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Abstract

A High-order Eulerian-Lagrangian Finite Element Method for Coupled Electro-mechanical
Systems

by

Gerd Brandstetter

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Sanjay Govindjee, Co-chair

Professor Panayiotis Papadopoulos, Co-chair

The main focus of this work is on the development of a high-order Eulerian-Lagrangian
finite element method for the simulation of electro-mechanical systems. The coupled prob-
lem is solved by a staggered scheme, where the mechanical motion is discretized by standard
Lagrangian finite elements, and the electrical field is solved on a fixed Eulerian grid with em-
bedded boundary conditions. Traditional Lagrangian-Lagrangian or arbitrary Lagrangian-
Eulerian (ALE) methods encounter deficiencies, for example, when dealing with mesh distor-
tion due to large deformations, or topology changes due to contacting bodies. The presented
Eulerian-Lagrangian approach addresses these issues in a natural way. Within this con-
text we develop a high-order immersed boundary discontinuous-Galerkin (IB-DG) method,
which is shown to be necessary for (i) the accurate representation of the electrical gradient
along nonlinear boundary features such as singular corners, and (ii) to achieve full conver-
gence during the iterative global solution. We develop an implicit scheme based on the
mid-point rule, as well as an explicit scheme based on the centered-difference method, with
the incorporation of energy conserving, frictionless contact algorithms for an elastic-to-rigid-
surface contact. The performance of the proposed method is assessed for several benchmark
tests: the electro-static force vector around a singular corner, the quasi-static pull-in of an
electro-mechanically actuated switch, the excitation of a carbon nanotube at resonance, and
the cyclic impact simulation of a micro-electro-mechanical resonant-switch. We report im-
proved accuracy for the high-order method as compared to low-order methods, and linear
convergence in the iterative solution of the staggered scheme. Additionally, we investigate
a Newton-Krylov shooting scheme in order to directly find cyclic steady states of electro-
mechanical devices excited at resonance– as opposed to a naive time-stepping from zero
initial conditions. For the examples discussed, we observe power law computational speed-
ups of the form S = 0.7ξ−0.8, where ξ is the damping ratio of the corresponding resonance
frequency.
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Chapter 1

Introduction

The major motivation of this work resulted from various challenges of traditional technol-
ogy facing today’s needs for highly accurate and efficient simulations of electro-mechanical
systems. Throughout this study, we have had many great collaborations on the theoret-
ical aspect of the continuum modeling, the computational treatment, as well as on the
actual design of real-world systems. In the beginning of this dissertation, we have worked
on the modeling and simulation of electro-static chucking of photo-masks in next gener-
ation extreme-ultraviolet-lithography (EUVL), which was a collaborative project with the
Intel Corporation R©. A typical mask and chuck system is pictured in Fig. 1.1. EUVL has
a great chance to become the new standard for chip fabrication, using EUV light with a
wavelength of around 13 nm [6]. As the EUV light is absorbed by classical photo-masks,
reflective masks as in Fig. 1.1(left) must be used. Considering the overall mask dimensions
of 152 × 152 × 6.35 mm, one faces extremely small tolerances on the mask surface out-of-
plane deformation < 10 mm, which is very difficult to achieve in practice. When the mask
is hold by the electro-static chuck in the exposure tool, any nonflatness of the mask and
chuck surface will result in a deformation of the mask during the chucking process, which
will lead to a pattern placement error due to the out-of-plane and in-plane deformation of
the mask. We have examined the effect of the mask deformation on the pattern placement
error during electro-static chucking by finite element models as well as enhanced analytical
estimates. Such models have been tested to pre-correct for the pattern placement during the
e-beam write step [1]. Particular focus has been put upon the effect of the mask back-side
non-flatness features on the deformation, the estimates of critical particulate contamination,
and the effect of pin-chucks [7, 8].

From Macro to Nano

As another application of our interest, we have studied micro-electro-mechanical systems
(MEMS). In particular, we have examined a micro-electro-mechanical disk resonator / res-
onance switch as pictured, for example, in Fig. 1.2. Such resonators / switches show high
potential to replace classical transistors, e.g. for on-chip power amplification, as they are
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Figure 1.1: Extreme-ultraviolet-lithography mask-chuck system: (left) image of mask by [1];
(right) image of Coulomb-type electro-static pin-chuck by [2].

much more energy-efficient [9, 10, 3, 11, 12]. The disk in Fig. 1.2(left) is excited in the wine-
glass mode by a set of driving electrodes and the electrical pressure will force the disk into
a dynamic steady contact with the output electrode. The developed simulation tool in this
thesis allows not only for a full-field simulation of the coupled problem with the occurring
topological changes, but also respects the capacitor charge loading in the presence of a load
resistance RL during ‘off ’-mode, as well as the jump in the electrical boundary conditions
during electrical breakdown, or when the disk touches the output electrode as pictured in
Fig. 1.2(right) (see Sections 4.9 and 5.5).

On an even smaller scale, we have considered the dynamical excitation of carbon nan-
otubes (CNTs) by an external electrical field as pictured in Fig. 1.3. CNTs possess very
unique and promising characteristics for the use in nano-electro-mechanical systems (NEMS)
[13, 14, 15, 4, 16]. Under certain assumptions, the use of continuum mechanical theory to an-
alyze such small-scale devices at the nanometer scale can be justified [17]. As demonstrated
in the picture, an electrical potential difference between the nanotube and an external elec-
trode will largely bend the nanotube [Fig. 1.3(b)]. Our numerical method as developed in
Chapter 4 will enable us to efficiently calculate the response of such a strongly coupled prob-
lem considering the full nonlinear mechanical response, as well as the interaction with the
electrical field that penetrates all space (see Section 4.8 and 5.4). Particular focus is here on
the accurate evaluation of the tip force, where small radii or corners will dominate the elec-
trical force due to the singular, or nearly singular charge accumulation (see also Chapter 3
and Section 4.6 and 5.4).

From Statics to GHz

For the modeling of systems such as in Fig. 1.1, a quasi-static analysis has been used, whereas
a MEMS resonator as in Fig. 1.2 operates at 25 MHz, and NEMS resonators made of CNTs
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Figure 1.2: Metal micromechanical resonant switch by [3]: (left) SEM image of a 25 MHz
nickel resonant switch; (right) schematic of power-gain circuit of (a) a traditional transistor
switch, and (b) a resonant switch.

are predicted to have fundamental frequencies of 1 GHz or higher. In order to accommodate
this range of frequencies, we develop second order explicit as well as implicit time-integration
schemes, which allow for the incorporation of mechanical impact (see Section 4.5). The
method as presented in Section 4.5 is based on a staggered scheme, that relies on an operator
split for the evolution of the mechanical and electrical field. As one is typically interested
in the analysis of the steady state response, time-stepping throughout the transient phase
becomes very expensive– especially for modern systems with high quality factors in the
thousands as in [18, 3]. We discuss the use of a direct method to solve for cyclic steady
states, and observe substantial speed-ups in comparison to a naive time-stepping from zero
initial conditions (Chapter 5).

From Analytics to Numerics

The full-field simulation of the electro-mechanical boundary value problem by high-order nu-
merical methods is absolutely necessary for the accurate analysis of systems such as CNTs in
Fig. 1.3 or the reso-switch pictured in Fig. 1.2– especially when singular forces due to corners
occur, or when nonlinearities due to large deformation or impact are involved. However, we
do acknowledge the power of analytical estimates under certain assumptions. Analytical for-
mulas have been used throughout this thesis in order to benchmark the numerical methods.
Such estimates have also been developed in order to deliver fast methods to estimate effects
of system parameters during the design process, as well as for real-time systems where the
model response must be obtained immediately. In our work with the Intel Corporation R©, we
have developed enhanced analytical methods to predict for the deformation of EUVL photo-
masks during mask-chucking (see Fig. 1.1). Those methods have been successfully tested in
an overlay error compensation experiment for pattern placement correction, and they serve
as estimates for critical particle contamination during EUV mask-chucking. Since this work
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Figure 1.3: TEM image of a carbon nanotube by [4]: (a) zero bias voltage; (b) deformed
nanotube due to bias voltage (scale bar is 500 nm).

has been documented elsewhere, and there are no implications of the developed analytical
estimates for the remainder of this document, we refer the interested reader to [7, 8]. In
the following we will focus on the numerical treatment of the electro-mechanical continuum
problem.

State of The Art

Until today, many software packages have been developed for the simulation of electro-
mechanical systems. One of the main challenges is solving the electrical field in a compu-
tational domain that differs from the computational domain of the mechanical deformation.
In particular the electrical field penetrates all space, with boundary conditions at infinity,
and the material parameters and internal boundary conditions within this domain change as
mechanical bodies move and possibly collide with each other. Without the claim of complete-
ness, we shortly discuss two traditional approaches to solve the electro-mechanical problem
that are related to the finite element method. In particular we mention the coupled finite-
element/boundary-element method (FEBE), with its early development by [19, 20, 21] for
the design of micro-electro-mechanical systems (MEMS). In [22, 23] the authors developed
a staggered algorithm, which was subsequently enhanced by [24, 25, 26], and which is now
the basis for the MEMS simulation software by Coventor Inc R©. Further developments of
the method can be found in [27, 28, 29, 30, 31, 32]. Very recently, a new algorithm has
been developed by [33, 34, 35], which allows for penetrating fields as necessary, for example,
to simulate nonlinear electro-elastic materials. The FEBE method is very attractive since
the far-field effect of the external electrical field can be captured by a minimum amount of
degrees of freedom associated with the boundary of the mechanical continuum. However,
the boundary element method faces difficulties when boundaries come close or contact due
to the singular integration involved. Moreover, the boundary element method is not capable
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to model a surrounding dielectric medium, where Green’s function does not exist.
Alternatively, Lagrangian finite element methods have been developed to capture both

the mechanical motion, as well as the internal and external electrical fields. As a popular
method we note the arbitrary Lagrangian-Eulerian method (ALE), which has been developed
to simulate fluid structure interaction (see for example [36, 37]). In the context of electro-
mechanical systems, many groups have been using the ALE approach (for example [20, 38, 39,
40]), and the Lagrangian approach has become a standard in the COMSOL R©package [41, 42].
In every Lagrangian formulation the mesh motion of the electrical domain has to be defined.
When the mechanical structure experiences large deformations, elements of the surrounding
space may get distorted and ill-conditioned, which necessitates remeshing. Moreover, when
two bodies come into contact, elements of the surrounding space may collapse as the gap
closes, which will require special consideration to render meaningful results.

Eulerian Methods – A Promising Approach

Due to the shortcomings mentioned, Eulerian finite element methods with embedded bound-
ary conditions have recently gained attention for the simulation of electro-mechanical sys-
tems [43, 44]. Immersed boundary methods have become a standard in related fields, such as
the simulation of fluid-structure interaction, crack propagation, or phase transitions. How-
ever, in the electro-mechanical community there are only limited studies available– despite
the apparent advantages: the Eulerian method will naturally avoid any element-distortions
or element-collapse when two bodies come into contact and the surrounding topological space
changes. Moreover, the use of finite elements enables one to model any non-linear surround-
ing dielectric media, which is not possible, in general, by the boundary element method.
Finally, such a method will allow for an extension of this work, for example, to electro-fluid-
structure interaction problems, where the fluid-field can be solved on the Eulerian grid that
surrounds the mechanical body. Nonetheless, all these attractive features come along with
the challenge to enforce Dirichlet boundary conditions on an immersed boundary, and the
need to accurately represent the gradients along this boundary. In [43] the fictitious domain
method is used with a distributed Lagrange multiplier, whereas in [44] the eXtended finite
element technique is employed in order to solve the electrostatic problem on a fixed grid.
Low-order immersed boundary methods as in [43, 44] encounter issues, when gradients along
nonlinear geometric boundaries such as curved boundaries or corners have to be resolved. In
this work, we promote the use of a newly developed high-order immersed boundary method
[45]. The method relies on a higher-order approximation to the immersed boundary shape,
as well as a higher-order interpolation space in all intersected elements based on the ana-
lytical solution of the underlying partial differential equation in the close neighborhood of
the boundary. This will enable a very accurate direct evaluation of the Maxwell-traction
along the immersed boundary– without the need of any post-processing smoothing opera-
tion. Moreover, any singular gradients due to corners can be captured in a natural way. As
will be demonstrated in the numerical examples, such higher-order accuracy is needed not
only to obtain any physically meaningful results, but also to achieve full convergence during



CHAPTER 1. INTRODUCTION 6

the global iterative solution of the coupled equations.

The Outline

In Chapter 2 we outline the governing equations of the continuum electro-mechanical bound-
ary value problem together with the material model used throughout this thesis. In Chapter 3
we develop a novel high-order immersed boundary discontinuous-Galerkin method, that puts
emphasis on the accurate representation of the field gradient for higher-order boundary fea-
tures such as curved boundaries or corners where singularities are present. In Chapter 4 we
present the algorithmic treatment of the coupled electro-mechanical problem in the quasi-
static, as well as the dynamic setting. For both cases, we discuss an elastic-to-rigid-surface
contact driver that enables the simulation of pull-in as well as impact for electrically actuated
devices. In Chapter 5 an efficient method is discussed in order to simulate electro-mechanical
devices excited at resonance. Such an approach will deliver substantial computational speed-
ups in comparison to the transient time-stepping from zero initial conditions– especially when
low damping is present.



7

Chapter 2

Electro-mechanical Continuum Model

To begin with, let us state the governing equations of the coupled electro-mechanical problem
of interest, as well as the material models used in this work. To this end, we closely follow
the presentation in [46, 47].

2.1 Balance Laws and Thermodynamics

Let us assume that a continuum body R with mass density ρ is surrounded by a vacuum V
(see Fig. 2.1). In the following we will describe the deformation of this body with respect
to a reference configuration R0 at time t = t0. For each material point X in the reference
configuration R0 we associate a vector X ∈ R

3. Consequently for the same material point
in R we associate x ∈ R

3. Then we define the displacement u(X, t) ∈ R
3, which maps X to

x(X, t) = X + u(X, t) for all t > t0. Let us assume in the following that the magnetic field
is negligible and that the electrostatic field is quasi-static in comparison to the dynamics of
the continuum body. Then, whenever the fields are smooth, we have to locally satisfy the
mass-balance

ρ̇+ ρdivu̇ = 0 , (2.1)

R

u

X

x

R0

X
X

V

Γu

n

Γt

Figure 2.1: Schematic of mechanical boundary value problem.
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where u̇ is the material velocity. Euler’s first law in the coupled theory is adjusted to

ρü = divT+ ρb̄ in R , (2.2)

u = ū on Γu , (2.3)

where b̄ is the standard body force term and T is the total Cauchy stress. From the moment-
of-momentum balance, one can derive

skew [T] = 0 . (2.4)

Note that a non-symmetric Cauchy stress in the coupled theory might exist if the mag-
netic and electric field are both non-vanishing, which has been precluded in this study by
assumption. In our case, the total Cauchy stress is given by

T = σ + e⊗ p+TM , (2.5)

where TM is the Maxwell stress given by

TM = ǫ0

(

e⊗ e− 1

2
(e · e) I

)

, (2.6)

ǫ0 is the permittivity of free space, e, p are the electrical field and the material polarization,
and σ a constitutively determined part of the Cauchy stress. Note that the Maxwell stress
penetrates all matter and is independent of any material law. Note especially that the
Maxwell stress is non-vanishing outside a material body, which one needs to take into account
when deriving boundary conditions in the weak form. The stress boundary condition will be
derived in Section 4.1 by the requirement

[[T]]n = 0 , (2.7)

where [[T]] denotes the jump in the total Cauchy stress across the boundary of interest. The
first two terms in (2.5) are the constitutively determined part of the Cauchy stress. The
functional dependency of σ, e and p comes from a thermodynamical argument as illustrated
in the next section.

The Maxwell equations simplify for the electro-static case and smooth fields to

divd = ρf , curle = 0 , (2.8)

where d = ǫ0e + p is the vector potential (electric displacement) for the free charges with
density ρf . The jump conditions read

[[d]] · n = σf , n× [[e]] = 0 , (2.9)

where σf is the surface charge density. Note that (2.8)2 can be solved via potential Φ such
that e = −∇Φ, and we need to solve

−ǫ0div∇Φ + divp = ρf , (2.10)
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with appropriate boundary conditions. Note that if and only if p is linearly related to e,
that is one assumes a linear dielectric material d = ǫe with permittivity tensor ǫ, one can
derive

divǫ∇Φ = −ρf , (2.11)

which reduces to
∇2Φ = −ρf/ǫ (2.12)

for an isotropic, homogeneous material ǫ(x) = ǫI, ∀x ∈ R. Any non-linear material law for
the polarization requires a full solution of (2.10), and the simplified equations (2.11), (2.12)
will not be sufficient to model the problem.

As the first law of thermodynamics we assume

ρε̇ = divTT ẋ+ ρẋ · b̄+ ρh− divq , (2.13)

where ε is the internal energy of the material, h some external heat source, and q the heat
flux.

The second law can be cast in the form

−ρψ̇ − ρηΘ̇− p · ė+ σ · ∇ẋ−Θ−1q · ∇Θ ≥ 0 , (2.14)

where ψ is some potential function involving the internal energy, Θ the absolute temperature,
and η the entropy.

All equations thus far deliver the local forms of the underlying physical laws together with
the corresponding jump conditions. They can be solved (in principle) when we specify con-
stitutive relations for the quantities σ, ψ, q, η and p. In the following section we will derive
restrictions on the constitutive laws by using the entropy inequality (2.14) and moment-of-
momentum balance (2.4); i.e. we will find restrictions on the constitutive dependency such
that these two laws are automatically satisfied.

2.2 Constitutive Modeling

Let us assume that the stress, energy, entropy and material polarization are constitutively
dependent on {F,Θ, e}, where F is the deformation gradient. Thus, we assume that the
potential function ψ takes the form

ψ = ψ(F,Θ, e) . (2.15)

Note that this assumption limits us to elastic materials. Any dissipative effects as seen in
visco-elastic, plastic, or ferro-electric materials are not considered here (see e.g. [48, 49] for
further discussions). From (2.14) we get by a standard argument

σ = ρψFF
T (2.16)

p = −ρψe (2.17)

η = −ψΘ (2.18)

−(q · ∇Θ)/Θ ≥ 0 . (2.19)



CHAPTER 2. ELECTRO-MECHANICAL CONTINUUM MODEL 10

If we use (2.16), (2.17), one can show that (2.4) is equivalent to the requirement

ψ = ψ(C,Θ,E) , (2.20)

where C = FTF and E = FTe. In order to derive (2.20), one essentially follows a similar
argument as in [50, p.44]. Note that this requirement also assures the Invariance under
superimposed rigid body motions. We then deduce from (2.5), (2.16), and (2.17) that the
total Cauchy stress and polarization read

T = 2ρF

(

sym
∂ψ

∂C

)

FT +TM , (2.21)

p = −ρF∂ψ
∂E

, (2.22)

where we have used ψF = 2F
(

sym ∂ψ
∂C

)

+ e ⊗ ∂ψ
∂E

, and ψe = F ∂ψ
∂E

. Note in particular σ =

ρψFF
T = 2ρF

(

sym ∂ψ
∂C

)

FT − e⊗p. In the following we will assume the isothermal case; i.e.

ψ = ψ(C,E) . (2.23)

Another constraint is the symmetry group of the material. If λ is a symmetry transfor-
mation, we require

ψ(C,E) = ψ(RTCR,RTE) , (2.24)

where R = ∇λ. In this context we focus on isotropic materials; i.e. R ∈ O, where O is the
group of orthogonal tensors. For anisotropic materials as needed in piezo-electric materials
we refer to [49, 51]. For the isotropic case one can derive that the energy is a function of the
six invariants

ψ = ψ(I1, I2, I3, I4, I5, I6) , (2.25)

where

I1 = trC, I2 = trC∗, I3 = detC, (2.26)

I4 = tr (CE⊗ E) , I5 = tr
(

C2E⊗ E
)

, I6 = tr (E⊗ E) , (2.27)

with C∗ = (detC)C−1. This reduces the number of independent parameters from 9 to 6
[cf. (2.23)]. If we define ψi ≡ ∂ψ

∂Ii
, we derive

sym
∂ψ

∂C
= (ψ1 + ψ2I1) I− ψ2C+ ψ3I3C

−1 + ψ4E⊗ E+ ψ5 [C (E⊗ E) + (E⊗ E)C] ,

(2.28)

∂ψ

∂E
= 2

(

ψ4C+ ψ5C
2 + ψ6I

)

E . (2.29)

We will now split the Cauchy stress (2.21) into

T = Tm +Te , (2.30)



CHAPTER 2. ELECTRO-MECHANICAL CONTINUUM MODEL 11

with a purely mechanical part Tm, and an electrical part Te. Using (2.21), (2.22), (2.28),
and (2.29), one gets

Tm = 2ρ
[

(ψ1 + ψ2I1)B− ψ2B
2 + ψ3I3I

]

, (2.31)

Te = 2ρ {ψ4Be⊗Be+ ψ5 [B (Be⊗Be) + (Be⊗Be)B]}+TM , (2.32)

p = −2ρ
(

ψ4B
2 + ψ5B

3 + ψ6B
)

e , (2.33)

where B = FFT denotes the left Cauchy-Green tensor. In lieu of (2.5), we note that
σ = Tm +Te − e⊗ p−TM . Various propositions exist for the form of the energy ψ. Next,
we will discuss some examples that are typically found in the literature.

2.3 Examples

In [34], the authors propose the form

ψ =
µ

2
(I1 − 3)− µ ln J +

Λ

2
(ln J)2 + αI4 + βI5 + γI6 , (2.34)

where {µ,Λ, α, β, γ} are five independent material parameters, and J = detF =
√
I3. In

this form, following (2.29), the polarization will not be consistent (in general) with a linear
dielectric. Thus a solution via (2.11) and (2.12) is not accessible, and one rather has to solve
the non-linear equation (2.10).

In order to obtain a formulation that accounts for a linear polarization, [52] propose an
incompressible material (J = detF = 1) with

ψ = c1 (I1 − 3) + c2 (I2 − 3) + c (I5 − I1I4 + I2I6) , (2.35)

and three material parameters {c1, c2, c}. Here one can write c1 = Gδ/2, c2 = G(1−δ)/2 and
c = −(ǫ−ǫ0)/(2ρ0), where G is the small deformation shear modulus and δ ∈ (0, 1) a material
parameter. The referential mass density is ρ0 = Jρ = ρ for an incompressible material. Note
that this form is an enhancement of the Mooney-Rivlin material with an additional term to
account for the electric field. From (2.31), we obtain the standard Mooney-Rivlin response
by assuming the absence of an electrical field:

Tm = −pI+ 2ρ
[

(c1 + c2I1)B− c2B2
]

, (2.36)

and from (2.32) the stress due to the electrical field:

Te =2ρc
[

(I1I6 − I4)B− I6B2 − I1Be⊗Be

+B (Be⊗Be) + (Be⊗Be)B] +TM . (2.37)

Here the added constraint pressure p-term accounts for incompressibility. For the polariza-
tion, from (2.33), we get

p = (ǫ− ǫ0) e , (2.38)
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with the linear dependency on e as desired.
Note that many authors use

T = T̃+ e⊗ d− 1

2
(e · d) I , (2.39)

where T̃ is the constitutively determined stress due to any deformation in the absence of an
electric field. One can derive this form in the case of a linear dielectric fluid via a similar
thermodynamical argument (see e.g. [46, p.245]). However, we cannot find a corresponding
potential in the case of a dielectric solid that is consistent with the thermodynamical consid-
erations presented here. This issue has been discussed by [52], and we adopt their findings
in this work– that is we regard (2.39) as obsolete in the discussion of dielectric solids.

In the examples as discussed in Chapter 4 and 5 we propose the use of a non-linear
compressible Neo-Hookean material, with added terms to account for the electric field effects
and a linear polarization in accordance with the model proposed by [52]. To this end we
assume

ψ =
µ

2
(I1 − 3)− µ ln J +

Λ

2
(ln J)2 + c J−1 (I5 − I1I4 + I2I6) , (2.40)

given in terms of the small strain Lamé parameters Λ = Eν/[(1+ν)(1−2ν)], µ = E/[2(1+ν)],
the Young’s modulus E, Poisson ratio ν, and c = −(ǫ− ǫ0)/(2ρ0). From (2.31) we derive the
purely mechanical part of the Cauchy stress

Tm = ρ0J
−1(Λ ln J − µ)I+ ρ0µJ

−1B , (2.41)

and from (2.32) the electrical part

Te =2ρ0c J
−2

[

1/2(I1I4 − I2I6 − I5)I+ (I1I6 − I4)B− I6B2

−I1Be⊗Be+B(Be⊗Be) + (Be⊗Be)B] +TM . (2.42)

The polarization according to (2.33) is found to be linear in e,

p = (ǫ− ǫ0) e , (2.43)

as we desired.
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Chapter 3

Immersed Boundary Method

For a linear material polarization, the electro-static boundary value problem reduces to
solving Poisson’s equation (2.12) for the electrical potential Φ. In this chapter, we adopt
a numerical method to solve Poisson’s equation on a fixed grid with embedded boundary
conditions (see [45]). Special focus is put on the accurate representation of the normal
gradient on the boundary. The lack of accuracy in the gradient evaluation on the boundary
is a common issue with low-order embedded boundary methods. While a direct evaluation
of the gradient is preferable, one typically uses post-processing techniques to improve the
quality of the gradient. Here, we adopt a new method based on the discontinuous-Galerkin
(DG) finite element method, inspired by the recent work of [53]. The basic idea of the
method is pictured in Fig. 3.1. We observe the boundary Γ of the mechanical body R, and
the surrounding space V . We have to solve for the electrical potential Φ in all space R∪ V .
Note that later we will truncate the computational domain along ΓBE, where we apply a
far-field boundary condition. One uses standard finite elements in the white domain, and for
elements intersected by the boundary Γ, one uses special elements that follow the boundary
shape locally. In general, these elements are non-conforming, and they are put together
in the DG framework. The original method by [53] has been enhanced in two aspects:
Firstly, we approximate the boundary shape locally by higher-order geometric primitives.
Secondly, we employ higher-order shape functions in intersected elements that we derive for
the various geometric features of the boundary based on analytical solutions of the underlying
partial differential equation. The development includes three basic geometric features in two
dimensions for the solution of Poisson’s equation: A straight boundary, a circular boundary,
and a boundary with a discontinuity. We demonstrate the performance of the method via
analytical benchmark examples with a smooth circular boundary as well as in the presence
of a singularity due to a reentrant corner. Results are compared to a low-order extended
finite element method as well as the DG method of [53]. We report improved accuracy of
the gradient on the boundary by one order of magnitude, as well as improved convergence
rates in the presence of a singular source. In principle, the method can be extended to three
dimensions, more complicated boundary shapes, and other partial differential equations.
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DG-Finite Elements

w/ special interpolation

Standard-Finite Elements

ΓBE

R

Γ

V

Figure 3.1: Schematic of the high-order immersed boundary DG method: Γ-boundary, in-
tersected DG-finite elements, standard finite elements, and ΓBE.

3.1 Introduction

Immersed boundary methods are popular in various fields of computational mechanics. As
prominent examples one can name Peskin’s immersed boundary method [54, 55], boundary
fitting methods [56], fictitious domain methods [57, 58], and the eXtended finite element
method (X-FEM) [59, 60]. These methods have been successfully applied to the simulation
of fluid-structure interaction, crack propagation, and phase transitions among others. Our
primary interest is in the solution of coupled electro-mechanical problems, where we wish to
study moving mechanical bodies in electric fields; the bodies may be conductors or dielectrics.
Recently, fixed-grid methods [43, 44] have become popular for this task. In comparison
to classical Lagrangian methods that adapt their mesh according to the bodies’ motion,
immersed boundary methods have the clear advantage that no elements can be distorted, and
no re-meshing is required for possibly large motions of the bodies. The obvious advantage,
however, comes with some difficulties, for example: When Dirichlet type boundary conditions
are given, they have to be enforced on non-conforming meshes. Bad element intersections
may occur and require special treatment. And lastly, the accurate evaluation of gradients
on the boundary often lacks precision. The last point becomes especially problematic in the
solution of coupled problems such as in electro-mechanics, where the normal gradient on any
interface boundary determines the traction on the body surface. Thus the accuracy of the
gradients is crucial in obtaining physically meaningful results.

In this work we focus on a numerical method that is designed to provide high quality
gradients at the interface. In this context we first review a low-order eXtended finite el-
ement method, where inaccuracies of the gradient at the interface is a common issue. In
the literature there exist several post-processing techniques, which smooth the often largely
oscillating gradient fields (e.g. [61]). Here we develop a method that allows one to evaluate
the gradient accurately by direct differentiation of the bulk field. Among others, this has the
clear advantage that the computational cost will be reduced and one can avoid difficulties of
the smoothing operation that may break down when bodies come close, contact, or singu-
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larities are involved. Our method follows in spirit the work of [53]. All elements intersected
by a boundary will feature a special set of shape-functions that allow a strong imposition
of Dirichlet boundary conditions along the immersed boundary. Those non-conforming ele-
ments are then put together in the context of a discontinuous-Galerkin (DG) method, where
inter-element continuity is enforced in a weak sense in the region near the immersed bound-
ary; regular finite elements are used everywhere else. This method has been adapted for
example in [62] to problems in elasticity, where it showed very robust behavior in the en-
forcement of Dirichlet boundary conditions. In our method, we enhance this approach in two
aspects: First, we use a higher-order representation of the boundary by approximating the
boundary in each element locally via basic geometric primitives such as straight lines, circu-
lar curves, or wedges in two dimensions. Second, we use a special higher-order interpolation
motivated by the analytical eigensolution of the underlying PDE in the neighborhood of the
corresponding special boundary shape. Specifically we concentrate on Poisson’s equation
in two-dimensions; however, the method’s basic idea can be adopted to more complicated
boundary shapes and other types of PDEs in two as well as three dimensions. In comparison
to the eXtended finite element method as well as the original DG-based immersed boundary
method, we achieve much better accuracy of the gradient. Moreover, we demonstrate the
capability to incorporate singularities as seen in the presence of corners in a natural way.

The outline of this chapter is as follows: In Section 3.2 and 3.3, we will state the problem
and review a state-of-the-art X-FEM technique. In Section 3.4, we will layout the princi-
ples of the proposed high-order immersed boundary DG method (IB-DG), and our choice
of boundary approximation and enrichment functions. Lastly, in Section 3.5, we discuss
the performance of the high-order IB-DG method versus X-FEM and low-order IB-DG via
numerical examples. Throughout we focus on electrostatics and ignore deformation so as to
concentrate on the performance of the immersed boundary.

3.2 Governing Equations

We assume that we want to solve Poisson’s equation in all space, which is divided into
domains R, V and W as pictured in Fig. 3.2. R should be thought of as a body and
V ,W as air. Specifically we are interested in the solution of the electro-static BVP, with
boundary conditions given along Γ = ∂R. Assuming linear isotropic dielectric properties
with permittivity

ǫ(x) =











ǫR , x ∈ R ,
ǫV , x ∈ V ,
ǫW , x ∈ W ,

(3.1)

we look at three typical cases.
Case 1. The body R is a conductor and the boundary Γ is a conducting surface where

we know the potential Φ = Φ̄. In the absence of any volume charge, the problem reads: Find
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R

nR

ΓBE

W

V

Γ

Figure 3.2: Problem definition and notation.

Φ, such that

∇2Φ = 0 all space , (3.2)

Φ = Φ̄ on Γ , (3.3)

where Φ̄ is any given Dirichlet boundary data along Γ.
Case 2. The body R is a conductor and the boundary Γ is a conducting surface where

we know the total charge

Q =

∫

Γ

σf da (3.4)

on the surface. The free surface charge density σf = [[q]] is related to the jump of the flux
q = −ǫ∇Φ ·n along the surface Γ with normal n. In this case, we impose Φ = Φ̄ = constant
as a constraint and treat Φ̄ as an additional (scalar) unknown. The problem reads: Find
[Φ, Φ̄], such that

∇2Φ = 0 all space , (3.5)

Φ− Φ̄ = 0 on Γ , (3.6)
∫

Γ

[[q]] da = Q . (3.7)

Case 3. The body R is a dielectric and the boundary Γ is a dielectric-dielectric interface.
In this case the problem reads: Find Φ, such that

∇2Φ = 0 all space , (3.8)

[[q]] = 0 on Γ . (3.9)

Again, [[q]] denotes the jump in the normal flux and (3.9) accounts for the fact that no
free surface charge is present at a dielectric-dielectric interface by assumption. The Dirich-
let boundary conditions on Φ in this case are assumed to be given away from Γ, see e.g.
Section 3.5.
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Figure 3.3: Schematic of the eXtended finite element method: (a) domain discretization and
(b) discontinuous shape function.

3.3 Extended Finite Element Method (X-FEM)

For Cases 1-3 we derive the variational form: Find Φ ∈ Ps, such that
∫

R

ǫR∇δΦ · ∇Φdv +

∫

V

ǫV∇δΦ · ∇Φdv = −
∫

ΓBE

δΦqV da (3.10)

for all δΦ ∈ Pv along with the requirement Φ = Φ̄(s) on Γ for Case 1 and 2. Here s is a
parameter along Γ, and the spaces Ps and Pv are suitable subspaces of H1.

In order to solve (3.10) using X-FEM, one typically discretizes each domain as pictured
in Fig. 3.3(a). In this depiction we assume the boundary Γ is discretized by linear elements,
and R, V are discretized by quadrilateral elements covering each domain of interest. The
effect ofW is modelled as a far field boundary condition along ΓBE via the boundary element
method (see App. A). All elements that are intersected by Γ will overlap and feature the
interpolation

Φh = Φh
R + Φh

V =
∑

i

HRNiΦRi +
∑

i

HVNiΦVi , (3.11)

where Ni are the classical, finite element shape functions. The characteristic functions HR,
HV equal one in the corresponding domain, and zero elsewhere. A standard bi-linear inter-
polation has four degrees of freedom for each element; with one intersection, we get eight
degrees of freedom defining the eXtended or enhanced element. Note the discontinuous shape
functions will allow us to capture kinks in the potential field as pictured in Fig. 3.3(b). Using
this interpolation, requires an additional constraint equation to enforce continuity along Γ.

The approximate problem then reads: Find Φh
R,Φ

h
V ∈ Phs , such that

∫

R

ǫR∇δΦh
R · ∇Φh

Rdv +

∫

V

ǫV∇δΦh
V · ∇Φh

Vdv = −
∫

ΓBE

qVδΦ
h
Vda (3.12)
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for all δΦh
R, δΦ

h
V ∈ Phv along with the requirement Φh

V = Φh
R = Φ̄(s) on Γh (for Case 1 and

2 ), and Φh
V = Φh

R on Γh (for Case 3 ). Note that the last three requirements can only be
enforced in a weak sense. For simplicity we only discuss the constraint Φh

V = Φ̄(s) on Γh,
the others follow in a similar fashion.

In order to enforce ΦV = Φ̄(s) on Γ in a weak sense, the Lagrange multiplier method
is used. Let us introduce λ ∈ L, where L = H−1/2. One then requires stationarity of the
functional

ΠLM(ΦV , λ) =

∫

Γ

λ
(

ΦV − Φ̄
)

da . (3.13)

Upon variation, we obtain: Find (ΦV , λ) ∈ Ps × L, such that (3.10) holds, and such that
∫

Γ

δλΦVda +

∫

Γ

δΦV λda =

∫

Γ

δλ Φ̄da (3.14)

for all (δΦV , δλ) ∈ Pv × L. By choosing a discretization λh ∈ Lh, we arrive at the discrete
form: Find (Φh

V , λ
h) ∈ Phs × Lh, such that (3.12) holds, and such that

∫

Γ

δλhΦh
Vda +

∫

Γ

δΦh
V λ

hda =

∫

Γ

δλh Φ̄da (3.15)

for all (δΦh
V , δλ

h) ∈ Phv × Lh. One can proceed in an analogous manner for constraints
Φh

R = Φ̄ and Φh
V = Φh

R on Γh.
We remark that by a standard localization argument, from (3.12) and (3.15) one can

show that the Lagrange multiplier equals the normal flux on the boundary:

λh = −ǫV∇Φh
V · nV . (3.16)

As will be assessed in Section 3.5, this presents an interesting alternative to the direct
evaluation of the normal gradient on the boundary.

Note that Φ̄(s) is any given potential, and in the case of a conducting body Φ̄ will be
constant on the body. For a typical electro-static problem, however, it might occur that
the voltage (=potential) is not controlled, but rather the total electrical charge Q on a
conductor is specified, and one must calculate the corresponding potential as a (scalar)
unknown– the so-called floating potential problem. In this case we modify (3.15) to: Find
(Φh

V , λ
h, Φ̄) ∈ Phs × Lh × R, such that (3.12) holds, and such that

Π̄LM(Φh
V , λ

h, Φ̄) =

∫

Γ

λh
(

Φh
V − Φ̄

)

da +QΦ̄ (3.17)

is rendered stationary. The Lagrange multiplier λh can still be interpreted as the normal flux
on the boundary, which is essentially the surface charge distribution (Section 3.2). Upon
variation of (3.17) with respect to Φ̄, and requiring δΦ̄Π̄LM = 0, we see that

Q =

∫

Γ

λhda , (3.18)
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which is consistent with the constraint equation (3.7) for the given charge load.
Note that the Lagrange multiplier space Lh is not arbitrary but has to satisfy the inf-

sup condition to ensure stability [63]. Moreover, the use of Lagrange multipliers delivers
a non-positive system and additional degrees of freedom are introduced. There are many
studies that deal with these issues and propose solutions on how to choose Lh [64, 65, 66];
further alternative formulations such as Nitsche’s method or stabilized Lagrange multipliers
respectively have also been advocated in [67, 68, 69, 70, 71, 72, 73, 74, 75]. For our purpose of
benchmark testing, the classic Lagrange multiplier approach works nicely as we can control
Lh a-priori.

We want to draw special attention to three short comings of the presented X-FEMmethod
and related technologies, when utilizing a low-order interpolation such as the bi-linear inter-
polation. As will be demonstrated in Section 3.5, in the presence of a corner or any other
complicated geometry one will not be able to interpolate the field exactly along the immersed
boundary. Second, the bi-linear interpolation obviously does not account for any possible
singularity in the gradient, as is seen for example at a corner. And third, the evaluation of
the gradient on the boundary will in general be very inaccurate and highly oscillatory even
for smooth boundaries, depending on where the background mesh is cut. These issues can
be addressed by mesh-refinement, but it is certainly not in the spirit of embedded bound-
ary methods that were developed to precisely avoid this. A higher-order X-FEM technique
(e.g. [76]) may show some improvement related to these concerns, but we found the approach
based on the discontinuous-Galerkin FEM as presented by [53] more natural to extend for
our specific demands.

3.4 High-order Immersed Boundary

discontinuous-Galerkin Method (IB-DG)

In this section we propose a new immersed boundary method based on the discontinuous-
Galerkin FEM. The DG approach has been used by [53] and [77] recently in a similar context.
However, to our knowledge, no studies have demonstrated yet the use of higher-order ap-
proximations to the boundary shape or interpolation space.

The basic idea is pictured in Fig. 3.1: All elements that are not intersected by the
Γ-boundary utilize standard conforming finite elements. In our examples we will use a bi-
linear interpolation. All elements that are intersected by the Γ-boundary utilize a special
interpolation that is element-wise dependent on the shape and location of Γ. All intersected
elements are by default non-conforming, and continuity across element boundaries and to the
standard FE domain is enforced in the DG context. At this point we want to review various
Γ-approximations as pictured in Fig. 3.4. Note that the approximation of the boundary is
in general independent of the field interpolation. Due to the convenience in the integration,
one typically uses piecewise linear patches in standard (low-order) eXtended finite element
methods or low-order IB-DG methods. As can be readily observed, this approach will lead to
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Figure 3.4: Schematic of various Γ-approximations: (left) X-FEM with Lagrange multiplier;
(middle) low-order IB-DG; (right) higher-order IB-DG.
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inaccuracies in the Γ-approximation which guide us to a higher-order approximation, built of
nonlinear geometric primitives. We locally approach the Γ-boundary as sketched in Fig. 3.5:
For each intersected element we calculate three control-points (see Fig. 3.5), each lying on Γ.
Depending on the angle β̂ = max{β+, β−}, we propose an automatic heuristic switch based
on a user-defined parameter βs.

• If β̂ = π, approximate Γ by a straight line through all three control-points.

• If βs ≥ β̂ > π, approximate Γ by a circular curve through all three control-points.

• If β̂ > βs, approximate Γ by a wedge with vertex at the mid-control-point.

In our later examples, we set βs = 1.3 π but this can be adjusted as needed by the user.
Instead of an automatic switch, this can also be done by a user decision– e.g. by flagging
certain nodes along the boundary as singular corners, and moreover one may utilize more
complicated shapes from a user defined library to approximate the boundary at the required
accuracy.

As mentioned before, by default, we use a low-order interpolation for all elements that are
not intersected by Γ. For all elements intersected by Γ, we switch to a higher-order approxi-
mation that follows the boundary shape locally. For the three basic shapes we developed so
far, we propose the following interpolations.

Straight Boundary

In the case of a straight boundary, for each side of the element one can use a local Cartesian
coordinate system {x, y} (see Fig. 3.5), and approximate the solution by polynomial spaces.
In accordance with [53], this can be done by a linear (low-order) space

Φh ∈ span{1, x, y±} , (3.19)

featuring 4 degrees of freedom per element. Note that this approximation will be used in
the low-order IB-DG implementation for comparison in the next section. In our higher-order
formulation we will use a quadratic space

Φh ∈ span{1, x, x2, y±, (y2)±, xy±} , (3.20)

resulting in 9 degrees of freedom per element. This enables a more accurate gradient inter-
polation, and moreover avoids locking of the solution when non-constant gradients occur in
an element.

In this notation we note that all modes labeled {(.)±} = {(.)+, (.)−} have to be counted
twice as they are independently used to interpolate the field in each domain. Note that the
interpolation space is designed to follow the boundary shape, which enables one to specify
Dirichlet type boundary conditions in a strong sense. This is one major difference to the
X-FEM method, where Dirichlet boundary conditions can only be enforced in a weak sense.
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Figure 3.6: Shape functions for circular boundary.
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Figure 3.7: Shape functions for corner element.

Circular Boundary

In the case of a circular boundary approximation, we introduce the polar coordinate system
{r, ϕ} as shown in Fig. 3.5 and propose the shape functions

Φh ∈ span{1, ϕ, ϕ2, log(r/R)±, ϕ log(r/R)±}, (3.21)

as pictured in Fig. 3.6 (viz.7 degrees of freedom). These functions are motivated by the
analytical eigensolution of Poisson’s equation near a circular boundary in two dimensions
(see e.g. [78, §9.4]).

Corner Element

Lastly, we propose a corner interpolation using a polar coordinate system {r, ϕ} as pictured
in Fig. 3.5. In contrast to the circular boundary case, the coordinate center is now at the
singular corner location. We assume

Φh ∈ span{1, r cos(πϕ/β), r2 cos2(πϕ/β), rmπ/β sin(mπϕ/β)±}Nm=1 , (3.22)

which again is motivated by near field solutions to Poisson’s equation [78, §9.4]; see Fig. 3.7.
Note that m = 1 represents the singularity in the gradient due to an entrant corner; modes
m > 1 represent higher-order series expansions of the exact solution. We found the choice
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N = 3 (9 degrees of freedom) for our numerical experiments in Section 3.5 sufficiently
accurate. Higher choices of N will give more accurate results but potentially also lead to
instabilities.

Inter-element Continuity

Since all intersected elements have locally defined solution parameters, one has to enforce
continuity along the element boundaries. For simplicity, we employ a discontinuous Galerkin
method with internal penalties (IP-DG) [79, 80, 81]. Alternatively one could utilize other
DG methods such as Bassi-Rebay [82], the local discontinuous Galerkin [83], or the compact
discontinuous Galerkin method [84]. These approaches improve upon IP-DG, but for our
purpose of developing a proper boundary representation they are unneeded and we opt for
the simplicity afforded by IP-DG.

The overall problem then reads: Find Φh ∈ Phs , such that (3.12) holds and

ΠDG(Φ
h) =

∑

e

{
∫

Γe

〈qh〉[[Φh]]da− α

he

∫

Γe

[[Φh]]2da

}

→ stat. (3.23)

Here

[[Φh]] = Φh+ − Φh− , (3.24)

〈qh〉 = 1

2

(

qh+ + qh−
)

(3.25)

denote the jump and average of field or flux respectively across each element boundary Γe.
The sum goes over all boundaries of intersected elements. The stability parameter α in
this form is scaled by the local area-measure he of the element boundary. After the typical
variation, together with (3.12) we arrive at a linear system, where with ease we can enforce
Dirichlet type boundary conditions along Γ in a strong sense. Note that α in this work is a
user-defined parameter that must be chosen high enough in order to satisfy coercivity of the
weak form, and low enough to retain accuracy. Recent work by [85], [86], or [87] establish
methods to estimate α based on the solution of a local eigen-value problem. For our purposes
of benchmark testing we manually optimize α for the given examples.

Charge Loading

For the charge loading case, let us denote Φh =
∑nel

j=1 PjΦj with Pj ∈ Phs and the expansion
coefficients Φj. Using a Galerkin discretization, one can write (3.12) and (3.23) in the
algebraic form: Find [Φj ] such that

∑

j

KijΦj = qi , ∀i = 1, . . . , nel , (3.26)
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Figure 3.8: IB-DG: (left) element extensions; (right) Gauss integration of singular functions
via generalized Duffy-trick [88].

where Kij are the coefficients of the electrical stiffness, and qi the equivalent fluxes for each
degree of freedom. Let us now denote the set

J = {j | Pj(x) 6= 0, ∀x ∈ Γ} , (3.27)

which are the degrees of freedom in the intersected elements that are used to interpolate
Φh = Φ̄ along Γ. We now split J into J = J0 ∪Jn, with J0 ∩Jn = ∅, where J0 is the set of
all constant modes and Jn is the set of all higher modes. For charge loading on a conducting
surface we then require

Φj = Φ̄ , ∀j ∈ J0 , Φj = 0 , ∀j ∈ Jn ,
∑

j∈J0

qj = Q , (3.28)

which are the equivalent forms to (3.17) and (3.18). From (3.26) we then derive: Find [Φj, Φ̄],
j 6∈ J , such that

∑

j 6∈J

KijΦj +
∑

j∈J0

KijΦ̄ = qi , ∀i 6∈ J , (3.29)

∑

i∈J0

∑

j 6∈J

KijΦj +
∑

i∈J0

∑

j∈J0

KijΦ̄ = Q . (3.30)

for any given equivalent nodal fluxes qi and total charge Q.

Integration

Before we proceed to the numerical examples, we point out some further details of the
implementation. For elements intersected by a smooth boundary, we employ standard Gauss
integration procedures via tessellation [59]. In elements featuring a sharp corner, we have to
integrate a singular function of the form

∫

∆I

ǫ (π/β)2 r−γda , (3.31)
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Figure 3.9: Singular element enhancement within enrichment radius rE.

where γ = 2− 2π/β is the order of the singularity. As pictured in Fig. 3.8 (right), we divide
elements by a Delaunay-triangularization into triangles ∆I , such that the singularity is at
one vertex. Following [88], we then use a generalized Duffy-trick to integrate each triangle
with a proper Gauss-rule that respects the order of the singularity depending on the angle
β±.

Singular Corner Enrichment Radius

In accordance with [89] and [90] we observe that optimal convergence during mesh-refinement
for the singular enrichment can only be achieved by enhancing all elements surrounding the
singular point within a certain radius rE (see Fig. 3.9). For each such element we refer to
the same source of singularity, from which we measure the local coordinates {r, ϕ} and from
which we take the angle β±. In this work, rE is a user-defined parameter, which has been
adjusted in the upcoming examples to sufficiently cover the effective radius of the singularity
(see Section 3.5).

Element Extensions

Since one typically cannot control the boundary location, for example if one has moving
bodies, bad element intersections may lead to ill-conditioning. To alleviate this problem,
we follow a procedure similar to what was proposed in [91]. In two dimensions our strategy
depends on how the elements are intersected. When two opposite sides are intersected
(Fig. 3.8, left) and

√
Area < δ1h, we extend the element to the next neighbor. When two

adjacent sides are intersected (Fig. 3.8, middle) and
√
Area < δ2h, we merge two intersected

elements that share a common edge. Here, δ1 and δ2 are user-defined parameters that control
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the range of element extensions. In rare cases it may occur that such merging will lead to
a successive combining of elements into a very large element. For a structured mesh as
pictured here, this can be avoided by consistently merging elements in only one coordinate
direction. With unstructured meshes, one would have to consider a strategy that avoids such
combinations.

Element Identification

In order to identify the various element-types, a level-set function is calculated for each
solution iteration. In our examples we compute the signed-distance to the boundary Γ at each
nodal location of the computational domain Ωh = Rh ∪ Vh. This enables an identification
of all intersected elements, for which we identify the element control-points as pictured
in Fig. 3.5. Subsequently we check for singular elements and bad element intersections
depending on the parameters rE, δ1, δ2. Note again that all identified elements, that track
the interface, feature a higher-order locally defined interpolation, whereas the remaining
elements utilize a standard bi-linear interpolation as pictured in Fig. 3.9. This is a major
advantage of the IB-DG method vs. X-FEM. Once the basic framework is implemented,
one can easily define new elements and combine various element-types of different orders to
obtain an optimal and efficient interpolation space for the problem at hand.

3.5 Numerical Examples

We now look at several examples where a straight forward analytical solution is accessible.
In particular we will validate the accuracy and convergence during h−refinement. To this
end we introduce the relative L2-error norms

||Φ− Φh||Ω
/

||Φ||Ω =

√

∫

Ω

(Φh − Φ)2 dΩ

/

√

∫

Ω

Φ2dΩ , (3.32)

for the bulk field in the computational domain Ω and

||∇nΦ−∇nΦ
h||Γ

/

||∇nΦ||Γ =

√

∫

Γ

(∇nΦh −∇nΦ)
2 dΓ

/

√

∫

Γ

∇nΦ2dΓ , (3.33)

for the normal gradient along Γ.

Two Cylinders

In this example we assume two cylinders which are separated by a distance c and one is
kept at a fixed potential Φ = Φ0 while the other is kept at Φ = −Φ0 (see Fig. 3.10). The
analytical solution is given by (e.g. [92, p.15])

Φ(x) = Φ0 log
r2(x)

r1(x)

/

log
a

d
, (3.34)
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Figure 3.10: Two-cylinders example: schematic, discretization and various cylinder center
positions (ipos).

where the cylinder radius a, r1, r2 are pictured in Fig. 3.10 and d = c/2−
√
0.25c2 − a2.

For the numerical example we consider ǫR = ǫV = ǫW = 1, Φ0 = 300, a = 0.1 and
c = 0.5. Note that in this example the potential along Γ is constant, so one can actually
prescribe the solution Φh

R inside the cylinders to be equal to the given boundary data Φ0

and −Φ0 respectively. Thus, the definition of ǫR is arbitrary. The background mesh covers
the domain Ω = [0, 1]2, and has been refined from 25 × 25 to 200 × 200 elements; i.e. the
element size h = 1/25, . . . , 1/200. For ease of implementation, we discretize the cylinder
surface (Γh) by N piecewise linear surface patches. Since we adopt the Lagrange multiplier
space according to the surface discretization for X-FEM via Lagrange multipliers, N cannot
be chosen arbitrarily in this case since the inf-sup condition must be satisfied. We found the
best possible results by using 10 to 80 linear elements for each cylinder (Fig. 3.10), which
corresponds to a ratio l/h ≈ 1.6. In the case of the IB-DG method, there is no constraint on
the surface discretization, and we used N = 500 to obtain an accurate representation of Γ.
Following a sensitivity study as discussed later, we choose α = 100 for the low-order IB-DG.
For the higher-order IB-DG we choose α = 150 and in addition use element extensions with
δ1 = 0.6, δ2 = 1. No radius rE needs to be specified in this example since no singularities
are present.

Looking at typical results in Fig. 3.11(a-c), we readily observe two advantages of the
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(low-order, h=1/25).
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Figure 3.11: Two-cylinders example: (top) detailed potential contour, Γ-boundary and back-
ground mesh with control-points; (bottom) normal gradient along cylinder surface.

higher-order IB-DG method: First, the potential field follows the surface discretization much
more accurately than in the case of a low-order IB-DG method or X-FEM. Second, the
constraint Φ = Φ̄ is enforced exactly on the boundary, which cannot be guaranteed by X-
FEM. Looking at Fig. 3.11(d-f), the advantage of the higher-order enhancement becomes
even more obvious. Whereas X-FEM and low-order IB-DG give very poor quality of the
gradient along Γ, the error for higher-order IB-DG is noticeably better. Inaccuracies in
the gradient as seen in Fig. 3.11(d) are a well known issue to the X-FEM community [61].
Methods exist to reconstruct more accurate gradients by post-processing steps, but this
is not necessary for the proposed higher-order IB-DG method. Note that the Lagrange
multiplier in this example does give a very accurate representation of the normal flux on
the boundary, and only small oscillations occur. However, this is a best case scenario as
we optimized Lh, and any other choice will easily give much worse results with possibly
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Figure 3.12: Two-cylinders example, maximum L2-error convergence: (left) bulk field; (right)
normal gradient.
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Figure 3.13: Two-cylinders example: sensitivity of bulk- and gradient-error (left) with re-
spect to interface location (ipos); (center and right) with respect to stability parameter (α)
for various h-values as indicated in upper right figure.
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large oscillations. Moreover, as will be observed in the next example, the standard Lagrange
multiplier approach will fail whenever singularities in the gradient field are involved. The
convergence during h-refinement of the field Φ and the normal gradient field is shown in
Fig. 3.12. All methods show second and first order convergence of the field and the normal
gradient error respectively. The gradient approximation of the higher-order IB-DG method
and the Lagrange-multiplier are about one order of magnitude more accurate than the low-
order IB-DG method and X-FEM, but the rates are the same.

Sensitivity (interface location)

In a general application of the method, the elements can be intersected by the boundary
in any possible way. Thus we test over a certain range of configurations and report in our
convergence plots worst case scenarios as an upper bound on the error. To give a full picture,
Fig. 3.13(left) shows the error as we vary the cylinder center as pictured in Fig. 3.10(right
and bottom). We observe very little variation of the error, which has also been confirmed in
the examples that follow.

Sensitivity (α)

As indicated previously, one needs to select the stabilization parameter α. In order to pick α
for the IB-DG methods, we plot the field- and gradient-error in Fig. 3.13(center and right).
The optimum α depends on the mesh refinement h. In this and the upcoming examples,
we choose a minimum α such that optimum convergence during h-refinement was achieved
over the range of h-values examined. For any given discretization h, however, other choices
of α may give more accurate results in terms of the error constant. This manual procedure
ensures that we observe full rates of convergence. However, in a general setting one should
employ an automatic parameter selection scheme. We also note that the sensitivity with
respect to α is essentially independent of the degree of intersection as resulting from the
varying cylinder positions described in the previous paragraph [see Fig. 3.13(left)].

Rectangular Corner

For the second example we assume a rectangular body within a box, where the potential at
the boundary Γ is held at Φ0 = 300 and at the border of the box is set to zero (see Fig. 3.14).
We denote the length of the rectangular boundary as L and consequently the gap between
Γ and the outer box as g. When the gap-to-length ratio g/L << 1, we set the origin of a
Cartesian coordinate system (x, y) at the lower left corner of the outer box, and one can find
the analytical solution near this corner as pointed out in [93, p.21] via a conformal mapping
f : z̃ → z, with z, z̃ ∈ C. Here z = x+ iy represents the coordinate location in the physical
space, whereas z̃ = r̃ cos (ϕ̃) + ir̃ sin (ϕ̃) follows rays of corresponding potentials Φ = Φ0ϕ̃/π
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Figure 3.14: Rectangular-corner example: schematic, discretization and varying interface
location.

for any fixed angle ϕ̃ ∈ [0, π]. The mapping f is given by

f(z̃) =
2g

π



arctan

√

z̃ − 1

z̃ + 1
+

1

2
ln

1 +
√

z̃−1
z̃+1

1−
√

z̃−1
z̃+1



 , (3.35)

and we find the solution at z = (x, y) formally by taking the inverse z̃ = f−1(z). The normal
gradient then is

∇nΦ =
Φ0

g

√

z̃ − 1

z̃ + 1
. (3.36)

For the numerical example we consider ǫR = ǫV = 1, Φ0 = 300, and vary L to change
the interface location. The background mesh covers the domain [0, 1]2, and has been refined
from 25 × 25 to 200 × 200 elements; i.e. the element size h = 1/25, . . . , 1/200. Again,
for X-FEM via Lagrange multipliers, the corner surface discretization (Γh) is not arbitrary
and has been optimized to 8 to 64 linear elements per side (l/h ≈ 2.5). For the low-order
DG we choose α = 20, whereas for the higher-order DG we choose α = 1000, δ1 = 0.6,
δ2 = 1. Due to the presence of a singularity, in the higher-order IB-DG we use a geometric
enrichment around the singularity with rE = 0.04. We chose rE to sufficiently cover the
effective radius of the singularity as observed in the numerical examples. In lieu of (3.36)
we required that ∇nΦ < 1.15(Φ0/g) for all points outside the radius rE on the boundary Γ
[see also Fig. 3.15(d-f) as indicated by the dashed line, and Fig. 3.15(bottom)].

Looking at typical results in Fig. 3.15, we make similar observations as in the previous
example but even more distinct. The low-order X-FEM and IB-DG clearly fail to interpolate
the potential around the corner [Fig. 3.15(a,b)] and approximate the gradient very poorly
even for high refinements [Fig. 3.15(g,h)]. On the other hand, the higher-order IB-DG
approach shows excellent performance as seen in Fig. 3.15(c,i).

In order to perform a convergence study for h-refinement, at each refinement we vary
the ratio d/h ∈ [0, . . . , 1] as pictured in Fig. 3.14. Three cases are plotted for the higher-
order IB-DG in Fig. 3.15(d-f). As Γ comes closer to the element boundary, our method will



CHAPTER 3. IMMERSED BOUNDARY METHOD 32

 

 

x

y

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0

50

100

150

200

250

300

(a) Potential contour: XFEM
(h=1/25).
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(b) Potential contour: IB-DG
(low-order, h=1/25).
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(c) Potential contour: IB-DG
(higher-order, h=1/25).
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(d) Potential contour: IB-
DG (higher-order, h=1/50,
d/h=0.5).
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(e) Potential contour: IB-
DG (higher-order, h=1/50,
d/h=0.25).
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(f) Potential contour: IB-
DG (higher-order, h=1/50,
d/h=0).
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(g) Normal gradient: XFEM
(h=1/200).
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(h) Normal gradient: IB-DG
(low-order, h=1/200).
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(i) Normal gradient: IB-DG
(higher-order, h=1/200).

Figure 3.15: Corner example: (top) resulting potential contour, Γ-boundary and background
mesh; (bottom) normal gradient along Γ-boundary.
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Figure 3.16: Corner example, voltage loading, maximum L2-error convergence: (left) bulk
field; (right) normal gradient.

automatically extend the DG element region (red element boundaries) and merge neighboring
elements. The upper bounds on the error for the bulk- and gradient-fields are shown in
Fig. 3.16. The higher-order IB-DG method clearly outperforms the low-order approaches.
We observe second order convergence in the bulk field as well as the gradient field for the
higher-order IB-DG, whereas the low-order methods lock with respect to the surface gradient
error. Note especially that despite the previous example with a circular boundary, the
Lagrange multiplier is unable to deliver accurate results in this case. Moreover, any post-
processing will have difficulties to reconstruct the singular gradients around the corner from
a low-order bulk field interpolation.

Charge Loading

We next test the case where a total charge Q is imposed on a conductor. We take the
geometry from the rectangular boundary given in the previous example. From the analytical
approximation, we calculate

Q = −
∫

Γ

ǫV(∇Φ · n) da = −8ǫVΦ0/π

∫ −1

z̃0

z̃−1 da , (3.37)

where we find z̃0 = f−1(z0), with z0 = (0.5, g) and the mapping f as in (3.35). We tabulate
typical values for Q at Φ0 = 300 and various g in Table 3.1.

For the numerical test we use the same parameters as from the previous example, except
we now employ Q as a given load and solve consequently for Φh, Φ̄ via (3.17) in the X-
FEM context, or (3.29) and (3.30) for the IB-DG methods. We plot the convergence of
the potential and gradient field in Fig. 3.17, as well as for the relative error of the floating
potential Φ̄ in Fig. 3.18. We observe similar results as reported in the previous example.
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Figure 3.17: Corner example, charge loading, maximum L2-error convergence: (left) bulk
field; (right) normal gradient.
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Figure 3.18: Corner example, charge loading: convergence of floating potential Φ̄.

g 0.0900 0.0925 0.095 0.0975 0.1000

z̃0 −3.9505 · 106 −2.4648 · 106 −1.5766 · 106 −1.0318 · 106 −6.8970 · 105
Q −1.1604 · 104 −1.1243 · 104 −1.0902 · 104 −1.0578 · 104 −1.0270 · 104

Table 3.1: Charge loading example: Typical z̃0 and Q for various gaps g at Φ0 = 300.

Our high-order IB-DG outperforms the other methods especially with respect to the normal
gradient error.
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Figure 3.19: Dielectric-interface example: resulting potential contour IB-DG (higher-order,
h=1/100) for (left) ǫR = 106 and (right) ǫR = 3.

Dielectric Interface

In our last example we test the capability to calculate penetrating fields as well as a discon-
tinuous material permittivity across dielectric-dielectric interfaces. To this end we assume
a cylinder with radius R and permittivity ǫR placed in a uniform e-field of strength E0 in
the surrounding infinite space with permittivity ǫV . Using a polar coordinate system {r, ϕ}
with origin at the cylinder center, the analytical solution is given by

Φ =

{

− 2ǫV
ǫR+ǫV

E0r sinϕ , if r < R ,

−E0r sinϕ+ ǫR−ǫV
ǫR+ǫV

E0
R2

r
sinϕ , if r ≥ R ,

(3.38)

which features a constant electrical field in the interior of the cylinder. For the numerical
example we consider the radius R = 0.2, permittivity ǫV = 1, and e-field strength E0 = 1.
We test two different scenarios ǫR = 106 and ǫR = 3. The background mesh has been refined
from 25×25 to 200×200 elements. For the Lagrange multiplier space we use N = 15, . . . , 120
linear elements which corresponds to a ratio l/h ≈ 2.1 to maintain stability. For the low-
order IB-DG we choose α = 200, and α = 450 for the higher-order IB-DG. In addition we
use element extensions with δ1 = 0.6, δ2 = 1. No radius rE needs to be specified since no
singularities are present. In this example we impose fixed Dirichlet boundary conditions
along the boundary of the computational domain, as we have calculated from the analytical
solution.

A typical contour plot for the two different ǫR is shown in Fig. 3.19, which nicely shows the
constant e-field inside the cylinder. As can be expected, ǫR = 106 enforces a quasi-vanishing
electrical field inside the cylinder, whereas ǫR = 3 allows a penetrating field. Since for both
ǫR we made similar numerical observations, we will focus on ǫR = 3 in the following. We
draw attention to the detailed point-wise error maps in Fig. 3.20(a-c) around the boundary:
For X-FEM we have the large errors occurring near the boundary location, whereas for the
IB-DG methods the error concentrates near the element edges. This is expected, since for X-
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(a) Potential error: XFEM
(h=1/25).

(b) Potential error: IB-DG
(low-order, h=1/25).

(c) Potential error: IB-DG
(higher-order, h=1/25).
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Figure 3.20: Dielectric-interface example: (top) detailed potential error |Φh−Φ|, Γ-boundary
and background mesh with control-points; (bottom) normal gradient along Γ-boundary.

FEM one enforces continuity along Γ in a weak sense, whereas for the IB-DG based methods
continuity along Γ is enforced in a strong sense, and continuity along element boundaries of
the intersected elements is enforced in a weak sense. When looking at the normal gradients in
Fig. 3.20(d-e), we observe a smooth approximation via the Lagrange multiplier and higher-
order IB-DG, whereas the direct evaluation via X-FEM and low-order IB-DG show some
error spikes and more jittery behavior. This is reflected in the convergence plots in Fig. 3.21,
where the error constants for X-FEM with Lagrange multipliers and high-order IB-DG are
smaller. Nevertheless all methods show the same order of convergence for this example.
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Figure 3.21: Dielectric-interface example, maximum L2-error convergence: (left) bulk field;
(right) normal gradient.
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Chapter 4

Eulerian-Lagrangian Finite Element
Method

In this chapter, we present a new implementation to solve the coupled electro-mechanical
problem by a mixed Eulerian-Lagrangian finite element method with embedded boundary
conditions. Particular focus is put on the accurate representation of the Maxwell surface trac-
tion in the presence of singularities in the electrical field, and changes in topology when two
bodies come into contact. We use a Lagrangian finite element method to track the mechanical
motion, and a fixed Eulerian method to solve for the electrical field. Any nonlinear bound-
ary features or singularities in the electrical field are captured by the high-order immersed
boundary method as developed in the previous chapter. Traditional Lagrangian-Lagrangian
or arbitrary Lagrangian-Eulerian (ALE) methods encounter deficiencies, for example, when
dealing with mesh distortion due to large deformations, or topology changes due to contact-
ing bodies. The presented Eulerian-Lagrangian approach addresses these issues in a natural
way. We develop an implicit scheme based on the mid-point rule, as well as an explicit
scheme based on the centered-difference method, with the incorporation of energy conserv-
ing, frictionless contact algorithms for an elastic-to-rigid-surface contact. The performance
of the proposed method is assessed for several benchmark tests: the electro-static force vector
around a singular corner, the quasi-static pull-in of an electro-mechanically actuated switch,
the excitation of a carbon nanotube at resonance, and the cyclic impact simulation of a
micro-electro-mechanical resonant-switch. We report improved accuracy for the high-order
method as compared to low-order methods, and linear convergence in the iterative solution
of the staggered scheme.

The outline of the chapter is as follows: In Section 4.1 and 4.2 we state the weak form
of the mechanical and electrical problem. In Section 4.3 and 4.4, the Maxwell traction and
mechanical contact treatment are discussed, before the algorithmic solution in Section 4.5
and numerical benchmark examples in the following sections are presented.
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Figure 4.1: Discretization in space: (left) Eulerian finite element mesh with immersed bound-
ary for the electrical field; (right) Lagrangian finite element mesh for the mechanical motion.

4.1 Mechanical Boundary Value Problem

In order to derive the weak form for the mechanical balance law, by (2.7) and (2.9), we
note that for the Cauchy stress along the Neumann boundary, Γt: T

−n = t̄a +T+
Mn, where

t̄a = σ
+n is the applied (mechanical) traction due to external forces, and T+

Mn the boundary
traction due to external electrical fields. Here, the superscripts (.)− and (.)+ indicate the
limit as we approach the boundary Γ from inside R, or from outside R respectively. From
(2.2) we derive the mechanical weak form: Given initial conditions u(t0) = u0, u̇(t0) = u̇0

at t = t0, find u ∈ Us, such that
∫

R

δu · ρü dv +

∫

R

∇δu ·T dv =

∫

R

δu · ρb̄ dv +

∫

Γt

δu ·
(

t̄a +T+
Mn

)

da , (4.1)

for all admissible variations δu ∈ Uv at any t > t0, together with given data u = ū on the
Dirichlet boundary Γu. Here, the spaces Us and Uv are suitable subspaces of H1.

Upon a Lagrangian discretization in space [see Fig. 4.1(right)], we get the semi-discrete
variational form of the mechanical problem: Find uh ∈ Uhs , such that

∫

R

δuh · ρüh dv +

∫

R

∇δuh ·Th dv =

∫

R

δuh · ρb̄ dv +

∫

Γt

δuh ·
(

t̄a +T+
Mn

)

da , (4.2)

for all (admissible) variations δuh ∈ Uhv at any t > t0. Let us denote uh =
∑

iNiui,
u̇h =

∑

iNiu̇i, üh =
∑

iNiüi with Ni ∈ Uh and the expansion coefficients U = [ui],

U̇ = [u̇i], Ü = [üi]. Using a Galerkin discretization, we can bring (4.2) into the algebraic
form: Given U0, U̇0, find U such that

MÜ+Rdiv = Fext , (4.3)

for all time instants t > t0, where M is the mass matrix, Rdiv the stress-divergence term of
the mechanical linear momentum balance, and Fext the mechanical traction due to external
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forces. We encounter two types of electrical forces on the continuum: A body force due to
internal fields, and a surface traction due to the external electrical field. As mentioned earlier,
the total Cauchy-stress T can be split into a purely mechanical part Tm and an electrical
part Te given by (2.31), and (2.32) respectively. Consequently we apply an additive split to
Rdiv = Rdiv,m +Rdiv,e, where

Rdiv,m ←
∫

R

∇δuh ·Tm dv , (4.4)

Rdiv,e ←
∫

R

∇δuh ·Te dv , (4.5)

with Rdiv,m being the classical, purely mechanical stress-divergence term, and Rdiv,e the
contribution of electrical body forces. In the following we will assume that Fext is split into

Fext = Fcontact + Fdis + F+
M , (4.6)

viz., the surface traction Fcontact due to mechanical contact, the dissipative force Fdis for
example due to friction or absorbing boundary conditions, and the surface traction F+

M due
to external electrical fields.

4.2 Review: Electrical Boundary Value Problem

In this section, the electro-static problem as discussed in Chapter 3 is briefly reviewed. For
a linear dielectric material, we have to find Φh

R,Φ
h
V ∈ Ph, such that

∫

R

ǫR∇δΦh
R · ∇Φh

R dv +

∫

V

ǫV∇δΦh
V · ∇Φh

V dv = −
∫

ΓBE

qVδΦ
h
V da , (4.7)

for all δΦh
R, δΦ

h
V ∈ Ph along with the requirement Φh

V = Φh
R = Φ̄(s) on Γh (for Case 1 and

2 ), and Φh
V = Φh

R on Γh (for Case 3 ). Note that in the context of X-FEM we enforced the
last requirements in a weak sense via Lagrange-multiplier. As demonstrated for Φh

V = Φ̄ on
Γh, this resulted in: Find (Φh

V , λ
h) ∈ Ph × Lh, such that (4.7) holds, and such that

ΠLM(Φh
V , λ

h) =

∫

Γ

λh
(

Φh
V − Φ̄

)

da (4.8)

will be rendered stationary. For the charge loading case for a given charge Q on a conductor,
we modify (4.8) to: Find (Φh

V , λ
h, Φ̄) ∈ Ph × Lh × R, such that (4.7) holds, and such that

ΠLM(Φh
V , λ

h, Φ̄) =

∫

Γ

λh
(

Φh
V − Φ̄

)

da +QΦ̄ (4.9)

becomes stationary.
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In the case of the immersed boundary DG method, we required:

ΠDG(Φ
h) =

∑

e

{
∫

Γe

〈qh〉[[Φh]]da− α

he

∫

Γe

[[Φh]]2da

}

→ stat. (4.10)

where we can enforce Dirichlet type boundary conditions Φh = Φ̄ along Γ̄ strongly. In the
charge loading case, recall the problem: Find [Φj, Φ̄] such that

∑

j 6∈J

KijΦj +
∑

j∈J0

KijΦ̄ = qi , ∀i 6∈ J , (4.11)

∑

i∈J0

∑

j 6∈J

KijΦj +
∑

i∈J0

∑

j∈J0

KijΦ̄ = Q , (4.12)

for any given equivalent nodal fluxes qi and total charge Q, where Kij are the coefficients of
the electrical stiffness.

For future reference, we summarize the electro-static problem into an algebraic form.
First we write λh =

∑

k Lkλk with Lk ∈ Lh and expansion coefficients [λk]. Then the
problem can be cast as: Find Φ, such that

K(U)Φ = Q(U) , (4.13)

where K is the assembly of the electro-static stiffness, Φ is the electrical solution vector, and
Q the equivalent flux vector, which depends on the method of choice as well as the loading
case: For X-FEM with a prescribed potential Φ̄ we have Φ = [Φj , λk] and K, Q as derived
from (4.7) and (4.8). For X-FEM with a conductor and a prescribed total charge Q we have
the solution vector Φ = [Φj, λk, Φ̄] and K, Q as derived from (4.7) and (3.17). For the IBDG
method and a prescribed potential Φ̄ we have Φ = [Φj ] and K, Q as derived from (4.7) and
(4.10). When we know the total charge on a conductor, this results in Φ = [Φj , Φ̄] and K,
Q in accordance with (4.11) and (4.12).

4.3 Maxwell Boundary Traction

The mechanical boundary traction F+
M , which arises due to the external electrical field, is

given by

F+
M ←

∫

Γt

δuh ·T+
Mn da , (4.14)

where we approximate

T+
Mn ≈ ǫ0

[

(

∇Φh · n
)

∇Φh − 1

2
||∇Φh||2n

]

(4.15)

along the boundary Γt. This function is non-linear in the gradient of Φh and moreover it
has to be evaluated at the embedded boundary location, which randomly may intersect the
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Eulerian grid. In standard low-order X-FEM or IBDG methods, it has been shown that the
gradient accuracy on the boundary can be bad and largely oscillating. These inaccuracies
will cause issues to the global convergence. One method to overcome this issue is by a
post-processing technique, that essentially smoothes the gradients (see e.g. [61]). However,
this will add computational cost and difficulties may arise when two interfaces come close,
contact, or singularities are involved. In contrast, the high-order IBDG method will enable a
much more accurate representation of the gradient for smooth and non-smooth boundaries,
where for example a re-entrant corner requires the incorporation of singular gradients. Note
that alternatively, whenever the boundary is smooth and no singularities are present, one
may use a low-order X-FEM method with Lagrange multipliers and interpret the Lagrange
multiplier as normal flux on the boundary

λh = −ǫV(∇Φh
V · nV) . (4.16)

We split the gradient along the boundary into a normal and tangential part

∇Φh = (∇nΦ
h)n+ (∇tΦ

h)t , (4.17)

with normal component ∇nΦ
h = ∇Φh ·n and tangential component ∇tΦ

h = ∇Φh · t. Then,
when ǫV = ǫ0, we approximate

T+
Mn ≈ 1

2ǫ0
(λh)2n− λh(∇tΦ

h)t− 1

2
ǫ0(∇tΦ

h)2n . (4.18)

This approach requires careful consideration, since no singularities must be present, as well
as the Lagrange multiplier space must be chosen to satisfy the inf-sup condition as discussed
in Chapter 3.

4.4 Mechanical Contact

In this study we only consider frictionless contact, and a node-to-rigid-surface contact driver.
The mechanical contact force is due to a (nominal) contact pressure p ≥ 0,

Fcontact ←
∫

Γc

δuh · pn da , (4.19)

which is active along the contacting surface Γc with outward normal n. The pressure p
accounts for the unilateral constraint

g(U) ≥ 0 , (4.20)

where g(U) is the gap function between the continuum bodies. This problem can be refer-
enced as

p ≥ 0, g ≥ 0, pg = 0 , (4.21)
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in accordance with the Kuhn-Tucker conditions (e.g. [94]). During persistent contact, in
addition one typically requires

pġ = 0 , (4.22)

the persistency condition. The algorithmic enforcement of (4.21) and (4.22) simultaneously
becomes non-trivial while preserving energy and momentum of the deformable bodies in-
volved. For the various computational treatments of this issue we refer to [95, 96, 97, 98,
99, 100], and the more recent studies in [5, 101, 102] or references therein. Here, we consider
two algorithms for an explicit, as well as implicit time integration.

4.5 Algorithmic Solution

Let us define

R(U,Φ) = Rdiv,m(U) +Rdiv,e(U,Φ)− F+
M(U,Φ)− Fcontact(U) . (4.23)

We account for any dissipative effects by a linear model and a damping matrix D, such that
we can bring (4.3), (4.13) into the form: Given U0, U̇0, find (U,Φ) such that

MÜ+DU̇+R(U,Φ) = 0 , (4.24)

K(U)Φ = Q(U) , (4.25)

for all time instants t > t0. This states the coupled non-linear semi-discrete system. We will
look at the quasi-static solution, as well as the dynamical case, where we test an implicit
method (mid-point rule), as well as an explicit method (centered-difference scheme) in order
to integrate equations (4.24) and (4.25) in time.

Quasi-static Case

For the quasi-static case, the problem reduces to: Find (U,Φ) such that

R(U,Φ) = 0 , (4.26)

K(U)Φ = Q(U) . (4.27)

One can either solve each equation separately and advance the solution in a staggered scheme,
or one calculates the full tangent and solves the coupled system via a monolithic scheme.
Even though the latter may be necessary to obtain improved convergence for strongly coupled
problems, in this work we follow the staggered scheme for ease of implementation. Employing
a staggered solution via a standard Newton-Raphson scheme, the quasi-static coupled non-
linear system can be solved as outlined in Alg. 4.1. Note that in this form, the electrical field
is solved in every iteration step (Alg. 4.1.2) with a fixed boundary position, and subsequently
the electrical force drives the mechanical motion until convergence is achieved.
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Staggered Scheme, Quasi-static

LOOP j

1. Given Uj, assemble K(Uj) and Q(Uj) as in (4.27).

2. Calculate Φj via
K(Uj)Φj = Q(Uj) .

3. Assemble R(Uj,Φj), [∂R/∂U] (Uj,Φj) as in (4.26).

4. Calculate ∆Uj by solving the linear system
[∂R/∂U] (Uj ,Φj)∆Uj = −R(Uj,Φj) .

5. Update
Uj+1 = Uj +∆Uj .

6. Check convergence:
IF ||R ·∆Uj||2 < TOL

EXIT
ELSE

Set j ← j + 1 and GO TO 1.
ENDIF

END LOOP j

Algorithm 4.1: Staggered scheme for the quasi-static electro-mechanical BVP.

Implicit Case

For the dynamical implicit solution we employ the mid-point rule. Let Un ≡ U(tn), U̇n ≡
U̇(tn), Ün ≡ Ü(tn), Φn ≡ Φ(tn) at t = tn. Then for one step (tn, tn+1] we require: Given
Un, U̇n, and ∆tn, find Un+1, U̇n+1 such that

MÜn+1/2 +DU̇n+1/2 +R(Un+1/2,Φn+1/2) = 0 , (4.28)

K(Un+1/2)Φn+1/2 = Q(Un+1/2) , (4.29)
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where

Un+1/2 = (Un+1 +Un)/2 , (4.30)

U̇n+1/2 = (U̇n+1 + U̇n)/2 , (4.31)

U̇n+1/2 = (Un+1 −Un)/∆tn , (4.32)

Ün+1/2 = (U̇n+1 − U̇n)/∆tn . (4.33)

This method is second-order accurate and unconditionally stable for linear systems. In order
to ensure (4.21) and (4.22), we use a penalty method, with the penalty potential

U(g) =

{

1
2
κpg

2 , if g ≤ 0 ,

0 , otherwise ,
(4.34)

featuring the penalty parameter κp, such that the contact pressure becomes p = −U ′(g)
whenever there is some penetration. Following [99], we advocate an energy conserving
scheme, where the contact pressure pn+1/2 at t = tn+1/2 is calculated by

pn+1/2 =

{

−U(gn+1)−U(gn)
gn+1−gn

, if gn+1 6= gn ,

−U ′
(

1
2
(gn + gn+1)

)

, otherwise .
(4.35)

As shown in [99], the form of contact pressure as in (4.35) preserves the energy upon contact
release. The method does feature a penalty parameter κp, which has to be chosen by the
user (see App. B for more details of the dynamical contact treatment). As sketched in
Alg. 4.2, at each time-step one has to solve the fully coupled nonlinear problem by an
iterative method. To this end, we use a staggered scheme as in Alg. 4.1 for the quasi-static
case, and a mass lumping procedure following [103, p.704]. In this setting, for each time-step
and each iteration of the Newton-Raphson method, one first calculates the electrical field for
a fixed mechanical configuration as in Alg. 4.2.3. Subsequently the resulting electrical forces
are updated in this configuration (Alg. 4.2.4), that drive the mechanical displacement.

Explicit Case

For the dynamical (explicit) solution we investigate the centered-difference scheme (e.g. [104,
p.490]): Given Un, U̇n, Ün and ∆tn, for one step (tn, tn+1] we require:

MÜn+1 +DU̇n+1 +R(Un+1,Φn+1) = 0 , (4.36)

K(Un+1)Φn+1 = Q(Un+1) , (4.37)

and

Un+1 = Un +∆tnU̇n + (∆t2n/2)
[

(1− 2β)Ün + 2βÜn+1

]

, (4.38)

U̇n+1 = U̇n +∆tn

[

(1− γ)Ün + γÜn+1

]

, (4.39)



CHAPTER 4. EULERIAN-LAGRANGIAN FINITE ELEMENT METHOD 46

Transient Solution (implicit)

LOOP n

1. Given Un, U̇n, ∆tn. Set U
0
n+1 = Un.

LOOP i

2. Calculate Un+1/2 = (Un +Ui
n+1)/2.

3. Assemble K(Un+1/2) and Q(Un+1/2) as in (4.25), and calculate Φn+1/2 via
K(Un+1/2)Φn+1/2 = Q(Un+1/2) .

4. Assemble M, D, R(Un+1/2,Φn+1/2) as in (4.24), and calculate

R̃ = [(2/∆t2n)M+ (1/∆tn)D]
(

Ui
n+1 −Un

)

− . . .

(2/∆tn)MU̇n +R(Un+1/2,Φn+1/2) .

5. Calculate ∆Ui
n+1 by solving

[

∂R̃/∂Ui
n+1

]

∆Ui
n+1 = −R̃ .

6. Update displacement
Ui+1
n+1 = Ui

n+1 +∆Ui
n+1 .

7. Check convergence:

IF ||R̃ ·∆Ui
n+1||2 < TOL

Set Un+1 = Ui+1
n+1 and GO TO 8.

ELSE
Set i← i+ 1 and GO TO 2.

ENDIF

END LOOP i

8. Update velocity

U̇n+1 = (2/∆tn) [Un+1 −Un]− U̇n .

9. Set n← n+ 1 and GO TO 1.

END LOOP n

Algorithm 4.2: Staggered scheme for the dynamic (implicit) electro-mechanical impact
simulation.
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Transient Solution (explicit)

LOOP n

1. Given Un, U̇n, Ün, ∆tn. Calculate predictor

U−
n+1 = Un +∆tnU̇n + (∆t2n/2) Ün .

2. Check for penetration and update U−
n+1 → Un+1 by closest-point projection,

such that the gap gA = 0 for all contacting nodes (B.1).

3. Assemble K(Un+1) and Q(Un+1) as in (4.25).

4. Calculate Φn+1 via
K(Un+1)Φn+1 = Q(Un+1) .

5. Assemble M, D, R(Un+1,Φn+1) as in (4.24).

6. Calculate Ün+1 by solving

[M+ γ∆tnD] Ün+1 = −R(Un+1,Φn+1)−D
[

U̇n + (1− γ)∆tnÜn

]

.

7. Calculate predictor

U̇−
n+1 = U̇n +∆tn

[

(1− γ)Ün + γÜn+1

]

.

8. Update U̇−
n+1 → U̇n+1, such that the gap rate ġA = 0 for all contacting nodes (B.3).

9. Set n← n+ 1 and GO TO 1.

END LOOP n

Algorithm 4.3: Predictor-corrector scheme for the dynamic (explicit) electro-mechanical
impact simulation.
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where β = 0, γ = 0.5. This scheme is second-order accurate and conditionally stable. One
requires a sufficient small time-step, such that the Courant condition is satisfied. Following
[105], one typically chooses

∆tn = δ
h

vp
, (4.40)

with the element size h of the smallest element, and the p-wave speed vp can be estimated

for a linear elastic material by vp =
√

2µ/ρ+ λ/ρ, where λ and µ are the first and second
Lamé-parameters. The empirical factor δ typically ranges 0.2 < δ < 0.9. In order to ensure
(4.21) and (4.22) in the explicit setting, we employ a similar approach to a recent method
by [5], where the equations of motion are integrated in time with a predictor-corrector-
type algorithm (see Alg. 4.3 and App. B). Since the scheme is explicit, we can solve the
electrical and mechanical problem independently and only encounter linear equations. Thus
the explicit method is computationally more efficient in comparison to the implicit method
when the time-steps are comparable. Note however, that the stability requirement (4.40)
must be satisfied, which imposes a restriction on the method and may require much smaller
time-steps as compared to the implicit method.

We will now assess the performance of the described method by four benchmark examples:
The Maxwell-traction in the presence of a corner, the quasi-static pull-in of an electro-
mechanically actuated switch, the vibration of a carbon nanotube, and the cyclic impact
simulation of an electro-mechanically actuated resonant-switch.

4.6 Electro-static Force Vector in the Presence of a

Singularity

In order to evaluate the accuracy of the electro-static force vector, we employ the reentrant
corner example from Section 3.5, where a singularity in the gradient of the electrical potential
occurs. Here, we monitor the equivalent boundary force vector. The equivalent force vector
of interest F+

M = [fM,i] as stated in (4.14) is assembled from

fM,i =

∫

Γt

δuhi ·T+
Mn da , (4.41)

at each node labeled ‘i’. We refer to fM,i as the nodal force resulting from the analytical
solution T+

M , whereas fhM,i refers to the numerical approximation of the Maxwell traction as
assembled from (4.15) or (4.18). We introduce the L2-error norm

ε(F+
M) =

√

∑

i

||fhM,i − fM,i||2
/

√

∑

i

||fM,i||2 (4.42)

to measure the relative nodal force error. As described in Section 3.5, the potential at the
boundary Γ is held at Φ0 = 300 and is set to zero at the border of the box. We denote the
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Figure 4.2: Corner example: resulting finite element force vector, Γ-boundary, and back-
ground mesh.

gap between Γ and the outer box as g. With the origin of a Cartesian coordinate system
(x, y) at the lower left corner of the outer box, one can find the analytical solution near this
corner by a conformal mapping f : z̃ → z, with z, z̃ ∈ C. Here z = x + iy represents the
coordinate location in the physical space, whereas z̃ = r̃ cos (ϕ̃) + ir̃ sin (ϕ̃) follows rays of
corresponding potentials Φ = Φ0ϕ̃/π for any fixed angle ϕ̃ ∈ [0, π]. The mapping f is given
by

f(z̃) =
2g

π



arctan

√

z̃ − 1

z̃ + 1
+

1

2
ln

1 +
√

z̃−1
z̃+1

1−
√

z̃−1
z̃+1



 , (4.43)

and we find the solution at z = (x, y) formally by taking the inverse z̃ = f−1(z). The normal
gradient then is

∇nΦ =
Φ0

g

√

z̃ − 1

z̃ + 1
, (4.44)

from which we evaluate the Maxwell traction T+
Mn along the boundary Γ.

Note that in order to evaluate expression (4.41), one has to integrate a singular function
around the corner due to the singularity in the normal gradient at the corner [see Eq. (3.22)].
For simplicity of notation, let us assume such a function of the form

∫ r0

0

rπ/β−1g(r) dr , (4.45)

where the singularity for β > π is at r = 0, and g(r) is a smooth function. In order to obtain
accurate results during the Gauss-Legendre integration, we are using a change in variables
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r̃ = rπ/β, such that (4.45) becomes

∫ r0

0

rπ/β−1g(r) dr =
β

π

∫ r
π/β
0

0

g(r(r̃)) dr̃ , (4.46)

which we can now evaluate by a standard Gauss-Legendre quadrature rule.
For the numerical example we consider ǫR = ǫV = 1, Φ0 = 300, and vary g to test

several interface locations. The background mesh covers the domain [0, 1]2, and has been
refined from 25 × 25 to 200 × 200 elements; i.e. the element size h = 1/25, . . . , 1/200.
For X-FEM via Lagrange multipliers, the corner surface discretization (Γh) is not arbitrary
and has been optimized to 8 to 64 linear elements per side (l/h ≈ 2.5). For the low-
order DG we choose α = 20, whereas for the higher-order DG we choose α = 1000. In
Fig. 4.2(a,b) we plot a typical result for the low-order methods. Even at the lowest refinement
(h = 1/200), the use of X-FEM with a direct gradient evaluation according to (4.15) results
in ε(F+

M) > 20%, and for the low-order IB-DG we obtain ε(F+
M) > 40%. Using the alternative

form (4.18) for X-FEM and piece-wise linear Lagrange multipliers, the error is improved to
ε(F+

M) < 10%. This result though is a best case scenario, as we optimized the space Lh.
A coarse background mesh, or changing interface locations result in a force-vector variation
that can lead to incomplete convergence during the non-linear coupled electro-mechanical
solution as observed in the following example. By employing the high-order IB-DG, a much
higher accuracy in the nodal force along the Γ-boundary in Fig. 4.2(c) is observed, where
the force error even at the coarse refinement (h = 1/25) is ε(F+

M) < 1%. Note the additional
benefit that with IB-DG there is no restriction on the Γh-discretization. In particular, a Lh
discretization as pictured in Fig. 4.2(c) using piece-wise linear Lagrange multipliers and a
bi-linear potential interpolation would fail, since the inf-sup condition would be violated.

4.7 Electro-static Pull-in

Next we address the coupled solution of an electro-mechanical pull-in example as sketched
in Fig. 4.3. We assume a non-linear Neo-Hookean material, which is surrounded by an ideal,
infinitely thin conductor with the same material properties. Since no field can penetrate the
material, the stored energy for the material as given by (2.40) reduces to

ψ(C) =
µ

2
(I1 − 3)− µ ln J +

Λ

2
(ln J)2 , (4.47)

where I1 = trC, J = detF, and the Lamé parameters Λ = Eν/[(1 + ν)(1 − 2ν)], µ =
E/[2(1 + ν)] in terms of the Young’s modulus E and Poisson ratio ν. The Cauchy stress
then reads

T = ρ0J
−1(Λ ln J − µ)I+ ρ0µJ

−1B , (4.48)

with mass density ρ0 and B = FFT as derived in Section 2.3. The material is clamped on
top, and an increasing voltage on the conductor will pull the material down towards the
grounded electrode which is surrounded by a rigid dielectric.



CHAPTER 4. EULERIAN-LAGRANGIAN FINITE ELEMENT METHOD 51

Condu
ting

Surfa
e, Q

Rigid Diele
tri
, ǫr

Non-linear Neo-Hookean, E, ν

Grounded Ele
trode

x

y

Qbottom

utip

L

g0
δa

d

Figure 4.3: Pull-in example: schematic.

By considering a plane strain two-dimensional problem, one can derive an approximate
solution

µ
(

λy − λ−3
y

)

=
σ2
f

2ǫ0
, (4.49)

where λy is the stretch in the y-direction and σf is a uniform charge density applied at the
bottom edge. The material is assumed to be incompressible, no fringing fields are added,
and the side-edge forces are neglected. We calculate the tip displacement as

utip = (λy − 1)L , (4.50)

and for each surface charge density the corresponding voltage on the conductor

Φ̄ =
d+ ǫrδa
ǫ0ǫr

σf , (4.51)

with δa = (g0− d− utip) being the air-gap between dielectric and conductor, d the dielectric
thickness above the electrode, and g0 the initial distance between electrode and conducting
bottom edge at zero load (see Fig. 4.3).

As becomes clear from the analytical approximation, it is advantageous to consider the
charge loading case, since a unique solution for the tip displacement can be found at each
load σf in (4.49), (4.50), and subsequently one solves for the voltage via (4.51). A direct
solution for a given Φ̄ features a non-unique tip displacement, which is a well-known effect
as discussed for example in [106, p. 134]: once the voltage reaches a critical value there is
an unstable equilibrium point, beyond which any device is pulled-in towards the electrode.
In our example, one can estimate this point at

uPItip =
1

3ǫr
[d+ ǫr(g0 − d)] , (4.52)
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Figure 4.4: Pull-in example: (top) mechanical mesh, electro-static force vector and electrical
potential contour; (bottom) detailed mechanical (bold) mesh and electrical (fine) mesh with
electro-static force vector and electrical potential contour at various load-steps.

Q [C]: 3.0 5.0 6.5 7.5 8.0 8.5 8.9 11.0 13.0
Qbottom [C]: 1.93 3.29 4.40 5.24 5.77 6.38 6.92 8.61 10.17
Φ̄ [kV]: 2.11 3.37 4.07 4.27 4.14 3.73 3.46 4.28 5.05

Table 4.1: Pull-in example: charge load parameters and floating potential Φ̄.

which reduces to

uPItip =
1

3
g0 , (4.53)

if ǫr = 1, which is consistent to what is found in [106, p. 135].
For the numerical example we assume a rubber-like material (E = 20 MPa, ν = 0.45)

with length L = 50 µm and width 80 µm. Moreover we assume g0 = 10 µm, d = 4 µm, and
ǫr = 1. The finite element model uses 128 quadrilateral elements for the mechanical body
R featuring a bi-linear interpolation, and 50 × 50 quadrilateral elements for the electrical
potential field interpolation in combination with the high-order IB-DG method. We increase
the total charge on the conducting surface until the material is stretched down to contact
with the dielectric substrate. The corresponding charge accumulation on the bottom-edge
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Figure 4.6: Pull-in example: (left) typical convergence curves of global Newton algorithm
when using the high-order IB-DG at small load (Q = 3 C), close to stability point (Q = 7.5 C)
and during contact (Q = 13 C); (right) convergence issues of low-order immersed boundary
method.
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Qbottom (see Fig. 4.3), as well as the floating potential Φ̄ are summarized in Table 4.1. 1 As
a penalty parameter we use κp = 103, which we found to be sufficient to insure less than
10 nm penetration. Our solution follows Alg. 4.1 for the quasi-static case. In this example
no electrical field will be inside the upper block, and thus only the force due to the outer
field as arising from the Maxwell-traction must be considered. We compute this force by the
high-order immersed boundary method as illustrated in the previous example.

By looking at typical results in Fig. 4.4, we observe how the high-order IB-DG nicely
interpolates the potential around the corner, and handles the boundary motion well across
several elements until contact. This is a major advantage of the immersed boundary method:
since no elements distort or collapse, one can handle large boundary motions and topological
changes without any remeshing. Note that this simulation will fail with most classical electro-
mechanical solution techniques such as ALE methods, since the closing of the air gap will
result in highly distorted elements, or collapsing elements respectively.

In Fig. 4.6(left) we plot typical convergence plots for various loading cases at small load,
close to the stability point and during contact. At low loads, convergence by twelve orders of
magnitude during four to five Newton steps is achieved. At higher loads, we observe slower
(linear) convergence, which is due to the stronger electro-mechanical coupling. 2

The use of a higher-order immersed boundary method as opposed to low-order methods
becomes essential in this problem, since only the accurate resolution of the singular gradient
at the corner will deliver any physically meaningful results. Moreover, inaccuracies in the
gradient calculation and the resulting oscillation of the boundary traction as the boundary
moves across several elements can result in numerical issues to obtain convergence during
the Newton-Raphson solution procedure [Fig. 4.6(right)]. As observed in Fig. 4.6(right), the
convergence may be slower or completely fail (e.g. Q = 13 C).

4.8 Nanotube Vibration

Our next example deals with a carbon nanotube that is excited by an external electrical field.
Carbon nanotubes possess very unique and promising characteristics for use as NEMS res-
onators [13, 14, 15, 4, 16]. In this study we suppose that the carbon nanotube is a conductor.
After certain corrections when extracting material properties, the use of continuum mechan-
ics is still justified for such systems [17], and various mechanical models exist [107, 108].
We focus here on the efficient computational treatment of a cyclic motion. In particular,
we will look at the excitation of the first three eigen-modes of a nanotube as sketched in

1 By applying a charge load one can easily simulate the full pull-in up to and including the contacting
stage. See Section 3.3, 3.4 and 4.2 for the treatment of the electro-static BVP in the case of charge loading.
In this case, one obtains the floating potential Φ̄ as solution unknown, which is plotted Fig. 4.5(right). If in
contrast one wishes to solve the solution for a given potential load directly, continuation methods such as
the arc-length method must be employed in order to pass the limit point.

2 Note that in Alg. 4.1 we utilize a staggered scheme by an electro-mechanical operator split; a monolithic
scheme that accounts for the full tangent of coupling terms in the nonlinear solution iteration will improve
the convergence rates whenever strong electro-mechanical coupling occurs.
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Fig. 4.7. In this study we consider a nanotube with a sharp corner. While carbon nanotubes
may be closed smoothly at the tip, the cut-nanotube imposes a greater challenge on the
computational treatment due the arising singularity in the electrical field at the corner (see
Section 5.4).

As sketched in Fig. 4.7, we assume that the nanotube is mechanically clamped and elec-
trically grounded. A separate input voltage Vi at an external electrode creates a capacitive
force across the gap, such that the nanotube will vibrate in the corresponding resonance
mode. The input voltage is given by

Vi(t) = VDC + VAC sinωit , (4.54)

with the constant part VDC, the alternating amplitude VAC, and frequencies ωi, i = 1, 2, 3.
We find ωi by the eigen-analysis as presented in Section 5.1. For the numerical example
we consider the nanotube length of 80 nm and a diameter of 8 nm. The initial gap to
the electrode is 46 nm, and we assume a nonlinear Neo-Hookean material as in (2.41) with
E = 1 TPa, ν = 0.31, ρ = 1 g/cm3. The resulting eigen-frequencies are summarized in
Tab. 4.2 in accordance with an ultra-high frequency resonator [18]. We assume a mass-
proportional damping D = αMM, with αM ∈ {5 · 109 s−1, 10 · 109 s−1}. Then, the damping
ratios are given by ξi = αM/(2ωi) as tabulated in Tab. 4.2 for Modes 1-3.

Note in this study we limit ourselves to a 20 × 2 finite element grid for the mechanical
motion in order to calculate the transient response, which already sets a limit of > 1443 time-
steps per cycle according to (4.40) for the fundamental mode in the explicit case. One would
need to consider a mesh refinement, and/or the use of enhanced elements or incompatible
modes in order to gain more accurate results in such a bending dominated problem. Such
methods are well established, and we refer to [109] for a brief historical account and references
therein. The implicit method is more efficient in this example for the simulation of the lower
modes since it is unconditionally stable, and larger time-steps may be used as long as accuracy
is preserved. For the higher modes, the requirement (4.40) imposes less restriction on the
stability region, and the explicit method will be more efficient in comparison to the mid-point
rule as we observed higher accuracy for similar time-step sizes (see Table 4.2 for the different
time-steps per cycle 2π/(ωi∆tn) used in the explicit integration). For the electrical field we
use a 25×25 Eulerian finite element grid, in combination with the high-order IB-DG method
to accurately evaluate the singularity of the boundary traction around the nanotube corner.

Since in our case we employ mass-proportional damping, the damping ξi becomes smaller
for a fixed αM at higher modes. Thus, the number of cycles to overcome the transient phase
to a steady state is relatively higher at higher modes. In this work we assume that a steady
state is reached when the residual (5.18) will decay by six orders of magnitude after releasing
the system from zero initial conditions. The corresponding number of cycles N to overcome
the transient phase are tabulated in Tab. 4.2: N1 = 40 cycles for Mode 1, N2 = 238 cycles
for Mode 2, and N3 = 621 cycles for Mode 3 at αM = 5 · 109 s−1; N1 = 20 cycles for Mode
1, N2 = 119 cycles for Mode 2, and N3 = 310 cycles for Mode 3 at αM = 10 · 109 s−1. Please
refer to Section 5.4 and 5.6 for a more careful discussion of the steady state notion.
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Mode 1 (f1 = 7.2 GHz) Mode 2 (f2 = 42.6 GHz) Mode 3 (f3 = 111.2 GHz)

Vi Vi Vi

Figure 4.7: Nanotube vibration schematic.

ωi/2π[GHz] 2π/(ωi∆tn) ξi,1 N1 ξi,2 N2

Mode 1: 7.2 1444 1.1 · 10−1 20 5.6 · 10−2 40
Mode 2: 42.6 244 1.9 · 10−2 119 9.4 · 10−3 238
Mode 3: 111.2 96 7.2 · 10−3 310 3.6 · 10−3 621

Table 4.2: Nanotube vibration example: eigenfrequencies, explicit time-step size and number
of cycles N to reach steady state during the transient solution for Mode 1-3 at various
damping ratios ξ.
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Figure 4.8: Nanotube vibration, Mode 1: deformed mechanical (bold) mesh, electrical (fine)
mesh, contour of electrical potential, and Maxwell boundary traction at VDC = 60 V and
VAC = 40 V for various time instants.
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When we release the system from zero initial conditions, we observe a typical result
for the first mode with ξ1 = 5.6 · 10−2, VDC = 60 V and VAC = 40 V after 40 cycles in
Fig. 4.8. One can observe the deformed mechanical mesh, the electrical potential field, as
well as the Maxwell boundary traction at various time instants.3 Note that the boundary
force around the corner stems from a singular charge distribution. In accordance to what
has been observed in Section 4.7, we stress that a higher-order immersed boundary method
becomes necessary for any accurate and physically meaningful results. Moreover, the use of
such a high-order accurate method is needed in order to obtain convergence of the residual
as discussed in Section 5.4.

In Fig. 4.9 we monitor the vertical tip displacement and velocity for the case αM =
5 · 109 s−1 and the load VDC = 60 V and VAC = 40 V. The results over time and the
corresponding phase portraits are plotted for Mode 1-3 when we release the nanotube from
zero initial conditions. The displacement of Mode 1 reaches about −0.9 ± 11 nm, and a
velocity of ±68 mm/s at steady state after 40 cycles [Fig. 4.9(top)]. Looking at the higher
modes, the amplitude of the displacement at steady state decreases to about −0.9± 0.9 nm
for Mode 2 after 238 cycles [Fig. 4.9(middle)], and −0.9±0.2 nm for Mode 3 after 621 cycles
[Fig. 4.9(bottom)]; the velocity decreases to about ±33 mm/s for Mode 2, and ±19 mm/s
for Mode 3. Note that the simulation of the higher modes becomes more expensive, as the
number of cycles to overcome the transient phase increase due to the lower damping. For
even lower damping or finer meshes, the simulation time to overcome the transient phase
will impose severe limitations on the design process. Please refer to Chapter 5, where a novel
method is discussed in order to solve for cyclic steady states more efficiently.

4.9 Reso-switch

Let us now examine a micro-electro-mechanical disk resonator, which is excited in the wine-
glass mode by a forced vibration, such that dynamic contact occurs with a rigid electrode
as sketched in Fig. 4.10. Such high-Q on-chip resonators or dynamic switches show high
potential for the replacement of transistors, e.g. for power-amplification, due the superior
quality factors [9, 10, 11, 12]. The system, as sketched in Fig. 4.10(left,middle), is a model
similar to the resonance switch (reso-switch) in the work by [3].

As sketched in Fig. 4.10, we assume that the driving electrodes are operated at a periodic
input voltage Vi, and the resulting capacitive force brings the disk into a resonance vibration
mode. The voltage at the disk is kept constant at VD. During this vibration mode, the disk
will periodically switch contact with the output electrodes, where a voltage Vo is measured.
No contact along the input axis occurs due to a larger air-gap in comparison to the output
axis. During off-mode, an electrical charge Q assembles on the electrodes, whereas a current
i flows when the disk touches the electrodes, or during electrical breakdown.

3 Note that such large motions can be easily tracked with the immersed boundary method, and no
remeshing or motion of the electrical mesh is required– as becomes necessary when using a Lagrangian or
arbitrary Eulerian-Lagrangian (ALE) approach.
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Figure 4.9: Nanotube vibration: transient solution of the normalized tip-displacement and
and velocity for (top) Mode 1, (middle) Mode 2, (bottom) Mode 3.
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Figure 4.10: Reso-switch example: (left) schematic off -mode; (middle) schematic on-mode;
(right) mechanical (bold) mesh, electrical (fine) mesh, input/output electrodes, and bound-
ary element (BE) domain.
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Figure 4.11: Reso-switch results: deformed mechanical (bold) mesh, electrical (fine) mesh,
contour of electrical potential, and Maxwell boundary traction for Load 1 at various time
instants during ‘off ’- and ‘on’-mode.

In the context of finite elements, we find the eigenmodes numerically by a standard
subspace iteration [110, p.156]. We use symmetry boundary conditions as sketched in
Fig. 4.10(left,middle) for the mechanical deformation of the disk, 108 quadrilateral elements
with a bi-linear interpolation [see Fig. 4.10(right)], and a plane stress nonlinear Neo-Hookean
material model as derived from (2.41) with standard material properties of Ni: E = 179 GPa,
ν = 0.31, ρ = 8.9 g/cm3. For a disk radius R = 70 µm and thickness 4 µm, we obtain the
fundamental frequency f0 = 14.8 MHz.

For the electrical field computation, we use a background mesh with 1200 quadrilateral
elements that cover the domain of interest as sketched in Fig. 4.10(right). The electrode
boundaries are aligned with the background mesh, and the boundary motion of the disk
is captured by the immersed boundary method. We apply a resonance load at the input
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Figure 4.12: Reso-switch example: transient solution of the top-disk-node displacement and
velocity for (top) Load 2, and (bottom) Load 3.

electrodes:
Vi(t) = VDC + VAC sinωt , (4.55)

where ω = 2πf0, the bias-voltage is given by VDC, and the load amplitude is VAC. At
the output electrodes we assume Vo = VD when the disk is in contact or during electrical
breakdown (on-mode), and otherwise calculate Vo from the requirement

dQ

dt
=

Vo
RL

, (4.56)

where the output load RL = 220 Ω and the total charge Q on both output electrodes is
calculated from the electrical field (see Section 4.10). The damping is assumed to be mass-
proportional with D = αMM, such that the damping ratio is ξ = αM/(2ω). In the following
example we test the case ξ = 5.6 · 10−2 and look at three loading cases.

Load 1. We will first excite the disk at a magnified load of VDC = 90 kV, VAC = 60 kV
and VD = 6 kV from zero initial conditions in order demonstrate the performance of the
immersed boundary method during steady contact in Fig. 4.11. The initial gap between
the output electrodes and the disk in this example is assumed to be g0 = 2.2 µm, and the
initial gap between the input electrodes and the disk is assumed to be 6 µm. In Fig. 4.11
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we plot typical results of the mechanical displacement, the electrical potential contour and
the Maxwell boundary traction at various time instants during ‘off ’- and ‘on’-mode.4

Load 2. We will now excite the disk at a load VDC = 6.45 kV, VAC = 4.3 kV and
VD = 240 V from zero initial conditions, with the initial gap to the output electrodes being
g0 = 2.2 µm, and the initial gap between the input electrodes and the disk being 6 µm.
With this load and damping there will be no contact with the output electrodes, as the
displacement does not sufficiently ramp up. We monitor the displacement and velocity of
the top-end node of the disk in Fig. 4.12(top). One observes that a steady state is reached
after about 40 cycles ramp-up, with the displacement of −0.5 ± 12.5 nm, and a velocity of
0.05± 1.15 m/s.

Load 3. Finally, we will excite the disk at a load VDC = 6.45 kV, VAC = 4.3 kV and
VD = 240 V from zero initial conditions, with the initial gap to the output electrodes being
g0 = 9.6 nm, and the initial gap between the input electrodes and the disk being 6 µm. As the
output electrodes are closer to the disk, the disk starts to impact into the output electrodes
after about 5 cycles ramp-up [see Fig. 4.12(bottom)]. In Fig. 4.12(bottom) we monitor the
displacement and velocity of the top-end node of the disk. After 40 cycles, we observe
the displacement and velocity during steady contact, where the displacement oscillates in
[−11.9, 9.6] nm, and the velocity in [−1.1, 1.4] m/s. In this example one observes about 15%
persistent contact during one loading cycle.

We notice that a stronger impact will result in larger oscillations upon release of the disk,
and a highly non-linear phase-portrait. This is in accordance to what has been observed in
App. B for the disk-impact example. For the present set of parameters as in Load 3, a steady
contact state has been observed. However, depending on the damping of the system and
the magnitude of the mechanical impact, a chaotic state may be reached. A careful analysis
of such steady contact conditions is a logical next step in further advancing the subject at
hand, but will be left to a future work.

In this example, we promote the use of the (explicit) centered-difference method with 52
steps per cycle, which satisfies the critical time-step estimate (4.40) and provides sufficient
accuracy for the presented example. The use of the implicit method, while unconditionally
stable, did not improve upon accuracy at the same time-step size. Note however, that a re-
duced mesh-size of the mechanical mesh, an increased p-wave speed, or a device operating at
a lower resonance frequency, may require a much smaller time-step to satisfy the stability cri-
teria (4.40), and the implicit method may improve upon efficiency in such cases. Please refer
to Chapter 5 for a more detailed discussion on the efficient simulation of electro-mechanical
devices operating at resonance.
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Figure 4.13: Reso-switch example: input voltage Vi, output voltage Vo, electrical current
flow i, and charge Q on output electrodes for (top) Load 2, and (bottom) Load 3.

4.10 Electrical Contact

As mentioned in the previous section, the electrical boundary conditions for the resonant
switch during impact need careful consideration. During contact, the voltage Vo = VD, and
otherwise we find Vo as a floating potential, where we have to take into account the dynamics
of the accumulated charge Q on the output electrodes according to (4.56). In this work we
discretize (4.56) by a backward Euler scheme, such that

Qn+1 = Qn +
∆tn
RL

Vo,n+1 , (4.57)

and thus the charge loading problem at the new time-step can be formulated in terms of the
known value Qn, and the unknown Vo,n+1 which we solve for. The electrical current through
the output load RL is given by i = Q̇ = Vo/RL. We observe the input voltage Vi, the output
voltage Vo, the electrical current flow i, and the charge Q for loading cases Load 2 and 3 in
Fig. 4.13.

4 Note that the immersed boundary method can handle the closing of the gap during impact very well,
whereas traditional methods in the Lagrangian context will encounter issues, as elements will collapse or an
expensive remeshing will be required.
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In Fig. 4.13(top), we find that during Load 2 there is only a very small oscillation in
the voltage Vo and current i = Vo/RL ∈ [−0.6, 0.6] µA. This is due to the dynamics of the
total charge Q on the output electrodes driven by the mechanical motion of the disk, and the
electrical field respecting Eq. (4.57). In Fig. 4.13(top,right) we observe Q ∈ [−1.87,−1.83] C.
Note that the charge Q is strictly negative, as a result from the (positive) electrical boundary
conditions on the disk and input electrode, and the grounding of the output load.

In Fig. 4.13(bottom) for Load 3, there is a jump in the output voltage to Vo = 240 V
during contact of the disk with the output electrode. Consequently the electrical current
jumps to i = Vo/RL = 1.1 A during contact. The electrical charge on the output electrodes
drops to a residual value Q = −0.06 C, which is determined from the capacitive configuration
of the input electrodes. We observe a duty-cycle of ∆ton/T = 0.15 in this example. As the
disk releases, the voltage Vo and current i drop back to a small oscillation around zero as in
Load 2, whereas the charge Q will accumulate to around Q = 13 C [Fig. 4.13(bottom,right)].

Note that the accumulated negative charge Q on the output electrode during ‘off ’-mode
is larger for Load 3 as compared to Load 2. This is due to the closer location of the output
electrode to the disk, while the electrical boundary conditions remained unchanged. More-
over note that the time-constant of the charge accumulation on the electrode is much faster
in this example in comparison to the disk-vibration period. Thus the dynamics of the charge
Q is quasi-instantly correlated to the disk-motion. An increased capacitive configuration,
however, may change the output dynamics of the voltage Vo or the current i upon release of
the disk, as has been experimentally observed in [12]. The effect of various geometries on
the charge accumulation, as well as additional capacitors at the output circuit will be left to
future studies.

Typical devices as in [3] are designed with a much lower damping as compared to the
present example. We will consider further examples featuring lower damping values in Sec-
tion 5.5. The computational treatment by a classical time-stepping through the transient
phase from zero initial conditions as we discussed here will become very expensive, or even
impossible when the damping is very low and the system size increases. In the following chap-
ter we will discuss a numerical method in order to find cyclic steady states more efficiently,
with substantial speed-ups especially for low damping values.
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Chapter 5

Cyclic Steady States

Many electro-mechanical systems are designed to operate at resonance, where the ramp-up
simulation to steady state is computationally very expensive– especially when low damping
is present. In this chapter, we present an efficient method to solve for cyclic steady states of
electro-mechanical devices excited at resonance. The proposed method relies on a Newton-
Krylov shooting scheme for the direct calculation of the cyclic steady state, as opposed
to a naive transient time-stepping from zero initial conditions as presented in Chapter 4.
The presented benchmark examples will include the first three fundamental modes of the
vibrating nanotube, as well as the micro-electro-mechanical disk resonator in dynamic steady
contact from Chapter 4.

5.1 Modal Decomposition

We will first discuss a traditional modal analysis as in [103, p.580]. This analysis will help us
define the cyclic steady state notion, and will serve as an alternative semi-analytical approach
to benchmark the numerical methods at small deformation (see Section 5.6). To this end,
let us assume that a mechanical system following equations (4.24) and (4.25) is excited at a
frequency ω by a driving potential

Φ̄(t) = Φ0 + Φ̃ cosωt , (5.1)

where Φ0 is a constant potential, and Φ̃ the amplitude of the oscillating part. Then we find
the first-order approximation to the displacement

U ≈ U0 + Ũ , (5.2)

with a constant part of the displacement U0, and a time-dependent part of the displacement
Ũ. We find U0 and the constant electrical potential Φ0 from the quasi-static solution of
(4.26), (4.27) for a constant load Φ̄ = Φ0. The time-dependent part of the displacement
approximation Ũ is then obtained from the linearized equations (4.24) around the state
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(U0,Φ0,Φ0),

M ¨̃U+D ˙̃U+KUŨ = FΦ cosωt , (5.3)

where KU = ∂R
∂U

(U0,Φ0,Φ0), and FΦ = −∂R
∂Φ̄

(U0,Φ0,Φ0)Φ̃. Following [103, p.580], we find
the real eigenpairs (ωi, Ūi) corresponding to the undamped, homogeneous system

KUŪi = ω2
iMŪi , (5.4)

such that the solution to (5.3) can be written as

Ũ =
n

∑

i=1

Ūiyi(t) , (5.5)

where Ūi are the eigenvectors, and yi the scalar modal participation factor. Rayleigh damp-
ing of the form D = αMM+βKKU is assumed here. Then equations (5.3) can be de-coupled
as

miÿi + diẏi + kiyi = fi cosωt , (5.6)

with mi = ŪT
i MŪi, di = ŪT

i DŪi, ki = ŪT
i KUŪi and fi = ŪT

i FΦ. Let us assume that the
eigenvectors are normalized, such that mi = 1. By noting that ki = ω2

imi, and introducing
ξi = di/(2ωi), we rewrite (5.6) as

ÿi + 2ωiξiẏi + ω2
i yi = fi cosωt , (5.7)

to which analytical solutions exist for given initial conditions yi0 = ŪTMŨ0 and ẏi0 =

ŪTM ˙̃U0 (see e.g. [103, p.582]). In particular, for zero initial conditions and when the
system is under-damped with 0 < ξ < 1, the homogeneous solution will decay exponentially
with time-constant 1/(ωiξi), and the overall solution is given by

yi =
fi
ω2
i

Vh exp (−τiξi) cos
(

τi

√

1− ξ2i − ϕh
)

+
fi
ω2
i

Vp cos (ηiτi − ϕp) , (5.8)

Vh = −Vp
cosϕp
cosϕh

, (5.9)

ϕh = arctan
ξi cosϕp + ηi sinϕp
√

1− ξ2i cosϕp
, (5.10)

Vp =
[

(1− η2i )2 + (2ξiηi)
2
]−1/2

, (5.11)

ϕp = arctan
2ηiξi
1− η2i

, (5.12)

with ηi = ω/ωi, τi = ωit, which attains its maximum at ηi =
√

1− 2ξ2i .
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5.2 Direct Solution of Cyclic Steady States

While the solution as presented in the previous section can be very efficient for systems that
operate in the linear regime, the consideration of the fully coupled nonlinear equations (4.24),
(4.25) becomes necessary for large deformations, or when contact occurs. In the following we
assume that the damping is sufficient such that the system will reach a cyclic steady state
for a harmonic load as in (5.1), and such that the eigenvalues as obtained from the linear
analysis are close to the resonance modes of the nonlinear system. In order to find cyclic
steady state solutions for the nonlinear coupled system excited at ω = ωi, we then consider
a method as advocated in [111], and that has been recently applied to cyclic steady states
of treaded rolling bodies [112]. In our case the period is given by T = 2π/ω. Consider the
mechanical state X = [U; U̇]. The problem reads: Given a period T , find X0 such that

H(X0) = X(T )−X0 = 0 , (5.13)

where X(T ) evolves according to (4.24), (4.25) with initial conditions X0.
1 The solution

to (5.13) will be found using the Newton-Raphson method, which requires the linearized
mechanical equilibrium:

MδÜ+DδU̇+
∂R

∂U
(U,Φ)δU = 0 . (5.14)

Now the method reads: Given Xi
0, we update Xi+1

0 = Xi
0 + δXi

0, where we find δXi
0, such

that
DH[Xi

0](δX
i
0) = −H(Xi

0) . (5.15)

Here the operator reads
DH[X0](δX0) = δX(T )− δX0 , (5.16)

where δX(T ) evolves according to the linearized equation (5.14) with initial conditions δX0

along the path X(t) that evolves according to (4.24), (4.25) with initial conditions X0.
In order to assemble the operator DH[X0] in each Newton step, one may iteratively

calculate each column DH[X0]:,i via

DH[X0]:,i = DH[X0](ei) , (5.17)

with basis vectors ei ∈ R
N , i = 1, . . . , N . While this gives the full operator for a direct

solution of (5.15), the assembly via (5.17) is expensive. As advocated in [112], we employ
the generalized minimal residual method (GMRES). To this end let us denote A = DH[Xi

0],
b = −H(Xi

0) and x = δXi
0, so that for each Newton step ‘i’ we wish to solve Ax = b. Then

one computes the m-th order Krylov subspace span{b, Ab, A2b, . . . , Am−1b} by a standard
Arnoldi iteration. The minimizer of the residual ||Ax − b||2 over this subspace gives the

1 Note that one could also treat the period T as an additional unknown to solve for, but here we assume
T as a given parameter matching the excitation frequency of the external load.
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approximate solution which we set to δXi
0. For each Newton step, one has to evolve (5.13)

according to (4.24), (4.25) with initial conditions Xi
0. Subsequently, one evolves (m − 1)

times the linearized equations (5.16) according to (5.14), with multiple initial conditions
b, Ab, . . . , Am−2b. In this work we find the dimension m, by requiring ||Ax − b|| < δ||b||
during the Arnoldi iteration, where δ = 10−3 as in [112]. The algorithm is summarized in
Alg. 5.1. We refer to [113] for a more detailed discussion on GMRES and Arnoldi iterations.

Cyclic Steady State Solution

Given X0
0 = [U0

0, U̇
0
0].

LOOP i
1. Calculate H(Xi

0) according to (5.13).
2. Iteratively form m-th order Krylov subspace by an Arnoldi iteration and evolving
DH[Xi

0](.) according to (5.16).

3. Find the minimizer X̃ of the residual ||DH[Xi
0](X̃) +H(Xi

0)||2 over this subspace
by a least-square approximation.

4. Set δXi
0 = X̃.

5. Check convergence ||δXi
0||2/||Xi

0||2 < TOL and update
Xi+1

0 = Xi
0 + δXi

0 .

Algorithm 5.1: Cyclic steady state solution via GMRES.

5.3 Critical Time-step

In the following examples we will consider that a cyclic steady state is reached, when the
relative L2-norm of H(tn) = X(tn)−X(tn − T ) after a period T ,

Residual =

√

∑

i |Xi(tn)−Xi(tn − T )|2
∑

i |Xi(tn)|2
, (5.18)

is converged by six orders of magnitude. All accuracy considerations have been done within
this scope. Note that another tolerance setting will change the accuracy requirements on
the discretization, and results will differ from the current study.

In order to obtain accurate results and optimum convergence rates, it is crucial to ensure
a converged discretization in the time-domain. Such estimates can be obtained by noting the
period accuracy of the time-stepper as discussed for example in [114]. In our examples we
require the finite element solution at steady state to be converged by six orders of magnitude.
Given the damping ratio ξ, we find the number of time-steps per cycle T/∆tn for the centered-
difference scheme and for the mid-point rule by monitoring the residual (5.18), such that
convergence is achieved. In addition, the requirement (4.40) must be met for the explicit
case.
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ξi,1 1 2 3 4 5 6

Mode 1: 1.1 · 10−1 1.0 · 100 3.2 · 10−3 1.0 · 10−4 3.1 · 10−6 5.3 · 10−9

Mode 2: 1.9 · 10−2 1.0 · 100 2.8 · 10−2 5.4 · 10−5 3.9 · 10−7

Mode 3: 7.2 · 10−3 1.0 · 100 6.2 · 10−1 7.1 · 10−3 1.7 · 10−4 1.3 · 10−6 9.2 · 10−8

ξi,2 1 2 3 4 5 6

Mode 1: 5.6 · 10−2 1.0 · 100 5.1 · 10−3 5.0 · 10−4 7.9 · 10−6 2.3 · 10−7

Mode 2: 9.4 · 10−3 1.0 · 100 2.4 · 10−2 1.3 · 10−4 1.9 · 10−6 7.5 · 10−8

Mode 3: 3.6 · 10−3 1.0 · 100 2.6 · 10−1 4.9 · 10−3 1.2 · 10−4 1.3 · 10−5 4.4 · 10−8

Table 5.1: Nanotube vibration example: residual convergence ||δXi
0||2/||Xi

0||2, i = 1, . . . , 6
of Alg. 5.1 for Mode 1-3 and various damping ratios ξ.

5.4 Nanotube Vibration – revisited

Our first example deals with the a carbon nanotube vibration as discussed in Section 4.8. We
employ the same material and simulation parameters from the previous discussion for the
transient solution. In addition, we employ the direct steady state solution following Alg. 5.1
to satisfy (5.13).

Remember that in Section 4.8 we have tested various modes of excitation, for damping
values ξi = αM/(2ωi), i = 1, . . . , 3, as resulting from a damping matrix D = αMM, with
αM ∈ {5 · 109 s−1, 10 · 109 s−1}. In Fig. 5.1 we review the vertical tip displacement and
velocity as we release the system from zero initial conditions for the case αM = 5 · 109 s−1

and the load VDC = 60 V and VAC = 40 V at various modes. As we have noted, the number
of cycles to reach a steady state for the transient solution is increased at the higher modes,
due to the lower damping present.

We now employ Alg. 5.1 in order to find solutions to (5.13) more efficiently. After finding
the initial conditions X0 according to Alg. 5.1, we have evolved equations (4.24) and (4.25)
with these initial conditions over one period T in order to compare the results to the transient
solution as obtained in Section 4.8. In Fig. 5.1, we monitor the vertical tip displacement
and velocity for Mode 1-3 at ξ1 = 5.6 · 10−2, ξ2 = 9.4 · 10−3, and ξ3 = 3.6 · 10−3 respectively.
The direct solution via Alg. 5.1 shows excellent agreement when compared to the full time-
stepping trough the transient phase from zero initial conditions. In this plot we have labeled
various time-instants 1− 5 in the steady state displacement [Fig. 5.1(third column)], as well
as in the phase portrait [Fig. 5.1(fourth column)].

As mentioned before, we consider a system to have reached a steady state is reached
when the residual (5.18) has dropped by six orders of magnitude. In Fig. 5.2(top) we plot
the residual of the transient solution [Fig. 5.2(top, left)], as well as the cyclic steady state
solution (CSS) via Alg. 5.1 [Fig. 5.2(top,right)] at various damping values. While the number
of cycles to reach convergence in the transient solution increases for lower damping values,
the number of Newton iterations of the CSS solution remained at about 5 − 6 Newton
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Figure 5.1: Nanotube vibration: transient solution and cyclic steady state solution (CSS)
via GMRES (Alg. 5.1) of the tip-displacement and velocity for (top) Mode 1, (middle) Mode
2, (bottom) Mode 3.

iterations. We print the numerical values of the Newton residual of the CSS solution in
Table 5.1 for the case αM = 5 · 109 s−1 as plotted in Fig. 5.2(top,right), as well as for the
case αM = 10 · 109 s−1. In both cases, we typically encounter convergence by six order of
magnitudes within 4 to 6 iterations.

We have measured the speed-up S by the computational time Ttransient that is required
to evolve equations (4.24) and (4.25) from zero initial conditions until the residual (5.18) is
converged by six orders of magnitude, as well as the computational time Tcss that is required
to find convergence of (5.18) by six orders of magnitude via Alg. 5.1:

S =
Ttransient
Tcss

. (5.19)

The speed-up is increased at the higher modes, where the number of cycles to reach the
steady state is increased for the transient solution. We measured the speed-ups S = 3.3
for Mode 1 at ξ1 = 1.1 · 10−1, S = 6.1 for Mode 1 at ξ1 = 5.6 · 10−2, S = 20.6 for Mode
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Figure 5.2: Nanotube vibration: (top) convergence of the residual (5.18) when using the high-
order IB-DG for (left) the transient solution and (right) the cyclic steady state solution (CSS)
via GMRES (Alg. 5.1); (bottom) convergence issues of the low-order immersed boundary
method.

2 at ξ2 = 1.9 · 10−2, S = 27.1 for Mode 2 at ξ2 = 9.4 · 10−3, and S = 32.0 for Mode 3 at
ξ3 = 7.2 · 10−3, S = 45.5 for Mode 3 at ξ3 = 3.6 · 10−3. Please see Section 5.6 for a further
discussion of these results.

We remark that the use of a higher-order immersed boundary method as discussed in Sec-
tion 4.8 in order to account for the singularity in the electrical field in this example becomes
absolutely necessary for (i) any accurate and physically meaningful results; and (ii) in order
to obtain convergence during the Newton iteration of the cyclic steady state solution via
Alg. 5.1. As can be observed in Fig. 5.2(bottom), the use of a low-order immersed boundary
method resulted in reduced or even incomplete convergence of the residual for the transient
solution [Fig. 5.2(bottom,left)], as well as for the CSS solution [Fig. 5.2(bottom,right)]. This
is consistent to what has been observed in Section 4.7 for the electro-mechanical pull-in in
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Figure 5.3: Reso-switch example: transient solution and cyclic steady state solution (CSS)
via GMRES (Alg. 5.1) of the top-disk-node displacement and velocity for (top) Load 2, and
(bottom) Load 3.

the quasi-static case [see Fig. 4.6(right)].

5.5 Reso-switch – revisited

The second example revisits the micro-electro-mechanical disk resonator as discussed in
Section 4.9. We employ the same simulation parameters as in Section 4.9, and in addition
we test Alg. 5.1 for a direct steady state solution.

Remember that in Section 4.9 we have tested various loading cases. In particular we have
examined Load 2, where the bias-voltage VDC = 6.45 kV, VAC = 4.3 kV, VD = 240 V, and the
initial gap to the output electrodes g0 = 2.2 µm. As well as Load 3, where the bias-voltage
VDC = 6.45 kV, VAC = 4.3 kV, VD = 240 V, and the initial gap to the output electrodes is
g0 = 9.6 nm. For both cases Load 2 and 3 we have assumed the damping ξ = 5.6 · 10−2.
In Fig. 5.3 we review the top-disk-node displacement and velocity as we release the system
from zero initial conditions during Load 2 and 3. As we have noted, there is no contact
for Load 2 [Fig. 5.3(top)], whereas we observe a steady contact state for Load 3 due to the
reduced initial distance g0 from the disk to the output electrodes [see Fig. 5.3(bottom)].

We now employ Alg. 5.1 in order to find solutions to (5.13). As done in the previous
example for the nanotube, we find the initial conditions X0 according to Alg. 5.1, and we
evolve equations (4.24) and (4.25) with these initial conditions over one period T in order
to compare the results to the transient solution as obtained in Section 4.9. In Fig. 5.3, we
monitor the top-disk-node displacement and velocity for Load 2 and 3 respectively. As in the
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Figure 5.4: Reso-switch example: convergence of the residual (5.18) for Load 2 in black (no
contact), and for Load 3 in red (contact) during (left) the transient solution from zero initial
conditions, and (right) the direct cyclic steady state solution (CSS) via Alg. 5.1.

previous example, the direct solution via Alg. 5.1 shows an equally excellent agreement when
compared to the full time-stepping trough the transient phase from zero initial conditions.
In this plot we have labeled various time-instants 1 − 5 in the steady state displacement
[Fig. 5.3(third column)], as well as in the phase portrait [Fig. 5.3(fourth column)]. Note in
particular that the CSS algorithm is capable to handle such a highly non-linear response
at steady state, involving electro-mechanical impact. To our knowledge, this is a first time
demonstration of the CSS solution to electro-mechanical impact problems.

Again we have tracked the residual (5.18) for the transient as well as the CSS solution. In
Fig. 5.4 we plot the residual for Load 2 in black (no contact), and for Load 3 in red (contact).
We observe a slightly slower convergence for Load 3 to reach a steady contact state during
the transient solution when compared to Load 2, where no contact occurs [Fig. 5.4(left)].
In this example we required about five more cycles to achieve convergence for Load 3 as
compared to Load 2 in the transient solution. This is also observed in Fig. 5.4(right) for the
CSS solution, where convergence is reached after 7 iterations for Load 3 involving impact,
and convergence is reached after 4 iterations for Load 2 without impact. The observed
speed-up in this example is S = 6.2 for Load 2, and slightly lower S = 4.1 for Load 3.

Note that for Load 2 and 3 we have assumed a damping value ξ = 5.6 · 10−2. We now
test the numerical solutions for VDC = 6.45 kV, VAC = 4.3 kV, VD = 240 V, and the initial
gap to the output electrodes g0 = 2.2 µm as in Load 2, but with varying damping values
ξ ∈ {1.4 ·10−2, 2.8 ·10−2, 5.6 ·10−2, 2.2 ·10−1}. As the damping values become lower, we have
to adjust the number of time-steps in order to achieve convergence of the residual due to the
higher accuracy requirements (see Section 5.3). In this study we have used 2π/(ω∆tn) = 36
steps per cycle for ξ = 2.2 · 10−1, 52 steps per cycle for ξ = 5.6 · 10−2, 72 steps per cycle
for ξ = 2.8 · 10−2, and 104 steps per cycle for ξ = 1.4 · 10−2. Typical convergence plots for
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Figure 5.5: Reso-switch example: (left) convergence of the residual for the transient solution
(black) and the modal decomposition analysis (red) at various damping ratios as indicated in
the right figure; (right) convergence of the residual of the direct cyclic steady state solution
(CSS) via Alg. 5.1 for various damping ratios ξ.

the transient solution are shown in Fig. 5.5(left), and for the CSS solution in Fig. 5.5(right).
Similar observations as with the nanotube vibration example are made: while the transient
solution requires significantly more cycles to reach a steady state at lower damping values,
the CSS solution is converged within 4 to 5 Newton steps. Thus the observed speed-ups
are higher at lower damping values. In accordance with (5.19) we have measured S = 3.5
at ξ = 2.2 · 10−1, S = 6.2 at ξ = 5.6 · 10−2, S = 11.2 at ξ = 2.8 · 10−2, and S = 16.7 at
ξ = 1.4 · 10−2. We will summarize all performance tests done for the reso-switch example,
as well as for the nanotube vibration in the following section.

5.6 Performance of the GMRES algorithm and

Computational Speed-up

As mentioned in Section 5.3, it is crucial for all performance tests to adjust the time-step
size for a given numerical time-integration scheme in order to achieve optimum convergence
of the residual (5.18). In the small deformation case, one can test the validity of the numer-
ical time-integration by comparing the transient solution from zero initial conditions to the
modal decomposition analysis as presented in Section 5.1. In the reso-switch example with-
out contact, we have plotted the residual for the transient solution (black) and the modal
decomposition analysis (red) in Fig. 5.5(left) for various damping parameters. The evolution
of the modal equations in this case has been done analytically by (5.8). We found that the
first fundamental mode is sufficient to match the results from the full transient numerical
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Figure 5.6: Speed-up of the direct cyclic steady state solution (CSS) via Alg. 5.1 versus a
classical transient time-stepping from zero initial conditions.

solution; i.e. we approximate
Ũ ≈ Ū1y1(t) , (5.20)

see also Eq. (5.5). As shown in Fig. 5.5(left), the transient solution and the modal decomposi-
tion analysis via (5.20) show very good agreement. Note again, that the modal decomposition
analysis can only be used for systems that operate in the linear regime. In our case we have
used the analysis to benchmark the numerical time-integrator as in Fig. 5.5(left).

As we have noted in the nanotube vibration, as well as the reso-switch example, the mea-
sured speed-ups are higher for lower damping values ξ. This is mainly due to the increased
number of cycles to reach a steady state for the transient solution, whereas the Newton
algorithm via Alg. 5.1 has been demonstrated to be relatively unaffected by ξ. In Fig. 5.6 we
plot all speed-ups for various tests of the nanotube vibration, as well as the reso-switch. We
observe power law computational speed-ups of the CSS solution in comparison to a transient
solution of the form

S = 0.7ξ−0.8 , (5.21)

where we have measured S according to (5.19) for the different test cases.
As mentioned in Section 5.2, we have investigated two ways to assemble the tangent

operator for the direct steady state solution. While the full tangent assembly as in (5.17) will
deliver most accurate results, the use of GMRES will significantly speed-up the calculation
during the iterative Newton solution. In accordance with [112], we use the tolerance ||Ax−
b||/||b|| < 10−3 in order to determine the number of Arnoldi iterations for each Newton step.
Note that in our examples we observed that the number of Arnoldi iterations increases for
lower damping values, and thus the computational speed-up shows only sub-linear growth.

Note moreover that we have only tested the cases for ξ > 10−3 using our second order
accurate time-integration. For smaller ξ, one may benefit from higher-order time-integration
schemes, facing the decreased tolerances on the accuracy requirement. Such integration
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schemes must be developed in the context of electro-mechanical impact, and one has to
assure that the energy is conserved in the algorithmic treatment of the impact event, which
is still subject to current research.
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Chapter 6

Conclusion and Future Works

We have developed a high-order Eulerian-Lagrangian finite element framework for the sim-
ulation of electro-mechanical systems. While the mechanical motion is solved on a moving
Lagrangian grid, the electrical field is solved on a fixed Eulerian frame with embedded
boundary conditions. The method relies on a newly developed high-order immersed bound-
ary discontinuous-Galerkin method that tracks the mechanical motion of the interface.

The immersed boundary method as presented in Chapter 3 is based on a high-order
boundary representation, as well as a high-order field approximation in a small band of
elements cut by the boundary. The boundary shape is approximated locally by possibly
nonlinear geometric primitives. We have developed elements for straight-, circular-, and
corner-boundaries in two dimensions. Consequently, the field approximation is spanned by
shape functions that are motivated by the analytical solution of the underlying PDE in the
proximity of the corresponding boundary features. Employing this higher-order solution
space has several advantages compared to low-order approximations. As a main argument
to use it appears that (i) Dirichlet boundary conditions along Γ can be strongly enforced,
(ii) the gradient interpolation is more accurate than low-order embedded boundary meth-
ods, (iii) no oscillations occur in the gradient and no post-processing is required to obtain
smooth results, and (iv) singularities in the PDE can be incorporated in a natural way. All
enhanced elements are coupled together and to the rest of the standard FE domain via DG.
The DG-based immersed boundary method is very robust, and we performed several bench-
mark tests to demonstrate the performance and convergence. The method is also efficient,
in the sense that a higher-order interpolation is employed only around the boundary where
a high accuracy for the gradient field is needed, whereas the remainder of the domain may
utilize low-order approximations. We do require heuristic parameters to deal with inter-
section adaption and singularities. However, the method has been found to be relatively
insensitive to these. Moreover, our DG method does feature a stabilization term α, as in
most immersed boundary methods there is a stabilization needed at some point. In this
work we choose α following a convergence study to obtain optimum results. While this gave
us very accurate results in the discussed examples, the selection of α is done by the user’s
choice, and future work may consider alternative DG methodologies that provide for accu-
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racy and stability with an automated stability parameter. The focus of this work is on the
enhancement of the gradient accuracy along higher-order immersed boundary shapes, which
has been successfully adopted. We note that the basic idea is very simple in two dimensions
and can be extended to more complicated boundary shapes, or other types of PDEs. In
order to deal with three space dimensions, the basic strategy will remain the same, but an
extended library of geometric primitives, and boundary intersection scenarios will become
necessary. While the development of such libraries requires clearly more effort in the three-
dimensional setup as compared to the present two-dimensional work, there is a finite set
of cases in the end. Once these libraries have been created, we believe that the proposed
methodology has good potential to improve upon robustness and accuracy in comparison
to current immersed boundary technologies, especially if higher-order boundary features are
present or singularities in the field have to be resolved.

As a main focus of this work, we have applied the immersed boundary method to a
coupled Eulerian-Lagrangian finite element method to solve for electro-mechanical problems.
We put a special focus on (i) the accurate treatment of the coupling forces in the presence
of non-linear boundary features, (ii) the treatment of singularities in the electrical field and
the resulting Maxwell traction around corners, (iii) the quasi-static, as well as implicit and
explicit solution for dynamically coupled electro-mechanical problems with non-conforming
meshes, (iv) the incorporation of energy-conserving dynamical contact algorithms, and (v)
the treatment of electrical boundary conditions during electro-mechanical impact. The high-
order boundary treatment has been shown to be necessary in order to obtain accurate surface
tractions as arise due to the electrical field, as well as in order to obtain convergence during
the global Newton-Raphson iteration. In particular, for an analytical benchmark example
in the presence of a corner, the error in the traction has been improved from about 40%
using a low-order method to less than 1% using the higher-order method. The solution of
the coupled equations is carried out by means of an operator split, where in each iteration
step the electrical field is solved for a fixed mechanical boundary position, and the resulting
electrical forces consecutively drive the mechanical motion. This staggered approach has
been demonstrated to deliver linear convergence rates. A boundary motion over several
elements of the (fixed) electrical mesh has been demonstrated, which appears to be one of the
main advantages of the presented mixed Eulerian-Lagrangian formulation, versus traditional
solution strategies such as ALE or the boundary element method: large mesh-motions and
topological changes will not result in any mesh distortion, or ill-conditioned equations, and
no remeshing will become necessary. The incorporation of mechanical contact in the quasi-
static as well as dynamical setting thus follows naturally, and has been demonstrated for a
resonant switch that is operated at resonance in a cyclic steady contact state.

Finally, we have presented a numerical method to efficiently find the cyclic steady state
response of electro-mechanical devices that are excited at resonance. The method is based
on a Newton-Krylov shooting scheme, and features a full-field simulation of the mechanical
deformation and the electrical field, incorporating dynamical impact. The proposed direct
method to solve for cyclic steady states has been demonstrated for two NEMS/MEMS ex-
amples, including the vibration of a carbon nanotube at ultra-high frequencies > 1 GHz,
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and the excitation of a wine-glass disk resonator in a forced vibration, as well as in dynamic
steady contact state. For the presented examples, we show excellent agreement of the direct
solution of the cyclic steady state in comparison to the transient solution from zero initial
conditions. The computational speed-up of the discussed examples scales inversely with the
damping ξ according to S = 0.7ξ−0.8, where we tested ξ > 10−3.

Further extensions of the current work are envisioned to three dimensional problems,
the development of monolithic solution schemes, as well as the incorporation of dynamical
contact algorithms for two elastic bodies. While such enhancements clearly require some
more effort, the presented technology appears to have high potential to improve upon ex-
isting technologies, especially when highly nonlinear coupling terms arise, such as due to
singular forces or impacting bodies. We note that, due to the strict accuracy requirements,
the presented second order time-integration schemes will become very expensive for damping
ratios ξ < 10−3. The development of higher-order time-integration schemes in the context of
energy-conserving electro-mechanical impact algorithms may improve upon efficiency. A fur-
ther incorporation of modern material models to simulate electro-active polymers or carbon
nanotubes will benefit a most realistic physical simulation. Especially the use of micro-macro
models in this context seems promising. Additionally, the methodology will allow for the
incorporation and coupling to other physical effects of thermal nature, or due to external
fluid flow. In general, we confirm that the high-order Lagrangian-Eulerian finite element
approach with immersed boundary methods as presented in this study sets the stage for
great flexibility in the enhanced multi-physics simulation capabilities.
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Appendix A

Far Field Boundary Condition via
Boundary Element Method

We briefly outline our approach to the far field boundary condition we employ at the bound-
ary of the computational domain of interest. To this end we use the boundary element
method which relies upon the boundary integral equation, for each xi ∈ W ,

cΦW(xi)−
∫

∂W

ΦWq
∗
Wda = −

∫

∂W

qWΦ∗
Wda , (A.1)

where

Φ∗
W =

{

1
2πǫW

ln 1
r
, in 2D ,

1
4πǫWr

, in 3D ,
(A.2)

with r = ‖x− xi‖, q∗W = −ǫW∇Φ∗
W · nW and c being a constant depending on the location

of the collocation point xi. If xi is inside W , then c = 1. If xi is on ∂W , then c depends
on the smoothness of the boundary (see e.g. [115, p.107])– for a smooth boundary one has
c = 0.5.

We consider the discretization of the boundary integral equation (A.1). In this context
we will use a point collocation method where we assume that (A.1) holds strongly for xi at
all nodal points of the mesh ∂Wh. This results in

[∆Q] Φ̃W = [∆Φ] q̃W , (A.3)

where the i-th row corresponds to collocation point xi:

[∆Q]i,: Φ̃W = c Φ̃Wi −
∑

e

[
∫

∂We

q∗W(xi, ξ)Ñe(ξ)da(ξ)

]

Φ̃We (A.4)

[∆Φ]i,: q̃W = −
∑

e

[
∫

∂We

Φ∗
W(xi, ξ)Ñe(ξ)da(ξ)

]

q̃We , (A.5)
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Figure A.1: Coupling finite element and boundary element method.

and Ñe(ξ) are standard shape function matrices. Note the notation (e.g. 2D)

Φ∗
W(xi, ξ) =

1

2πǫW
ln

1

‖x(ξ)− xi‖
, (A.6)

where ξ is the integration parameter such that x(ξ) maps to the element integration domain.
The matrices [∆Q], [∆Φ] are fully populated. We highlight three facts: First, the integrals
involve singular functions and special care must be taken in order to evaluate them correctly
via numerical Gauss or modified Gauss quadrature rules (see [115, p.139]). Second, note
that the diagonal terms of [∆Q] can be easily obtained by summing up all other coefficients
in the corresponding row and changing the sign ([115, p.135], rigid body motion argument);
this saves us a strongly singular integration plus the computation of the factor c. And lastly,
note that for an infinite domain one must consider the so called azimuthal integral, that is
the integration over the (semi-)sphere with infinite radius ([115, p.136]). This will only give
a contribution to the strongly singular integral; i.e. the diagonal terms of [∆Q]. In the case
of an infinite domain this requires one to add +1 to the diagonal, whereas in the semi-infinite
case one adds +0.5.

In our experience the piecewise constant boundary element discretization performs sat-
isfactorily and is particularly easy to implement. We assume that the BE-nodes are in the
middle of each surface patch, and that the constant potential equals the average of the
attached domain mesh interpolation. Using constant elements allows for an analytical inte-
gration of the singular integrals. In particular note that [∆Q]i,i = 1.5 as arising from the
azimuthal integral, whereas the strongly singular integral vanishes in this case. Moreover

[∆Φ]i,i = −
∫

ΓBEi

Φ∗
W(xi, ξ)da(ξ) = −2

∫ l/2

0

1

2πǫW
ln

1

ξ
dξ = − l

2πǫW

[

ln
2

l
+ 1

]

, (A.7)

where l is the length of the boundary element. For the off-diagonal terms, a standard 4-point
Gauss quadrature is used.

We couple the boundary elements to the standard finite elements as in [115, Ch.16]. One
can write (A.3) as

q̃W = K̃BEΦ̃W , (A.8)

featuring the ‘pseudo’-stiffness matrix

K̃BE = [q̃1, q̃2, . . . , q̃Nb
] , (A.9)



APPENDIX A. FAR FIELD BOUNDARY CONDITION VIA BOUNDARY ELEMENT

METHOD 91

where q̃i is the solution to
[∆Φ] q̃i = [∆Q]:,i , (A.10)

with [∆Q]:,i being the i-th column of the matrix [∆Q]. In order to obtain an expression for
the finite element flux vector fBE, we note that qV = −qW along ΓBE. Thus one can write
the equivalent nodal flux at Node i as

fBEi = −
∑

{ei}

nbe
∑

n=1

[

∫

∂Vei∩ΓBE

N ei
j Ñ

be(ei)
n da

]

q̃
be(ei)
Wn , (A.11)

where {ei} ranges over the adjacent elements of node i, be(ei) is the boundary element number
corresponding to the adjacent finite element ei, and one takes the local finite element shape
function N ei

j associated with the j-th node in the element numbering which corresponds to
the i-th global node (see Fig. A.1). We write (A.11) as

fBE = −Nq̃W . (A.12)

Finally ΦW = ΦV , and we use the projection P, such that

Φ̃W = PΦW , (A.13)

relates the BE interpolation to the FE nodal values. We summarize

fBE = −NK̃BEPΦV = −KBEΦV , (A.14)

where
KBE = NK̃BEP (A.15)

is the boundary element stiffness (non-symmetric).
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Appendix B

Dynamical Impact

Further details on the dynamic contact treatment in this study are discussed here. We limit
ourselves to frictionless contact, and a node-to-rigid-surface contact driver. For illustration,
let us look at Fig. B.1(a), where the gap function at a node A becomes

gA = (xA − x̄) · n̄ , (B.1)

and we find x̄ such that
||xA − x̄|| = min

x∈Γmaster

||xA − x|| (B.2)

is the minimum distance of the slave node xA to the boundary Γmaster. By differentiation,
and noting that ṅ · (xA − x̄) = 0, we have

ġA = (ẋA − ˙̄x) · n̄ , (B.3)

which is the gap-rate at a node A. As mentioned before, in order to ensure (4.21) and
(4.22) in the implicit setting, we use a penalty method with the penalty potential U given
by (4.34). In a naive way, one is tempted to calculate the contact pressure pn+1/2 at t = tn+1/2

as pn+1/2 = −U ′(gn+1/2), where gn+1/2 = g(x(tn+1/2)). As is well known, such a choice may
result in an energy increase or loss during impact that renders the solution meaningless.
Following [99], we advocate an alternative scheme in combination with the mid-point rule,
where the contact pressure pA,n+1/2 for node A at t = tn+1/2 is calculated by

pA,n+1/2 =

{

−U(gA,n+1)−U(gA,n)

gA,n+1−gA,n
, if gA,n+1 6= gA,n ,

−U ′
(

1
2
(gA,n + gA,n+1)

)

, otherwise ,
(B.4)

as in (4.35). This scheme will ensure energy conservation upon release of the impacting body,
as will be observed in the upcoming example. Note that the use of the real gap function gA
in this setting is applicable as the rigid surface is fixed in space. We refer to [99] for further
details of the formulation– in particular, when two elastic bodies are in contact.
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Figure B.1: Node-to-rigid-surface contact: (a) master and slave segments; (b) approximation
of time-impact resolution for the explicit contact predictor-corrector scheme [5].

In the explicit case, the impact-time tc is approximated as sketched in Fig. B.1(b): the
equations of motion are advanced for one step (ti−1, t

−
i ] by a predictor-step without con-

sideration of contact. In the case of penetration, one projects all penetrating nodes of the
slave-surface to the master-facets by a closest-point projection: xt−i → xti , where xti are
the projected nodal positions. Subsequently, as outlined in Alg. 4.3, the post-impact veloc-
ities of penetrating nodes are found such that the gap rate ġA = 0 according to (B.3) for
all contacting nodes A. The direct enforcement of the Kuhn-Tucker constraint (4.21) and
persistency condition (4.22) can be done in our case as the position of the rigid surface is
assumed to be fixed. Whenever two elastic bodies are in contact, a method that takes into
account the momentum conservation must be employed as done in [5].

We illustrate the performance of the dynamical contact algorithms for a disk-impact
example under conservative loading. Consider a disk subject to a constant body-force g as
sketched in Fig. B.2(top, left). For the benchmark example we use a plane stress nonlinear
Neo-Hookean material model as derived from (2.41) featuring E = 17′900 GPa, ν = 0.31,
ρ = 8.9 g/cm3, and a disk radius of R = 70 µm. For the finite element model we use 108
quadrilateral elements and a bi-linear interpolation. The initial gap to contact is 12 nm,
and the external force is 4 · 1012 m/s2. The elastic modulus and external force are non-
physical, and only serve us to test the numerical method under extreme conditions. For the
implicit method we employ a penalty parameter κp = 3 · 1012. The explicit method does
not require any parameter, whereas the penalty parameter as used in the implicit version
has noticeable effects on the penetration and has to be adjusted by the user for a given
problem. The explicit formulation, in contrast, requires a bound on the maximum allowable
time-step following (4.40). In our example we use ∆tn = 0.167 ns for both methods, whereas
the implicit method is stable and accurate with much bigger time-steps. By looking at the
results in Fig. B.2(bottom, left), we monitor the vertical displacement of the bottom disk-
node over the normalized time t/33 ns for 200 time-steps. As the disk bounces into the rigid
foundation, both methods enforce nicely the geometric constraint until the disk lifts back
off. For the implicit method we notice slight oscillations during persistent contact. The total
energy is well preserved [Fig. B.2(top, right)], and only a minimal loss in energy (< 1%)
[Fig. B.2(bottom, right)] during impact occurs for both methods. Note that the implicit
method restores all energy upon release, which is a typical feature of the method proposed
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Figure B.2: Disk impact example.

by [99] (see also the discussion in [102]). As the disk impacts into the rigid foundation, a
shock wave is introduced and will persist due to reflections at the domain boundary as we
have no damping added to the system. We observe some small vibrations of the disk upon
release, which results in an incomplete recovering of the initial state, due to the conversion
of the potential energy into internal energy.




