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Observational healthcare data, such as electronic health records
and administrative claims, offer potential to estimate effects
of medical products at scale. Observational studies have often
been found to be nonreproducible, however, generating conflict-
ing results even when using the same database to answer the
same question. One source of discrepancies is error, both ran-
dom caused by sampling variability and systematic (for example,
because of confounding, selection bias, and measurement error).
Only random error is typically quantified but converges to zero
as databases become larger, whereas systematic error persists
independent from sample size and therefore, increases in rela-
tive importance. Negative controls are exposure–outcome pairs,
where one believes no causal effect exists; they can be used to
detect multiple sources of systematic error, but interpreting their
results is not always straightforward. Previously, we have shown
that an empirical null distribution can be derived from a sample
of negative controls and used to calibrate P values, accounting for
both random and systematic error. Here, we extend this work to
calibration of confidence intervals (CIs). CIs require positive con-
trols, which we synthesize by modifying negative controls. We
show that our CI calibration restores nominal characteristics, such
as 95% coverage of the true effect size by the 95% CI. We further-
more show that CI calibration reduces disagreement in replica-
tions of two pairs of conflicting observational studies: one related
to dabigatran, warfarin, and gastrointestinal bleeding and one
related to selective serotonin reuptake inhibitors and upper gas-
trointestinal bleeding. We recommend CI calibration to improve
reproducibility of observational studies.

observational studies | systematic error | calibration

Observational healthcare data, such as electronic health
records and administrative claims, offer the potential to

estimate the effects of various medical product exposures
on many health-related outcomes of interest. Population-level
effect estimation has many applications throughout healthcare,
including safety surveillance by product manufacturers and reg-
ulatory agencies and evaluation of comparative effectiveness for
payers and providers.

A critical challenge limiting the acceptance of observational
data as part of any causality assessment is the inherent uncer-
tainty around how much we can trust the results from non-
randomized experiments. There have been many observational
studies that proved to be nonreproducible (1). Failure to repro-
duce results likely stems from error in the original study, in the
replication, or in both. Error, the difference between true and
estimated effect sizes, can be decomposed in two components:
random error and systematic error. Random error arises from
sampling variability and is commonly reflected in most study
statistics through an estimate of variance and some calculation of
a confidence interval (CI) around the point estimate of the aver-

age treatment effect. Systematic error can manifest from multi-
ple sources, including confounding, selection bias, and measure-
ment error. While there is widespread awareness of the potential
for systematic error in observational studies and a large body of
research that examines how to diagnose and statistically adjust
for specific sources of bias, there has been comparatively little
work in devising approaches to empirically estimate the magni-
tude of systematic error or clinical applications that show how to
integrate this error into effect estimation methods.

The acuity of this problem is only exacerbated as the size of
observational databases grow: random error (the only compo-
nent that is typically quantified) converges to zero as sample
size increases, but systematic error persists independent from
sample size. Some sources of systematic error may potentially
increase if expanding the size of a data source comes with com-
promise in the depth or quality of the data captured. Therefore,
the hype of “big data” has brought with it an increased number of
studies with vanishingly narrow CIs, while our collective uncer-
tainty about the accuracy of any given observational estimate
has steadily increased. While we expect an accurate 95% CI to
have a 95% coverage probability—the proportion of time that an
interval contains the true value of interest—we have little empir-
ical evidence to support that observational estimates exhibit this
basic, nominal operating characteristic.

A promising development toward better explication of system-
atic error has been recent proposals and examples to apply neg-
ative controls as a diagnostic tool or “falsification hypothesis”
(2–4). Negative controls are exposure–outcome pairs where one
believes no causal effect exists. Executing a study on negative con-
trols and determining whether the results indeed show no effect
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can help detect bias inherent to the study design or data used. This
can include bias from multiple sources, such as confounding (5),
selection bias, and measurement error (6). For example, in one
study (7) investigating the relationship between childhood dis-
eases and later multiple sclerosis, the authors include three neg-
ative controls that are not believed to cause multiple sclerosis: a
broken arm, concussion, and tonsillectomy. Two of these three
controls produce statistically significant associations with multi-
ple sclerosis, suggesting that the study may be biased. However,
an open question is how to interpret findings from these negative
controls. In this example, should we consider all study results to
be invalid? Or, as the authors in this case do, should only effect
sizes greater than those observed for the controls be considered
to be true effects? Alternatively, is it possible that rejection of the
null hypothesis for the two negative controls is caused by random
chance alone and that the study is, in fact, unbiased?

One path forward is to incorporate the error observed for neg-
ative controls into the estimates of observational studies, in effect
calibrating the estimates in a way similar to how one would cal-
ibrate a scale using objects of known weight. Other researchers
have proposed such calibration methods using a single negative
control (8, 9), but these approaches require the negative control
to have identical systematic error as the effect under study, which
is unlikely to be true for any negative control and will always be
unknowable. In our prior work, we have shown that estimates
from a sample of negative controls can be used to derive an
empirical null distribution that can be applied to unknown effect
estimates to calibrate P values in a manner that accounts for both
random and systematic error (10, 11). In effect, our empirical
calibration aims to restore nominal operating characteristics (for
example, having only 5% of negative controls return a calibrated
P value < 0.05).

In this paper, we extend our notion of empirical calibration to
improve the validity of CIs in observational studies. We describe
a statistical procedure for CI calibration that uses negative con-
trols as well as positive controls. Positive controls are exposure–
outcome pairs, where a causal effect of known magnitude is
believed to exist. For reasons explained in Materials and Meth-
ods, we use synthetic positive controls constructed by modifying
real negative controls. We show the procedure using three large
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Fig. 1. Uncalibrated estimates and corresponding SEs for the negative and positive controls in the four studies. The estimates are stratified by true effect
size. The areas above the red dashed lines indicate where the CIs include the true effect size. Note that, because of limitations in sample size, not all negative
controls could be used to synthesize positive controls.

observational databases to evaluate internal validity and show
how the procedure restores the nominal operating characteris-
tics, such that a 95% CI achieves a 95% coverage probability.
We further illustrate the impact of the procedure by replicat-
ing two pairs of conflicting observational studies and examining
the extent to which calibration identifies bias within each design
and resolves the apparent inconsistency reported in the litera-
ture. The two pairs of studies are as follows.

i) Dabigatran vs. warfarin drug exposure for the risk of gastroin-
testinal (GI) bleeding outcomes as performed by Southworth
et al. (12) compared with the study by Graham et al. (13).
Both studies used a new user cohort design, but only Graham
et al. (13) used propensity scores to adjust for potential con-
founding between exposure and outcome. The incidence rate
ratio implied by Southworth et al. (12) was 1.6/3.5 = 0.46. The
hazard ratio (95% CI) reported by Graham et al. (13) was 1.28
(1.14–1.44).

ii) Selective serotonin reuptake inhibitor (SSRI) drug exposure
for the risk of upper GI bleeding outcomes in two studies per-
formed by Tata et al. (14). The first study used a case–control
(CC) design, and the second used a self-controlled case series
(SCCS) design. The CC analysis produced an odds ratio (95%
CI) of 2.38 (2.08–2.72). The SCCS produced an incidence rate
ratio (95% CI) of 1.71 (1.48–1.98).

Results
Negative Controls. For each study, we select 50 negative control
outcomes using a semiautomated process as detailed in Materi-
als and Methods. One of the negative controls for the dabigatran
studies is “ingrowing nail,” because we firmly believe that nei-
ther dabigatran nor warfarin exposure cause ingrowing nails, and
we, therefore, believe that the true hazard ratio when compar-
ing these two drugs for this outcome should equal one. We can
now apply our observational study designs to confirm whether
they produce estimates close to the truth. Note that both drugs
could still be noncausally associated with ingrowing nails, which
is acceptable, since such an association could be a source of sys-
tematic error in our effect estimates and therefore, an opportu-
nity to measure a study’s ability to account for such error. We
explore this example further below.
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Fig. 2. The fraction of controls where the true hazard ratio is above,
within, or below the CI for various widths of the CI. The dashed lines indicate
the boundaries of a perfectly calibrated and centered estimator.

Synthetic Positive Controls. We exploit the negative controls
to construct synthetic positive controls by injecting simulated
outcomes during exposure. For example, assume that, during
exposure to dabigatran, n occurrences of ingrowing nail were
observed. If we now add an additional n simulated occurrences
during exposure, we have doubled the risk. Since this was a neg-
ative control, the relative risk compared with warfarin was one,
but after injection, it becomes two. Using this process, we have
generated positive controls based on each negative control with
relative risks of 1.5, 2, and 4. To preserve measured confound-
ing, we sample the simulated outcomes based on the predicted
probabilities of the outcome for each subject that we generated
by a model fitted for each negative control outcome. We provide
these models in Dataset S1. For example, the largest predictors
in the model fitted for ingrowing nail are prior diagnosis of “ony-
chomycosis due to dermatophyte,” “gender = FEMALE,” and
prior use of piperazine derivatives. The accuracy of this model
as measured using the area under the receiver–operator charac-
teristics curve for predicting occurrence of ingrowing nail in the
first year after index is 0.71.

Negative and Positive Control Estimates. In our replication of the
study by Southworth et al. (12), the estimated incidence rate
ratios for ingrowing nail and derived positive controls are 0.89
(0.77–1.03), 1.33 (1.18–1.50), 1.75 (1.57–1.95), and 3.30 (3.01–
3.62) for real and synthetic incidence rate ratios 1, 1.5, 2, and
4, respectively. Fig. 1 reports effect size estimates for all negative
and positive controls across the four studies as well as the per-
centage of CIs containing the true effect size. (All effect size esti-
mates reported in this study can be found in SI Appendix.) Note
that, for most studies, the 95% CIs do not show nominal charac-
teristics; they do not contain the true effect size 95% of the time.
Our replication of the study by Southworth et al. shows large bias
in both positive and negative directions, probably because of the
fact that the study design does not adjust for any confounding. In
contrast, the Graham et al. (13) study replication shows little to

no bias. Both the CC and SCCS designs in our Tata et al. (14)
replications identify bias that tends to be positive.

A slightly different perspective on these results is provided in
Fig. 2, where we have plotted the fractions of controls where
the true effect size is above, within, or below the CI for various
widths of the CI.

CI Calibration. Table 1 shows the maximum likelihood estimates
for the systematic error model parameters described in Materi-
als and Methods. In brief, a and b are the intercept and slope,
respectively, of a model for estimating the mean, and c and d
are the intercept and slope, respectively, of a model for estimat-
ing the logarithm of the SD. Note that an unbiased observational
study would have â = 0, b̂ = 1, ĉ = −∞, and d̂ = 0.

Fig. 3 reveals effect size estimates for all negative and positive
controls after calibration, showing that the coverage of the 95%
CIs is much closer to the nominal 95%.

Internal Validity. To validate our CI calibration procedure, we
apply a leave-one-out cross-validation approach. For each neg-
ative control and the positive controls derived from that negative
control, we fit systematic error models using all other controls
and compute calibrated CIs for the left-out controls across a wide
range of widths. We subsequently check how often the true haz-
ard ratio was within, above, or below the CI as shown in Fig.
4. These results show the calibrated CIs showing near-optimal
coverage.

External Validity. Figs. 5 and 6 report effect size estimates for the
outcomes of interest in the original studies as well as our repli-
cations both before and after calibration. Fig. 5 shows that, for
our replication of the study by Southworth et al. (12), CI calibra-
tion leads to vastly wider CIs to account for the residual bias in
this unadjusted design. In contrast, for the study by Graham et
al. (13), our calibration generates little effect. To account for the
strong positive bias observed in the Tata et al. (14) CC replica-
tion, Fig. 6 shows that the calibrated CI not only is made wider
but also, moves toward lower effect sizes.

Discussion
Evidence from observational studies can only be trusted to the
extent to which we have confidence in the validity of the statis-
tics generated as part of the studies. In this paper, we discuss an
empirical approach to calibrating CIs as a means of improving
the value of the evidence produced from observational analy-
ses. We showed CI calibration in the replication of two obser-
vational healthcare study pairs and evaluated internal and exter-
nal validity of calibration. The procedure can be applicable to
observational estimates generated from any study design as illus-
trated here with examples of cohort, CC, and SCCS studies from
the literature. In all cases, the internal validation establishes that
CI calibration restores nominal characteristics for various widths
of the CI. Most importantly, the 95% calibrated CI contains
the truth ∼95% of the time. The external validation indicates
that accounting for potential residual bias inherent in a study
design reduces the disagreement between conflicting observa-

Table 1. Estimated parameters for the systematic error models
for the four studies

Mean SD

Study â b̂ ĉ d̂

Southworth et al. (12) −0.07 0.93 −1.67 0.02
Graham et al. (13) −0.03 0.99 −2.92 0.29
Tata et al. (14): CC 0.32 0.95 −1.69 −0.07
Tata et al. (14): SCCS 0.07 0.89 −2.11 −0.13
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Fig. 3. Calibrated estimates and corresponding SEs for the negative and positive controls in the four studies. The estimates are stratified by true effect size.
The areas above the red dashed lines indicate where the CIs include the true effect size.

tional studies. Not all disagreement was removed, but we would
also not expect so. There are other differences between the
studies for which calibration would not adjust. For example, the
studies by Southworth et al. (12) and Graham et al. (13) use dif-
ferent populations of different ages, which could explain some of
the remaining differences in estimated effect sizes.

In some analyses, like our Southworth et al. (12) study repli-
cation, the calibrated CI is much larger than the uncalibrated
one. Some may object to this apparent loss of precision in the
estimate, but the unadjusted study design is highly susceptible
to residual bias in both positive and negative directions, and
our calibrated CI merely reflects the uncertainty caused by this
systematic error. In contrast, for other analyses, such as our
Graham et al. (13) replication, the calibrated CI is virtually
identical to the uncalibrated one. Although some might argue
that, in this case, our calibration does not contribute anything,
that would be incorrect. In the face of systematic error, the
nominal characteristics of the uncalibrated CI remain unknown
until our extensive empirical evaluation. After evaluation, we
know that the calibrated CI contains the truth about 95% of
the time.

Significance. This work is complementary to prior work in P
value calibration, although we expect it to have a broader impact
in our ability to interpret observational study results. Whereas
the P value statistic has utility in the context of hypothesis testing
and has commonly been used to gauge “statistical significance”
at P < 0.05, the CI provides a richer collection of information: it
not only estimates and bounds the magnitude of the effect, but it
also expresses the extent of uncertainty attributable to both ran-
dom and systematic error. While additional work should be con-
ducted to further evaluate and validate the procedure, we believe
that the evidence already provided suggests that CI calibration
to quantify systematic error and produce more realistic statistics
should be considered as part of standard practice in retrospective
observational studies moving forward.

Limitations. We require that our negative controls are truly nega-
tive, meaning that the true effect size is exactly zero. Our process
for selecting negative controls requires there to be no evidence
for drug–outcome pairs where both the drug and the outcome
have sufficient evidence, but lack of evidence does not necessar-

ily equate to evidence of a lack of an effect. However, an analysis
of effect sizes of negative controls appearing in randomized trials
suggests that the null is consistently and completely true for our
negative controls (SI Appendix).

We furthermore require that our negative and positive con-
trols are, to some extent, exchangeable with the outcomes of inter-
est. Note that we do not require the controls to have exactly the
same magnitude and structure of confounding as the outcome
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Fig. 4. The fraction of controls where the true hazard ratio is above,
within, or below the calibrated CI for various widths of the CI. The dashed
lines indicate the boundaries of a perfectly calibrated and centered estima-
tor. Fractions were computed using leave-one-out cross-validation.

2574 | www.pnas.org/cgi/doi/10.1073/pnas.1708282114 Schuemie et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708282114/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1708282114


CO
LL

O
Q

U
IU

M
PA

PE
R

ST
A

TI
ST

IC
S

M
ED

IC
A

L
SC

IE
N

CE
S

Dabigatran, warfarin and GI bleed

S
outhw

orth
G

raham

0.25 0.5 1 2 4 6 8

Our replication (calibrated)

Our replication

Original study

Our replication (calibrated)

Our replication

Original study

Effect size

Fig. 5. Estimates from the original studies and our reproduction of the
studies by Southworth et al. (12) and Graham et al. (13) both before and
after calibration.

of interest as other proposed approaches do (8, 9) but rather,
assume that they draw from the same distribution. Our leave-
one-out cross-validation provides evidence that this assumption
holds in general.

Negative controls represent both unmeasured and measured
confounding, but our injection of outcomes to synthesize positive
controls can only maintain measured confounding. As a conse-
quence, positive controls may have less unmeasured confound-
ing than what exists in reality, which could thereby lead to the
calibration procedure underestimating the magnitude of system-
atic error. Nonetheless, we argue that calibration based on the
systematic error that can be explicated, even if that comes with
its own measurement error, is always preferable to ignoring sys-
tematic error entirely.

The uncalibrated estimates for some of our replications were
not in agreement with the results of the original studies. For the
study by Southworth et al. (12), this is most likely because we
did not have access to the same database; for the SCCS study
by Tata et al. (14), we suspect that this is because we adjusted
for age using spline functions, and the original study may have
used a step function instead. These discrepancies warrant cau-
tion if one wants to extrapolate our findings to the original studies,
but we argue that our “replications” are still valid studies in their
own right.

Here, we use 50 negative controls for each study. While an
exploration of the required number (SI Appendix) suggests that
perhaps that number could be lowered to 30 with little impact,
selecting these controls may still require a significant amount of
work. We do have a semiautomated process that can ease this
burden as detailed in Methods and Materials and strive to make
tools supporting this process available to the public soon.

Our process for computing calibrated CIs is computationally
expensive. For each negative control, we must fit an outcome
model, and we must perform the study itself not just for the out-
come of interest but also, for each control. For example, for the
Graham et al. (13) study replication, we need to estimate the
hazard ratio for 50 negative control and 150 positive control out-
comes in addition to the outcome of interest. However, as we
show here, performing these computations is feasible and mostly
requires computer time, which is cheap. In matters of public
health significance, we would argue that computational complex-
ity is acceptable when it leads to more reliable inference. To sup-
port the community in applying this practice, we have developed
standardized tools to run these analyses efficiently and make
them available as open source R packages.

Conclusions
As observational databases grow larger, the uncertainty caused
by random error diminishes. As a consequence, the relative

importance of quantifying nonrandom error mushrooms. Nowa-
days, observational studies report ever tighter CIs, but these do
not truly capture the uncertainty in effect size estimates. We rec-
ommend producing calibrated CIs in all observational studies
and presenting these calibrated intervals alongside the noncali-
brated intervals to provide insight into the uncertainty inherent
in evidence caused by systematic error.

Materials and Methods
Here, we provide an overview of the materials and methods used in this
paper. More details can be found in SI Appendix, and the full code for exe-
cuting the analyses described here is available as open source R package
(https://github.com/OHDSI/StudyProtocols/tree/master/CiCalibration).

Negative Control Selection. We use the standardized process described else-
where (15) for selecting negative controls. In brief, information from liter-
ature, product labels, and spontaneous reporting is automatically extracted
and synthesized using a logistic regression model that we fit and evalu-
ate on existing reference sets of negative and positive controls. For each
of our drug exposures, we use the fitted model to predict negative con-
trol status for all outcomes having some data not related to the expo-
sure. We rank-order the probable negative controls by prevalence in the
observational database and manually review these in order until the tar-
get number of controls is selected For the Southworth et al. (12) and
Graham et al. (13) replication studies, we selected 50 negative control
outcomes that are assumed not to be causally related to either dabi-
gatran or warfarin. For the replication studies by Tata et al. (14), we
selected 50 negative control outcomes that are assumed not to be causally
related to any SSRI. The full lists of negative controls can be found in SI
Appendix.

Synthesizing Positive Controls. To understand the behavior of a method
when the true relative risk is smaller or greater than one requires the use
of positive controls, where the null is believed to not be true. Unfortu-
nately, real positive controls for observational research tend to be prob-
lematic for three reasons. First, in most research contexts (for example,
when comparing the effect of two treatments), there is a paucity of
positive controls relevant for that specific context. Second, even if pos-
itive controls are available, the magnitude of the effect size may not
be known with great accuracy and often depends on the population in
which one measures it. Third, when treatments are widely known to cause
a particular outcome, this shapes the behavior of physicians prescribing
the treatment (for example, by taking actions to mitigate the risk of
unwanted outcomes), thereby rendering the positive controls useless as a
means for evaluation (16). We, therefore, use synthetic positive controls cre-
ated by modifying a negative control through injection of additional simu-
lated occurrences of the outcome during the time at risk for the exposure.
One issue that stands important is the preservation of confounding. The
negative controls may show strong confounding, but if we inject additional
outcomes randomly, these outcomes will not be confounded, and we may,
therefore, be optimistic in our evaluation of our capacity to deal with con-
founding for positive controls. To preserve confounding, we want the out-
comes to show similar associations with baseline subject-specific covariates
as the original outcomes. To achieve this, we fit large-scale predictive models
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for each negative control using L1 regularized survival regression (17, 18).
We insert outcomes by drawing from the per-subject predicted probabilities
within the exposed population until we achieve the desired incidence rate
ratio. The target incidence rate ratios are 1.5, 2, and 4.

When fitting the predictive models, we include covariates for demo-
graphics (age, gender, race, ethnicity, year of index date, month of index
date), all diagnose codes, groups of diagnose codes (Medical Dictio-
nary for Regulatory Activities as well as Systematized Nomenclature of
Medicine groups), all drug exposure codes, groups of drugs [ATC (Anatom-
ical Therapeutic Chemical Classification System) groups], all procedure
codes, all observation codes, all measurement codes, and several risk scores
[Charleston; Diabetes Complications Severity Index; CHADS2 (congestive
heart failure, hypertension, age ≥75, diabetes mellitus, stroke or tran-
sient ischemic attack); CHADS2VASc (congestive heart failure, hyperten-
sion, age ≥75, diabetes mellitus, stroke or transient ischemic attack or
thromboembolism, vascular disease, age≥65, sex category)]. The four repli-
cation studies return between 5,482 and 26,097 potential covariates for
prediction. The full details are in the Observational Health Data Science
and Informatics FeatureExtraction R package (https://github.com/OHDSI/
FeatureExtraction).

CI Calibration. For CI calibration, we build on our previous work in cal-
ibrating P values (10). Using the computed effect size estimates for the
negative and positive controls, we observe to what extent random error
alone explains the difference between the estimates and their true effect
sizes. Systematic error explains any additional difference. We fit a system-
atic error model using the effect size estimates for the controls and sub-
sequently use this model to compute calibrated CIs for the effect sizes of
interest. The model assumes that systematic error follows a Gaussian prob-
ability distribution around the true effect size. We have found that a Gaus-
sian distribution provides a good approximation, and more complex mod-
els, such as mixtures of Gaussians and nonparametric density estimation,
do not improve results. Let θ̂i denote the computed log effect estimate
(e.g., hazard ratio) from the ith negative or positive control, and let τ̂i

denote its corresponding estimated SE for i = 1, . . . ,n. Let θi denote the
true log effect size, and let βi denote the asymptotic bias associated with
pair i: specifically, the difference between the log of the true effect size
and the log of the estimate that the study would have returned for con-
trol i had it been infinitely large. As in the standard CI computation, we
assume that θ̂i is normally distributed with mean θi + βi and variance τ̂2

i .
Note that the traditional CI calculation always assumes βi = 0 but that we
assume that βi for all i arises from a normal distribution with mean µ(θi) and
SD σ(θi) that follow linear models, after appropriate transformation, with
unknown intercepts a and c and slopes b and d, respectively. Specifically,
we model

βi ∼ N(µ(θi), σ
2(θi)) and

θ̂i ∼ N(θi + βi , τ̂
2
i ),

[1]

where

µ(θi) = a + b× θi and

logσ(θi) = c + d × θi.
[2]

Also, N(·, ·) denotes a Gaussian distribution characterized by its mean and
variance. We estimate a, b, c, and d by maximizing the marginalized likeli-
hood in which we integrate out the unobserved βi :

l(a, b, c, d|θ, θ̂, τ̂ ) ∝
n∏

i=1

∫
p(θ̂i|βi , θi , τ̂i)p(βi|a, b, c, d, θi)dβi , [3]

where fixed θ= (θ1, . . . , θn), measured θ̂= (θ̂1, . . . , θ̂n), and τ̂ = (τ̂1, . . . ,
τ̂n), yielding maximum likelihood estimates (â, b̂, ĉ, d̂).

We compute a calibrated CI that uses the systematic error model. Let θ̂n+1

denote the log of the effect estimate for a new outcome of interest, and let
τ̂n+1 denote the corresponding estimated SE. From the assumptions above
and assuming that βn+1 arises from the same systematic error model, we
have

θ̂n+1 ∼ N
(
θn+1 + â + b̂× θn+1, e2(̂c+d̂×θn+1) + τ̂

2
n+1

)
. [4]

We find the lower bound of the calibrated 95% CI by solving this equa-
tion for θn+1:

Φ

 θn+1 + â + b̂× θn+1 − θ̂n+1√
e2(̂c+d̂×θn+1) + τ̂2

n+1

 = 0.025, [5]

where Φ(·) denotes the cumulative distribution function of the standard
normal distribution. We find the upper bound similarly for probability 0.975.
We define the calibrated point estimate by using probability 0.5.

The R code for estimating calibrated CIs is included in SI Appendix and
is also implemented in the EmpiricalCalibration R package (https://cran.r-
project.org/web/packages/EmpiricalCalibration).

Study Replication. In this section, we provide a short overview of how we rep-
licate the four observational studies. Full details can be found in SI Appendix.
Southworth et al. (12) replication. This Southworth et al. (12) study is a new
user cohort design that compares new users of dabigatran with new users of
warfarin for the outcome of GI hemorrhage. Subjects are required to have
183 d of continuous observation before initiating treatment, a prior diagno-
sis of atrial fibrillation, and no prior exposure to either dabigatran or war-
farin. The study computes an incidence rate ratio without any adjustment
for confounders. Time at risk is defined as the time on the drug. The original
study used the “Mini-Sentinel Database,” a network of private payer claims
databases. For our replication, we use the OptumInsight’s deidentified Clin-
formatics Datamart (Optum), a private payer claims database that is part
of the Sentinel network. We analyze 5,982 dabigatran-exposed and 19,155
warfarin-exposed subjects.
Graham et al. (13) replication. The Graham et al. (13) study is also a new
user cohort design that compares new users of dabigatran with new users
of warfarin for the outcome of GI hemorrhage. Subject are required to
have 183 d of continuous observation before initiating treatment, be at
least 65 y old at index date, and have no prior exposure to warfarin or
dabigatran (or any other anticoagulant). Additionally, subjects are required
have a prior diagnosis of atrial fibrillation or flutter and no prior diagno-
sis of other indications. Propensity scores are generated by fitting a model
for predicting treatment assignment based on baseline patient characteris-
tics and are used to perform one-on-one matching. Hazard ratios are esti-
mated through a Cox regression on the matched population. Time at risk
is defined as starting on the day after initiating treatment and stopping
when treatment is stopped, the outcome occurs, or observation time ends,
whichever comes first. The original study uses the Centers for Medicare &
Medicaid Services Medicare database. For our replication, we use the Truven
MarketScan Medicare Supplementary Beneficiaries database. We analyze
15,796 dabigatran-exposed and 15,796 warfarin-exposed subjects.
Tata et al. (14) CC replication. The Tata et al. (14) CC study matches cases
of upper GI bleeding to up to six controls on age, gender, and general
practice. Only cases and controls ages 18 y old or older are included. Con-
ditional logistic regression is used to estimate the odds ratio for the first
upper GI bleed associated with exposure to any SSRI in the 30 d preceding
the index date. The original study uses the The Health Improvement Net-
work (THIN) database (19). For our replication, we use the Clinical Practice
Research Datalink (CPRD) database (20), since both databases are United
Kingdom general practice databases. We analyze 30,987 cases and 184,775
controls.
Tata et al. (14) SCCS replication. The Tata et al. (14) SCCS study uses a con-
ditional Poisson regression to estimate relative incidence of upper GI bleed-
ing compared with within-person control periods. Time at risk is defined as
the time when exposed to any SSRI. Also included in the model are subject
age using a spline model and exposures to nonsteroidal antiinflammatory
drugs and tricyclic antidepressants. Patient time is restricted to time when
the patient is at least 18 y old. To account for possible contraindication of
antidepressants shortly after a GI bleed, the 30 d before SSRI exposure are
excluded from the analysis. The original study used the THIN database (19).
For our replication, we use the CPRD database (20). We analyze 31,386 cases.

The use of Optum and Truven Marketscan databases was reviewed by
the New England Institution Review Board (IRB) and was determined to be
exempt from broad IRB approval, as this research project did not involve
human subjects research. The use of the CPRD for this study has been
approved by the CPRD Independent Scientific Advisory Committee (ISAC)
as protocol number 17 017R.
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