer possible beneficial mutations for them to accumulate).  While this model provides a 

possible explanation for the difference in the number of mutations accumulated in each time of 

population, fitness and gene expression results from previous studies argue against it, for two 

reasons. 

First, the fitness benefits conferred by single engineered mutations in rpoB and rho are 

variable.  Some rpoB single mutations (I572F, I572L, I572N) confer fitness advantages of ~17% 

over REL1206, whereas another (I966S) offers an advantage of ~37%, each with a 95% 

confidence interval of ~10% (Rodríguez-Verdugo et al., 2014).  Similarly, some mutations in 

rho (A43T, T231A) confer advantages of ~24-27%, whereas others (I15F, I15N) are neutral, 

with a 95% confidence interval of ~6-11% (González-González et al., in prep.).  Given this 

variation, our knowledge to date suggests that rpoB mutations confer higher maximum benefits.  

Neither of these situations fit with the greater mutation accumulation we observed in rpoB 

populations, although we must admit a major caveat that we do not know the fitness effects of 

joint cls-rho mutations on a single haplotype.  The combined effects of rho mutations with cls 

knockouts requires further study.  

Second, single mutations in rpoB restore gene expression to an unstressed ancestral state 
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to a greater degree than rho mutations (González-González et al., in prep.).  Fisher’s model 

would again predict that rho populations should accumulate more mutations because they 

possess more genes whose expression can be restored, yet we observe the opposite trend.  

Therefore, Fisher’s model alone cannot account for the differences we see.  We conclude that 

differential antagonistic pleiotropy between these two genetic pathways is a more likely 

explanation. 

 

Evidence for More Clonal Interference in rpoB Compared to rho Populations  

We have predicted that the higher number of compensatory mutations in an rpoB 

background leads to more clonal competition.  This prediction is consistent with our observations 

that rpoB populations have lower average fmax values, as well as suggestively lower average 

value of sup.  Furthermore, rpoB and rho populations appear to differ in the strength of 

correlations between sup and τup, even after correcting for sampling differences (Figure 2.3, 

Figure 2.5).  This is consistent with the idea that sup values are lower in rpoB populations later in 

the adaptive process due to the presence of competing beneficial mutations.  Although some of 

the contrasts between rpoB and rho populations are only borderline significant (e.g. the test of 

the different correlation coefficients between and sup and τup), the multiplicity of tests are 

convincing when combined using Fisher’s method (Fisher, 1950).  For example, when we 

combine three putatively independent tests (p-values from the contrasts in fmax, the average 

number of mutations within clones, and the correlation coefficient bases on sup and τup), the 

resulting p-value suggests that rpoB and rho populations are truly distinct in their behavior (p = 

5.57 × 10-5).  Despite their similar overall fitness values at the end of the thermal stress 

experiment (Tenaillon et al., 2012), populations traversing either of these two adaptive pathways 

have their own unique evolutionary histories that shape their genomes.  Mutations in either rpoB 



 66 

or rho serve as bellwethers for each population’s adaptive trajectory. 

 It remains a mystery as to why rpoB and rho, two genes with hundreds to thousands of 

genetic interactions, are such strong and consistent targets of adaptive evolution (Long et al., 

2015).  In S. cerevisiae, it has been observed that genes with more genetic interactions tend to 

affect more cellular functions (and are hence more pleiotropic), and they also tend to have 

greater fitness defects when mutated (Costanzo et al., 2010).  As others have noted, however, 

important genes may be mutated when populations are far from their fitness optima, despite the 

negative side effects (Fisher, 1930; Poon and Chao, 2005; Szamecz et al., 2014).  Even though 

they are highly connected, we know that rpoB and rho mutations are beneficial overall from 

competition experiments at 42.2°C (Rodríguez-Verdugo et al., 2014; González-González et al., 

in prep.), and our present study shows that they arise early on in evolution.  Interestingly, 

Costanzo et al. (2010) found that genes with many interactions may be more evolvable if the 

proteins they produce are more disordered (Costanzo et al., 2010), and it has recently been 

suggested that the rho-encoded termination factor may have disordered, prion-like domains that 

facilitate adaptation to new environments (Pallarès et al., 2015).  Therefore, molecular structure, 

pleiotropy, and distance from optimal fitness in our system may intersect in the rpoB and rho 

genes to produce beneficial mutations in these genetic hubs. 

 

Epistasis with cls Complicates Our Understanding of the rho Pathway 

Although we have spoken of a rho adaptive pathway here and previously (Tenaillon et 

al., 2012), new data continue to reveal that rho mutations actually have a complex epistatic 

relationship with mutations in cls, which encodes a cardiolipin synthase.  Among the 29 rho-only 

clones in our evolution experiment, all except one (Line 33, one of the rho populations in this 

study) possess mutations in cls, and among the 45 total clones possessing rho mutations, only six 
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lack cls mutations. 

 This association is too widespread to be a chance occurrence, and two of our three rho 

populations (Line 26, Line 60), along with our mixed population (Line 82), provide evidence that 

rho and cls sweep through populations together (Figure 2.2, Figure S2.2).  In the original 

sequenced clones, an IS insertion is called in cls in Line 60.  Although it is difficult to estimate 

the frequency of this mutation over time, the sequence data do indicate the presence a novel 

junction in the cls region by as early as generation 100, when rho is nearly fixed.   

 Other work using single mutants of rho has shown that some rho mutations (i.e. I15F, 

I15N) confer no fitness benefit, hinting that rho might interact epistatically with cls to produce a 

fitness advantage (González-González et al., in prep.).  Other rho mutants (i.e. A43T, T231A), 

however, do confer a demonstrable fitness benefit on their own, yet they still occur with cls in 

evolved clones (González-González et al., in prep.).  Thus, the rho-cls relationship may be more 

complex than a simple synergistic benefit, and its precise nature still eludes us. 

Mechanistically, it is unclear how a transcriptional terminator and a cardiolipin synthase 

might interact.  The cls gene is not rho-terminated, and gene expression analyses in four different 

engineered rho mutants (I15F, I15N, A43T, T231A) indicate that cls is not differentially 

expressed in three of the four (González-González et al., in prep.), discounting a regulatory 

connection.  One possibility is that cls mutations alter membrane permeability in a way that 

positively supports the gene expression changes created by rho mutations, or vice versa.  Further 

work using double mutants will be necessary to determine the fitness relationship between rho 

and cls. 

 

Clonal Interference vs. Diminishing Returns Epistasis 

Unfortunately, clonal interference and diminishing returns epistasis are confounding 
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phenomena in our system, making it difficult to discern whether one, the other, or both 

contribute to our observed differences between rpoB and rho populations.  Both phenomena have 

been observed in microbial evolution experiments, and they each have the potential to decelerate 

the rate of adaptation (Kao and Sherlock, 2008; Chou et al., 2011; Khan et al., 2011; Lang et al., 

2013; Wiser et al., 2013; Frenkel et al., 2014; Kryazhimskiy et al., 2014). 

Previous studies have tested diminishing returns epistasis in bacteria and yeast that have 

evolved under a variety of conditions (Chou et al., 2011; Khan et al., 2011; Wiser et al., 2013; 

Kryazhimskiy et al., 2014).  The common conclusions of these experiments are that diminishing 

returns epistasis is a predictable feature of evolution that depends only upon the overall fitness of 

an organism, and that mutations arising later in a population’s history confer progressively 

smaller adaptive benefits (Chou et al., 2011; Khan et al., 2011; Wiser et al., 2013; Kryazhimskiy 

et al., 2014).  There is no reason for us to expect that either rpoB or rho populations to be 

exceptions to the ubiquity of this phenomenon, especially because some studies of diminishing 

returns epistasis utilized strains of E. coli similar to ours (Khan et al., 2011; Wiser et al., 2013).  

Furthermore, we observe a deceleration of adaptation in both rpoB and rho populations in the 

form of negative correlations between sup and τup:  mutations arising later in a population’s 

history initially increase in frequency more slowly (Figure 2.3).  Although this correlation is not 

significant in the rho populations, it is nonetheless in the direction predicted by diminishing 

returns epistasis.  Given that diminishing returns epistasis may be general, we prefer to interpret 

differences in the rate of adaptation in rpoB vs. rho populations as stemming from differences in 

clonal interference.  

We have shown that rpoB and rho populations differ in their adaptive dynamics, and 

whether this is due to differences in clonal interference, diminishing returns epistasis, or both, 

the pattern is striking and raises important questions about how pleiotropy and compensation 
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impact the course of evolution.  If we assume that our results are unrelated to clonal interference 

effects, and that they are due entirely to diminishing returns epistasis, it would suggest that 

different compensatory landscapes impact the strength and timing of later fitness increases, with 

some compensatory landscapes generating beneficial mutations that do not diminish in strength 

in increasingly fit genetic backgrounds.  Something akin to this pattern may be achievable if the 

severity of deleterious side effects differs between rpoB and rho populations (e.g. rho 

populations must compensate for particularly severe side effects compared to rpoB populations, 

increasing the fitness benefit of compensatory mutations).  Indeed, our differential compensation 

hypothesis makes no predictions about differences in the severity of negative pleiotropic side 

effects.  However, this should still not completely erase the signal of diminishing returns 

epistasis, because it depends only on global fitness, not the identity of each mutation 

(Kryazhimskiy et al., 2014). 

Given the ubiquity of diminishing returns epistasis in other microbial evolution 

experiments (Chou et al., 2011; Khan et al., 2011; Wiser et al., 2013; Kryazhimskiy et al., 2014) 

and our finding that rpoB and rho populations both show negative correlations between sup and 

τup (despite this relationship not being significant in rho populations), we find differential 

diminishing returns epistasis to be a less plausible explanation than differential clonal 

interference.
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FIGURES 

 

Figure 2.1:  Pleiotropy of rpoB and rho and the differential compensation hypothesis.  

Mutations in rpoB and rho impact different numbers of targets (e.g. genes, pathways, 

phenotypes), and are thus differentially pleiotropic.  Each target (outer circles) may be affected 

in a way that improves (black) or lowers (white) overall fitness.  Both rpoB and rho confer 

similar net fitness benefits (more black circles than white circles) at 42.2°C, but differ in how 

many deleterious side effects they may cause (four white circles vs. two white circles).  This 

creates two different spaces of compensatory mutations for populations traversing either the 

rpoB or rho adaptive pathway.  According to our differential compensation hypothesis, 

populations that mutate rpoB are predicted to accumulate more mutations overall (triangles) and 
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to experience more clonal interference among these mutations (grey triangles, dashed 

trajectories).  Conversely, populations that mutate rho are predicted to accrue fewer 

compensatory mutations and to experience less clonal interference among them. 
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Figure 2.2:  Mutational trajectories for three of eight populations, representing an rpoB, 

rho, and mixed population.  Trajectories are colored by mutational cohort.  From top to bottom, 

these populations correspond to Line 16, Line 26, and Line 82, respectively.  Additional 

populations can be found in Figure S2.2. 
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Figure 2.3:  Correlations among mutational parameters sup, τup, fmax, and τmax.  Values for 

rpoB populations are shown in black, and values for rho populations are shown in light grey.  

Regression lines are shown for these two types of populations are shown in their respective 

colors.  The dark grey dashed line represents the best fit for all seven populations.  Significance 

of the regression for rpoB and rho populations is shown to the top-right of each graph in their 

respective colors.  NS, *, **, and *** mean not significant, p < 0.05, p < 0.005, and p < 0.0005, 

respectively. 
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Figure 2.4:  Box plot of number of mutations found in rpoB and rho clones and 

populations.  Significance of one-sided Mann-Whitney U tests between groups is indicated. 
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Figure 2.5:  Histograms of mutational parameter correlations from 100 random 

subsamplings (n = 23) of rpoB mutations.  The bin containing the value obtained for rho 

mutations is indicated with an arrow. 
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TABLES 

 

Table 2.1:  Pearson correlations and their significance among four mutational parameters.  

Significant (p < 0.05) correlations are shaded in light grey.  Correlations that remain significant 

after Bonferroni correction are shaded in dark grey.  “Both Populations” includes rpoB and rho 

populations together, excluding our mixed population (Line 82). 

 rpoB Populations rho Populations Both Populations 
 r p r p r p 
sup vs. τmax -0.712 9.97E-09 -0.449 0.0317 -0.627 3.91E-09 
τup vs. τmax 0.607 3.79E-06 0.722 9.90E-05 0.639 1.57E-09 
sup vs. fmax 0.439 0.00160 0.428 0.0418 0.445 8.97E-05 
fmax vs. τmax -0.190 0.192 -0.258 0.234 -0.241 0.0417 
sup vs. τup -0.551 4.10E-05 -0.236 0.278 -0.438 0.000121 
τup vs. fmax -0.351 0.0134 -0.157 0.475 -0.290 0.0134 
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SUPPORTING INFORMATION 

 

Figure S2.1:  Mutational parameters measured in populations.  sup constitutes the initial rate 

of increase in frequency of a mutation.  τup is the generation at which a mutation was at a 

frequency of 1% in the population, calculated using its particular value of sup.  fmax is the 

maximum frequency achieved by a given mutation.  τmax is the generation at which a mutation 

initially reaches its maximum frequency. 
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Figure S2.2:  Mutational trajectories of all remaining rpoB and rho populations.  

Trajectories are colored by mutational cohort.  From top to bottom, the three rpoB populations 

correspond to Line 3, Line 9, and Line 56, respectively.  From top to bottom, the two rho 

populations correspond to Line 33 and Line 60, respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

 

 

rpoB (I966S)
mrdA (I401V)
ECB_02815 (indel)
ECB_02828 (L141*)
manZ (E38G)
yjhA  /  insB−27 (intergenic)
ygjF (indel)
glpT (indel)
ilvL (indel)
hnr (indel)
thrB (F17C)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

F
re

q
u

e
n

cy
 in

 P
o

p
u

la
tio

n

 

 gatY  /  fbaB (intergenic)
rpoC (E833A)
cls (indel)
mrdA (K60Q)
nrfG  /  gltP (intergenic)
rpoB (F1323V)
atpG (indel)
yehU (F336S)
wecF (I148N)
atpE (G33S)
glpF (indel)
atpA (M156L)
glgC (K26E)
ptsP (P320S)
glgP (S9L)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Generation

 

 

cpsG (G88G)
rpoB (I572F)
cls (V254G)
glmS (R384S)
yabB (Q148*)
hupB (I7F)
ygbA  /  mutS (intergenic)
ybaL (indel)
rhsA (T506T)
yehU (V235A)
glpF (indel)
dnaG  /  rpoD (intergenic)
uspA (D52Y)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

 

 

rpoB (I966S)
mrdA (I401V)
ECB_02815 (indel)
ECB_02828 (L141*)
manZ (E38G)
yjhA  /  insB−27 (intergenic)
ygjF (indel)
glpT (indel)
ilvL (indel)
hnr (indel)
thrB (F17C)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

F
re

q
u

e
n

cy
 in

 P
o

p
u

la
tio

n

 

 

rpoC (A1336V)
mreB (G134C)
ECB_02816 (D200V)
ECB_00212 (indel)
glgP (R52H)
tesB  /  ybaY (intergenic)
rho (I247V)
insA−25  /  ECB_04162 (intergenic)
ybaL (indel)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Generation

 

 

rho (I15N)
ybaL (T228P)
ybaL (E157K)
fkpA (I233N)
iclR (T60P)
yfiB (indel)
pta (I24N)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

 

 

rpoB (I966S)
mrdA (I401V)
ECB_02815 (indel)
ECB_02828 (L141*)
manZ (E38G)
yjhA  /  insB−27 (intergenic)
ygjF (indel)
glpT (indel)
ilvL (indel)
hnr (indel)
thrB (F17C)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

F
re

q
u

e
n

cy
 in

 P
o

p
u

la
tio

n

 

 

rpoC (A1336V)
mreB (G134C)
ECB_02816 (D200V)
ECB_00212 (indel)
glgP (R52H)
tesB  /  ybaY (intergenic)
rho (I247V)
insA−25  /  ECB_04162 (intergenic)
ybaL (indel)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Generation

 

 

rho (I15N)
ybaL (T228P)
ybaL (E157K)
fkpA (I233N)
iclR (T60P)
yfiB (indel)
pta (I24N)

rpoB!(Lines!3,!9,!56)% rho!(Lines!33,!60)%



 79 

Table S2.1:  Mutational parameters for each mutation in all eight populations.  Mutations 

are grouped and colored by cohort. 

Line3 (rpoB) sup τup fmax τmax 
mrdA (I401V) 0.002895 203 0.939 2000 
rpoB (I966S) 0.00824 101 1 600 
ECB\_02815 (indel) 0.00006 368 0.483 1200 
glpT (indel) 0.0002 851 0.574 1200 
yjhA  /  insB-27 (intergenic) 0.000065 555 0.528 1200 
manZ (E38G) 0.000115 488 0.492 1200 
ygjF (indel) 0.003215 603 0.931 2000 
ECB\_02828 (L141*) 0.001045 410 0.925 2000 
thrB (F17C) 0.00027 1437 0.875 2000 
ilvL (indel) 0.000215 1047 0.885 2000 
hnr (indel) 0.000115 1288 0.872 2000 

     
Line9 (rpoB)     
rpoB (F1323V) 0.000115 288 0.844 2000 
wecF (I148N) 0.00022 446 0.811 2000 
glpF (indel) 0.001185 809 0.84 2000 
glgP (S9L) 0.00037 1227 0.692 2000 
mrdA (K60Q) 0.00191 205 0.416 1800 
nrfG  /  gltP (intergenic) 0.00172 206 0.423 1800 
glgC (K26E) 0.000355 1028 0.559 1400 
ptsP (P320S) 0.0004 1225 0.369 1800 
atpG (indel) 0.00117 409 0.327 1600 
atpA (M156L) 0.000725 814 0.461 1800 
atpE (G33S) 0.000395 626 0.455 1800 
yehU (F336S) 0.000255 440 0.372 1800 
gatY  /  fbaB (intergenic) 0.01 1 1 100 
rpoC (E833A) 0.00368 3 1 200 
cls (indel) 0.00287 4 1 200 

     
Line16 (rpoB)     
rpoB (L960P) 0.00893 101 1 400 
yobF  /  yebO (intergenic) 0.000375 227 0.962 2000 
ybaL (indel) 0.00013 1078 1 2000 
rpoB (T539P) 8.00E-05 326 0.966 2000 
hemA (S161S) 0.000625 816 0.964 2000 
mdoG (indel) 0.00413 202 0.826 400 
cusS (I34F) 0.00137 1407 0.373 1800 
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metJ (N48D) 3.40E-04 830 0.364 1400 
ybaL (R325*) 0.00092 611 0.379 1000 
dctA  /  yhjK (intergenic) 0.00127 608 0.384 1000 

     
Line26 (rho)     
rpoC (L903P) 0.002885 204 0.775 2000 
rpoB (I572L) 0.0003 234 0.478 800 
atoC (I129S) 0.00029 435 0.606 800 
ompR (S65L) 0.000955 611 0.59 1800 
yobF  /  yebO (intergenic) 0.001935 1005 0.467 1800 
rho (A243V) 0.01 101 1 200 
cls (D259V) 0.00056 18 1 200 

     
Line33 (rho)     
ybaL (indel) 0.000945 1011 1 2000 
insA-25  /  ECB\_04162 
(intergenic) 

0.005 1002 1 1200 

tesB  /  ybaY (intergenic) 0.00018 456 1 1400 
rho (I247V) 0.00273 804 1 1400 
glgP (R52H) 0.00044 423 1 800 
rpoC (A1336V) 0.00196 5 1 600 
ECB\_00212 (indel) 0.004275 202 1 600 
mreB (G134C) 0.00462 202 1 600 
ECB\_02816 (D200V) 0.004575 202 1 600 

     
Line56 (rpoB)     
ybaL (indel) 0.0034 603 0.68 800 
ygbA  /  mutS (intergenic) 0.000955 411 0.804 800 
hupB (I7F) 0.002125 405 0.432 1400 
glpF (indel) 0.00037 827 0.461 1400 
dnaG  /  rpoD (intergenic) 0.002315 1204 0.477 1600 
yehU (V235A) 0.00145 807 0.363 1400 
rhsA (T506T) 0.00126 608 0.271 1200 
uspA (D52Y) 0.0015 1607 0.31 2000 
cpsG (G88G) 0.00367 3 0.367 100 
rpoB (I572F) 0.00619 102 1 400 
cls (V254G) 0.00534 102 1 400 
yabB (Q148*) 0.004705 202 0.955 600 
glmS (R384S) 0.004785 202 0.957 400 

     
Line60 (rho)     
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rho (I15N) 0.00969 1 1 200 
ybaL (T228P) 0.001255 408 0.382 800 
fkpA (I233N) 0.000385 826 0.37 1200 
ybaL (E157K) 0.00049 421 0.696 1800 
pta (I24N) 0.00202 1405 0.606 1800 
iclR (T60P) 0.00028 1236 1 1800 
yfiB (indel) 0.005 1402 1 1600 

     
Line82 (mixed)     
mrdA (P92S) 0.001755 406 0.351 600 
rpsR (I21N) 0.001195 408 0.321 800 
rho (I15N) 0.00091 111 0.942 400 
rpoH (V97G) 0.00014 72 0.926 400 
cls (Q472*) 0.00097 110 0.939 400 
ycbC  /  smtA (intergenic) 0.000965 610 0.917 2000 
nrfG  /  gltP (intergenic) 0.0002 251 0.97 2000 
ybaL (indel) 0.00075 13 0.888 2000 
rpoB (N760H) 0.00625 2 0.949 2000 
glgP (S9L) 0.002445 1204 0.919 2000 
atpG (P212L) 0.00012 884 0.914 2000 
rpoC (K118T) 0.0027 1404 0.918 2000 
yehU (R133H) 0.00258 1404 0.925 2000 
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CHAPTER 3 - Lazarus effects:  the frequency and genetic causes of Escherichia coli 
population recovery under lethal heat stress 

 

ABSTRACT  

 Sometimes populations crash and yet recover before being lost completely.  Such 

recoveries have been observed incidentally in evolution experiments using Escherichia coli, and 

this phenomenon has been termed the “Lazarus effect.”  To investigate how often recovery 

occurs and the genetic changes that drive it, we evolved ~300 populations of E. coli at lethally 

high temperatures (43.0°C) for five days and sequenced the genomes of recovered populations.  

Our results revealed that the Lazarus effect is uncommon, but frequent enough, at ~9% of 

populations, to be a potent source of evolutionary innovation. Population sequencing uncovered 

a set of mutations adaptive to lethal 43.0°CC that were mostly distinct from those that were 

beneficial at a high but nonlethal temperature (42.2°C).  Mutations within two operons—the heat 

shock hslUV operon and the RNA polymerase rpoBC operon—drove adaptation to lethal 

temperature.  Mutations in hslUV exhibited little antagonistic pleiotropy at 37.0°CC and may 

have arisen neutrally prior to subjection to lethal temperature.  In contrast, rpoBC mutations 

provided greater fitness benefits than hslUV mutants, but were less prevalent and caused stronger 

fitness tradeoffs at lower temperatures.  Recovered populations fixed mutations in only one 

operon or the other, but not both, indicating that epistatic interactions between beneficial 

mutations were important even at the earliest stages of adaptation.   
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INTRODUCTION 

The fossil record contains numerous examples of organisms that appear to have gone 

extinct for long stretches of geologic time, only to reappear in the fossil record later.  One 

common explanation for these so-called “Lazarus” taxa is that the fossil record is incomplete, 

and fossil data are missing for lineages that always existed (Jablonski, 1986).  It has also been 

suggested that the incompleteness of the fossil record for Lazarus taxa is not due to the loss of 

fossils or their inability to form, but rather extremely low population sizes.  That is, Lazarus taxa 

do not suddenly reemerge in the fossil record due to missing data, but because their populations 

were actually on the verge of extinction, only to rebound later (Wignall and Benton, 1999). 

A similar phenomenon has been observed in laboratory evolution experiments using 

bacteria, and it has been termed the Lazarus effect (Bennett and Lenski, 1993; Mongold et al., 

1999; Rodríguez-Verdugo et al., 2014).  When grown under lethal temperatures, bacterial 

populations decline in size over time, often to levels that are nearly or completely unquantifiable.  

However, some among the remaining survivors may acquire beneficial mutations that rescue the 

population and enable survival.  These individuals reproduce, spreading the beneficial mutations 

through the population and restoring the population to sizes of similar magnitude to those 

observed before near-extinction. 

Following the chance evolution of such a Lazarus population in an evolution experiment 

(Bennett and Lenski, 1993), Mongold et al. (1999) characterized patterns of evolutionary 

recovery at a lethal temperature of 44°C using ancestral strains of Escherichia coli B that had 

adapted to low-glucose medium at 32°C, 37°C, and 41-42°C (Mongold et al., 1999).  They found 

that Lazarus events at 44°C occurred only in populations derived from ancestors already adapted 

to high temperature (41-42°C), suggesting that pre-adaptation aids adaptive recovery under lethal 

temperature conditions.  Moreover, they found that Lazarus mutants exhibited a fitness cost at 
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elevated, but nonlethal temperatures, supporting the idea that some Lazarus mutations confer a 

fitness benefit in one environment, but a fitness cost in another:  a phenomenon known as 

antagonistic pleiotropy (Williams, 1957; Cooper and Lenski, 2000; MacLean et al., 2004). 

Here we revisit the Lazarus effect, in part to determine whether Lazarus mutations are 

similar to, or distinct from, adaptive mutations that accumulate under thermal stress.  For the 

comparison to thermal stress, we rely on an experiment by Tenaillon et al. (2012) that uncovered 

the genetic basis of adaptation to a high but sustainable temperature (42.2°C).  The experiment of 

Tenaillon et al. (2012) began with a strain of E. coli B that was adapted to low-glucose medium 

and 37.0°C (E. coli B strain REL1206) (Tenaillon et al., 2012).  The ancestral REL1206 strain 

was inoculated into 115 independent populations that were then evolved for 2,000 generations at 

42.2°C.  Genome sequencing of a single clone from each population revealed >1,000 putatively 

adaptive mutations that fell into two major genetic pathways to high-temperature adaptation.  

The two pathways were exemplified by mutations in either rpoB, which encodes a subunit of 

RNA polymerase, or rho, which encodes a major transcriptional termination factor.   

Subsequent work has focused on some of the rpoB mutations that occurred during 

adaptation to thermal stress.  Rodríguez-Verdugo et al. (2014) engineered single rpoB mutations 

into the REL1206 background and found that they imparted an average fitness gain of ~22% at 

42.2°C.  However, these same mutations tended to exhibit a fitness tradeoff at lower 

temperatures (<20.0°C), consistent with the effects of antagonistic pleiotropy (Rodríguez-

Verdugo et al., 2014).  It was during the course of this experiment, while investigating the fitness 

of clones at high temperature, that Rodríguez-Verdugo et al. (2014) observed Lazarus events at 

otherwise lethal temperatures in ancestral lines, despite the fact that the ancestor had not been 

pre-adapted to extreme temperature conditions. 

In this study, we perform E. coli growth experiments to better understand the dynamics, 
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genetics, and fitness consequences of Lazarus events.  Beginning with an ancestor derived from a 

single-colony of E. coli B strain REL1206, we carry out replicated evolution experiments at two 

temperatures (43.0°C and 44.0°C) that typically result in population extinction under our growth 

conditions.  After observing and noting the frequency of Lazarus events, we save populations 

that have rebounded from the brink of extinction, sequence their genomes from population 

samples, and determine the fitness of the Lazarus populations relative to the ancestor.  Armed 

with genetic and fitness data, we seek to address three questions.  The first is whether population 

recovery involves a distinct set of mutations relative to experiments at high but sustainable 

temperatures, as suggested by the fitness dynamics of Mongold et al. (1999).  The second 

concerns the likely genetic drivers of adaptation, as opposed to hitchhikers.  The discrimination 

of drivers and hitchhikers is a major challenge facing experimental evolution studies 

(Rosenzweig and Sherlock, 2014), but the short-term nature of our experiment permits novel 

insights into this distinction.  The third question reflects the fitness effects of Lazarus 

populations and whether they exhibit tradeoffs at elevated, but nonlethal temperature (42.2°C) or 

at the ancestor’s optimal temperature of 37.0°C.  Finally, combining genetic and fitness data 

allow us to comment on three important phenomena:  antagonistic pleiotropy of adaptive 

mutations, the role of standing variation in population rescue, and the potential mechanism of 

population recovery.  

 

MATERIALS AND METHODS 

Lazarus Ancestral Stock 

A frozen glycerol stock was prepared from a single colony of Escherichia coli B strain 

REL1206 possessing a neutral Ara- marker.  This strain had been propagated previously at 

37.0 °C for 2,000 generations in Davis minimal medium supplemented with glucose at 25 mg/L 
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(DM25), and was thus well adapted to the growth medium (Lenski et al., 1991).  To isolate the 

single colony, REL1206 was streaked from frozen onto a tetrazolium-arabinose (TA) plate and 

incubated overnight at 37.0°C.  The single colony was inoculated into Luria-Bertani medium 

(LB) and grown overnight.  To prepare a frozen reference stock, 900 µL of culture was mixed 

with 900 µL of 80% glycerol and frozen at -80°C.  We term this REL1206 frozen stock the 

“Lazarus ancestor” (Figure 3.1).  A backup Lazarus ancestor stock was prepared from the same 

LB culture. 

 

Lazarus Growth Experiments 

As is common practice (Bennett and Lenski, 1993; Lenski and Travisano, 1994; 

Rodríguez-Verdugo et al., 2014; Hug and Gaut, 2015), we first acclimated the Lazarus ancestor 

(REL1206) to mild laboratory conditions to allow it to recover from being frozen.  The Lazarus 

ancestral stock was inoculated into 100 mL LB and grown for eight hours in an Infors HT 

Minitron incubator at 37.0°C and 120 RPM (Figure 3.1).  10 µL of this culture was then 

inoculated into 100 mL DM25 and grown for 24 hours in an Infors HT Minitron incubator at 

37.0°C and 120 RPM.  We inoculated 100 µL of the 37.0°C, DM25 culture into each of 44 

culture tubes containing 9.9 mL DM25.  An additional four culture tubes containing 9.9 mL 

DM25 were used as contamination controls and cell density blanks.  The total set of 48 tubes 

were placed into an Innova 3100 water bath shaker (New Brunswick Scientific) and grown for 

24 hours at 120 RPM and at the experimental temperature of 43.0°C or 44.0°C.  Tube cultures 

were serially propagated over the course of five days by inoculating 100 µL of culture into 9.9 

mL DM25 after each day of growth (Figure 3.1). 

On each of the five days, 50 µL of each culture (including blanks) was also inoculated 

into cuvettes containing 9.9 µL Isoton II Diluent (Beckman Coulter).  These samples were 
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analyzed using a Multisizer 3 Coulter counter (Beckman Coulter) to determine cell densities 

(particles/mL).  The average particle density of the four blanks was subtracted from each 

sample’s cell density.  We defined a Lazarus event as a population whose cell density increased 

by at least an order of magnitude over the previous day’s measurements.   

Following cell density measurement, Lazarus populations were saved as frozen glycerol 

stocks on their initial day of recovery, as well as any subsequent days.  To prepare frozen stocks 

of Lazarus recovery events, 900 µL of culture was mixed with 900 µL of 80% glycerol and 

frozen at -80°C. 

 

DNA Extraction and Sequencing 

Most samples for DNA extraction and sequencing were derived from day five of the 

experiment; two samples (#1 and #19) were derived from day four.  Each of the frozen Lazarus 

samples was inoculated into ten separate culture tubes containing 9.9 mL DM25 and incubated in 

an Innova 3100 water bath shaker (New Brunswick Scientific) overnight at 37.0°C and 120 

RPM.  Cells from all ten tubes were pooled, and genomic DNA was extracted from these 

samples using Wizard Genomic DNA Purification Kits (Promega).  This method of pooling 

independently derived cultures provided a way to later filter out any mutations that might have 

risen to high frequency during the process of recovery from being frozen.  Our reasoning was 

that a specific mutation might arise in a single tube, but would be less likely to arise 

independently in multiple tubes, providing an empirical frequency cutoff of 10%, based on the 

number of independent tubes pooled.  DNA from the Lazarus ancestor was extracted in the same 

manner, but pooled from four tubes rather than 10. 

Genomic DNA libraries were prepared using the TruSeq DNA PCR-Free Library 

Preparation Kit (Illumina).  The 26 Lazarus samples were multiplexed and sequenced in two 
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lanes of an Illumina HiSeq 2500 in rapid mode at UC Irvine’s Genomics High-Throughput 

Facility.  Two ancestral samples—one working stock (Figure 3.1) and one backup stock—were 

also sequenced on an Illumina HiSeq 3000 at the Bioinformatics Core Facility at the UC Davis 

Genome Center. 

Mutations and mutation frequencies were called using breseq (Deatherage and Barrick, 

2014) in polymorphism mode, using the E. coli B REL606 genome as a reference.  Six regions 

(topA, spoT, glmU/atpC, pykF, yeiB, and the rbs operon) possess mutations that differ between 

REL606 and REL1206  (Barrick et al., 2009; Tenaillon et al., 2012), so there regions were 

excluded from our analyses.  In theory, breseq provides information about duplications and 

deletions by reporting novel junctions.  No evidence of novel junctions or sequencing coverage 

was found for large deletions in our data set, but breseq did provide some novel junction 

evidence for the presence of large duplications.  To assess duplications more formally, we 

compared unique reads (mapping quality >5 in samtools 1.3) across 10 kb regions of the 

genome, defining duplications as regions with more than twice the average genome coverage.   

 

Fitness Assays 

Relative fitness values were assessed by performing standard competition assays (Lenski 

et al., 1991; Tenaillon et al., 2012).  Samples of frozen Lazarus populations and an ancestral 

stock containing a neutral Ara+ mutation (REL1207) were grown overnight in 9.9 mL DM25 

using an Innova 3100 water bath shaker (New Brunswick Scientific) at 37.0°C and 120 RPM.  

100 µL of Lazarus culture was added to each of six replicate tubes containing 9.9 mL DM25.  

Likewise, 100 µL of ancestor culture was added to each of three tubes containing 9.9 mL DM25.  

These were incubated overnight at 42.2°C and 120 RPM.  All three ancestral tubes were pooled 

and vortexed.  On day zero (t0) 75 µL of ancestor culture and 25 µL of a Lazarus culture were 
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added to a tube of 9.9 mL DM25 and vortexed.  100 µL of this competition culture was diluted 

1/100, and 100 µL of the dilution was plated on a TA plate for overnight incubation at 37.0°C.  

The remaining competition culture was grown overnight in the water bath at 42.2°C and 120 

RPM.  After one day of competition (t1), 100 µL of competition culture was diluted 1/10,000 and 

plated as above.  Ara+ and Ara- colonies were counted for both t0 and t1.  Fitness values were 

calculated using the methods of Lenski et al. (1991), but results were qualitatively identical using 

the methods of Chevin (2011). 

 

Data Availability: All sequence data have been submitted to the NCBI Sequence Read Archive 

(Accession number:  PRJNA326455).  Cell density measurements can be found in Table S3.1.  

Details about mutations present at >10% frequencies within a Lazarus population are reported in 

Table S3.2.  Colony counts from fitness assays are reported in Table S3.3. 

 

RESULTS 

Frequency of Lazarus Events 

Over the course of five days, we measured the cell densities of 308 populations as they 

evolved (or more commonly, went extinct) at 43.0°C (Table S3.1).  12 of these populations (one 

in one week, 11 in another week) were excluded from our final analysis due to mechanical issues 

during particle counting.  Thus, 296 populations were considered for determining the frequency 

of Lazarus events.  In total, we observed 26 Lazarus events (Figure 3.2), placing their frequency 

in our system at 8.8% (26/296), comparable to the frequency of 10% (3/30) observed by 

Mongold et al. (1999) in their pre-adapted populations grown at 44.0°C (Mongold et al., 1999).  

It is worth noting, however, that our populations were not pre-adapted to high temperature 

conditions.  When we grew 88 populations for five days at 44.0°C, none survived. 
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 Most Lazarus events occurred by day four, with events on day five also being common 

(Figure 3.2).  Only three Lazarus events occurred on day three, suggesting a limit to how quickly 

beneficial mutations can become established within populations. Lazarus events occurred more 

often in some weeks than others.  The highest incidence of Lazarus events in one week was 25% 

(11/44), and the lowest was 0% (0/33).  Initial cell density bore no relationship to the number of 

Lazarus events observed in a given week (r = -0.24, p = 0.61), and initial cell density was not 

significantly correlated with the timing of the first population recovery in a given week (r = 0.50, 

p = 0.32). 

 

Mutations Associated with Lazarus Events 

To characterize the genomic changes underpinning Lazarus events, we sequenced each of 

the 26 Lazarus populations and identified the frequencies of mutations using breseq (Deatherage 

and Barrick, 2014).  Among the 26 Lazarus populations, we identified 419 simple mutations (i.e., 

single nucleotide changes and small indels) within 122 unique genic and intergenic regions.  Of 

these, 100 were called at frequencies >10% in their populations, and these comprised 32 unique 

genic and intergenic regions (Table 3.1, Table S3.2, Figure 3.3). 

 For a mutation to rescue a population from the brink of extinction, it must sweep through 

the population to an appreciable frequency.  Focusing on mutations at frequencies > 85% in a 

population as “fixed”, we observed 46 fixed mutations within 20 unique genic and intergenic 

regions among 23 of the 26 Lazarus populations.  On average, each population possessed 1.8 

fixed mutations.  42% (11/26) of populations had just one fixed mutation, making these genetic 

changes the likely drivers of population recovery.  Additionally, one of our Lazarus populations 

(#2; Table 3.1) evolved a mutator phenotype due to a small deletion in the mutT gene.  Not 

surprisingly, this population contained six fixed mutations, the most of any population in the 
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experiment. 

Of the three remaining populations lacking fixed mutations, one (#15) possessed 

mutations in both hslU and hslV (see below) at intermediate frequencies, and two (#22 and #23) 

possessed large duplications at detectable frequencies.  In total, four populations contained large 

duplications based on their sequencing coverage profiles, with three of these (#22, #23, and #25) 

occurring in parallel within a single week.  These three parallel duplications included the genes 

groEL and groES, which encode a major chaperonin complex that is both necessary for growth 

under normal conditions and induced during growth at elevated temperatures (Fayet et al., 1989; 

Hayer-Hartl et al., 2016).  The fourth population (#21) contained a duplication that includes 

some or all of the hslUV operon (see below). 

 To be assured that the fixed mutations arose as a consequence of thermal treatment, we 

also sequenced two control cultures.  The first culture was inoculated from the frozen ancestor 

stock used throughout the experiment, and the second was inoculated from a reserve ancestor 

stock.  We sequenced both cultures to >2,000x and identified no fixed (>85% frequency) 

mutations relative to the REL1206 genome.  We did identify 1,105 potential variants across both 

cultures at an average frequency was ~1.3%.  There were, however, three mutations that 

exceeded 10% frequency.  Of these, one was shared with Lazarus populations:  a four-nucleotide 

indel within the ECB_01992 gene found at a frequency of 19% and 21% in the two ancestral 

samples.  Interestingly, this mutation was found at frequencies between 32% and 34% across 

eight of the 26 Lazarus populations, but it never reached fixation.  The lack of overlapping 

mutations between control and Lazarus populations (with the notable exception of the 

ECB_01992 indel), combined with the low frequency of mutations in control populations, argues 

that the fixed mutations in Table 3.1 are indeed a consequence of population recovery under a 

temperature that is typically lethal. 
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Genetic Targets of Parallel Mutations 

Experimental evolution derives its power from replication.  If genetic changes occur 

multiple times across replicates, it provides strong evidence that these changes are adaptive 

(Woods et al., 2006). In our experiment, we found consistent fixation within a pair of genes, 

hslU and hslV, which together comprise an operon that encodes a heat shock protease system 

(Missiakas et al., 1996; Bochtler et al., 2000).  Fixed mutations in hslUV affected 62% (16/26) of 

Lazarus populations:  nine populations possessed fixed mutations in hslU, and another seven 

possessed fixed mutations in either hslV or its upstream region.  We also noticed a striking 

pattern of parallelism in the hslUV operon, because parallel mutations occurred at the level of 

individual nucleotides within single weeks, but not between weeks (Figure 3.4A), and this 

parallelism was most prevalent in weeks that showed the most Lazarus events.  These parallel 

events included small frameshift indels.  In total, 69% (9/13) of hslUV mutations caused 

frameshifts, suggesting that interruption of hslUV function may be adaptive.  

Like hslUV, the rpoBC operon also accumulated multiple fixed mutations (Figure 3.4B), 

which were found across six populations (#2, #3, #16, #20, #24, and #26).  Four populations had 

fixed mutations in rpoC, another two had fixed mutations in rpoB, and all were nonsynonymous 

mutations.  Interestingly, the populations bearing rpoBC mutations were distinct from those with 

hslUV mutations; in other words, no populations contained fixed mutations in both operons.  

Populations with fixed rpoC mutations also had nucleotide-level parallelism, but unlike hslUV 

mutations, this parallelism occurred across weeks, rather than within a single week (Figure 

3.4B). 

 A third region, clpA/serW, accumulated the same fixed point mutation in five different 

populations (#2, #6, #7, #16, and #20) across four independent weeks.  This region lies between 
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clpA—one component of a protease system of similar function to that encoded by hslUV (Kwon 

et al., 2004)—and serW, which encodes a serine-bearing tRNA. 

Mutations within hslUV, rpoBC, and clpA/serW account for 59% (27/46) of fixed 

mutations.  In many cases, hslUV, rpoBC, and clpA/serW mutations were fixed with other 

mutations.  For example, population #4 had a total of five fixed mutations, including a mutation 

in hslV. Importantly, a single mutation in hslUV or rpoBC represents the only fixed mutation in 

several populations (#1, #3, #9, #11, #12, #13, #14, #17, #19, #25, and #26), suggesting that 

some mutations within these operons are sufficient to rescue populations and drive a Lazarus 

effect.   

 Finally, because Lazarus events occurred at different times during the course of a week, 

we were interested to see if there was any relationship between the timing of Lazarus events and 

the identities of fixed mutations, but we found no obvious relationship (Mann-Whitney U test 

comparing hslUV and rpoBC populations:  p = 0.34).   

 

Density and Fitness 

The hallmark of a Lazarus event is the marked increase in cell density that occurs 

following a population crash, but not all populations rebound to the same final cell density 

(Table S3.1).  We tested for a relationship between cell densities after population recovery and 

the fixed mutations present within those populations.  At both days four and five, populations 

with fixed rpoBC mutations were among those with the highest cell densities.  All six 

populations containing rpoBC mutations were among the seven populations with the highest cell 

densities at day five, and three more had the highest cell densities on day four.  rpoBC 

populations had significantly higher cell densities than all other recovered populations on both 

days (Mann-Whitney U test:  day four p = 0.0044, day five p = 3.71 × 10-4).  In addition, 
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populations with large duplications yielded cell densities approximately half as great as other 

populations that first experienced recoveries on the same day (Figure 3.2). 

 Given apparent relationships between mutations and cell densities, we quantified the 

relative fitnesses (w) of our Lazarus populations.  Using standard competition assays (Lenski et 

al., 1991; Tenaillon et al., 2012; Rodríguez-Verdugo et al., 2014), we competed each Lazarus 

population against REL1207, a strain identical to our Lazarus ancestor (Table S3.3).  These 

relative fitness assays were performed at 42.2°C rather than 43.0°C, because REL1207 

populations are sustainable at the former temperature but crash at the latter, making w 

measurement impossible.  

 We estimated w each of the 26 populations.  On average, the Lazarus populations showed 

a w increase of 24% relative to the ancestor, with 22 of 26 populations having w > 1.0 (p < 0.05, 

Table 3.1).  Although the average w increase of the rpoBC populations (28%) exceeded that of 

all the other populations (22%) and the hslUV populations alone (23%), it was not significantly 

higher than either (one-tailed t-test, unequal variance:  p = 0.15 and p = 0.18, respectively). 

 Strangely, although the relative fitness values of rpoBC populations were not statistically 

higher than those of hslUV populations, rpoBC populations produced significantly more colonies 

during the competition experiments than hslUV populations at both time points (t0 and t1) in the 

competition (one-tailed t-test, unequal variance:  t0 p = 2.42 × 10-5, t1 p = 2.81 × 10-4).  The 

ancestor colony counts were unaffected between these two groups (one-tailed t-test, unequal 

variance:  t0 p = 0.42, t1 p = 0.49).  While this did not translate into a difference in w, it did agree 

with the cell density measurements at day five. 

 We also assessed whether Lazarus populations showed any fitness tradeoffs at their 

ancestral growth temperature of 37.0°C.  On average, the Lazarus populations exhibited a fitness 

decrease of 3% relative to the ancestor, with 14 of 26 populations having relative fitness values 
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significantly < 1.0 (one-tailed t-test:  p < 0.05, Table 3.1).  Populations with fixed rpoBC 

mutations had an average w decrease of 8% relative to the ancestor (one-tailed t-test:  p = 

0.0082), which was significantly lower than all other populations (one-tailed t-test, unequal 

variance:  p = 0.019).  Although some hslUV populations had fitness values significantly < 1.0 

(Table 3.1), hslUV populations had an average fitness decrease of 1% relative to the ancestor, 

which was not significantly different from 1.0 (one-tailed t-test:  p = 0.054), suggesting less of a 

fitness tradeoff for hslUV populations compared to rpoBC populations. 

 

DISCUSSION 

We have performed experiments to characterize the genetic mutations that contribute to 

the phenomenon of rescue from otherwise lethal temperatures.  Like Mongold et al. (1999), who 

previously studied the Lazarus effect, we find that rescue is infrequent, because it occurs in only 

8.8% of experimental populations.  It is nonetheless frequent enough that it has the potential to 

be a potent source of evolutionary innovation.  Moreover, we have made a series of puzzling 

observations in the course of our experiment.  The first is that there is a striking lack of 

independence among experiments, because we were more apt to find the same genetic mutations 

among populations within weeks, rather than between weeks.  There were nonetheless notable 

parallels across weeks as well, suggesting that there is finite pool of potentially adaptive rescue 

mutations.  The second is that there is a surprising amount of polymorphism within populations; 

even though there are clear ‘driver’ mutations that become fixed in Lazarus populations, we have 

detected additional polymorphic mutations at frequencies of >10% in most of our populations.  

Finally, there are clear patterns to the driver mutations, especially in relation to a previous 

thermal stress experiment at non-lethal temperatures (Tenaillon et al., 2012).  We have identified 

multiple driver mutations in two sets of genes:  those encoding subunits of RNA polymerase 
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(rpoB and rpoC), and those encoding heat shock proteases (hslU and hslV).  In the Discussion 

below, we consider these and other points further, culminating with a verbal model of the 

adaptive dynamics of Lazarus populations and potential mechanisms for population rescue. 

 

Adaptation to Lethal and Nonlethal Temperature 

One of the initial mysteries of the dynamics of population recovery was why populations 

adapted to high, but nonlethal temperatures did not concomitantly extend their upper thermal 

niche, thus enabling survival at even higher temperatures (Mongold et al., 1999).  Instead, lethal 

temperature conditions remained lethal for most populations, and recovery occurred primarily in 

populations already adapted to elevated temperature, suggesting that they were somehow pre-

adapted to recover from high and otherwise lethal temperatures (Mongold et al., 1999).  

Moreover, fitness measurements suggested that populations that recovered in lethal temperatures 

experienced tradeoffs at elevated, but nonlethal temperatures, implying that distinct sets of 

mutations are adaptive under nonlethal and lethal temperature regimes (Mongold et al., 1999). 

 To determine if there is a distinction between the sets of mutations that arise under lethal 

and nonlethal conditions, we have compared the genetic data of our Lazarus experiments at 

43.0°C to the results of a previous long-term evolution experiment conducted at a sustainable 

42.2°C (Tenaillon et al., 2012).  These experiments can be compared directly because they were 

based on the same ancestor (REL1206), grown in the same media (DM25), and under the same 

conditions (i.e., 10 mL of media, with 120 RPM shaking).  Although there are other differences 

(see below), the major difference is between a high but sustainable temperature (42.2°C) and a 

high but lethal temperature (43.0°C). 

 Among the parallel results between experiments, one was the recovery of point 

mutations in rpoB and rpoC.  The rpoB gene is a common target for mutations across a wide 
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array of evolution experiments (Herring et al., 2006; Conrad et al., 2009; Charusanti et al., 

2010), and it was also the most mutated gene in the 42.2°C experiment (Tenaillon et al., 2012).  

In that experiment, 76 of 115 clones contained an rpoB mutation, another 21 of 115 clones 

contained an rpoC mutation, and a total of 5 of 115 lines contained a mutation in both genes.  At 

least some of the rpoB mutations were likely to have been drivers of adaptation, both because 

they fixed rapidly during the course of the 42.2°C experiment (Rodríguez-Verdugo et al., 2013) 

and because they provided a ~22% fitness benefit, on average, at 42.2°C as single mutations in 

the REL1206 background (Rodríguez-Verdugo et al., 2014).  Our Lazarus experiments also 

suggest that rpoB and rpoC mutations are adaptive, because we have detected two populations 

with fixed (>85% estimated frequency) rpoB mutations and four populations with fixed rpoC 

mutations (Table S3.2).  Of these six mutations, we can definitively identify at least one rpoB 

and one rpoC as driving mutations, because they were the lone high frequency variants in the 

recovered population (#3 and #26; Table 3.1).    

The two experiments also identify mutations in the hslUV operon, but the frequency of 

mutations differs.  In the 42.2°C experiment, only two of 115 (1.7%) clones contained a mutation 

in the hslUV region.  Neither were obvious knockouts; one mutation was intergenic, and the 

other was a nonsynonymous replacement (I136N).  In contrast, 16 of 26 (61%) of Lazarus 

populations contained a mutation in hslUV or their upstream region, several of which appear to 

be drivers because they are the lone fixed mutation in the population.   

We can compare results between the two experiments more formally by considering the 

frequency of mutations within specific genes.  For example, in the hslU gene, one mutation was 

observed out of 115 clones from the 42.2°C experiment, for a frequency of 0.009 (1/115).  

Assuming this is the probability of an adaptive mutation occurring in this gene in the Lazarus 

experiment, we can test whether our Lazarus observation of nine mutations events in 26 
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populations is expected.  We find that the probability of observing nine or more hslU mutations 

in 26 observations is vanishingly small given a frequency of 0.009 (binomial:  p = 7.77 × 10-13; 

Table 3.2).  We note, however that this result changes somewhat if one assumes that the 26 

populations are not independent (see below), and instead rely on the fact that hslU mutations 

occur in two of seven independent weekly trials (binomial:  p = 0.02; not significant after 

Bonferroni correction; Table 3.2).  

We find that many common mutations differ significantly between the two experiments 

(Table 3.2), most because they have occurred too infrequently in the Lazarus populations (e.g., 

rpoB, ybaL, cls, rho, iclR, and rpoD mutations), but others because they occur too often in 

Lazarus populations (e.g., hslV).  Notably, rpoB and ybaL, the two most mutated genes within 

the 42.2°C experiment—and the rho and cls genes, which together define a second path of 

adaptation to 42.2°C adaptation—are significantly underrepresented in Lazarus populations.  

One important exception to this trend is rpoC, because we cannot reject the hypothesis that rpoC 

mutations have occurred with equal frequency in the two experiments (binomial:  p = 0.47 for 26 

populations, p = 0.24 for 7 weeks).  There are caveats to using this binomial approach for 

comparing experiments:  specifically, some mutations are not strictly independent because they 

occur together on haplotypes, and the test relies on a single point estimate of probability from the 

42.2°C experiment.  Nonetheless, the overarching impression is that the two experiments identify 

different sets of genes as loci for adaptive mutations, with the notable exception of rpoC.  

 Why might the sets of mutations differ between these two experiments?  As we have 

noted, one difference between experiments is a modest but physiologically critical difference in 

temperature, but they also differ in at least three other features.  The first is the method in which 

the experiments were started—single clones for each of the 115 populations at 42.2°C (Tenaillon 

et al., 2012; Hug and Gaut, 2015) but a batch culture for each week of the Lazarus experiment.  
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These batch cultures likely introduced non-independence among replicates within weeks, but this 

non-independence is helpful for ultimately understanding the dynamics of rescue (see below).    

A second difference is population size.  Because REL1206 growth is sustained at 42.2°C, 

populations remained large (~106  individuals) for all phases of that experiment, whereas Lazarus 

populations initially crashed to undetectable or nearly undetectable levels (Figure 3.2).  Within 

crashed populations, genetic drift may rapidly elevate the frequency of rare advantageous 

mutations, ultimately leading to an acceleration of the rate of adaptation (Lang et al., 2013).  We 

revisit this point further below.  

 Finally, the two experiments differ in duration; the 42.2°C experiment ran for a year, but 

the Lazarus populations were propagated for only five days.  This time difference is likely 

important, because large-effect mutations tend to be fixed early in experimental populations 

(Kryazhimskiy et al., 2014).  After the initial fixation of large-effect mutations, the adaptive 

fixations that follow tend to have incrementally diminishing fitness benefits (Chou et al., 2011; 

Khan et al., 2011; Kryazhimskiy et al., 2014).  Given the short timespan of Lazarus experiments, 

we are likely uncovering only large-effect mutations.  Unfortunately, we cannot compare them 

directly to early large-effect mutations in the 42.2°C experiment, because it is not yet known 

which mutations were fixed early in the that experiment (with the notable exception of rpoB 

mutations) (Rodríguez-Verdugo et al., 2013).  If we were to continue the Lazarus experiment, it 

is possible that the set of adaptive mutations separating lethal and nonlethal temperatures would 

diminish (Table 3.2).  It is important to note, however, that time alone does not explain 

differences between the experiments, because mutations within hslV are common, fixed drivers 

in several Lazarus populations but were rare in the year-long 42.2°C experiment.   

 

hslUV, rpoBC, and the Roles of Standing Variation and Genetic Drift 
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hslUV and rpoBC mutations drive adaptation and population recovery, but the 

evolutionary dynamics of mutations in these operons differ substantially for three reasons.  First, 

hslUV and rpoBC mutations are not found together as fixed in the same population, which is 

statistically improbable given their respective frequencies across populations and given that at 

least one is fixed as a putative driver in each population with two or more fixed mutations (p < 

0.02).  The lack of co-occurring rpoBC and hslUV mutations suggests an initial canalization of 

the adaptive response, focused either on a pathway through heat shock proteins or through RNA 

polymerase, but not through both.  Such a pattern is consistent with negative epistasis observed 

between the rho and rpoB pathways of the 42.2°C experiment (Tenaillon et al., 2012).  These 

results imply that epistasis shapes trajectories even at the earliest stages of the adaptive process.  

Second, as noted above, their patterns of parallelism differ.  Specific hslUV mutations tend to 

repeat across populations within weeks, but rpoBC mutations repeat across weeks (Figure 3.4)—

for example, the same nonsynonymous mutation in rpoC (W1020G) occurred in weeks three, 

six, and seven. Finally, populations with rpoBC vs. hslUV mutations had distinct fitness patterns.  

Based on cell densities and relative fitnesses at 42.2°C (Table 3.1), mutations in the rpoBC 

operon offer an advantage that is at least equivalent to, if not greater than, mutations in the hslUV 

operon.  Despite this, hslUV mutations were more prevalent across all populations. 

Together these observations suggest different evolutionary dynamics for mutations within 

hslUV and rpoBC.  One possibility is that these two adaptive strategies are associated with 

different costs under non-stressful conditions.  To assess this possibility, we competed Lazarus 

populations against the REL1207 ancestor at 37.0°C.  Our results indicate that the hslUV 

populations do not differ statistically as a group in their fitness from the ancestor, suggesting that 

hslUV mutations are neutral (or only mildly deleterious) at 37.0°C.  This observation may not be 

surprising, considering that the inactivation of heat shock genes is unlikely to be critical at 
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37.0°C.  In contrast, rpoBC populations have a greater fitness tradeoff (significantly lower 

fitness) at 37.0°C than hslUV populations, suggesting that rpoBC mutations are deleterious at 

37.0°C. 

 Together, these lines of evidence suggest a model for the establishment of recovery.  This 

model relies critically on the fact that the replicates within a week were established from batch 

cultures at 37.0°C (Figure 3.1).  Previous work in nonlethal experimental evolution systems has 

suggested that adaptation is not mutation-limited (Lang et al., 2011), and we believe that to be 

the case here.  Starting with our final cell densities from day zero (acclimation growth in DM25 

at 37.0°C), using the expected 6.64 generations produced in DM25 (Lenski et al., 1991), and 

assuming an E. coli mutation rate of 10-3 per genome per generation (Lee et al., 2012), we can 

calculate the number of mutations expected at each nucleotide position during DM25 

acclimation.  Using a conservative six generations of binary fission, our populations would have 

sampled between 0.36 and 0.60 mutations per nucleotide, with an average of 0.47.  It is 

important to note that these are only the mutations that could have arisen during growth in 

DM25; an additional eight hours of growth took place in LB prior to this (Figure 3.1). 

Based on the length of the hslUV and rpoBC operons, we expect that mutations in rpoBC 

occur more often than in hslUV.  However, several effects may have acted individually or 

together to generate a bias toward hslUV mutations.  First, many hslUV mutations constituted 

frameshifts, suggesting that a simple loss of function of this operon was beneficial.  Therefore, 

while hslUV might have been less likely to be mutated than rpoBC based on length, more 

mutations may result in a fitness advantage.  In contrast, rpoBC mutations must retain function, 

suggesting there may be fewer potentially adaptive mutations from which to sample.  Second, as 

noted above, populations with mutations in hslUV did not exhibit antagonistic pleiotropy to the 

same degree as populations with rpoBC mutations; they did not have an associated fitness cost at 
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the acclimation temperature of 37.0°C, suggesting hslUV mutations are more likely to exist in 

batch culture and may reach frequencies that enhance the possibility of sampling into separate 

populations, perhaps explaining the high degree of parallelism across populations within weeks.  

By contrast, because individuals with rpoBC mutations are less fit than the ancestor at 37.0°C, 

new rpoBC mutations in batch culture would tend to be lost rapidly, making them less likely to 

be sampled and distributed to individual Lazarus tubes.  This argument presumes that much of 

the initial selection to high temperature acts on standing variation that was generated at 37.0°C.  

This is consistent with the work of Luria and Delbrück (1943) describing the appearance of 

mutations conferring virus resistance in E. coli populations, even in the absence of a viral 

selective pressure (Luria and Delbrück, 1943). 

If selection acts on standing variation and rpoBC mutations are deleterious at 37.0°C, 

how do any rpoBC mutations survive?  There are two possibilities.  The first is that the rpoBC 

mutations occur de novo after transfer to lethal temperature.  Under this hypothesis, such 

mutations would be expected to be rare, because the population size decreases immediately after 

introduction to high temperature.  If this is true, however, one might predict that rpoBC 

populations recover later than other populations, and this is not the case.  The second possibility 

is that the population crash increases genetic drift, occasionally establishing a rare, highly 

advantageous allele for subsequent fixation. 

 

Mechanism 

We have shown that population recovery occurs rarely and that it tends to be 

accompanied by mutations in hslUV or rpoBC, but not both.  We believe that the pattern of 

parallelism within and between weeks is driven in part by the antagonistic pleiotropy of rpoB 

mutations and the relative lack thereof for hslUV mutations.  But we have failed to address 
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another important question:  what is the molecular mechanism by which these mutations permit 

population recovery?  

 There are already some insights into the potential benefits of rpoB mutations at high 

temperature, because similar rpoB mutations have been shown to have large effects on gene 

expression at high temperature (Rodríguez-Verdugo et al., 2016).  For example, single mutants 

with rpoB affect the expression of thousands of genes at high temperature, and these shifts tend 

to move gene expression from a stress pattern to a state more like that of the ancestor 

(Rodríguez-Verdugo et al., 2016).  Accompanying these wholesale shifts in gene expression is a 

trend toward increasing transcriptional efficiency, suggesting that at least some adaptive rpoB 

mutations slow the polymerase and enhance termination at high temperature (Rodríguez-

Verdugo et al., 2016).  We have no evidence, however, that the distinct Lazarus mutations in 

rpoB and rpoC confer these same benefits. 

How mutations in hslUV enable population recovery is more of a mystery.  Given that 

most mutations in the operon are frameshifts, they likely trigger a loss of function of the heat 

shock protease system.  In the short term, this poses a problem, because these genes are normally 

upregulated upon the onset of heat shock conditions, although only weakly (Chuang et al., 1993).  

Over a longer period of thermal stress, they are downregulated to below pre-stress levels 

(Rodríguez-Verdugo et al., 2016).  If hslUV plays a roll in the initial heat shock response and is 

downregulated later, the benefit from knock out mutations is perplexing.  Perhaps the function of 

the hslUV-encoded protease system—to degrade both misfolded and properly folded proteins 

(Miller et al., 2013)—becomes detrimental to the cell under extreme stress.  Three lines of 

evidence support this idea.  First, the hslUV protease system is known to target σ32, the major 

heat shock sigma factor of the cell, and therefore the absence of the hslUV proteases may 

enhance the production of other heat shock proteins (Kanemori et al., 1997).  Second, we 
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observed three mutants (#22, #23, and #25) with large duplications centered on the groEL and 

groES genes, which encode a chaperonin complex important to the heat shock response (Richter 

et al., 2010), and which are among the heat shock proteins upregulated in hslUV deletion mutants 

(Kanemori et al., 1997).  Lastly, our third-most common fixed mutation impacted the 

downstream region of clpA, a subunit of the clpAP protease system that has similar functions to, 

and overlapping substrate specificities with, hslUV (Kwon et al., 2004).  It is conceivable that 

altering the downstream region of clpA could result in its downregulation or a change in its 

function, which would produce similar outcomes to knocking out hslUV.  Ultimately, we cannot 

yet ascribe a mechanism, but our hypothesis—i.e., that hslUV knockouts may indirectly lead to 

upregulation of other heat shock proteins through an effect on σ32—merits further attention.
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FIGURES 

Figure 3.1:  Experimental design for producing and observing Lazarus events.  Bacteria 

were propagated from frozen through two flasks to acclimate them and to produce enough cells 

for experimental replication.  Samples of flask culture were then propagated through culture 

tubes in 44 replicates for a total of five days.  This procedure was repeated across seven different 

weeks. 
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Figure 3.2:  Population cell densities over time.  Most populations went extinct over the course 

of five days.  A total of 26 Lazarus events were observed across the third, fourth, and fifth days 

of growth.  The timing of Lazarus events was determined by the day at which cell density 

increased by an order of magnitude over the previous day.  Populations possessing rpoBC 

mutations are indicated by rectangles.  Populations possessing duplications are circled. 
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Figure 3.3:  Genome-wide distribution of mutations in Lazarus populations.  Different 

weeks are separated into groups and labeled at the right.  Mutations are colored by their 

frequency in the population according to the scale at the right.  Synonymous, nonsynonymous, 

indel, and intergenic mutations are represented by squares, circles, triangles, and diamonds, 

respectively.  Only mutations at frequencies greater than 10% are shown.  Mutations occurring in 

more than two populations are labeled at the top. 
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Figure 3.4:  Distribution of mutations in the (A) hslUV and (B) rpoBC operons.  Different 

weeks are separated into groups and labeled at the right.  Mutations are colored by their 
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frequency in the population according to the scale at the right.  Only mutations at frequencies 

greater than 10% are shown. Synonymous, nonsynonymous, indel, and intergenic mutations are 

represented by squares, circles, triangles, and diamonds, respectively, as in Figure 3.3. 
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TABLES 

 

Table 3.1:  Mutations present in populations at frequencies >10% and mean fitness values 

(𝒘) of populations relative to their ancestor at 42.2°C and 37.0°C.   

Week Population 
Affected Region 
(Frequency in 
Population) 

𝒘𝟒𝟐.𝟐 
(Standard 
Deviation) 

p-valuea 
𝒘𝟑𝟕.𝟎 

(Standard 
Deviation) 

p-valuea 

1 1 
hslV/ftsN (1), gltJ 
(0.136), glvBC 
(0.108) 

1.28 (0.06) 5.24E-05 0.96 (0.03) 1.58E-02 

1 2 

mutT (1), mrdA (1), 
clpA/serW (1), 
ECB_02812/ECB_
02813 (1), arcB 
(1), rpoB (1), yfbM 
(0.205), yhhI 
(0.178), gltJ 
(0.146), glvBC 
(0.136) 

1.35 (0.13) 5.20E-04 0.95 (0.04) 1.56E-02 

1 3 rpoB (1), glvBC 
(0.126) 1.33 (0.11) 3.71E-04 0.82 (0.02) 2.29E-06 

2 4 

lnt (1), insE-1/serX 
(1), ynfL (1), rtcA 
(1), hslV (1), nagE 
(0.352), yiaN 
(0.292) 

1.12 (0.18) 7.35E-02 0.97 (0.03) 2.46E-02 

2 5 ECB_00530 (1), 
hslU (0.877) 1.34 (0.13) 6.97E-04 0.92 (0.06) 7.62E-03 

2 6 clpA/serW (1), hslU 
(1), yegM (0.154) 1.33 (0.12) 6.06E-04 1.02 (0.04) 1.13E-01 

2 7 

clpA/serW (1), 
insE-1/serX (1), 
hslU (1), glvBC 
(0.309), gpsA 
(0.237), dfp (0.121) 

1.13 (0.05) 4.52E-04 1.01 (0.02) 2.52E-01 

2 8 
ybgG/cydA (1), 
yghS (1), hslU (1), 
pepA (1) 

1.05 (0.05) 2.96E-02 0.98 (0.05) 1.41E-01 

3 9 
hslU (0.986), 
glvBC (0.138), 
gpsA (0.117) 

1.41 (0.12) 1.62E-04 1 (0.05) 4.09E-01 

3 10 secF (0.872), 1.38 (0.24) 5.91E-03 0.95 (0.04) 1.78E-02 
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ECB_01992 
(0.332), glvBC 
(0.137), gltJ 
(0.116) 

3 11 

hslU (0.893), 
glvBC (0.144), gltJ 
(0.136), hslV 
(0.106) 

1.47 (0.19) 8.52E-04 1 (0.04) 4.69E-01 

3 12 hslV (1), glvBC 
(0.122) 1.43 (0.06) 5.56E-06 0.97 (0.01) 6.53E-04 

3 13 hslV (1) 1.38 (0.09) 8.31E-05 1.01 (0.03) 2.93E-01 

3 14 

hslU (0.874), 
glvBC (0.178), gltJ 
(0.165), hslU 
(0.111) 

1.30 (0.04) 5.46E-06 1.03 (0.05) 7.82E-02 

3 15 

hslV (0.611), 
ECB_01992 
(0.326), hslU 
(0.286), gltJ 
(0.133), glvBC 
(0.133) 

1.12 (0.10) 1.57E-02 1 (0.04) 3.84E-01 

3 16 

ECB_00530 (1), 
clpA/serW (1), 
rpoC (1), appB 
(0.212), glvBC 
(0.157) 

1.35 (0.28) 1.29E-02 0.96 (0.05) 5.28E-02 

3 17 

hslV (0.909), 
ECB_01992 
(0.329), glvBC 
(0.164) 

1.17 (0.04) 1.20E-04 1.03 (0.03) 4.62E-02 

3 18 

rhsE (1), hslU 
(0.987), glvBC 
(0.135), gltJ 
(0.109) 

1.20 (0.10) 2.49E-03 0.97 (0.04) 7.41E-02 

3 19 

hslU (0.989), 
ydfJ/ydfK (0.529), 
ECB_01992 
(0.318), glvBC 
(0.182) 

1.08 (0.05) 3.85E-03 0.99 (0.02) 1.05E-01 

5 20 
clpA/serW (1), 
rpoC (1), glvBC 
(0.113) 

1.24 (0.07) 1.79E-04 0.96 (0.05) 5.90E-02 

5 21b 

ECB_00530 (1), 
hslV (0.956), 
ECB_01992 (0.33), 
glvBC (0.171) 

1.05 (0.06) 6.14E-02 0.95 (0.02) 8.25E-04 
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6 22c 

ECB_01992 
(0.316), gltJ 
(0.173), glvBC 
(0.159) 

1.12 (0.10) 1.90E-02 0.98 (0.03) 4.40E-02 

6 23c glvBC (0.137) 1.07 (0.09) 5.33E-02 0.93 (0.02) 1.89E-04 

6 24 

ECB_00530 (1), 
rhsE (1), rpoC (1), 
ECB_01992 (0.33), 
glvBC (0.144), gltJ 
(0.143) 

1.14 (0.06) 1.51E-03 0.92 (0.02) 3.05E-04 

6 25c 
hslV/ftsN (1), 
glvBC (0.156), gltJ 
(0.121) 

1.04 (0.07) 1.06E-01 0.96 (0.03) 1.04E-02 

7 26 

rpoC (1), 
ECB_01992 
(0.341), glvBC 
(0.155) 

1.24 (0.11) 1.55E-03 0.92 (0.04) 1.36E-03 

 

a Significance of relative fitness increases compared to a value of 1.0 was determined using one-

tailed t-tests and six replicate fitness estimates per population. 

b Population also contained a duplication of ~80 kb. 

c Population also contained a duplication of ~20 kb.  
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Table 3.2:  Mutations within specific genes that differ significantly in frequency between 

lethal and non-lethal high-temperature experiments.  

Gene 

Frequency in 
115 

Populations at 
42.2°C 

No. Observed 
across 26 
Lazarus 

Populations 

p-valuea 

No. 
Observed 
across 7 
Lazarus 
Weeks 

p-valuea 

rpoB 0.66 2 7.92E-10 1 3.18E-11 
ybaL 0.56 0 6.59E-10 0 6.59E-10 
cls 0.49 0 2.91E-08 0 2.91E-08 
rho 0.39 0 2.48E-06 0 2.48E-06 
iclR 0.32 0 4.13E-05 0 4.13E-05 
rpoD 0.31 0 5.76E-05 0 5.76E-05 
ECB_00503b 0.30 0 7.98E-05 0 7.98E-05 
hslU 0.01 9 7.77E-13 5 2.81E-06 
hslV 0.01 7 2.14E-09 2 0.0214 

 

a Based on the cumulative binomial probability of observing the observed number of mutations 

and fewer (or greater, when appropriate) in Lazarus populations, given the frequency among 115 

populations of the 42.2°C experiment.  Bolded values are significant after Bonferroni correction 

for an experiment-wide significance value of 0.05.   

b A recurring large deletion of ~76 kb  
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SUPPORTING INFORMATION 

 

Table S3.1:  Mutations present in Lazarus populations at >10% frequency. 

week sample breseq 
evidence 

genome 
position mutation population 

frequency mutation type gene(s) 

1 1 RA 4101844 Δ1 bp 1 intergenic (‑74/+19) hslV/ftsN 
1 1 RA 667294 T-->A 0.136 D203V (GAT--

>GTT)  
gltJ 

1 1 RA 3823110 T-->A 0.108 I312F (ATT-->TTT)  glvBC 
1 2 RA 114029 Δ1 bp 1 coding (182/390 nt) mutT 
1 2 RA 649901 T-->G 1 I301L (ATC-->CTC)  mrdA 
1 2 RA 942604 A-->G 1 intergenic (+359/+33

9) 
clpA/ser
W 

1 2 RA 3012076 T-->G 1 intergenic (‑516/‑58) ECB_028
12/ECB_0
2813 

1 2 RA 3285997 T-->G 1 E755A (GAA--
>GCA)  

arcB 

1 2 RA 4163133 A-->C 1 N760H (AAC--
>CAC)  

rpoB 

1 2 RA 2331921 T-->G 0.205 I122S (ATT-->AGT)  yfbM 
1 2 RA 3555814 T-->G 0.178 F250C (TTC--

>TGC)  
yhhI 

1 2 RA 667294 T-->A 0.146 D203V (GAT--
>GTT)  

gltJ 

1 2 RA 3823110 T-->A 0.136 I312F (ATT-->TTT)  glvBC 
1 3 RA 4162195 A-->T 1 H447L (CAC--

>CTC)  
rpoB 

1 3 RA 3823110 T-->A 0.126 I312F (ATT-->TTT)  glvBC 
2 4 RA 671609 A-->C 1 G456G (GGT--

>GGG)  
lnt 

2 4 RA 1111967 A-->G 1 intergenic (‑236/+166
) 

insE‑1/ser
X 

2 4 RA 1646703 T-->A 1 I29F (ATT-->TTT)  ynfL 
2 4 RA 3484800 G-->A 1 S217F (TCC-->TTC)  rtcA 
2 4 RA 4101760 +T 1 coding (11/531 nt) hslV 
2 4 RA 687648 T-->A 0.352 I537N (ATC--

>AAC)  
nagE 

2 4 RA 3675965 A-->T 0.292 T236S (ACC--
>TCC)  

yiaN 

2 5 RA 573229 T-->G 1 N87T (AAC--
>ACC)  

ECB_005
30 

2 5 RA 4100512 Δ1 bp 0.877 coding (719/1332 nt) hslU 
2 6 RA 942604 A-->G 1 intergenic (+359/+33

9) 
clpA/ser
W 

2 6 RA 4101159 C-->A 1 K24N (AAG-- hslU 
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>AAT)  
2 6 RA 2087293 G-->C 0.154 G57A (GGC--

>GCC)  
yegM 

2 7 RA 942604 A-->G 1 intergenic (+359/+33
9) 

clpA/ser
W 

2 7 RA 1111967 A-->G 1 intergenic (‑236/+166
) 

insE‑1/ser
X 

2 7 RA 4101159 C-->A 1 K24N (AAG--
>AAT)  

hslU 

2 7 RA 3823101 T-->G 0.309 T315P (ACC--
>CCC)  

glvBC 

2 7 RA 3723692 G-->C 0.237 L246V (CTG--
>GTG)  

gpsA 

2 7 RA 3751621 A-->T 0.121 H179L (CAT--
>CTT)  

dfp 

2 8 RA 751779 T-->G 1 intergenic (+286/‑561
) 

ybgG/cyd
A 

2 8 RA 3067389 T-->G 1 H219P (CAC--
>CCC)  

yghS 

2 8 RA 4100512 Δ1 bp 1 coding (719/1332 nt) hslU 
2 8 RA 4468692 T-->G 1 T163P (ACC--

>CCC)  
pepA 

3 9 RA 4100115 +C 0.986 coding (1116/1332 nt
) 

hslU 

3 9 RA 3823110 T-->A 0.138 I312F (ATT-->TTT)  glvBC 
3 9 RA 3723691 A-->C 0.117 L246R (CTG--

>CGG)  
gpsA 

3 10 JC 398683 +GGT 0.872 coding (756/972 nt) secF 
3 10 JC 2103887 +CAGC 0.332 coding (154/216 nt) ECB_019

92 
3 10 RA 3823110 T-->A 0.137 I312F (ATT-->TTT)  glvBC 
3 10 RA 667294 T-->A 0.116 D203V (GAT--

>GTT)  
gltJ 

3 11 RA 4101052 C-->T 0.893 G60D (GGT--
>GAT)  

hslU 

3 11 RA 3823110 T-->A 0.144 I312F (ATT-->TTT)  glvBC 
3 11 RA 667294 T-->A 0.136 D203V (GAT--

>GTT)  
gltJ 

3 11 RA 4101568 T-->G 0.106 H68P (CAT-->CCT)  hslV 
3 12 RA 4101568 T-->G 1 H68P (CAT-->CCT)  hslV 
3 12 RA 3823110 T-->A 0.122 I312F (ATT-->TTT)  glvBC 
3 13 RA 4101568 T-->G 1 H68P (CAT-->CCT)  hslV 
3 14 RA 4100743 A-->C 0.874 L163R (CTG--

>CGG)  
hslU 

3 14 RA 3823110 T-->A 0.178 I312F (ATT-->TTT)  glvBC 
3 14 RA 667294 T-->A 0.165 D203V (GAT--

>GTT)  
gltJ 

3 14 RA 4101229 A-->C 0.111 M1R (ATG--
>AGG)  † 

hslU 

3 15 RA 4101568 T-->G 0.611 H68P (CAT-->CCT)  hslV 
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3 15 JC 2103887 +CAGC 0.326 coding (154/216 nt) ECB_019
92 

3 15 RA 4100115 +C 0.286 coding (1116/1332 nt
) 

hslU 

3 15 RA 667294 T-->A 0.133 D203V (GAT--
>GTT)  

gltJ 

3 15 RA 3823110 T-->A 0.133 I312F (ATT-->TTT)  glvBC 
3 16 RA 573246 G-->C 1 L81L (CTC-->CTG)  ECB_005

30 
3 16 RA 942604 A-->G 1 intergenic (+359/+33

9) 
clpA/ser
W 

3 16 RA 4168018 T-->G 1 W1020G (TGG--
>GGG)  

rpoC 

3 16 RA 1057332 T-->C 0.212 S316P (TCA--
>CCA)  

appB 

3 16 RA 3823110 T-->A 0.157 I312F (ATT-->TTT)  glvBC 
3 17 RA 4101363 Δ1 bp 0.91 coding (408/531 nt) hslV 
3 17 RA 4101362 Δ1 bp 0.908 coding (409/531 nt) hslV 
3 17 JC 2103887 +CAGC 0.329 coding (154/216 nt) ECB_019

92 
3 17 RA 3823110 T-->A 0.164 I312F (ATT-->TTT)  glvBC 
3 18 RA 1500351 T-->G 1 G25G (GGT--

>GGG)  
rhsE 

3 18 RA 4100115 +C 0.987 coding (1116/1332 nt
) 

hslU 

3 18 RA 3823110 T-->A 0.135 I312F (ATT-->TTT)  glvBC 
3 18 RA 667294 T-->A 0.109 D203V (GAT--

>GTT)  
gltJ 

3 19 RA 4100115 +C 0.989 coding (1116/1332 nt
) 

hslU 

3 19 RA 1600384 A-->T 0.529 intergenic (‑332/‑421) ydfJ/ydfK 
3 19 JC 2103887 +CAGC 0.318 coding (154/216 nt) ECB_019

92 
3 19 RA 3823110 T-->A 0.182 I312F (ATT-->TTT)  glvBC 
5 20 RA 942604 A-->G 1 intergenic (+359/+33

9) 
clpA/ser
W 

5 20 RA 4165883 A-->G 1 D308G (GAT--
>GGT)  

rpoC 

5 20 RA 3823110 T-->A 0.113 I312F (ATT-->TTT)  glvBC 
5 21 RA 573246 G-->C 1 L81L (CTC-->CTG)  ECB_005

30 
5 21 RA 4101760 Δ1 bp 0.956 coding (11/531 nt) hslV 
5 21 JC 2103887 +CAGC 0.33 coding (154/216 nt) ECB_019

92 
5 21 RA 3823110 T-->A 0.171 I312F (ATT-->TTT)  glvBC 
6 22 JC 2103887 +CAGC 0.316 coding (154/216 nt) ECB_019

92 
6 22 RA 667294 T-->A 0.173 D203V (GAT--

>GTT)  
gltJ 

6 22 RA 3823110 T-->A 0.159 I312F (ATT-->TTT)  glvBC 
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6 23 RA 3823110 T-->A 0.137 I312F (ATT-->TTT)  glvBC 
6 24 RA 573246 G-->C 1 L81L (CTC-->CTG)  ECB_005

30 
6 24 RA 1500351 T-->G 1 G25G (GGT--

>GGG)  
rhsE 

6 24 RA 4168018 T-->G 1 W1020G (TGG--
>GGG)  

rpoC 

6 24 JC 2103887 +CAGC 0.33 coding (154/216 nt) ECB_019
92 

6 24 RA 3823110 T-->A 0.144 I312F (ATT-->TTT)  glvBC 
6 24 RA 667294 T-->A 0.143 D203V (GAT--

>GTT)  
gltJ 

6 25 RA 4101844 Δ1 bp 1 intergenic (‑74/+19) hslV/ftsN 
6 25 RA 3823110 T-->A 0.156 I312F (ATT-->TTT)  glvBC 
6 25 RA 667294 T-->A 0.121 D203V (GAT--

>GTT)  
gltJ 

7 26 RA 4168018 T-->G 1 W1020G (TGG--
>GGG)  

rpoC 

7 26 JC 2103887 +CAGC 0.341 coding (154/216 nt) ECB_019
92 

7 26 RA 3823110 T-->A 0.155 I312F (ATT-->TTT)  glvBC 
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Table S3.2:  Cell densities over time for all 296 populations.  t0 measurements were made 

from the acclimation flask.  Negative values were indistinguishable from background particle 

counts.  Lazarus populations are highlighted in yellow. 

we
ek 

Lazarus 
populati
on 

t0 density 
(particles/
mL) 

t1 density 
(particles/
mL) 

t2 density 
(particles/
mL) 

t3 density 
(particles/
mL) 

t4 density 
(particles/
mL) 

t5 density 
(particles/
mL) 

7  28257000 2879225 -192065 -116375 548275 -152200 
7  28257000 1562225 -120425 333325 663875 -112400 
7  28257000 3624225 -128425 -64675 -140325 -9000 
7  28257000 3241225 -40825 -132275 281575 -243800 
7  28257000 1514225 -243805 -191975 -140325 -180100 
7  28257000 3635225 -132325 -48775 -72625 -172100 
7  28257000 2187225 -148325 -172075 -247725 -180100 
7 26 28257000 2063225 -192065 -207935 297475 19190800 
7  28257000 3249225 -160225 -164175 -263625 -184100 
7  28257000 1864225 -215945 -56675 -231825 -204000 
7  28257000 1769225 -192065 -68675 -223825 -200000 
7  28257000 3480225 78575 -132275 -259725 -287560 
7  28257000 2744225 -180125 -191975 -223825 -196000 
7  28257000 7731225 -136325 -184075 -92525 349200 
7  28257000 1900225 -227885 -72575 -239825 -192000 
7  28257000 2839225 -211965 -195975 -196025 -247800 
7  28257000 1940225 -196045 -223855 -299485 -164200 
7  28257000 2509225 -172125 -136275 86575 -227900 
7  28257000 1813225 -223905 -188075 -275605 -247800 
7  28257000 3576225 -184105 -211915 -223825 -231800 
7  28257000 3050225 -219925 -227835 -235825 -204000 
7  28257000 2935225 -116425 -136275 -235825 -231800 
7  28257000 2573225 -172125 3025 -124325 -148300 
7  28257000 2875225 -172125 -104475 -251725 62700 
7  28257000 2903225 -180125 -211915 -188025 -259700 
7  28257000 3158225 -196045 -156175 -227825 -219900 
7  28257000 1435225 -136325 -84575 -152225 -219900 
7  28257000 2326225 -184105 -148275 -267625 -247800 
7  28257000 2079225 -152225 -168175 -251725 -160200 
7  28257000 1864225 -188085 -199975 -251725 -235800 
7  28257000 2207225 -96525 -207935 -291525 -271640 
7  28257000 1458225 -176125 -203955 420875 -247800 
7  28257000 3210225 -160225 -120375 -227825 -208000 
7  28257000 1371225 70575 -132275 -211925 -279600 
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7  28257000 2816225 -76625 -195975 -259725 -255700 
7  28257000 1594225 -180125 -188075 -196025 -156200 
7  28257000 4201225 -28925 -191975 -203925 -223900 
7  28257000 2334225 66675 -203955 -148225 -259700 
7  28257000 2883225 98475 -235795 -227825 -239800 
7  28257000 3297225 -136325 -223855 38775 -235800 
7  28257000 3174225 30775 -199975 -247725 -231800 
7  28257000 3150225 -156225 -219875 -207925 -176100 
7  28257000 2326225 -184105 -8975 -239825 -136300 
7  28257000 3444225 -128425 -180075 -291525 -259700 
6  24794900 2039930 -66675 -135300 -37775 -371125 
6  24794900 2500930 84525 -75600 -41775 66675 
6  24794900 5629930 -130355 -87500 -93535 -88525 
6  24794900 2958930 235825 99500 -65675 774975 
6  24794900 1748930 -110475 -119380 -101495 -311425 
6  24794900 2282930 -86575 -7900 -53775 -291525 
6  24794900 2083930 -66675 -115400 654725 -259725 
6  24794900 3543930 -30875 -99480 -101495 -132325 
6  24794900 2134930 -86575 -139280 -109455 -172125 
6  24794900 5135930 -26875 -139280 -37775 -263625 
6  24794900 2660930 -86575 -119380 -41775 -319385 
6  24794900 3396930 -130355 -67600 -89555 -291525 
6  24794900 1880930 -102475 -111420 -77575 -251725 
6  24794900 4709930 40825 -51700 -89555 -307445 
6  24794900 2588930 -74675 -123360 770125 -315405 
6  24794900 2114930 -146275 -79600 -69675 -275625 
6  24794900 2361930 -74675 -11900 2025 -200025 
6  24794900 2727930 -106475 -107440 -141295 -327345 
6  24794900 1888930 -118375 -139280 5925 -267625 
6  24794900 2011930 -154235 -71600 -37775 -287525 
6  24794900 2190930 -138315 -99480 -85575 -255725 
6  24794900 2433930 -134335 -27800 25825 -343265 
6  24794900 1267930 -134335 -103460 -93535 -267625 
6  24794900 1896930 -114475 -119380 -121395 -247725 
6  24794900 2114930 -130355 127400 -133335 -215925 
6  24794900 2397930 -110475 -103460 -5975 -196025 
6 22 24794900 2190930 -78575 4414000 11054925 12038975 
6  24794900 2282930 -66675 -91500 5925 -156215 
6  24794900 2230930 -138315 -103460 -109455 -295505 
6 23 24794900 1903930 -138315 -151220 41825 6028975 
6  24794900 1267930 -114475 -123360 -77575 -207925 
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6  24794900 2035930 -134335 -107440 -117415 -283525 
6  24794900 2238930 -118375 -147240 -93535 -271625 
6  24794900 2640930 -74675 -127340 -73675 -200025 
6  24794900 2445930 -58675 35800 -89555 -203925 
6 24 24794900 2898930 247725 15900 1852925 15448975 
6  24794900 2624930 -58675 -95500 -109455 -80625 
6  24794900 1919930 -162195 -43800 -49775 -327345 
6  24794900 2071930 -70675 -87500 -117415 -311425 
6  24794900 2298930 -94575 -135300 -49775 -307445 
6  24794900 3082930 -54775 -103460 -113435 -319385 
6  24794900 2457930 68625 -115400 -45775 -251725 
6  24794900 2114930 -90575 143300 -105475 -287525 
6 25 24794900 2524930 -158215 5317000 12214925 13518975 
5 20 23059600 2029865 -7975 43750 377070 15591050 
5  23059600 1886865 -79575 27850 10970 965050 
5  23059600 1094865 -79575 -55750 -52730 -77650 
5  23059600 1066865 -103475 -47750 -12930 -89550 
5  23059600 1663865 -103475 -59650 -36830 -81550 
5  23059600 1842865 -87575 -23850 146270 -109450 
5  23059600 5241865 187025 -95550 54770 -125370 
5  23059600 2029865 -99475 -23850 611970 503450 
5  23059600 1973865 -119415 -39750 50770 -1950 
5  23059600 1547865 -19875 -39750 26870 -109450 
5  23059600 942865 -115435 43750 -68630 -61650 
5  23059600 1925865 -131355 -95550 -84570 -41750 
5  23059600 2188865 -99475 -79550 -12930 -73650 
5  23059600 684565 -115435 -83550 -1030 -85550 
5  23059600 569165 -95575 -19850 62670 567150 
5  23059600 636765 -107475 95550 18870 193050 
5  23059600 756165 -83575 262650 476570 -89550 
5  23059600 5125865 31825 -107450 325370 37850 
5  23059600 2200865 -95575 15950 62670 -61650 
5  23059600 1512865 -99475 -83550 -44730 -113430 
5  23059600 1834865 -15975 -95550 10970 -13950 
5  23059600 2264865 -107475 -51750 -12930 21850 
5  23059600 982865 -135335 -59650 114470 -101450 
5  23059600 1878865 -27875 -67650 -8930 -141290 
5  23059600 1810865 -119415 79650 -40830 -101450 
5  23059600 2208865 -31875 -67650 50770 121350 
5  23059600 1571865 -31875 87550 -28830 -97550 
5  23059600 1818865 7925 -87550 22870 -113430 
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5  23059600 1058865 -11975 -3950 194070 770150 
5  23059600 1488865 15925 -39750 -56730 -45750 
5  23059600 1054865 258725 -39750 146270 320350 
5 21 23059600 668665 -67675 -51750 29270 6167050 
5  23059600 1953865 282525 -7950 -8930 9950 
5  23059600 2296865 -59675 31850 6970 -41750 
5  23059600 2534865 7925 -119350 -48730 272650 
5  23059600 644765 -91575 -67650 -16930 -81550 
5  23059600 1396865 -99475 -15950 -28830 49750 
5  23059600 2196865 -39775 50 18870 -121390 
5  23059600 2379865 -3975 -63650 22870 -73650 
5  23059600 696465 -27875 322350 -4930 -117410 
5  23059600 1858865 -43775 -119350 -1030 -125370 
5  23059600 1826865 19925 -103450 6970 -133330 
5  23059600 2574865 -75675 -15950 10970 -33850 
5  23059600 1906865 83525 -63650 -44730 -41750 
4  17037500 2362525 22900 82575 76650 294515 
4  17037500 1586525 -64700 -36825 -134350 -51685 
4  17037500 1315525 -104480 -60625 -70650 15915 
4  17037500 2067525 -56700 126375 -110450 147315 
4  17037500 1753525 -40800 -68625 -182090 -95485 
4  17037500 2031525 22900 -12925 64650 250715 
4  17037500 1785525 -36800 -84525 -106450 103515 
4  17037500 1956525 162200 34875 351250 15915 
4  17037500 1701525 -44800 -68625 -122350 31815 
4  17037500 1741525 -1000 -92525 203950 135315 
4  17037500 750525 -12900 -16925 -118450 -59685 
4  17037500 1745525 -16900 -40725 -134350 -75585 
4  17037500 1741525 -5000 -144245 -130350 131315 
4  17037500 2015525 82600 -104425 20850 8015 
4  17037500 5160525 86600 -88525 -38850 -23885 
4  17037500 2998525 126400 18975 -30850 -75585 
4  17037500 1641525 -60700 -72625 -10950 -63685 
4  17037500 2127525 -68700 42775 20850 35815 
4  17037500 1530525 -64700 6975 -90550 43815 
4  17037500 1944525 7000 -116425 -66650 -95485 
4  17037500 543325 14900 -56725 -110450 83615 
4  17037500 1522525 -60700 62675 -78650 8015 
4  17037500 1792525 166200 -116425 -118450 39815 
4  17037500 1852525 3000 -124325 -78650 -59685 
4  17037500 634825 -12900 -136285 60650 -39785 



 125 

4  17037500 638825 -5000 158275 -34850 -39785 
4  17037500 236825 -68700 -60625 -114450 -91485 
4  17037500 1729525 -72600 -104425 -142250 -27885 
4  17037500 2115525 -60700 -60625 -150250 79615 
4  17037500 2099525 14900 -24825 -114450 -35785 
4  17037500 658725 -48800 -48725 -178110 -43785 
4  17037500 1570525 -5000 -64625 -18950 -35785 
4  17037500 2242525 30800 -84525 -90550 -83585 
3  19842800 5918660 192000 94520 86560 37800 
3  19842800 4298660 -46800 -60680 54760 -133300 
3  19842800 5699660 -26900 -24880 205960 153200 
3 9 19842800 4039660 -10900 321420 937860 8041400 
3  19842800 4684660 48800 126420 26860 -173100 
3  19842800 4198660 32800 14920 209960 -101500 
3 10 19842800 5305660 28900 118420 12257860 11789400 
3  19842800 6156660 287600 -52720 114460 -21900 
3 11 19842800 4763660 28900 245820 13107860 10389400 
3  19842800 2873660 -18900 -52720 -32840 -6000 
3  19842800 4927660 36800 -20880 -60740 -125400 
3  19842800 3151660 -42800 -60680 -24840 -169200 
3  19842800 3784660 -7000 -88540 -16940 -133300 
3  19842800 2566660 100500 -88540 -32840 -165200 
3 12 19842800 4433660 92500 464720 8718860 10879400 
3  19842800 3661660 -14900 10920 -60740 -101500 
3  19842800 4541660 5000 126420 201960 -109500 
3  19842800 2753660 -30800 102520 18860 -201000 
3  19842800 4166660 100500 26920 -64640 93500 
3 13 19842800 4047660 104500 34820 492560 12089400 
3  19842800 4095660 24900 -60680 -124380 -77600 
3  19842800 3951660 -7000 237820 66660 -129400 
3  19842800 3339660 12900 50720 -52740 -181100 
3 14 19842800 3928660 44800 524420 7333860 8180400 
3  19842800 2495660 92500 -48740 154260 -45800 
3  19842800 2085660 80600 18920 -100500 -185080 
3  19842800 2164660 124400 14920 -96520 -201000 
3  19842800 3116660 -18900 90520 -96520 -33800 
3  19842800 3999660 12900 22920 30860 -125400 
3 15 19842800 4584660 28900 512420 1666860 12219400 
3 19 19842800 5026660 16900 393020 9618860 8857400 
3  19842800 3283660 52700 -76600 130360 9900 
3  19842800 3585660 9000 -32780 46760 -177100 
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3 16 19842800 4246660 64700 751220 16347860 13839400 
3  19842800 4771660 44800 54720 42760 121400 
3  19842800 2415660 -50700 98520 -44740 -232840 
3 17 19842800 3454660 -50700 416920 7584860 9601400 
3  19842800 4974660 355200 114420 -16940 -145300 
3  19842800 3207660 124400 3020 10960 595000 
3  19842800 3991660 40800 46820 -12940 -208960 
3  19842800 4636660 -22900 3020 134360 -153200 
3 18 19842800 4326660 28900 245820 7986860 10039400 
3  19842800 2113660 24900 -16880 86560 -49800 
3  19842800 6232660 40800 58720 -68640 -165200 
2 4 19101100 3529775 70660 153325 278625 12402630 
2 5 19101100 3772775 154260 11326725 9109925 10622630 
2  19101100 4027775 34860 266625 -11975 43730 
2  19101100 4214775 66660 183125 -43775 131330 
2  19101100 3617775 134360 107425 75625 27830 
2  19101100 3653775 30860 226825 159225 55730 
2  19101100 1926775 34860 51725 -55775 151230 
2  19101100 2268775 78560 -39775 51725 91530 
2  19101100 3446775 186060 163225 -55775 -11970 
2  19101100 2901775 62660 -59695 -11975 59730 
2  19101100 3959775 158160 274625 75625 91530 
2  19101100 3243775 74660 11925 25 30 
2  19101100 3983775 26860 119425 167125 199030 
2  19101100 3466775 90560 -51735 -7975 79630 
2  19101100 3617775 126360 35825 -15975 43730 
2  19101100 2658775 66660 -63675 95525 -23870 
2  19101100 2495775 22860 -15875 -11975 -7970 
2  19101100 3064775 142260 83625 -43775 -23870 
2  19101100 2960775 201960 -31875 -23875 155230 
2  19101100 2901775 182060 143325 83525 31830 
2  19101100 2089775 237760 -67655 25 63630 
2  19101100 3709775 50760 226825 -47775 -39810 
2 6 19101100 2730775 90560 107425 1360925 10522630 
2  19101100 3311775 14960 19925 67625 115430 
2  19101100 2654775 178060 -15875 -43775 -3970 
2  19101100 3728775 205960 -63675 -103495 -31850 
2  19101100 2710775 325360 -7975 107425 -43790 
2  19101100 2089775 18860 -59695 -59675 -31850 
2  19101100 2427775 142260 19925 119425 11930 
2  19101100 3044775 110460 -31875 -19875 -55730 
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2  19101100 1782775 -1000 -67655 11925 -31850 
2  19101100 2944775 38760 234825 226825 147230 
2  19101100 2845775 62660 -67655 -71675 -51750 
2  19101100 4417775 74660 -79595 131325 -27870 
2  19101100 2383775 54760 143325 199025 167130 
2  19101100 3028775 122360 -7975 -107475 39830 
2  19101100 2053775 34860 -79595 -71675 -3970 
2  19101100 1651775 -12940 -71635 -11975 -15970 
2  19101100 3709775 50760 -67655 -95535 95530 
2  19101100 2889775 42760 -11975 -83575 -43790 
2  19101100 3943775 34860 155225 222825 23830 
2  19101100 2785775 22860 -47755 63625 -7970 
2 7 19101100 3406775 138260 238825 692525 11172630 
2 8 19101100 3283775 106460 214925 871925 12642630 
1  22748900 1880825 -35825 100525 1950 38775 
1  22748900 1713825 63675 40825 85550 86575 
1  22748900 2218825 -7925 -54675 -65670 10975 
1  22748900 948825 147275 -126355 9950 -36825 
1  22748900 2532825 55675 92525 41750 114375 
1  22748900 1430825 131375 -42775 21850 2975 
1  22748900 2011825 -25 -70675 -45770 -52745 
1  22748900 1995825 155175 76625 -29850 22875 
1  22748900 2803825 119375 259725 -33830 70675 
1  22748900 1319825 -67665 -14875 53750 26875 
1  22748900 1979825 -39825 60725 25850 142275 
1  22748900 2095825 31875 263725 -41790 763175 
1  22748900 865825 -23925 -74575 41750 -5025 
1  22748900 718425 -59705 136325 -45770 90575 
1  22748900 579125 -4025 -50775 -69650 -16925 
1  22748900 1971825 -95525 -66675 -29850 10975 
1  22748900 2206825 -79605 160225 -25850 -48765 
1  22748900 1908825 119375 76625 25850 245775 
1  22748900 1629825 -7925 -30875 -45770 18875 
1  22748900 996825 119375 -10975 -1950 -16925 
1  22748900 877825 71675 124425 -53730 14875 
1  22748900 1677825 -25 108425 57750 6975 
1  22748900 2055825 43775 164225 -61690 2975 
1  22748900 1808825 -39825 -82575 5950 78575 
1  22748900 2314825 67675 -78575 33850 134275 
1 1 22748900 658725 83575 379125 9772650 7919675 
1  22748900 782125 -43825 -138295 109450 122375 
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1  22748900 1880825 -23925 112425 -9950 -40805 
1  22748900 1279825 -51725 -70675 -9950 -20925 
1  22748900 2385825 115375 -118395 -69650 -84585 
1  22748900 2119825 79575 -14875 29850 -36825 
1  22748900 2660825 75575 -70675 -13950 30875 
1  22748900 2903825 -79605 8925 53750 -28825 
1  22748900 1076825 -83585 -106455 -13950 -64685 
1  22748900 1991825 51775 116425 -49750 -24925 
1 2 22748900 1665825 -7925 -50775 13990650 17673675 
1 3 22748900 2166825 107475 1143025 15780650 13433675 
1  22748900 2302825 -15925 -46775 141250 174075 
1  22748900 1995825 -59705 -62675 21850 -1025 
1  22748900 2218825 -67665 -26875 9950 50775 
1  22748900 1876825 -71645 -58675 -53730 62675 
1  22748900 1701825 -43825 128325 69650 -36825 
1  22748900 2019825 -7925 -110435 -1950 -1025 
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Table S3.3:  Colony counts for competitions to determine fitness of Lazarus populations 

relative to the ancestor (Ara+).  Replicates for a given population are designated A-F.  

Competitions performed at 42.2°C are shown under the orange header.  Competitions performed 

at 37.0°C are shown under the blue header.  t0 and t1 represent the initial and final time points of 

the one-day competition, respectively. 

42.2°C 
Competitions 

 t0  t1   

Lazarus 
Population 

 Ara+ 
Colonies 

Lazarus 
Colonies 

 Ara+ 
Colonies 

Lazarus 
Colonies 

 Fitness (w) 

         
1A  121 27  92 66  1.269631607 
1B  138 33  75 50  1.256615065 
1C  120 28  82 53  1.241184655 
1D  124 30  93 59  1.223283101 
1E  139 24  76 64  1.396000931 
1F  113 30  71 67  1.306295072 

         
2A  115 64  68 215  1.42580579 
2B  102 68  48 237  1.519895383 
2C  96 48  92 109  1.189081771 
2D  124 94  56 228  1.441174463 
2E  98 84  70 170  1.2439746 
2F  126 78  73 159  1.309906401 

         
3A  108 76  84 157  1.224359039 
3B  89 77  40 137  1.361572403 
3C  100 88  44 168  1.387826155 
3D  108 106  80 178  1.190113026 
3E  120 93  54 157  1.347326303 
3F  126 82  42 155  1.494877943 

         
4A  126 49  104 28  0.916677653 
4B  130 29  68 59  1.343244661 
4C  107 30  63 69  1.3343421 
4D  118 38  141 46  1.002713633 
4E  127 57  74 40  1.045743659 
4F  101 52  80 64  1.100806394 
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5A  137 34  70 75  1.371817636 
5B  115 30  42 62  1.481724288 
5C  109 32  92 52  1.147683631 
5D  123 27  69 50  1.296557389 
5E  120 28  52 70  1.464997334 
5F  139 42  61 48  1.253104248 

         
6A  115 54  64 82  1.249752175 
6B  102 95  40 90  1.240394568 
6C  124 46  65 103  1.366729151 
6D  110 42  30 62  1.510830421 
6E  123 77  31 72  1.406281005 
6F  116 57  59 61  1.189323774 

         
7A  111 34  76 47  1.166238021 
7B  113 39  66 45  1.167386465 
7C  136 35  75 34  1.141191709 
7D  126 30  99 31  1.062775291 
7E  149 27  142 38  1.085552816 
7F  123 38  80 49  1.163925704 

         
8A  127 36  80 34  1.097755512 
8B  116 39  91 38  1.049686694 
8C  113 48  84 38  1.014611749 
8D  91 45  92 59  1.056312889 
8E  119 40  106 32  0.976064263 
8F  136 37  87 39  1.120091306 

         
9A  116 19  70 40  1.304759145 
9B  103 24  66 77  1.387208819 
9C  147 27  55 80  1.571300036 
9D  106 34  49 71  1.393352794 
9E  101 24  37 60  1.533327027 
9F  107 29  55 47  1.291482814 

         
10A  123 66  57 175  1.454704758 
10B  109 79  76 202  1.306141442 
10C  87 77  79 107  1.094369273 
10D  95 43  28 204  1.821218875 
10E  128 73  77 147  1.294902149 
10F  118 85  50 126  1.334255814 
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11A  136 44  43 92  1.546962759 
11B  111 44  33 87  1.558566837 
11C  102 44  44 78  1.375440243 
11D  126 54  22 86  1.772956729 
11E  119 46  60 63  1.254890952 
11F  116 38  64 79  1.330776964 

         
12A  130 52  52 115  1.463549748 
12B  110 54  34 86  1.477837084 
12C  112 43  47 107  1.476335629 
12D  118 47  55 96  1.384597017 
12E  99 54  53 107  1.328783969 
12F  111 40  57 111  1.428347787 

         
13A  121 38  47 93  1.50297652 
13B  110 41  69 100  1.328107951 
13C  131 32  70 89  1.414632593 
13D  128 42  54 95  1.448743415 
13E  84 46  65 102  1.242084095 
13F  117 28  70 72  1.356383559 

         
14A  136 70  63 102  1.298775363 
14B  125 51  82 124  1.313141322 
14C  117 39  69 99  1.358005604 
14D  110 33  96 84  1.2395239 
14E  117 42  77 83  1.262620393 
14F  120 39  73 81  1.298899366 

         
15A  130 48  78 35  1.047619997 
15B  128 28  82 44  1.21570349 
15C  102 36  154 59  1.016351657 
15D  117 39  109 49  1.06595986 
15E  140 34  224 91  1.101374923 
15F  146 48  107 106  1.256850275 

         
16A  118 56  65 162  1.413717788 
16B  113 47  125 160  1.238860463 
16C  131 74  128 207  1.229554789 
16D  107 77  62 118  1.239581097 
16E  132 59  26 163  1.886075937 
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16F  124 86  160 198  1.119139927 
         

17A  99 37  82 58  1.144432642 
17B  109 37  141 80  1.105642783 
17C  129 36  155 93  1.159846011 
17D  116 41  110 98  1.203095997 
17E  142 27  123 66  1.23253484 
17F  124 56  79 72  1.169015713 

         
18A  104 57  167 92  1.001010952 
18B  140 27  71 45  1.303037505 
18C  134 26  105 55  1.22771151 
18D  119 22  122 63  1.221853066 
18E  126 25  155 95  1.234369162 
18F  95 24  64 40  1.215149996 

         
19A  113 34  154 56  1.038542543 
19B  109 34  183 73  1.048008167 
19C  123 37  54 29  1.153247711 
19D  132 39  155 75  1.103509161 
19E  111 50  110 60  1.041637594 
19F  95 39  61 40  1.112518507 

         
20A  142 79  83 104  1.199580341 
20B  154 56  82 107  1.321441712 
20C  138 59  86 110  1.265193454 
20D  146 80  111 146  1.202179046 
20E  161 70  88 124  1.293882457 
20F  141 73  136 134  1.140835234 

         
21A  119 46  156 52  0.969619945 
21B  127 40  121 45  1.036468692 
21C  135 47  101 34  0.992205634 
21D  147 45  105 55  1.125832968 
21E  138 37  109 36  1.047721266 
21F  125 41  86 47  1.120661166 

         
22A  117 43  118 73  1.112870537 
22B  117 31  143 74  1.139290336 
22C  126 43  105 57  1.104948812 
22D  114 29  78 70  1.29833988 
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22E  103 28  151 40  0.994812079 
22F  121 45  120 57  1.053229155 

         
23A  166 40  73 42  1.230021378 
23B  146 41  108 35  1.033285676 
23C  119 42  95 31  0.982091968 
23D  125 31  103 41  1.107256137 
23E  111 32  110 44  1.071256525 
23F  111 44  110 45  1.006858544 

         
24A  160 73  106 139  1.251762361 
24B  118 89  114 139  1.105087934 
24C  109 64  111 133  1.154278465 
24D  112 67  99 106  1.129886796 
24E  116 63  90 85  1.127154103 
24F  99 48  113 74  1.063451195 

         
25A  96 42  132 85  1.078504759 
25B  90 32  115 62  1.085824929 
25C  119 41  174 52  0.97146294 
25D  103 55  142 77  1.003120855 
25E  102 54  114 52  0.968415297 
25F  115 44  88 66  1.155169753 

         
26A  139 53  82 139  1.365902544 
26B  121 94  156 148  1.041128285 
26C  96 66  55 103  1.247542203 
26D  94 38  96 113  1.231019584 
26E  118 60  99 144  1.237274749 
26F  127 58  85 140  1.3051491 

         
         
         

37.0°C 
Competitions 

 t0  t1   

Lazarus 
Population 

 Ara+ 
Colonies 

Lazarus 
Colonies 

 Ara+ 
Colonies 

Lazarus 
Colonies 

 Fitness (w) 

         
1A  153 164  143 151  0.996695747 
1B  148 181  136 117  0.922186278 
1C  151 150  144 116  0.954016632 
1D  121 152  113 113  0.94972412 
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1E  144 140  143 137  0.996804658 
1F  154 160  140 127  0.969915574 

         
2A  134 213  152 151  0.900648468 
2B  122 123  141 122  0.967809456 
2C  123 106  153 112  0.9661664 
2D  135 154  142 125  0.94432848 
2E  146 123  127 112  1.010241067 
2F  146 177  126 98  0.900432273 

         
3A  149 197  184 102  0.819520026 
3B  119 164  186 97  0.807636901 
3C  114 162  225 101  0.781956094 
3D  119 151  136 71  0.812579176 
3E  131 159  170 88  0.824864662 
3F  132 154  171 95  0.847464537 

         
4A  112 115  140 143  0.998916589 
4B  108 123  105 121  1.002573098 
4C  113 125  137 113  0.938821695 
4D  114 124  112 102  0.961283855 
4E  97 105  128 109  0.950858726 
4F  125 108  172 136  0.981996189 

         
5A  117 149  92 123  1.011139932 
5B  106 182  102 117  0.911672296 
5C  133 167  153 94  0.849368006 
5D  125 148  128 119  0.947761671 
5E  130 164  131 101  0.893252416 
5F  126 172  143 116  0.89000499 

         
6A  129 103  103 110  1.066399322 
6B  120 115  147 136  0.992675276 
6C  115 141  111 116  0.965038102 
6D  132 110  139 125  1.016354722 
6E  127 101  113 105  1.034676078 
6F  135 103  126 123  1.054329499 

         
7A  127 134  141 135  0.979375132 
7B  117 103  136 130  1.017310881 
7C  124 132  140 143  0.991258251 
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7D  111 108  143 152  1.01820215 
7E  112 110  112 127  1.031205518 
7F  124 121  135 130  0.997175086 

         
8A  124 163  118 127  0.956105157 
8B  117 132  129 159  1.018810846 
8C  120 165  121 122  0.932757057 
8D  132 132  138 157  1.027742496 
8E  151 159  142 98  0.907017997 
8F  136 146  133 149  1.009305412 

         
9A  120 134  153 128  0.940439607 
9B  110 123  123 148  1.015545025 
9C  124 110  130 133  1.030654108 
9D  128 105  127 109  1.00983848 
9E  143 143  126 93  0.93219267 
9F  144 127  128 137  1.043137993 

         
10A  129 108  155 103  0.951759151 
10B  164 121  167 111  0.977421369 
10C  132 107  139 110  0.994841895 
10D  125 114  125 75  0.909078206 
10E  155 109  165 109  0.986605719 
10F  125 100  159 80  0.904301089 

         
11A  140 117  115 101  1.011263996 
11B  132 114  109 98  1.009113198 
11C  140 134  150 136  0.988409094 
11D  127 102  148 117  0.996674356 
11E  148 110  147 145  1.061550463 
11F  119 120  124 95  0.940862352 

         
12A  133 104  155 112  0.983403966 
12B  116 104  172 129  0.964296835 
12C  105 115  153 136  0.958095228 
12D  109 126  142 147  0.977343647 
12E  138 120  132 98  0.965340438 
12F  141 127  168 118  0.947973414 

         
13A  108 125  101 127  1.018263805 
13B  147 108  133 98  1.000648092 
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13C  131 91  124 109  1.051734279 
13D  111 120  129 118  0.964863633 
13E  138 128  135 113  0.977599988 
13F  134 132  120 138  1.034439587 

         
14A  126 110  130 165  1.080711485 
14B  125 135  121 119  0.979524312 
14C  146 117  166 153  1.029551347 
14D  136 134  99 143  1.089219314 
14E  113 131  128 129  0.970394733 
14F  131 110  136 149  1.057296943 

         
15A  124 93  123 113  1.044133634 
15B  128 104  108 93  1.013101258 
15C  111 99  111 109  1.020895652 
15D  131 118  122 86  0.945928236 
15E  136 84  130 91  1.027447758 
15F  138 119  145 112  0.97634523 

         
16A  117 148  147 163  0.972747975 
16B  126 117  154 132  0.983344703 
16C  140 161  134 156  1.002686533 
16D  119 176  143 111  0.865381173 
16E  142 159  174 155  0.952435862 
16F  138 150  126 128  0.985017661 

         
17A  121 125  118 115  0.987276229 
17B  155 104  105 85  1.044529943 
17C  141 122  113 112  1.030989086 
17D  140 103  129 133  1.074601986 
17E  128 110  110 91  0.991451682 
17F  122 130  111 143  1.042078146 

         
18A  115 121  129 125  0.982551652 
18B  112 125  138 111  0.93196023 
18C  119 95  107 95  1.023626939 
18D  117 111  116 104  0.987696183 
18E  107 109  124 80  0.903890128 
18F  122 122  113 107  0.987952183 

         
19A  131 121  131 121  1 
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19B  133 130  147 133  0.98357819 
19C  132 103  144 110  0.995469059 
19D  121 133  116 103  0.953227877 
19E  116 115  108 95  0.973620668 
19F  131 112  160 148  1.016385954 

         
20A  147 148  131 124  0.986259167 
20B  152 181  148 116  0.908651651 
20C  119 153  150 119  0.90017408 
20D  158 129  136 134  1.042190311 
20E  135 146  157 139  0.957927297 
20F  137 140  120 104  0.96316251 

         
21A  143 104  175 107  0.963906931 
21B  135 143  170 120  0.916066534 
21C  137 122  144 104  0.955002706 
21D  120 130  141 112  0.934898198 
21E  159 127  162 114  0.972602824 
21F  136 131  166 115  0.931398088 

         
22A  137 116  130 119  1.017128159 
22B  144 110  153 99  0.96442511 
22C  118 120  133 116  0.96749811 
22D  115 104  115 80  0.943028324 
22E  129 109  128 92  0.96481107 
22F  140 136  130 127  1.001244779 

         
23A  123 84  123 63  0.937530632 
23B  104 114  149 102  0.905174811 
23C  111 86  156 96  0.953427339 
23D  114 98  150 90  0.926306637 
23E  108 110  151 104  0.920807119 
23F  119 94  148 94  0.954783937 

         
24A  124 136  145 125  0.949430403 
24B  116 122  149 125  0.953442035 
24C  113 149  155 142  0.926002602 
24D  99 128  156 120  0.897374646 
24E  120 150  162 122  0.896699193 
24F  113 156  158 144  0.915947733 
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25A  113 95  141 99  0.96267947 
25B  102 99  119 101  0.971813203 
25C  122 121  148 112  0.943630152 
25D  107 114  134 94  0.913478477 
25E  121 111  134 104  0.964482523 
25F  132 108  121 100  1.002224432 

         
26A  123 148  170 116  0.884913574 
26B  111 140  145 119  0.911804288 
26C  107 129  147 146  0.960630015 
26D  104 148  145 115  0.881595657 
26E  110 160  131 123  0.908427458 
26F  109 133  136 140  0.964774782 
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CONCLUSIONS 

 

 Charles Darwin famously described the finches of the Galápagos Islands, using them as 

examples to support and explain his theory of evolution by natural selection.  In the spring of 

1977, a drought plagued the islet of Daphne Major.  Parched for water, plants produced fewer 

seeds, a major food source for the islet’s finch species.  Having consumed most of the small, 

easy-to-open varieties, finches were forced to compete for larger seeds or go hungry, and their 

populations started to shrink.  However, a handful of finches had beaks of sufficient size to open 

the large, hard seeds that remained.  The birds with the larger beaks were the future of the island, 

and they were the ones who ensured that the finch species would survive to see another spring 

(Boag and Grant, 1981). 

 In this light, adaptation seems simple and easy, but not all natural populations afford such 

clean examples of evolution in action.  As scientists, we must be able to observe adaptation, 

measure it precisely, and understand the mechanisms by which it works.  Real environmental 

stressors are complex and confounding, and as a result the genetic underpinnings of adaptation in 

the wild are often numerous and tangled.  We can use laboratory models to simplify these 

problems.  In my dissertation research, I made use of new and existing (Tenaillon et al., 2012) 

microbial evolution experiments to better understand the genotypic and phenotypic dynamics of 

adaptation. 

 In my first chapter, I assessed the extent to which adaptation restored phenotypes from a 

stress state to a pre-stress state.  To do this, I quantified 94 phenotypes of 115 independent clones 

of E. coli evolved at high temperature (42.2°C) for 2,000 generations, as well as their ancestor 

grown under stress (42.2°C) and pre-stress (37.0°C) conditions.  I found that most (58%) evolved 

phenotypes represented restorative shifts, supporting the idea that a major outcome of adaptation 
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is restoration (Fong et al., 2005; Carroll and Marx, 2013; Sandberg et al., 2014).  Novelty was a 

less common outcome of adaptation, comprising between 7% and 20% of evolved phenotypes, 

consistent with the gene expression findings of other studies (Carroll and Marx, 2013; Sandberg 

et al., 2014). 

 More than this, I was able to link specific genetic changes with phenotypic variation.  Of 

particular interest was the strong association of a 71 kb deletion (ECB_00503_large) present in 

35 of 115 clones and six of the nine significant principal component axes of phenotype space.  

Additionally, we were able to distinguish the phenotypes of clones possessing mutations in either 

rho or rpoB, which typify two genetic pathways to high-temperature adaptation (Tenaillon et al., 

2012).  Interestingly, despite being distinguishable, rho and rpoB mutations were both associated 

with restorative shifts in phenotype, although to different degrees. 

 This work highlights an important aspect of adaptive evolution that is often overlooked:  

the acclimation response.  Because of specialized genetic programs, phenotypic plasticity, or 

both, the phenotypes of an organism can be altered when exposed to the stress imposed by a 

selective pressure.  This shift with stressful conditions constitutes an acclimation response, and 

this is the phenotypic state upon which natural selection acts.  When this state is ignored, it may 

be possible to misjudge what adaptation actually does to a population of organisms.  For 

example, comparing evolved phenotypes to unstressed ancestral phenotypes alone may suggest 

that adaptive evolution acts through novel changes.  In reality, the unstressed phenotypes were 

never under selection; a separate set of acclimated phenotypes was visible to the environment.  

My findings extend the notion that adaptive evolution is predominantly restorative and that, 

rather than producing new phenotypes to meet new environmental challenges, adaptation tends 

to alter populations in a way that regenerates preexisting phenotypes.  As such, future work must 

be done to characterize the acclimation response, its duration, its dynamics, and its associated 
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phenotypes.  Furthermore, evolutionary studies must consider this state when drawing 

conclusions about the adaptive process. 

 In my second chapter, I compared the evolutionary dynamics of populations traversing 

either an rpoB or rho adaptive pathway in the context of pleiotropy and compensation.  Using 

genome sequence data from four rpoB and four rho populations at 11 different time points saved 

over the course of 2,000 generations of evolution, I reconstructed the mutational trajectories of 

these populations and determined several parameters for each.  Mutations in both rpoB and rho 

were among the earliest to sweep through populations and fix, and they were highly beneficial 

relative to all other mutations that occurred.  Therefore, these two adaptive pathways are 

generally determined very early on in the course of evolution, canalizing subsequent adaptation.  

Relationships among mutational parameters, as well as data on the total numbers of mutations 

that occurred in each population, revealed that rpoB and rho populations differ in their 

compensatory evolution.  Populations following an rpoB pathway have more compensatory 

mutations available to them, resulting in greater numbers of mutations appearing and 

accumulating during adaptation, as well as greater clonal interference among them. 

 These findings point to the importance of first-step adaptive mutations in determining not 

only which mutations might confer compensatory benefits, but also the overall dynamics of 

compensatory evolution.  The pleiotropic effects of the first beneficial mutation to sweep through 

a population can have effects on mutation accumulation and competition that echo through the 

rest of the adaptive process. 

Because only eight populations of 115 were sampled for sequencing, the addition of more 

samples would greatly enhance my findings.  Additionally, this data could be coupled to fitness 

measurements over the course of evolution.  Given differential compensation and the observation 

that clonal interference slows down adaptation (Lang et al., 2011), we might expect to see the 
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fitness of rpoB populations take longer to plateau than rho populations.  This would be an ideal 

chance to utilize more modern, sequencing-based methods for determining population fitness, 

such as FREQ-Seq (Chubiz et al., 2012). 

 In my third chapter, I described the frequency of population recoveries in E. coli grown 

under lethal temperature conditions (43.0°C and 44.0°C), as well as the genetic drivers 

underlying such so-called Lazarus effects.  In total, I evolved approximately 400 independent 

populations at lethally high temperature for five days and saved populations whose cell densities 

showed evidence of recovery after initially crashing.  DNA from these Lazarus populations was 

then extracted and sequenced. 

 Lazarus effects were observed to occur in approximately 9% of populations grown at 

43.0°C, making them infrequent, but common enough to have important evolutionary 

consequences.  Population recoveries were driven predominantly by mutations in either hslUV, 

an operon encoding a heat shock protease system, or rpoBC, an operon encoding a portion of the 

RNA polymerase complex.  Interestingly, populations never possessed fixed mutations in both 

operons, suggesting a negative epistatic relationship between them.  Moreover, these two 

operons exhibited very different mutational and fitness properties.  Mutations in hslUV were 

most common, exhibited a high degree of within-week parallelism at the nucleotide level, and 

were predominantly frameshifts.  Additionally, populations with these mutations had no major 

fitness costs at the pre-stress condition of 37.0°C.  On the other hand, rpoB mutations were less 

common, exhibited no within-week parallelism, and were solely nonsynonymous in their effects.  

Populations with these mutations were at a significant disadvantage when competed against the 

ancestor at 37.0°C, evidence of antagonistic pleiotropy.  These differences suggest a model in 

which the mechanism of population recovery is determined to some extent by the accumulation 

of neutral variation during the brief acclimation phase prior to exposure to lethal heat stress.  
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This speaks once again to the importance of the acclimation response to the process of 

adaptation, as well as to the role that standing genetic variation can play in microbial evolution, a 

point most famously made by Luria and Delbrück (1943) in their classic experiment (Luria and 

Delbrück, 1943). 

 Overall, the work I performed for my dissertation highlights two important aspects of 

adaptation.  First, there is not necessarily a singular solution to an evolutionary problem.  

Multiple adaptive pathways mediated by different genetic changes can lead to positive outcomes 

for a population.  This was the case for both the rpoB and rho pathways studied in Chapters 1 

and 2, as well as the hslUV and rpoBC pathways discovered in Chapter 3.  Second, certain 

properties of a population’s evolutionary trajectory can be determined very early on in the 

adaptive process.  Epistasis and clonal interference can occur within as few as ~30 generations of 

adaptation (Chapter 3).  Moreover, different routes to adaptation can have very different side 

effects and dynamics over the course of evolution.  Different adaptive pathways can have distinct 

phenotypic consequences and restorative effects (Chapter 1), as well as compensatory landscapes 

(Chapter 2) and fitness consequences (Chapter 3), depending on the extent of their pleiotropy.  

Thus, not only do first-step adaptive mutations generate contingency for later mutations, but also 

for later mutational dynamics as a whole. 

 The question is occasionally raised as to whether or not laboratory evolution experiments 

tell us anything useful about evolution in nature.  For example, mutations in RNA polymerase, 

such as those we observed in our evolution experiment, are actually rare in nature, but are a 

common route to adaptation in controlled conditions (Long et al., 2015).  Additionally, the 

selective pressures imposed in the laboratory are often strong, discrete, and of a single type, 

contrasting starkly with the multiple varying pressures provided by nature. 

 Laboratory evolution is a model, and no model completely recapitulates the dynamics of 
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nature.  Instead, models are meant to simplify nature with the goal of explaining as much of it as 

possible with as few preconditions as possible.  Evolution experiments, such as those I utilized 

and carried out for my dissertation, reveal how populations are capable of changing over time, 

given the manipulation of just a few important variables.  Even with all we know about the 

model organisms used in these experiments, their genetics, and the environmental conditions 

governing their evolution, understanding the processes and outcomes of adaptation is still very 

difficult.  As such, if we wish to understand evolution as it occurs in nature, we must continue to 

simplify the process and pull apart its pieces in the laboratory.  Until we have a firm grasp of 

how evolution occurs under controlled conditions, even if these conditions do not always reflect 

the true complexity of natural conditions, we will not be able to understand how or why 

evolution works the way it does, nor the full capabilities, strengths, and weaknesses of real 

evolving populations.  This understanding will be vital as we work toward finding solutions to 

pressing global problems, such as climate change, disease, and biological conservation. 
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