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Abstract 

Lameness imposes concerns for dairy cattle welfare and farmer profitability. After 

mastitis, lameness is the second most prevalent disease in dairy cattle and is commonly caused 

by digital dermatitis (DD, also known as foot warts), sole ulcers (SU), and white line disease 

(WLD). Digital dermatitis is an infectious foot lesion, whereas SU and WLD are noninfectious 

lesions that arise due to compromised horn production. Genomic selection against these foot 

lesions and its potential impact on other health traits (mastitis, hypocalcemia, displaced 

abomasum, ketosis, and metritis) requires the identification of loci associated with these foot 

lesions and assessment of the genetic correlation of foot lesions with other health traits. To detect 

susceptibility loci, a genome-wide association study (GWAS) was performed using genotypes 

from the high density SNP array (777K SNPs) and case/control phenotypes for DD (controls n 

=129, DD n = 85), SU (controls n = 102, SU n = 152), WLD (controls = 102, WLD n = 117), SU 

and/or WLD (SU and WLD, controls n = 102, n = 198), and any type of noninfectious foot lesion 

(controls n = 102, cases = 217). GWAS was performed using linear mixed model (LMM) and 

random forest (RF) approaches, and effect sizes of top SNPs were estimated using Bayesian 

regression. For the LMM GWAS, the number of effective SNPs (NES) was calculated as the 

number of SNPs that were not in linkage disequilibrium and used as the denominator to define 

Bonferroni-corrected p-value thresholds of genome-wide statistical significance  (p ≤ 0.05/NES) 

and suggestive significance (p ≤ 0.2/NES). Genetic correlation among foot lesions and health 

traits was estimated using bivariate genome-based restricted maximum likelihood (GREML) 

analysis, and a multi-trait GWAS was conducted to identify genomic regions contributing to 

genetic correlation. Top SNPs identified in the GWAS were in or near genes that were 

functionally relevant to foot lesion etiology. For DD, both the LMM and RF analyses identified 

regions of association on Bos taurus autosome (BTA) 1 and 2, with one of the regions on BTA2 
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containing candidate genes related to immune function. The LMM GWAS revealed an 

associated region on BTA 8 for SU and BTA13 for WLD, SU and WLD, and noninfectious foot 

lesions. These associated regions contained genes related to wound healing, skin lesions, bone 

growth and mineralization, adipose tissue, and keratinization. Furthermore, the region on BTA8 

included a SNP previously associated with SU susceptibility. The RF GWAS for SU, WLD, SU 

and WLD, and noninfectious lesions were overfitted, suggesting that the SNP effects were very 

small and prevented detection of susceptibility loci using this approach. Estimated effect sizes of 

top SNPs were small, and though significant genetic correlation was detected among lameness 

and health traits, the sample size prevented detection of loci contributing to multiple traits. The 

small effect sizes and the limited ability to detect pleiotropic loci reinforces that the environment 

plays a nontrivial role in disease susceptibility, and the remaining genetic component is likely 

governed by many loci. Larger sample sizes are necessary to identify small effect loci and their 

association with individual or multiple lameness and health traits amidst a strong environmental 

effect. 
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Simple summary 

Lameness is the second most prevalent disease in dairy cattle after mastitis and the third 

most common reason for culling after mastitis and infertility. Lameness indicates cow discomfort 

and is often caused by painful foot disorders, most commonly digital dermatitis (DD, also known 

as foot warts), sole ulcers (SU), and white line disease (WLD). These foot disorders are an 

animal welfare issue, incur substantial financial losses for the producer, and inflate the 

environmental footprint per unit of milk due to losses in efficiency of resource use. Risk of 

developing DD, SU, or WLD has a small but significant genetic component, meaning that 

genetic selection against these foot disorders is possible once the location of the genetic markers 

(i.e., what position on which chromosome), or the genes, for these claw disorders is known. 

However, the genetic cause for DD, SU, and WLD are not definitively known. The objective of 

our study was to identify genetic markers associated with risk of developing DD, SU, WLD, and 

any noninfectious foot lesion. For each foot disorder, we compared genetic markers between 

cows that had at least one episode of the foot disorder, and sound cows to find which genetic 

markers were overrepresented in the lame cows. The markers that were overrepresented in the 

lame cows were considered associated with risk of developing that foot disorder. We found 

genetic markers for risk on chromosome 2, 7, and 20 for DD; chromosome 8 for SU; and 

chromosome13 for WLD. Notably, the genetic markers that we found for SU were in the same 

chromosomal region as those found in a previous study of SU. Exploring the regions in the 

genome adjacent to these identified risk markers revealed candidate genes that could plausibly 

play a role in the development of DD, SU, and WLD. Although these genetic markers, and 

genes, for risk are promising, they collectively have a very small influence on risk compared to 

non-genetic means of control (e.g., medicated foot baths to prevent DD, minimizing standing 

time to prevent SU and WLD). Accordingly, the most effective method of reducing the 
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prevalence of these claw disorders is through a combination of non-genetic methods and 

genetically selecting for cows at lower risk of developing foot lesions. Importantly, we found 

significant positive genetic correlation between SU and DD and between SU and WLD meaning 

that genetic selection against one of these three foot disorders will also select against the other 

two foot disorders Though no national genomic evaluation for lameness exists to date, USDA 

recently announced its intention to develop a lameness index, based upon markers such as those 

identified in this work, to reduce lameness because the current feet and leg conformation scoring 

does not reliably predict lameness
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Chapter I. Introduction 

1 Overview of dairy production 

Dairy production relies on the meticulous management of the lactation cycle. Lactation 

begins after a cow has calved and consists of three phases: early, mid, and late lactation, with 

each phase lasting ~120 days. Lactation is followed by a ~65 day dry period such that the entire 

lactation cycle, comprised of the three lactation phases and the dry period, amounts to 

approximately one year. Three months into lactation, that is, during early lactation, the cow is 

bred so that she can conceive in a reasonable time frame and initiate the next lactation cycle. 

Based on this schedule, cows calve and undergo one lactation cycle per year. The more lactation 

cycles a cow undergoes, the more milk she produces in her lifetime, which offsets the financial 

and environmental resources used to raise her before she began lactating. Consequently, 

preventing premature culling elongates the productive lifetime and could translate to a lower 

financial and environmental impact per unit of milk, assuming heifer replacement costs are high 

and milk production is low. On average, cows undergo 2.69 lactations before they are culled 

from the herd (Van Raden et al., 2021), most often due to reproductive issues, mastitis, or 

lameness (USDA, 2018); less frequently a cow may be culled and replaced with heifers to 

introduce superior genetics. According to the USDA, 51.9% of cows are removed in the second 

to fourth lactation, and 25.9% of culled cows were in their fifth or higher lactations (USDA, 

2018). One of the most common reasons for premature culling is lameness, with 7.2% of culled 

cows removed due to lameness (USDA, 2018). 

2 What is lameness? 

Lameness describes abnormal gait or posture and is an indicator of cow discomfort due to 

foot or leg disorders. Cows are typically screened for lameness by dairy personnel during daily 
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health observations and as milking cows are walking to and from the parlor. Personnel look for 

lameness and other indicators of foot discomfort, including an arched back, uneven gait, standing 

with hind legs in an elevated bed to relieve pressure on hind legs, frequently shifting their weight 

from foot to foot, a shift in the order of cows as a pen of cows walks through a gate, changes in 

the time spent laying down, reduced feeding time, or reduced standing time; all of which impact 

cow welfare (Hassall et al., 1993; Read and Walker, 1998; Van Nuffel et al., 2015; Sadiq et al., 

2017). Upon diagnosis, lame cows are treated by the owner, hoof trimmer, or veterinarian, 

incurring expenses associated with lameness. 

3 Lameness is a sustainability issue 

To date, the USDA-National Animal Health Monitoring System (NAHMS) has 

conducted four national studies to estimate the annual prevalence of lameness in 1996, 2002, 

2007, and 2014. These reports demonstrate that lameness has been a longstanding concern in the 

dairy industry, as it is the second most prevalent disease after mastitis (USDA, 2018). Among the 

four years that the reports were generated, annual lameness prevalence (i.e., percentage of 

cows/heifers that had at least one episode of lameness during the year) has ranged from 3.2 to 

11.4% for bred heifers and 16.8% to 23.9% for cows. In 2014 (the most recent report to date), 

97.7% of US dairies had at least one bred heifer or cow that was lame, with more dairies having 

lame cows (89.7%) than lame bred heifers (55.2%) (USDA, 2018). 

Lameness is not only a prevalent welfare issue, but also presents a financial burden for 

dairy producers due to direct costs from prevention and treatment and indirect costs from 

reduced milk production, decreased fertility, and increased labor (Dolecheck and Bewley, 2018). 

Costs per case of each foot disorder range from $64 to $153 for digital dermatitis (DD), $181 to 

$258 for sole ulcers (SU), and $107 to 252 for white line disease (WLD)  (adjusted to 2020 US 
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dollars) (Cha et al., 2010; Dolecheck et al., 2019). Reduction in milk production due to lameness 

decreases the efficiency of resource use, as alluded to above, and translates to a higher 

environmental impact per unit of milk. Losses in production efficiency due to extended calving 

interval, higher cull rate, and decreased milk production inflate the greenhouse gas emissions for 

each case of DD, SU, and WLD by 39 (4.3%), 33 (3.6%), and 39 (4.3%) kg CO2 equivalents, 

respectively, per ton of fat-and-protein-corrected milk (Mostert et al., 2018).  

Because lameness affects animal welfare, producer profit, and the environment, which 

collectively comprise the three pillars of sustainability, reducing lameness would improve the 

sustainability of dairy production. 

4 Etiology of digital dermatitis, sole ulcers, and white line disease 

Though lameness is sometimes described as a disease itself, it is rather a symptom of a 

wide variety of injuries or disorders affecting the bones, hoof, or skin and soft tissues of the foot 

as well as other anatomical components of the front and hind limbs.  Among the various causes 

of lameness, DD, SU, and WLD are the most pervasive (Green et al., 2002; Shearer and van 

Amstel, 2017; USDA, 2018), and are thus the focus of this dissertation. Digital dermatitis has 

historically comprised a large share of lameness cases, with the most recent NAHMS report 

documenting that 70.9% and 36.0% of lameness cases were due to DD in bred heifers and cows, 

respectively, in 2014 (USDA, 2018). Sole ulcers and WLD were not reported on a nationwide 

scale, but are consistently identified as a common cause of lameness (Shearer and van Amstel, 

2017). All three of these lesions are most commonly observed on one or both hind feet (Murray 

et al., 2002; Greenough, 2007) and can be extremely painful (Bruijnis et al., 2012). 

During the early lactation phase, the cow is in negative energy balance as her body 

transitions from investing energy into the calf during pregnancy to putting energy into milk 
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production. Due to this energy deficit and related factors, the early lactation phase is the period 

of highest disease incidence (USDA, 2018). The cow shunts energy into milk production that 

would otherwise be used to ward off disease, including the foot lesions that lead to lameness 

(Hassall et al., 1993; Bicalho et al., 2009; Bicalho and Oikonomou, 2013). Some have observed 

higher incidence of claw or foot disorders during early lactation and attribute this to the severe 

negative energy balance during this phase (Collard et al., 2000; Gernand et al., 2013), whereas 

others have not found significant differences in foot lesion incidence between early and late 

lactation (van der Spek et al., 2015a). 

Digital dermatitis is a lesion typically found on the skin at the heel resulting from a 

polymicrobial infection predominated by multiple phylotypes of bacteria from the Treponema 

genus (Brandt et al., 2011). Though the etiology of DD is unclear, it is postulated that 

treponemes invade the skin through hair follicles (Evans et al., 2009) and elicit a strong initial 

innate immune response (Trott et al., 2003; Watts et al., 2018). The treponemes attenuate this 

initial immune response (Refaai et al., 2013), leading to prolonged inflammation, a delayed 

adaptive immune response, and impaired wound healing (Zuerner et al., 2007; Refaai et al., 

2013). Consequently, fibroblasts proliferate excessively and develop into a raised erosive lesion 

with hypertrophied hairs (Read and Walker, 1998). The inability of the immune response to 

efficiently clear the infection is postulated to contribute not only to the long duration of DD but 

also to the recurrence of DD (Trott et al., 2003). Some have suggested that heifers have a less 

developed immune response than cows, which could make heifers more susceptible to DD and 

explains the higher prevalence of DD in heifers; however, the high rate of new lesion episodes or 

recurrence in cows (48%) suggests that cows are no more immune to DD than heifers (Read and 

Walker, 1998). 
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In contrast to DD, which is an infectious lesion, sole ulcers and white line disease are two 

types of noninfectious lesions that arise secondarily due to improper weight bearing or 

metabolic, enzymatic, and hormonal changes that in turn compromise horn production (Shearer 

and van Amstel, 2017). Accordingly, SU and WLD are considered two types of claw horn 

disruption lesions (CHDL). Normally, a suspensory system of tendons connected to the third 

phalanx and the digital cushion beneath the third phalanx stabilize this bone within the claw. Due 

to hormonal and/or nutritional changes, increased laxity of the suspensory system and thinning of 

the digital cushion allow the distal phalanx to move excessively in the claw and sink, crushing 

the underlying corium (Lischer et al., 2002; Bicalho et al., 2009; Newsome et al., 2017a, 2017b; 

Shearer and van Amstel, 2017; Stambuk et al., 2019). Increased pressure compromises horn 

production from the corium, leading to defective (WLD) or complete cessation (SU) of horn 

production at the pressure site (Shearer and van Amstel, 2017). For WLD, defective horn 

production along the white line makes this region more susceptible to debris and bacterial 

infiltration that, upon reaching the corium, lead to abscess development (i.e. white line abscess) 

(Shearer and van Amstel, 2017). Sole ulcers are thought to result from the distal phalanx rotating 

within the claw such that the heel of the bone sinks and crushes the underlying corium leading to 

sole hemorrhage, and eventually a hole in the solar horn through which the corium protrudes and 

sometimes becomes infected (Greenough, 2007; Shearer et al., 2015). 

Though it is generally accepted that hormonal and nutritional changes can lead to SU and 

WLD, the exact mechanism of how these changes predispose a cow to SU and WLD is still 

debated. One proposed mechanism is that the severe negative energy balance after calving causes 

loss of body condition as the cow mobilizes fat from body stores, including the digital cushion, 

which in turn increases risk of lameness (Hassall et al., 1993; Bicalho et al., 2009). Though 
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reduced digital cushion thickness is strongly associated with higher incidence of SU, WLD, and 

lameness in general (Lischer et al., 2002; Bicalho et al., 2009; Newsome et al., 2017a, 2017b; 

Stambuk et al., 2019), it is unclear whether thinning of the digital cushion is a cause or effect of 

claw disorders. Bicalho et al. (2009) concluded that thinning of the digital cushion after calving 

was a risk factor for CHDLs and recapitulated these conclusions in their review (Bicalho and 

Oikonomou, 2013). In contrast, Newsome et al. (2017b) found that thin sole soft tissue (i.e. 

corium and digital cushion thickness) is associated with higher future CHDL incidence; 

however, thinning of the sole soft tissues after calving is not associated with higher CHDL 

incidence in the future.  

Because claw horn disruption lesions are classically associated with rumen acidosis, 

some have postulated that nutritional imbalance also contributes to risk. Specifically, 

carbohydrate overloading causes rumen acidosis, which is thought to increase laxity in the 

suspensory system that in turn leads to faulty horn production (Nocek, 1997; Nordlund et al., 

2004; Stone, 2004). However, a study testing carbohydrate overloading and laxity of the 

suspensory system did not support this hypothesis (Danscher et al., 2010), although that study 

only tested one carbohydrate overload dosage and measured laxity at two time points after 

carbohydrate overloading. More evidence is needed to support or refute the association between 

subacute rumen acidosis, whether from feeding high concentrate diets or other reason, and the 

development of SU and WLD. 

5 Prevention and treatment 

Because DD is an infectious disease, the main method for prevention (among dairies that 

implement prevention) is the use of medicated foot baths because vaccines that had been 

developed were not effective, likely because of the polytreponemal nature of the infection, and 
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were discontinued (Ertze et al., 2006). Although foot baths are prophylactic for DD, the majority 

of dairies in the US did not use a footbath for cows in 2013, 12.5% used footbaths seasonally or 

occasionally, and 30.6% used footbaths throughout the year (USDA, 2018). Of the dairies that 

used footbaths regularly, 80.9% used them weekly or more frequently, with 25.8% of dairies 

using them daily (USDA, 2018). The most common disinfectant ingredients used in foot baths 

are copper sulfate and formaldehyde, which are environmental and health hazards, respectively 

(Epperson and Midla, 2007; NTP, 2016), which may discourage dairy farmers from 

implementing foot baths and emphasizes the need for additional, less toxic prevention methods, 

such as genomic selection.  

When prevention strategies fail, DD is treated through topical antibiotics, most 

commonly oxytetracycline and lincomycin, under a bandage (Berry et al., 2010, 2012); however, 

these antibiotics are not as effective as penicillin, penicillin derivatives, erythromycin, 

azithromycin and gamithromycin based on laboratory testing (Evans et al., 2012). The common 

use of oxytetracycline may be because oxytetracycline does not enter the milk when used 

topically to treat DD (Britt et al., 1999), but the widespread use of these less effective antibiotics 

may contribute to the high rate of recurrence (Berry et al., 2012; Evans et al., 2016).  

Because improper weight bearing is the primary cause of SU and WLD, prevention of 

these claw horn disruption lesions is achieved through regular claw trimming to maintain the 

proper foot angle and even wearing between the lateral and medial claws (Shearer and van 

Amstel, 2001). Preventing excessive and/or uneven wear to the claws to encourage proper 

weight bearing can also be achieved through minimizing walking distance, minimizing standing 

time, and using rubber flooring in alleyways (Vanegas et al., 2006; Fjeldaas et al., 2011; Eicher 

et al., 2013). Additionally, close monitoring of nutrition may prevent metabolic imbalances that 
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could theoretically lead to poor horn production (Shearer and van Amstel, 2017).  

Similar to prevention methods for SU and WLD, treatment for SU and WLD aims at 

restoring proper weight bearing through corrective trimming. The necrotic horn around the lesion 

and, if present, protruding granulated corium tissue are removed. Antibiotics such as tetracycline 

or oxytetracycline and copper sulfate or ichthammol ointment are sometimes applied to the 

affected area to prevent contamination and reduce inflammation during healing (Kleinhenz et al., 

2014), though some suggest that these topical antiseptics may actually delay wound healing 

(Shearer et al., 2015). Because corrective claw trimming typically causes bleeding, some advise 

the area should be bandaged (Shearer and van Amstel, 2001), though other studies have shown 

limited improvement in, or worse, healing rates with bandages compared to no bandages for SU 

and WLD (White et al., 1981; Pyman, 1997; Klawitter et al., 2019). After corrective trimming, a 

claw block is often added to the sound claw to transfer weight to the sound claw and improve 

healing of the affected claw (Greenough, 2007). 

These prevention and treatment methods negatively impact the producers’ profit margins, 

the environment, and in the case of corrective claw trimming to treat an advanced SU or WLD 

abscess, can cause additional pain and discomfort to cows. Methods to control lameness 

prevalence can potentially be enhanced by genomic selection against these foot lesions and 

associated lameness, thereby reducing incidence and the need for non-genetic means of 

prevention and treatment.  

6 Genetic selection to reduce lameness incidence 

As attention around lameness has grown in the industry, the USDA (Animal 

Improvement Programs Laboratory, AIPL, now part of the Animal Genomic Improvement 

Laboratory, AGIL) and private companies have likewise placed more emphasis on feet and leg 
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traits and, more recently, lameness. In 1996, the Holstein Association USA (HAUSA) introduced 

the feet and legs composite index (FLC) to enable selection for optimal feet and leg 

conformation, which would elongate productive life (HAUSA, 2017). Since 2000, the USDA-

AIPL has incorporated FLC into the net merit index (NM$), which also includes traits for 

production, reproduction, and health and wellness. The HAUSA has since updated the FLC 

multiple times, and in the most recent update in 2020, FLC is comprised of foot angle, rear legs-

rear view, rear legs-side view, feet and legs score, and stature. Although the NM$ includes the 

FLC and other conformation traits, it does not include an index for lameness specifically, let 

alone indices for individual claw disorders. On its most recent report update for NM$, the 

USDA-AGIL recognized that selection for lameness cannot be achieved via selection on FLC 

because FLC is a poor indicator of lameness (Van Raden et al., 2021).  

To target lameness directly, private companies have developed selection indices that 

include lameness in addition to other feet and leg traits, with Zoetis releasing the first wellness 

trait evaluations that included a lameness component in 2016 in the US (Vukasinovic et al., 

2017), and the Agriculture and Horticulture Development Board in the United Kingdom 

releasing the Lameness Advantage index in 2018 (Winters, 2018). The first national effort for the 

genetic evaluation of hoof health and lameness was proposed in 2016 in Canada, where the 

Canadian Dairy Network led a centralized effort to collect hoof health data and use it to develop 

genetic evaluations for lameness (CDN , 2016). Only very recently has the US followed suit, 

with the Council for Dairy Cattle Breeding announcing its intention in February 2021 to 

collaborate with public and private stakeholders to create the infrastructure for standardized 

recording of hoof health data and develop genetic evaluations specifically for hoof health traits 

(Burchard et al., 2021). This will facilitate direct selection on hoof health traits in the US instead 
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of hoof health traits being combined with other production, fertility, and conformation traits in 

selection indices like the net merit index. 

Because noninfectious claw lesions are thought to result from uneven weight bearing 

between and within claws, some have proposed that selection for favorable feet and leg 

conformation can reduce the incidence of noninfectious claw lesions (Van der Waaij et al., 2005; 

Häggman et al., 2013) and therefore feet and leg conformation selection indices are sufficient. 

The underlying assumption for using feet and leg conformation traits to indirectly select on 

noninfectious claw lesion susceptibility is that the genetic correlation between the conformation 

and lesion traits must be strong. However, studies have shown that the genetic correlation 

between feet and leg conformation traits and noninfectious claw lesion susceptibility is low at 

best (Häggman and Juga, 2013; Malchiodi et al., 2017; Ring et al., 2018), which would prevent 

efficient indirect selection. The low genetic correlation may be partially because abnormal hind 

leg conformation can be both a cause and effect of claw lesions, creating a vicious cycle of poor 

conformation and lameness susceptibility (Capion et al., 2008). Consequently, in cases where 

abnormal hind leg conformation is the effect of claw lesions, selection on these conformation 

traits would not necessarily reduce claw lesion incidence because the conformation trait is an 

effect of, rather than genetically correlated with, the lesion. Because indirect selection using feet 

and leg conformation traits is not efficient, research has shifted to finding the genetic basis of 

lameness traits. 

7 Previous studies about the genetic basis of hoof health 

Susceptibility to DD, SU and WLD has a nontrivial genetic component, as implied by the 

breed predisposition of Holstein cattle to DD and SU (Holzhauer et al., 2006, 2008), and the low 

to moderate heritability estimates for these foot lesions. Holstein cattle are the most prevalent 
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breed of dairy cattle in the US (86% of US dairy cattle) (USDA, 2016), which underscores the 

large economic potential of developing genetic evaluation tools to reduce susceptibility to these 

foot lesions. The genetic component of susceptibility to DD, SU, and WLD has been quantified 

by using pedigree information (i.e., pedigree relations and the phenotypes of relatives) to 

estimate heritability, the proportion of phenotypic variation attributable to genetic variation. 

Heritability estimates of susceptibility to foot disorders vary widely in the literature, ranging 

from 0.01 to 0.4 for DD, 0.01 to 0.3 for SU, and 0.017 to 0.26 for WLD (Van der Waaij et al., 

2005; Onyiro et al., 2008; van der Linde et al., 2010; Häggman and Juga, 2013; Oberbauer et al., 

2013; van der Spek et al., 2013, 2015a; Malchiodi et al., 2015a; Biemans et al., 2018), thereby 

indicating the notable genetic contribution to susceptibility. 

The low to moderate heritability of DD, SU, and WLD estimated from pedigree analyses 

implies that certain loci were contributing to susceptibility, leading to association studies to 

identify which loci were associated with susceptibility. Markers for loci were initially 

microsatellite markers (e.g., Buitenhuls et al. 2007) and, with the development of high-

throughput genotyping, have since progressed to SNP panel genotypes (e.g., van der Spek et al. 

2015b). SNP panel genotyping enabled genome-wide association studies (GWAS), in which 

SNPs or variants across the entire genome are tested for association with susceptibility for these 

foot conditions. This genome-wide approach contrasts with candidate gene approaches, in which 

only genes that might be functionally relevant are tested for association with phenotype (e.g., El-

Shafaey 2017). In these GWAS, hoof health is commonly analyzed as binary traits for individual 

foot disorders that cause lameness [yes/no the cow was lame or had a foot lesion(s)], as 

composite binary traits that include certain groups of foot disorders, or as a composite trait 

consisting of any lameness event. 
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To date, the results of association studies are discordant; no overlap in detected 

susceptibility loci has been found among the studies within or across specific foot lesions or 

composite hoof health traits. Genome-wide association studies for DD susceptibility have found 

significant and suggestive SNP associations on Bos taurus autosomes (BTAs) 1, 3, 5, 6, 8, 9, 10, 

14, and 26  (Scholey et al., 2013; Malchiodi et al., 2015b; Naderi et al., 2018; Biemans et al., 

2019; Sánchez-Molano et al., 2019), or no significant or suggestive SNPs (van der Spek et al., 

2015b). The two published GWAS for SU found suggestive SNPs on BTA8, 10, 11, 18, and 22 

(van der Spek et al., 2015b) as well as BTA12 and 25 (Sánchez-Molano et al., 2019). Though 

few GWAS specifically for SU or WLD have been published to date, GWAS for other traits 

related to SU and WLD have been performed for digital cushion thickness (Sánchez-Molano et 

al., 2019; Stambuk et al., 2020), sole hemorrhage (van der Spek et al., 2015b; Sánchez-Molano et 

al., 2019), and laminitis (Naderi et al., 2018). Digital cushion thickness is strongly associated 

with SU, WLD, and lameness in general (Bicalho et al., 2009), and sole hemorrhage and 

laminitis are thought to be precursors to SU and WLD (Shearer and van Amstel, 2017). Other 

GWAS for hoof health traits examined trimming status (i.e., the need to claw trimming), 

laminitis-related claw disorders (double sole, sole hemorrhage, sole ulcers, white line 

separation), infectious foot disorders (DD and interdigital dermatitis) and heel erosion (van der 

Spek et al., 2015b), hoof health status determined by veterinarians and claw trimmer, total 

number of hoof disorders (Suchocki et al., 2020), and a composite feet and leg disorders index 

(Wu et al., 2016). The wide variation in susceptibility loci detected imply that susceptibility to 

individual foot lesions and composite lameness indices are complex traits strongly affected by 

the environment, and the remaining genetic component is comprised of many small effect loci 

contributing to susceptibility. 
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8 Genetic correlation between lameness and other health traits, milk production traits, 

and reproduction traits 

The genetic correlation between lameness traits and other health traits (e.g., clinical 

mastitis, retained placenta, metritis) must also be considered during genomic evaluations so that 

unfavorable correlations can be minimized. Genetic correlation estimates for individual foot 

disorders and clinical mastitis or somatic cell count range from significantly different from zero 

(0.15 to 0.35) (Koenig et al., 2005; Buch et al., 2011) or close to zero (Gernand et al., 2012). To 

date, no other studies have estimated the genetic correlation between claw disorders and health 

traits other than mastitis traits. Also of particular interest is the genetic correlation of lameness 

with milk production traits (e.g., milk yield, fat/protein yield) and reproduction traits, though 

these traits are beyond the scope of this dissertation. Genetic correlation estimates between 

individual foot disorders and milk production traits (i.e., milk yield, fat and protein yield) range 

from unfavorable positive estimates (Pryce et al., 1997; Koenig et al., 2005, 2008; Buch et al., 

2011), to estimates close to zero (Gernand et al., 2012), to favorable negative estimates (Onyiro 

et al., 2008). The wide range of estimates of genetic correlation between milk production traits 

and lameness traits reflects the disparity in lameness incidence in high-producing cows compared 

to that in low-producing cows. Some have found that lameness appears more frequently in high-

producing cows during early lactation compared to low-producing cows (Collard et al., 2000; 

Green et al., 2014). In contrast, previous work in our lab has found that high-and low-producing 

cows have the same probability of hoof lesions (Oberbauer et al., 2013). 

9 Objective 

Lameness has been a longstanding prevalent issue caused primarily by DD, SU, and 

WLD. Though it is known that genetics plays a role in the susceptibility to these three disorders, 
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which loci influencing susceptibility is still unclear. Thus, the objective of this dissertation 

research is to identify genomic regions associated with the three most common causes of 

lameness: DD, SU, and WLD. Loci identified from this research could inform selective breeding 

programs by specifically targeting the loci associated with these foot diseases. This would reduce 

the incidence of DD, SU, and WLD and in turn improve animal welfare, producer profit, and the 

environmental impact of dairy production. 

10 Overview of methodology 

The first two experimental chapters detail investigations to identify loci contributing to 

DD (Chapter 2), SU, and WLD (Chapter 3). Because the genetics underlying complex traits are 

rarely exclusive and loci often affect multiple traits, the fourth chapter explores how the 

susceptibility loci for lameness traits fit within the broader context of other health traits by 

estimating the genetic correlation between lameness traits and other common health traits and 

identifying loci contributing to correlated traits. Knowledge of how lameness traits covary with 

other health traits will help avoid inadvertently selecting for increased susceptibility to one 

disease while selecting for lower susceptibility to lameness. 
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Chapter II. Genome-wide association studies reveal susceptibility loci for digital dermatitis 

in Holstein cattle 

 

This chapter has been published in the MDPI Animals journal. 

Citation: Lai, E., A.L. Danner, T.R. Famula, and A.M. Oberbauer. 2020. Genome-Wide 

Association Studies Reveal Susceptibility Loci for Digital Dermatitis in Holstein Cattle. 

Animals 10:2009. doi:10.3390/ani10112009. 

 

 



16 

Simple Summary: Digital dermatitis (DD), a leading cause of foot problems in dairy 

cattle, is a welfare concern and causes financial losses due to treatment and reduced milk 

production. Foot warts, or the technically correct term of digital dermatitis, result from a 

bacterial infection followed by delayed healing due to both genetic and environmental factors. 

Dairy farmers are already combatting DD through environmental control, but they do not have 

genetic selection tools because the genetics influencing DD susceptibility are largely unknown. 

We sought to identify the genetics associated with DD which can be incorporated into genetic 

selection tools. Farmers can then use these genetic selection tools to breed cows that are less 

susceptible to DD. We identified promising genes that play a role in the immune response and 

wound healing—immune functions that, if impaired, could increase a cow’s susceptibility to DD. 

Though these genes were promising, their associated genetic markers had very little influence on 

DD susceptibility when compared to environmental management. Thus, the findings imply that 

the best approach for reducing DD prevalence is likely through combining a genetics approach 

with environmental management. 

Abstract: Digital dermatitis (DD) causes lameness in dairy cattle. To detect the 

quantitative trait loci (QTL) associated with DD, genome-wide association studies (GWAS) were 

performed using high-density single nucleotide polymorphism (SNP) genotypes and binary 

case/control, quantitative (average number of DD per hoof trimming record) and recurrent (cases 

with ≥2 DD episodes vs. controls) phenotypes from cows across four dairies (controls n = 129 

vs. DD n = 85). Linear mixed model (LMM) and random forest (RF) approaches identified the 

top SNPs, which were used as predictors in Bayesian regression models to assess the SNP 

predictive value. The LMM and RF analyses identified QTL regions containing candidate genes 

on Bos taurus autosome (BTA) 2 for the binary and recurrent phenotypes and BTA7 and 20 for 
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the quantitative phenotype that related to epidermal integrity, immune function, and wound 

healing. Although larger sample sizes are necessary to reaffirm these small effect loci amidst a 

strong environmental effect, the sample cohort used in this study was sufficient for estimating 

SNP effects with a high predictive value. 

Keywords: digital dermatitis; foot warts; lameness; genome-wide association study; 

linear mixed model; random forest; Bayesian estimation; sustainability; animal welfare 

1 INTRODUCTION 

Lameness, or abnormal gait, affects 16% of dairy cows in the United States, making 

lameness the second most prevalent disease in dairy cattle after mastitis (USDA, 2018). Digital 

dermatitis (DD) is a common cause of lameness, comprising 70.9% and 36.0% of lameness cases 

in heifers and cows, respectively (USDA, 2018). The economic impacts of DD are $64 to $153 

per episode due to reduced milk production, discarded milk, treatment costs, and additional labor 

(Cha et al., 2010; Dolecheck et al., 2019). Furthermore, premature culling obligates producers to 

expand their replacement heifer herd. Because heifers consume inputs without contributing to 

milk production, a larger replacement heifer herd inflates the economic cost (Hadley et al., 2006) 

and carbon footprint (Ratwan et al., 2015) per unit of milk. Thus, reducing the incidence of DD 

and associated lameness has great potential to benefit animal welfare, the producer’s profit 

margin, and the environment, bolstering the three pillars of sustainability. 

Heritability estimates for DD range from 0.01 to 0.4 (Onyiro et al., 2008; Oberbauer et 

al., 2013; Biemans et al., 2019), indicating genetic contributions to DD susceptibility along with 

a strong environmental influence. Reducing DD incidence, therefore, will likely be achieved 

through a combination of management and genetic approaches informed by the etiology of DD. 

Although the etiology of DD has not been completely elucidated, multiple bacterial phylotypes 
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belonging to the genus Treponema are consistently found in DD lesions (Brandt et al., 2011). 

Accordingly, the main environmental management method for reducing DD incidence is 

medicated foot baths (Holzhauer et al., 2012; Holzhauer, 2017), though this treatment is 

expensive, with estimates of ~$42 per cow per year (Cook, 2017). Additionally, the disinfectant 

compounds commonly used in foot baths raise environmental and health concerns, as the 

primary ingredients, copper sulfate and formaldehyde, are environmental pollutants (Epperson 

and Midla, 2007)  and carcinogenic (2016), respectively. To alleviate these issues and improve 

DD prevention, some producers emphasize feet and leg conformation scores or indices that 

include claw health when selecting sires and, increasingly, rely upon genetic testing for heifers. 

However, the low genetic correlation between conformation traits and foot lesions impairs 

efficient indirect selection against foot lesions when using selection on conformation traits (van 

der Linde et al., 2010).  

Currently, no selection index exists specifically for DD susceptibility. Targeted genetic 

selection against DD and associated lameness requires the identification of genomic regions 

influencing DD susceptibility. To find the contributing quantitative trait loci (QTL), genome-

wide association studies (GWAS) have been undertaken, although the results to date have been 

discordant. Previous studies found significant and suggestive single nucleotide polymorphisms 

(SNPs) on Bos taurus autosomes (BTAs) 1, 3, 5, 6, 8, 9, 10, 14, and 26 (Scholey et al., 2013; 

Malchiodi et al., 2015b; Naderi et al., 2018; Biemans et al., 2019; Sánchez-Molano et al., 2019), 

or no suggestive or significant SNPs (van der Spek et al., 2015b).  

In an effort to improve upon and refine past studies, the present study used strict 

phenotyping, dairies with similar management practices, and a high-density SNP genotyping 

array to identify the associations between DD and genomic regions. We hypothesized that certain 
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genetic markers would be associated with DD susceptibility, and that those markers would have 

small effects. Our results revealed multiple small-effect SNPs were associated with DD and 

defined QTL that contained candidate genes related to immune function and wound healing, 

supporting our hypothesis. 

2 MATERIALS AND METHODS 

Four commercial dairies in the Central Valley of California, two of which had 

participated in our previous heritability study (Oberbauer et al., 2013), provided hoof trimming 

records and blood samples from which to generate genotypic data. All the procedures were 

conducted in accordance with the ethical standards set by the University of California, Davis, 

and approved by the Institutional Animal Care and Use Committee. 

2.1 Phenotypic data 

Hoof trimming records were used to generate binary and quantitative phenotypes. Foot 

lesions and lameness issues were diagnosed by a single hoof trimmer servicing three of the 

dairies (dairies A, B, and C), and a different hoof trimmer servicing the fourth dairy (dairy D). 

The hoof trimmer servicing three dairies was trained by Dr. Steven Berry, a veterinarian 

specializing in foot lesions who offered hoof trimming training workshops to the industry and 

was a coauthor of our earlier paper (Oberbauer et al., 2013), and the other trimmer shadowed 

trained trimmers to standardize the diagnostics. Foot lesions were diagnosed and recorded while 

the cow was restrained. Foot lesion types and the foot with DD lesions were recorded into the 

cow’s electronic record (dairies A and D) or maintained in a hard copy format (dairies B and C). 

Each type of foot lesion (e.g., DD, sole ulcer, laminitis, white line disease, foot rot, etc.) and 

miscellaneous lameness event (e.g., rock, cut, etc.) was tallied for each cow. 

Both hoof trimmers utilized similar criteria for defining instances of DD in the cattle to 
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reduce the phenotypic classification variability; specifically, DD was recorded for cows with 

raised, inflamed lesions on the skin above the heel of the foot or above the interdigital space on 

the front of the foot. Routine hoof trimming varied by dairy: cows were trimmed at the beginning 

and middle of lactation, during dry off, and when exhibiting altered gait (dairy A); during dry off 

and when exhibiting altered gait (dairy B and C); and only when exhibiting altered gait (dairy 

D). Cases were defined as cows who had exhibited at least one DD lesion, whereas controls had 

no DD or other lameness records and were 6.5 years of age or older to avoid misphenotyping 

younger cows who had insufficient time to develop lameness events. Cows may have multiple 

bouts of DD over their lifetime and, in some cases, the first instance of DD may have occurred 

before the cows were in milk (i.e., as heifers). Because DD lesions typically last for four to six 

months (Read and Walker, 1998; Krull et al., 2016), we defined independent DD lesion episodes 

as those that were separated by at least six months. Cows with two or more independent DD 

episodes were considered recurrent cases. Digital dermatitis records that were less than six 

months apart were considered repeated records of one persistent DD episode. Digital dermatitis 

was analyzed as a binary phenotype to identify loci influencing general susceptibility to DD and 

as a quantitative phenotype calculated as the total number of independent DD lesions a cow had 

divided by the total number of hoof trimming records to standardize the number of lesions by the 

number of hoof trimming records for each cow. Consequently, the quantitative phenotype for a 

control cow was zero. Digital dermatitis was also analyzed as a recurrent phenotype (cases with 

≥2 DD episodes vs. controls) to identify the loci contributing to reoccurring DD episodes. 

2.2 Genome-wide association and linear mixed model analyses 

Genomic DNA was extracted from whole blood samples using the QIAGEN QIAamp 

DNA Blood Mini Kit (QIAGEN Inc., Valencia, CA, USA) and quantified using the NanoDrop 
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(ND-2000 v3.2.1) spectrophotometer (Thermo Scientific, Wilmington, DE, USA). DNA samples 

were genotyped on the BovineHD BeadChip (777962 SNPs, Illumina Inc., San Diego, CA, 

USA) by GeneSeek (Lincoln, NE, USA). Raw and processed microarray data were submitted to 

the NCBI Gene Expression Omnibus database (GEO series record GSE159157). Illumina’s 

GenCall algorithm was used to call genotypes. 

GWAS were performed using the binary, quantitative, and recurrent phenotypes using the 

SNP coordinates from the ARS-UCD1.2 map (accessed August 2020 from the National Animal 

Genome Research Project’s Cattle Genome Analysis Data Repository 

(https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates/), version last 

modified 11 September 2018). The quality filtering of SNP genotypes was performed using 

PLINK 1.9 (Chang et al., 2015; Purcell and Chang, 2015) to remove from further analysis any 

cows having less than 5% of all SNPs genotyped and SNPs missing genotypes in more than 5% 

of the cows. SNPs with a minor allele frequency of less than 0.05 were removed to exclude rare 

variants, and SNPs that deviated significantly from the Hardy–Weinberg equilibrium (p < 1 × 

10−6) in controls were removed to exclude systematic genotyping errors. 

Family structure is extremely prevalent in the dairy population from breeding elite bulls 

to hundreds to tens of thousands of cows. To visualize the genetic similarity among cows at this 

initial dairy, a multi-dimensional scaling (MDS) analysis was performed and the first two 

dimensions were plotted. The GWA analyses were performed using the genetic analysis program 

Genome-wide Complex Trait Analysis (GCTA) (Yang et al., 2011) to fit a linear mixed model 

(LMM) that tests for the association of SNP genotypes with binary and quantitative DD 

phenotypes. An LMM was selected for its ability to incorporate a genetic relatedness matrix to 

correct for familial relatedness and population structure. Linear mixed models are designed for 
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quantitative phenotypes, as LMMs assume that phenotypes are normally distributed; however, 

LMMs have also been routinely used to analyze binary traits (Lippert et al., 2011; Zhou and 

Stephens, 2012). A genetic relatedness matrix was computed and included along with farm as a 

covariate in the LMM. When fitting the LMM for each SNP, the LMM included the 

chromosome of the candidate SNP being tested. To reduce false positive associations due to 

multiple testing across many loci without being overly stringent, the effective number of 

independent SNPs (Me) after linkage disequilibrium (LD) pruning was determined using the 

Genetic Type I error calculator (GEC) and used as the denominator for Bonferroni-corrected 

thresholds (Li et al., 2012). Significant SNPs were defined as those with p < 0.05/Me, whereas 

suggestive SNPs were defined as having p < 1/Me (Lander and Kruglyak, 1995). To calculate the 

genomic inflation factors (λGC), chi-squared test statistics were first generated from association 

p-values, and the median of the resulting chi-squared distribution was divided by the median of 

the expected chi-squared distribution. Quantile-quantile plots (qqplots) and Manhattan plots were 

plotted in R (R Development Core Team, 2010) using the package qqman (Turner, 2014). 

2.3 Random forest analysis 

Random forest (RF) analysis was performed as an additional method for identifying 

SNPs that appeared to importantly contribute to disease phenotypes. Random forests do not 

make any assumptions about the inheritance model (additive, dominant, recessive) and are able 

to test multiple SNPs jointly for association with phenotype. Additionally, the RF approach is 

unaffected by an uneven farm distribution of cases and controls because RF builds decision trees 

and estimates the importance of each feature by the frequency it appears in the decision trees, 

rather than estimating parameters for a model. Consequently, RFs avoid estimating parameters 

for which there are no data. These properties make RFs well equipped to identify structure within 
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complex genetic architectures like DD susceptibility. Specifically, RF can accommodate data 

despite uneven sampling across farms, in which contributing SNPs may have different modes of 

inheritance and where epistasis is likely prevalent.  

After converting quality-filtered binary PLINK files into VCF files split by chromosome 

in PLINK 1.9 (Purcell et al., 2007; Chang et al., 2015), all the missing genotypes were imputed 

using BEAGLE 5.1 (Browning et al., 2018) because the RF analysis cannot handle missing 

genotypes. The resulting VCF files were converted back to binary PLINK files, which were LD-

pruned using a threshold of R2 ≥ 0.90 to avoid diluting the importance of SNPs in strong LD 

during the RF analysis (Goldstein et al., 2010) and recoded to additive and dominant component 

files suitable for importing into R. The additive component (i.e., genotypes coded as 0/1/2 minor 

alleles) was used as input for the RF analysis in R using the caret package (Kuhn, 2008; R 

Development Core Team, 2010). For binary and quantitative phenotypes, RF analysis was 

implemented with all genome-wide SNPs in one run to estimate the relative importance of 

explainers, comprised of SNP genotypes and farm. For both runs, the same random sample of 

two thirds of the cows was used to train the model and calculate variables of importance for each 

explainer. The RF run for each phenotype built 500 decision trees that included three values of 

mtry, the number of predictors considered at each node of the tree. The value of mtry that yielded 

the most accurate model was used as the final model. The most important explainer was assigned 

an importance variable of 100, and the other explainers were assigned importance variables 

relative to the most important explainer (e.g., an explainer with an importance of 50 is 50% as 

important as the most important explainer). To assess the accuracy of the final model, the 

remaining third of cows was used as the test population, using the explainers and their relative 

importance to predict phenotype. 
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After evaluating the model accuracy using the test population, a threshold of importance 

was determined by ranking and plotting the SNPs the RF identified as important for each 

chromosome in a scree plot and finding the rank of the second-order point of inflection using the 

d2uik option in the inflection package in R (Christopoulos, 2016, 2017b). SNPs ranking equally 

as or more important than this threshold were considered important and included in further 

analyses. 

2.4 Bayesian regression to assess model predictability and validation 

To assess the collective predictive ability of the top SNPs identified in the LMM and RF 

analyses, the top SNPs from each analysis (i.e., significant and suggestive SNPs from LMM 

analyses, important SNPs from RF analyses) were tested for association with phenotype using 

Bayesian regression. Bayesian regression was selected because of its ability to fit multiple SNPs 

simultaneously while also recognizing that the majority of SNPs have small effects on DD 

susceptibility (van der Spek et al., 2015b; Biemans et al., 2018), that some SNPs are likely 

correlated due to LD, and that not all farms contributed controls to the analyses. Additionally, 

Bayesian regression enables the thorough evaluation of model fit through leave-one-out (LOO) 

validation and posterior predictive checking (PPC), the latter of which is a uniquely Bayesian 

feature. 

Suggestive and significant SNPs from the LMM GWAS and important SNPs from the RF 

analysis were used as predictors along with farm in each Bayesian regression model. Similar to 

the RF analyses, SNP genotypes were coded as 0/1/2 minor alleles. A Bayesian regression model 

was fitted for each combination of GWAS method (LMM and RF) and phenotype (binary and 

quantitative), such that four models were fitted: LMM-binary and RF-binary were fitted using a 

Bayesian logistic regression model, and LMM-quantitative and RF-quantitative were fitted using 
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a Bayesian generalized linear model for continuous data. Susceptibility to DD appears to be 

complex and the majority of SNP effects are likely to be small (van der Spek et al., 2015b; 

Biemans et al., 2018). To reflect this distribution of SNP effects, a normal prior with a small-

scale N (0,1) was used for the distribution of predictors for all four models. Each of the four 

models was fitted by sampling from the posterior distribution using the Hamiltonian Monte 

Carlo algorithm, a Markov chain Monte Carlo (MCMC) algorithm using the rstanarm package in 

R (Goodrich et al., 2020). Four parallel chains sampled the posterior distribution, and each chain 

was run for 10,000 iterations with a warmup of 2500 iterations, keeping every 25th iteration to 

avoid autocorrelation.  

Unlike frequentist regression, which would output a point estimate of each SNP effect, 

Bayesian regression outputted a distribution of where the true value of each SNP effects fell, 

defined by the Bayesian uncertainty interval (UI). SNPs with 95% UIs that did not include zero 

were considered significantly associated with DD susceptibility. For each significant SNP, the 

probability of disease given a genotype at the significant SNP (coded as 0/1/2 minor alleles) and 

a 0 genotype at all other SNPs was calculated using the median of SNP effect estimates as point 

estimates in the inverse logit equation using the R package arm (Gelman et al., 2020). Diagnostic 

and Bayesian UI plots for the posterior medians of SNP effects were plotted using the bayesplot 

package. Leave one out cross validation was performed using the loo package (Vehtari et al., 

2017, 2020) in R to predict the phenotype of each cow using the SNP effects estimated from all 

other cows. The reliability of prediction was assessed using the Pareto k diagnostic values 

outputted from the LOO analysis. Posterior predictive checking (PPC) from the bayesplot 

package (Gabry et al., 2019b) was used to assess the goodness of fit of the model. Posterior 

predictive checking assessed how well the estimated predictor effects were able to simulate 
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phenotypes with a similar distribution to that of the observed phenotypes. 

2.5 Defining and annotating QTL regions 

For the significant and suggestive SNPs identified in the LMM analyses and the 

important SNPs identified in the RF analyses, the QTL boundaries and regions were defined and 

annotated. Because SNPs are more likely to be in LD with causal variants than be causal 

themselves, the linkage disequilibrium in the regions flanking these top SNPs was used to define 

the boundaries of QTL, per the methods used in previous GWAS studies (Richardson et al., 2016; 

Twomey et al., 2019). Specifically, SNPs within 5 Mb of significant and suggestive SNPs that 

were also in LD (r2 ≥ 0.5) were considered as belonging to the same QTL. The SNPs furthest 

upstream and downstream that were in LD with the target suggestive or significant SNP defined 

the boundaries of the QTL. Overlapping QTL were combined into one QTL. QTL from the 

LMM and RF analyses were compared to discern whether the two analyses found the same QTL. 

QTL regions that were identified in both LMM and RF analyses were explored for candidate 

genes. Additionally, QTL defined by SNPs that were significant in the Bayesian regression 

analyses were also explored for candidate genes. Candidate genes were defined as genes falling 

in QTL regions identified in both LMM and RF analyses or in QTL defined by SNPs that were 

significant in Bayesian regression and were functionally relevant to DD etiology. 

To annotate the QTL regions, the genomic regions search in FAANGMine v1.1 

(Functional Annotation of Animal Genomes (FAANG) Consortium, 2019) using the 

ARS_UCD1.2 assembly was implemented to find genes within the QTL regions. The RefSeq 

identifiers of genes within the QTL were used in a gene ontology and pathway enrichment 

analysis in FAANGMine to discern whether the genes belonged to higher-order functions and 

pathways related to DD etiology. For the gene ontology and pathway enrichment analyses, the 
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Benjamini Hochberg test correction was used to correct for multiple testing, and all the RefSeq 

genes in B. taurus were used as the background population. To identify the functions of 

individual genes, protein coding genes in QTL defined by SNPs that were significant in two 

analyses (i.e., LMM, RF, and/or Bayesian regression) were searched in the Mouse Genome 

Informatics batch query database (http://www.informatics.jax.org/batch) using the mammalian 

phenotype option (Smith and Eppig, 2009). 

3 RESULTS 

3.1 Descriptive data 

Hoof trimming records for 1382 DD-affected cows at dairies A, B, and D from 2002 to 

2019 were used to calculate the age of onset statistics. Dairy C did not have hoof trimming 

records from the beginning of the cows’ lives and was thus excluded from calculating the age of 

onset statistics. The average age of onset for the first episode of DD observed was 3.7 (SD = 1.6) 

years old and the median was 3.5 years old, indicating a minimum age of 6.5 years old for 

controls was sufficiently stringent to avoid misphenotyping younger cows. The cases and 

controls were sampled from 2013 to 2020. Cases were sampled from all four dairies, whereas 

only dairies A and D had control cows that met our stringent age and soundness requirements 

(Table II-1). In total, 222 cows were genotyped (cases n = 90, controls n = 132), of which six 

were removed during quality filtering (cases n = 3, controls n = 3), leaving 216 cows for analysis 

(cases n = 87, controls n = 129). Of the 87 cases, 24 had recurrent DD episodes and were used in 

the GWAS of controls vs. recurrent DD cases. Forty-seven percent of the DD cases had no other 

foot lesions other than DD during their lifetime. The remaining cases had, in addition to clearly 

identifiable DD, abscesses, sole fracture, sole ulcers, or bruising. One cow also had foot rot in 

addition to DD. Of these other foot lesions, only foot rot was considered infectious, whereas the 
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other concomitant lesions were noninfectious and associated with excessive wear of the claw due 

to hard flooring and/or metabolic issues (Shearer and van Amstel, 2017).  

Table II-1. Distribution of digital dermatitis cases and non-lame controls across the four dairies. 

Farm Case Control Total 
A 19 112 131 

B 22 0 22 

C 30 0 30 

D 16 17 33 

Total 87 129 216 

After quality control filtering, 560,277 SNPs remained for the LMM analysis, and 

222,060 SNPs (40%) for the RF analyses remained after LD pruning (r2 > 0.90). The MDS 

analysis indicated no obvious population stratification (Figure II-S1). The effective number of 

SNPs (i.e., SNPs that were not in LD) was approximately 158,000 SNPs, yielding a cutoff of 

significance at 3.2 × 10−7 or 6.5 on the −log10(p) scale and a suggestive cutoff at 6.3 × 10−6 or 5.2 

on the −log10(p) scale. Manhattan plots for the LMM binary and quantitative analyses are shown 

in Figure II-1 and suggestive and significant SNPs, in Table II-2 and Table II-3. For the recurrent 

LMM GWAS, the Manhattan plot is depicted in Figure II-S2 and suggestive and significant 

SNPs in Table II-S1. The genomic inflation factors were 0.97 for the binary and quantitative 

GWASs and 1.0 for the recurrent GWAS; when considered in conjunction with the qqplots, the 

analyses sufficiently accounted for population structure (Figure II-S3). In separate analyses, we 

removed outlier control cows, defined as having a value < −0.10 in the first coordinate and a 

value < −0.08 in the second coordinate of the MDS plot, and the conclusions of association 

remained unchanged (Figure II-S4). Our method of correction for multiple testing (i.e., using the 

effective number of independent SNPs as the denominator for Bonferroni correction) resulted in 

more stringent significance thresholds than those based on false discovery rate that are used in 

other GWASs for DD (Malchiodi et al., 2015b; van der Spek et al., 2015b; Biemans et al., 2019).  
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(a) 

 
(b) 

 
Figure II-1. Manhattan plots from the linear mixed model genome-wide association analyses 

using (a) binary phenotypes designating the presence of digital dermatitis (DD) lesions or the 

absence of any lameness issues and (b) quantitative phenotypes calculated by dividing the 

number of DD episodes by the total number of hoof trimming records. The red line indicates the 

threshold for genome-wide significance (Bonferroni-corrected using the number of independent 

SNPs at p < 0.05), and the blue line indicates the threshold for suggestive significance 

(Bonferroni-corrected using the number of independent SNPs at p < 1). 
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Table II-2. Suggestive SNPs detected from the linear mixed model genome-wide association analysis using binary phenotypes and 
their defined QTL. 

        
Minor Allele 

Count 
MAF a             

SNP ID BTA 

SNP 

Position 

(bp) 

Minor/

Major 

Allele 

Case

s (2n 

= 

174) 

Controls 

(2n = 

258) 

Cases Controls 
Effect Size 

(SE) 
p 

Significance in 

Bayesian 

Regression 

QTL Start Position (bp) 
QTL End 

Position (bp) 

QTL Size 

(kb) 

BovineHD0100035768 1 125563251 A/G 63 54 0.362 0.209 0.178 (0.037) 1.68 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035771 1 125565548 G/A 63 54 0.362 0.211 0.175 (0.037) 2.31 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035773 1 125567245 T/C 63 55 0.362 0.213 0.175 (0.037) 2.35 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035776 1 125570173 G/T 63 55 0.362 0.213 0.175 (0.037) 2.35 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035780 1 125573042 G/A 63 55 0.362 0.213 0.175 (0.037) 2.35 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035783 1 125576193 G/A 63 55 0.362 0.213 0.175 (0.037) 2.35 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035788 1 125598084 G/A 63 57 0.362 0.221 0.164 (0.036) 5.36 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD4100000712 1 125598643 T/C 63 57 0.362 0.223 0.163 (0.036) 6.31 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035789 1 125599413 C/T 63 57 0.362 0.221 0.164 (0.036) 5.36 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035796 1 125608174 A/G 64 56 0.368 0.217 0.163 (0.036) 4.59 × 10−6 ns 125550933 b 125822143 b 271.21 b 

ARS-BFGL-NGS-113021 1 125609019 C/T 64 56 0.368 0.217 0.163 (0.036) 4.59 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035797 1 125609959 C/T 64 56 0.368 0.217 0.163 (0.036) 4.59 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035802 1 125627579 C/T 64 56 0.368 0.217 0.163 (0.036) 4.59 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035803 1 125628401 A/C 64 56 0.368 0.217 0.163 (0.036) 4.59 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035828 1 125680990 G/A 87 88 0.500 0.341 0.155 (0.034) 4.11 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035829 1 125681850 C/A 87 88 0.500 0.341 0.155 (0.034) 4.11 × 10−6 ns 125550933 b 125822143 b 271.21 b 

ARS-BFGL-NGS-100109 1 125683184 C/T 87 88 0.500 0.341 0.155 (0.034) 4.11 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035833 1 125688941 C/T 87 88 0.500 0.341 0.155 (0.034) 4.11 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035841 1 125700410 A/G 87 89 0.500 0.345 0.152 (0.034) 5.85 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035842 1 125700857 C/T 87 89 0.500 0.345 0.152 (0.034) 5.85 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035844 1 125702010 C/T 87 89 0.500 0.345 0.152 (0.034) 5.85 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BovineHD0100035845 1 125702906 G/T 87 89 0.500 0.345 0.152 (0.034) 5.85 × 10−6 ns 125550933 b 125822143 b 271.21 b 

BTA-47853-no-rs 2 63365256 A/G 78 64 0.448 0.248 0.167 (0.036) 3.69 × 10−6 s 60971364 63389576 2418.2 

BovineHD0200019142 2 65836042 G/A 41 32 0.236 0.124 0.224 (0.046) 1.10 × 10−6 s 65836042 65836042 - 

a MAF = minor allele frequency. 
b This QTL is defined in both the linear mixed model and random forest analyses for the binary case-control phenotype. s = SNP effect 
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estimated from Bayesian regression was significantly different from zero, as defined by the 95% uncertainty interval. ns = SNP effect 
estimated from Bayesian regression was not significantly different from zero, as defined by the 95% uncertainty interval. 
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Table II-3. Important SNPs from random forest analysis using binary phenotypes and their defined QTL. Importance variables are 
expressed as % importance relative to farm (i.e., farm was 100% importance). 

        Minor Allele Count MAF a           

SNP ID BTA 
SNP Position 
(bp) 

Minor/ 
Major 
Allele 

Cases  
(2n = 174) 

Controls  
(2n = 
258) 

Cases Controls 

SNP 
Importance 
(% Relative 
to Farm) 

Significan
ce in 
Bayesian 
Regression 

QTL Start 
Position 
(bp) 

QTL End 
Position (bp) 

QTL 
Size 
(kb) 

BovineHD0100001686 1 5894509 G/A 54 75 0.310 0.291 70.9 ns 5894509 5901795 7.3 
BovineHD0100013452 1 47090630 C/T 41 25 0.238 0.098 75.4 ns 43459206 49409839 5950.6 
BovineHD0100013140 1 45742004 G/A 35 20 0.201 0.078 75.6 ns 43459206 49409839 5950.6 
BovineHD0100013551 1 47618749 T/G 50 27 0.291 0.105 81.5 ns 43459206 49409839 5950.6 
BovineHD0100033878 1 118845470 A/G 9 41 0.052 0.159 76.1 ns 114235013 119003717 4768.7 
BovineHD0100035876 1 125811728 A/C 70 68 0.402 0.264 79.4 s 125550933 b 125822143 b 271.21 b 
BovineHD0200017030 2 59626300 C/T 22 95 0.126 0.368 77.0 s 58016533 59967789 1951.3 
BovineHD0200037724 2 129189118 T/C 35 73 0.201 0.283 83.0 ns 128495987 129671807 1175.8 
BovineHD0300035231 3 119898047 T/G 52 53 0.299 0.205 76.7 s 119720909 119942789 221.9 
BovineHD0400033808 4 115632631 A/G 84 92 0.483 0.357 76.5 ns 115461900 115812750 350.9 
ARS-BFGL-NGS-111175 4 119082548 A/C 38 30 0.218 0.116 76.8 ns 116927673 119130213 2202.5 
BovineHD0400034694 4 117654227 G/A 53 119 0.305 0.461 76.9 ns 116927673 119130213 2202.5 
BovineHD0700005793 7 19675119 C/T 87 102 0.500 0.395 75.5 ns 17910021 19773720 1863.7 
BovineHD0700016221 7 54331048 A/G 6 42 0.034 0.163 77.0 ns 49401649 54505899 5104.3 
BovineHD1300007641 13 26082265 C/T 69 140 0.397 0.543 76.0 ns 22185154 26101077 3915.9 
BovineHD1500016894 15 57724182 A/G 60 59 0.345 0.229 72.9 ns 56807906 58102169 1294.3 
BovineHD1600016687 16 58237523 C/T 105 108 0.603 0.419 81.8 ns 56372228 62230342 5858.1 
BovineHD1700012893 17 45209840 T/C 62 52 0.356 0.202 80.4 ns 44418753 45224548 805.8 
BovineHD1800003369 18 9579005 T/C 100 102 0.575 0.395 79.6 ns 9510127 9582839 72.7 
BovineHD1800012376 18 41782168 C/T 27 8 0.155 0.031 88.4 ns 41753915 41863187 109.3 
ARS-BFGL-BAC-35025 18 47814171 G/A 32 84 0.184 0.326 79.8 s 47099464 47831459 732.0 
BovineHD1900013252 19 46915144 C/T 27 90 0.155 0.349 86.2 ns 46871178 47070613 199.4 
BovineHD2200002436 22 8104318 A/G 36 106 0.207 0.411 79.8 ns 7974675 8109630 135.0 
BovineHD2200002746 22 9090720 A/G 17 77 0.098 0.298 85.0 ns 9068141 9090720 22.6 
BovineHD2600011849 26 42398008 A/G 59 68 0.339 0.264 75.6 ns 40792161 43877138 3085.0 
ARS-BFGL-NGS-117055 27 12656552 C/T 86 89 0.494 0.348 75.7 ns 12202138 12834272 632.1 
a MAF = minor allele frequency. b This QTL is defined in both the linear mixed model and random forest analyses for the binary case-
control phenotype. s = SNP effect estimated from Bayesian regression was significantly different from zero, as defined by the 95% 
uncertainty interval. ns = SNP effect estimated from Bayesian regression was not significantly different from zero, as defined by the 
95% uncertainty interval. 



 

33 

3.2 SNPs associated with DD as a binary phenotype 

The binary LMM GWAS detected 22 suggestive SNPs on BTA1 that fell in the last three 

introns of SLC9A9 and two suggestive intergenic SNPs on BTA2 (Table II-2). When used to 

define QTL boundaries, the 22 suggestive SNPs on BTA1 were all in LD and defined one 271.2 

kb QTL region at BTA1:125550933–125822143 containing three genes: a long-noncoding RNA 

gene (LOC112447746), a tRNA-CAU gene, and SLC9A9. The BTA2:63365256 (BTA-47853-

no-rs) SNP on BTA 2 identified a 2.4 Mb QTL region at BTA2:60971364–63389576 containing 

25 genes, whereas the other SNP identified on BTA 2, BTA2:65836042 

(BovineHD0200019142), was not in LD with neighboring SNPs (r2 < 0.5). Because the number 

of genes discovered from the LMM QTL was limited, no gene ontologies or pathways were 

overrepresented.  

When suggestive SNPs from the LMM-binary GWAS were used as predictors in the 

Bayesian regression models, MCMC sampling was able to efficiently explore the posterior. 

Though the effects of SNPs on BTA1 were not significantly different from zero at 50% UI, the 

effects of the two SNPs on BTA2 (BTA-47853-no-rs and BovineHD0200019142) were 

significantly different from zero at 95% UI (Figure II-2, Table II-2). Unlike a frequentist 95% 

confidence interval, which defines the range within which the true value of the SNP effect falls 

95% of the time in repeated sampling, a Bayesian 95% uncertainty interval indicates there is a 

95% probability that the true value of the SNP effect falls within the range. For example, to give 

context for the impact of SNP effect size, each minor allele at BTA-47853-no-rs and 

BovineHD0200019142, respectively, increased the log odds of having DD by 1.3 and 1.5, using 

the median as the point estimate for SNP effect. A 1.3 increase in the log odds of having DD for 

each minor allele at BTA-47853-no-rs corresponded to an increase in the probability of having 



 

34 

DD by 22% and 54% for heterozygotes and homozygotes of the minor allele relative to 

homozygotes of the major allele. A 1.5 increase in the log odds of having DD for each minor 

allele at BovineHD0200019142 corresponded to a 25% and 60% increase in the probability of 

having DD for the heterozygotes and homozygotes of the minor allele, relative to the 

homozygotes of the major allele. The relatively large increases in the probability of having DD 

from each additional minor allele reflects the high minor allele frequency in cases (45%) relative 

to controls (25%) in this population. Additionally, the magnitude of increase in the probability of 

DD also depended upon the genotype of the cow at other SNPs. For instance, a cow with a 

genotype other than homozygous major for all SNPs could have a smaller increase in the 

probability of DD with each additional minor alelle at BTA-47853-no-rs or 

BovineHD0200019142. 

Using the LMM-binary suggestive SNPs as predictors in the LOO analysis, Pareto k 

diagnostic values were acceptable (k ≤ 0.7) for all cows, indicating that the estimated SNP 

effects were collectively predictive of phenotype within the original population. The LOO 

analysis indicated that the effective number of predictors in the model was 6.6, considerably 

lower than the 27 predictors that were actually in the model due to correlated predictors: the 

SNPs on BTA1 were in LD, and this correlation among predictors reduced the effective number 

of predictors. The PPC indicated that the observed and simulated data were similar to each other 

(Figure II-S5), supporting that the predictor estimates were collectively predictive of phenotype.  
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Figure II-2. Uncertainty interval (UI) plot for suggestive SNPs on BTA1 

(BovineHD0100035768 through BovineHD0100035845) and BTA2 (BTA-47853-no-rs and 

BovineHD0200019142) from the linear mixed model GWAS using binary phenotypes. Dots 

represent the median of the SNP effect estimates from Markov chain Monte Carlo draws, thick 

bars indicate the 50% UI, and the thin lines indicate the 95% UI. SNPs with 95% UI not 

overlapping zero were considered significant. Positive values of predictor effect estimates 

indicate a higher risk of DD, whereas negative values indicate a lower risk of DD. 

Random forest analysis revealed that farm was ranked as the most important explainer, 

and consequently the importance of SNPs was expressed as the percentage of importance relative 

to farm. Of the three values of mtry that were tested (6, 666, and 222,061), mtry = 666 yielded 

the most accurate model and was selected for further analyses. The accuracy of the selected 

model (0.69 with 95% CI 0.57–0.80) was not significantly different from the baseline no 

information rate (in this case, the proportion of controls: 0.64, p = 0.20), indicating that the 

model was unable to call case and control phenotypes more accurately than simply calling the 

more common phenotype. Random forest analyses found 26 important SNPs from the RF-binary, 
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and using LD to determine the QTL boundaries defined 23 QTL for the RF-binary dataset (Table 

II-3), one of which was the same QTL on BTA1:125550933–125822143 identified from the 

LMM-binary GWAS. Within the RF-binary QTL, FAANGMine found 566 genes, of which 129 

and 188 were used in the pathway and gene ontology enrichment analysis. The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway herpes simplex virus 1 infection and the 

Reactome pathways P2Y receptors and nucleotide-like (purinergic) receptors were significantly 

enriched (Benjamini Hochberg p = 0.003, 0.021, and 0.035, respectively).  

When important SNPs from the RF-binary analyses were used as predictors in the 

Bayesian logistic regression model, four SNPs had estimated effects that were significantly 

different from zero, including the SNP defining the QTL at BTA1:125550933–125822143 

(Table II-3, Figure II-3). The important SNPs from the RF-binary analyses were not as predictive 

of phenotype within the population compared to the suggestive SNPs from the LMM-binary 

analysis, as evidenced by 13% of cows having high Pareto k diagnostic values (k > 0.7) from the 

LOO analysis. The lower predictability indicates that the RF was able to find small effect SNPs, 

but also found some noninformative SNPs. Though the PPC indicated that the observed and 

simulated data were similar to each other (Figure II-S6), this similarity was likely due to 

overfitting. 
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Figure II-3. Uncertainty interval (UI) plot for important SNPs from the random forest analysis 

using binary phenotypes. Dots represent the median of the SNP effect estimates from the Markov 

chain Monte Carlo draws, thick bars indicate the 50% UI, and the thin lines indicate the 95% UI. 

SNPs with 95% UI not overlapping zero were considered significant. Positive values of predictor 

effect estimates indicate a higher risk of DD, whereas negative values indicate a lower risk of 

DD. 

3.3 SNPs associated with DD as a quantitative phenotype 

The quantitative LMM GWAS identified seven significant and two suggestive SNPs, all 

of which were intergenic (Table II-4). The gene nearest to these nine SNPs was a suppressor of 

cytokine-signaling 6-like pseudogene (LOC615204) falling between the seven significant and 

two suggestive SNPs. When these nine SNPs were used to determine the QTL boundaries, all 

nine SNPs were in LD (r2 > 0.5) and defined a 2 Mb QTL region at BTA2:77930065–79925981 

(Table II-4). This 2 Mb QTL region included nine genes, including LOC615204. The recurrent 

DD cases vs. controls placed more emphasis on finding genetic differences between controls and 
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cases with more DD cases, similar to the LMM-quantitative GWAS; however, the LMM GWAS 

using recurrent DD cases vs. controls identified QTL regions in common with the LMM-binary 

and not the LMM-quantitative GWAS. In the recurrent GWAS, the same SNPs observed on 

BTA1 from the LMM-binary analyses formed a peak of association but did not reach suggestive 

significance, whereas three SNPs on BTA2 in addition to the two detected in the LMM-binary 

GWAS reached suggestive significance (Figure II-S2, Table II-S1). The three additional 

suggestive SNPs on BTA2 revealed by the recurrent analysis defined a 328 kb QTL at 

BTA2:65836042–66217730 that was not in LD with the QTL at BTA2:60971364–63389576 

defined by BTA-47853-no-rs at BTA2:63365256 in both the binary and recurrent LMM GWASs 

(Table II-S1).
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Table II-4. Significant and suggestive SNPs detected from the linear mixed model genome-wide association analysis using 
quantitative phenotypes and their defined QTL. 

SNP ID BTA 
SNP 
Position 
(bp) 

MAF a Effect Size 
(SE) p QTL Start 

Position (bp) 
QTL End 
Position 
(bp) 

QTL 
Size (kb) 

BovineHD0200022555 2 78069923 0.231 0.127 (0.025) 3.14 × 10−7 * 77930065 79925981 1995.9 
BovineHD0200022557 2 78080217 0.231 0.127 (0.025) 3.14 × 10−7 * 77930065 79925981 1995.9 
Hapmap43777-BTA-
115985 2 78080944 0.233 0.128 (0.025) 2.66 × 10−7 * 77930065 79925981 1995.9 

BovineHD0200022559 2 78092854 0.231 0.127 (0.025) 3.14 × 10−7 * 77930065 79925981 1995.9 
BovineHD0200022560 2 78100071 0.231 0.127 (0.025) 3.14 × 10−7 * 77930065 79925981 1995.9 
BovineHD0200022562 2 78110140 0.231 0.127 (0.025) 3.14 × 10−7 * 77930065 79925981 1995.9 
BovineHD0200022563 2 78111523 0.231 0.127 (0.025) 3.14 × 10−7 * 77930065 79925981 1995.9 
BovineHD0200022605 2 78307821 0.28 0.107 (0.023) 3.68 × 10−7 † 77930065 79925981 1995.9 
BovineHD0200022737 2 78767889 0.278 0.108 (0.023) 3.43 × 10−7 † 77930065 79925981 1995.9 
a MAF = minor allele frequency. * = genome-wide significant. † = genome-wide suggestive significance. 
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When the significant and suggestive SNPs from the LMM-quantitative analysis were 

used as predictors in Bayesian regression, MCMC sampling to fit the model was unable to 

efficiently explore the posterior likely because the phenotypes did not follow a normal 

distribution as expected by the model. This resulted in unreliable results and thereby prevented 

further analyses. The limited number of genes within the LMM-quantitative QTL on BTA 

2:77930065–79925981 prevented the detection of overrepresented gene ontologies or pathways. 

Random forest analysis using quantitative phenotypes revealed that, similar to the RF-

binary rankings, farm was ranked as the most important explainer. The 15 important SNPs 

identified from the RF-quantitative analysis defined 13 QTL distinct from those defined in the 

LMM-quantitative analysis (Table II-5). The RF-quantitative QTL contained 124 genes. The 28 

and 13 genes that were used in pathway analysis using KEGG and Reactome pathways did not 

find enriched pathways. The 37 genes used in gene ontology enrichment analysis did not have 

significantly overrepresented gene ontologies after multiple testing correction. 

Although no pathways or gene ontologies were enriched from the RF-quantitative 

dataset, the important SNPs detected were nonetheless predictive of phenotype when used as 

predictors in Bayesian regression. MCMC sampling to fit the Bayesian model was able to 

explore the posterior sufficiently, resulting in convergence. Three of the important SNPs had 

effect sizes significantly greater than zero at 95% UI (Figure II-4, Table II-5). The LOO analysis 

indicated that the 15 SNPs were predictive of quantitative phenotype, as all the cows had Pareto 

k diagnostic values that were acceptable (k ≤ 0.7). The PPC demonstrated that the simulated data 

followed a similar distribution to the original data, though the frequency of more extreme 

phenotypes was dampened (Figure II-S7). 
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Figure II-4. Uncertainty interval (UI) plot for important SNPs from the random forest analysis 
using quantitative phenotypes. Dots represent the median of the SNP effect estimates from the 
Markov chain Monte Carlo draws, thick bars indicate the 50% UI, and the thin lines indicate the 
95% UI. SNPs with 95% UI not overlapping zero were considered significant. Positive values of 
the predictor effect estimates indicate a phenotypic value for DD, whereas negative values 
indicate a phenotypic value for DD. 
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Table II-5. Important SNPs from random forest analysis using quantitative phenotypes and their defined QTL. Importance variables 
are expressed as % importance relative to farm (i.e., farm had 100% importance). 

SNP ID BTA 
SNP 
Position 
(bp) Minor/major 

allele MAFa 

SNP 
Importance 
(% Relative 
to Farm) 

Significance 
in Bayesian 
Regression 

QTL Start 
Position 
(bp) 

QTL End 
Position 
(bp) 

QTL 
Size 
(kb) 

BovineHD0100036283 1 127408427 A/G 0.350 8.9 ns 127389567 127408427 18.9 
BovineHD0300023756 3 82473975 A/G 0.391 8.5 ns 82468446 82480613 12.2 
BovineHD0700003488 7 12238249 T/G 0.354 17.1 s 11979738 12261707 282.0 
BovineHD0700023293 7 77533459 T/C 0.220 8.7 ns 77242189 78032023 789.8 
BovineHD0800002826 8 8983282 C/T 0.463 8.7 ns 8671707 9806692 1135.0 
BovineHD0800002824 8 8979816 G/A 0.373 10.6 ns 8671707 9806692 1135.0 
BovineHD0800030529 8 100994105 C/T 0.402 10.5 ns 100412296 102353854 1941.6 
BovineHD0800030627 8 101328029 G/A 0.350 9.5 ns 100412296 102353854 1941.6 
BovineHD1100025931 11 89788438 C/A 0.387 9.9 ns 89375874 89788438 412.6 
BovineHD1400011939 14 39785964 T/C 0.448 10.0 s 39785964 39818361 32.4 
BovineHD1500006588 15 24668401 A/G 0.250 11.2 ns 24668401 24771237 102.8 
UA-IFASA-9742 15 42081374 G/T 0.250 8.6 ns 42081374 42092689 11.3 
BovineHD1800012376 18 41782168 C/T 0.081 9.6 ns 41753915 41863187 109.3 
BovineHD2000020460 20 69870827 T/C 0.308 8.3 s 69696705 71850045 2153.3 
BovineHD2200002433 22 8091674 T/C 0.205 9.1 ns 6375507 8317371 1941.9 

a MAF = minor allele frequency. s = SNP effect estimated from Bayesian regression was significantly different from zero, as defined 
by the 95% uncertainty interval. ns = SNP effect estimated from Bayesian regression was not significantly different from zero, as 
defined by the 95% uncertainty interval. 
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4 DISCUSSION 

The genetic component of DD susceptibility is highly complex and heterogeneous (van 

der Spek et al., 2015b; Biemans et al., 2018), as demonstrated by the numerous and varied QTL 

detected in previous studies (Scholey et al., 2013; Malchiodi et al., 2015b; van der Spek et al., 

2015b; Naderi et al., 2018; Biemans et al., 2019; Sánchez-Molano et al., 2019). We sought to 

further identify the QTL contributing to DD susceptibility using a high-density SNP array and 

LMM and RF analytical approaches on well-phenotyped DD cases and controls. The LMM 

GWAS and RF analyses revealed suggestive, significant, and important SNPs that defined QTL 

regions in binary, quantitative, and recurrent DD phenotypes. The LMM GWAS using recurrent 

DD cases vs. controls indicated that the recurrent DD cases were contributing to the significance 

of association in the LMM-binary GWAS on BTA1 and BTA2, but not in the LMM-quantitative 

GWAS. Bayesian regression allowed for an intuitive estimate of SNP effects and the robust 

evaluation of model fit through the LOO and PPC analyses, providing additional distinctions of 

informative and noninformative SNPs among the top SNPs. QTL regions were explored for 

candidate genes if the QTL was defined by the top SNPs (i.e., significant or suggestive SNPs 

from LMM analyses or important SNPs in RF analyses) that were also significant in Bayesian 

regression or were top SNPs in both LMM and RF analyses. That is, nine QTL were investigated 

further (Table II-6). 

Within these QTL regions, we identified likely candidate genes based on their relevance 

to DD etiology. DD is associated with Treponema bacteria invading the dermis and epidermis, 

likely through hair follicles, and results in a raised erosive lesion (Read and Walker, 1998; Evans 

et al., 2009). The infection elicits a strong initial activation of the innate immune response (Watts 

et al., 2018) that is then attenuated by the treponemes (Zuerner et al., 2007), leading to prolonged 
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inflammation and a delayed adaptive immune response (Refaai et al., 2013). Within the adaptive 

immune response, the antibody-mediated immune response is mainly responsible for defending 

the host against extracellular pathogens (Murphy and Weaver, 2016), such as treponemes. After 

the immune response, the skin then attempts to heal the wound, a process that is also impaired by 

treponemes (Zuerner et al., 2007). As such, changes in the sequence or expression of genes 

related to maintaining epidermal integrity, immune response, or wound repair could affect a 

cow’s DD susceptibility and the persistence of a DD lesion. Previous work has indicated that 

genes related to these three functions were dysregulated in DD lesions (Zuerner et al., 2007; 

Scholey et al., 2013). Therefore, we considered candidate genes as those with associated 

phenotypes, as determined by MGI, that pertained to these functions and fell within the six QTL 

regions, resulting in six candidate genes: CXCR4, MGAT5, CACNA1A, TERT, SLC9A3, and 

AHRR (Table II-6, Table II-S2). All six candidate genes were related to immune function, and 

TERT was also associated with skin hyperplasia and wound healing (Table II-S2). Similarly, we 

defined functionally relevant gene ontologies and pathways as those related to these three 

functions. The QTL on BTA18 contained 16 zinc finger genes that were part of the herpes 

simplex virus 1 infection pathway, implying an immune function of these genes that could also 

play a role in DD infection (Table II-6). 

A limitation of the study is the small sample size. Minimizing phenotypic variation and 

increasing sample size are both methods to improve the detection of small-effect SNPs, but often 

pursuing one of these approaches comes at the expense of the other—for example, in this study, 

large sample size. Our strict phenotypic criteria also caused the controls to be from only two 

dairies, which was partially accounted for in the LMM analyses by including a covariate term. 

While the uneven sampling of dairies can be problematic in frequentist methods such as LMM, 
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those issues were avoided in RF analyses and Bayesian estimation because these models account 

for parameters that did not exist (e.g., a control cow from Farm B or C). Furthermore, the SNPs 

that defined the QTL regions containing promising candidate genes were significant, suggestive, 

or important in the LMM and RF analyses, some of which also had nonzero effect sizes 

estimated from Bayesian regression despite the small sample size. For the quantitative 

phenotypes, a larger sample size might have more normally distributed phenotypes that the 

model expects, thereby improving the efficiency of MCMC sampling and more accurate SNP 

effect estimates. Although the sample size of this study was limited due to our intentionally 

reducing phenotypic variation, which may have prevented the detection of additional small SNP 

effects, the sample size was sufficient to very accurately predict the phenotype within the 

original population. Future replication studies are necessary to determine how well the SNP 

effects estimated in this study population can be extrapolated to larger populations in different 

geographical regions and other dairies. 
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Table II-6. Quantitative trait loci (QTL) defined by SNPs that were significant in at least two analyses: linear mixed model (LMM), 
random forest (RF), or Bayesian regression of top SNPs from linear mixed model (LMM-B) or random forest (RF-B) containing 

functionally relevant pathways or genes. 

Phenotype BTA 
QTL Start 
Position 
(bp) 

QTL End 
Position 
(bp) 

QTL 
Size 
(kb) 

Methodology Used in 
Defining the QTL 

Relevant 
Pathways 

Candidate Genes in 
QTL 

Binary 1 125550933 125822143 271.2 LMM, LMM-B, RF, RF-B     
 2 60971364 63389576 2418.2 LMM, LMM-B  CXCR, MGAT5 
 2 58016533 59967789 1951.3 RF, RF-B   
 2 65836042 65836042 - LMM, LMM-B   
 3 119720909 119942789 221.9 RF, RF-B   

 18 47099464 47831459 732.0 RF, RF-B 

Herpes 
simplex 
virus 1 
infection 

 

Quantitative 7 11979738 12261707 282.0 RF, RF-B  CACNA1A 
 14 39785964 39818361 32.4 RF, RF-B   
 20 69696705 71850045 2153.3 RF, RF-B   TERT, SLC9A3, AHRR 
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In addition to minimizing phenotyping variation, our GWAS used high-density SNP 

genotyping to increase the resolution of QTL detection. Previous studies (Scholey et al., 2012; 

Malchiodi et al., 2015b; van der Spek et al., 2015b; Biemans et al., 2018; Sánchez-Molano et al., 

2019) had larger sample sizes than our study, achieved by using dairies across multiple 

geographic regions and various lower-density SNP panels (maximum 76 K SNPs). The lower-

resolution SNP panels in those studies may have prevented the detection of smaller linkage 

disequilibrium blocks (<20 kb) in Holstein cattle (Pérez O’Brien et al., 2014) and contributed to 

the inconsistency of genomic regions detected. Although two previous studies found associated 

loci on BTA1, for one study the suggestive SNPs were in a different region (Biemans et al., 

2019), while the other study did not provide SNP coordinates to permit comparisons (Malchiodi 

et al., 2015b). Similarly, other GWASs also detected the associated SNPs on BTA3 (Naderi et 

al., 2018; Sánchez-Molano et al., 2019) and BTA14 (Biemans et al., 2019), but in different 

regions. Other GWASs did not detect SNPs on the same chromosomes as our (Scholey et al., 

2012) or did not detect any suggestive or significant SNPs (van der Spek et al., 2015b). The 

published GWASs with smaller sample sizes using the high-density SNP array were able to find 

SNPs associated for other traits in Holstein cattle, including digital cushion thickness (Stambuk 

et al., 2020), mastitis resistance (Kurz et al., 2019), and fat deposition (Lehner et al., 2018). Our 

study using tightly controlled cases and controls was the first to use high-density SNP genotypes 

in a GWAS for DD susceptibility for improved resolution and the first to find significant and 

suggestive SNPs on BTA2, 7, 18, and 20 in regions containing likely candidate genes or genes in 

relevant pathways. The multiplicity of associated chromosomal regions supports that the genetic 

component of DD susceptibility is heterogeneous and highly complex, such that different 

combinations of loci with small effects contribute to DD susceptibility, as suggested by previous 
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authors (van der Spek et al., 2015b; Biemans et al., 2018). The complex genetic architecture of 

DD susceptibility likely reflects multiple physiological systems (e.g., immune system, hair 

morphology, skin matrix remodeling) interacting in the etiology of DD. 

The lack of congruence in the genomic regions associated with DD across published 

studies and the small effect sizes of those QTLs identified further supports that, in addition to 

many low-impact loci, non-genetic factors strongly influence DD susceptibility. The ranking of 

farm as the most important predictor in the RF analyses supports the concept that farm 

management (e.g., hoof trimming regiment, methods of preventing and treating DD) plays a 

significant role in reducing DD prevalence. Employing genetic selection in combination with 

environmental management will likely further reduce DD prevalence. 

5 CONCLUSIONS 

GWAS using LMM and RF approaches identified loci containing six genes on BTA1, 7, 

and 20 that regulate skin integrity, immune function, and wound repair: CXCR4, MGAT5, 

CACNA1A, TERT, SLC9A3, and AHRR. Bayesian estimation of SNP effects was used to 

additionally distinguish between informative and noninformative SNPs and indicated that the top 

SNPs from LMM-binary and RF-quantitative were collectively predictive of binary and 

quantitative phenotypes. Despite our identifying significant QTL, the absence of the congruency 

of associated SNPs in this study compared to other studies and the consistent ranking of the farm 

as the most important predictor in the RF analyses support the notion that DD susceptibility is 

heavily influenced by management, and the remaining genetic component is heterogeneous and 

highly complex. Thus, although farm management may be the most effective short-term method 

for reducing DD prevalence, combining genetic selection with management will likely be the 

most effective and sustainable long-term solution. 
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6 SUPPLEMENTARY MATERIALS 

6.1 Supplementary tables 

Supplementary tables are provided in the Excel workbook associated with this dissertation as 

well as online at http://www.mdpi.com/2076-2615/10/11/2009/s1 

Table II-S1. Suggestive SNPs detected from the linear mixed model genome-wide association 
analysis using binary recurrent phenotypes and their defined QTL.  

Table II-S2. Candidate genes found within the nine QTL defined by SNPs that were 
significant/important in at least two of the following analyses: linear mixed model, random 
forest, and/or Bayesian regression.  

6.2 Supplementary figures 

Figure II-S1. Multidimensional scaling plot depicting the first two dimensions. Each dot 
represents a cow, status is indicated by point shape, and farm is indicated by point color.  
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Figure II-S2. Manhattan plot for the linear mixed model genome-wide association analysis using 
binary phenotypes from recurrent cases vs. controls.  
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Figure II-S3. Quantile-quantile plots depicting observed and expected p-values from linear 
mixed model genome-wide association analyses using (a) binary, (b) quantitative, and (c) binary 
recurrent phenotypes in the full dataset of 261 cows; and (d) binary and (e) quantitative 
phenotypes in the subset of 188 cows after removing outlier cows. The red line indicates when 
observed and expected p-values are equivalent.  

  

(a) (b) (c) 

   
(d) (e)  
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Figure II-S4. Manhattan plots from linear mixed model genome-wide association analyses 
excluding the outlier control cows using (a) binary phenotypes designating the presence of 
digital dermatitis (DD) lesions or absence of any lameness issues and (b) quantitative phenotypes 
calculated by dividing the number of DD episodes by the total number of hoof trimming records. 
The red line indicates the threshold for genome-wide significance (Bonferroni-corrected using 
the number of independent SNPs at p < 0.05), and the blue line indicates the threshold for 
suggestive significance (Bonferroni-corrected using the number of independent SNPs at p < 1). 
Genomic inflation factors (lambda) are indicated in figure titles.  

  

(a) 

 
(b) 
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Figure II-S5. Posterior predictive check bar plot for Bayesian regression estimating effects of 
suggestive SNPs detected in the linear mixed model genome-wide association study using binary 
phenotypes. Gray bars represent the actual phenotypes and black dots with intervals represent the 
median and uncertainty intervals of the phenotypes of replicates (yrep), which were simulated 
from estimated effects of predictors.  

 

Figure II-S6. Posterior predictive check bar plot for Bayesian regression estimating effects of 
suggestive SNPs detected in the random forest using binary phenotypes. Gray bars represent the 
actual phenotypes and black dots with intervals represent the median and uncertainty intervals of 
the phenotypes of replicates (yrep), which were simulated from estimated effects of predictors.  
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Figure II-S7. Posterior predictive check distribution plot for Bayesian regression estimating 
effects of suggestive SNPs detected in the random forest using quantitative phenotypes. The 
black line represents the actual phenotypic distribution and grey lines dots represent the 
phenotypic distribution of replicates (yrep), which were simulated from estimated effects of 
predictors.  
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 Chapter III. Genome-wide association studies reveal susceptibility loci for noninfectious 

claw lesions in Holstein dairy cattle 

 

This chapter has been published in Frontiers in Genetics under the Specialty Section 

Livestock Genomics. 

Citation: Lai, E., A.L. Danner, T.R. Famula, and A. Oberbauer. 2021. Genome-wide association 
studies reveal susceptibility loci for noninfectious claw lesions in Holstein dairy cattle. 
Front. Genet. 12:728. doi:10.3389/FGENE.2021.657375. 
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Abstract 

Sole ulcers (SU) and white line disease (WLD) are two common noninfectious claw 

lesions that arise due to compromised horn production and are frequent causes of lameness in 

dairy cattle, imposing welfare and profitability concerns. Low to moderate heritability estimates 

of SU and WLD susceptibility indicate that genetic selection could reduce their prevalence. To 

identify susceptibility loci for SU, WLD, SU and/or WLD, and any type of noninfectious claw 

lesion, genome-wide association studies (GWAS) were performed using generalized linear 

mixed model (GLMM) regression, chunk-based association testing (CBAT), and a random forest 

(RF) approach. Cows from five commercial dairies in California were classified as controls 

having no lameness records and ³ 6 years old (n = 102) or cases having SU (n = 152), WLD (n = 

117), SU and/or WLD (SU+WLD, n = 198), or any type of noninfectious claw lesion (n = 217). 

Top SNPs were defined as those passing Bonferroni-corrected suggestive and significance 

thresholds in the GLMM analysis or those that a validated RF model considered important. 

Effects of top SNPs were quantified using Bayesian estimation. Linkage disequilibrium (LD) 

blocks defined by top SNPs were explored for candidate genes and previously identified, 

functionally relevant quantitative trait loci. The GLMM and CBAT approaches revealed the 

same regions of association on BTA8 for SU and BTA13 common to WLD, SU+WLD, and 

noninfectious claw lesions. These SNPs had effects significantly different from zero, and the LD 

blocks they defined explained a significant amount of phenotypic variance for each dataset (6.1 

to 8.1%, p < 0.05), indicating the small but notable contribution of these regions to susceptibility. 

These regions contained candidate genes involved in wound healing, skin lesions, bone growth 

and mineralization, adipose tissue, and keratinization. The LD block defined by the most 

significant SNP on BTA8 for SU included a SNP previously associated with SU. The RF models 
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were overfitted, indicating that SNP effects were very small, thereby preventing meaningful 

interpretation of SNPs and any downstream analyses. These findings suggested that variants 

associated with various physiological systems may contribute to susceptibility for noninfectious 

claw lesions, demonstrating the complexity of genetic predisposition. 

Keywords: dairy cattle, sole ulcer, pododermatitis circumscripta, white line disease, lameness, 

genome-wide association study, random forest, Bayesian regression 

1 INTRODUCTION 

Lameness, or abnormal gait and/or posture, is a pathognomonic sign that the affected cow 

is in pain and frequently reflects claw damage. Many claw conditions can cause lameness 

including injury, infectious foot lesions, and noninfectious claw lesions. The two most common 

noninfectious claw lesions causing lameness in dairy cattle are sole ulcers (SU), also known as 

pododermatitis circumscripta, and white line disease (WLD) (Green et al., 2002; Shearer and van 

Amstel, 2017). These lesions are not only a welfare issue, but are also associated with reduced 

milk production and decreased fertility (Green et al., 2002, 2010; Hernandez et al., 2005; 

Charfeddine and Pérez-Cabal, 2017). Consequently, SU and WLD represent a considerable 

financial burden with average costs associated with prevention, treatment, and losses from 

reduced productivity ranging from $181 (Dolecheck et al., 2019) to $258 (Cha et al., 2010) per 

case of SU and $155 for WLD (Dolecheck et al., 2019) (adjusted to 2020 US dollars). 

Production losses from extended calving interval, increased culling, and decreased milk 

production increase greenhouse gas emissions by 33 (3.6%) and 39 (4.3%) kg CO2 equivalents 

per ton of fat-and-protein-corrected milk per case of SU and WLD respectively (Mostert et al., 

2018). Reducing the prevalence of SU and WLD would alleviate these welfare, economic, and 

environmental concerns and thereby improve the sustainability of dairy production. 
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Both genetic and non-genetic factors contribute to susceptibility to SU and WLD, and 

prevention can be achieved through genetic means and herd management. Current prevention 

methods focus on management control primarily through regular claw trimming (Shearer and 

van Amstel, 2001) and providing rubber flooring in stalls and alleys (Vanegas et al., 2006; 

Fjeldaas et al., 2011; Eicher et al., 2013). Although dairies have implemented these prevention 

methods, SU and WLD remain prevalent worldwide with estimates ranging from 4.1 to 27.8% 

for SU and 2.0 to 11% for WLD in Holstein cattle depending on parity and housing style 

(Cramer et al., 2008; Bicalho et al., 2009; van der Linde et al., 2010; Oberbauer et al., 2013). 

Heritability estimates of susceptibility range from 0.01 to 0.3 for SU and 0.017 to 0.26 for WLD 

(Van der Waaij et al., 2005; van der Linde et al., 2010; Häggman and Juga, 2013; Oberbauer et 

al., 2013; van der Spek et al., 2013, 2015a; Malchiodi et al., 2015a), implying that these non-

genetic means to reduce prevalence could be bolstered by genetic selection against susceptibility 

to these claw lesions. Although many genome-wide association studies (GWAS) have been 

performed to identify susceptibility loci, loci previously associated with SU and WLD are 

discordant (Malchiodi et al., 2015b; van der Spek et al., 2015b; Sánchez-Molano et al., 2019), 

and susceptibility to these claw lesions are believed to be complex traits governed by loci of 

small effect (van der Spek et al., 2015b). Some have postulated that selection against 

susceptibility to SU, WLD, and other noninfectious claw lesions could be achieved through 

indirect selection on body conformation traits or feet and leg traits (Van der Waaij et al., 2005; 

Häggman et al., 2013). However, the genetic correlation between conformation traits and 

susceptibility to noninfectious claw lesions appears to be low (Häggman and Juga, 2013; 

Malchiodi et al., 2015b; Ring et al., 2018), further accentuating the need to identify loci 

associated directly with susceptibility to noninfectious claw lesions. Thus, the objective of this 
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study was to identify genomic regions associated with susceptibility to SU, WLD, SU and/or 

WLD, and noninfectious claw lesions using well characterized herds under similar management 

practices: we hypothesized that we would identify small effect loci associated with 

predisposition to noninfectious claw lesions in addition to those already identified. 

2 MATERIALS AND METHODS 

All procedures were conducted in accordance with ethical standards set by the University 

of California, Davis and approved by the Institutional Animal Care and Use Committee (protocol 

#22099). 

2.1 Phenotypic data 

Dairies were selected to minimize environmental variation by including dairies in Central 

and Northern California using freestall housing, a flush system for waste removal, and diets 

balanced to meet the nutrition requirements from the National Research Council (NRC, 2001). 

Case/control phenotypes were defined using hoof trimming records. Hoof trimming records were 

generated by three hoof trimmers: one serviced Dairies A, B, and C; one serviced Dairy D; and 

the last trimmer serviced Dairy E. Hoof trimmer qualifications were described in a previous 

paper (Lai et al., 2020) and the three trimmers employed common criteria in defining the lesions. 

Hoof trimming regimens varied among dairies: cows were trimmed at the beginning of and mid- 

lactation, at dry off, and when lame (Dairy A); at dry off and when lame (Dairy B and C); only 

when lame (Dairy D); and at mid-lactation, at dry off, and when lame (Dairy E). The following 

foot disorders were documented in hoof trimming records: sole ulcer, hemorrhage, sole fracture, 

sole abscess, wall abscess, white line abscess (WLD), heel abscess, laminitis, foot wart, and foot 

rot. Cows were phenotyped as cases or controls based on whether they had or lacked records of 

claw lesions, respectively. Four case/control datasets were generated based on the type(s) of claw 
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lesions the cases had. For datasets 1 (SU) and 2 (WLD), cases were defined as cows with at least 

one record of SU or WLD, respectively. For dataset 3 (SU+WLD), cases included cows with 

either one or both of the claw lesions. Cases for dataset 4 (NICL) included cows with at least one 

of the following noninfectious claw lesions: SU, hemorrhage, sole fracture, sole abscess, wall 

abscess, WLD, heel abscess, and/or laminitis. Cows with no claw lesions and that were at least 

6.0 years old were considered sound controls. The age restriction was imposed to avoid 

misphenotyping younger cows who had insufficient time to develop claw lesions. The same 

sound controls were used to compare against the cases in each of the four datasets. 

2.2 Genotypes 

Whole blood was collected from cows phenotyped as cases and controls. DNA was 

extracted from whole blood samples using the QIAGEN QIAamp DNA Blood Mini Kit 

(QIAGEN Inc., Valencia, CA) and quantified using the NanoDrop (ND-2000 v3.2.1) 

spectrophotometer (Thermo Scientific, Wilmington, DE). DNA samples were genotyped on the 

BovineHD BeadChip (777K SNPs, Illumina Inc., San Diego, CA) by GeneSeek (Lincoln, NE), 

and Illumina’s GenCall algorithm was used to call genotypes. A portion of the controls used in 

this study were the same controls used in our previous study (Lai et al., 2020) for which raw and 

processed genotype data are publicly available at the NCBI Gene Expression Omnibus database 

(GEO series record GSE159157). Additional cows genotyped in this study are available in the 

GEO database (GEO series record GSE165945). 

Genotypes were updated to the ARS-UCD1.2 assembly positions (Rosen et al., 2020) and 

quality filtered using PLINK 1.9 (Chang et al., 2015; Purcell and Chang, 2015) to remove from 

further analyses SNPs and cows with genotyping rates  < 95%, SNPs with significant deviation 

from Hardy-Weinberg equilibrium (p < 1E-6) to exclude systematic genotyping errors, and SNPs 
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with minor allele frequencies (MAF) < 5% to exclude rare variants. To visualize genetic 

similarity among the remaining cows, multidimensional scaling (MDS) analysis was performed, 

and the first two dimensions were plotted. Because the downstream programs for GWAS 

analysis [the generalized linear mixed model (GLMM) and random forest (RF)] require 

genotypes at each SNP, missing genotypes remaining after quality filtering were imputed using 

BEAGLE 5.1 (Browning et al., 2018) using the default parameters and an effective population 

size of 58 previously estimated for North American Holstein cattle (Makanjuola et al., 2020). 

2.3 Generalized linear mixed model GWAS 

Because disease phenotype was binary (cases and controls), the model used for 

association testing needed to reflect this binary outcome. Accordingly, logistic regression was 

used to model the binary outcome for the power analysis and for association testing. Power 

analysis was conducted using the genpwr R package (Moore et al., 2019) assuming an additive 

genetic effect and a sample size and case rate similar to the sample population (sample size = 

275, case rate = 0.6). Given these parameters, the smallest effect SNP that the GWAS was 

expected to detect would have an odds ratio of at least 1.7 and a MAF of at least 0.34. For 

association testing, a genetic relatedness matrix (GRM) and farms were included as covariates in 

the model to account for population stratification and relatedness as well as the effect of farm, 

respectively. The probability of disease was defined as !!"# for the k-th cow on the i-th farm 

identified in the j-th SNP genotype class and the logit of this probability, as "!"# =

	%&'(!!"#/*1 − !!"#-.. The logit of the probability of disease was modeled as a function of 

recorded explanatory variables (e.g., farm, SNP genotype) along with a presumed quantitative 

genetic contribution for each SNP: 

"!"# = µ+ 1! + 2" + 3# 



 

62 

where µ was an unknown constant common to all cows, 1! contribution of i-th farm to the 

risk of disease, and 2" was the contribution of the j-th SNP genotype to the risk of disease. The 

additive genetic effects 3# were assumed to be drawn from the multivariate normal density N(0, 

4	5$%), with 4 as the standardized GRM among the animals in the dataset calculated in GEMMA 

(Zhou and Stephens, 2012), and 	5$% is the unknown additive genetic variance of disease risk. 

Model fitting and association testing via the score test (i.e. the Legrange multiplier test) were 

implemented with the generalized linear mixed model association test (GMMAT) R package 

(Chen et al., 2016).  

The effective number of independent markers (Me) was calculated as the number of SNPs 

remaining after linkage disequilibrium (LD) pruning using the Genetic Type I error calculator 

and used as the denominator for Bonferroni correction of association p-values (Li et al., 2012). 

Significant SNPs were defined as those with p ≤ 0.05/Me and suggestive SNPs were defined as 

those with p ≤ 1/Me (Lander and Kruglyak, 1995). Genomic inflation factors were calculated as 

the ratio of the median of observed and expected p values. Quantile-quantile plots (qqplots) and 

Manhattan plots were plotted using the R package qqman (R Development Core Team, 2010; 

Turner, 2014). 

2.4 Chunk-based association testing 

Chunk-based association testing (CBAT), also called set-based association testing, was 

performed to decrease multiple testing and in turn improve power of detecting associated regions 

in the small sample size. In contrast to gene-based association testing, which jointly tests variants 

within genes for association with phenotype [e.g. Xia et al. (2017)], chunk-based association 

testing analyzes consecutive windows of variants (i.e. chunks) across each chromosome without 

prior filtering. Accordingly, CBAT includes variants in noncoding regions containing regulatory 
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elements that could contribute to phenotypic variation in complex traits (Koufariotis et al., 2014, 

2018). Quality-filtered SNPs were split into 100 kb chunks overlapping by 50 kb. Each chunk 

was LD-pruned to remove SNPs that were in strong LD (R2 > 0.98) and then tested for 

association with phenotype by determining whether the phenotypic variance explained (PVE) by 

the chunk was significantly greater than zero. Specifically, association testing for each chunk 

was performed by calculating a GRM using the SNPs in the chunk and regressing the phenotype 

on the GRM. In addition to the chunk-based GRM, a thinned GRM (from genome-wide SNPs) 

and farms were included as covariates in the model to adjust for population stratification and 

differences among farms. The thinned GRM was calculated using genome-wide LD-pruned 

SNPs: SNPs within a window of 1 Mb and a R2 > 0.5 were pruned out such that only SNPs in 

linkage equilibrium were used in the GRM calculation. For each chunk of SNPs, the following 

linear model was used to define the disease phenotype y for the k-th cow as a function of 

phenotypic contribution from the j-th chunk comprised of m SNPs and the i-th farm: 

6!"# = µ+ 1! + 7" + 3# + 8!"# 

where µ, 1!, and 3# were the same components outlined in the previous equation 

contributing to phenotype (coded as 0 for controls, 1 for cases), 7" = ∑ 2&'
&()  was the 

contribution of the chunk to the phenotype in which 2& was the contribution of the l-th SNP in 

the chunk, and 8!"# was the residual term. Estimates of PVE for each chunk were transformed to 

the underlying liability scale to adjust for ascertainment of cases using prevalence estimates from 

the literature: 4.08% for SU, 7.89% for WLD, and 0.10 for SU+WLD and 0.10 for NICL 

(DeFrain et al., 2013; Oberbauer et al., 2013). Calculating the thinned GRM, estimating PVE by 

each chunk, association testing with the likelihood ratio test, and p-value estimation via ten 

permutations for each chunk (Listgarten et al., 2013) were performed using the linkage 
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disequilibrium adjusted kinships (LDAK) program (Speed et al., 2012). For each dataset, 

significance thresholds were adjusted using Bonferroni correction: chunks with p ≤ 0.05/(number 

of chunks) were defined as significant and chunks with p ≤ 1/(number of chunks) were defined 

as suggestive (Lander and Kruglyak, 1995). Manhattan plots and qqplots were plotted using the 

R package qqman (R Development Core Team, 2010; Turner, 2014). 

2.5 Random forest GWAS 

A random forest fits a model that includes all SNPs and does not require an assumption 

about the mode of inheritance (e.g. additive, dominant, recessive), making RFs an appealing 

approach for complex traits such as susceptibility to claw lesions, in which the trait is highly 

polygenic and epistasis is present (Goldstein et al., 2010). Furthermore, RFs are insensitive to 

uneven sampling of cases and controls across different dairies, as RFs first build decision trees, 

then quantify importance values afterwards with data available in the trees.  

Linkage-disequilibrium pruning and RF analyses were performed as previously detailed 

(Lai et al., 2020) for each of the four datasets. Briefly, LD-pruned genotypes and farms were 

used as predictors for the RF analyses performed using the caret R package (Kuhn, 2008; R 

Development Core Team, 2010). For each dataset, the population was randomly divided into a 

training (2/3 of the cows) and test (1/3 of the cows) population. Using the training population, 

the number of predictors considered at each node of each decision tree, mtry, was tuned using 

five values, 0.1p, 0.2p, 0.5p, 0.8p, and p, where p is the total number of predictors (Goldstein et 

al., 2010; Brieuc et al., 2018). The mtry resulting in the most accurate RF model was used for 

downstream analyses. The most important predictor was assigned a value of 100, and any other 

predictor’s importance values was scaled accordingly (e.g., a predictor with an importance value 

of 50 is 50% as important as the most important predictor). Model validation was performed by 
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using the predictors and their importance values to predict case/control phenotype in the test 

population. To determine which SNPs were important and worthy of further investigation, a 

scree plot was plotted and the second order point of inflection was identified using the inflection 

R package (Christopoulos, 2016, 2017a) (i.e. the "elbow method"). Predictors with importance 

values equal to or greater than the second order point of inflection were defined as important 

SNPs and explored in downstream analyses if and only if the RF model was significantly more 

accurate at predicting phenotype in the test population than the noninformation rate (i.e., the 

frequency of the more common phenotype). 

2.6 Defining associated regions 

For each of the four datasets, top SNPs were defined as significant and suggestive SNPs 

from GLMM regression or important SNPs from a significantly predictive RF model. 

Boundaries of genomic regions of association were defined using SNPs in LD with top SNPs. 

Similar to the methodology of Richardson et al. (2016) and Twomey et al. (2019), positions of 

SNPs within 5 Mb and with R2 ≥ 0.5 of each top SNP were determined using non-pruned 

imputed genotypes, and the furthest SNP upstream and downstream in LD with the significant or 

suggestive SNP defined LD block boundaries. Overlapping LD blocks were combined. Using the 

same procedure outlined for CBAT, the PVE by the LD blocks defined from the GLMM and RF 

analyses was estimated and compared against the PVE by chunks of SNPs of the same size that 

overlapped by 50 kb from all chromosomes.  

2.7 Bayesian estimation of SNP effects and assessing model fit 

A Bayesian approach was used to test association of top SNPs identified in the GLMM 

and the RF with case/control phenotype for the four datasets. Bayesian methodology was 

selected because it allows multiple SNPs to be fitted jointly, recognizes that some SNPs are 
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correlated and most likely have small effects on susceptibility (van der Spek et al., 2015b), and 

can account for the uneven sampling of cases and controls from dairies. Additionally, the effect 

size estimates obtained from Bayesian estimation are directly interpretable, and Bayesian model 

evaluation is extremely thorough. Because highly correlated predictors complicate Bayesian 

regression, the significant and suggestive SNPs detected in the GLMM GWASs were LD-pruned 

(R2 > 0.9) using PLINK 1.9 (Chang et al., 2015; Purcell and Chang, 2015) prior to estimating 

effects to keep the most significant SNP in each LD block for inclusion in the Bayesian model. 

Estimation of SNP effects was performed using a Bayesian logistic regression model as 

described in Lai et al. (2020). The important SNPs from the RF did not need to be LD-pruned, as 

SNPs were LD-pruned prior to RF analyses. Briefly, each set of top SNPs (i.e. LD-pruned 

suggestive/significant SNPs from the GLMM analyses and important SNPs from RF analyses) 

was used as predictors along with farm as a covariable in a Bayesian logistic regression model, 

and the model was fitted via sampling the posterior using the Hamiltonian Monte Carlo 

algorithm in the R package rstanarm (Gelman et al., 2020; Goodrich et al., 2020). The same 

population was used in the GLMM and RF GWAS as for SNP effect estimation, which could 

lead to inclusion of false positive associations in the Bayesian model. Thus, to discern whether 

the included SNPs were false positives, the fit of the Bayesian model using the estimated 

parameters was evaluated using leave-one-out (LOO) cross validation and posterior predictive 

checking (PPC) using the loo and bayesplot R packages (Vehtari et al., 2017, 2020; Gabry et al., 

2019a). Bayesian estimation of SNP effects generated a distribution of where the true value of 

the SNP effect was, and this range was quantified in the 95% uncertainty intervals (UI), as 

opposed to a point estimate in frequentist methods. SNPs with 95% UIs that did not overlap zero 

were considered significantly associated with susceptibility to the respective claw lesion(s). 
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2.8 Functional annotation of associated regions 

Genes and previously defined quantitative trait loci (QTL) falling within or overlapping 

with the associated LD blocks and chunks were obtained using FAANGMine using the genomic 

regions search function (FAANG, 2019) and the CattleQTLdb (Hu et al., 2019). RefSeq genes 

were extracted from the resulting gene list and used in pathway and gene ontology enrichment 

analysis in FAANGMine. Genes were searched in the Mouse Genome Informatics batch query 

database to find associated mammalian phenotypes (Smith and Eppig, 2009). Genes were also 

queried in the Cattle Gene Atlas (Fang et al., 2020) to determine in which tissues they were 

expressed.  

3 RESULTS 

3.1 Descriptive data 

The percentage and count of cows with records of each claw lesion from each dairy are 

presented in Table III-2. Of the cows that had hoof trimming records from the five dairies, 5.6% 

and 12.0% had records of SU and WLD, respectively, similar to previous prevalence estimates 

(Cramer et al., 2008; Bicalho et al., 2009; van der Linde et al., 2010; Oberbauer et al., 2013). For 

cows that were genotyped, cases were sampled from all five dairies, whereas controls were 

sampled from Dairies A and D which had cows that met our strict soundness and age criteria for 

controls. The data set included 156 SU cases, 119 WLD cases, 203 SU+WLD cases (72 cows 

had both SU and WLD), 222 NICL cases, and 104 sound controls for a total of 287 cows (Table 

III-1). The average age of controls sampled was 8.7 years old (SD = 1.4), and when compared to 

the average age of onset of 4.2 (SD = 1.7) for SU and 4.5 (SD = 2.6) years for WLD, indicated 

that our age cutoff of 6.0 years old was sufficient to avoid misphenotyping control cows.  

After quality filtering, ~556,000 SNPs for 152 SU cases, 117 WLD cases, 198 SU+WLD 
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cases (71 cases had both SU and WLD), 217 NICL cases, and 102 sound controls remained for 

MDS, GLMM, Genetic Type I error calculation, CBAT, and RF analyses. The MDS plot showed 

some population stratification, with a prominent center cluster and two other sparse clusters, 

though clustering was not by farm or case/control phenotype ( 

(A) 

 

(B) 

 

 

Figure III-1). Pairwise relationship coefficients calculated for the GRM ranged from -

0.094 to 0.50, with negative values indicating the two cows were less related to each other than 

other random pairs of individuals. The distribution of pairwise relationship coefficients did not 

differ greatly between pairs of cows from the same farm and pairs from different farms (Figure 

III-S2). The Genetic Type I error calculator determined that the effective number of markers on 

autosomal chromosomes for Bonferroni correction was ~156,000 SNPs for the four datasets, 

yielding a significance threshold of p = 3.2 x 10-7 [6.5 on -log10(p) scale] and a suggestive 

threshold of p = 6.4 x 10-6 [5.2 on -log10(p) scale]. The total number of 100 kb chunks used in 

CBAT was ~51,730 for the four datasets, yielding a significance threshold of p = 9.7 x 10-7 [6.0 

on -log10(p) scale] and a suggestive threshold of p = 1.9 x 10-5 [4.7 on -log10(p) scale]. Linkage 

disequilibrium pruning at R2 > 0.90 left 215343 to 218185 SNPs for RF analysis, depending on 

the dataset. 

3.2 Generalized linear mixed model GWAS and chunk-based association testing 

The GLMM analyses detected a region of association on BTA8 for SU and BTA13 for 
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WLD, SU+WLD, and NICL while sufficiently accounting for population stratification and 

relatedness as indicated by the qqplots and the genomic inflation factors of 1.01, 1.02, 1.01, and 

0.99 for SU, WLD, SU+WLD, and NICL, respectively (Figure III-S3). The CBAT using 100 kb 

overlapping chunks across the genome also properly accounted for population stratification and 

relatedness (qqplots in   
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(A) (B) 
  

(C) (D) 
  

Figure III-S5) and identified the same regions as the single-marker GLMM GWAS for 

each of the four datasets, providing further support for these regions (Table III-1, Manhattan 

plots in   
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(A) 

 
(B) 

 
Figure III-S6). The SU CBAT also identified two suggestive chunks on BTA17 (Table 

III-1Error! Reference source not found.,   
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(A) 

 
(B) 

 
Figure III-S6A). For the NICL CBAT, the reduction in the number of tests performed 

allowed the chunk at BTA13:46,450,001-46,550,001 to reach genome-wide significance (p = 6.9 

x 10-7, Table III-1,   
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(A) 

 
(B) 

 
Figure III-S6D). This significant chunk contained the most significant SNP from the 

single-marker GLMM GWAS and three suggestive SNPs downstream. 

Generalized linear mixed model association testing for SU susceptibility identified 12 

suggestive SNPs on BTA8 falling in or directly upstream of the gene DCAF12 (also known as 

DDB1 and CUL4 associated factor 12) (Table III-3, Table III-4). The 12 suggestive SNPs 

collectively defined a 3.2 Mb LD block at BTA8:74345807-77546693 (Table III-3 and  

(A) 

 



 

74 

(B) 

 

 

Figure III-1A) encompassing or overlapping with 60 genes: 52 protein-coding genes, four 

lncRNA genes, a tRNA gene, a miRNA gene, a snRNA gene, and a snoRNA gene. Because the 

12 suggestive SNPs from the SU GLMM were in strong LD (R2 > 0.9), the most significant 

SNP, BovineHD0800023021, was selected to represent this LD block in the Bayesian logistic 

regression model. The minor allele at BovineHD0800023021 (T) had an effect that was 

significantly less than zero at 95% UI (Table III-3and  

(A) 
 
(B) 
 

 

Figure III-2A), indicating that it was associated with reduced susceptibility to SU. The 

LOO analysis yielded acceptable Pareto k values (k < 0.5) for all cows, which indicated that the 

model was able to predict the phenotype of each cow with similar accuracy using genotypes at 

BovineHD0800023021 from all other cows. Goodness-of-fit assessment via PPC also showed 

that the distribution of phenotypes simulated using the estimated SNP effect closely aligned with 

that of the observed data (  
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(A) (B) 
  

Figure III-S7A), further validating the fit of the model. In addition to identifying 

suggestive chunks in the same regions on BTA8, CBAT for SU detected two significant chunks 

on BTA17 (Figure III-S1,   
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(A) 

 
(B) 

 
Figure III-S6A) that both fell within TMEM12 (transmembrane protein 132B). 

For WLD, the GLMM association testing found a single suggestive intergenic SNP at 

BTA13:46491619 (BovineHD1300013725,   
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(A) 

 

(B) 
 

Figure III-S4A), which was also the most significant SNP identified by the GLMM 

analysis for SU+WLD and NICL (Table III-3,   
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(A) 

 

(B) 
 

Figure III-S4B,  

(A) 

 

(B) 

 

 

Figure III-1B). In addition to detecting BovineHD1300013725, the GLMM analyses for the 
SU+WLD and NICL datasets detected eight other suggestive SNPs in the same LD block as 
BovineHD1300013725 (Table III-3,   
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(A) 
 

(B) 
 

Figure III-S4). These nine suggestive SNPs detected in the SU+WLD GWAS were 

slightly more significant in the NICL GWAS and defined a 2.4 Mb LD block at 

BTA13:45283136-47676681 containing 27 genes: 16 protein coding genes, six lncRNA genes, 

two snRNA genes, two snoRNA genes, and one miRNA gene. For all four GLMM GWASs, the 

limited number of genes in LD blocks defined from suggestive SNPs precluded pathway and 

gene ontology analyses. 

Given that the GLMM GWAS for SU+WLD and NICL identified nine suggestive SNPs 
in the same LD block (R2 > 0.5) on BTA13 ( 

(A) 

 

(B) 
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Figure III-1B,   
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(A) 
 

(B) 
 

Figure III-S4) and the top SNP is the same as that in the WLD GWAS, only the NICL 

Bayesian SNP effect estimation results are presented. Eight of these suggestive SNPs were in 

strong LD (R2 > 0.9) whereas the remaining suggestive SNP (BTB-00525539) was in weaker LD 

with the others (R2 = 0.7). Consequently, the most significant SNP in the LD block of eight 

SNPs (BovineHD1300013725) and BTB-00525539 were included in the Bayesian logistic 

regression model. The minor allele at BovineHD1300013725 representing the eight SNPs in 

strong LD had an effect that was significantly greater than zero at 95% UI ( 

(A) 
 
(B) 
 

 

Figure III-2B), indicating that the minor allele (C) was associated with increased 

susceptibility to NICL (Table III-3). In contrast, the effect of the minor allele at BTB-00525539 
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was not significantly different from zero ( 

(A) 
 
(B) 
 

 

Figure III-2B). Although the score variances of the suggestive SNPs were large (Table 

III-3), possibly due to the sample cohort, Bayesian estimation was less affected than GLMM 

regression by these limitations and indicated that the SNP effects were significant for SU and 

NICL ( 

(A) 
 
(B) 
 

 

Figure III-2). For the LOO analysis of the model, the acceptable Pareto k values (k < 0.5) 

from all cows demonstrated that the model including BovineHD1300013725 and BTB-00525539 

was able to predict NICL phenotype of each cow based on genotypes at these two SNPs from the 

other cows with similar accuracy. The PPC-simulated data based on estimated SNP effects of 

these two SNPs that was similar to the observed data, indicating good model fit (  
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(A) (B) 
  

Figure III-S7B).  

To draw attention to the impactful SNPs shown in Table III-3 and the LD blocks they 

defined in Table III-4, the minor allele frequency at the most significant SNP for SU 

(BovineHD0800023021) in cases and controls was 0.253 and 0.476, respectively. The GLMM 

output score was negative and Bayesian estimation indicated a significant negative effect on 

susceptibility; that is, the minor allele was associated with reduced susceptibility. In contrast, the 

minor allele frequency at the most significant SNP for NICL (BovineHD1300013725) was 

higher in cases (0.459) than in controls (0.235), indicating that the minor allele was associated 

with higher susceptibility. Likewise, the GLMM score was positive, and Bayesian estimation of 

effect size resulted in a significant positive effect. Similar minor allele frequencies, scores, and 

significantly positive effect size estimates were observed at BovineHD1300013725 for WLD and 

SU+WLD. As seen in Table III-4, the LD blocks defined by suggestive SNPs had PVE between 

0.06 and 0.08, depending on the dataset (SU, WLD, SU+WLD, or NICL), all of which were 

significantly greater than zero (permuted p < 0.05). In contrast, the genome-wide chunks with the 

same length as the LD blocks had an average PVE ~0.008, with PVE increasingly slightly with 

increasing chunk size, and average permuted p-values ~0.5. 

3.3 Random forest GWAS 

The RF models for all four datasets were not significantly more accurate at predicting 

phenotype in the test population compared to the non-information rate (i.e. the frequency of the 

more common phenotype), indicating that the RF models were overfitted (Brieuc et al., 2018) 

such that the SNPs that passed the significance threshold were likely random noise. Because 

importance values are assigned and the importance threshold defined after fitting the RF model, 
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some SNPs will always pass the importance threshold. Consequently, the value of these 

important SNPs and the likelihood that the important SNPs are truly trait linked must be gauged 

using model validation. In this case, the models were invalidated because of its poor phenotype 

prediction in the test population, indicating that the SNPs classified/categorized/determined to be 

important were unlikely associated with phenotype. 

Additionally, the genomic regions identified by SNPs that passed the importance 

threshold did not overlap across the four datasets despite their shared etiology, nor with the 

genomic regions on BTA8 and BTA13 detected in the GLMM association analyses. Model 

overfitting combined with the lack of common genomic regions across the four datasets 

indicated that the RFs were unable to overcome the complex genetic architecture of 

noninfectious claw lesions and identify genomic regions of biological importance. Thus, 

downstream analyses to estimate SNP effects and conduct pathway and gene ontology analyses 

were not pursued. 

4 DISCUSSION 

Using GLMM regression, CBAT, and a RF approach to compare SNP genotypes of 

sound controls and various types of noninfectious claw lesion cases, we identified genomic 

regions associated with susceptibility to these claw lesions. Given the overlapping etiology of the 

noninfectious claw lesion in this study, we expected that association testing would detect 

genomic regions shared across some or all four datasets. Common genomic regions were 

identified from the GLMM and CBAT approaches, but not for the RF approach. Although RFs 

are a promising tool to identify loci associated with complex traits, the RF models in this study 

were overfitted, precluding meaningful interpretation of SNPs that passed the importance 

threshold. For GLMM testing and CBAT, the associated region detected on BTA8 for SU 
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appeared to be specific for SU because the analyses for the other claw lesions did not detect this 

region; a SNP in this region (ARS-BFGL-NGS-108587) has previously been associated with SU 

(van der Spek et al., 2015b). The SNP detected on BTA13 for WLD increased in significance as 

cows with SU and other noninfectious lesions were added to the GLMM GWAS and CBAT 

analysis, implying that these lesions shared a genetic component that was less prevalent in SU 

cases. LD blocks defined by top SNPs from the GLMM GWAS with nonzero effects from 

Bayesian estimation were explored further for candidate genes and previously defined QTL that 

were also functionally relevant to NICL etiology. Identification of promising candidate genes 

within associated regions may lend more confidence to those regions; however, genetic selection 

does not require candidate gene identification and instead uses markers that are associated with, 

but not necessarily causal for, the trait. Thus, candidate genes are presented below to postulate 

their contribution to etiology rather than to inform genetic selection. 

Sole ulcers and WLD are thought to result from increased laxity of the suspensory system 

from collagen breakdown and a thinner digital cushion, allowing the distal phalanx to rotate and 

sink within the claw (Lischer et al., 2002; Bicalho et al., 2009; Newsome et al., 2017a, 2017b; 

Shearer and van Amstel, 2017; Stambuk et al., 2019). As the distal phalanx crushes the 

underlying corium, a hemorrhage develops at the pressure site and horn production through 

keratinization in the corium is disrupted, leading to horn thinning and eventually a hole in the 

horn through which the corium protrudes and develops into a SU (Greenough, 2007; Shearer et 

al., 2015). Similarly, WLD is thought to develop as a result of improper weight bearing and/or 

flooring causing defective horn production along the white line that is more prone to debris and 

bacteria infiltration, and when the bacteria reach the corium, an abscess forms (Shearer and van 

Amstel, 2017). It has been theorized that subclinical laminitis weakens the suspensory system 
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and thereby predisposes the cow to SU and WLD (Thoefner et al., 2004), though evidence 

supporting this theory is limited (Danscher et al., 2010). New bone development on the third 

phalanx (Rusterholz, 1920; Blowey et al., 2000; Lischer et al., 2002) is associated with 

increasing age (Tsuka et al., 2012; Newsome et al., 2016) and is thought to contribute to higher 

incidence of ulceration (Rusterholz, 1920; Tsuka et al., 2012). Because feet and leg conformation 

influence weight distribution within and between claws, feet and leg conformation traits are 

thought to be correlated with SU+WLD susceptibility, though stronger evidence is needed to 

support the low to moderate phenotypic (Capion et al., 2008; Pérez-Cabal and Charfeddine, 

2016) and genetic (Chapinal et al., 2013) correlations that were previously observed. Based on 

the etiology of noninfectious claw lesions and the possible genetic correlation of susceptibility of 

these claw lesions with conformation traits, genes and QTL related to collagen, keratinization, 

bone growth, adipose, and feet and leg conformation were considered functionally relevant. 

For SU, the suggestive SNPs fell in or near DCAF12 (DDB1 and CUL4 associated factor 

12), an evolutionarily conserved apoptosis regulation gene involved in DNA repair and protein 

degradation that is required for tissue homeostasis under stress conditions as demonstrated in 

Drosophila (Hwangbo et al., 2016). The metabolic stress associated with NICL could potentially 

disrupt regulation of DCAF12 and contribute to aberrant tissue homeostasis within the claw. 

Within the LD block, APTX, AQP7, B4GALT1, ENHO, GALT, GULO, and UBAP2 had functions 

involved in wound healing, skin lesions, bone growth and mineralization, adipose tissue, and 

keratin summarized in Table III-5. Notably, the LD block included a SNP that van der Spek et al. 

(2015b) had previously associated with SU susceptibility, ARS-BFGL-NGS-108587, supporting 

this SNP as a susceptibility locus for SU and the investigation into the region. No other 

previously defined QTL, physiologically relevant, or feet and leg conformation QTL were 
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identified in the LD block. The two suggestive chunks on BTA17 both fell in TMEM132B 

(transmembrane protein 132B, Table III-5), which in humans encodes a member of the 

TMEM132 family of evolutionarily ancient cell adhesion molecules that connect the 

extracellular medium with the intracellular skeleton (Sanchez-Pulido and Ponting, 2018).  

For NICL, all nine suggestive SNPs fell directly upstream or within introns of DIP2C 

(disco-interacting protein 2 homolog C), which is hypothesized to play a role in transcription and 

methylation regulation. DIP2C has been shown to regulate DNA methylation and the epithelial-

mesenchymal transition in human cell lines (Larsson et al., 2017), and mutations in DIP2C have 

been associated with skeletal dysplasia affecting bone and cartilage development in humans 

(Maddirevula et al., 2018). The LD block contained three additional candidate genes with 

functions related to adipose tissue, bone growth, and bone mineralization (Table III-5). The LD 

block on BTA13 did not overlap with previously defined QTL that were apparently related to 

NICL or feet and leg conformation traits. According to the Cattle Gene Atlas (Fang et al., 2020), 

some candidate genes were expressed ubiquitously (DCAF12, APTX, GALT, UBAP2, DIP2C, 

PCNA, and WDR37), and others were expressed more highly in specific tissues such as adipose, 

cardiovascular, bone marrow, central nervous system, mammary, liver, or immune tissues 

(AQP7, B4GALT1, ENHO, GULO, and RASSF2; Table III-5). 

Prior GWAS studies of NICL, while having larger sample sizes, were sampled from 

larger geographical regions and used lower density SNP panels. An acknowledged limitation of 

this study is the small sample size. However, previous GWAS with smaller sample sizes using 

the high-density SNP array were able to detect associated loci in Holstein populations for digital 

cushion thickness (n = 502) (Stambuk et al., 2020) and left displaced abomasum (n = 406) 

(Lehner et al., 2018), implying that loci detection is possible despite smaller sample sizes. By 
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maintaining stringent phenotyping for sound controls, minimizing environmental and housing 

variability, and increasing SNP density, we aimed to optimize the ability to detect genomic 

variants at the expense of larger sample sizes. Additionally, the CBAT approach reduced the 

number of tests performed to increase power and found the same regions of association, 

providing further support for these regions. Because SU susceptibility is also affected by 

environmental management, including housing and nutrition, we sought to minimize 

environmental variability by sampling cows at dairies with similar nutrition and flooring, as the 

diets fed at the five dairies was similar and all dairies used a freestall flush barn system and 

rubber flooring in alleys.  

Whereas previous published studies of noninfectious claw lesions have not used the high-

density panel, our study with the 777K SNP panel allowed for higher resolution when defining 

LD blocks. Furthermore, RF analysis and Bayesian regression methods were implemented to 

perform joint association testing of multiple top SNPs while working around the uneven 

sampling of controls. The two published GWAS for SU susceptibility found associated SNPs on 

different chromosomes than those identified in this study, specifically on BTA 8, 10, 11, 18, and 

22 using a linear animal model (van der Spek et al., 2015b) and on BTA12 and 25 using a linear 

mixed model (Sánchez-Molano et al., 2019). Other GWASs for traits related to SU+WLD 

included digital cushion thickness (Sánchez-Molano et al., 2019; Stambuk et al., 2020), sole 

hemorrhage susceptibility (van der Spek et al., 2015b; Sánchez-Molano et al., 2019), and 

laminitis susceptibility (Naderi et al., 2018), though SNPs detected in these studies were also on 

different chromosomes than those from this study.  

Because noninfectious claw lesions have similar etiology, it has been postulated that 

pleiotropy may exist across the different noninfectious claw lesions and related traits. For 
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instance, estimates of genetic correlation between SU and WLD are significant, ranging from 

0.41 to 0.60 depending on parity (van der Linde et al., 2010). However, past GWAS have not 

found associations on the same chromosomes among SU, WLD, digital cushion thickness, sole 

hemorrhage, or laminitis (van der Spek et al., 2015b; Naderi et al., 2018; Sánchez-Molano et al., 

2019), or if SNPs from the same chromosome were detected, they were in different regions. 

Specifically, the only common chromosome among these three GWAS was BTA11: van der 

Spek et al. (2015b) found Hapmap38795-BTA-97039 for SU at BTA11:23302850 and Naderi et 

al. (2018) found BTB-00466773 for laminitis at BTA11:48309332 (SNP positions were updated 

to the ARS-UCD1.2 map). The QTL identified on BTA13 may thus represent a portion of the 

common genetic contribution to different types of noninfectious claw lesions. 

5 CONCLUSIONS 

Using logistic mixed model single-marker regression and CBAT, genomic regions 

associated with susceptibility were identified on BTA8 for SU and BTA13 for WLD, SU+WLD, 

and NICL. The associated regions on BTA8 and BTA13 contained candidate genes related to 

wound healing, skin lesions, bone growth and mineralization, adipose tissue, and keratin. The RF 

approach was unable to overcome the complexity of these lesion traits and reliably identify 

potential candidate QTL. Although these findings must be validated in larger populations in 

other geographical regions, the detection of a region associated with SU susceptibility that 

included a previously reported locus suggested that the study cohort was adequate to identify 

regions of susceptibility for NICL. Further exploration of these regions through targeted 

sequencing or RNA-seq in claw tissues with and without noninfectious claw lesions may 

uncover variants in genes or regulatory elements contributing to lameness. The multiplicity of 

associations detected in this and other studies demonstrated the complexity of the genetic 
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architecture underlying noninfectious claw lesion susceptibility. 
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6 TABLES 

Table III-1.Distribution of cases for sole ulcers (SU), white line disease (WLD), SU+WLD, and 
noninfectious claw lesions (NICL) and sound controls after quality filtering across the five 
dairies 

  Cases 

Farm Controls SU WLD SU+WLD NICL 

A 81 44 48 75 87 
B 0 8 13 17 23 
C 0 4 7 9 10 
D 21 71 33 72 72 
E 0 25 16 25 25 
Total 102 152 117 198 217 
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Table III-2. Percent (and number) of cows with records of foot lesions across the five dairies 

 Percentage of cows with lesion, (no.)  Total 
no. 
cows 
with 
records 

Farm Sole ulcer White line 
disease Foot wart Wall 

abscess 
Sole 
abscess 

Sole 
fracture Foot rot Bruise Heel 

abscess 
Severe 
laminitis  

A 6.9 (467) 15.6 (1050) 5.6 (376) 2.2 (146) 4.7 (319) 1.9 (125) 0.9 (62) NR NR NR  6734 
B 1.2 (44) 2.6 (91) 8.5 (301) 0.2 (6) 0.6 (23) 1 (37) 0 (1) NR NR NR  3549 
C 1.3 (35) 2.1 (57) 8.8 (236) 0.5 (13) 0.3 (9) 0.4 (10) 0 (1) NR NR NR  2676 
D 5.5 (254) 12.8 (596) 5.8 (268) NR NR NR 0.9 (42) 1.6 (73) NR NR  4658 
E 11.1 (380) 21.4 (733) 17.9 (614) NR NR NR 1.1 (39) NR 16.3 (559) 8.3 (284)  3427 
Total1 5.6 (1180) 12.0 (2527) 8.5 (1795) 1.3 (165) 2.7 (351) 1.3 (172) 0.7 (145) 1.6 (73) 16.3 (559) 8.3 (284)  21044 

NR: not recorded 
1 Totals were calculated across dairies that had records of the lesion; dairies that did not record the lesion were excluded from 
calculation of totals 
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Table III-3. SNPs that were suggestive in the generalized linear mixed model association analysis and the linkage disequilibrium (LD) 
blocks they defined for sole ulcers (SU), white line disease (WLD), sole ulcers and/or white line disease (SU+WLD), and 
noninfectious claw lesions (NICL) 

          
Minor allele 
count   

Minor allele 
frequency            

Dataset BTA SNP 
SNP position 
(bp) 

Minor/
Major 
allele Cases Controls   Cases Controls 

Score1 
(variance) P 

SNP 
significance 
in Bayesian 
estimation2 

 LD block 
start (bp)  

 LD block 
end (bp)  

LD 
block 
length 
(kb) 

SU 8 BovineHD0800023014 75,489,164  T/C 75 94  0.247 0.461 -20 (18.1) 2.71E-06 - 74,345,807 77,546,693  3,200.9  
 8 BovineHD0800023015  75,490,011  T/G 75 94  0.247 0.461 -20 (18.1) 2.71E-06 - 74,345,807    77,546,693  3,200.9  
 8 ARS-BFGL-NGS-112795  75,490,692  A/G 75 94  0.247 0.461 -20 (18.1) 2.71E-06 -  74,345,807   77,546,693  3,200.9  
 8 BovineHD0800023016  75,491,531  C/T 75 94  0.247 0.461 -20 (18.1) 2.71E-06 -  74,345,807   77,546,693  3,200.9  
 8 BovineHD0800023017  75,492,307  G/A 75 94  0.247 0.461 -20 (18.1) 2.71E-06 -  74,345,807   77,546,693  3,200.9  
 8 BovineHD0800023018  75,493,464  T/C 75 94  0.247 0.461 -20 (18.1) 2.71E-06 -  74,345,807   77,546,693  3,200.9  
 8 BovineHD0800023019  75,494,163  C/T 75 94  0.247 0.461 -20 (18.1) 2.71E-06 -  74,345,807   77,546,693  3,200.9  

 8 BovineHD0800023021  75,496,244  T/C 77 97  0.253 0.476 
-20.4 
(18.8) 2.66E-06 *  74,345,807   77,546,693  3,200.9  

 8 BovineHD0800023022  75,496,918  A/G 75 94  0.247 0.461 -20 (18.1) 2.71E-06 -  74,345,807   77,546,693  3,200.9  
 8 BovineHD0800023023  75,497,471  C/T 75 94  0.247 0.461 -20 (18.1) 2.71E-06 -  74,345,807   77,546,693  3,200.9  
 8 BovineHD0800023024  75,498,118  A/G 75 94  0.247 0.461 -20 (18.1) 2.71E-06 -  74,345,807   77,546,693  3,200.9  
 8 BovineHD0800023025  75,501,482  T/C 75 94  0.247 0.461 -20 (18.1) 2.71E-06 -  74,345,807   77,546,693  3,200.9  
WLD 13 BovineHD1300013725 46,491,619 C/T 106 48  0.453 0.235 19.9 (19.4) 6.13E-06 *  46,307,416   47,584,595   1,277.2  
SU+W
LD 13 BovineHD1300013725 46,491,619   C/T  183 48  0.462 0.235 25 (25.5) 7.03E-07 * 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013733 46,526,509   C/T  188 52  0.475 0.255 24.8 (25.6) 9.86E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013739 46,540,186   G/T  188 52  0.475 0.255 24.8 (25.6) 9.86E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013740 46,541,925   C/T  188 52  0.475 0.255 24.8 (25.6) 9.86E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013750 46,561,964   C/T  188 52  0.475 0.255 24.8 (25.6) 9.86E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013759 46,582,769   G/A  188 52  0.475 0.255 24.8 (25.6) 9.86E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013765 46,596,264   A/G  188 52  0.475 0.255 24.8 (25.6) 9.86E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013774 46,637,235   A/G  188 52  0.475 0.255 24.8 (25.6) 9.86E-07 - 45,283,136  47,676,681  2,393.5  
 13 BTB-00525539 47,420,271   C/A  195 59  0.492 0.289 24.6 (27.8) 3.03E-06 ns 45,283,136  47,676,681  2,393.5  
NICL 13 BovineHD1300013725 46,491,619  C/T 199 48  0.459 0.235 26.4 (27.2) 3.96E-07 * 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013733 46,526,509  C/T 204 52  0.470 0.255 26 (27.3) 6.68E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013739 46,540,186  G/T 204 52  0.470 0.255 26 (27.3) 6.68E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013740 46,541,925  C/T 204 52  0.470 0.255 26 (27.3) 6.68E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013750 46,561,964  C/T 204 52  0.470 0.255 26 (27.3) 6.68E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013759 46,582,769  G/A 204 52  0.470 0.255 26 (27.3) 6.68E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013765 46,596,264  A/G 204 52  0.470 0.255 26 (27.3) 6.68E-07 - 45,283,136  47,676,681  2,393.5  
 13 BovineHD1300013774 46,637,235  A/G 204 52  0.470 0.255 26 (27.3) 6.68E-07 - 45,283,136  47,676,681  2,393.5  
 13 BTB-00525539 47,420,271  C/A 213 59  0.491 0.289 25.8 (29.3) 1.79E-06 ns 45,283,136  47,676,681  2,393.5  
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1 Scores are for the minor allele generated from generalized linear mixed model analysis. Negative scores indicate the minor allele is 
associated with reduced susceptibility and positive scores indicate the minor allele is associated with increased susceptibility. 
2 SNPs used in Bayesian model were either significantly different from zero at 95% uncertainty interval (*) or not significant (ns). 
Other SNPs were in LD with SNPs that were used in the model and were excluded from the model (-). 
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Table III-4. Proportion of phenotypic variance explained (PVE) by each linkage disequilibrium 
(LD) block defined from the generalized linear mixed model association analysis compared to 
the mean PVE of all chunks of genomic regions with the same length for sole ulcers (SU), white 
line disease (WLD), sole ulcers and/or white line disease (SU+WLD), and noninfectious claw 
lesions (NICL) 

 

Table III-5. Candidate genes in linkage disequilibrium blocks defined by suggestive SNPs from 
generalized linear mixed model and chunk-based association testing for sole ulcers (SU), white 
line disease (WLD), sole ulcers and/or white line disease (SU+WLD), and noninfectious claw 
lesions (NICL) and the tissues in which they were expressed 

Claw lesion Gene 

symbol 

Gene description Functional relevance RNA tissue 

specificity 

SU DCAF12 DDB1 (damage specific 

binding protein) and CUL4 

(cullin 4) associated factor 12 

Regulates apoptosis required for 

tissue homeostasis under stress 

conditions (Hwangbo et al., 2016) 

Ubiquitous 

 

APTX Aprataxin Decreased bone mineral content 

(MGI) 

Ubiquitous 

   

Increased total body fat amount 

(MGI) 

 

 

AQP7 Aquaporin 7 Abnormal white adipose tissue 

physiology (MGI) 

Adipose, 
cardiovascul
ar, and bone 
marrow    

Increased fat cell size (MGI)   

B4GALT1 Beta-1,4-

Galactosyltransferase 1 

Decreased subcutaneous adipose 

tissue amount (MGI) 

Mammary 
gland 

   

Delayed wound healing (MGI)     

Hyperkeratosis (MGI)     

Skin lesions (MGI)     

Thin skin (MGI)   

ENHO Energy homeostasis 

associated 

Increased body fat mass (MGI) Central 
nervous 
system    

Increased percent body fat/body 

weight (MGI) 

 

 

GALT Galactose-1-Phosphate 

Uridylyltransferase 

Decreased subcutaneous adipose 

tissue amount (MGI) 

Ubiquitous 

   

Delayed wound healing (MGI)     

Hyperkeratosis (MGI)     

Skin lesions (MGI)  

Dataset BTA 
 LD block 

start (bp)  

 LD block 

end (bp)  

LD 

block 

length 

(kb) 

PVE (SD) PVE P 

Genome-wide 

mean chunk 

PVE (SE) 

Genome-

wide mean 

chunk PVE 

P (SE) 

SU 8 74,345,807 77,546,693 3,200.9 0.081 (0.054) 3.93E-04 0.00809 (0.0004) 0.478 (0.006) 

WLD 13 46,307,416 47,584,595 1,277.2 0.061 (0.047) 2.93E-05 0.00794 (0.0002) 0.485 (0.004) 

SU+WLD 13 45,283,136 47,676,681 2,393.5 0.071 (0.050) 1.05E-06 0.00873 (0.0004) 0.482 (0.006) 

NICL 13 45,283,136 47,676,681 2,393.5 0.074 (0.051) 5.79E-09 0.00828 (0.0003) 0.484 (0.005) 
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Claw lesion Gene 

symbol 

Gene description Functional relevance RNA tissue 

specificity    

Thin skin (MGI)   

GULO Gulonolactone (L-) oxidase Abnormal bone mineralization 

(MGI) 

Liver 
   

Abnormal long bone epiphyseal 

plate morphology (MGI) 

 

   

Abnormal trabecular bone 

morphology (MGI) 

 

   

Decreased bone mineral density 

(MGI) 

 

   

Decreased compact bone 

thickness (MGI) 

 

 TMEM132B Transmembrane protein 

132B 

Cell adhesion molecule that 

connects the extracellular medium 

with the intracellular skeleton 

(Sanchez-Pulido and Ponting, 

2018) 

Central 
nervous 
system, 
testes 

 

UBAP2 Ubiquitin-associated protein 

2 

Abnormal adipose tissue amount 

(MGI) 

Ubiquitous 

WLD, 

SU+WLD, 

NICL 

DIP2C Disco-interacting protein 2 

homolog C 

Regulates DNA methylation and 

the epithelial-mesenchymal 

transition in human cell lines 

(Larsson et al., 2017) 

Ubiquitous 

  

Mutations associated with skeletal 

dysplasia (Maddirevula et al., 

2018) 

 

PCNA Proliferating cell nuclear 

antigen 

Abnormal adipose tissue 

development (MGI) 

Ubiquitous 

  

Decreased percent body fat/body 

weight (MGI) 

 

  

Decreased white fat cell numberv   

RASSF2 Ras association 

(RalGDS/AF-6) domain 

family member 2 

Abnormal bone mineralization 

(MGI) 

White blood 

cells and 

immune 

tissues    

Abnormal trabecular bone 

morphology (MGI) 

 

   

Decreased bone marrow cell 

number (MGI) 

 

   

Decreased bone mass (MGI)     

Decreased bone mineral density 

(MGI) 

 

   

Decreased bone trabecula number 

(MGI) 

 

   

Decreased trabecular bone 

thickness (MGI) 

 

   

Decreased trabecular bone volume 

(MGI) 

 

 

WDR37 WD repeat domain 37 Increased bone mineral content 

(MGI) 

Ubiquitous 

MGI: Mammalian phenotype associated with gene from Mammalian Genome Informatics batch 
query 
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7 FIGURES 

(A) 

 
(B) 

 
 

Figure III-1.Manhattan plots from the generalized linear mixed model regression association 
analyses for (A) sole ulcers, and (B) noninfectious claw lesion susceptibility. The blue line 
indicates the threshold of genome-wide suggestive significance, and the red line indicates the 
threshold of genome-wide significance. 

  



 

98 

(A) 

 
(B) 
 

 

Figure III-2. Bayesian uncertainty interval (UI) plots depicting the estimated SNP effects of the 
suggestive SNPs detected in the generalized linear mixed model regression analysis for (A) sole 
ulcers, and (B) noninfectious claw lesion susceptibility. Dots indicate the median of the SNP 
effect, thick black bars indicate the 50% UI, and thin lines indicate the 95% UI of the effect size 
distribution. The letters following SNP names indicate the minor allele for which the effect was 
calculated. Positive values indicate the minor allele of the SNP increases susceptibility, and 
negative values indicate the minor allele of the SNP decreases susceptibility.  
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Abbreviations: Bos taurus autosome (BTA), chunk-based association testing (CBAT), 

generalized linear mixed model (GLMM), genetic relatedness matrix (GRM), genome-wide 

association study (GWAS), linkage disequilibrium (LD), minor allele frequency (MAF), 

noninfectious claw lesions (NICL), proportion of phenotypic variance explained (PVE), random 

forest (RF), sole ulcers (SU), white line disease (WLD) 
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8 SUPPLEMENTARY MATERIAL 

The following supplementary materials are also available online at 

https://www.frontiersin.org/articles/10.3389/fgene.2021.657375/full#supplementary-material  

 

8.1 Supplementary tables 

Table III-S1. Chunks of SNPs that were significant or suggestive in chunk-based association 
testing and the proportion of phenotypic variance they explained (PVE) for sole ulcers (SU), 
white line disease (WLD), sole ulcers and/or white line disease (SU+WLD), and noninfectious 
claw lesions (NICL) 

Dataset BTA 
Chunk 
start (bp) 

Chunk 
end (bp) 

Number 
of SNPs 
in chunk PVE (SD) P 

SU 8 75450001 75550001 13 0.053 (0.044) 1.04E-05 * 

 17 50500001 50600001 21 0.113 (0.063) 1.21E-05 * 

 17 50550001 50650001 17 0.150 (0.077) 4.76E-06 * 

WLD 13 46450001 46550001 5 0.061 (0.058) 1.76E-05 * 

SU+WLD 13 46400001 46500001 5 0.093 (0.080) 3.86E-06 * 

 13 46450001 46550001 5 0.059 (0.054) 9.73E-07 * 

 13 46500001 46600001 7 0.059 (0.051) 2.51E-06 * 

 13 46550001 46650001 8 0.061 (0.051) 2.99E-06 * 

 13 46600001 46700001 6 0.071 (0.058) 3.18E-06 * 

NICL 13 46400001 46500001 5 0.095 (0.081) 2.59E-06 * 

 13 46450001 46550001 5 0.060 (0.054) 6.91E-07 ** 

 13 46500001 46600001 7 0.059 (0.051) 1.83E-06 * 

 13 46550001 46650001 8 0.059 (0.049) 2.36E-06 * 

  13 46600001 46700001 6 0.069 (0.056) 2.70E-06 * 
*PVE by chunk reached genome-wide suggestive significance 
**PVE by chunk reached genome-wide significance 
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8.2 Supplementary figures 

 

Figure III-S1. Multidimensional scaling plot showing the first two dimensions for the 217 
noninfectious claw lesion cases and 102 sound controls from five dairies used in the genome-
wide association analyses. 

Figure III-S2. Histogram illustrating the distribution of pairwise relatedness coefficients in cows 
from the same farm and different farms. 
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(A) (B) 

  
(C) (D) 

  
Figure III-S3. Quantile-quantile plots showing the observed vs. expected p-values outputted from 
the generalized linear mixed model regression analysis for (A) sole ulcers, (B) white line disease, 
(C) sole ulcers and white line disease, and (D) noninfectious claw lesions. The red line indicates 
where observed and expected p-values are equivalent. 
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(A) 
 

(B) 
 

Figure III-S4. Manhattan plots from the generalized linear mixed model regression association 
analyses for (A) white line disease and (B) sole ulcers and white line disease. The blue line 
indicates the threshold of genome-wide suggestive significance and the red line indicates the 
threshold of genome-wide significance. 
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(A) (B) 

  
(C) (D) 

  
Figure III-S5. Quantile-quantile plots showing the observed vs. expected p-values outputted from 
chunk-based association testing for (A) sole ulcers, (B) white line disease, (C) sole ulcers and 
white line disease, and (D) noninfectious claw lesions. The red line indicates where observed and 
expected p-values are equivalent. 
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(A) 

 
(B) 

 
Figure III-S6. Manhattan plots from chunk-based association testing using 100 kb chunks 
spanning the genome for (A) sole ulcers, (B) white line disease, (C) sole ulcers and white line 
disease, and (D) noninfectious claw lesions. The blue line indicates the threshold of genome-
wide suggestive significance and the red line indicates the threshold of genome-wide 
significance. 
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(A) (B) 

  
Figure III-S7. Posterior predictive check for Bayesian estimation of SNP effects of suggestive 
SNPs from the generalized linear mixed model regression for (A) sole ulcers and (B) 
noninfectious claw lesions. Gray bars represent the distribution of observed cases and controls, 
and black dots with intervals represent the median and uncertainty intervals of replicate 
phenotypes (yrep) simulated using estimated SNP effects. 

9 DATA AVAILABILITY STATEMENT 

The microarray datasets generated for this study can be found in NCBI’s Gene 

Expression Omnibus data repository (GEO series record GSE159157 and GSE165945). 
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 Chapter IV. Pleiotropic loci associated with foot disorders and common periparturient 

diseases in Holstein cattle 

 

This chapter has been submitted for publication in the Journal of Animal Science and 

Biotechnology. 
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Abstract 

Background: Lameness is an animal welfare issue that incurs substantial financial and 

environmental costs. This condition is commonly caused by digital dermatitis (DD), sole ulcers 

(SU), and white line disease (WLD). Susceptibility to these three foot disorders is due in part to 

genetics, indicating that genomic selection against these foot lesions can be used to reduce 

lameness prevalence. It is unclear whether selection against foot lesions will lead to increased 

susceptibility to other common diseases such as mastitis and metritis. Thus, the aim of this study 

was to determine the genetic correlation between causes of lameness and other common health 

disorders to identify loci contributing to the correlation. 

Results: Genetic correlation estimates between SU and DD and between SU and WLD 

were significantly different from zero (p < 0.05), whereas estimates between DD and mastitis, 

DD and milk fever, and SU and metritis were suggestive (p < 0.1). All five of these genetic 

correlation estimates were positive. Two-trait GWAS for each of these five pairs of traits 

revealed common regions of association on BTA1 and BTA8 for pairs that included DD or SU as 

one of the traits, respectively. Other regions of association were unique to the pair of traits and 

not observed in GWAS for other pairs of traits. 

Conclusions: The positive genetic correlation estimates between foot disorders and other 

health disorders imply that selection against foot disorders may also decrease susceptibility to 

other health disorders. Linkage disequilibrium blocks defined around significant and suggestive 

SNPs from the two-trait GWASs included genes and QTL that were functionally relevant, 

supporting that these regions included pleiotropic loci.  

Key words: Pleiotropy, multivariate, genome-wide association study, dairy cattle, lameness, 

disease, genetic correlation 
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1 BACKGROUND 

Abnormal gait or posture in a cow are considered indicators of lameness and signifies 

pain and discomfort. Lameness is the second most prevalent disease after mastitis and the third 

most common reason for culling after mastitis and infertility (USDA, 2018). Lameness is 

commonly caused by foot lesions classified as infectious (e.g. digital dermatitis (DD), heel horn 

erosion, and foot rot) or noninfectious lesions (e.g. sole hemorrhage, sole ulcer (SU), white line 

disease (WLD), and laminitis). The etiology of heel horn erosion is not well known, though this 

foot disorder is commonly categorized as infectious because heel horn erosion is more prevalent 

in damp, unhygienic conditions like manure slurry (Bergsten and Herlin, 1996), often coincides 

with digital dermatitis (Knappe-Poindecker et al., 2013), and decreases with disinfecting (but not 

water) footbaths (Fjeldaas et al., 2014). Lameness not only raises welfare concerns, but also has 

economic and environmental consequences. Financial costs associated with lameness include 

direct costs for treatment and increased labor and indirect costs from reduced milk production 

and fertility; together these costs range from $64 per case of DD to $178 per case of SU (Cha et 

al., 2010; Dolecheck and Bewley, 2018; Dolecheck et al., 2019). Reduced fertility, premature 

culling, and reduced milk production associated with lameness reduces the efficiency of resource 

use, as resources used for the cow are invested over a less productive and shorter lifetime, 

inflating the environmental costs per unit of milk by 14 (1.5%) kg CO2 equivalents per ton of fat-

and-protein-corrected milk, on average (of DD, SU, and WLD combined) (Mostert et al., 2018). 

Prevention of lameness is achieved through routine claw trimming, foot baths (for 

prevention of infectious causes), maintaining floor hygiene, and nutrition. Despite these 

prevention efforts, lameness remains highly prevalent in the United States, affecting 16.8% of 

cows and 3.2% of bred heifers (USDA, 2018). These non-genetic methods of prevention can be 
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aided by genetic selection, as implied by the low to moderate estimates of heritability for foot 

lesions, ranging from 0.01 to 0.4 for DD, 0.01 to 0.3 for SU, and 0.017 to 0.26 for WLD (Van 

der Waaij et al., 2005; Onyiro et al., 2008; van der Linde et al., 2010; Häggman and Juga, 2013; 

Oberbauer et al., 2013; van der Spek et al., 2013, 2015a; Malchiodi et al., 2015a; Biemans et al., 

2018). Genetic selection uses prior knowledge about the contribution of certain genetic markers 

to traits of interest and creating a selection index reflecting a weighted average of multiple traits 

that is used to rank animals. Selective breeding programs utilize both genetic correlation among 

traits that are included in the selection index and specific susceptibility loci associated with the 

traits. Accordingly, selection against foot disorders would likely account for correlated lesion 

traits because some foot disorders are genetically correlated with each other, particularly within 

the infectious (strongest between DD and heel erosion) and noninfectious (strongest among sole 

hemorrhage, SU, and WLD) groupings of lesions (Koenig et al., 2005; Van der Waaij et al., 

2005; van der Linde et al., 2010; Buch et al., 2011; Gernand et al., 2012; Häggman and Juga, 

2013; van der Spek et al., 2013; Pérez-Cabal and Charfeddine, 2015; Malchiodi et al., 2017).  

Additionally, certain foot lesions are genetically correlated with mastitis or indicator 

traits of mastitis. For example, the genetic correlations between clinical mastitis and sole 

hemorrhage or SU were estimated at 0.35 and 0.32, respectively, in Swedish Red cows (Buch et 

al., 2011). For Holstein cows, the genetic correlation between somatic cell score and individual 

foot lesions or lameness in general ranged from 0.15 to 0.24 (Koenig et al., 2005), and 0.23 

(Gernand et al., 2012), respectively, although other studies failed to identify significant genetic 

correlations between DD or interdigital hyperplasia and clinical mastitis (Buch et al., 2011; 

Gernand et al., 2013). Nevertheless, the genetic correlation among foot disorders and between 

individual foot disorders and mastitis traits imply that common loci may coordinately influence 
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these traits (Koenig et al., 2005; Buch et al., 2011). Such pleotropic loci have not been identified 

as of yet. The values for genetic correlation between foot and other health disorders that have 

been reported were estimated using pedigree information. To our knowledge, no DNA-based 

studies have been performed to estimate the genetic correlation between foot disorders and 

disease traits other than mastitis. Using genomic data from individual cows to estimate 

relationships may be more accurate than using pedigree data (Goddard, 2009; Hayes et al., 2009) 

because using genomic data reduces the standard error of the genetic correlation estimate 

(Visscher et al., 2014). Therefore, the aim of this study was to identify loci associated with 

susceptibility to multiple foot disorders and other common diseases, which could be coordinately 

used to inform breeding programs. 

2 MATERIALS AND METHODS 

2.1 Phenotypes 

Five large commercial dairies (Dairies A-E, each with > 1000 cows) in Northern and 

Central California participated in this study. Phenotypes were derived from hoof trimming and 

other health records provided by the dairies. Three hoof trimmers recorded the foot lesions used 

for phenotyping foot lesions, one who serviced Dairies A, B, and C; one who serviced Dairy D, 

and another who serviced Dairy E. Hoof trimmer experience and hoof trimming regimens were 

described previously (Lai et al., 2020, 2021). Foot disorders recorded included DD, foot rot, sole 

hemorrhage, SU, WLD, wall abscess, sole abscess, heel abscess, and laminitis. Other health 

events were also recorded by dairy personnel, which included diarrhea, displaced abomasum, 

ketosis, mastitis, metritis, milk fever, pneumonia, and retained placenta. For each foot or other 

health disorder, cases were defined as cows with at least one record of the disorder and controls 

were defined as cows that did not have records of the given foot or health disorder. 
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Consequently, for each trait, controls included cows with disorders other than the disorder the 

cases had. 

2.2 Genotypes 

Whole blood samples were obtained and the buffy coat was used to extract genomic 

DNA using the QIAGEN QIAamp DNA Blood Mini Kit (QIAGEN Inc., Valencia, CA). DNA 

samples were quantified using the NanoDrop (ND-2000 v3.2.1) spectrophotometer (Thermo 

Scientific, Wilmington, DE) and sent to GeneSeek (Lincoln, NE) for SNP genotyping on the 

high-density BovineHD BeadChip (777K SNPs, Illumina Inc., San Diego, CA). Genotype calls 

were made using Illumina’s GenCall algorithm. SNP genotypes from a subset of the cows used 

in this study were used in our past studies (Lai et al., 2020, 2021) and are publicly available at 

the NCBI Gene Expression Omnibus database (GEO series record GSE159157 and 

GSE165945), along with the additional samples from this study (GSE to be added when received 

from GEO). SNP genotypes were updated to the ARS-UCD1.2 assembly positions (Rosen et al., 

2020) and quality-filtered in PLINK 1.9 (Purcell and Chang, 2015) by removing from further 

analyses SNPs and cows with < 95% genotyping rate, SNPs with significant deviation from 

Hardy-Weinberg equilibrium (p < 1E-6) to exclude systematic genotyping errors, and SNPs with 

minor allele frequency < 5% to exclude rare variants. Missing genotypes for each cow were 

imputed using BEAGLE 5.1 (Browning et al., 2018) using the other cows in the sample 

population as the reference population, an effective sample size of 58 for the United States 

Holstein cattle population (Makanjuola et al., 2020), and default parameters. Genetic similarity 

among cows was visualized in a multidimensional scaling (MDS) plot depicting the first two 

dimensions. 
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2.3 Estimation of genetic correlation 

Genetic correlation was estimated between each foot lesion and other health trait, 

including other foot lesions (e.g. genetic correlation was estimated between SU and WLD, SU 

and DD, SU and mastitis, SU and metritis, etc.) using cows that had phenotypes for both traits 

and at least 40 case cows for each disease. PLINK 2.0 was used to filter cows by requiring 

phenotypes for both traits (Chang et al., 2015; Purcell and Chang, 2021). The genome-wide 

complex trait analysis (GCTA) program was used to calculate the genetic relatedness matrix 

(GRM), which was used with farm as a covariate to estimate the additive genetic variance and 

covariance between the two traits using two-trait genome-based restricted maximum likelihood 

(GREML) (Yang et al., 2011; Lee et al., 2012). Specifically, the phenotype for trait 1 of the k-th 

cow was modeled as a function of the phenotypic contribution from the j-th SNP and the i-th 

farm:	

"!!"# = µ! + %!! + &!" + '!# + (!"#$ 

where µ! was an unknown constant common to all cows for trait 1, %!! was contribution 

of i-th farm to the risk of disease, &!"was the contribution of the j-th SNP genotype to risk of the 

disorder, and '!# were the additive genetic effects assumed to be drawn from the multivariate 

normal density N(0, )	*%&), where A was the GRM and *%& is the variance of the additive genetic 

effects. (!"#$ was the residual term for trait 1. Similarly, the phenotype for trait 2 of the k-th cow 

was modeled using the same components for trait 2 as  

"&!"# = µ& + %&! + &&" + '&# + (&"#$ 

Additive genetic variance for each trait and covariance between the two traits were 

estimated and used to calculate genetic correlation. All genetic correlation estimates were 

transformed from the observed scale (0/1) to the underlying liability scale to account for case 
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ascertainment using the prevalence of each disorder obtained from the literature (Oberbauer et 

al., 2013; USDA, 2018). Genetic correlation estimates were considered significantly different 

from zero if the estimate had p < 0.05 from the likelihood ratio test, and suggestive genetic 

correlation estimates were those with p < 0.1.  

2.4 Two-trait genome-wide association analyses 

Pairs of traits that had significant or suggestive genetic correlation estimates using the 

frequentist approach were evaluated further in two-trait GWAS to identify regions potentially 

contributing to both traits. Multi-trait association testing can improve the power to detect 

associations while accounting for population stratification (Banerjee et al., 2008; Korte et al., 

2012; Zhou and Stephens, 2012, 2014) because the additional information from the covariance of 

traits is still informative, even if only one of the traits is associated with the genotype (Stephens, 

2013). Two-trait genome-wide association analysis was performed to test for association of each 

SNP with at least one of the traits. A standardized GRM was constructed and included in the 

linear mixed model to account for relatedness and population stratification, and farm was 

included as a covariate to adjust for differences among farms. The linear mixed model 

association testing was conducted using the multivariate association testing function in the 

genome-wide efficient mixed model association (GEMMA) program (Zhou and Stephens, 2012, 

2014). Bonferroni correction for multiple testing assumes that each test for SNP association with 

phenotype(s) is independent. However, because SNPs are not independent due to linkage 

disequilibrium (LD) between SNPs, the Genetic Type I error calculator (GEC) was used to 

calculate the effective number of markers after accounting for linkage disequilibrium between 

SNPs for use as the denominator in Bonferroni-corrected thresholds of significance (Li et al., 

2012). Genome-wide significant SNPs were thus defined as those with likelihood ratio test 
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(LRT) p < 0.05/Me and suggestive SNPs, as those with LRT p < 1/Me (Lander and Kruglyak, 

1995). Manhattan and quantile-quantile plots were generated using the qqman package in R (R 

Development Core Team, 2010; Turner, 2014). 

Because SNPs are likely not causal for the traits, but rather more likely in LD with causal 

variants, SNPs were used to define LD blocks that were then mined for overlap with genes and 

previously defined QTL. SNPs in LD with significant and suggestive SNPs were used to define 

the start and end of LD blocks using a method similar to Richardson et al. (2016) and Twomey et 

al. (2019). SNPs that were within 5 Mb (upstream or downstream) and in LD (R2 > 0.5) with 

significant or suggestive SNPs were considered belonging to the same LD block. LD blocks 

were queried in the region search of FAANGMine (FAANG, 2019) to identify genes within or 

overlapping with the LD block. LD blocks were also queried for overlap with previously defined 

QTL and associations related to feet and legs conformation traits and disease traits in the Cattle 

QTLdb (Hu et al., 2019) (version 46, accessed 4/30/2021). Functions of genes that were 

considered relevant to the etiology of each disorder were defined for each trait (Table IV-

S1Error! Reference source not found.) and included those with a role in immune function, hair 

follicle morphology, hair density, skin integrity, fibroblast proliferation, bone growth and 

mineralization, adipose morphology and amount, and glucose metabolism. 

3 RESULTS 

3.1 Descriptive data 

Hoof trimming records were available for 21044 cows across the five dairies (distribution 

of records for each type of foot lesion is described in detail by Lai et al. (2021), of which 418 

cows were selected for SNP genotyping as controls or cases for a certain foot lesion(s). Traits 

that were recorded at multiple dairies were used for genetic correlation estimation and two-trait 
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GWAS, and the distribution of case/control phenotypes for each trait are listed in Table IV-1. All 

five dairies recorded SU, WLD, and DD foot disorders. All dairies except Dairy C also had 

health records available for phenotyping other health traits. These four dairies (Dairies A, B, D, 

and E) recorded mastitis, metritis, and pneumonia. Dairies A, B, and E also recorded ketosis, 

retained placenta, diarrhea, milk fever, and displaced abomasum. After excluding traits that had 

£ 40 cases, genetic correlation was estimated between each pair of foot disorders (SU, WLD, and 

DD) as well as each foot disorder with another health disorder (mastitis, metritis, retained 

placenta, milk fever, and pneumonia). 
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Table IV-1. Count of genotyped cows after quality filtering, split by cases for each foot disorder 
or other health condition and controls across the five dairies 

  Farm   
  A B C D E Total 
Datasets for foot disorders       

Sole ulcer       

Cases 44 8 4 71 25 152 
Controls 138 70 26 23 0 257 

White line disease      
 

Cases 48 13 7 33 16 117 
Controls 134 65 23 61 9 292 

Digital dermatitis       

Cases 19 22 30 30 5 106 
Controls 163 56 0 64 20 303 

Datasets for other 
disorders 

      

Mastitis       

Cases 89 66 NR 77 17 249 
Controls 93 12 NR 17 8 130 

Metritis       

Cases 57 51 NR 8 15 131 
Controls 125 27 NR 86 10 248 

Ketosis       

Cases 13 17 NR NR 0 30 
Controls 169 61 NR NR 25 255 

Retained placenta   
    

Cases 16 35 NR NR 0 51 
Controls 166 43 NR NR 25 234 

Diarrhea       

Cases 19 0 NR NR 1 20 
Controls 163 78 NR NR 24 265 

Milk fever       

Cases 61 9 NR NR 0 70 
Controls 121 69 NR NR 25 215 

Displaced abomasum       

Cases 1 17 NR NR 2 20 
Controls 181 61 NR NR 23 265 

Pneumonia       

Cases 2 4 NR 22 13 41 
Controls 180 74 NR 72 12 338 

NR: No records available; cows were excluded from analyses 
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Quality filtering removed nine cows and 218306 SNPs, leaving 409 cows with 559656 

SNP genotypes for analyses with case/control phenotypes presented in  Table IV-1. The MDS 

plot indicated slight population stratification with a prominent center cluster, though cows were 

not strongly stratified by farm (Figure IV-S1). 

3.2 Genetic correlation estimates 

Of the pairs of traits for which genetic correlations were estimated, genetic correlation 

estimates between SU and WLD and between SU and DD were significantly different from zero 

(p < 0.05), and estimates between DD and mastitis, DD and milk fever, and SU and metritis were 

suggestive (p < 0.1, Table IV-2). Consequently, each pair of these traits was analyzed in two-trait 

GWAS. 

Table IV-2. Genetic correlation estimates (and standard error, SE) between sole ulcer (SU), 
white line disease (WLD), digital dermatitis (DD), and other health traits that were significantly 
or suggestively different from zero 

Trait 1 Trait 2 
Genetic 
correlation 
(SE) 

p Significance 

SU DD 0.46 (0.25) 4.81E-02 * 
SU WLD 0.92 (0.46) 2.54E-02 * 
DD Mastitis 0.49 (0.36) 7.77E-02 † 
DD Milk fever 0.49 (0.39) 9.46E-02 † 
SU Metritis 0.70 (0.46) 5.22E-02 † 

* genome-wide significant (Bonferroni-corrected p < 0.05) 
† genome-wide suggestive significance (Bonferroni-corrected p < 0.10) 
 

3.3 Two-trait genome-wide association analysis 

The effective number of markers after accounting for LD was 162435 SNPs, 

corresponding to a suggestive threshold of 6.2x10-6 (5.2 on the -log10(p) scale) for genome-wide 

suggestive significance and 3.1x10-7 (6.5 on the -log10(p) scale) for genome-wide significance. 

Manhattan plots from the two-trait GWAS are shown in Figure IV-1. Genomic inflation factors 
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ranged from 1.02 to 1.06 and, combined with the qqplots (Figure IV-S2), indicated that 

population stratification had been accounted for sufficiently. 

Figure IV-1. Manhattan plot for two-trait genome-wide association analysis of (a) sole ulcer 
(SU) and digital dermatitis (DD), (b) SU and white line disease (WLD), (c) DD and mastitis, (d) 

(a)

(b)

(c)

(d)

(e)
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DD and milk fever, and (e) SU and metritis. The blue line indicates genome-wide suggestive 
significance, and the red line indicates genome-wide significance. 

Significant and suggestive SNPs and the LD blocks they defined are shown in  

Table IV-S2, and the most significant SNP (i.e., lowest p-value) within each LD block 

are also listed in Table IV-3 for brevity. Supplemental materials report the genes and QTL LD 

blocks (Figure IV-S1, Table IV-S3, and Table IV-S4). The GWAS that included DD as one of 

the traits (DD and mastitis, SU and DD, DD and milk fever) identified significant and suggestive 

SNPs belonging to the same LD block at BTA1:125550933-125822143. For the DD and mastitis 

and DD and milk fever GWAS, the peak on BTA1 reached or approached genome-wide 

significance despite the genetic correlation estimate only reaching suggestive significance (Table 

IV-1 and  

Table IV-S2). GWA analyses that included SU as one of the traits (that is, between SU 

and WLD, SU and DD, and SU and metritis) all identified suggestive SNPs in an LD block at 

BTA8:42926603-44642925. Other SNP associations were unique to the pair of traits for which 

the GWAS was performed such that SNPs that were associated in a certain GWAS for a pair of 

traits were not associated in other GWASs for other pairs of traits.  For instance, the LD block on 

BTA14 detected from the GWAS for SU and DD was only detected in the SU and DD GWAS 

and not detected in any other of the comparisons such as that for SU and WLD, DD and mastitis, 

DD and milk fever, and SU and metritis. Although SU and WLD were strongly genetically 

correlated (0.92), four of the seven suggestive SNPs identified in the two-trait GWAS had 

opposite effect signs between the two traits: the effects of four of the suggestive SNPs were 

negative for SU and positive for WLD (Table IV-3 and  

Table IV-S2). The LD blocks defined from all the two-trait GWA analyses overlapped 

with 83 protein-coding genes, some functionally relevant to the etiology of the disorders (Table 
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IV-S3).  

 



 

 

1
2
2
 

Table IV-3. Linkage disequilibrium (LD) blocks and the most significant SNP (i.e., lowest p-value) within the LD block defined from 

the two-trait genome-wide association analyses for pairs of traits including sole ulcer (SU), white line disease (WLD), digital 

dermatitis (DD) and other health disorders 

BTA: Bos taurus autosome 

* = genome-wide significance 

† = genome-wide suggestive significance 

 

                    Variance matrix for beta effects     

Dataset (trait 
1 and trait 2) 

BTA 
LD block 
start (bp) 

LD block 
end (bp) 

LD block 
length 
(kb) 

Most significant SNP 
SNP 

position 
(bp) 

Minor/
Major 
allele 

Effect size 
for trait 1 

Effect size 
for trait 2 

Variance 
of effect 
size for 
trait 1 

Covariance 
between 

effect sizes 
of trait 1 

and 2 

Variance of 
effect size 
for trait 2 

P 

SU and DD 1 125550933 125822143 271.21 BovineHD0100035768 125563251 A/G 1.85E-01 4.64E-03 1.09E-03 3.13E-05 1.46E-03 2.58E-07 * 

 8 42926603 44642925 1716.32 BovineHD0800013406 44628587 T/C 2.05E-01 -8.65E-02 2.30E-03 6.91E-04 2.99E-03 3.06E-06 † 

 14 81655298 81664096 8.80 BovineHD1400023802 81655298 G/T -3.00E-02 1.58E-01 1.05E-03 3.17E-04 1.21E-03 3.68E-06 † 
SU and WLD 8 42926603 44642925 1716.32 BovineHD0800013408 44632844 G/T 4.90E-02 1.91E-01 9.97E-04 -9.75E-06 1.14E-03 2.11E-07 * 

 17 41328134 41328134 0 BovineHD1700011766 41328134 C/T -1.21E-01 1.32E-01 1.12E-03 8.92E-05 1.23E-03 7.07E-07 † 

 27 37518206 38922466 1404.26 BovineHD2700011209 38898651 T/C -1.21E-01 1.32E-01 1.12E-03 8.92E-05 1.23E-03 7.07E-07 † 

 27 37518206 38922466 1404.26 BovineHD2700011210 38901656 G/A -1.21E-01 1.32E-01 1.12E-03 8.92E-05 1.23E-03 7.07E-07 † 
DD and 
mastitis 1 125550933 125822143 271.21 BovineHD0100035835 125691064 A/G 1.02E-01 1.72E-01 1.06E-03 1.61E-04 9.47E-04 2.98E-08 * 

 28 33357088 33385923 28.835 BovineHD2800009006 33385923 C/T 9.39E-02 1.62E-01 1.01E-03 1.59E-04 9.07E-04 1.20E-07 * 
DD and milk 
fever 1 125550933 125822143 271.21 BovineHD0100035785 125585828 C/T 8.88E-02 1.64E-01 1.01E-03 1.61E-04 9.08E-04 1.19E-07 * 

 1 125550933 125822143 271.21 BovineHD0100035800 125624770 A/C 8.88E-02 1.64E-01 1.01E-03 1.61E-04 9.08E-04 1.19E-07 * 

 18 24087895 24329676 241.78 BovineHD1800007458 24087895 C/T 6.46E-02 1.50E-01 9.06E-04 1.51E-04 8.12E-04 8.13E-07 † 

 28 34935232 35093950 158.72 BTB-00987935 35093950 G/T 6.46E-02 1.50E-01 9.06E-04 1.51E-04 8.12E-04 8.13E-07 † 

 28 35837718 36740498 902.78 BovineHD2800010153 36916301 C/T 6.52E-02 1.49E-01 8.93E-04 1.47E-04 8.00E-04 7.86E-07 † 

 28 35837718 36740498 902.78 BovineHD2800010156 36926419 C/T 6.52E-02 1.49E-01 8.93E-04 1.47E-04 8.00E-04 7.86E-07 † 

 28 38776483 42482917 3706.43 BovineHD2800011177 40061500 G/A 8.15E-02 1.45E-01 9.42E-04 1.53E-04 8.54E-04 1.40E-06 † 
SU and 
metritis 8 42926603 44642925 1716.32 BovineHD0800013412 44642925 A/C 6.16E-02 1.57E-01 9.06E-04 1.50E-04 8.03E-04 2.22E-07 * 

 25 22127459 22966511 839.05 BovineHD2500006264 22127459 A/G 1.86E-01 -2.77E-02 1.52E-03 2.99E-04 1.49E-03 4.09E-06 † 
  X 75319558 75610976 291.42 BovineHD3000022324 75393744 A/G 2.01E-01 -1.21E-02 1.49E-03 2.90E-04 1.46E-03 9.61E-07 † 
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4 DISCUSSION 

We estimated the genetic correlation between common foot disorders (DD, SU, and 

WLD) and other health traits (mastitis, metritis, milk fever, retained placenta, and pneumonia). 

For pairs of traits having significant or suggestive genetic correlation, the loci which were 

contributing to the correlation were examined using two-trait GWAS. To our knowledge, this is 

the first study to estimate genetic correlation between foot disorders and diseases other than 

mastitis from individual-level genotype data rather than pedigree data and identify loci 

potentially contributing to the correlation. Genetic correlation estimates that were significant or 

suggestive included SU or DD as one of the traits (SU and DD, SU and WLD, DD and mastitis, 

DD and milk fever, and SU and metritis) and estimates were positive, indicating a favorable 

genetic correlation between pairs of disease traits such that genetic selection against one disease 

will lead to selection against the other disease. Genetic correlation estimates were positive 

despite some of the significantly and suggestively associated SNPs for each of these five pairs of 

traits having effects with opposite signs between the two traits. The opposite signs in the SNP 

effects for some of the top SNPs were likely overruled by the concordant signs in SNP effects for 

less significant SNPs, leading to an overall positive genetic correlation. Significant and 

suggestive SNPs were detected in the same regions on BTA1 and BTA8 for two-trait GWAS 

datasets that had DD and SU as one of the traits, respectively, suggesting DD and SU were 

driving the association in these genomic regions. Other significant and suggestive SNPs were 

specific to the dataset from which they were detected and not detected in GWA analyses for 

other pairs of traits.  

Compared to previous estimates of genetic correlation between foot disorders and other 

health traits, estimates from this study were higher and had larger standard errors. Previous 
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estimates of genetic correlation between foot disorders and mastitis or somatic cell count were 

significantly different from zero (0.15 to 0.35) (Koenig et al., 2005; Buch et al., 2011) or close to 

zero (Gernand et al., 2012), whereas we estimated the genetic correlation between DD and 

mastitis at 0.49 (SE = 0.36). The genetic correlation between SU and WLD  was 0.92 (SE = 

0.46) and substantially higher than previous estimates, which ranged from 0.41 to 0.60 (van der 

Linde et al., 2010). The estimates of genetic correlation from this study were higher likely 

because controls were shared between the two traits and the proportion of cows with DD and/or 

SU was higher than for other disorders. Because case cows were sampled primarily for DD and 

SU and other disorders were phenotyped after sampling DD and SU cases, cases for other 

disorders frequently also had DD and/or SU. This overrepresentation of cases with DD and/or 

SU in addition to the disorder of interest likely inflated genetic correlation estimates, which the 

correction for case ascertainment was unable to overcome. The strong genetic correlation 

between SU and WLD in this study implied that whichever other traits SU is correlated with, 

WLD will also be correlated with and vice versa; however, SU was correlated with metritis and 

DD whereas WLD was not correlated with either disorder. This divergence would suggest that 

although SU and WLD share a genetic component, differences exist in the location or direction 

of the effect for susceptibility loci between SU and WLD, as indicated by the opposite signs of 

some of the suggestive SNP effects between the traits and the lack of association of WLD to 

metritis or DD in the two-trait GWA analyses. 

Compared to our previous one-trait GWAS for DD and SU, the two-trait GWAS detected 

the same LD block on BTA1 for DD and a different LD block on BTA8 for SU. Specifically, the 

LD block at BTA1:125550933-125822143 common to all datasets that had DD as one of the 

traits (DD and mastitis, SU and DD, and DD and milk fever) was the same LD block detected in 



 

125 

our previous single trait DD GWAS (Lai et al., 2020). The increase in significance of association 

also suggests that this region may play a role in both infectious (mastitis) and metabolic (SU and 

milk fever) disorders. Infectious and metabolic disorders have been observed to coincide and 

happen most frequently during the early lactation period (USDA, 2018), potentially due to a 

common cause. Some have attributed the cause of higher incidence of infectious and 

noninfectious foot disorders during early lactation to the extreme negative energy balance during 

this period (Collard et al., 2000; Gernand et al., 2013). Accordingly, it is thought that cows that 

are better able to cope with the energy requirements during this period are consequently less 

susceptible to metabolic and infectious disorders, a hypothesis supported by the association of a 

more robust adaptive immune response with lower incidence of metabolic disease during the 

periparturient period (Thompson-Crispi et al., 2012). Another common LD block at 

BTA8:42926603-44642925 was detected from the two-trait GWAS with SU as one of the traits 

(SU and WLD, SU and DD, and SU and metritis). This LD block was 30 Mb upstream of the LD 

block on BTA8 observed in our previous one-trait SU GWAS (Lai et al., 2021). Our previous 

GWAS used the same SU cases but only sound, older (> 6.0 years old) cows as controls, whereas 

the present GWAS included controls with foot disorders other than the foot disorder the cases 

had. Consequently, the present GWAS controlled for other foot disorders that the cases had such 

that associated regions were more likely for SU specifically and not for other foot disorders 

correlated with SU, whereas the single-trait GWAS used the most phenotypically divergent cows 

as controls to maximize the power to detect genetic differences. 

The LD blocks defined from each dataset overlapped with genes and/or QTL that were 

functionally relevant to both traits. The LD block at BTA1:125550933-125822143 from the 

GWAS that included DD as one of the traits contained SLC9A9 (solute carrier family 9 member 
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A9) (Lai et al., 2020), which has been implicated in multiple sclerosis in humans through its role 

in regulating T-cell activation and differentiation to a induce a proinflammatory response 

(Esposito et al., 2015). Notably, the DD and mastitis LD block at 1:125839933-125852054 

overlapped with a QTL associated with length of productive life (Cole et al., 2011), 

corroborating the shorter productive life associated with DD and mastitis susceptibility 

(Shabalina et al., 2020). Previous estimates of genetic correlation between foot lesion traits and 

productive life were close to zero (Dhakal et al., 2015), suggesting that uncorrelated traits may 

still share pleiotropic loci, as observed previously between various production, fertility, and 

conformation traits (Xiang et al., 2017). This LD block on BTA1 from the DD and mastitis 

GWAS and the LD block on BTA27 from the SU and WLD GWAS both overlapped with QTL 

for feet and legs conformation traits (Cole et al., 2011), and could be a pleiotropic locus 

contributing to the genetic correlation between feet and legs conformation and susceptibility to 

foot lesions (Häggman and Juga, 2013; Malchiodi et al., 2017; Ring et al., 2018), though this 

genetic correlation is too low to justify indirect selection on lameness using feet and legs 

conformation traits (Van Raden et al., 2021). The LD blocks from the GWAS for SU and DD, 

SU and WLD, and SU and metritis overlap with QTL for infectious disease traits (tuberculosis 

susceptibility, clinical mastitis, and somatic cell score/count) and blood cortisol, which may 

reflect the interplay of the stress from the negative energy balance during the periparturient 

period possibly potentiating metabolic and infectious foot disorders. Cows with SU tend to 

exhibit markers of chronic inflammation compared to cows without SU (O’Driscoll et al., 2015), 

though it is unclear if SU causes inflammation, vice versa, or both are the product of stress.  

The main limitations of this study were the small sample size of genotyped cows and the 

variation in the number of case cows across the various disorders. At the expense of a larger 
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sample size, we minimized the environmental variation by constraining the sample population to 

cows to a small geographical region under similar management and nutrition practices and 

minimized the number of hoof trimmers to reduce variation in phenotyping foot lesions. Because 

health records were generated by different farm personnel within and among the farms, the other 

non-foot related disorders likely had more variation in diagnoses, which may have partially 

masked the genetic effect for these disorders and limited the power of the GWAS to detect 

significant associations. Minimizing environmental and consistent phenotyping improves the 

power to detect significant genetic correlation; however, the resulting small sample size limited 

the accuracy of genetic correlation estimates. For instance, one workaround for the inflation of 

genetic correlation estimates due to shared controls is to randomly partition the controls between 

the two traits before estimating genetic correlation; however, the small sample size prevented 

using this approach. The small sample size also limited the benefit of using genomic data instead 

of pedigree data to estimate genetic correlation. Although using genomic data to estimate 

relationships may be more accurate than using pedigree data (Goddard, 2009; Hayes et al., 2009) 

due to reduced standard error of the genetic correlation estimate (Visscher et al., 2014), the 

standard error of the genetic correlation estimates in this study were large, reflecting the limited 

sample size. The reduction in standard error from using genomic data would be more appreciable 

in larger sample sizes. Ascertainment bias for cows with DD and SU due to sample collection 

targeting DD- and SU-affected cows but not the other disorders likely led to an 

overrepresentation of cows with DD and/or SU in the dataset, resulting in inflated estimates 

between DD or SU and the other disorders. Despite the inflated and large standard errors of the 

genetic correlation estimates, some estimates were significantly or suggestively different from 

zero and provided grounds for further investigation of SNPs contributing to the correlation using 
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the two-trait GWAS. The sample size also provided sufficient power in the two-trait GWAS to 

detect significant and suggestive SNPs that defined LD blocks overlapping with functionally 

relevant genes and QTL, similar to previous GWA analyses using similar small sample sizes 

(~400 cows) and high-density SNP genotypes (Buzanskas et al., 2017; Lehner et al., 2018). 

5 CONCLUSIONS 

A genomic relatedness matrix calculated from SNP genotypes was used to estimate 

genetic correlation between individual foot disorders (DD, SU, and WLD) and other health 

disorders (mastitis, metritis, milk fever, retained placenta, and pneumonia). Genetic correlation 

between SU and WLD and between SU and DD were significantly greater than zero, and 

estimates between DD and mastitis, DD and milk fever, and SU and metritis were suggestively 

greater than zero. Although some of the significant and suggestive SNP effects had opposite 

signs between the two traits, other SNP effects had concordant directions that collectively 

outweighed the opposing SNP effects and led to positive genetic correlation estimates for each of 

these five trait pairs. The positive estimates of genetic correlation between individual foot 

disorders and other health disorders indicate that direct selection against foot disorders will not 

increase the incidence of other health disorders and may in fact reduce their prevalence. 

Genomic assessment for pairs of traits that were genetically correlated revealed multiple 

associated regions. Whereas some of these chromosomal regions were shared across multiple 

pairs of traits that included SU or DD as one of the traits, others were unique to the pair of traits, 

indicating the complexity of genetic contributions within and between traits. The LD blocks 

defined from associated SNPs included protein-coding genes and QTL that were functionally 

relevant to both traits, suggesting that selection for markers in these LD blocks would affect 

susceptibility to both traits. 
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6 SUPPLEMENTARY MATERIAL 

6.1 Supplementary tables 

Table IV-S1. Gene functions that were considered relevant to the etiology of digital dermatitis 
(DD), sole ulcers (SU), white line disease (WLD), and other health disorders. 

 Infectious  Noninfectious 
Gene function DD Mastitis Metritis  SU WLD Milk fever 
Adipose/fat     x x  
Bone     x x x 
Cartilage     x x  
Chondrocyte     x x  
Immune x x x     
Hair x       
Skin x       
Collagen     x x  
Glucose metabolism     x x  
Fibroblast proliferation      x x  

 

Table IV-S2. Significant and suggestive SNPs detected in the two-trait linear mixed model 
association analysis and the linkage disequilibrium (LD) blocks they defined for sole ulcers (SU) 
and digital dermatitis (DD), SU and white line disease (WLD), DD and mastitis, DD and milk 
fever, and SU and metritis. 

Table S2 is available in the Excel workbook containing all supplemental tables. 

Table IV-S3. Genes that overlapped with linkage disequilibrium blocks defined from the 
genome-wide association analyses for sole ulcers (SU) and digital dermatitis (DD), SU and white 
line disease (WLD), DD and mastitis, DD and milk fever, and SU and metritis. Phenotypes 
associated with mouse knockout models of protein-coding genes and the functional relevance of 
the phenotype to the dataset, if applicable, are also listed. (See Table S4 for which phenotypes 
were considered functionally relevant for each disorder.) 

Table S3 is available in the Excel workbook containing all supplemental tables. 
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Table IV-S4. Previously defined quantitative trait loci (QTL) or associations overlapping with or 
in the linkage disequilibrium (LD) blocks defined from the two-trait genome-wide association 
analyses for sole ulcers (SU) and digital dermatitis (DD), SU and white line disease (WLD), DD 
and mastitis, DD and milk fever, and SU and metritis. 

Table IV-S4 is also available in the Excel workbook containing all supplemental tables. 

  LD block location       

Dataset BTA Start (bp) End (bp) 
Length 
(kb) Overlapping QTL or association Reference 

DD and 
mastitis 1 

12555093
3 

12582214
3 271.2 Digital dermatitis 

(Lai et al., 
2020) 

 1 
12583993
3 

12585205
4 12.1 Feet and legs conformation 

(Cole et 
al., 2011) 

     Length of productive life 
(Cole et 
al., 2011) 

 28 33357088 33385923 28.8 
No overlap with functionally relevant 
QTL/associations 

 

SU and WLD 8 42926603 44642925 1716.3 Blood cortisol level 
(Chen et 
al., 2020) 

     Bovine tuberculosis susceptibility 

(Richardso
n et al., 
2016; 
González-
Ruiz et al., 
2019) 

 17 41328134 41328134 0 No overlapping QTL/associations  

 27 37518206 38922466 1404.3 Foot angle 
(Cole et 
al., 2011) 

     Length of productive life 
(Cole et 
al., 2011) 

     Net merit 
(Cole et 
al., 2011) 

     Rear leg placement - rear view 
(Cole et 
al., 2011) 

     Rear leg placement - side view 
(Cole et 
al., 2011) 

     Somatic cell score 
(Cole et 
al., 2011) 

SU and DD 1 
12555093
3 

12582214
3 271.2 Digital dermatitis 

(Lai et al., 
2020) 

 8 42926603 44642925 1716.3 Blood cortisol level 
(Chen et 
al., 2020) 

     Bovine tuberculosis susceptibility 

(Richardso
n et al., 
2016; 
González-
Ruiz et al., 
2019) 

 14 81655298 81664096 8.8 No overlapping QTL/associations  
DD and milk 
fever 1 

12555093
3 

12582214
3 271.2 Digital dermatitis 

(Lai et al., 
2020) 

 18 24087895 24329676 241.8 No overlapping QTL/associations  

 28 34935232 35093950 158.7 No overlapping QTL/associations  
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  LD block location       

Dataset BTA Start (bp) End (bp) 
Length 
(kb) Overlapping QTL or association Reference 

 28 35837718 36740498 902.8 No overlapping QTL/associations  

 28 38776483 42482917 3706.4 No overlapping QTL/associations  
SU and 
metritis 8 42926603 44642925 1716.3 Blood cortisol level 

(Chen et 
al., 2020) 

     Bovine tuberculosis susceptibility 

(Richardso
n et al., 
2016; 
González-
Ruiz et al., 
2019) 

 25 22127459 22966511 839.1 Bovine respiratory disease susceptibility 

(Neupane 
et al., 
2018) 

  X 75319558 75610976 291.4 No overlapping QTL/associations  
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6.2 Supplemental figures 

 

Figure IV-S1. Multidimensional scaling plot showing the first two dimensions for 409 cows 
from the five dairies used in the estimation of genetic correlation and genome-wide association 
analyses. 
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Figure IV-S2. Quantile-quantile plot for two-trait genome-wide association analysis of (a) sole 
ulcer (SU) and digital dermatitis (DD), (b) SU and white line disease (WLD), (c) DD and 
mastitis, (d) DD and milk fever, and (e) SU and metritis. 

Abbreviations: Bos taurus autosome (BTA), digital dermatitis (DD), genetic relatedness matrix 

(GRM), Genetic Type I error calculator (GEC), genome-wide association study (GWAS), 

likelihood ratio test (LRT), linkage disequilibrium (LD), minor allele frequency (MAF), 

quantitative trait loci (QTL), single nucleotide polymorphism (SNP), sole ulcers (SU), white line 

disease (WLD) 

(a) (b)

(c) (d)

(e)
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7 DATA AVAILABILITY STATEMENT 

The datasets generated and analyzed during the current study are available in the NCBI Gene 

Expression Omnibus database under the following GEO series records. 

GSE159157: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159157 

GSE165945: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4820717 

GSE[number and website to be added when GEO submission approved] 

  



 

135 

 Conclusions and future directions 

Lameness results in early culling of dairy cows from the herd and is the second most 

prevalent disease in dairy cattle after mastitis (USDA, 2018). Lameness is an animal welfare 

issue, incurs substantial financial losses for the producer, and inflates the environmental footprint 

per unit of milk due to losses in efficiency of resource use. Common causes of lameness are 

digital dermatitis (DD) colloquially referred to as foot warts, sole ulcers (SU), and white line 

disease (WLD). Through the work presented here, we have shown that there exist genetic regions 

having significant association with risk for these disorders. Although the actual genetic 

contribution of each region to risk is small, the existence of genetic variants indicates that 

concerted selection against these disorders can reduce the risk.  Accordingly, the most effective 

method of reducing the prevalence of these foot disorders is through a combination of 

proactive/prophylactic management practices and genetically selecting for cows at lower risk of 

developing foot lesions. 

Because non-genetic factors strongly influence lameness susceptibility, future research in 

larger populations, other geographical regions, and other types of production systems (e.g., 

pasture-based) is necessary to validate the genomic regions we identified. Additionally, future 

research should assess how well the associations hold in other ruminants because DD, SU, and 

WLD are also common causes of lameness in beef cattle, DD is also common in sheep and goats, 

and SU and WLD have also been observed in goats (Duncan et al., 2014; Groenevelt et al., 2015; 

Groenevelt, 2017). Because the etiology of DD is similar in beef cattle, sheep, and goats 

(Duncan et al., 2014; Nally et al., 2015; Sullivan et al., 2015a, 2015b; Magrin et al., 2018), it is 

plausible that similar genetic components play a role in susceptibility to DD in beef cattle and 

other ruminant species because the same treponemal phylotypes have been found in these 
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ruminants. How well the susceptibility loci are conserved across ruminant species remains 

unclear and is an area for future research. During the development of a selection index for 

lameness for Holstein cattle and eventually other breeds of dairy and beef cattle and other 

ruminants, the accuracy and potential to reduce lameness incidence should be compared between 

selection indices based on a few highly prevalent foot disorders and indices based on any 

lameness event. The accuracy and utility of selection indices based on a few vs. all types of 

lameness events will likely depend on the direction and magnitude of genetic correlation 

between types of lameness events. The continued use of individual-level genetic information 

(e.g., SNP genotypes) to supplement pedigree information (e.g., sire lines) in genomic 

evaluations for lameness will likely improve the accuracy of selection indices. 
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