
UCLA
UCLA Electronic Theses and Dissertations

Title
Homogenization in Discrete Random Models

Permalink
https://escholarship.org/uc/item/5sk3c1sq

Author
Krieger, Andrew

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5sk3c1sq
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Homogenization in Discrete Random Models

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Andrew Krieger

2021



© Copyright by

Andrew Krieger

2021



ABSTRACT OF THE DISSERTATION

Homogenization in Discrete Random Models

by
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Professor Georg Menz, Chair

This dissertation studies the asymptotic behavior of two probabilistic models. It consists

of two parts, one from the specific area of random surface models within the wider branch of

statistical physics, and the other from the area of random graphs, and more specifically on

random graphs built upon a (non-trivial) underlying geometry. In both cases, the random

structure homogenizes as the system size tends to infinity.

The first model under study is Z-valued graph homomorphisms from the lattice Zd. It

is known that this model exhibits limit shapes: a graph homomorphism chosen uniformly

at random subject to fixed boundary values will, with high probability, lie uniformly close

to a certain limiting profile over the bulk of the lattice subset. We extend the limit shape

result, as quantified via a variational principle, large deviations principle, and concentration

inequality, to a new version of the model. In the new version, the uniform distribution over

graph homomorphism is perturbed by a random potential. This illustrates the robustness

of the results and the methods used to prove them.

The second model is long-range percolation on the lattice graph Zd. This is a random

graph that includes all nearest-neighbor edges in Zd plus a random selection of longer edges.
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Longer edges are included or excluded at random and independently, where the probability

that the edge with endpoints x and y is included is asymptotic to β|x − y|−s for some s ∈

(d, 2d) and some β > 0. We sharpen the best known asymptotics for the graph distance under

this choice of edge inclusion probability. The proof is inspired by the recent work [BL19],

which introduced and studied a continuum analogue of the model, and the conclusion is

similar to the corresponding result contained therein.
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is mapped to e by the height function hSn . In the figure, the vertices are labelled

by their heights, i.e. by the values of hSn . The bolded edge in `y is es ∈ E(`y),

i.e. the unique edge in `y with hSn(es) = e. In Figure 2.5a and Figure 2.5b, the

bolded edge between the lines is the unique edge between the lines with height

ek,k+1. Figure 2.5c shows two such edges, but in fact this case cannot occur.

By the homomorphism property, these three cases exhaust the possibilities for

heights on the two vertices in `y′ that are adjacent to the endpoints of es. . . . . 48

2.6 Explanation of inequality (2.114) from the proof of Lemma 8. . . . . . . . . . . 54

2.7 Decomposition of S2n+1 into subsets, as used in the proof of Lemma 11. . . . . . 64

ix



2.8 The two simplices in dimension 2 that tile the unit square. The simplex C(0, (1 2))

is the closure of the set of points (x, y) ∈ [0, 1]2 such that x > y, and C(0, (2 1))

is the closure of the points with y > x. The other simplices {C(v, σ) | v ∈ Zm, σ ∈

S2} are translates of these two simplices. . . . . . . . . . . . . . . . . . . . . . 70

2.9 Decomposition of a unit cube into {C(0, σ) |σ ∈ S3}. The simplices have been

separated for a more clear figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.10 An example of the sets relevant to the proof of Lemma 17. On the left is a 5× 5

subset of Z2, with points decorated according to the key on the right. . . . . . . 95

x



ACKNOWLEDGMENTS

I am immensely grateful to my advisor, Georg Menz. He was generous with his time

and patient even when my progress sometimes slowed down. He would always encourage

me and suggest next steps so that I could complete my PhD, and apparently his efforts

were fruitful. I must also credit Georg for introducing me to the research problem that

makes up the bulk of this dissertation, at least by page count: the study of limit shapes for

discrete random surface models. The problem captured my attention while I was looking

for an area to specialize in, it provided a good test against which I sharpened my technical

skills, and it presents plenty of interesting open problems and connections to other fields.

Georg has an excellent understanding of the literature and of useful tricks and techniques,

so his mathematical advice was a huge benefit. I could not have gotten to this point without

Georg’s advice and support, and I am grateful for it.

I am also thankful towards my other committee members. In particular Marek Biskup

sometimes stepped in to serve as nearly a second advisor, especially to provide guidance

relating to my ongoing progress as a student and me future career options. My only regret

in working with him is that I did not take up more of his time in our recent collaboration

regarding the other research topic in this dissertation, the geometry of the long range per-

colation model. In working with him, it’s impossible not to notice that he is a brilliant

researcher who catches on to problems and arrives at solutions very quickly. Marek was also

instrumental in convincing me to start writing this dissertation and to finish it in a timely

manner, or at least an on-time manner. On that note, I must thank Guido Montúfar and
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CHAPTER 1

Introduction

Many classical and modern results in probability theory are fundamentally asymptotic re-

sults, in that they describe the limiting behavior of large random systems quantitatively or

qualitatively. Classical examples include essential results such as the law of large numbers

and the central limit theorem, which form the basis for modern statistics. A common prin-

ciple is that, under certain mild assumptions, the underlying randomness homogenizes or

is averaged out, leading to a deterministic limit. This dissertation addresses two special-

ized models for which there are interesting asymptotic results illustrating the principle of

homogenization.

The first model studied is the Z-homomorphism model, where the fundamental objects

are graph homomorphisms from a lattice graph to Z, called height functions in the text below.

For the purposes of this dissertation, the codomain of the height functions will always be

a connected, finite subgraph Rn ⊂ Zd, with the both Z and Zd endowed with the nearest-

neighbor graph structure and with Rn taken to be the subgraph induced by its vertices. In

other words, if x, y ∈ Rn where x, y are nearest-neighbors in Zd, then the edge between x

and y is included in Rn as well. As discussed below, we study the asymptotic characteristics of

a typical such height functions, subject to boundary value constraints. Here the asymptotic

parameter is the domain size parameter n; we take as hypotheses that the domains Rn

converge under a scaling limit, i.e. 1
n
Rn → R ⊂ Rd in the Hausdorff distance, and that the

boundary conditions converge under a similar scaling limit (see Definition 4 in Chapter 2).

When the notion of typicality is defined by the uniform probability measure the set of height
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functions (subject to the boundary conditions), then several asymptotic results are known

in the existing literature. We focus in particular on the following: First, the variational

principle, which characterizes the scaling limit of typical height functions hn : Rn → Z as the

minimizer of a certain integral over R (or in some cases as a family of distinct minimizers, if

uniqueness is not established). Second, the large deviations principle, which implies that the

probability of sampling a height function that is not uniformly close to the (or a) minimizing

limiting height profile tends to zero. Third, the concentration inequality, from which one

can deduce quantitative bounds on the concentration of the probability measure on height

functions on Rn around its mean. Our work is novel in that we do not study the uniform

probability measure, but a random perturbation of it. The results below therefore show the

robustness of these results and of the methods of proof used to derive them.

The second model under study is the long-range percolation model. This is a geometric

random graph, constructed by taking an underlying deterministic graph or metric space and

adding edges between arbitrary pairs of vertices independently, with the probability that an

edge is included given as a function of the distance between the endpoints (generally decaying

as the distance becomes large). As suggested by the name, this model was introduced as a

percolation model, and percolation does occur under certain conditions on the edge inclusion

probabilities. However, here we work in a regime where percolation is guaranteed to occur,

and percolation is not the subject of our work. Instead we are interested in the asymptotic

growth rate of the graph distance in the resulting random graph, as a function of the edge

inclusion probabilities. We provide sharper asymptotic results than were previously known.

1.1 The Z-homomorphism model

The asymptotic behavior of the Z-homomorphism model is a problem of statistical physics,

and more specifically this model is within the class of random surface models. Statistical

physics originates in the natural sciences as a broadly successful attempt to explain human-
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scale or macroscopic physical phenomena as the bulk sum of simple physical interactions

between particles. As a very partial list, we mention macroscopic properties like pressure,

temperature, volume, work, and energy of gasses in confined spaces, which can be modelled

as the result of elastic collisions and other interactions between individual gas particles, and

we also mention the phenomena of ferromagnetic and spontaneous magnetization, which can

be modelled as arising from the magnetic spin of metal particles or magnetic domains.

Random surface models address a different set of physical or mathematical phenomena,

namely the formation and characteristics of some surface that is governed by an underlying

microscopic process. Physical examples of such include the interface between liquid and

air on the surface of a body of liquid or the surface of a bubble; mathematical examples

include the height function model discussed in the sequel as well height functions corre-

sponding to other combinatorial models, such as domino tilings [Kas63, CEP96, CKP01],

Young tableaux [LS77, VK77, PR07], and the six-vertex model [BCG16, CS16, RS17, Sri16].

These models study a discrete system that can be expressed as or identified with a height

function or state h : R → E where R is a “nice” lattice graph (say, R ⊂ Zd a simply con-

nected subgraph), where the codomain E is a “nice” space such as Z or R, and where the

height function must satisfy certain model-specific constraints.

As mentioned above, in the Z-homomorphism model that we study, we take R ⊂ Zd a

subgraph of the integer lattice endowed with nearest-neighbor edges and we take E = Z,

again with nearest-neighbor edges. In other words, whenever x, y ∈ R satisfy |x − y|1 = 1,

then |h(x) − h(y)| = 1. This model is described in detail in Section 2.2.1 below. It also

goes by other names in the literature, such as the Zd-indexed random walk in [Kah01] or the

body-centered solid-on-solid model in [Bei77]. In two dimensions this model is equivalent to

the six-vertex model; this connection is discussed further in Section 2.2.2 below.

Many other random surface models have been studied in the mathematical literature. Let

us give a few examples, and refer the reader to [She05] and references therein for more. First,

there is the Ising model (e.g. [DKS92, Cer06]), where the height values are in E = {−1,+1}.
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Next, many tiling problems can be studied via random surface models. Examples include

domino tilings in the square lattice Z2 (e.g. [Kas63, CEP96, CKP01]) , ribbon tilings in the

square lattice (e.g. [She01, CL90]), and lozenge tilings in the triangular lattice (e.g. [Des98,

LRS01, Wil04]). The height functions for domino and lozenge tilings take values in Z, and

those for ribbon tilings take values in a more general group.

The general question that we study is what a typical such height function “looks like”

as the size of the domain tends to infinity. More specifically, one might hope to charac-

terize the global or local asymptotic behavior of a typical height function, in terms of e.g.

its overall scaling limit (as is studied in this dissertation) or the local statistics of short-

range patterns in its values (as has been studied in famous examples like the arctic circle

phenomenon for domino tilings of the Aztec diamond [CEP96]). The work recorded in this

dissertation does not address local statistics for the Z-homomorphism model, but below we

discuss other results regarding local statistics from the literature, to better explain the limit

shape phenomenon.

A major contribution to the study of random surfaces is the work by Sheffield [She05],

which introduced and studied the class of simply attractive potentials. These are nearest-

neighbor potentials where the energy term corresponding to a pair x, y ∈ R is given by a

convex function of the height difference, i.e. Vx,y(h(x)−h(y)) for some convex function Vx,y :

R→ [0,∞]. The work also introduces two sub-classes: isotropic simply attractive potentials,

where the functions Vx,y are even (i.e. V (−η) = V (η) for η ∈ R) and are independent of the

pair x, y, and Lipschitz simply attractive potentials, for which there exists a compact interval

K ⊂ R such that η ∈ R \ K implies that Vx,y(η) = ∞ for every x, y. Note that the näıve

attempt to represent the Z-homomorphism model via such a potential fails to be simply

attractive, because the nearest-neighbor potential terms are not convex; rather, Vx,y(η) = 0

for η ∈ {±1} and V (η′) =∞ for η′ ∈ {0,±2,±3, . . . }, corresponding to the hard constraint

h(x) − h(y) ∈ {±1}. Indeed an alternate representation of the Z-homomorphism model as

a Lipschitz simply attractive potential is possible, e.g. using the bijection to the six-vertex
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model discussed in Section 2.2.2 below, but we shall not pursue that connection further at

this point.

There are several families of results that one might reasonably hope to establish for differ-

ent random surface models. For example, there are the aesthetically interesting and (hence)

motivating examples of limit shape results, where one concludes that the overwhelming ma-

jority of states of the model are asymptotically close to a limit shape. An example is the arctic

circle phenomenon exhibited by domino tilings of the Aztec diamond, as in [CEP96, JPS98].

The Aztec diamond is a lattice region comprising points x ∈ Z2 such that |x|1 ≤ n, with the

extremal points {(±n, 0), (0,±n)} truncated. One considers tilings of the faces in the dual

graph by dominoes, i.e. rectangles of size 1× 2. A typical such tiling is shown in Figure 1.1.

Note the “frozen” regions at top, bottom, left, and right, and the non-frozen region in the

center. The shape of the boundary heavily biases the uniform distribution on tilings in favor

of those where the topmost domino to lies horizontally. Indeed, if the topmost two squares

are not covered by a horizontal domino, then they must be included in two vertical dominoes

instead. Then both of the two top sides of the square are forced to contain only vertical

dominoes. This significantly reduces the number of possible tilings. However as one pro-

ceeds inward away from the corners, eventually the entropy of allowable domino orientations

increases. It is shown in [CEP96] that as the size of the Aztec diamond tends to infinity,

the border between the frozen and liquid regions tends toward the inscribed circle on the

(rotated) square. The existence of this arctic circle is a stunning example of a limit shape.

Let us now turn to the Z-homomorphism model. Even without a rigorous proof, oc-

currence of the arctic circle phenomenon is easy to observe empirically by sampling and

visualizing states of the model. Figure 1.2 shows two states of the Z-homomorphism that

we study below. In both cases the height functions are constrained by boundary conditions

similar to the Aztec diamond, and in each an arctic circle is visible. The height functions

have extremal slope 1 near the corners, which is evident from the solid color in the left and

right corners in each of the schematic pictures on the left side, and from the checkerboard
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Figure 1.1: A typical domino tiling of the Aztec diamond. Dominoes are colored according

to both their orientation (horizontal or vertical) and their parity (whether the left or top

square of the domino lies on a “black” or “white” square, assuming an underlying checker-

board coloring of the lattice). The arctic circle is clearly visible as the boundary between

frozen regions in the four corners (where every domino is of the same color) and the non-

frozen central region (where the colors are randomly mixed). The arctic circle is a limit

phenomenon: if the analogous picture is drawn for a much larger Aztec diamond, scaled to

the same dimensions on page, then the random law of the color at a given point in the pic-

ture either is close to a delta law (if the point is outside the arctic circle) or has significantly

higher entropy (inside).
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pattern exhibited on the top and bottom corners (assuming that the picture is displayed

with a sufficient level of detail to make the pattern visible). One does not see countervail-

ing slopes until well away from the corners, where colors mix more freely. Note that the

local distribution of height changes across an edge in the central region are not uniform,

since the boundary still has an effect even at long range. The bias towards the “preferred”

configuration in each of the four corners is more substantial when the potential is larger.

The emergence of the solid-colored region in the center of the left picture in Figure 1.2b is

intriguing, and it suggests that the limit shape might have interesting macroscopic features.

The limit shape has not been investigated in detail as of the time of writing.

Another example of a limit shape is a limiting height profile. Given instances of the

discrete model on domains Rn that converge under scaling in some suitable sense to a limit

domain R, e.g. Rn ⊂ Zd and R ⊂ Rd such that 1
n
Rn → R in the Hausdorff metric, a

limiting height profile h : R→ R is a continuous function such that a typical discrete height

function hn : Rn → Z converges in a suitable sense, i.e. 1
n
hn → h uniformly on Rn. The

existence of limiting height profiles for the Z-homomorphism model is also evident from

Figure 1.2. The work in Chapter 2 below, combined with a result from [LT20] cited below

in the current chapter, rigorously establishes the existence of a limiting height profile.

Several technical results serve to establish the existence of a limit shape, to characterize it,

and to quantify or characterize the rate of convergence to the limit shape and the vanishing

probability that a rescaled height function differs substantially from the limit shape. First

is the concentration inequality (see Theorem 10 below), which establishes a sort of “finite

limit shape,” or more precisely: for large n, most height functions, either with respect to

the uniform measure or with respect to the perturbed measures introduced below, assign to

each point in the domain a height value close to the expected value, under the same measure

respectively. For the rest of this paragraph we assume the results are stated in terms of

the uniform measure, i.e. without random (or non-random) perturbations; the results are

analogous when a perturbed measure is used. The concentration inequality is interesting in
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(a) Smaller random potential. (ωe) are i.i.d. with P(ωe = 1
4) = P(ωe = −1

4) = 1
2 .

(b) Larger random potential. (ωe) are i.i.d. with P(ωe = 8) = P(ωe = −8) = 1
2 .

Figure 1.2: Two randomly sampled height functions with the same boundary values, each

pictured in two representations. The height functions are sampled from distributions subject

to the same boundary constraints but perturbed by respectively a smaller (less influential)

and larger (more influential) random potential. On the left are schematic representations,

with blue points representing edges that go down as one moves right or up across edges

in the 2d domain Rn, and green points representing edges that go up. On the right is a

3d representation, with heights indicated via the visual height of a square column above

the face (x, y) ∈ Rn. In other words, the pictures on the right are plots of the 3d surfaces

{(x, y, h(x, y)) : (x, y) ∈ Rn}.
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its own right, but on its own it has a significant weakness: the putative limit shapes, namely

the expected height values, need not converge as the system size n → ∞. The next two

results remedy this, by dealing directly with the limiting process. The profile theorem gives

an estimate for the number of height functions that are uniformly close after rescaling to an

arbitrary limiting height profile. The variational principle builds on this to identify the total

number of height functions satisfying a boundary constraint. This number is characterized

by means of a variational problem, namely optimizing a particular integral function over all

limiting height profiles. The number thus calculated coincides with the number of height

functions predicted by the profile theorem to lie close to an optimizer, which suffices to show

that a positive fraction of height functions sit close to an optimizer, but no more. Finally

the large deviations principle gives bounds on the number of height functions that are not

close to an optimizer. This finally provides a weak limit shape result; the weakness is that a

priori there could be many optimizers, in which case there is not a unique limit shape, but

rather a sort of “limiting family.” The question of uniqueness of the optimal limiting height

profile is answered in the affirmative by the work of Lammers and Tassy in [LT20], at least

in the absence of random perturbations. There the surface tension function used to define

the variational principle objective function (cf. Definition 10 and Theorem 4 below) is shown

to be strictly convex. As a matter of ordinary convex analysis, and as discussed there and

in Chapter 2 below, strict convexity ensures uniqueness of the optimal height function.

The variational principle, large deviations principle, large deviations principle, and con-

centration inequality for the Z-homomorphism model with uniform measure are all known

in the existing literature; see for example [KMT20a] and references cited therein. Our con-

tribution in this area consists in extending these results to the randomly perturbed case,

and we present that in Chapter 2. Our purpose in doing so is to demonstrate the robustness

of these technical tools and of the known methods for proving them. That the statements

and proofs carry over into the perturbed setting without very much difficulty is evidence of

robustness and universality; the source and presence of some difficulties is also of interest to

9



understand the limitations of the statements and proofs.

1.2 Long-Range Percolation

The second model studied in this dissertation is the long-range percolation model. This

is a random graph model, with vertex set Zd and a random set of undirected edges. The

probability distribution of the edge set depends upon the geometry of the underlying lattice

graph: any two distinct lattice points are potentially connected by an edge, but the proba-

bility that a particular edge is present in the edge set vanishes as the distance between the

points (measured via a norm | · | on Zd, e.g. the `1 norm) tends to infinity. Edges between

distinct unordered pairs of endpoints are independently present or absent.

Five regimes of typical asymptotic behavior have been identified in the case that the

edge inclusion probabilities are translation invariant with power-law decay. To be precise:

for x, y ∈ Zd, let p(x − y) ∈ [0, 1] denote the probability that the undirected edge be-

tween x and y is included in the graph. Assume that for some s ∈ (d, 2d), the limit β :=

lim|x|→∞ p(x)|x|s exists with β ∈ (0,∞). Then, depending on how the exponent s relates to

the dimension d, the model may be in any of 5 distinct regimes, under which the distance

exhibits different asymptotic growth rates:

• The case s < d: In this regime, the long-range percolation has a.s. finite diameter.

For example, in Benjamini and Berger [BB01] the following observation is recorded:

consider the long-range percolation process on the (one-dimensional) cycle graph Z/nZ,

i.e. the graph with vertex set {0, . . . , n−1} endowed with the n undirected edges {(i, i+

1): i = 0, . . . , n − 2} ∪ {(n − 1, 0)}. This long-range percolation graph stochastically

dominates the Erdős–Rényi graph G(n, p) with edge probability p = βn−s. In this

regime the Erdős–Rényi graph has

lim
n→∞

P
(
diamG(n, p) < C

)
= 1 (1.1)
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for some constant C > 0 depending on d, s, and β but not on n; see e.g. [Bar16, New18]

and references therein. As adding edges can only decrease the diameter of a graph,

the same long-range percolation graph with d = 1 and s ∈ (0, 1) also has bounded

diameter with high probability.

Moreover, in the s < d regime the diameter of the long-range percolation graph on

the infinite lattice Zd with parameter s < d is almost surely finite. Indeed, Benjamini,

Kesten, Peres, and Schramm [BKP04] showed using the notion of stochastic dimension

that the diameter of the graph is almost surely dd/(d− s)e.

• The case s = d: Distances grow sub-logarithmically, but just barely so. Specifically,

Coppersmith, Gamarnik, and Sviridenko [CGS02] showed there exist constants c1, c2 >

0 such that

lim
n→∞

P
( c1 log n

log log n
≤ Dn ≤

c2 log n

log log n

)
= 1, (1.2)

where Dn denotes the diameter of the long-range percolation graph on the cube of side

length n.

• The case d < s < 2d: Distances in the graph grow polylogarithmically, i.e. the dis-

tance D(0, x) is asymptotic to (log |x|)∆ for an explicitly known exponent ∆ > 0.

Because this is the regime that the work below addresses, the relevant prior results are

summarized in greater detail after a brief discussion of the remaining two regimes.

• The case s = 2d: The distance grows sublinearly in the underlying norm. Indeed

Coppersmith, Gamarnik, and Sviridenko [CGS02] established the upper bound

lim
n→∞

P
(
D(n) ≤ nθ

)
= 1, (1.3)

where D(n) is the diameter of the long-range percolation graph on the cube (in any

dimension d ≥ 1) and where the exponent θ ∈ (0, 1) depends on d and β. The same

work established a similar lower bound

lim
n→∞

P
(
D(n) ≥ nθ

′
)

= 1, (1.4)
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but only in the case d = 1 and β < 1, and with exponent θ′ ≤ θ. Ding and Sly [DS15]

extended the lower bound, proving that for d = 1 and for any β > 0,

lim
n→∞

P
(
c1n

θ′′ ≤ D(n) ≤ c2n
θ′′
)

= 1, (1.5)

for some c1, c2 > 0 and some θ′′ ∈ (0, 1). Note in particular that the exponent θ′′

is the same in both the lower and upper bounds. Since the existence of the limiting

exponent θ′′ is proved via subadditivity, no explicit expression for θ′′ is known.

• The case s > 2d: The distance scales linearly with the underlying norm. Indeed this

was known for the case d = 1 from Benjamini and Berger [BB01], where proof was

given that

lim
n→∞

P
(
D(n) ≥ cn

)
= 1, (1.6)

for some c > 0 depending on s and β. The linear lower bound was extended to

dimensions d ≥ 1 by Berger [Ber04]. In the case we consider, where nearest-neighbor

edges are deterministically present, the corresponding upper bound, i.e. D(n) ≤ Cn

for some C > 0 depending on the norm, is trivial.

Without assuming that all nearest-neighbor edges are present a.s., the upper bound

depends on the percolation structure of the graph. For example, in dimension 1 percola-

tion always fails if s > 2 and percolation depends on β for s ∈ (1, 2]. When percolation

failed, and hence when every graph component is a.s. finite, distance asymptotics are

not a meaningful object to study. In higher dimensions, if minx : |x|1=1 p(x) is large

enough, then percolation occurs a.s. In that case a linear upper bound for the distance

(restricted to points in the same infinite cluster) follows by comparison to nearest-

neighbor bond percolation; the corresponding bound for the nearest-neighbor model

is due to Antal and Pisztora [AP96]. Furthermore it is conjectured in [Ber04] that a

linear upper bound holds for the distance D(0, x), restricted to points x lying in the

same cluster as 0, whenever the model achieves percolation (even without comparison
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to the nearest-neighbor percolation). However this conjectured bound appears to still

be open.

As mentioned above, this work addresses the regime with d < s < 2d. Let us review

some developments relating to the graph distance in this regime. The following bounds were

provided in the one-dimensional case d = 1 by Benjamini and Berger [BB01] and by a similar

proof for d ≥ 1 by Coppersmith, Gamarnik, and Sviridenko [CGS02]: there exist constants

c, C > 0 and δ > 1 depending on s, d, and β such that

lim
n→∞

P
(
c log n ≤ D(n) ≤ C(log n)δ

)
= 1. (1.7)

These bounds for the distance were improved to poly-logarithmic and the optimal expo-

nent was derived explicitly by Biskup [Bis04]. There it was proved that for any ε > 0,

lim
|x|→∞

P
(

(log |x|)∆−ε ≤ D(0, x) ≤ (log |x|)∆+ε
)

= 1, (1.8)

where ∆ = ∆(s, d) := 1/ log2(2d/s) ∈ (1,∞). The corresponding improvement for the

diameter is due to Biskup [Bis11a], where it was proved that, for any ε > 0 and with ∆ as

before,

lim
n→∞

P
(

(log n)∆−ε ≤ D(n) ≤ (log n)∆+ε
)

= 1. (1.9)

Next, the gap in the exponents was removed by Biskup and Lin [BL19], with the conclu-

sion that there exists constants c, C > 0 such that

lim
|x|→∞

P
(
c(log |x|)∆ ≤ D(0, x) ≤ C(log |x|)∆

)
= 1. (1.10)

Chapter 3 of this dissertation tightens the result further. The main result of that chapter,

Theorem 11, states the following: Recall that β = limx→∞ p(x)|x|s ∈ (0,∞). For almost

every β ∈ (0,∞), there is a function φβ : (0,∞)→ (0,∞) such that, for any ε > 0,

1

rd
#

{
x ∈ B(0, r) :

∣∣∣∣ D(0, x)

φβ(r)(log r)∆
− 1

∣∣∣∣ > ε

}
P−→

r→∞
0, (1.11)
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where B(0, r) := {x ∈ Zd : |x| < r}, where # denotes the set cardinality, and where
P→

denotes convergence in probability. Moreover, the function φβ is continuous, bounded away

from 0 and from∞, and log-log-periodic, in the sense that φβ(rγ) = φβ(r), where γ = s/2d ∈

(1
2
, 1).

Let us make a few observations to make the conclusion (1.11) more clear. First note

that both r 7→ φβ(r) and r 7→ log r are slowly varying, in the sense that for any a > 0,

limr→∞ φβ(ar)/φβ(r) = limr→∞(log ar)/(log r) = 1. Indeed, to deduce the limit for φβ(r),

use log-log periodicity: fix n ∈ Z such that r0 := rγ
n ∈ [eγ, e). Then φβ(r) = φβ(r0)

and φβ(ar) = φβ(aγ
n
r0). Since n→∞ as r →∞ and aγ

n → 1 as n→∞, the desired limit

follows by continuity of r 7→ φβ(r). The corresponding result for log(r) follows from an easy

calculation. Because these functions are slowly varying, one can ignore constant multiples

in their argument when taking limits. Next, recall that the cardinality of B(0, r) is bounded

above and below by a constant times rd (e.g. because the cardinality of the `2-ball is likewise

bounded and all finite-dimensional norms are equivalent). Moreover, for small δ > 0, the

fraction of points x ∈ B(0, r) with |x| ≥ δr tends to 1 as r → ∞. So, the result can be

paraphrased to say that as r → ∞, the fraction of points x with |x| < r for which the

ratio D(0, x)/[φβ(|x|)(log |x|)∆] differs from one by more than ε tends to 0, in probability.

It is an ongoing project [BK21] to further characterize the function φβ(r). In [BL19]

a continuum version of the long-range percolation model is studied. It is shown that in

the continuum version, for almost every x ∈ Rd one has D(0, rx)/[φβ(r)(log r)∆] → 1 in

probability as r → ∞. There it was conjectured that the function φβ(r) for the continuum

model was constant as a function of r. However the results in the preprint [BK21] imply

that φβ(r) is not generally constant. There the discrete long-range percolation model that

was described above is considered, i.e. with parameters s ∈ (d, 2d) and β > 0 and with edge

inclusion probability p(x) asymptotic to β|x|−s for all |x|1 > 1. It is shown that as β →∞,

the limiting function φβ(r) tends to an explicit limit φ∞(r) locally uniformly in r, and the

limit φ∞(r) is not constant in r.
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CHAPTER 2

The Z-homomorphism model

As mentioned in Chapter 1 above, the first model studied in this dissertation is the Z-

homomorphism model, a discrete random surface model. The underlying combinatorial

mode is quite simple, but we consider an additional random perturbation in the form of

the random potential ω introduced below. Our purpose is to study the limiting behavior

of this model, and in particular the limit shape phenomenon that occurs with respect to

the asymptotic height profile under the proper scaling limit. We shall give an informal

description of the model and of the main results in the next few paragraphs. After that,

and after introducing some preliminary notations and definitions, we state the main results

formally. Finally we give rigorous proofs of the claimed results.

As was described in Chapter 1, the underlying combinatorial model is graph homomor-

phisms from domains Rn ⊂ Zm to Z, where both Zm and Z are endowed with the nearest-

neighbor edge structure. The subset Rn is assumed to be a subgraph induced by its vertices,

in the sense that whenever x, y ∈ Rn and x and y are adjacent in Zm, then the edge between x

and y is included in the subgraph Rn. We also impose a parity condition, requiring that the

graph homomorphisms under study must preserve parity. Indeed, both Zm and Z are bipar-

tite, with the even elements (those whose `1 norm is even) and the odd elements (the rest)

forming the two halves of the graph, both in Zm generally and in Z in particular. A graph

homomorphism must therefore either map all even points in Rn ⊂ Zm to even points in Z

and likewise map odd points to odd points, or else it must map even points to odd and odd to

even. There are obvious bijections between the two classes of homomorphisms (e.g. the map
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taking h : Rn → Z to the homomorphism Rn 3 z 7→ h(z) + 1), and our work is technically

easier if we treat only the parity-preserving case. The main reason that this restriction helps

is as follows. Consider subdomains R′ ⊂ R, with R perhaps much larger. We start with a

graph homomorphism h′ : R′ → Z on R′ and boundary height values h∂R : ∂R → Z on ∂R.

If both h′ and h∂R preserve parity, or if both invert parity, then there may exist a compatible

extension to the entirety of R, but if h′ preserves parity and h∂R inverts (or vice versa), then

automatically no extension is possible. (See Theorem 6, the Kirszbraun theorem for Zm,

for the full conditions on extensibility of graph homomorphisms.) To avoid qualifying most

formal statements with conditions like “assuming that either both h′ and h∂R preserve parity

or that both invert parity,” we simply restrict our attention to the parity-preserving case.

We call parity-preserving graph homomorphisms height functions.

The main results of this chapter partially describe the asymptotic structure of the set of

height functions on Rn subject to prescribed boundary constraints. The focus of the first

main result, the profile theorem, is to measure how many height functions are close to an

admissible asymptotic height function (after rescaling). In other words, we want to estimate

the probability mass of the ball

B(Rn, hR, δ) :=
{
hRn : Rn → Z

∣∣∣ max
z∈Rn

∣∣ 1
n
hRn(z)− hR( 1

n
z)
∣∣ < δ

}
, (2.1)

measured in terms of a random probability measure µω that incorporates the random poten-

tial ω. See Section 2.2.5 for further details. For the sake of simplicity in this introductory

text, let us ignore the contribution of the random potential ω. Then the probability measure

on sets of height functions is uniform, and the profile theorem gives estimates on the number

of height functions in the ball B(Rn, hR, δ). In particular, the profile theorem states that

EntRn
(
B(Rn, hR, δ)) ≈ EntR(hR), (2.2)

where EntRn := − 1
|Rn| log |B(Rn, hR, δ)| is the microscopic entropy of the ball (see Defini-

tion 8), where EntR(hR) := 1
|R|

∫
R

ent(∇hR(x)) dx is the macroscopic entropy of the asymp-
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totic height function (see Definition 11), and where ent : [−1, 1]m → R is the local surface

tension (see Definition 10).

Next, Theorem 4, the variational principle, estimates the microscopic entropy of the entire

set of height functions satisfying a boundary condition. The result is given by optimizing

the macroscopic entropy integral over admissible asymptotic height functions:

EntRn
({
hRn : Rn → Z

∣∣hRn|∂Rn = h∂Rn
})

= inf
{

EntR(hR)
∣∣hR|∂R = h∂R

}
, (2.3)

where the microscopic domains Rn and their boundary values h∂Rn are assumed to converge

(in a suitable scaling limit) to the limiting domain R ⊂ Rm and boundary values h∂R : ∂R→

R respectively.

The large deviations principle gives probability estimates for sets of height functions that

are geometrically distant from to the optimizer of the variational principle. The conclusion

is that the probability measures µω over height functions on Rn satisfy a large deviations

principle, with rate function essentially given by the macroscopic entropy integral. See

Theorem 5 for a formal statement.

A consequence of the large deviations principle is that the probability of the collection of

all height functions that differ from the entropy-optimizing function in (2.3) above vanishes

exponentially as the system size goes to infinity. Note that the infimum in (2.3) admits

a unique minimizer, at least in the absence of random potential, since the local surface

tension ent is strictly convex (convexity is the content of Lemma 11 below; strict convexity

for the uniform case is due to [LT20]). In the case with the random potential, there still

exists at least one minimizer by convexity alone. We conjecture that strict convexity and

hence unique of the minimizer can be obtained by methods similar to those in [LT20].

The last main result of this chapter is a concentration inequality for the measures µω.

In many ways this is a simpler result than the three mentioned above, and in fact it could

be used in proving them. However it is not necessary to use the concentration inequality in

those other proofs, and so we do not make reference to it until after completing proof of the
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profile theorem, the variational principle, and the large deviations principle.

The concentration inequality states that the measures µω concentrate around their mean,

uniformly over the space Rn. Apart from being somewhat simpler to prove, it is also easier

to extract quantitative results on the rate of convergence from the concentration inequality,

although applications of such bounds are beyond the scope of the work presented.

Outline of the rest of the chapter

Having summarized the main results, we shall proceed in the rest of the chapter as follows:

• In Section 2.1, we introduce notation and conventions used throughout the rest of the

chapter.

• In Section 2.2, we introduce formal definitions of the model, the random measures µω,

the quantities like EntRn(·) referenced above, and other necessities.

• In Section 2.3, we formally state the first batch of results: the profile theorem, the

variational principle, and the large deviations principle.

• In Section 2.4, we derive intermediate results related to the entropy and local surface

tension.

• In Section 2.5 we prove the profile theorem.

• In Section 2.6 we prove the variational principle.

• In Section 2.7 we prove the large deviations principle.

• In Section 2.8 we discuss the strategy for proving the concentration inequality and

make some necessary definitions.

• In Section 2.9 we give the proof of the concentration inequality.
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2.1 Notation and conventions

Throughout the rest of this chapter, we use the following notations and conventions. The

first several items in the listing are relatively standard, but we list them in hopes of reducing

ambiguity.

• Usually m ∈ N ∪ {0} denotes the dimension of an ambient space, e.g. Zm or Rm.

• For p ∈ [1,∞], | · |p denotes the usual p-norm on Rm or Zm.

• For vectors x, y ∈ Rm, x · y denotes the usual dot product, i.e. the inner product

associated to the norm | · |2.

• Usually s ∈ [−1, 1]m denotes a “slope,” i.e. a vector with |s|∞ ≤ 1. Note that the `∞

condition should not be surprising, since the Lipschitz condition for height functions

is stated with respect to the `1 norm.

• |A| denotes either the cardinality or the Lebesgue measure of the set A, depending on

whether the set is finite (or rarely, countably infinite) or is a subset of some space Rm.

• Given a function f : A→ B and a subset A′ ⊆ A of the domain, we write f |A′ : A′ → B

for the restriction of f to A′.

• Given vertices u, v in a graph, particularly the graph Zm, we write u ∼ v to mean that

u and v are adjacent.

The following notations are less standard, but they will prove useful in the upcoming

exposition.

• Sn := {−n,−(n− 1), . . . , n− 1, n}m ⊂ Zm denotes a hypercube in the lattice, centered

at the origin.

• For S ⊂ Zm, ∂S := {z ∈ S | ∃z̃ ∈ Zm \ S, z̃ ∼ z} is the interior boundary of S.
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• ezz′ is the unoriented edge between neighbors z ∼ z′ in Zm.

• For h : Zm → Z and e = ezz′ ∈ E(Zm), we abuse notation and write h(e) for the edge

eh(z),h(z′) ∈ E(Z).

• τw denotes the shift by w ∈ Zm on edges of the graph Zm. That is, τwezz′ = ez+w,z′+w.

• θ(ε) ≥ 0 denotes a smooth function with limε→0 θ(ε) = 0. We explain the θ(ε) asymp-

totic notation further in Section 2.1.1 below.

2.1.1 Asymptotic notation

In this section we introduce a notation for asymptotic error. In comparison to the familiar

Landau big-O notation, our θ-notation further abstracts away the rate of convergence of

the error, but it still makes explicit the dependence on parameters. For this purpose we

write θα(δ) for a family of unspecified functions, parameterized by a symbol α, such that

θα(δ)→ 0 at a rate depending on the value of the parameter α. That is, for any ε > 0 and

any admissible parameter value α, there exists δ0 = δ0(α) > 0 such that 0 < δ < δ0 implies

θα(δ) < ε.

Extending the above notation, we frequently replace the single parameter α by a list of

parameters α, β, γ, . . . . For example, we might write an identity like

min
hR∈M(R,h∂R)

EntR(hR) = EntRn
(
M(Rn, h∂Rn , δ)

)
+ θm,R,h∂R,Rn,h∂Rn (δ)

+ θm,R,h∂R,Rn,h∂Rn ,δ(
1
n
).

(2.4)

The identity states that the two entropy terms on the first line differ by a small amount;

the difference vanishes as δ and 1
n

go to zero, and the rate of convergence depends on several

parameters. The “θ(δ)” term depends on the parameters from the setting, namely the

ambient dimension m, the region R, the height function hR of interest, and the corresponding

discrete objects Rn and hRn . The “θ( 1
n
)” term depends on these parameters along with the
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value of δ. We find that listing out the setting parameters m, R, hR, Rn, and hRn makes the

expression harder to read. So for the rest of the chapter we suppress these parameters from

the subscripts of θ terms. Under this convention (2.4) becomes:

min
hR∈M(R,h∂R)

EntR(hR) = EntRn
(
M(Rn, h∂Rn , δ)

)
+ θ(δ) + θδ(

1
n
). (2.5)

As mentioned above, the advantage of our θ notation is that it abstracts away the exact

rates of convergence, but leaves explicit the dependencies between parameters. For example,

suppose we want to make the error in approximation in (2.4) to be less than ε. We should

first choose δ so that (say) θ(δ) < 1
2
ε, then choose n depending on δ (and on the suppressed

parameters m, R, etc.) so that θδ(
1
n
) < 1

2
ε.

2.2 Formal definition of model

In this section we formally describe the model under study and introduce related notation.

The setting, notation, and main results are similar to those of [KMT20a] and [KMT20b].

2.2.1 Basic definitions

Throughout the sequel, we fix a dimension m ∈ N, a macroscopic domain R ⊂ Rm, and a

sequence of microscopic domains Rn ⊂ Zm satisfying these assumptions:

Assumption 1 (Assumptions on domain R and Rn). We assume that R ⊂ Rm is compact

and connected, that R is the closure of its interior, and that the boundary of R has zero

Lebesgue measure. We assume that Rn ⊂ Zm is contained in R after rescaling, i.e. that

1
n
Rn ⊂ R, although this is just a simplifying assumption. Moreover, we assume that 1

n
Rn →

R in the Hausdorff metric, i.e. the metric on {A ⊂ Rm} defined by

dH(A,B) :=

(
sup
x∈A

inf
y∈B
|x− y|1

)
∨
(

sup
y∈B

inf
x∈A
|x− y|1

)
. (2.6)

Now, we define precisely the height functions in our model.
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Definition 1 (Height function). A height function on Rn is a parity-preserving graph homo-

morphism hRn : Rn → Z. In other words, if z, w ∈ Rn and z ∼ w, then |hRn(z)−hRn(w)| = 1,

and for any z = (z1, . . . , zm) ∈ Rn,

hRn(z) ≡ z (mod 2) , i.e. hRn(z) ≡
m∑
i=1

zi (mod 2) . (2.7)

The condition (2.7) states that a height function preserves the parity of the lattice Zm.

Indeed, every graph homomorphism either preserves parity at all points or inverts parity at

all points, since the source space Zm and the target space Z are both bipartite. Our main

results are also valid without the parity-preserving condition, but for the same reasons as

outlined in [KMT20a, Section 2.1] we import the parity-preserving condition for simplicity.

We introduce the following symbols to refer to sets of height functions:

Definition 2 (Sets of height functions). Let Rn be a microscopic domain as above, let hRn :

Rn → Z be a boundary height function, and let δ > 0. We define:

M(Rn) :=
{
hRn : Rn → Z

∣∣hRn is a height function
}
, (2.8)

M(Rn, h∂Rn) :=
{
hRn ∈M(Rn)

∣∣hRn|∂Rn = h∂Rn
}
, (2.9)

M(Rn, h∂Rn , δ) :=
{
hRn ∈M(Rn)

∣∣ sup
z∈∂Rn

|hRn(z)− h∂Rn(z)| < δn
}
, and (2.10)

B(Rn, hR, δ) :=
{
hRn ∈M(Rn)

∣∣ sup
z∈Rn
|hR( 1

n
z)− 1

n
hRn(z)| < δ

}
. (2.11)

In the last definition, the expression “hR( 1
n
z)” makes sense because of the assumption

that 1
n
Rn ⊂ R in Assumption 1.

The limiting object for convergent sequences of height functions is:

Definition 3 (Asymptotic height function). We call a function hR : R → R an asymptotic

height function if hR is Lipschitz with Lipschitz constant at most 1, with respect to the

`1-norm on Rm; that is, if

Lip(hR) := sup
x 6=y∈R

|hR(x)− hR(y)|
|x− y|1

≤ 1 . (2.12)
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Likewise, if h∂R : ∂R → R is 1-Lipschitz (with respect to the `1-norm), we call h∂R an

asymptotic boundary height function.

The limit of height functions is defined as follows.

Definition 4 (Convergence of height functions). Given a sequence of height functions hRn :

Rn → Z and an asymptotic height function hR : R → R, we say that hRn converges in the

scaling limit to hR if

lim
n→∞

sup
z∈Rn

sup
x∈R

|x− 1
n
z|1≤dn

∣∣∣ 1

n
h∂Rn(z)− h∂R(x)

∣∣∣ = 0 , (2.13)

where dn := dH( 1
n
Rn, R).

Finally, we define the following sets of asymptotic height functions:

Definition 5 (Sets of asymptotic height functions). Let R ⊂ Rm be a domain satisfying

Assumption 1, let h∂R : ∂R→ R be an asymptotic boundary height function, and let δ > 0.

We define:

M(R) :=
{
hR : R→ R

∣∣hR is an asymptotic height function
}
, (2.14)

M(R, h∂R) :=
{
hR : R→ R

∣∣hR|∂R = h∂R
}
, (2.15)

M(R, h∂R, δ) :=
{
hR : R→ R

∣∣ ∀x ∈ ∂R , |hR(x)− h∂R(x)| ≤ δ
}
, and (2.16)

B(R, h̃R, δ) :=
{
hR : R→ R

∣∣ ∀x ∈ R , |hR(x)− h̃R(x)| < δ
}
. (2.17)

2.2.2 Connection to the six-vertex model

It is interesting to observe that in two dimensions, the Z-homomorphism model without

random potential is equivalent to the six-vertex model with uniform weights. Recall that

a configuration of the six-vertex is an assignment of one of six admissible states to each

vertex in a specific subset of the lattice Z2, subject to certain local compatibility conditions.

Weights w1, . . . , w6 are associated to the six possible vertex states, and at least in the case of

finite volume, configurations are sampled in proportion to the product of the weights of the
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vertices. When the weights are uniform (i.e. w1 = · · · = w6 = 1) then the induced measure is

uniform over admissible configurations, and the related partition function counts the number

of configurations. If one follows the conventions of [RS18], then each configuration of the

six-vertex model has a unique (up to additive constant) associated height function, defined

on the faces of the lattice, such that the heights of two adjacent faces differ by ±1. This

height function is a Z-homomorphism defined on the dual lattice. (Note that there is another

common convention used to define height functions for the six-vertex model, used in [BCG16]

among others; a review of the six-vertex model is beyond the scope of this dissertation.) A

configuration of the six-vertex model is shown in Figure 2.1, along with its associated height

function. Note that the six-vertex configuration pictured there satisfies the well-studied

domain wall boundary conditions, and therefore the height function has extremal slope along

all four edges of the boundary. As mentioned before, the partition function of the six-vertex

model counts the number of configurations (because we take uniform weights). Since the

configurations are in bijection with their height functions, the six-vertex partition function is

closely related to the microscopic entropy defined above. As such, the results in this chapter

can be translated to corresponding results for the six-vertex model, with uniform weights

and appropriately translated boundary conditions.

2.2.3 Affine height functions

Affine height functions play an important role in defining and studying the entropy of our

model. For an asymptotic height function hR : R → R, we mean by “affine” the usual

property: there exist s ∈ [−1, 1]m and b ∈ R such that hR(x) = s · x + b. The bounds

on s ensure that hR satisfies the Lipschitz property (2.12), so all such functions are indeed

asymptotic height functions as per Definition 3.

On microscopic domains Rn, we consider best-possible approximations to affine functions.

Fix s ∈ [−1, 1]m and b ∈ R. At a lattice point z ∈ Zm, we define hs·x+b
Rn

(z) to be s · z + b,

rounded to the nearest integer of correct parity (see Figure 2.2). In the rest of this subsection,
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+1 −1
4 3 2 1 0

3 2 1 2 1

2 1 2 1 2

1 2 3 2 3

0 1 2 3 4

Figure 2.1: The height functions rules for the six-vertex model (cf. [RS18, Figure 4]), and an

example of a configuration of the six-vertex model and the associated height function. The

results in this chapter imply the variational principle and large deviations principle for the

six-vertex model with uniform weights and any boundary data. The example above shows

the domain wall boundary data, which corresponds to a boundary height function with

extremal slope along all four edges of the square. These are the same boundary conditions

as were imposed for the samples from the Z-homomorphism model pictured in Figure 1.2.
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we formalize this definition, verify that it actually does define a height function, and check

that it is consistent.

Let us introduce an auxiliary notation that is used only in this subsection. Given a point

z = (z1, . . . , zm) ∈ Zm, we say z has even or odd parity as (
∑m

i=1 zi) ∈ Z has even or odd

parity respectively, and we write z mod 2 for the parity of z.

Given z ∈ Zm and y ∈ R, we write [y]z mod 2 for the closest integer to y that has parity

z mod 2. In case of a tie, i.e. if y is an integer that has opposite parity to z, we arbitrarily

choose to “round up” and set [y]z mod 2 = y + 1 ∈ Z.

For example, let z = (1, 2, 3) ∈ Z3 and z′ = (4,−6, 7). Then z is an even point and z′ is

an odd point. So:

[5.4]z mod 2 = 6, [−3]z mod 2 = −2, (2.18)

[5.4]z′ mod 2 = 5, [−3]z′ mod 2 = −3. (2.19)

(2.20)

Now, given s ∈ [−1, 1]m and b ∈ R, we define the affine height functions hs·x+b
Rn

by

hs·x+b
Rn

(z) := [s · z + b]z mod 2 . (2.21)

Note that the expression in the superscript of hs·x+b
Rn

is merely formal; “s · x + b” should

be read as “the function mapping x to s · x+ b”. Moreover, the choice of domain Rn in the

subscript does not affect the values of hs·x+b
Rn

at any point; for any sets An, Bn ⊆ Zm and any

point z ∈ An∩Bn, one has hs·x+b
An

(z) = hs·x+b
Bn

(z). An example of a function hs·x+b
Rn

is provided

in Figure 2.2.

From the definition above, it is not clear that hs·x+b
Rn

are height functions. This is the

content of Lemma 1.

Lemma 1. Let s ∈ [−1, 1]m and b ∈ R. For any adjacent points z ∼ z′ ∈ Zm, the values

hs·x+b
Rn

(z) and hs·x+b
Rn

(z′) differ by exactly 1.

26



x

h(x)

Figure 2.2: An affine height function hs·x+b
Rn

and the corresponding continuous affine function

x 7→ s · x+ b. Here s = 1
2

and b = 1
2
.

Proof. From the definition of hs·x+b
Rn

, we note two inequalities:

|hs·xRn(z)− (s · z + b)| ≤ 1, (2.22)

and

|hs·x+b
Rn

(z′)− (s · z′ + b)| ≤ 1. (2.23)

Additionally, since s ∈ [−1, 1]m, we have

|(s · z + b)− (s · z′ + b)| ≤ 1. (2.24)

By the triangle inequality, |hs·x+b
Rn

(z)−hs·x+b
Rn

(z′)| ≤ 3. We shall show that equality cannot

hold. Since the difference hs·x+b
Rn

(z)−hs·x+b
Rn

(z′) is obviously an odd integer, it will follow that

the difference is ±1.

Suppose towards a contradiction that∣∣hs·x+b
Rn

(z)− hs·x+b
Rn

(z′)
∣∣ = 3. (2.25)

Then (2.22) and (2.23) must be equalities. From the definition of [·]z mod 2, necessarily then

s · z + b is an integer with parity opposite that of z, and so

hs·x+b
Rn

(z) = (s · z + b) + 1. (2.26)
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Likewise

hs·x+b
Rn

(z′) = (s · z′ + b) + 1. (2.27)

But then ∣∣hs·x+b
Rn

(z)− hs·x+b
Rn

(z′)
∣∣ =

∣∣(s · z + b+ 1)− (s · z′ + b+ 1)
∣∣ ≤ 1. (2.28)

We end this section with the following lemma. The conclusion (2.30) is exactly what is

needed later to apply the Kirszbraun theorem (Theorem 6):

Lemma 2. Let s, s′ ∈ [−1, 1]m, b, b′ ∈ R, and z, z′ ∈ Zm. If∣∣(s · z + b)− (s′ · z′ + b′)
∣∣ ≤ |z − z′|1, (2.29)

then ∣∣hs·x+b
{z} (z)− hs′·x+b′

{z′} (z′)
∣∣ ≤ |z − z′|1. (2.30)

Proof. The proof is similar to that of Lemma 1. By the triangle inequality and (2.29),∣∣hs·x+b
{z} (z)− hs′·x+b′

{z′} (z′)
∣∣

≤
∣∣hs·x+b
{z} (z)− (s · z + b)

∣∣+
∣∣(s · z + b)− (s′ · z′ + b′)

∣∣
+
∣∣(s′ · z′ + b′)− hs′·x+b′

{z′} (z′)
∣∣

≤ |z − z′|1 + 2.

(2.31)

Since hs·x+b
{z} (z), hs

′·x+b′

{z′} (z′) and |z − z′|1 are all integers,∣∣hs·x+b
{z} (z)− hs′·x+b′

{z′} (z′)
∣∣− |z − z′|1 ∈ {. . . ,−2,−1, 0, 1, 2}. (2.32)

We want to prove that the left-hand side of (2.32) is ≤ 0. By parity considerations it

must be even, and we need only prove it is 6= 2. Assume for a contradiction that the left-hand

side of (2.32) equals 2. Then equality holds in (2.31), and in particular∣∣hs·x+b
{z} (z)− (s · z + b)

∣∣ = 1 and
∣∣hs′·x+b′

{z′} (z′)− (s′ · z′ + b′)
∣∣ = 1. (2.33)
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As in the proof of Lemma 1, this implies that

hs·x+b
{z} (z) = (s · z + b) + 1 and hs

′·x+b′

{z′} (z′) = (s′ · z′ + b′) + 1. (2.34)

Therefore ∣∣hs·x+b
{z} (z)− hs′·x+b′

{z′} (z′)
∣∣ =

∣∣(s · z + b)− (s′ · z′ + b′)
∣∣ ≤ |z − z′|1. (2.35)

This is the desired contradiction, which completes the proof.

2.2.4 Random Potential

Now let us formally describe the random potential ω. We will impose the following assump-

tions on ω throughout the rest of this chapter of the dissertation:

Assumption 2 (Random potential ω). We consider a real-valued random potential

ω = (ωe)e∈E(Z) ∈ RE(Z) (2.36)

defined on the set of edges E(Z) of Z. We write P for the law of ω and E for the expectation

with respect to that law. We assume that P satisfies the following assumptions:

• The elements ωe of random potential are almost surely finite, and moreover the random

variable Cω defined by

Cω := 1 ∨ sup
e∈E(Z)

|ωe| (2.37)

is in L1, i.e. E[Cω] <∞.

• The random potential ω is shift invariant. This means that for any finite number of

edges e1, . . . ek ∈ E(Z), any integer z ∈ Z, and any bounded and measurable function

ξ : Rk → R,

E
[
ξ(ωe1 , . . . , ωek)

]
= E

[
ξ(ωτz(e1), . . . , ωτz(ek))

]
, (2.38)

where τz : E(Z)→ E(Z) is the shift by z (as per the Notation and Conventions above).
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• Moreover, the random potential ω is ergodic with respect to the set of shifts {τz | z ∈

Z, z ≡ 0 (mod 2)}. This means that if E ⊂ Ω is a shift invariant event, i.e. if

E = τ−1
2 (E), then P(E) ∈ {0, 1}.

• As a matter of normalization, we assume w.l.o.g. that

E[ωe0,1 ] = 0 , (2.39)

where e0,1 is the edge from 0 to 1 in Z.

Example 1. A simple non-trivial example of a random potential ω that satisfies Assumption 2

is the i.i.d. potential. Let X denote a bounded (real) random variable with mean 0, and let

(ωe)e∈E(Z) denote a family of i.i.d. copies of X.

Remark 1. The assumptions of shift invariance and ergodicity are standard in homogeniza-

tion literature; see for example the “usual conditions” for the random conductance model

from [Bis11b, Definition 3.1]. However we point out one difference: the random potential ω

is ergodic with respect to the even shifts {τz | z ≡ 0 (mod 2)}. This is a stronger condition

than being ergodic with respect to the full set of shifts {τz | z ∈ Z}. This requirement is

due to the earlier assumption made in Definition 1 that height functions preserve parity.

As such, we cannot simply shift a height function up or down by 1 in the height space;

if hSn(z) = k ∈ Z, then there is no (parity-preserving) height function “τ1hSn” such that

τ1hSn(z) = k+ 1. More concretely, the family of measure-preserving translations used in the

proof of Lemma 9 below includes all of the shifts {τz | z ≡ 0 (mod 2)} and none of the shifts

{τz | z ≡ 1 (mod 2)}, hence the stronger ergodicity assumption is technically required.

2.2.5 Entropy and surface tension

Recall that our goal in this chapter of the dissertation is to study limiting height profiles

under the random potential defined by ω. In homogenization generally, one considers two

different situations: In the quenched case, one considers the measure µω for fixed ω. In the
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annealed case, one takes the expectation with respect to ω. Our goal is to show that the

variational principle holds with high probability. With that context in mind, we define the

quenched Hamiltonian HRn(·) = HRn(·, ω) and the quenched measure µω as follows:

Definition 6 (The quenched Hamiltonian). For finite subsets Rn ⊂ Zm, we define the Hamil-

tonian HRn as follows: for a fixed boundary height function h∂Rn : ∂Rn → Z, for any height

function hRn ∈M(Rn, h∂Rn), and for any realization ω of the random potential,

HRn(hRn , ω) =
∑

e∈E(Rn)

ωhRn (e), (2.40)

where E(Rn) = {ex,y |x, y ∈ Rn} is the edge set of the subgraph of Zm induced by Rn.

Definition 7 (Quenched Gibbs measure). Given a realization ω of the random potential and

a set A ⊂M(Rn) of height functions, the partition function Zω(A) is given by

Zω(A) =
∑
hRn∈A

exp
(
HRn(hRn , ω)

)
. (2.41)

For a fixed boundary data function h∂Rn ∈ M(∂Rn), the quenched Gibbs measure µω

on M(Rn, h∂Rn) is defined by

µω(hRn) =
1

Zω
(
M(Rn, h∂Rn)

) exp
(
HRn(hRn , ω)

)
. (2.42)

Remark 2. If one chooses the constant potential ω = 0 = (0)e∈E(Z), then the associated

quenched Gibbs measure µ0 is the uniform measure on M(Rn, h∂Rn). In this case one recovers

the variational principle of [KMT20a].

Now let us introduce the microscopic entropy of our model. Again there are two situa-

tions: first, the quenched case, defined for a fixed realization ω and the annealed case.

Definition 8 (Quenched and annealed microscopic entropy). Given a domain Rn ⊂ Zm and a

finite non-empty subset A ⊂M(Rn), the quenched microscopic entropy EntRn(A, ω) is given

by

EntRn(A, ω) := − 1

|Rn|
logZω(A) (2.43)(

= − 1

|Rn|
log

∑
hRn∈A

exp
(
HRn(hRn , ω)

))
. (2.44)
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The annealed microscopic entropy Ent(Rn, h∂Rn) is given by

EntRn,an(A) := E
[
EntRn(A, ω)

]
. (2.45)

Remark 3. As in Remark 2, if one chooses the constant potential ω = 0, then the quenched

microscopic entropy EntRn(M(Rn, h∂Rn),0) is the same as the microscopic entropy that was

studied in [KMT20a].

Next, we define the local surface tension. As with the microscopic entropy, the local

surface tension admits both a quenched and an annealed version, at least a priori.

Definition 9 (Quenched microscopic and local surface tension). The quenched local surface

tension is the a.s.-limit

ent(s, ω) := lim
n→∞

entn(s, ω) , (2.46)

where entn(s, ω) is the quenched microscopic surface tension, defined by

entn(s, ω) := EntSn
(
M(Sn, h

s
∂Sn), ω

)
. (2.47)

Recall from Notation and Conventions above that Sn = {−n, . . . , n}m, and note that the

existence of the limit in (2.46) is the content of Lemma 9.

Definition 10 (Annealed microscopic and local surface tension). The annealed microscopic

surface tension entn,an(s) is given by

entn,an(s) := E [entn(s, ω)] , (2.48)

and the annealed local surface tension ent(s) is given by

entan(s) := E [ent(s, ω)] . (2.49)

Remark 4. Similarly to Remark 2 and Remark 3, we obtain back the local surface tension

for the uniform measure if we consider a constant random potential ω = 0. In the case of

random potential, it follows from Assumption 2 and Lemma 3 that entn(s, ω) is uniformly

integrable and therefore that entn,an and entan are well-defined.
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Remark 5. It is not hard to see that the annealed local surface tension is also the limit of the

annealed microscopic surface tension. Indeed, from Assumption 2 the quenched microscopic

surface tension entn(s, ω) is dominated by an L1 function (see Lemma 3). Therefore, the

dominated convergence theorem implies that

lim
n→∞

entn,an(s) = lim
n→∞

E [entn(s, ω)] = E
[

lim
n→∞

entn(s, ω)
]

= entan(s) . (2.50)

Moreover, it is the content of Lemma 10 that the quenched local surface tension is a.s.

equal to the annealed local surface tension.

The annealed macroscopic entropy is defined by:

Definition 11 (Annealed macroscopic entropy). Given an asymptotic height function hR ∈

M(R, h∂R), the annealed macroscopic entropy EntR,an(hR) is defined by

EntR,an(hR) :=

∫
R

entan(∇h(x)) dx . (2.51)

2.3 Main results

The first main result of this chapter is the profile theorem. Its proof is the content of

Section 2.5.

Theorem 3 (Profile theorem). Recall that Cω := 1 ∨ supe∈E(Z)|ωe| is by Assumption 2 an

L1 random variable. For any hR ∈ M(R, h∂R) and any η > 0, there exist functions θhR(δ)

and θhR,δ(
1
n
) with θhR(δ)→ 0 as δ → 0 and θhR,δ(

1
n
)→ 0 as n→∞ such that

lim
n→∞

P
(∣∣∣EntRn

(
B(Rn, hR, δ), ω

)
− Entan(R, hR)

∣∣∣
≥ η + CωθhR(δ) + CωθhR,δ

(
1
n

))
= 0.

(2.52)

The second main result is the variational principle. Its proof is the content of Section 2.6.
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Theorem 4 (Variational principle). The random variables

EntRn(M(Rn, h∂Rn , δ), ω) (2.53)

converge in probability to the infimum of Entan(R, hR) over asymptotic height functions hR ∈

M(R, h∂R), i.e. for every η > 0,

lim sup
δ→0

lim sup
n→∞

P
( ∣∣∣EntRn

(
M(Rn, h∂Rn), ω

)
− inf

hR∈M(R,h∂R)
EntR,an(hR)

∣∣∣ ≥ η

)
= 0.

(2.54)

The third main result is the large deviations principle, which we state using the standard

notation from large deviations theory. Its proof is the content of Section 2.7.

Theorem 5 (Large deviations principle). Consider the space M(R) of asymptotic height

functions on R, endowed with the topology of uniform convergence. For δ > 0 and n ∈ N,

define a random probability measure µδ,n(·, ω) on M(R) by

µδ,n(A, ω) :=
Zω
({
hRn ∈M(Rn, h∂Rn , δ)

∣∣ h̃Rn ∈ A})
Zω
(
M(Rn, h∂Rn , δ)

) , (2.55)

where h̃Rn ∈M(R) denotes the asymptotic height function given by rescaling and interpolat-

ing hRn ∈M(Rn), i.e. h̃Rn( 1
n
z) = 1

n
hRn(z) for z ∈ Rn.

Then the measures µδ,n satisfy a large deviations principle in probability with rate func-

tional I given by

I(hR) :=


EntR,an(hR)− E if hR ∈M(R, h∂R),

+∞ otherwise,

(2.56)

where E := infhR∈M(R,h∂R) EntR,an(hR). Specifically, this means that for any Borel set A ⊂

M(R) and any η > 0,

lim sup
δ→0

lim sup
n→∞

P
(

1

|Rn|
log µδ,n(A, ω) ≤ − inf

hR∈A◦
I(hR)− η

)
= 0 (2.57)
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and

lim sup
δ→0

lim sup
n→∞

P
(

1

|Rn|
log µδ,n(A, ω) ≥ − inf

hR∈A
I(hR) + η

)
= 0, (2.58)

where A◦ denotes the interior of A and A denotes the closure.

2.4 The quenched and annealed local surface tension

The purpose of this section is to establish several fundamental properties of the quenched

entropy and local surface tension of our model. We proceed as follows:

• In Section 2.4.1 we state the Kirszbraun theorem, used heavily in the rest of this section

and beyond.

• In Section 2.4.2 we derive robustness of the entropy and local surface tension under

boundary value changes.

• In Section 2.4.3 we prove the existence of the quenched local surface tension and the

equivalence between the quenched and annealed local surface tension.

• In Section 2.4.4 we study the local surface tension as a function s 7→ entan(s), and we

show that this function is convex and continuous.

2.4.1 Kirszbraun theorem

The Kirszbraun theorem quoted below is a discrete analogue of the classical Kirszbraun

theorem from [Kir34]. The classical theorem gives a condition under which a Lipschitz

continuous function can be extended from a subset of a domain to the entirety of that domain.

Likewise, the Kirszbraun theorem for graph homomorphisms quoted below gives a condition

under which a Z-valued graph homomorphism may be extended from a subset of a domain

to the entire domain. Note that the property of being a Z-valued graph homomorphism is
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stronger than the Lipschitz property with constant 1, since if z ∼ z̃ are two adjacent points

in the domain of a graph homomorphism h : Rn → Z, then h(z) 6= h(z̃).

Theorem 6. Let Rn be a connected region of Zm, let R′n be a subset of Rn, and let h̄ : R′n → Z

be a graph homomorphism that preserves parity. There exists a graph homomorphism h :

Rn → Z such that h = h̄ on R′n if and only if for all x, y ∈ R′n,

dZ(h̄(x), h̄(y)) ≤ dRn(x, y), (2.59)

where dZ and dRn denote respectively the graph distance on Z and on Rn ⊂ Zm.

Remark 6. The parity condition is necessary in general; consider for example the function

h defined on {0, 2} ⊂ Z by h(0) = 0, h(2) = 1. The parity condition in Theorem 6 is the

reason for the parity condition in Definition 1.

There is a proof of a more general version of this theorem in [MT20b, Theorem 4.1].

The proof is restated below for the reader’s convenience, except that it simplified by only

addressing the model from this dissertation, where the height functions take values in Z

rather than in an infinite regular tree.

Proof of Theorem 6. Obviously if an extension h of h exists, then h satisfies (2.59). So,

suppose instead that (2.59) holds, and let us prove that an extension h exists. For y ∈ Rn,

set

h(y) := max
{
h(x)− |x− y|1

∣∣x ∈ R′n}. (2.60)

We must check two things: first that h(y) = h(y) when y ∈ R′n, and second that |h(y)−

h(ỹ)| = 1 when y ∼ ỹ are adjacent points in Rn.

To prove that h|R′n = h, let y ∈ R′n and consider any point x ∈ R′n. By the Lipschitz

property of h,

h(x)− h(y) ≤
∣∣h(x)− h(y)

∣∣ ≤ |x− y|1, (2.61)

so h(x) − |x − y|1 ≤ h(y). Therefore the maximum in (2.60) is attained when x = y, so

h(y) = h(y) + |y − y|1 = h(y).
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To prove that h is a graph homomorphism, let y ∼ ỹ be adjacent points in Rn, and

let x, x̃ be points in R′n that attain the maximum in (2.60) for y, ỹ respectively, i.e. h(y) =

h(x)− |x− y|1 and h(ỹ) = h(x̃)− |x̃− ỹ|1. Then

h(y) = max
{
h(z) + |z − y|1

∣∣ z ∈ R′n}
≥ h(x̃)− |x̃− y|

≥ h(x̃)− |x̃− ỹ| − 1

= h(ỹ)− 1,

(2.62)

and likewise h(ỹ) ≥ h(y)− 1.

For every x ∈ R′n, the map y 7→ h(x) + |x − y|1 preserves parity (recall the assumption

that h preserves parity), and therefore so does h. So h is a parity-preserving map such

that |h(y) − h(ỹ)| ≤ 1 whenever y and ỹ are neighbors. This proves that h is a graph

homomorphism.

As an illustration of the usefulness of the Kirszbraun theorem, we prove the following

lemma, which justifies the choice of the normalizing factor 1
|Rn| in Definition 8:

Lemma 3. Almost surely (in terms of the distribution P of the random potential ω),

− log(2)− 2mCω ≤ EntRn
(
M(Rn, h∂Rn), ω

)
≤ 2mCω . (2.63)

Proof. As a corollary of the Kirszbraun theorem (Theorem 6), there is always at least one

height function h0 ∈M(Rn, h∂Rn). So,

EntRn
(
M(Rn, h∂Rn), ω

)
≤ − 1

|Rn|
log

∑
h∈{h0}

exp

 ∑
e∈E(Rn)

ωeh(x),h(y)

 (2.64)

≤ |E(Rn)|
|Rn|

Cω (2.65)

≤ 2mCω . (2.66)

On the other hand, we overestimate the cardinality of M(Rn, h∂Rn) as follows: enumerate

the points of the interior of Rn, in such a way that each point xi is adjacent to the previous
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point xi−1 (and the first point x1 is adjacent to x0 ∈ ∂Rn). For each point xi in the

enumeration, we require that h(xi) = h(xi−1) ± 1, so there are at most 2 choices for h(xi).

All together, |M(Rn, h∂Rn)| ≤ 2|Rn|. It follows that

Ent(Rn, h∂Rn , ω) ≥ − 1

|Rn|
log
(
|M(Rn, h∂Rn)| exp

(
Cω|E(Rn)|

))
(2.67)

≥ − 1

|Rn|
log 2|Rn| − |E(Rn)|

|Rn|
Cω (2.68)

≥ − log(2)−mCω. (2.69)

In the sequel, we will usually use the Kirszbraun theorem in the following setting. Given

two domains Rn1 ⊂ Rn2 ⊂ Zm, a height function hRn1 ∈ M(Rn1), and a boundary height

function h∂Rn2 ∈ M(∂Rn2), there exists an extension h̃Rn2 ∈ M(Rn2) with h̃Rn2 |Rn1 = hRn1

and h̃Rn2 |∂Rn2 = h∂Rn2 if and only if

|hRn1 (z1)− h∂Rn2 (z2)| ≤ |z1 − z2|1 for all z1 ∈ ∂Rn1 , z2 ∈ ∂Rn2 . (2.70)

2.4.2 Robustness of the quenched entropy

The quenched microscopic entropy and local surface tensions are robust, in the sense that

small changes in boundary values cause small changes in the numeric value of the entropy.

There are two steps in proving these robustness results: First, just as for the unperturbed

model of [KMT20a], compare the two sets of height functions associated with the two bound-

ary value functions, perhaps by exhibiting an injection from one set into the second or by

estimating cardinalities directly. Second, show that individual height functions from each of

the two sets contribute comparable amounts to the entropy after applying the random poten-

tial, e.g. by showing that every height function in one set admits a “similar” height function

in the second set, whose Hamiltonian value is not much different; this step is sometimes

straightforward and other times quite subtle.
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Sn−

Sn

Sn+ δn

Figure 2.3: Nested domains from Lemma 4.

Lemma 4. Let α > 0, let s ∈ Rm with |s|∞ ≤ 1 − α, let ε ∈ (0, α
2
), let n ∈ N with

n ≥ (1− 2ε
α

)−1), and let h∂Sn ∈M(∂Sn, s, ε). Write

n+ :=
⌈
(1 + 2ε

α
)n
⌉

and n− :=
⌊
(1− 2ε

α
)n
⌋
. (2.71)

(We remark that 1 ≤ n− < n < n+.) Then,

entn+(s, ω)− Cω θ
(
ε
α

)
≤ EntSn

(
M(Sn, h∂Sn), ω

)
≤ entn−(s, ω) + Cω θm

(
ε
α

)
.

(2.72)

Proof of Lemma 4. We prove the inequality

entn+(s, ω)− Cωθ
(
ε
α

)
≤ EntSn

(
M(Sn, h∂Sn), ω

)
. (2.73)

The proof of the reverse inequality is similar.

Note that the smaller square Sn = {−n,−(n− 1), . . . , n− 1, n}m is contained inside the

larger square Sn+ , and that

|x− y|1 ≥ 2ε
α
n whenever x ∈ ∂Sn and y ∈ ∂Sn+ . (2.74)
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We construct an injection from M(Sn, h∂Sn) into M(Sn+ , hs∂Sn+ ) using the Kirszbraun

theorem, Theorem 6. Let hSn ∈ M(Sn, h∂Sn), let x ∈ ∂Sn, and let y ∈ ∂Sn+ . By the

definitions of M(Sn, h∂Sn) and of hs∂Sn ,

∣∣hSn(x)− hsSn+ (y)
∣∣ (2.75)

≤
∣∣hSn(x)− s · x

∣∣ +
∣∣s · (x− y)

∣∣ +
∣∣hsSn+ (y)− s · y

∣∣ (2.76)

≤ εn+ |s|∞|x− y|1 + 1. (2.77)

By hypothesis |s|∞ ≤ 1− α and by (2.74), εn ≤ α
2
|x− y|1. Therefore for n ≥ 2

α
,

|hSn(x)− hsSn+ (y)| ≤ |x− y|1 , (2.78)

so hSn admits an extension hSn+ ∈ M(Sn+ , hs∂Sn+ ). The map hSn 7→ hSn+ is an injection

fromM(Sn, h∂Sn) intoM(Sn+ , hs∂Sn+ ). The existence of such an injection implies immediately

that

EntSn
(
M(Sn, h∂Sn), ω

)
≥ |Sn|
|Sn+|

EntSn+
(
M(Sn+ , hs∂Sn+ ), ω

)
− 2mCω(|Sn+| − |Sn|)

|Sn|

= EntSn+
(
M(Sn+ , hs∂Sn+ ), ω

)
− Cωθm

(
ε
α

)
.

(2.79)

This proves the first inequality of (2.72). As mentioned at the beginning of the proof, the

other inequality is similar. Since n− < n, one extends height functions from M(Sn− , h∂Ss
n−

)

to M(Sn, h∂Sn). We omit the details.

Lemma 4 does not extend to the case where |s|∞ = 1. As |s|∞ → 1 the ratio of the box

sizes
|Sn+ |
|Sn| ≈ 1 + ε

α
and the error bound θ( ε

α
) both diverge. Fundamentally these difficulties

come from the Kirszbraun theorem. When |s|∞ is close to 1, the “margin” Sn+ \ Sn must

be large in order to connect h∂Sn to h∂Sn+ and when |s|∞ = 1, such an extension is not

generally possible. Therefore we take a different approach for |s|∞ ≈ 1, using elementary
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combinatorics to count the number of height functions. The two following calculations are

intermediate results used to prove the robustness lemma, Lemma 7.

Lemma 5 (Counting height functions near |s|∞ = 1). Let ε > 0. Let s ∈ Rm with 1− ε <

|s|∞ ≤ 1, and let h∂Sn ∈M(∂Sn, h
s
∂Sn

, ε). Then,

1

|Sn|
log
∣∣M(Sn, h∂Sn)

∣∣ = θ(ε) . (2.80)

Proof of Lemma 5. Fix a coordinate index 1 ≤ i ≤ m such that |si| > 1 − ε, and assume

without loss of generality that si > 1 − ε. Decompose Sn into (2n + 1)m−1 lines in the

ith coordinate direction. Along each such line hSn must increase by at least 2(1 − 2ε)n.

Therefore, the 2n edges in the line split into two subsets: at least 2(1 − 2ε)n “increasing”

edges, and at most 4εn “decreasing” edges. Counting each line independently, we conclude

that ∣∣M(Sn, h∂Sn)
∣∣ ≤ ( 2n

d4εne

)(2n+1)m−1

. (2.81)

The conclusion (2.80) follows immediately. For a more verbose version of this proof, see

[KMT20a, Lemma 21].

Lemma 6 (Height functions at slope |s|∞ = 1). Let s′ ∈ Rm with |s′|∞ = 1. Then

|M(Sn, h
s′

∂Sn
)| = 1, and the sole element of M(Sn, h

s′

∂Sn
) is the canonical height function

hs
′
Sn

.

Proof of Lemma 6. As in the proof of Lemma 5, fix a coordinate index 1 ≤ i ≤ m such

that |si| = 1. Decompose Sn into lines in the ith coordinate direction. Along each line,

any height function hSn ∈ M(Sn, h
s′

∂Sn
) must increase by exactly 2n. Since hSn is a graph

homomorphism, that is only possible if hSn increases along every edge, i.e. hSn(x + 1, y) −

hSn(x, y) = 1 for x = −n, . . . , n−1. It follows that |M(Snh
s′

∂Sn
)| ≤ 1. To complete the proof,

observe that hs
′
Sn
∈M(Sn, h

s′

∂Sn
).

Having recorded Lemma 5 and 6, we return to establishing robustness results. Our

goal is to compare the microscopic surface tension entn(s, ω) := EntSn(M(Sn, h
s
∂Sn

), ω) and
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the entropy EntSn(M(Sn, h∂Sn), ω) associated to an “approximately affine” boundary height

function h∂Sn ∈M(∂Sn, h
s
∂Sn

, ε). The difference is that Lemma 4 took |s|∞ ≤ 1− α and the

lemma below takes |s|∞ > 1− α.

Lemma 7. Let ε > 0. Let s, s′ ∈ Rm with |s|∞ ≤ 1, |s′|∞ = 1, and |s− s′|∞ < ε. Let n ∈ N

be sufficiently large (specifically, n ≥ 1
ε
) and let h∂Sn ∈M(∂Sn, h

s
∂Sn

, ε). Then:∣∣Ent(Sn, h∂Sn , ω)− entn(s′, ω)
∣∣ ≤ Cω θ(ε) . (2.82)

Because of the θ(ε) error term, Lemma 7 will not be useful for slopes s with |s|∞ far

from 1.

Remark 7. There are two ingredients to the proof. The first is counting results of Lemma 5

and Lemma 6, and the second is a comparison between the Hamiltonian HSn(hSn , ω) of a

generic height function hSn ∈ M(Sn, h∂Sn) and the Hamiltonian HSn(hs
′
Sn
, ω) of the unique

element hs
′
Sn
∈ M(Sn, h

s′

∂Sn
). Since proofs were already given for the two lemmas, most of

the argument below is spent on the comparison of Hamiltonians.

The comparison of Hamiltonians is also fundamentally a combinatorial argument that

relies on the rigidity caused by the slopes s and s′ being close to (or on) the boundary of

the slope space [−1, 1]m. It is surprising that such a subtle argument is (apparently) needed

in the case of homogenization, since the two counting lemmas are sufficient in the uniform

case, and these lemmas are not very complicated to prove.

The subtlety is similar to that of the proof of Lemma 8 below. In both cases, difficulties

arise when comparing Hamiltonians for two height functions defined on the same domain

Sn. In comparison, the proof of Lemma 4 (which has a similar statement to the current

Lemma 7)) is based on extending height functions from one domain to another larger do-

main via the Kirszbraun theorem. Comparing the Hamiltonian of a height function on the
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larger domain to the Hamiltonian of the same function on a sub-domain is simple, since the

difference in Hamiltonians can be controlled by the difference in cardinality of the domains.

Proof of Lemma 7. As mentioned above, we will compare the Hamiltonians HSn(hSn , ω) and

HSn(hs
′
Sn
, ω), where hSn ∈M(Sn, h∂Sn) and hs

′
Sn
∈M(Sn, h

s′

∂Sn
). More precisely, we will later

deduce the inequality

∣∣HSn(hSn , ω)−HSn(hs
′

Sn , ω)
∣∣ ≤ 210m2(2n+ 1)mCωε . (2.83)

Given that (2.83) holds, the proof is straight-forward: For one inequality, we calculate

EntSn
(
M(Sn, h∂Sn), ω

)
(2.84)

= − 1

|Sn|
log

∑
hSn∈M(Sn,h∂Sn )

exp
(
HSn(hSn , ω)

)
(2.85)

(2.83)

≤ − 1

|Sn|
log

∑
hSn∈M(Sn,h∂Sn )

exp

(
HSn(hs

′

Sn , ω) (2.86)

− 210m2(2n+ 1)mCωε

)
(2.87)

Lemma 5

≤ − 1

|Sn|
HSn

(
hs
′

Sn , ω
)

+ θ(ε) + 210m2Cωε (2.88)

= EntSn
(
M(Sn, h

s′

Sn), ω
)

+ θ(ε) . (2.89)

The opposite inequality is derived in the same way, which concludes the proof of Lemma 7

up to the verification of (2.83).

For convenience, let us use for the remaining argument the following convention: When

denoting the Hamiltonian of HSn(hSn , ω) we just write H(hSn), omitting the dependency on

the random potential ω.

Informal verification of (2.83): Heuristically, the estimate (2.83) makes sense. Because

the slopes s and s′ are ε-close to each other, and s′ has slope 1, every height function hSn ∈
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M(Sn, h∂Sn) has to behave similar to the canonical height function hs
′
Sn

of slope s′. Therefore,

the difference in the associated energies, as measured by the Hamiltonian HSn(hSn) and

HSn(hs
′
Sn

), should vanish as ε→ 0.

To make this argument rigorous one needs to precisely estimate the number of heights

that each height function hSn visits, i.e. the set {hSn(e) | e ∈ E(Sn)} with multiplicities,

and compare to the corresponding set for hs
′
Sn

. This is relatively straight-forward on a one-

dimensional lattice but unfortunately becomes much more subtle on a higher-dimensional

lattice. To see why, consider the decomposition of the box Sn into lines. This leads a decom-

position of the edges in E(Sn) into parallel edges within a line, and cross edges connecting

two lines. Without cross edges the one-dimensional argument would easily carry over, but

controlling the cross edges is necessary as well. This control is accomplished by the sets Gy

below.

To begin the rigorous verification of (2.83), pick an arbitrary height function hSn ∈

M(Sn, h∂Sn). As mentioned above, we decompose Sn into lines parallel to one of the co-

ordinate axes. Assume by symmetry that s = (s1, s2, . . . , sm) and s′ = (s′1, . . . , s
′
m) satisfy

s′1 = 1 and (therefore) s1 > 1− ε. For y ∈ {−n, . . . , n}m−1 let `y denote the line in the first

coordinate direction through (0, y) in Sn, i.e.

`y :=
{

(−n, y), (−n+ 1, y), . . . , (n− 1, y), (n, y)
}
. (2.90)

Observe that Sn is the disjoint union of the (2n + 1)m−1 lines `y. In particular, the Hamil-

tonian HSn(hSn) decomposes with respect to the lines `y as

HSn(hSn) :=
∑

e∈E(Sn)

ωhSn (e)

=
∑
y

( ∑
e∈E(`y)

ωhSn (e) +
1

2

∑
y′∼y

∑
e∈Ẽy,y′

ωhSn (e)

)

=
∑
y

H̃y(hSn) ,

(2.91)
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where Ẽy,y′ is the set of edges in E(Sn) with one endpoint in `y and the other in `y′ (we call

these cross edges), and where H̃y is defined to be the parenthesized quantity from the line

above. Note that the factor 1
2

is necessary because each cross edge in Ẽy,y′ also contributes

to H̃y′(hSn), so without the factor 1
2

the contributions from the cross edges would be double-

counted.

We define two families of sets Ay ⊂ E(Z) and Gy ⊂ Ay, indexed by points y ∈

{−n, . . . , n}m−1. In terms of the heuristic argument above, these sets roughly correspond

to the heights visited by hSn and hs
′
Sn

, although in fact both Ay and Gy are subsets of

{hSn(e) | e ∈ E(Sn)}.

Let Ay denote the edges e ∈ E(Z) that lie inside the interval from (s · (−n, y) + 2εn)

to (s · (+n, y) − 2εn). Based on the boundary conditions and homomorphism property of

hSn and hs
′
Sn

, every edge e ∈ Ay occurs both in the image {hSn(ẽ) | ẽ ∈ E(`y)} and in the

image {hs′Sn(ẽ) | ẽ ∈ E(`y)}. (The factors of 2 in the definition of Ay are necessary since the

boundary height function h∂Sn may differ from hs∂Sn by up to εn, in addition to s1 differing

from 1 by up to ε.) The situation in dimension m = 1 is illustrated in Figure 2.4a.

We define Gy ⊂ Ay in the following way: These are the edges e ∈ Ay ⊂ E(Z) satisfying

these three constraints with respect to hSn (illustrated in Figure 2.4b):

• e occurs with multiplicity 1 in the multi-set {hSn(ẽ) | ẽ ∈ E(`y)}. (By choice of Ay,

e occurs with multiplicity ≥ 1.) Write es for the unique edge es ∈ E(`y) such that

hSn(es) = e.

• Both endpoints of e occur with multiplicity 1 in the multi-set {hSn(z) | z ∈ `y}.

• For each endpoint z of es and each neighboring vertex z′ ∼ z that lies in Sn \ `y,

hSn(z′) occurs with multiplicity 1 in the multi-set {hSn(z̃) | z̃ ∈ `y′} for the line `y′ that
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x

hSn(x)

(−n,−sn)

(n, sn)

Ay

(a) Here hSn is a one-dimensional height

function with slope s ≥ 1 − ε. The set

Ay comprises the 1 − 4ε fraction of the 2n

edges in `y, centered around 0. (The cen-

tral height in higher dimensions is instead

s · (0, y).) Both hSn and hs
′
Sn

must contain

all of these edges in their image. They might

contain additional edges.

`y

es

`y′′`y′

(b) The three lines are `y in the center and

two of its neighbors, `y′ and `y′′ . The high-

lighted edge is the edge es ∈ E(`y) for

e ∈ Gy, i.e. the unique edge in `y with

hSn(es) = e. There is also an edge es′ (not

shown), satisfying the corresponding unique-

ness property for hs
′
Sn

. Finally, all six high-

lighted vertices are good, i.e. each vertex has

a unique height within its line.

Figure 2.4: Figures relating to the proof of Lemma 7.
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contains it.

Further on in the argument, we will call elements of Gy “good” edges. We will call a vertex

z ∈ `y “good” if its height hSn(z) occurs in with multiplicity 1 in {hSn(z̃) | z̃ ∈ `y}, and

likewise for z′ ∈ `y′ .

Later on, we will need that for an arbitrary “good” edge e ∈ Gy it holds:∑
y′∼y

∑
ẽ∈Ẽy,y′
hSn (ẽ)=e

ωhSn (ẽ) =
∣∣{y′ ∼ y}

∣∣ωe. (2.92)

Note that |{y′ ∼ y}| ≤ 2m for all y, with equality unless y is a boundary point (implicitly we

assume that y′ ∈ {−n, . . . , n}m−1). Argument for (2.92): We observe that for each y′ ∼ y,

by using the second and third constraints and considering cases, there is a unique cross edge

es,y′ between `y and `y′ such that hSn(es,y′) = e. For a proof of this simple fact we refer to

Figure 2.5. The identity (2.92) follows then immediately.

We will also need count |Gy|. Heuristically, since the slope s is close to 1, Gy must be

a large subset of E(`y). To be precise, recall that |Ay| ≥ 2n − 4dεne by construction, and

that Gy is the subset of edges e ∈ Ay that satisfy the three constraints above. The second

constraint actually implies the first, so to count Gy we simply count how many edges in Ay

satisfy the last two constraints. Actually we count the complement, i.e. how many edges do

not satisfy these two constraints. Indeed, each “bad” vertex in `y (in the sense described

after the constraints) causes at most two edges in E(`y) to violate the second constraint.

Likewise, each “bad” vertex in an adjacent line `′y causes at most two edges in E(`y) to

violate the second constraint. All other edges in Ay are “good,” i.e. are included in Gy.

It remains to count the “bad” vertices in any line `y. Since s1 > 1−ε and since hSn approx-

imates the slope-s height function hsSn on ∂Sn, the height values hSn(−n, y) and hSn(+n, y)

on the endpoints of `y differ by at least 2n − 4εn. Since hSn is a graph homomorphism, it
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`y `y′

k

k + 1

k + 1

k + 2

(a) Case 1 (both adjacent

height values larger): Clearly

there is one edge between `y

and `y′ that is mapped to e =

ek,k+1. Suppose that another

cross edge has heights k and

k + 1. Then its left endpoint

would have either height k or

height k+1, which contradicts

the fact that the two labelled

vertices in `y are “good,” i.e.

that their heights occur only

once in `y.

`y `y′

k

k + 1

k − 1

k

(b) Case 2 (both adjacent

height values smaller): Again

there is one edge between `y

and `y′ that is mapped to

e = ek,k+1, and again no other

vertices in `y can have either

height k or height k + 1.

`y `y′

k

k + 1

α

k + 1

k

β

(c) Case 3 (cannot occur be-

cause e ∈ Gy): Here there

would be two edges between

the lines that both map to

ek,k+1. But since the vertex

at height k in `y is “good”, the

vertex labelled α must have

height k + 2. Likewise since

the vertex at height k+1 in `y′

is “good”, vertex β must have

height k−1. Since α ∼ β, this

violates the graph homomor-

phism property.

Figure 2.5: Consideration of cases for part of the proof of Lemma 7. The claim to be shown

is: given e ∈ Gy (say e = ek,k+1), there is a unique cross edge es,y′ ∈ Ẽy,y′ which is mapped

to e by the height function hSn . In the figure, the vertices are labelled by their heights,

i.e. by the values of hSn . The bolded edge in `y is es ∈ E(`y), i.e. the unique edge in `y

with hSn(es) = e. In Figure 2.5a and Figure 2.5b, the bolded edge between the lines is the

unique edge between the lines with height ek,k+1. Figure 2.5c shows two such edges, but in

fact this case cannot occur. By the homomorphism property, these three cases exhaust the

possibilities for heights on the two vertices in `y′ that are adjacent to the endpoints of es.
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maps the 2n+ 1 vertices in `y surjectively onto the set of ≥ 2n− 4dεne+ 1 integers between

the heights of the endpoints. By the pigeonhole principle, at most 8dεne of these integers

occur with multiplicity ≥ 2, i.e. at most 8dεne vertices are “bad.” Thus

|Gy| ≥ |Ay| − 2
∣∣{“bad” vertices in `y or `y′ (for y′ ∼ y)

}∣∣ (2.93)

≥ 2n− 4dεne︸ ︷︷ ︸
|Ay |

− 2 · (2m+ 1)︸ ︷︷ ︸
# lines

· 8dεne︸ ︷︷ ︸
“bad” vertices per line

(2.94)

= 2n− (32m+ 20)dεne (2.95)

≥ 2n− 52mdεne . (2.96)

Now we work towards the Hamiltonian estimate (2.83). Let e ∈ Gy, and recall that es

is the unique edge in E(`y) such that hSn(es) = e, and that es,y′ is the unique cross edge

between `y and `y′ such that hSn(es,y′) = e. As a result (recall the definitions of H̃`y and

Ẽy,y′ from (2.91) above):

H̃`y(hSn) =
( ∑
ẽ∈E(`y)

ωhSn (ẽ)

)
+

1

2

(∑
y′∼y

∑
ẽ∈Ẽy

ωhSn (ẽ)

)
(2.92)
=
(∑
e∈Gy

ωe +
∑

ẽ∈E(`y)
hSn (ẽ) 6∈Gy

ωhSn (ẽ)

)

+
1

2

(∣∣{y′ ∼ y}
∣∣ ∑
e∈Gy

ωe +
∑
y′∼y

∑
ẽ∈Ẽy,y′

hSn (ẽ)6∈Gy

ωhSn (ẽ)

)
,

(2.97)
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so ∣∣∣H̃`y(hSn)−
(

1
2

∣∣{y′ ∼ y}
∣∣+ 1

) ∑
e∈Gy

ωe

∣∣∣ (2.98)

≤ Cω
(
|E(`y)| − |Gy|

)
+

1

2

∑
y′∼y

Cω
(
|Ẽy,y′ | − |Gy|

)
(2.99)

(2.96)

≤ 52mCωdεne+
1

2

∑
y′∼y

Cω
(
52mdεne+ 1

)
(2.100)

≤ 52mCωdεne(1 +m) +mCω (2.101)

≤ 104m2Cωdεne+mCω (2.102)

≤ 105m2(2n+ 1)Cωε . (2.103)

(In the last line, we assume that n ≥ 1
ε
, so that (2n+ 1)ε ≥ dεne ≥ 1.)

Because s′1 = 1, hs
′
Sn
|`y is an injection, the three bullet points above are also satisfied with

hs
′
Sn

in place of hSn . Therefore the calculation above also applies with h
′s
Sn

in place of hSn , so∣∣∣H̃`y(h
s′

Sn)−
(

1
2

∣∣{y′ ∼ y}
∣∣+ 1

) ∑
e∈Gy

ωe

∣∣∣ ≤ 105m2(2n+ 1)Cωε . (2.104)

By the triangle inequality,

∣∣H̃`y(hSn)− H̃`y(h
s′

Sn)
∣∣ ≤ 210m2(2n+ 1)Cωε . (2.105)

By summing over y ∈ {−n, · · · , n}m−1, we get the desired inequality (2.83), i.e.

∣∣HSn(hSn)−HSn(hs
′

Sn)
∣∣ ≤ 210m2(2n+ 1)mCωε . (2.106)

Both Lemma 4 and Lemma 7 imply that the microscopic entropy is robust to changes

in boundary data, but they apply in different regimes. The former result applies when the

boundary data has slope s with norm |s|∞ bounded away from 1, and the latter when the
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slope s has norm close to 1. For convenience later on, we combine the two results into a

single theorem.

Theorem 7. For any ε ∈ (0, 1
9
) and any slope s ∈ [−1, 1]m, there exist A = A(s, ε) > 0,

B = B(s, ε) > 0, and n0 = d1
ε
e ∈ N such that, for any n ≥ n0 and any boundary height

function h∂Sn ∈M(∂Sn, h
s
∂Sn

, ε),

entAn(s, ω)− Cω θ(ε) ≤ Ent
(
M(Sn, h∂Sn), ω

)
≤ entBn(s, ω) + Cω θ(ε).

(2.107)

Moreover, the functions A(s, ε) and B(s, ε) are bounded away from 0 and ∞ uniformly in s

and ε. More precisely,

1 ≤ A(s, ε) ≤
(
1 + 2ε1/2 + 1

n

)
<∞ (2.108)

and

0 <
(
1− 2ε1/2 − 1

n

)
< B(s, ε) ≤ 1. (2.109)

Proof of Theorem 7. Take α = ε1/2 and proceed according to two cases. For slopes s

with |s|∞ ≤ 1 − α, use Lemma 4 to choose A = n+/n ≈ (1 + 2ε1/2) and B = n−/n ≈

(1 − 2ε1/2). Note that ε < 1
9

implies that ε < α
2

and n ≥ 1
ε
≥ (1 − 2ε1/2)−1, as required by

the lemma. Moreover 1 − 2ε1/2 − 1
n
> 2

9
, so B is indeed bounded away from 0. The error

terms θ( ε
α

) from the lemma are equivalent to θ(ε1/2) = θ(ε).

For slopes with |s|∞ > 1− α, take A = B = 1 and apply Lemma 7 twice, using α = ε1/2

in place of ε: once for the boundary height function h∂Sn given in the statement of the

theorem, and once for the canonical boundary height function hs∂Sn . The estimate on

∣∣Ent(M(Sn, h∂Sn), ω)− entn(s, ω)
∣∣ (2.110)

follows from the triangle inequality.
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The robustness results above focused on boundary height functions that differed at macro-

scopic scale, i.e. |h∂Sn − h̃∂Sn|u ≤ εn. For boundary height functions with sub-linear differ-

ences, we will derive stronger robustness results. Lemma 8 addresses the case where the two

boundary height functions differ at only a single point on ∂Sn, and Corollary 1 extends to

the sub-linear case (actually, only to |h∂Sn − h̃∂Sn|u = o( logn
n

), but that is sufficient for our

purposes.)

Lemma 8 (Robustness for minimally different boundary height functions). Fix n ∈ N, and

let h+
∂Sn

and h̃−∂Sn be two boundary height functions on the hypercube Sn which differ at exactly

one point z0 ∈ ∂Sn, i.e. h+
∂Sn
|Sn\{z0} = h−∂Sn|Sn\{z0} and h+

∂Sn
(z0) = h−∂Sn(z0) + 2.

Then,∣∣∣EntSn
(
M(Sn, h

+
∂Sn

), ω
)
− EntSn

(
M(Sn, h

−
∂Sn

), ω
)∣∣∣ ≤ 4mCω + log(2n)

|Sn|
. (2.111)

Remark 8. The log(2n) term is necessary at least in some extreme cases. For example,

suppose that ω ≡ 0, m = 1, z0 = −n, h+
∂Sn

(−n) = 2, h−∂Sn(−n) = 0, and h±∂Sn(n) = 2n.

Then EntSn(M(Sn, h
+
∂Sn

),0) = − 1
n

log(2n) and EntSn(M(Sn, h
−
∂Sn

),0) = 0; cf. Lemma 5 and

Lemma 6 for calculations.

Proof of Lemma 8. For concreteness and w.l.o.g., assume that the boundary values at z0 are

h−∂Sn(z0) = 0 and h+
∂Sn

(z0) = 2. (Technically this assumption is only valid if z0 has even par-

ity because we require that height functions preserve parity, and one should instead assume

e.g. that h±∂Sn(z0) ∈ {1, 3} in the other case. For simplicity we ignore this detail in the rest

of the proof.)

Consider the line z0, z1, . . . , z2n of points in Sn starting from z0 and going into Sn, per-

pendicular to the boundary. Classify each height function h+
Sn
∈ M(Sn, h

+
∂Sn

) based on the

number of initial “up” steps, i.e.

kup(h
+
Sn

) := max
{
k̃ ≥ 0 |h+

Sn
(zk) = h+

Sn
(zk−1) + 1 for 1 ≤ k ≤ k̃

}
. (2.112)
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Note that from our initial assumption, h+
Sn

(zk) = k + 2 for 0 ≤ k ≤ kup. Necessarily

kup(h
+
Sn

) < 2n, since if h+
Sn

went up along all 2n edges, then the values h−Sn(z2n) = h+
Sn

(z2n) =

2n+ 2 and h−Sn(z0) = 0 would violate the Kirszbraun theorem.

On the line segment {z0, . . . , znup} ⊂ Sn, h+
Sn

is “too high,” in the sense that no height

function in M(Sn, h
−
∂Sn

) can match it. But by the Kirszbraun theorem, there exists h−Sn ∈

M(Sn, h
−
∂Sn

) such that h−Sn(znup+1) = h+
Sn

(znup+1). In fact, we may define h−Sn by

h−Sn(z) =


k = h+

Sn
(z)− 2, if z = zk for 0 ≤ k ≤ kup, and

h+
Sn

(z), otherwise .

(2.113)

It follows that h+
Sn

and h−Sn have the same Hamiltonian, except for the contribution from

the edges incident to a vertex zk (0 ≤ k ≤ kup). There are (2m−1)(kup+1) such edges, which

leads to the näıve estimate |HSn(h+
Sn
, ω)−HSn(h−Sn , ω)| ≤ (2m−1)(kup+1)Cω. This estimate

is not useful because kup on the right-hand side leads to an error of order n in the worst case.

However, as shown in Figure 2.6, a more careful estimate is possible. Indeed, both h+
Sn

and

h−Sn map the edges e in question to the same collection of edges {ek,k+1 | 0 ≤ k ≤ kup} ⊂ E(Z),

with each ek,k+1 repeated about 2m − 1 times. We omit the details, but a careful count of

the edge heights yields the inequality

∣∣HSn(h+
Sn
, ω)−HSn(h−Sn , ω)

∣∣ ≤ 4mCω . (2.114)

Now we turn to the entropy inequality. For 0 ≤ k < 2n, let

Mk :=
{
h+
Sn
∈M(Sn, h

+
∂Sn

)
∣∣ kup(h+

Sn
) = k

}
. (2.115)
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1
2

0

z0

1

2
3

1
2

z1

3
4

2
3

z2

4
5

3
4

z3 = zkup

? 4

z4

?

(a) The values of the height functions h+
Sn

and h−Sn from the proof of Lemma 8. On

the vertices z0, . . . , zkup where the two height

functions differ, the larger value is the height

that h+
Sn

takes and the smaller value is h−Sn .

Here kup = 3, since h+
Sn

increases across the

first three edges in the center line. The (2m−

1)(kup + 1) shaded edges are exactly the set

up edges incident to any of z0, . . . , zkup , and

these are the only edges on which h±Sn differ.

e ∈ E(Z) h+
Sn

h−Sn

e0,1 0 2m− 1

e1,2 2m− 2 2m− 1

e2,3 2m− 1 2m− 1

e3,4 2m− 1 2m− 1
...

...
...

ekup,kup+1 2m− 1 2m− 1

ekup+1,kup+2 2m 0

(b) Number of shaded edges on which h+
Sn

,

h−Sn attain certain heights. For example,

from the last row of the table: h+
Sn

(e) =

ekup+1,kup+2 for all 2m edges incident on zkup .

In the difference HSn(h+
Sn

) − HSn(h−Sn), the

bulk of the height values in the table can-

cel, leaving only boundary terms. That is

why the bound in (2.114) does not depend

on kup.

Figure 2.6: Explanation of inequality (2.114) from the proof of Lemma 8.
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Then the sets Mk (0 ≤ k < 2n) partition M(Sn, h
+
∂Sn

), so

EntSn
(
M(Sn, h

+
∂Sn

), ω
)

(2.116)

= − 1

|Sn|
log

2n−1∑
k=0

∑
h+Sn∈Mk

exp
(
HSn(h+

Sn
, ω)
)

(2.117)

(2.114)

≥ − 1

|Sn|
log

2n−1∑
k=0

∑
h+Sn∈Mk

exp
(
HSn(h−Sn , ω) + 4mCω

)
(2.118)

≥ − 1

|Sn|
log

2n−1∑
k=0

∑
h−Sn∈M(Sn,h

−
∂Sn

)

exp
(
HSn(h−Sn , ω) + 4mCω

)
(2.119)

= EntSn
(
M(Sn, h

−
∂Sn

), ω
)
− 4mCω + log(2n)

|Sn|
. (2.120)

The reverse inequality is derived by exchanging the roles of h±∂Sn , considering the number

kdown of initial downward steps of h−∂Sn on the line {z0, . . . , z2n}, and proceeding as before

with the necessary changes.

Lemma 8 applies only when the two boundary height functions h+
Sn

and h−Sn differ mini-

mally. However by applying Lemma 8 repeatedly, we can compare two height functions with

more differences. That idea is captured in the following corollary.

Corollary 1 (Robustness with respect to sub-linear height differences). Let h∂Sn and h̃∂Sn

be boundary height functions on Sn, and let M = ‖h∂Sn − h̃∂Sn‖∞. Then∣∣∣EntSn
(
M(Sn, h∂Sn), ω

)
− EntSn

(
M(Sn, h̃∂Sn), ω

)∣∣∣
≤ M

2

(
4mCω + log(2n)

) |∂Sn|
|Sn|

.
(2.121)

Remark 9. The main idea of the proof is to interpolate the boundary height function from

h∂Sn to h̃∂Sn , where each step in the interpolation changes the value of the boundary height

function at exactly one boundary point. Note that each interpolation step changes the height

by 2 at that distinguished boundary point, which is the reason for the factor M
2

rather than

simply M . Given such an interpolation, all that remains is to apply Lemma 8 and the

triangle inequality.
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Proof of Corollary 1. We claim that there exists a finite sequence h
(1)
∂Sn

, . . . , h
(k)
∂Sn

such that

each pair h
(j)
∂Sn

and h
(j+1)
∂Sn

differ at exactly one point, such that h
(1)
∂Sn

= h∂Sn and h
(k)
∂Sn

= h̃∂Sn ,

and such that k ≤ M
2
|∂Sn|. Each element of the sequence is constructed from the previous

element by a “flip” operation: Given a boundary height function h
(j)
∂Sn

and a vertex zj ∈ ∂Sn

where all the neighboring vertices z′ ∈ ∂Sn, z′ ∼ zj have the same height h∂Sn(z′) = a ∈ Z,

the height function h
(j+1)
∂Sn

is identical to h
(j)
∂Sn

on ∂Sn \ {zj} and takes the other valid value

on zj. Specifically, if h
(j)
∂Sn

(zj) = a+ 1, then h
(j+1)
∂Sn

(zj) = a− 1; otherwise h
(j+1)
∂Sn

(zj) = a+ 1.

It remains to show that the vertices z1, . . . , zk−1 can be chosen so that h
(k)
∂Sn

= h̃∂Sn and so

that k ≤ M
2
|∂Sn|. To prove both these points, consider the metric d : M(∂Sn)×M(∂Sn)→ Z

defined by

d(h′∂Sn , h
′′
∂Sn) :=

∑
z∈∂Sn

∣∣h′∂Sn(z)− h′′∂Sn(z)
∣∣ . (2.122)

As long as d(h
(j)
∂Sn

, h̃∂Sn) > 0, we will find a vertex zj for which the flip operation both is

valid and decreases the distance d. Towards this end, let Ej := {z ∈ ∂Sn |h(j)
∂Sn

(z) > h̃∂Sn(z)}.

If Ej 6= ∅, choose zj := argmaxz∈Ej h
(j)
∂Sn

.

We claim that flipping at zj is valid, and more specifically that for all neighbors z′ ∼ zj

in ∂Sn, h
(j)
∂Sn

(z′) = h
(j)
∂Sn

(zj) − 1. Indeed, there are two cases. If h
(j)
∂Sn

(z′) = h̃∂Sn(z′) for any

z′ ∼ zj, then necessarily h̃∂Sn(zj) = h
(j)
∂Sn

(zj) − 2 and h̃∂Sn(z′) = h
(j)
∂Sn

(z′) = h
(j)
∂Sn

(zj) − 1

for all z′ ∼ z. Otherwise all z′ ∼ z are also in Ej, so the claim follows since zj maximizes

h
(j)
∂Sn

over Ej. So as claimed, it is valid to flip the height function h
(j)
∂Sn

at zj, and this flip

decreases the difference |h(j+1)
∂Sn

(zj) − h̃∂Sn(zj)| by two, and therefore decreases the distance

d(h
(j+1)
∂Sn

, h̃∂Sn) by two.

If Ej is empty, use instead the set Fj := {z ∈ ∂Sn |h(j)
∂Sn

(z) < h̃∂Sn(z)}, pick zj :=

argminz∈Fj h
(j)
∂Sn

, and repeat the argument, changing inequalities and signs accordingly. If Fj

is also empty, then h
(j)
∂Sn

= h̃∂Sn and the process is complete.

At most 1
2
d(h∂Sn , h̃∂Sn) ≤ M

2
|∂Sn| steps are needed in total, since each step decreases the

distance by 2.
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To complete the proof of the corollary, apply Lemma 8 to each pair {h(j)
∂Sn

, h
(j+1)
∂Sn
} and

use the triangle inequality.

2.4.3 Existence and equivalence

Recall from Definition 9 that the quenched local surface tension is defined as the limit of the

quenched microscopic surface tension. Because of the random potential ω, the existence of

this limit is not obvious. We prove the existence of the limit using an ergodic theorem for

almost superadditive random families.

First, we introduce the notation needed for stating the ergodic theorem. Let B denote

the set of all (non-empty) boxes in Zm, i.e.

B =
{(

[a1, b1)× · · · × [am, bm)
)
∩ Zm

∣∣∣ a1 < b1, . . . , am < bm ∈ Zm
}
.

Note that the sets Sn := [−n, n]m ∩ Zm are included in B. We say that a family of L1

random variables F = (FB)B∈B is almost superadditive if, for any finitely many disjoint

boxes B1, . . . , Bn ∈ B whose union B = B1 ∪ · · · ∪Bn also lies in B,

FB ≥
n∑
i=1

FBi − A
n∑
i=1

|∂Bi| a.s. , (2.123)

where A = A(ω) : Ω → [0,∞) is an L1 random variable, and where ∂Bi = {x ∈ Bi | ∃y ∈

Zm \Bi, x ∼ y} is the inner boundary of Bi.

Theorem 8 (Ergodic theorem for almost superadditive random families). Let (Ω,F ,P)

be a probability space, let τ = (τu)u∈Zm be a family of measure-preserving transformations

on Ω, and let F = (FB)B∈B be a family of L1 random variables satisfying the following three

conditions:

• F is almost superadditive, i.e. F satisfies (2.123),
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• For all u ∈ Zm,

lim
n→∞

sup
u∈Zm

1

|Sn|

∣∣∣Fu+Sn − FSn ◦ τu
∣∣∣ = 0 , (2.124)

where u+B = {u+ x |x ∈ B} is the translation of B by u.

• The quantity γ̃(F ) = lim supn→∞
1
|Sn| E[FSn ] is finite.

Then the limit limn→∞
1
|Sn| FSn exists almost surely and in L1. If moreover {τu}u∈Zm is

ergodic, then the limit is

lim
n→∞

1

|Sn|
FSn = γ̃(F ). (2.125)

This theorem is based on [AK81, Theorem 2.4], which is a multidimensional extension

of the subadditive ergodic theorem proven in [Kin68, Lig85, KMT20b] among other sources.

The version stated here is adapted to notion of almost superadditivity that the quenched

microscopic entropy satisfies. Now let us turn to the application of this ergodic theorem:

Lemma 9 (Existence of the quenched local surface tension). For almost every realization ω

of the random potential, the limit (2.46) exists.

The proof is a straightforward application of the ergodic theorem.

Proof of Lemma 9. Fix s ∈ [−1, 1]m. Let the family of measure-preserving transformations

τ = (τu)u∈Zm be given by(
τuω
)
e

:= ωe−[s·u]u mod 2
for e ∈ E(Z) and u ∈ Zm. (2.126)

Define the random process F = (FB)B∈B by

FB := −|B| Ent
(
M(B, hs∂B), ω

)
= logZω

(
M(B, hs∂B)

)
. (2.127)

Now we verify the hypotheses of the ergodic theorem (Theorem 8). First, the fact

that |ωe| ≤ Cω for all edges e ∈ E(Z) implies that each variable FB (B ∈ B) is in L1.
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Next, the almost superadditivity property (2.123) follows from distributivity:

n∑
i=1

FBi = log
n∏
i=1

∑
hBi∈M(Bi,hs∂Bi

)

exp
(
HBi(hBi , ω)

)
= log

∑
hB1
∈M(B1,hs∂B1

)
···

hBn∈M(Bn,hs∂Bn )

exp

(
n∑
i=1

HBi(hBi , ω)

)
.

(2.128)

The final sum is indexed by n-tuples of height functions, i.e. it is the sum over the

Cartesian product of the sets M(Bi, h
s
∂Bi

). This Cartesian product is a subset of M(B, hB),

so
n∑
i=1

FBi ≤ log
∑

hB∈M(B,hs∂B)

exp

(
n∑
i=1

HBi(hB|Bi , ω)

)
. (2.129)

The quantity on the right-hand side of (2.129) differs from FB by at most mCω
∑n

i=1|∂Bi|,

since the Hamiltonian terms in (2.129) do not include edges that cross from one box Bi to

another box Bj. This error term satisfies (2.123).

Now let us show that F satisfies the translation invariance estimate (2.124). For h∂(u+B) ∈

M(∂(u+B)), consider the shifted boundary height function Ψuh∂(u+B) ∈M(∂B) defined by

(Ψuh∂(u+B))(z) := h∂(u+B)(u+ z)− bs · uc for z ∈ ∂B . (2.130)

Since both hs∂B and hs∂(u+B) are rounded to the nearest integer (of appropriate parity),

the shifted boundary height function Ψuh
s
∂(u+B) may not agree exactly with hs∂B. However

it holds that ∣∣Ψuh∂(u+B)(z)− h∂B(z)
∣∣ ≤ 4 for all z ∈ ∂B . (2.131)

Therefore by Corollary 1, ∣∣Fu+B − FB ◦ τu
∣∣ ≤ |B| θ( 1

n

)
. (2.132)

The last condition to check is γ̃(F ) = lim supn→∞
1
|Sn|E[FSn ] < ∞, which follows from

boundedness of the quenched entropy. Indeed by Lemma 3, the inequality FB ≤ m|B|Cω
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holds almost surely, so γ̃(F ) ≤ E(Cω) <∞.

At this point we have checked all the hypotheses of the ergodic theorem (Theorem 8).

From the ergodic theorem we conclude that the pointwise limit

ent(s, ω) = lim
n→∞

entn(s, ω) = lim
n→∞

1

|Sn|
FSn(ω) (2.133)

exists almost surely. In addition, when s 6= 0, the family of measure-preserving trans-

formations (τu)u∈Zm is ergodic with respect to P, since the family includes every shift

ω 7→ (ωk+e)e∈E(Z) for k ∈ Z. Therefore whenever s 6= 0, the limit ent(s, ω) is almost

surely equal to its expectation, E[ent(s, ω)] = entan(s).

The failure of ergodicity in the case s = 0 is evident from the definition of (τu)u∈Zm

in (2.126): there we have (τuω)e := ωe−[s·u]u mod 2
for each e ∈ E(Z). When s = 0 the quantity

s ·u is zero even as u→∞, so the entire family of transformations (τu)u∈Zm is actually finite

rather than ergodic. As such, a different argument is needed for s = 0. We credit Marek

Biskup for suggesting the following argument.

Lemma 10 (Equivalence of quenched and annealed local surface tension). For almost every

ω, it holds that

ent(s, ω) = entan(s). (2.134)

Moreover, the quenched microscopic surface tension entn(s, ω) converges in L1 to entan(s).

Proof of Lemma 10. For s 6= 0, the desired identity (2.134) follows from the ergodic theorem,

as mentioned at the end of the proof of Lemma 9.

For s = 0, we will establish translation invariance of ent(s, ω) directly. First we replace the

environmental shift τ2 by a shift in heights, i.e.

EntSn
(
M(Sn, h

0
∂Sn)

)
◦ τ2 = EntSn

(
M(Sn, h

0·x+2
∂Sn

)
)
. (2.135)
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This identity is justified simply by expanding definitions; both sides are equal to

− 1

|Sn|
log
∑
hSn

exp

(∑
e

ωhSn (e)+2

)
, (2.136)

where the first sum runs over hSn ∈M(Sn, h
0
∂Sn

) and the second runs over e ∈ E(Sn).

Now, the square Sn sits inside of Sn+2. The boundary values h0·x+2
∂Sn

and h0
∂Sn+2

satisfy

the Kirszbraun criterion (2.59); in fact, each h ∈M(Sn, h
0·x+2
∂Sn

) admits a unique extension h̃

in M(Sn+2, h
0
∂Sn+2

). Since h̃ is an extension of h to a domain with O(nm−1) more points and

O(nm−1) more edges, the Hamiltonians satisfy

∣∣HSn(h, ω)−HSn+2(h̃, ω)
∣∣ ≤ cnm−1Cω (2.137)

for some c > 0. Therefore

EntSn
(
M(Sn, h

0·x+2
∂Sn

), ω
)

≥ − 1

|Sn|
log

∑
h∈M(Sn,h

0·x+2
∂Sn

)

exp
(
HSn+2(h̃, ω)

)
− cCω

n

≥ EntSn+2

(
M(Sn+2, h

0
∂Sn+2

), ω
)
− cCω

n
.

(2.138)

Now we combine (2.135) and (2.138) and send n→∞, which yields

ent(0, ω) ◦ τ2 ≥ ent(0, ω) . (2.139)

By a similar argument with τ2 replaced by τ−2, we conclude that ent(0, τ2ω) = ent(0, ω),

i.e. ent(0, ω) is invariant under τ2. Since the distribution P of ω is ergodic with respect to τ2

(cf. Assumption 2), this implies that ent(0, ω) = E[ent(0, ω)] = entan(0) almost surely.

2.4.4 Convexity and continuity

The last results that we need about the annealed local surface tension entan(s) are that is is

convex and continuous as a function of the slope s.
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Convexity allows us to apply standard analytic techniques to conclude that the macro-

scopic entropy functional EntR,an(·) is lower semi-continuous (see, for example, [CKP01,

Section 2]). By semi-continuity, there exists a (perhaps non-unique) minimizer of the en-

tropy functional, so the minimum in the variational principle (Theorem 4) is achieved.

Lemma 11. The function s 7→ entan(s) is convex for s ∈ (−1, 1)m.

Remark 10. The proof follows a standard argument based on buckled height functions; see

e.g. [KMT20a, She05] for the uniform case. The energetic effect of the random potential

contributes only on the boundary scale, and so is negligible in the limit. The proof could be

considered an exercise for the reader; we work out the details below.

Proof of Lemma 11. We shall prove that for any choice of fixed coordinates

(s1, . . . , si−1, si+1, . . . sm) ∈ [−1, 1]m−1, (2.140)

the single-variate functions si 7→ entan((s1, . . . , si−1, si, si+1, . . . , sm)) are convex. It follows

from elementary analysis that s 7→ entan(s) is a convex function on the m-dimensional do-

main [−1, 1]m. To simplify notation, we state the proof in the case m = 2. The proof

generalizes to higher dimensions.

So, choose u0, u1, u2, v ∈ [−1, 1] such that such that

u1 =
1

2
u0 +

1

2
u2. (2.141)

Our goal is to prove that

entan((u1, v)) ≤ 1

2
entan((u0, v)) +

1

2
entan((u2, v)). (2.142)

We proceed as follows, in four steps.
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• First, consider a discrete hypercube S2n+1, which we recall is the hypercube {−(2n +

1), . . . , (2n + 1)}2 of side length 2(2n + 1) + 1 centered at the origin. We subdivide

it into 2m = 4 smaller boxes. We choose height functions with slope (u0, v) or (u2, v)

on the smaller boxes, and we construct a bijection which maps from a choice of height

functions on the four smaller boxes to a height function on the larger box.

• Second, we use the bijection to derive an inequality between the microscopic entropy

on the four smaller boxes and an entropy-like quantity on the larger box.

• Third, we relate this entropy-like quantity to the annealed surface tension entan((u1, v)).

• Fourth, we relate the entropy on the smaller boxes to the right-hand side of (2.142),

which concludes our proof.

So, let us make precise how we decompose S2n+1. We write

S2n+1 = S1
n ∪ S2

n ∪ S3
n ∪ S4

n ∪ S ′ (2.143)

where

S1
n := τ(−n,+n)Sn, (2.144)

S2
n := τ(−n,−n)Sn, (2.145)

S3
n := τ(+n,−n)Sn, (2.146)

S4
n := τ(+n,+n)Sn, and (2.147)

S ′ := {(x1, x2) ∈ S2n+1 |x1 = 0 or x2 = 0}. (2.148)

This decomposition is illustrated in Figure 2.7a.

As an aside, it would be simpler if we could decompose S2n+1 into just the four boxes Skn

without needing the extra set S ′. But, both S2n+1 and Skn are centered boxes, with an odd

number of points along their edges (4n + 3 and 2n + 1 points, respectively), so such a de-

composition is arithmetically impossible. Centered boxes are a requirement of the ergodic
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S1
n

S2
n S3

n

S4
n

S′

(a) The large box S2n+1 is divided into five

subsets. The smaller boxes Skn, for k =

1, 2, 3, 4, are translated copies of the box Sn

centered at the origin. The set S′, indicated

by dashed lines, is the intersection of S2n+1

and the x- and y-axes.

s1

= (u0, v)

s2

= (u0, v)

s3

= (u2, v)

s4

= (u2, v)

hb|∂S1
n

= h
s1
∂S1

n

hb|∂S2
n

= h
s2
∂S2

n

hb|∂S3
n

= h
s3
∂S3

n

hb|∂S4
n

= h
s4
∂S4

n

(b) To each of the four smaller boxes Skn, we

associate a slope sk. The two boxes on the

left have sk = (u0, v) and the two on the right

have sk = (u2, v). If hb is a buckled height

function (defined after (2.151)), then hb sat-

isfies the indicated boundary conditions on

the four smaller boxes.

Figure 2.7: Decomposition of S2n+1 into subsets, as used in the proof of Lemma 11.
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theorem that we used to prove Lemma 9 (the existence of the quenched local surface tension)

and Lemma 10 (the equivalence of the quenched and annealed local surface tension). One

could state the results without requiring odd-sized boxes centered exactly at the origin, but

the statements become more complicated. We choose instead to keep the odd-sized boxes,

and to keep the extra set S ′. Because |S ′| = o(|Sn|), S ′ will be asymptotically negligible.

To continue with the current proof, we consider boundary height functions of slope sk on

the small boxes Skn, where

s1 = s2 = (u0, v), and (2.149)

s3 = s4 = (u2, v). (2.150)

This assignment of slopes to the small boxes is illustrated in Figure 2.7b.

Fix a 4-tuple of height functions

(hkn)k=1,2,3,4 ∈
4∏

k=1

M(Skn, h
sk
∂Skn

). (2.151)

We claim that there exists a height function hb : S2n+1 → Z such that for each of the four

boxes Skn, hb|Skn = hkn. We call hb a buckled height function, since if hb stays close to the

linear height functions hsk
Skn

over the entirety of the small boxes Skn, and if we view the graph

of hb in profile from along the y-axis, we see a buckled shape: slope (u0, v) along the left

half, which changes abruptly to slope (u2, v) along the right half. Figure 2.7b illustrates the

boundary conditions that are imposed on a buckled height function on the boundaries ∂Skn

of the small boxes.

One can prove the existence of the height function hb that extends the 4-tuple (hkn) to all

of S2n+1 by using the Kirszbraun theorem. However it is also easy to construct a concrete

extension using the canonical height functions. Briefly, on either side of a point on the x-axis,
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the slopes sk are equal. For a point on the y-axis, the adjacent slopes differ only in the first

coordinate. That is not a problem because for a point to be on the y-axis means that the

value in its first coordinate is 0.

We write Mb for the set of all height functions hb : S2n+1 → Z that can be realized by

the above extension process. Clearly, the set Mb is in bijection with the Cartesian product

of the four sets M(Skn, h
k
n). This bijection completes the first step of our proof.

In the second step of the proof, we derive the following approximation:

− 1

|S2n+1|
logZω(Mb) ≤

1

4

4∑
k=1

EntSn
(
M(Skn, h

sk
∂Skn

), ω
)

+ Cω θ
(

1
n

)
. (2.152)

The key idea is that for a height function h : S2n+1 → Z, the Hamiltonian HS2n+1(h, ω)

splits as

HS2n+1(h, ω) =
4∑

k=1

∑
e∈E(Skn)

ωh(e) +
∑

e∈E(S′)

ωh(e) +
∑
ẽ∈Ẽ

ωh(e) (2.153)

≥
4∑

k=1

∑
e∈E(Skn)

ωh(e) − Cω O(nm−1), (2.154)

(2.155)

where Ẽ is the set of edges from E(S2n+1) that cross between two distinct parts of the
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decomposition S2n+1 = S1
n ∪ S2

n ∪ S3
n ∪ S4

n ∪ S ′. It follows that

− 1

|S2n+1|
logZω(Mb) = − 1

|S2n+1|
log

∑
hb∈Mb

expHS2n+1(hb, ω) (2.156)

≤ − 1

|S2n+1|
log

 4∏
k=1

 ∑
hn∈M

(
Skn,h

sk

∂Skn

) expHSn(hn, ω)

 (2.157)

exp
(
−CωO(nm−1)

) (2.158)

= −1

4

4∑
k=1

1

|Sn|
log

∑
hn∈M

(
Skn,h

sk

∂Skn

) expHSn(hn, ω) (2.159)

+
1

|S2n+1|
Cω O(nm−1) (2.160)

=
1

4

4∑
k=1

EntSn
(
M(Skn, h

sk
Skn

), ω
)

+ Cω θ
(

1
n

)
. (2.161)

This proves (2.152) and completes the second step of the proof.

Two steps remain. The third step is to relate the expression − 1
|S2n+1| logZ(Mb) (which

we described as “entropy-like” earlier when describing the steps of this proof) to the an-

nealed surface tension entan((u1, v)). The fourth and final step is to verify that the micro-

scopic entropy EntSn(M(Skn, h
sk
∂Skn

), ω) converges to the annealed surface tension entan(sk)

for k = 1, 2, 3, 4. This will suffice to prove the convexity inequality 2.142.

To relate − 1
|S2n+1| logZ(Mb) and entan((u1, v)), we first pass to the microscopic entropy

EntS2n+1(M(S2n+1, h
b
∂S2n+1

), ω). The boundary height function hb∂S2n+1
is given by hb∂S2n+1

=

hb|∂S2n+1 for any hb ∈ Mb. All the buckled height function hb have the same boundary data

because of the boundary conditions on ∂Skn, plus the consistent (albeit arbitrary) choice of
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extension to S ′. Obviously Mb ⊆M(S2n+1, h
b
∂S2n+1

), and therefore by monotonicity,

− 1

|S2n+1|
logZω[Mb] ≥ EntS2n+1

(
M(S2n+1, h

b
∂S2n+1

), ω
)
. (2.162)

To estimate EntS2n+1(M(S2n+1, h
b
∂S2n+1

), ω), let us consider any boundary point x =

(x1, x2) ∈ ∂S2n+1. If x1 ≤ 0, then the boundary height function hb∂S2n+1
(x) is equal to u0 · x

up to a rounding error of at most 1, so

|hb∂S2n+1
(x)− (u1, v) · x| ≤ |u0 − u1||x1| ≤ εn, (2.163)

where ε = |u0 − u1| = |u0 − u2|. If instead x1 ≥ 0, then hb∂S2n+1
(x) = u·x up to rounding

error, so still (2.163) holds. Therefore, the boundary data hb is approximately linear, i.e.

hb ∈M(∂S2n+1, h
u
∂S2n+1

, ε). By Theorem 7, there exists A = A((u1, v), ε) > 0 such that

EntS2n+1

(
M(S2n+1, h

b
∂S2n+1

), ω
)
≥ entA(2n+1)((u1, v), ω). (2.164)

We have proved the following inequality, which concludes the third step:

entA(2n+1)((u1, v), ω) ≤ − 1

|S2n+1|
logZω(Mb). (2.165)

In the last step, we consider the quenched microscopic entropy on the four sub-boxes,

i.e. EntSkn(M(Skn, h
k
n), ω). Recall that each box Skn is a translation τ(±n,±n)Sn of the box Sn

centered at the origin. We transfer the translation over to the height function and envi-

ronment. Let τ1 : E(Z) → E(Z) denote the shift by sk · (−n,+n), so that τ1 ◦ h1
n = hs1Sn

and EntS1
n
(M(S1

n, h
s1
∂S1

n
), ω) = entn(s1, τ1ω). Likewise, define τ2, τ3, τ4 : E(Z)→ E(Z) so that

for each k = 1, 2, 3, 4, it holds that

EntSkn
(
M(Skn, h

sk
∂Skn

), ω
)

= entn(sk, τ1ω). (2.166)

Combining this identity with (2.152) and (2.165), we deduce a quenched microscopic in-

equality

entA(2n+1)((u1, v), ω) ≤ 1

4

4∑
k=1

entn(sk, τkω) + Cω θ
(

1
n

)
. (2.167)
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Taking expectations, the annealed microscopic inequality is

entA(2n+1),an((u1, v)) ≤ 1

4

4∑
k=1

entn,an(sk) + E(Cω) θ
(

1
n

)
. (2.168)

Inequality (2.142), which states that the annealed local surface tension is convex, follows

immediately by sending n→∞.

2.5 Proof of the profile theorem

Before proving the profile theorem, Theorem 3, in its full generality, it is useful to prove a

special case of the theorem with the extra assumptions that the asymptotic height function

is piecewise affine on a domain which is of a collection of simplices. In this special case

it is not difficult to relate the microscopic entropy EntRn(B(Rn, hR, δ), ω) to the quenched

microscopic surface tension entn(s, ω), and then to derive the desired conclusion (2.52). The

special case is stated in Lemma 12 below, after some necessary notation is introduced in

Definitions 12 and 13.

Definition 12 (Simplices of scale `; cf. [KMT20a, Definition 27] and [She05, Section 5.2.1]).

Let Sym(m) denote the group of permutations on {1, . . . ,m}, and for w = (w1, . . . , wm) ∈

Rm, let bwc denote the integer point bwc := (bw1c, . . . , bwmc). Let v ∈ Zm, let σ ∈ Sym(m),

and let ` > 0. Define C(v, σ) to be the closure of the set

{
w ∈ Rm

∣∣ bwc = v and wσ(1) − bwσ(1)c > · · · > wσ(m) − bwσ(m)c
}
, (2.169)

and define the simplex of scale ` to the scaled set

`C(v, σ) := {`w |w ∈ C(v, σ)} . (2.170)

See also Figure 2.8 and Figure 2.9.

Definition 13 (Piecewise affine asymptotic height functions). Let ∆1, . . . ,∆k be simplices of

scale ` and let K = ∆1∪ · · ·∪∆k be their union. We say that an asymptotic height function
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(0, 0)

(1, 1)C(0, (2 1))

C(0, (1 2))

Figure 2.8: The two simplices in dimension 2 that tile the unit square. The simplex

C(0, (1 2)) is the closure of the set of points (x, y) ∈ [0, 1]2 such that x > y, and C(0, (2 1))

is the closure of the points with y > x. The other simplices {C(v, σ) | v ∈ Zm, σ ∈ S2} are

translates of these two simplices.

Figure 2.9: Decomposition of a unit cube into {C(0, σ) |σ ∈ S3}. The simplices have been

separated for a more clear figure.
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hK ∈M(K) is piecewise affine if each restriction hK |∆i
is an affine function, i.e. if there exist

si ∈ [−1, 1]m and bi ∈ R such that hK |∆i
(x) = si · x+ bi for all x ∈ ∆i. We write

Maff(K) =
{
hK ∈M(K)

∣∣ hK is piecewise affine
}

Maff(K,h∂K) = Maff(K) ∩M(K,h∂K) .
(2.171)

Lemma 12 (Profile theorem, simplicial case). Let ∆1, . . . ,∆k be simplices of scale ` and let

K = ∆1 ∪ · · · ∪∆k be their union.

For any hK ∈Maff(K,h∂K) and any η > 0, there exists ε = ε0(hK , η) such that, for any

ε ∈ (0, ε0] and any pmax ∈ (0, 1), there exists n0 = n0(hK , η, ε, pmax) such that for all n ≥ n0,

P
( ∣∣∣EntKn

(
B(Kn, hK , ε`), ω

)
− EntK,an(hK)

∣∣∣
> η + CωθhK (ε) + CωθhK ,ε

(
1
n

))
< pmax .

(2.172)

Proof. We will prove two bounds on EntKn(B(Kn, hKn , ε`), ω): an upper bound

P
(

EntKn
(
B(Kn, hK , ε`), ω

)
> EntK,an(hK)

+ η + CωθhK (ε) + CωθhK ,ε
(

1
n

))
≤ θhK ,η,ε

(
1
n

) (2.173)

and a lower bound

P
(

EntKn
(
B(Kn, hK , ε`), ω

)
< EntK,an(hK)

− η − CωθhK (ε)− CωθhK ,ε
(

1
n

))
≤ θhK ,η,ε

(
1
n

)
.

(2.174)

Assuming that both (2.173) and (2.174) hold, the conclusion (2.172) follows immediately

by taking n0 large enough based on the two θhk,η,ε(
1
n
) terms and applying the union bound

on probabilities. So first let us verify the upper bound (2.173), and later we will verify the

lower bound (2.174). For (2.173) we undercount the set of height functions B(Kn, hKn , ε`).

We choose a fine mesh of hypercubes Qi,n that approximate Kn and consider only those

height functions that agree with the canonical boundary height functions hsi·x+bi
∂Qi,n

on ∂Qi,n,

where si ∈ [−1, 1]m and bi ∈ R are chosen such that si · x + bi = hK |Qi . The mesh size is

small enough that every such height function is in B(Kn, hKn , ε`).
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To be precise, let q = 1
4
ε` be the mesh size. Let Q1, . . . , Qk ⊂ Rm enumerate the set of

hypercubes in Rm that have side length q, have vertices in qZm, and lie entirely in one of the

simplices ∆j. That last property ensures that there exist si ∈ [−1, 1]m and bi ∈ R such that

hK(x) = si · x+ bi for all x ∈ Qi . (2.175)

For n ∈ N, let Qi,n := {z ∈ Zm | 1
n
z ∈ Qi}. Then as desired, for any choice of height functions

(
hQi,n

)k
i=1
∈

k∏
i=1

M
(
Qi,n, h

si·x+bi
∂Qi,n

)
, (2.176)

there exists at least one extension hKn ∈M(Kn) to the whole of Kn (i.e. hKn|Qi,n = hQi,n for

each i = 1, . . . , k), and any such extension lies in B(Kn, hK , ε`) by choice of q. Therefore,

EntKn
(
B(Kn, hK , ε`), ω

)
≤ 1

k

k∑
i=1

EntQi,n
(
M(Qi,n, h

si·x+bi
∂Qi,n

), ω
)

+ Cωθm(ε) + Cωθm,ε,`
(

1
n

)
,

(2.177)

where the θ error terms come from the contribution of the set Kn \
⋃k
i=1 Qi,n. For each

i = 1, . . . , k, let us abuse notation and write “qn” to denote the side length of the hypercube

Qi,n. (In fact, the actual product q · n is generally not an integer, but the quantity we call

qn satisfies |qn− q · n| < 1.) Consider Qi,n as a translate Qi,n = vi + Sqn for vi ∈ Zm. Then

the boundary values hsi·x+bi
∂Qi,n

are close to the translated values of hsi∂Sqn ; in particular, for

z ∈ ∂Sqn, ∣∣∣hsi·x+bi
∂Qi,n

(vi + z)−
(
hsi∂Sqn(z) + bsi · vi + nbic

)∣∣∣ ≤ 4 . (2.178)

(A non-zero error occurs when si is irrational, or more generally when qnsi is not integral

or has the wrong parity.) By Corollary 1 it follows that

EntQi,n
(
M(Qi,n, h

si·x+bi
∂Qi,n

), ω
)

= entqn(si, τbsi·vi+nbicω) + Cωθm
(

1
n

)
. (2.179)

Combining (2.177) and (2.179) and abbreviating τi,n := τbsi·vi+nbic yields

EntKn
(
B(Kn, hK , ε`), ω

)
≤ 1

k

k∑
i=1

entqn(si, τi,nω) + Cωθm(ε) + Cωθm,ε,`
(

1
n

)
.

(2.180)
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We note that the sequences {entqn(si, τi,nω)}n∈N may not necessarily converge to entan(s)

as n → ∞, despite the almost-sure convergence result of Lemma 10, due to the potential

shifts τi,n. However, since each entqn(si, ·) → entan(si) in L1, we can apply the Markov

bound:

P
(∣∣∣∣ 1

k

k∑
i=1

entqn(si, τi,nω)− 1

k

k∑
i=1

entan(si)

∣∣∣∣ > η

)

≤ 1

k

k∑
i=1

1

η

∥∥entqn(si, ·)− entan(si)
∥∥
L1

= θhK ,η,ε,`
(

1
n

)
.

(2.181)

The last step in verifying (2.173) is to compare EntK,an(hK) to a sum involving entan(si).

This is straightforward: because hK is affine on each hypercube Qi, the integrand x 7→

entan(∇hK(x)) in the macroscopic entropy is constant on each Qi, so

EntK,an(hK)
def.
=

1

|K|

∫
K

entan(∇hK(x)) dx

=
1

k

k∑
i=1

1

|Qi|

∫
Qi

entan
(
∇hK |Qi

)
+ θK(ε)

=
1

k

k∑
i=1

entan(si) + θK(ε) .

(2.182)

The only error is from the contribution of the region K \
⋃k
i=1 Qi. Combining inequali-

ties (2.180), (2.181), and (2.182) proves the desired upper bound (2.173), i.e.

P
(

EntKn
(
B(Kn, hK , ε`), ω

)
> EntK,an(hK)

+ η + θhK (ε) + θhK ,ε
(

1
n

))
≤ θhK ,η,ε

(
1
n

)
.

(2.183)

Now we turn to the lower bound (2.174). Similar to before, let q = ε1/2` and letQ1, . . . , Qk

enumerate the hypercubes that have side length q, have vertices in qZm, and lie entirely inside

of one of the simplices ∆j. Note that the side length q is different now compared to above

when we were justifying the upper bound (2.173), and hence Q1, . . . , Qk denotes a different

set of hypercubes.
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To prove (2.174) we overcount height functions, using the same idea as in the arti-

cle [KMT20a]. In summary, define a subset of “exceptional” points En ⊂ Kn as follows:

let

Gn =
k⋃
i=1

∂Qi,n , Un = Kn \
k⋃
i=1

Qi,n , and En = Gn ∪ Un . (2.184)

Informally, Gn is the “grid” formed by the boundaries of the hypercubes and Un is the

“uncovered” region, i.e. the part of Kn that is not covered by the hypercubes. We group

height functions hKn ∈ B(Kn, hK , ε`) based on their values on the set En. For each fixed as-

signment of heights hKn|En ∈M(En), the entropy of the set of extensions to the hypercubes⋃k
1 Qn ≈ Kn \ En is asymptotically equal to the macroscopic entropy EntK,an(hK). The set

En is not too large, so even after counting all admissible assignments hKn|En , the resulting

asymptotics match (2.174).

To make the above argument rigorous, let Adm(En) denote the set of admissible height

functions on En, i.e. those height functions hEn ∈M(En) that admit an extension to a height

function in B(Kn, hK , ε`). There is an obvious injection from B(Kn, hK , ε`) into

⊎
hEn∈Adm(En)

k∏
i=1

M
(
Qi,n, hEn|∂Qi,n

)
, (2.185)

where “
⊎

” denotes the disjoint union (so for distinct height functions hEn and hEn in

Adm(En), the product sets
∏k

1 M
(
Qi,n, hEn|∂Qi,n

)
and

∏k
1 M

(
Qi,n, hEn|∂Qi,n

)
are considered

disjoint inside the set from (2.185)). It follows that

Zω
(
B(Kn, hK , ε`), ω

)
≤

∑
hEn∈Adm(En)

Zω

(
k∏
i=1

M
(
Qi,n, hEn|Qi,n

))

≤
∣∣Adm(En)

∣∣ max
hEn∈Adm(En)

Zω

(
k∏
i=1

M
(
Qi,n, hEn|Qi,n

))
.

(2.186)
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Therefore

EntKn
(
B(Kn, hK , ε`), ω

)
≥ min

hEn∈Adm(En)

k∑
i=1

|Qi,n|
|Kn|

EntQi,n
(
M(Qi,n, hEn|Qi,n), ω

)
− log |Adm(En)|

|Kn|
.

(2.187)

Clearly
|Qi,n|
|Kn| = 1

k
+ θm(ε) + θm,ε,`

(
1
n

)
.

To control |Adm(En)|, we argue as follows. First, |Gn||Kn| = θm(q) = θm(ε) and |Un|
|Kn| = θm(ε).

Second, for an arbitrary base point z0 ∈ En, there are at most 2ε`n + 1 admissible val-

ues for hEn(z0) if hEn ∈ Adm(En), since hEn must extend to a height function in the ball

B(Kn, hK , ε`). Third, the set En is connected, so for each of the admissible values of hEn(z0),

there are at most 2|En| height functions in Adm(En) taking that value at z0. Putting these

observations together, we conclude that 1
|Kn| log |Adm(En)| = θm(ε) + θm,ε,`

(
1
n

)
.

Applying these asymptotic results in (2.187) yields

EntKn
(
B(Kn, hK , ε`), ω

)
≥ min

hEn∈Adm(En)

1

k

k∑
i=1

EntQi,n
(
M(Qi,n, hEn|Qi,n), ω

)
− θm(ε)− θm,ε,`

(
1
n

)
.

(2.188)

Whenever hEn ∈ Adm(En),

max
z∈En

∣∣hK( 1
n
z)− 1

n
hEn(z)

∣∣ < ε` , (2.189)

so for each i = 1, . . . , k, by analogy to (2.178),

max
z∈∂Sqn

∣∣∣(hEn(vi + z)− bsi · vi + qnbic
)
− hsi∂Sqn(z)

∣∣∣ ≤ ε`n . (2.190)
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We apply Theorem 7 to the height function(
z 7→ hEn(vi + z)− bsi · vi + qnbic

)
∈M(Sqn) (2.191)

to conclude that

EntQi,n
(
M(Qi,n, hEn|∂Qi,n), ω

)
≥ entAqn

(
si, τbsi·vi+qnbicω

)
− Cωθ(ε) .

(2.192)

The two almost-sure inequalities (2.188) and (2.192), the probability estimate (2.181),

and the macroscopic bound (2.182) together imply the desired lower bound (2.174), which

completes the proof of Lemma 12.

The remainder of the proof of the profile theorem (Theorem 3) for general asymptotic

height functions follows closely the proof in Section 6 of the article [KMT20a]. Below we

state an approximation result (Theorem 9), which concludes that any asymptotic height

function hR admits a “good” approximation hK satisfying the hypotheses of Lemma 12

above. Following that result are three robustness lemmas (Lemmas 14, Lemma 15, and

Lemma 16). With these tools it is straightforward to reduce the general case of Theorem 3

to the special case of Lemma 12.

The approximation result, Theorem 9, is unchanged from that the article [KMT20a] where

the uniform Z-homomorphism model was studied. This should not be surprising because

the random potential in the current model does not affect the class of limit objects that our

model admits, i.e. domains satisfying Assumption 1 and asymptotic height functions. This

theorem is similar to [CKP01, Lemma 2.2] or [Sch14, Theorem 1].

Theorem 9 (Simplicial Rademacher theorem). Let R ⊆ Rm be a region satisfying As-

sumption 1, and let hR ∈ M(R, h∂R) be an asymptotic height function on R. For any

ε > 0 and any ` > 0 sufficiently small (depending on ε), we may choose a simplex do-

main K = ∆1∪ · · ·∪∆k ⊆ R of scale ` (see Definition 12) and a piecewise affine asymptotic

height function hK : K → R (that is, an asymptotic height function such that each restriction

hK |∆i
: ∆i → R is affine) that satisfy the following properties:
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1. |R \K| < ε and dH(K,R) < ε), where we recall that for subsets of Rm, |·| denotes the

Lebesgue measure and dH(·, ·) denotes Hausdorff metric;

2. maxx∈K |hK(x)− hR(x)| < 1
2
ε`; and

3. on at least a (1 − ε) fraction of the points in K (by Lebesgue measure), the gradients

∇hK(x) and ∇hR(x) agree to within ε, i.e. 1
|K|

∣∣{x ∈ K ∣∣ |∇hK(x)−∇hR(x)|2 ≥ ε
}∣∣ <

ε.

Remark 11. We recall that the Rademacher theorem states that a Lipschitz function hR is

differentiable almost everywhere. However ∇hR may be poorly behaved. The Rademacher

theorem gives no control over ∇hR, and the Lipschitz property only implies boundedness of

the derivative, not regularity. The simplicial Rademacher theorem provides an approxima-

tion both to hR and to its derivative. Moreover the approximating function hK has a very

simple derivative, despite the potential wildness of ∇hR. The cost is that hK only approx-

imates hR well on a (large) portion of the domain rather than almost everywhere, but for

our purposes this is a good trade-off.

In fact, it is not necessary that the function hR be Lipschitz. Almost everywhere differ-

entiability is sufficient.

A proof of this lemma is given in the article [KMT20a]. We include it below for com-

pleteness. Before giving the proof however, we state and prove the following lemma about

the standard simplices from Definition 12.

Lemma 13. Let ∆ be any of the simplices C(v, σ) for v ∈ Zm and σ ∈ Sm. The m + 1

vertices of ∆ can be labelled x(0), . . . , x(m) in such a way that, for each i = 1, . . . ,m,

x(i) − x(i−1) = e(σ(i)), (2.193)

where for 1 ≤ j ≤ m, e(j) denotes the j-th standard basis vector (i.e., all entries of e(j) are

0, except the j-th entry, which is 1).
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Remark 12. We encourage the reader to keep Figure 2.9 in mind (or better, in sight) while

reading this proof.

Proof. For simplicity, we assume without loss of generality that v = 0. We use the permu-

tation σ to define a path between vertices of the simplex C(0, σ) starting at (0, . . . , 0) and

ending at (1, . . . , 1). To construct the path, first observe that

C(0, σ) =
{
x = (x1, . . . , xm) ∈ [0, 1]m

∣∣xσ(i) ≥ xσ(j) for all i < j
}
. (2.194)

In other words, the σ(1)-th component of x must be greater than the σ(2)-th, which is

greater than or equal to the σ(3)-th, and so on. The path travels from (0, . . . , 0) along

the σ(1)-th axis to eσ(1), then parallel to the σ(2)-th axis to eσ(1) + eσ(2), and so on up

to
∑m

i=1 ei = (1, . . . , 1). Numbering the vertices of the path from x(0) to x(m) proves the

lemma.

Now we turn to the robustness lemmas, which will be used when applying Theorem 9 to

approximate hR by another asymptotic height function. The three lemmas below are almost

direct analogues of Lemmas 35, 36, and 37 from [KMT20a] respectively.

Lemma 14 (Robustness of macroscopic entropy under approximations). Let ε > 0, and let

R̃ ⊆ R ⊂ Rm be sets meeting the assumptions from Assumption 1 with |R \ R̃| < ε. Let

hR̃ ∈M(R̃) and hR ∈M(R) be such that∣∣∣{x ∈ R̃ ∣∣∣ ∣∣∇hR̃(x)−∇hR(x)
∣∣
2
≥ ε
}∣∣∣ < ε . (2.195)

Then,

EntR,an(hR) = EntR̃,an(hR̃) + θm(ε) . (2.196)

Proof. Recall from Definition 11 that

EntR,an(hR) :=
1

|R|

∫
R

entan
(
∇hR(x)

)
dx , (2.197)
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and likewise for EntR̃,an(hR̃). The conclusion follows from three observations: first that the

domains of integration are bounded sets with small symmetric difference, second that the

function s 7→ entan(s) is continuous, and third that the functions ∇hR and ∇hR̃ almost agree

(as per (2.195)) on most of the intersection of their domains (by measure).

Lemma 15 (Robustness of microscopic entropy under change in profile). Let ε > 0 and

n ∈ N. Let R ⊂ Rm satisfy Assumption 1, and let Rn ⊂ Zm satisfy 1
n
Rn ⊂ R. Let

hR, h̃R ∈ M(R) be two asymptotic height functions such that supx∈R|hR(x) − h̃R(x)| ≤ ε.

Then,

EntRn
(
B(Rn, hR, 2ε), ω

)
≤ EntRn

(
B(Rn, h̃R, ε), ω

)
. (2.198)

Proof. For any fixed ω, the functional EntRn(·, ω) : M(Rn)→ R is monotonic, and it follows

from Definition 2 that

B(Rn, h̃R, ε) ⊆ B(Rn, hR, 2ε) . (2.199)

Lemma 16 (Robustness of microscopic entropy under domain approximations). Let c ∈

(0, 1], ε ∈ (0, 1], and n ∈ N. Let R̃ ⊂ R ⊂ Rm and R̃n ⊂ Rn ⊂ Zm satisfy these assumptions:

1
n
Rn ⊂ R , 1

n
R̃n ⊂ R̃ , (2.200)

dH( 1
n
Rn, R) = θR(ε) , dH( 1

n
R̃n, R̃) = θR(ε) , (2.201)

|Rn|
nm|R|

= 1 + θR(ε) + θR,ε
(

1
n

)
,

|R̃n|
nm|R̃|

= 1 + θR(ε) + θR,ε
(

1
n

)
, (2.202)

|R|
|R̃|

= 1 + θR(ε) . (2.203)

Let hR ∈M(R) be an asymptotic height function with Lip(hR) ≤ 1− cε. Then,

EntR̃n
(
B(R̃n, hR, ε), ω

)
− CωθR(ε)− CωθR,ε

(
1
n

)
≤ EntRn

(
B(Rn, hR, ε), ω

)
≤ EntR̃n

(
B(R̃n, hR,

c
3
ε2), ω

)
+ CωθR(ε) + CωθR,ε

(
1
n

)
.

(2.204)
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Proof. We prove the two inequalities in (2.204) separately. For the first inequality, observe

that the map

B(Rn, hR, ε)→ B(R̃n, hR, ε)

hR 7→ hR|R̃
(2.205)

is not generally an injection, but it is at most (2|Rn\R̃n|)-to-1 (by the graph homomorphism

property and connectedness of Rn). For any hRn ∈ B(Rn, hR, ε),

HRn,ω(hRn) ≤ HR̃n,ω
(hRn |R̃n) + Cω|Rn \ R̃n| , (2.206)

so

Zω(B(Rn, hR, ε)) ≤ 2|Rn\R̃n|Zω(B(R̃n, hR, ε)) exp
(
Cω|Rn \ R̃n|

)
(2.207)

and

EntRn
(
B(Rn, hR, ε), ω

)
≥ |R̃n|
|Rn|

EntR̃n
(
B(R̃n, hR, ε), ω

)
− log(2)

|Rn \ R̃n|
|Rn|

− Cω|Rn \ R̃n|

= EntR̃n
(
B(R̃n, hR, ε), ω

)
− CωθR(ε)− CωθR,ε

(
1
n

)
.

(2.208)

To prove the second inequality in (2.204), we first note that there exists an injection

from B(R̃n, hR,
c
3
ε2) into B(Rn, hR, ε). A height function hR̃n ∈ B(R̃n, hR,

c
3
ε2) is extended

to hRn ∈ B(Rn, hR, ε) in such a way that
∣∣hRn(z) − nhR

(
1
n
z
)∣∣ ≤ 1 when z is in Rn and

sufficiently far away from R̃n; the parameter value c
3
ε2 is chosen so that such an extension is

admissible by the Kirszbraun theorem. For details, see the proof of [KMT20a, Lemma 37].

For this injection hR̃n 7→ hRn ,

HR̃n,ω
(hR̃n) ≤ HRn,ω(hRn) + Cω|Rn \ R̃n| , (2.209)

so

Zω
(
B(R̃n, hR,

c
3
ε2)
)
≤ Zω

(
B(Rn, hR, ε)

)
exp
(
Cω|Rn \ R̃n|

)
(2.210)
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and

EntR̃n
(
B(R̃n, hR,

c
3
ε), ω

)
≥ |Rn|
|R̃n|

EntRn
(
B(Rn, hR, ε), ω

)
− log(2)

|Rn \ R̃n|
|Rn|

− Cω|Rn \ R̃n|

= EntRn
(
B(Rn, hR, ε), ω

)
− θR(ε)− θR,ε

(
1
n

)
.

(2.211)

To prove the profile theorem, we reduce to the special case of Lemma 12, where the

domain is a collection of simplices and the asymptotic height function is piecewise affine.

Before that, in order to apply Lemma 16, we reduce to the case where hR has Lipschitz

constant strictly less than 1. Both reductions are simple applications of the robustness

results above.

Proof of the profile theorem (Theorem 3). For the reader’s convenience we recall the conclu-

sion of the theorem that we are about to prove, namely:

lim
n→∞

P
(∣∣∣EntRn

(
B(Rn, hR, δ), ω

)
− Entan(R, hR)

∣∣∣
≥ η + CωθhR(δ) + CωθhR,δ

(
1
n

))
= 0 .

(2.212)

For the first step of the proof, we reduce from the case of an arbitrary asymptotic height

function hR ∈ M(R, h∂R), i.e. a continuous function hR : R→ R with Lipschitz constant at

most 1 (with respect to the `1 norm on R), to an asymptotic height function with Lipschitz

constant strictly less than 1. Indeed, let c := (2 diam1R)−1 ∧ 1, where diam1R denotes the

diameter of R under the `1 norm. By translation invariance of the random potential ω, we

assume that there exists x0 ∈ R with hR(x0) = 0. Define

h̃R := (1− cδ)hR . (2.213)

We make the following observations. First,

Lip(h̃R) = (1− cδ) Lip(hR) ≤ 1− cδ . (2.214)
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Second, for any x ∈ R,

|hR(x)− h̃R(x)| ≤ cδ|hR(x)| ≤ cδ|x− x0|1 ≤ δ
2
. (2.215)

Third, for any x ∈ R,

|∇hR(x)−∇h̃R(x)| ≤ cδ . (2.216)

Lemma 14, together with (2.216) and the choice of constant c = c(R), yields

EntR,an(hR) = EntR,an(h̃R) + θR(δ) . (2.217)

Similarly, Lemma 15 and (2.215) imply that almost surely,

EntRn
(
B(Rn, h̃R, 2δ), ω

)
≤ EntRn

(
B(Rn, hR, δ), ω

)
≤ EntRn

(
B(Rn, h̃R,

1
2
δ), ω

)
.

(2.218)

Assume for the sake of the proof that (2.212) holds for h̃R. Then almost surely,

EntRn
(
B(Rn, hR, δ), ω

)
≤ EntRn

(
B(Rn, h̃R,

δ
2
), ω
)

≤ EntR,an(h̃R) + η + θh̃R
(
δ
2

)
+ θh̃R,δ/2

(
1
n

)
= EntR,an(hR) + η + θhR(δ) + θhR,δ

(
1
n

)
,

(2.219)

where in the last line, we combine the θR(δ) term from (2.217) together with the Cωθh̃R( δ
2
)

term above; this is admissible since Cω ≥ 1 by definition (recall that Cω := 1∨ supe∈E(Z)|ωe|)

and since the various factors of 1
2

do not affect the asymptotics. The reverse inequality is

similar, and so we have reduced to the problem of proving (2.212) with the added assumption

that Lip(hR) ≤ 1− cδ for c = c(R) ∈ (0, 1).

We reduce further to the special case from Lemma 12, i.e. a piecewise affine asymptotic

height function defined on a collection of simplices. First, we choose parameter values

ε = ε(δ) and ` = `(ε, δ) satisfying three criteria:
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1. ε→ 0 as δ → 0,

2. δ = ε`,

3. ` is sufficiently small so that the simplicial Rademacher theorem (Theorem 9) applies.

The choices of ε and ` may be realized as follows, from [KMT20a]: Choose a sequence

εk ↘ 0 arbitrarily, e.g. εk = 1
k
. Let `k be the largest admissible ` value based on εk, but not

larger than 1. For any given δ choose the smallest εk such that εk`k > δ; this ensures the

first criterion. Set ε = εk and ` = δ
εk
≤ `k; this ensures the last two criteria.

For the remainder of the argument, fix δ > 0. Let ε and ` satisfy the above criteria,

and let K ⊆ R ⊂ Rm be a simplicial domain and hK ∈ M(K) an asymptotic height

function satisfying the conclusions of the simplicial Rademacher theorem (Theorem 9). Since

∇hK ≈ ∇hR (cf. conclusion 3 of Theorem 9) and since the macroscopic entropy is robust

(Lemma 14), ∣∣∣EntR,an(hR)− EntK,an(hK)
∣∣∣ ≤ θR(ε) = θR(δ) , (2.220)

where we use the fact that ε→ 0 as δ → 0 in order to replace ε by δ in the θ error term.

Similarly, by conclusions 1 and 2 of Theorem 9 and the microscopic entropy robustness,

EntRn
(
B(Rn, hR, ε`), ω

)
(Lemma 16)

≤ EntKn
(
B(Kn, hR|K , c3(ε`)2), ω

)
+ Cωθ(ε) + Cωθε

(
1
n

)
(Lemma 15)

≤ EntKn
(
B(Kn, hK ,

c
6
(ε`)2), ω

)
+ Cωθ(ε) + Cωθε

(
1
n

) (2.221)

and

EntRn
(
B(Rn, hR, ε`), ω

)
(Lemma 16)

≥ EntKn
(
B(Kn, hR|K , ε`), ω

)
− Cωθ(ε)− Cωθε

(
1
n

)
(Lemma 15)

≥ EntKn
(
B(Kn, hK ,

1
2
ε`), ω

)
− Cωθ(ε)− Cωθε

(
1
n

)
.

(2.222)
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Combining (2.220), (2.221), (2.222), and the special case of the profile theorem proved

in Lemma 12 completes the proof.

2.6 Proof of the variational principle

In this section we prove the variational principle (Theorem 4). The proof follows the steps of

the corresponding proof for the uniform case in [KMT20a]. The main difference and the step

that needs attention is that the deterministic convergence needs to be lifted to a convergence

in probability. The two main inequalities in the proof follow from first comparing the set

of height functions M(Rn, h∂Rn , δ) to the subset B(Rn, h
∗
R, δ) for a well-chosen asymptotic

height function h∗R, and second from comparing to a superset
⋃k
i=1B(Rn, h

(i)
R , δi) for a col-

lection of asymptotic height functions h
(1)
R , . . . , h

(k)
R . Especially in the second part of the

argument, some care is needed in regards to the asymptotic parameters. In particular:

• The choice (and number) of height functions h
(i)
R depends on δ,

• the radii δi of the balls around these height functions depends on η,

• the probability that the profile theorem fails (i.e. the probability that EntR,an(h
(i)
R ) and

EntRn(B(Rn, h
(i)
R , δi), ω) differ by a large amount due to the exact configuration ω of

the random potential) depends not just on the error tolerance η but also on the number

of height functions h
(i)
R .

Proof of Theorem 4. Let η > 0 and pmax > 0. First we will establish that

lim sup
δ→0

lim sup
n→∞

P
(

EntRn
(
M(Rn, h∂Rn , δ), ω

)
> inf

hR∈M(R,h∂R)
EntR,an(hR) + η

)
≤ pmax .

(2.223)

Choose h∗ ∈M(R, h∂R) such that

EntR,an(h
∗
R) ≤ inf

hR∈M(R,h∂R)
EntR,an(hR) + η

4
. (2.224)
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For any δ > 0 and n ∈ N, B(Rn, h
∗
R, δ) ⊆M(Rn, h∂Rn , δ). Hence almost surely,

EntRn
(
M(Rn, h∂Rn , δ), ω

)
≤ EntRn

(
B(Rn, h

∗
R, δ), ω

)
. (2.225)

By the profile theorem (applied to h∗R),

P
(∣∣EntRn

(
B(Rn, h

∗
R, δ), ω

)
− EntR,an(h

∗
R)
∣∣

> η
4

+ Cωθh∗R(δ) + Cωθh∗R,δ
(

1
n

))
→
n→∞

0 .
(2.226)

Let us spend a part of the available probability pmax to establish a bound on Cω. Specif-

ically, since Cω ∈ L1, Markov’s inequality implies that

P
(
Cω >

2‖Cω‖1
pmax

)
≤ 1

2
pmax . (2.227)

Therefore as long as δ is small enough so that the θh∗R(δ) term is less than η
4
· pmax

2‖Cω‖1 , and

as long as n is large enough that the θh∗R,δ(
1
n
) term is less than η

4
· pmax

2‖Cω‖1 and the probability

in (2.226) is less than 1
2
pmax, we have

P
(

EntRn
(
B(Rn, h

∗
R, δ), ω) > EntR,an(h

∗
R) + 3η

4

)
< pmax . (2.228)

The first desired inequality (2.223) follows immediately from (2.225), (2.228), and (2.224).

Now we turn to the second half of the variational principle, namely:

lim sup
δ→0

lim sup
n→∞

P
(

EntRn
(
M(Rn, h∂Rn , δ), ω

)
< inf

hR∈M(R,h∂R)
EntR,an(hR)− η

)
≤ pmax .

(2.229)

In order to establish (2.229), we overcount the set M(Rn, h∂R, δ) using compactness of the

space of asymptotic height functions M(R, h∂R, δ) (with respect to the topology of uniform

convergence). Indeed, choose asymptotic height functions h
(1)
R , . . . , h

(k)
R such that

M(R, h∂R, δ) ⊂
k⋃
i=1

B(R, h
(i)
R , δi) , (2.230)
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where the values δi > 0 are such that the θ
h
(i)
R

(δi) terms from the profile theorem (Theorem 3)

are each less than η
4
· pmax

2‖Cω‖1 .

As in the first part of the proof, we restrict to the event

Ω′ :=
{
Cω <

2‖Cω‖1

pmax

}
, (2.231)

which has P(Ω′) ≥ 1− pmax
2

. Furthermore, we assume implicitly that n is large enough that:

• each of the θ
h
(i)
R ,δi

( 1
n
) terms from the profile theorem is less than η

4
· pmax

2‖Cω‖1 , and

• the exceptional events

Ei,n := Ω′ ∩
{∣∣∣EntRn

(
B(Rn, h

(i)
R , δi), ω

)
− EntR,an(h

(i)
R )
∣∣∣ > 3η

4

}
(2.232)

satisfy P(Ei,n) < pmax
2k

for i = 1, . . . , k.

Then for sufficiently small δ and sufficiently large n, the “good” event

Ωδ,n := Ω′ ∩ Ec
1,n ∩ · · · ∩ Ec

k,n (2.233)

satisfies P(Ωδ,n) ≥ 1− pmax and, for ω ∈ Ωδ,n,∣∣∣EntRn
(
B(Rn, h

(i)
R , δi), ω

)
− EntR,an(h

(i)
R )
∣∣∣ ≤ 3η

4
. (2.234)

Assume in the sequel that ω ∈ Ωδ,n. By the set inclusion (2.230),

EntRn
(
M(Rn, h∂Rn , δ), ω

)
≥ − 1

|Rn|
log

( k∑
i=1

Zω
(
B(Rn, h

(i)
R , δi)

))
. (2.235)

To handle the sum inside the logarithm, we compare each summand Zω(B(Rn, h
(i)
R , δi))

against infhR EntR,an(hR). Indeed,

EntRn
(
B(Rn, h

(i)
R , δ), ω

)(2.234)

≥ EntR,an
(
h

(i)
R

)
− 3η

4

≥ inf
hR∈M(R,h∂R)

EntR,an(hR)− 3η

4
,

(2.236)
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and so

Zω
(
B(Rn, h

(i)
R , δi)

)
≤ exp

[
|Rn|

(
− inf

hR∈M(R,h∂R)
EntR,an(hR) + 3η

4

)]
(2.237)

and

k∑
i=1

Zω
(
B(Rn, h

(i)
R , δi)

)
≤ k exp

[
|Rn|

(
− inf

hR∈M(R,h∂R)
EntR,an(hR) + 3η

4

)]
. (2.238)

Returning to (2.235), this yields

EntRn
(
M(Rn, h∂Rn , δ), ω

)
≥ inf

hR∈M(R,h∂R)
EntR,an(hR)− log k

|Rn|
− 3η

4
.

(2.239)

As long as n is large enough (depending on k, which in turn depends on δ), we have

log k
|Rn| <

η
4
, and so

EntRn
(
M(Rn, h∂Rn , δ), ω

)
≥ inf

hR∈M(R,h∂R)
EntR,an(hR)− η , (2.240)

for any ω ∈ Ωδ,n. This establishes (2.229) and thereby proves the variational principle

(Theorem 4).

2.7 Proof of the large deviations principle

In this section we prove Theorem 5, the large deviations principle. Much like the proof

variational principle in the section above, this proof for the homogenized model follows the

same strategy as the corresponding proof for the uniform model. Before beginning the actual

proof, we recall the following definitions from the statement of the theorem in Section 2.3
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for the reader’s convenience. For δ > 0, n ∈ N, and hR ∈M(R):

µδ,n(A, ω) :=
Zω
({
hRn ∈M(Rn, h∂Rn , δ)

∣∣ h̃Rn ∈ A})
Zω
(
M(Rn, h∂Rn , δ)

) ,

I(hR) :=


EntR,an(hR)− E if hR|∂R ∈M(R, h∂R),

∞ otherwise,

, and

E := inf
hR∈M(R,h∂R)

EntR,an(hR).

(2.241)

where h̃Rn is the piecewise-affine interpolation of the function 1
n
z 7→ 1

n
hRn(z) on the simplex

domain with vertices { 1
n
K}n∈Rn . Now we begin the proof.

Proof of Theorem 5. First, we prove the LDP lower bound (2.57), which we repeat for con-

venience. Given η > 0 and Borel A ⊂M(R), we must prove:

lim
δ→0

lim
n→∞

P
(

1

|Rn|
log µδ,n(A, ω) ≤ − inf

hR∈A◦
I(hR)− η

)
= 0. (2.242)

Without loss of generality we may assume that A is open. We may assume also that

infhR∈A I(hR) < ∞, or else (2.242) is trivial. By using these assumptions and replacing the

symbols µδ,n and I(hR) by their definitions, (2.242) simplifies to

lim
δ→0

lim
n→∞

P
(

inf
hR∈A

EntR,an(hR)− E + η ≤ EntRn

({
hR ∈M(Rn, h∂Rn , δ)

∣∣ h̃Rn ∈ A}, ω)
− EntRn

(
M(Rn, h∂Rn , δ), ω

))
= 0.

(2.243)

By the variational principle (Theorem 4),

lim
δ→0

lim
n→∞

P
(∣∣∣EntRn

(
M(Rn, h∂Rn , δ), ω

)
− E

∣∣∣ ≥ η
2

)
= 0. (2.244)

So, under the limit superior in probability, we may cancel the corresponding terms in (2.243).

Hence it suffices to show that

lim
δ→0

lim
n→∞

P
(

inf
hR∈A

EntR,an(hR) + η
2
≤ EntRn

({
hRn ∈M(Rn, h∂Rn , δ)

∣∣ h̃Rn ∈ A}, ω)) = 0.

(2.245)
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Note the analogy between (2.245) and inequality (2.223) from the proof of the variational

principle. We will prove (2.245) in a similar manner to (2.223). Choose an asymptotic height

functions hηR ∈ A that satisfies

EntR,an
(
hηR
)
≤ inf

hR∈A
EntR,an(hR) +

η

4
. (2.246)

Since A ⊂M(R) is open (with respect to the uniform norm) and since hηR ∈ A, it follows

that for all δ > 0 less than some δ0 = δ0(η)

B
(
Rn, h

η
R, δ
)
⊂
{
hRn ∈M(Rn, h∂Rn , δ)

∣∣ h̃Rn ∈ A}. (2.247)

Using this inclusion together with the profile theorem for hηR, we deduce

lim
δ→0

lim
n→∞

P
(

inf
hR∈A

EntR,an(hR) + η
2
≤ EntRn

({
hRn ∈M(Rn, h∂Rn , δ)

∣∣ h̃Rn ∈ A}, ω))
≤ lim

δ→0
lim
n→∞

P
(

EntR,an
(
hηR
)

+ η
4
≤ EntRn

(
B(Rn, h

η
R, δ), ω

))
= 0.

(2.248)

Thus we have proven (2.245).

Now, we turn to the LDP upper bound (2.58), which for convenience we reproduce here:

lim
δ→0

lim
n→∞

P
(

1

|Rn|
log µδ,n(A, ω) ≥ − inf

hR∈A
I(hR) + η

)
= 0. (2.249)

We observe that (µδ,n)δ,n is exponentially tight, i.e. that for every b ∈ (0,∞), there exists

Kb ⊂M(R) such that

lim
δ→0

lim
n→∞

1

|Rn|
log µδ,n(Kc

b , ω) ≤ −b, P(dω)-a.s. (2.250)

Indeed, we may take Kb to be the closure of M(hR, h∂R, 1), independent of b. For δ < 1
3

and

n large enough that

max
z∈∂Rn

∣∣ 1
n
h∂Rn(z)− h∂R

(
1
n
z
)∣∣ ≤ 1

3
, (2.251)

any hRn ∈ M(Rn, h∂R, δ) satisfies h̃Rn ∈ M(hR, h∂R, 1) by the triangle inequality, and so

we have µδ,n(Kc
b , ω) = 0. By the general theory of large deviations, exponential tightness

implies that it is sufficient prove the upper bound (2.249) for compact sets A ⊂M(R).
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If infhR∈A I(hR) = ∞, then every height function in A differs from h∂R at some point

on the boundary. In fact by compactness, there exists δ0 such that for every hR ∈ A,

supx∈∂R |h∂R(x) − hR(x)| ≥ δ0. Clearly, as in the proof of exponential tightness above, this

implies that {hRn ∈ M(Rn, h∂Rn , δ) | h̃Rn ∈ A} is empty once δ is small enough and n large

enough. For all such δ, n we have µδ,n(A) = 0 and (2.249) follows.

It remains to prove the upper bound (2.249) when infhR∈A I(hR) <∞ and A is compact.

Just like for the lower bound before, we reduce to proving:

lim
δ→0

lim
n→∞

P
(

inf
hR∈A

EntR(hR)− η
2
≥ EntRn

({
hRn ∈M(Rn, h∂Rn , δ),

∣∣ h̃Rn ∈ A}, ω)) = 0.

(2.252)

We will follow the proof of (2.229) from the proof of the variational principle above.

Similar to (2.230), use compactness to choose h
(1)
R , h

(2)
R , . . . , h

(k)
R ∈ A such that

A ⊂
k⋃
i=1

B
(
R, h

(i)
R , δi

)
, (2.253)

where η1, . . . , ηk are chosen so that for each i, the error term from the profile theorem for

h
(i)
R is smaller than η

4
. Exactly as in the proof of Theorem 4 (see in particular (2.235)),

EntRn

({
hRn ∈M(Rn, h∂Rn , δ)

∣∣ h̃Rn ∈ A}, ω) ≥ − 1

|Rn|
log

( k∑
i=1

Zω
(
B
(
Rn, h

(i)
R , ηi

)))
.

(2.254)

From this we deduce the analogue of (2.239), namely:

EntRn

({
hRn ∈M(Rn, h∂Rn , δ)

∣∣ h̃Rn ∈ A}, ω)
≥ inf

hR∈A
EntR,an(hR)− log k

|Rn|
− 3η

4
.

(2.255)

As n → ∞ the right-hand side becomes greater than infhR∈A EntR,an(hR) − η. Then, rela-

belling from η to η
2
, completes the proof of (2.252) and of the large deviations principle.
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2.8 Preliminaries for proof of the concentration inequality

Now, let us describe our strategy for proving the homogenized concentration inequality. For

the simpler case of random surface models without random perturbations, there are two

approaches in the literature to proving the concentration inequality directly: an approach

that leverages monotonicity and stochastic dominance (e.g. [CEP96, LT20]) and a dynamic

approach using a natural Markov chain on height functions (e.g. [MT20b]). The second

approach does not easily carry over to the case of random perturbations. It relies on mono-

tonicity on the quenched level (i.e. with fixed random potential ω), but monotonicity only

occurs in the annealed setting (i.e. after averaging over ω). This complicates the dynamic

structure of the second approach. Therefore we use the first approach. See the statement

and proof of Lemma 17 for details.

In this section and in Section 2.9, we write the random measure µ on sets of height

functions, perturbed by the random potential ω, as follows: given a non-empty set M ⊂

M(R) of height functions,

µM(·, ω) := Zω(·)/Zω(M) (2.256)

denotes the measure conditioned on M . This notation is more useful here than the nota-

tion µω(·) from (2.42) since we have more reason to consider several different sets of height

functions in the context of this and the next section.

We note that a hypothesis sometimes imposed on intermediate results is that a certain

set of heigh functions must not be empty, which is often equivalent to asserting that a chosen

boundary height function must admit extensions. Also frequently throughout the proof, we

frequently consider cases where either a subdomain admits height functions extending to the

full domain or does not. This seems inevitable; the existence of a height function extension

depends on the boundary values. The best characterization of suitable boundary data seems

to be the Kirszbraun theorem, quoted as Theorem 6 above. We copy the statement of the

theorem here for convenience, and note that a proof is given following the earlier statement.
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Theorem. Let Rn be a connected region of Zm, let R′n be a subset of Rn, and let h̄ : R′n → Z

be a graph homomorphism that preserves parity. There exists a graph homomorphism h :

Rn → Z such that h = h̄ on R′n if and only if for all x, y ∈ R′n,

dZ(h̄(x), h̄(y)) ≤ dRn(x, y), (2.257)

where dZ and dRn denote respectively the graph distance on Z and on Rn ⊂ Zm.

Remark 13. One might hope to derive sufficient conditions for extensibility that are easier

to verify, such as the following: suppose that R′ is a line segment, i.e. R′ = {v, v + e, v +

2e, . . . , v + (` − 1)e} for some ` ∈ N and v, e ∈ Zd with |e|1 = 1. Then R′ is an isometric

subgraph of R, meaning that for any points x, y ∈ R′, dR′(x, y) = dR(x, y). Indeed, clearly

dR′(x, y) ≥ dR(x, y), and for any i, j, by observation dR′(v + ie, v + je) = |i − j| = dZd(v +

ie, v + je) ≤ dR(x, y). Since R′ is an isometric subgraph of every R ⊇ R′, it follows that for

any hR′ ∈ M(R′) and any x, y ∈ R′, we have |hR′(x)− hR′(y)| ≤ dR′(x, y) = dR(x, y). Thus

by the Kirszbraun theorem hR′ admits at least one extension to R. This idea can be pushed

a little bit farther. For example, the exact same argument works whenever R′ is a geodesic,

i.e. a shortest path between two points in R; a similar argument via the isometric subgraph

property applies when ever R′ is a box, i.e. when R′ = {(z1, . . . , zi) ∈ Zd : ai ≤ zi ≤ bi}

for some a1 ≤ b1, . . . , ad ≤ bd. However, this approach ultimately is not fruitful for our

current purposes. The motivating example we use is the case where R is a box and R′ is

its boundary, and one can check easily that this subgraph R′ is not isometric. For example,

in two dimensions, if R = {0, 1, 2} × {0, 1, 2}, then the opposite midpoints (0, 1) and (2, 1)

have dR′((0, 1), (2, 1)) = 4 > 2 = dR((0, 1), (2, 1)). Indeed, one can check that there is a

unique height function on R′ with hR′((0, 1)) = 1 and hR′((2, 1)) = 5, which violates the

Kirszbraun hypothesis (2.257). As such, in the sequel we must account for the possibility

that M(R;hR′) may be empty for some or even for all hR′ ∈M(R′).

Finally, in order to state and prove the concentration inequality, we must introduce

the annealed measure on height functions. This combines the randomness in the random
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potential with the randomness used to select a height function.

Definition 14 (Annealed measure). Below we prove that, for any R′ ⊂ R and any hR′ ∈

M(R′), the function (ω,A) 7→ µM(R;hR′ )
(A, ω) from Ω×P(M(R;hR′)) to [0, 1] is a probability

kernel. In other words, for all ω ∈ Ω, A 7→ µM(R;hR′ )
(A, ω) is a probability measure, and for

all A ⊂M(R;hR′), ω 7→ µM(R;hR′ )
(A, ω) is measurable. Thus, the formula

(µM(R;hR′ )
◦ P)(A) := E[µM(R;hR′ )

(A, ω)], A ⊂M(R;hR′)

defines a probability measure µM(R;hR′ )
◦ P on M(R;hR′). Moreover, for any function f :

M(R;R′)→ R, if hR is a random variable with law µM(R;hR′ )
◦ P then

E[f(X)] = E
[
EµM(R;hR′ )

(·,ω)(f)
]
. (2.258)

Proof (of claims in Definition 14). By definition µM(R;hR′ )
(·, ω) is a probability measure for

fixed ω. The second property follows from how µM(R;hR′ )
(hR, ω) is defined: the numera-

tor is a sum of finitely many random potential values ωe inside of the (continuous, hence

measurable) exponential function, and the denominator is a finite sum over copies of the

numerator, only using different height functions to select the random potential values ωe.

The equation (2.258) is a standard identity for regular conditional distributions and its proof

is a straightforward exercise; see e.g. [Dur10, Exercise 5.1.14]. Note that since M(R;R′) is

finite, each function f : M(R;R′)→ R is measurable.

2.9 Proof of the concentration inequality

Having completed the preliminaries above, we are prepared to state the concentration in-

equality then move on to proofs.

Theorem 10. Let Rn ⊂ Zm be a sequence of finite, connected subgraphs with diam(Rn) :=

maxx,y∈Rn |x − y|1 ≤ An for some A > 0. Let ε > 0 and h∂Rn ∈ M(∂Rn) be given, and let

µn = µM(R;h∂Rn )(·, ω) denote the (perturbed) distribution on M(R;h∂Rn). Then for any c > 0
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and any n ∈ N,

µn ◦ P
(

max
v∈Rn

∣∣∣hRn(v)− Eµn(hRn(v))
∣∣∣ ≥ c

√
n

)
≤ 2 |Rn| e−nc

2/A. (2.259)

Remark 14. Theorem 10 gives quantitative bounds for the probability that a height func-

tion hR differs from expected value on the scale of
√
n. The probability bounds are expo-

nential in a constant times n, which comes about because of the one-dimensional nature of

the Azuma–Hoeffding inequality. In comparison, the large deviations principle stated earlier

achieves a volume-order term in the exponential. The cost of using the large deviations prin-

ciple is that control over the size of fluctuations is not quantitative. For example, ignoring

the random potential ω and using the uniform measure on M(R;h∂R) instead, the large de-

viations principle implies that µn(maxv |hRn(v)− Eµn(hRn(v))| ≥ ε) ≤ exp(−nmI(ε)). Here

I(ε) > 0 is (related to) the rate function of the large deviations principle, and it does not

admit an obvious closed form expression in terms of ε. It would be interesting if we could

obtain a quantitative concentration result with volume-order term in the exponential of the

probability bound.

We will build up to the proof of the concentration inequality via a few intermediate results.

Lemma 17 below establishes the monotonicity property, which is the main ingredient of the

proof. We derive from it Corollary 2, which is used in the proof of an auxiliary concentration

inequality in Lemma 18. The difference between Lemma 18 and the main theorem is that

the former addresses only a single point v ∈ R, whereas the latter concerns the maximum

deviation from the mean over the entire domain. The statements and proofs of these results

are based on the method presented in [CEP96]; we cite the analogous steps where appropriate

below. Differences arise starting with Corollary 2 below, where the shift-invariant and ergodic

properties of the law of ω must be used to account for the fact that height functions with

different base heights “see” different random potential values ωe. However, the essential steps

of the proof still goes through, since even under the influence of ω the relevant measures are

Gibbs measures, based upon a finite-range potential (indeed, a nearest-neighbor potential,
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R = { }
R′ = { }
∂R(R′) = { }
{v′′} = R′′ \R′ = { }

Figure 2.10: An example of the sets relevant to the proof of Lemma 17. On the left is a 5×5

subset of Z2, with points decorated according to the key on the right.

which enforces the Lipschitz property). It seems like the proof should extend to other finite-

range models and perhaps beyond, but for brevity we will not explore that idea further

here.

Lemma 17 (cf. [CEP96, Lemma 18]). Let R′ ⊂ R and let hR′ , h̃R′ ∈ M(R′) be such that

hR′ ≤ h̃R′ and that M(R;hR′) and M(R; h̃R′) are not empty. Then for any realization ω,

µM(R;hR′ )
(·, ω) is stochastically dominated by µM(R;h̃R′ )

(·, ω). More precisely, there exists a

measurable function π : M(R;hR′)×M(R; h̃R′)× Ω→ [0, 1] such that:

• for almost every ω, π(·, ·, ω) is a coupling, i.e.∑
h̃R

π(hR, h̃R, ω) = µM(R;hR′ )
(hR, ω) and

∑
hR

π(hR, h̃R, ω) = µM(R;h̃R′ )
(h̃R, ω),

and

• π
(
{hR ≤ h̃R}, ω

)
= 1.

Proof. Consider the “relative boundary” ∂R(R′) := {v′ ∈ R′ : ∃v ∈ R \ R′, v ∼ v′}, i.e.

the points in R′ that are directly adjacent to R. As we shall see below, these are the only

essentially relevant points of R′. Indeed, we split the proof into two cases, depending on the

restrictions hR′|∂R(R′) and h̃R′ |∂R(R′) on ∂R(R′). The first case is the easier of the two. In

the first case, the two height functions agree on ∂R(R′). In the second case, there is a strict

inequality hR′(v) < h̃R′(v) for at least one point v ∈ ∂R(R′).
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Case 1: Assume first that hR′(v) = hR′(v) for all v ∈ ∂R(R′). Since ∂R(R′) may be a

proper subset of R′, this does not imply that hR′ = h̃R′ . (Although in the case where ∂R(R′),

then this case does indeed reduce to the trivial assertion that µM(R;hR′ )
is stochastically

dominated by itself.) However, it does hold that hR′ and h̃R′ have the same extensions to

R \R′; to be very precise,

{
hR|R\R′ : hR ∈M(R;hR′)

}
=
{
h̃R|R\R′ : h̃R ∈M(R; h̃R′)

}
. (2.260)

For clarity, let us repeat the above paragraph in the context of Figure 2.10. Case 1 of

the proof concerns data hR′ and h̃R′ that agree on the solid black circle region (i.e. ∂R(R′)),

though they may differ on the solid black square points (i.e. R′ \ ∂R(R′)). By definition of

∂R(R′), the solid black circle points surround the white circle region (i.e. R \ R′), at least

relative to the domain R. (Often we will assume that ∂R ⊂ R′, but that assumption isn’t

necessary here, and it does not hold in the figure.) Since hR′ and h̃R′ agree on ∂R(R′), they

have the same extensions to the white circle region, in the sense of (2.260).

An easy calculation shows that for hR ∈M(R;hR′),

µM(R;hR′ )
(hR, ω) =

exp
(
H+
R\R′(hR, ω)

)∑
fR∈M(R;hR′ )

exp
(
H+
R\R′(fR, ω)

) , (2.261)

where we recall that H+
R\R′ denotes the Hamiltonian on domain R \ R′, including the edges

that cross between R \ R′ and ∂R(R′). Therefore in particular that the right-hand expres-

sion (2.261) depends only on the values of the extension hR restricted (R \ R′) ∪ ∂R(R′).

The same is true of extensions h̃R ∈M(R; h̃R′). As such, the obvious bijection between the

two sets in (2.260) is measure-preserving in both directions. The existence of a coupling π

satisfying the claims of the lemma follows immediately.

Case 2: Assume instead that hR′(v) < h̃R′(v) for some v ∈ R′ adjacent to a vertex

v′′ ∈ R \ R′. In Figure 2.10, v′′ is the white circle marked with an “X,” and v might be

either of the adjacent solid black circles. Let R′′ = R′ ∪ {v′′}. We proceed by induction on

the cardinality of R \ R′. The induction hypothesis states that given any height functions
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hR′′ , h̃R′′ ∈ M(R′′) such that hR′′ ≤ h̃R′′ and such that both M(R;hR′′) and M(R; h̃R′′) are

nonempty, the measure µM(R;hR′′ )
is stochastically dominated by µM(R;h̃R′′ )

. Note that the

base case of the induction occurs when R \R′ = {v′′} has cardinality 1, and so R′′ = R; the

lemma is trivial in this case.

So let us extend induction hypothesis from R′′ to R′. From the hypotheses of the lemma,

each of hR′ and h̃R′ admits at least one extension to R. Therefore each admits at least one

extension to R′′ that in turn admits an extension to R. On the other hand since R′′\R′ = {v′′}

is a set of cardinality 1, each of hR′ and h̃R′ admits at most two extensions to R′. Formally,

let h+
R′′ and h−R′′ denote the two possible extensions of hR′ to R′′, where h±R′′(v

′′) = hR′(v)±1.

Below we will address the possibility that one or the other of these putative extensions does

not exist. Likewise, let h̃±R′′ ∈M(R′′; h̃R′) denote the two extensions of h̃R′ to R′′, subject to

the possibility that one or the other of the two extensions may not exist.

By conditioning on the height value at v′′, we see that

µM(R;hR′ )
= p+µM(R;h+

R′′ )
+ p−µM(R;h−

R′′ )
and

µM(R;h̃R′ )
= p̃+µM(R;h̃+

R′′ )
+ p̃−µM(R;h̃−

R′′ )
,

(2.262)

where

p± := µM(R;hR′ )
({hR(v′′) = hR′(v)± 1}) ∈ [0, 1] and

p̃± := µM(R;h̃R′ )
({h̃R(v′′) = h̃R′(v)± 1}) ∈ [0, 1].

(2.263)

This addresses the issue noted above, about the possibility that one (but not both) of h±R′′

may not exist; if so, the corresponding p± term is 0, and the other p∓ term is 1. By parity

considerations, it must hold (assuming that the various extensions exist), that

h−R′′(v
′′) < h+

R′′(v
′′) = hR′(v) + 1 ≤ h̃R′(v)− 1 = h̃−R′′(v

′′) < h̃+
R′′(v

′′).

By (up to) four applications of the induction hypothesis, we conclude that each of the

measures µM(R;h±
R′′ )

is stochastically dominated by each of the measures µM(R;h̃±
R′′ )

. Since

all the measures are probability measures and since all four of p±, p̃± are nonnegative, the

identities (2.262) implies that µM(R;hR′ )
is stochastically dominated by µM(R;h̃R′ )

.
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We will make use of stochastic dominance via expectations, as captured in the following

corollary.

Corollary 2 (cf. [CEP96, Corollary 19]). Let R′ ⊂ R, let v ∈ R\R′, and let hR′ , h̃R′ ∈M(R′)

with hR′ ≤ h̃R′ + 2. Let hR(v) and h̃R(v) denote the Z-valued random variables obtained by

sampling hR from µM(R;hR′ )
◦P and h̃R from µM(R;h̃R′ )

◦P and evaluating the respective height

functions at v. Then

EµM(R;hR′ )
◦P[hR(v)] ≤ Eµ

M(R;h̃R′ )
◦P[h̃R(v)] + 2.

Remark 15. Notice that unlike the stochastic monotonicity result of Lemma 17, which is

almost sure in ω, the corollary above requires an expectation over the law P of ω. This is a

substantial difference from [CEP96] caused by the random potential. Indeed, the requirement

arises from the fact that hR′ and h̃R′ + 2 “see” a different part of the random potential ω.

Since µ is a shift-invariant Gibbs measure, we can average out this height shift by annealing

over the random potential.

Proof. By Lemma 17, for each fixed ω we have µM(R;hR′ )
(·, ω)

law

≤ µM(R;h̃R′+2)(·, ω), so

EµM(R;hR′ )
(·,ω)[hR(v)] ≤ Eµ

M(R;h̃R′+2)
(·,ω)[h̃R(v)], for a.e. ω.

We will transfer the height shift from the “h̃R′ + 2” into the random potential ω and into

the height function inside the expectation. Indeed, from the definition of the Hamiltonian,

we have for R ⊂ Zd and fR ∈M(R) that

H◦R(fR + 2, ω) = H◦R(fR, τ2ω), (2.264)

where τ2 : Ω → Ω is defined by (τ2(ω))x,x+1 = ωx+2,x+3 for all x ∈ Z. A straightforward

calculation establishes that, for any hR ∈M(R),

µM(R;h̃R′+2)(hR, ω) = µM(R;h̃R′ )
(hR − 2, τ2ω); (2.265)

98



indeed,

µM(R;h̃R′+2)(hR, ω) =
exp
(
H◦R(hR, ω)

)∑
fR∈M(R;hR′+2) exp

(
H◦R(fR, ω)

)
=

exp
(
H◦R(hR, ω)

)∑
fR∈M(R;hR′ )

exp
(
H◦R(fR + 2, ω)

)
=

exp
(
H◦R(hR, ω)

)∑
fR∈M(R;hR′ )

exp
(
H◦R(fR, τ2ω)

)
=

exp
(
H◦R(hR − 2, τ2ω)

)∑
fR∈M(R;hR′ )

exp
(
H◦R(fR, τ2ω)

)
= µM(R;h̃R′ )

(hR − 2, τ2ω).

By change of variables,

EµM(R;hR′ )
(·,ω)[hR(v)] ≤ Eµ

M(R;h̃R′ )
(·,τ2ω)[h̃R(v) + 2], for a.e. ω.

Take expectations with respect to P. Under the expectation the shift τ2 vanishes, by

ergodicity. The result follows by construction of the measures µM(R;hR′ )
◦P and µM(R;h̃R′ )

◦P;

cf. equation (2.258).

Now we are prepared to prove a limited version of the concentration inequality, where we

are concerned with only a single point v ∈ R. The key to the proof is the monotonicity of

Corollary 2. We translate this into an inductive bound on martingale differences: each time

we take a “step” starting at the boundary ∂R and “walking” towards v, the two possible

extensions at that step differ by at most 2. Then we use the Azuma–Hoeffding inequality to

establish the probability bound. From this point on the proof is standard, following closely

to the methods used in [CEP96] and other works.

Lemma 18 (Auxiliary concentration inequality cf. [CEP96, Theorem 21]). Let h∂R ∈M(∂R)

and let v ∈ R be such that there is a path x0 ∈ ∂R, x1, . . . , xl−1 = v of length l with xi ∼ xi−1

for i = 1, . . . , l − 1. Then for any c > 0,

µM(R;h∂R) ◦ P
({
hR ∈M(R;h∂R) :

∣∣hR(v)− EµM(R;h∂R)
[hR(v)]

∣∣ > lc
})

< 2e−lc
2/2.
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Proof. For k = 1, . . . , l, define σ-algebras Fk := σ(hR 7→ hR(xi), 0 ≤ i < k) ⊂ P(M(R;h∂R))

and define a martingale Mk := E[hR(v)|Fk], where E[ · ] denotes the expectation with respect

to the measure µM(R;hR′ )
◦ P. Note that M1 = E[hR(v)] and that Ml = hR(v).

We claim that for each k = 1, . . . , l − 1, the martingale difference |Mk+1 −Mk| is less

than or equal to 2 almost surely. To this end, fix k and condition on h(xi) = zi ∈ Z

for i = 0, . . . , k − 1. To avoid events of probability zero, assume that z0, . . . , zk−1 are such

that there exists at least one extension in M(hR;h∂R) with hR(xi) = zi for each i; by

hypothesis M(hR;h∂R) is nonempty, so at least one such assignment of heights zi exists.

Having fixed these height values, there are at most two assignments of the height value

zk := hR(xk) which admit further extensions in M(R;h∂R): namely, zk = zk−1 ± 1. There-

fore the martingale Mk+1 = E[hR(v)|Fk+1] takes at most two distinct values conditioned

on {hR(xi) = zi, i = 0, . . . , k−1}. Because the (at most) two possible values of hR(xk) differ

by at most 2, and because the height values at x0, . . . , xk−1 have been fixed, Corollary 2

applied with R′ = {x0, . . . , xk} implies that the (at most) two distinct values of Mk+1 differ

by at most 2. Since Mk = E[Mk+1|Fk] is the weighted average of these (at most) two values

of Mk+1, it follows that |Mk+1 − Mk| ≤ 2. The conclusion follows immediately from the

Azuma–Hoeffding inequality.

Now we are prepared to prove the main result of this section, i.e. the concentration

inequality.

Proof of Theorem 10. By the union bound and Lemma 18,

µn ◦P
(

max
v∈Rn

∣∣hRn(v)−Eµn(hRn(v))
∣∣ ≥ c

√
n
)
≤
∑
v∈Rn

µn ◦P
( ∣∣hRn(v)−Eµn(hRn(v))

∣∣ ≥ c
√
n
)
.

(2.266)

For each v ∈ Rn, apply Lemma 18 with the path length parameter lv chosen as small as

possible and with parameter cv chosen such that lvcv = c
√
n. Recall that by hypothesis the
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diameter of Rn is at most An, so l ≤ An/2. It follows that

lvc
2
v =

(lvcv)
2

lv
=
c2n

lv
≥ 2c2n

A
.

Using also the hypotheses that |Rn| ≤ Bnm, we have

µn ◦ P
(

max
v∈Rn

∣∣hRn(v)− Eµ(hRn(v))
∣∣ ≥ c

√
n

)
≤
∑
v∈Rn

µn ◦ P
(∣∣hRn(v)− Eµn

(
hRn(v)

)∣∣ ≥ lvcv

)
≤
∑
v∈Rn

2e−lvc
2
v/2

≤ 2|Rn|e−c
2n/A.

(2.267)

This is the desired bound from (2.259), and concludes the proof of Theorem 10, the concen-

tration inequality.
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CHAPTER 3

Long-Range Percolation

The next problem addressed in this dissertation is the scaling of the graph distance (a.k.a.

chemical distance) in the long-range percolation graph on Zd. This is a random graph with

vertex set Zd and a random set of undirected edges. In the version of long-range percolation

studied here, the edge set E ⊂ E(Zd) always contains the nearest-neighbor edges, i.e. the

(undirected) edges between pairs x, y ∈ Zd with |x−y|1 = 1, where | · |1 denotes the `1 norm.

Furthermore the edge set contains longer edges selected at random. The presence or absence

of these longer edges in E is governed by independent random variables, with the edge

between vertices x, y ∈ Zd present in E with probability p(x − y) ∈ [0, 1]. In this chapter,

our setting will be as follows: We start with collection of numbers (q(x))x∈Zd ⊆ [0,∞)

satisfying the symmetry condition q(x) = q(−x) for all x ∈ Zd and also the asymptotic

condition q(x) ∼ |x|−s for s ∈ (d, 2d); in other words, lim|x|→∞ q(x)|x|s = 1. We also fix a

parameter β ∈ (0,∞). Then, set

pβ(x) :=


1− exp(−βq(x− y)), if |x− y|1 > 1

1, if |x− y|1 = 1, and

0, if |x− y|1 = 0,

(3.1)

where | · |1 denotes the `1 distance. Observe that pβ(x)/|x|−s ∼ β.

From the references cited earlier in Chapter 1, particularly [BL19], it is known that

lim
|x|→∞

P
(
c(log |x|)∆ ≤ D(0, x) ≤ C(log |x|)∆

)
= 1, (3.2)
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for some coefficients C > c > 0, where

∆ :=
1

log2(2d/s)
. (3.3)

The proof there proceeded by introducing a continuum version of the long-range perco-

lation model. Since the proof in Section 3.2 below is inspired by the proof for the continuum

model there, let us discuss it in detail. To define the continuum model, start with a Poisson

point process I ′ on Rd × Rd with intensity measure

µ(dx dy) = 1|x|2<|y|2β|x− y|−s dx dy, (3.4)

and let I = I ′ ∪ {(y, x) : (x, y) ∈ I } denote its symmetrization. The pairs in I are

interpreted as edges on Rd. A path is defined by its start and end point, plus a finite

(possibly empty) sequence of edges. The path length is the sum of the number of edges, plus

sum of the distances between their vertices. Specifically, let x and y denote respectively the

path start and end points. Let (x1, y1), . . . , (xm, ym) ∈ I ⊂ Rd × Rd denote the selected

edges. The path then has length

m+
m∑
i=0

|yi − xi+1|, (3.5)

where by convention y0 = x and xm+1 = y. The distance between points x, y ∈ Rd is defined

as the infimum over all finite paths of this form with edges drawn from I .

By changing the value of the parameter β, one may couple a copy of this continuum model

and a copy of the original (discrete) long-range percolation model, in such a way that for every

edge (x, y) in the continuum model there is a corresponding edge (bxc, byc) in the discrete

model, where bxc denotes the unique point in the lattice Zd such that x ∈ bxc+[0, 1)d. Then

any path in the continuum model induces a path in the discrete model, with edges in the

continuum path mapped to by their corresponding discrete edges and with the linear spans in

the continuum model, i.e. the spans between edges, which contribute the sum
∑m

i=0 |yi−xi+1|

in the formula (3.5), realized using a chain of nearest-neighbor edges in Zd. One then checks

103



that the path thus created has distance bounded by a constant times the original path length,

and hence one can use bounds on the continuum model (discussed below) to control distances

in the discrete model. This approach was sufficient to derive the asymptotics stated in (3.2)

for the original discrete model.

One might hope to derive tighter asymptotics for the discrete model by coupling the

two processes more tightly. Indeed, if one considers only long edges in the two random

processes, say of length ≥ K � 1, then one can couple copies of the two processes with

parameters β, β′ chosen very close together. One hopes then to derive a limit result easily

from this comparison. In fact, this coupling-based approach and the approach written out in

Section 3.2 below both encounter the same issue, regarding continuity in the parameter β, as

is discussed further near (3.11) below. The approach in Section 3.2 instead adapts the proof

from [BL19]. A coupling argument is used twice in the process of adapting the proof, but

that is not central to the method. In preparation for giving the adapted proof, let us review

the statement and proof for the continuum version of the long-range percolation from [BL19].

The asymptotic result that was derived for the continuum model is: for x ∈ Rd r {0},

D(0, rx)

φβ(r)(log r)∆

P−→
r→∞

1, (3.6)

where the superscript “P” denotes convergence in probability. The function φβ : (0,∞) →

(0,∞) is continuous in r, is bounded away from 0 and∞, and satisfies the log-log-periodicity

condition

φβ(rγ) = φβ(r), (3.7)

where γ := s/(2d) is an exponent deeply related to the structure of optimal paths in the

graph. Indeed, the consistent idea among the references [Bis04, Bis11a, BL19, BK21] that

establish distance and diameter results in the regime d < s < 2d is as follows. With high

probability, the optimal path in the graph from 0 to a points x with |x| � 1 uses a single

edge with length of order |x|. Such an edge can be found with high probability by searching

for and edge (X, Y ) ∈ I whose endpoints are respectively “close” to 0 and to x. Specifically,
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one expects to find |X| ≈ |x − Y | ≈ |x|γ, and γ is a threshold for the appearance of such

edges. Indeed, whenever one considers balls with radius � |x|γ there are usually many

such edges, and if the radius is � |x|γ there are usually none (where “usually” means with

probability tending to 1 as |x| → ∞). Then one considers sub-paths from 0 to X and from Y

to x, leading one to iterate through radii of the form |x|, |x|γ, |x|γ2 , and so on. Given that the

structure of paths is tied to these double-exponential sequences in γ, the log-log-periodicity

condition (3.7) should not be seen as mysterious.

To be more concrete about how the result in [BL19] is established, the key step is a

subadditive estimate that builds off of the argument sketched in the paragraph above. A

different criterion is used to choose the edge (X, Y ): instead of minimizing the “graph

distance” D(0, x), one minimizes the function f(X, Y ) = |x|−γ|X|2d + |x|−γ|Y |2d. Using the

Poisson structure in the continuum process, the joint law of (X, Y ′) can be computed. After

multiplying by |X|−γ to remove the scale dependence on |x|, one is left with a pair Z = |x|−γX

and Z ′ = |x|−γ(x− Y ) which are independent. In other words,

D(0, x)
law

≤ D(0, |x|γZ) +D(x, x+ |x|γZ ′) + 1. (3.8)

The actual result is [BL19, Proposition 2.7], which differs from (3.8) in several ways. First,

and perhaps least importantly, the actual result includes an extra error term: with expo-

nentially vanishing probability the edge (X, Y ) selected above is not suitable (for technical

reasons that we elide in this informal discussion), and one falls back to D(0, x) ≤ |x| in

this low-probability event. More substantial is the fact that rather than dealing with the

continuum distance D(0, x), the actual statement in [BL19] has D̃(0, x), the restricted dis-

tance. In the definition of D̃(x, y) one minimizes path distance only over paths that stay

within distance 2|y − x| of x. Hence the random variables D̃(x, y) and D̃(x′, y′) are inde-

pendent if the pairs {x, y} and {x′, y′} are separated by a large distance in the norm, as

the pairs {0, |x|γZ} and {x, x + |x|γ|Z ′|} usually are in (3.8). Applying this independent

in (3.8) one can replace D̃(x, x+ |x|γZ ′) by an independent copy D̃′(x, x+ |x|γZ ′), then use

105



translation invariance to simplify to D̃(0, |x|γZ ′). The result is

D̃(0, x)
law

≤ D̃(0, |x|γZ) + D̃′(0, 0 + |x|γZ ′) + 1 + error. (3.9)

Now, using the law of the i.i.d. pair (Z,Z ′) that was computed above, one can show that

the infinite product W := (
∏∞

k=1 |Z|γ
k
)Z converges with |W | ∈ (0,∞) a.s. This variable W

has the property that |W |γZ law
= W , so it is a fixed point of the subadditive iteration:

plugging in x← rW in (3.9) and taking expectations yields

ED̃(0, rW ) ≤ 2ED̃(0, rγ|W |γZ) + error = 2ED̃(0, rγW ) + error. (3.10)

Hence the limit L(r) := limn→∞ 2−nED̃(0, rγ
−n
W ) exists. One then builds upon this first

limit result, first passing from convergence in expectation to almost sure convergence. Then

one replaces the limit along the double-exponential sequence rγ
−n

by a limit with just r →∞;

this requires weakening from almost sure convergence to convergence in probability. Then it

remains to pass from the restricted distance D̃ back to the full distance; this is accomplished

by relaxing the restriction on how far paths can travel away from x; the limit of the hierarchy

of relaxed restricted distances is the full distance, and [BL19] shows how to carry the distance

asymptotics forward to it.

When we carry out the same strategy of proof sketched above for the original discrete

long-range percolation process, a few points will necessarily differ from [BL19]. First, the

proof above, when written out completely, relies on varying the parameter β at a certain

point. In the continuum model, it is possible to exchange a multiplicative adjustment to β

for a multiplicative scaling of the spatial coordinates; the exact result is [BL19, Lemma 2.2]:

for a ≥ 1,

Dβ(0, ax)
law

≤ Das−2dβ(0, ax)
law

≤ aDβ(0, x). (3.11)

This relies on the fact that the Poisson process from which the continuum model is realized

can be scaled by the map x 7→ ax. The result is a Poisson process with nearly the same

intensity, except thinned by the factor of as−2d that appears above. Of course, one cannot
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generally apply the scaling map x 7→ ax when points are restricted to the integer lattice.

Without this trick, it is more difficult to control the process when changing the parameter β.

A more abstract approach is used below, relying on the monotonicity in β, which implies

continuity for all but countably many values of β.

Interestingly, the scaling relation (3.11) is used for the opposite purpose as well: to

absorb linear scaling in the spatial coordinate into the parameter β. Indeed, from the

outermost expressions in (3.11) one obtains the useful relation D(0, ax)
law

≤ aD(0, x). The

corresponding inequality in the discrete model is difficult to establish. Even when |x| � 1

so that ax is very close to baxc ∈ Zd, one cannot easily control the distance D(0, ax)

using D(0, x), since every point along the path shifts by some amount, and possibly by a large

amount, when those points are far from the origin. In [BL19] the scaling inequality (3.11)

was combined with a rotational inequality (which again cannot be easily translated to the

discrete model, for essentially the same reason) to deduce [BL19, (4.22)]: for each ε > 0

there exists δ > 0, such that for all x, y ∈ Rd and all t > 0,

|y − x| < δ|x| =⇒ Pβ
(
D(0, x) ≤ t

)
≤ P(1+ε)β

(
D(0, y) ≤ (1 + ε)t

)
. (3.12)

In other words, ignoring the ε factors, the distance to x is stochastically dominated by the

distance to y for nearby points y, where the meaning of “nearby” is relative to |x|. Since the

limits we take involve scaling to infinity, it is important that the error |y−x| is allowed to scale

with |x|. This result (3.12) is used when conditioning on |W − x| < δ, to replace D(0, rW )

by D(0, rx). The lack of a result corresponding to (3.12) for the discrete model is why we

are limited to claiming the limit for most points x ∈ B(0, r) in Theorem 11 below, whereas

in [BL19, Theorem 1.2] the conclusion was for almost all x.

Outline of the rest of the chapter

Having discussed the strategy of proof, the rest of the chapter will proceed as follows:
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• In Section 3.1, we formaly state the main result of this chapter, namely Theorem 11.

• In Section 3.2, we prove the main theorem.

3.1 Model and results

Our formal setting is as follows: Let | · | denote a norm on Zd and let s ∈ (d, 2d). Let q

denote a function q : Zd → [0,∞), such that q(x) = q(−x) for all x ∈ Zd, and such that

q(x) ∼ 1

|x|s
. (3.13)

For β ∈ (0,∞) define

pβ(x) :=


1− exp(−βq(x− y)), if |x− y|1 > 1

1, if |x− y|1 = 1, and

0, if |x− y|1 = 0,

(3.14)

The long-range percolation with edge probability pβ is the random graph with vertices Zd

and an undirected edge between x and y present with probability pβ(x−y), independently of

other edges. The chemical distance (i.e. graph distance) D(x, y) between vertices x, y ∈ Zd

is then defined as the minimal number of edges in any path connecting x to y.

Having fixed notation and definitions, we are now prepared to state the main result of

this chapter:

Theorem 11. Let d ≥ 1 and s ∈ (d, 2d) and assume q obeys (3.13). Let ∆ = 1/ log2(2d/s),

as in (3.3). For each β > 0 there exists a continuous function φβ : (1,∞) → (0,∞) subject

to the log-log-periodicity condition

∀r > 1: φβ(rγ) = φβ(r) (3.15)

with γ := s
2d

, and there is at most countable Σ ⊆ (0,∞) such that, for all β ∈ (0,∞) r Σ,

∀ε > 0:
1

rd
#

({
x ∈ B(0, r) :

∣∣∣ D(0, x)

φβ(r)(log r)∆
− 1
∣∣∣ > ε

})
P−→

r→∞
0. (3.16)
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The map β 7→ φβ(r) is non-increasing and left-continuous. It is continuous at all β 6∈ Σ.

3.2 Proof of asymptotic bounds on chemical distance

The proof of of Theorem 11 follows closely that of its continuum predecessor [BL19, The-

orem 1.2]. Many steps of the proof can in fact be taken over nearly verbatim. The main

novelty is the need for a coupling between the lattice and continuum edge processes and an

argument by-passing discontinuity points of β 7→ φβ(r).

3.2.1 Subadditivity inequality

Given a sample of the percolation graph, let E denote for the set of all undirected edges

included in the graph, including the nearest-neighbor edges. We then echo definition (2.1)

of [BL19] and introduce D̃ : Zd × Zd → Z via

D̃(x, y) := inf

n ≥ 0:
{(xk−1, xk) : k = 1, . . . , n} ⊆ E , x0 = x,

xn = y, ∀k = 1, . . . , n : |xk − x| < 2|x− y|1

 . (3.17)

We will refer to D̃(x, y) as the restricted distance from x to y as it is non-negative, strictly

positive for x 6= y and arises by optimizing lengths of paths, although D̃ is not a distance in

proper sense as it is not symmetric in general. What matters in the sequel is

∀x, y ∈ Zd : D(x, y) ≤ D̃(x, y) ≤ |x− y|1 (3.18)

and the fact that the law of D̃ is translation invariant with

∀x, y, x′, y′ ∈ Zd : |x− x′|1 > 2|x− y|1 + 2|x′ − y′|1 ⇒ D̃(x, y) ⊥⊥ D̃(x′, y′). (3.19)

Here and henceforth | · |1 denotes the `1-norm on Rd.

For x ∈ Rd, let bxc denote the unique z ∈ Zd such that x−z ∈ [0, 1)d. The independence

property (3.19) enabled by the consideration of the restricted distance permits us to prove
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the following analogue of [BL19, Proposition 2.7] that drives the bulk of the subsequent

derivations in this section.

Proposition 1 (Subadditivity inequality). Fix η ∈ (0, 1) and γ ∈ (γ, 1). Let Z,Z ′ be

i.i.d. Rd-valued random variables with common law given by

P (Z ∈ B) =
√
ηβ

∫
B

e−ηβc0|z|
2d

dz, (3.20)

where

c0 :=

∫
1{|z|2d+|z̃|2d≤1} dz dz̃. (3.21)

Let D̃′ be an independent copy of D̃ with D̃ and D̃′ assumed independent of Z and Z ′. For

each γ1, γ2 ∈ (0, γ) with γ1 + γ2 = 2γ = s/d, there are c1, c2 ∈ (0,∞) and, for each x ∈ Zd,

there is an event A(x) ∈ σ(Z,Z ′) such that

D̃(0, x)
law

≤ D̃
(
0, b|x|γ1Zc

)
+ D̃′

(
0, b|x|γ2Z ′c

)
+ 1 + |x|11A(x) (3.22)

and

P
(
A(x)

)
≤ c1e−c2|x|

ϑ

(3.23)

hold with ϑ := 2d[γ −max{γ1, γ2}].

Proof. Fix η ∈ (0, 1), γ ∈ (γ, 1) and γ1, γ2 ∈ (0, γ) with γ1 + γ2 = 2γ. Let x ∈ Zd. Following

the overall strategy of the proof in [BL19], consider Borel measures µ and µ′ on Rd × Rd

defined by

µ(dx̃ dỹ) := ηβ1{|x̃|<|ỹ|}1{|x̃|∨|ỹ−x|≤|x|γ}
dx̃ dỹ

|x|s
(3.24)

and

µ′(dx̃ dỹ) := ηβ
dx̃ dỹ

|x|s
− µ′(dx̃ dỹ). (3.25)

Next observe that, for |x| larger than an η-dependent constant, for any (x̃, ỹ) ∈ Rd×Rd, the

inequalities |x̃|2 ≤ |ỹ|2, |x̃| ≤ |x|γ, and |ỹ − x| ≤ |x|γ imply

(
1+η

2

)1/s |x| < |x̃− ỹ| <
(

1+η
2

)−1/s |x| (3.26)

110



and so, by the inequality on the right,

µ
((
bx̃c+ [0, 1)d

)
×
(
bỹc+ [0, 1)d

))
≤ ηβ

|x|s
≤ η(

1+η
2

) β

|x̃− ỹ|s
. (3.27)

By (3.14–3.13), the left-inequality in (3.26) and η(1+η
2

)−1 < 1, this is less than pβ(bx̃c− bỹc)

as soon as |x| is sufficiently large. Hence for |x| large we can couple a Poisson point process I

with intensity measure µ′ to the discrete edge set E so that

∀(x̃, ỹ) ∈ I : (bx̃c, bỹc) ∈ E (3.28)

holds pointwise and, by (3.19) and restriction built into the definition of D̃, the families

{
D̃(0, bx̃c) : |x̃| ≤ |x|γ

}
,
{
D̃(x, bỹc) : |ỹ − x| ≤ |x|γ

}
, I (3.29)

are independent.

Let I ′ be a Poisson point process with intensity measure µ′′ independent of I and E .

Then I ∪ I ′ is a homogeneous Poisson process with intensity ηβ|x|−s ∈ (0,∞) and, as is

readily checked, there is almost surely a unique pair (X, Y ) ∈ I ∪ I ′ that minimizes the

function

fx(x̃, ỹ) :=
(
|x|−γ1|x̃|

)2d
+
(
|x|−γ2|ỹ − x|

)2d
. (3.30)

The joint law of X and Y can be computed explicitly as in [BL19], using the Poisson structure

of the edge set I :

P
(
(X, Y ) ∈ B

)
=

ηβ

|x|s

∫
B

exp
{
− ηβ

|x|s

∫
1{fx(x̃′,ỹ′)≤fx(x̃,ỹ)}dx̃dỹ′

}
dx̃dỹ. (3.31)

The random variables

Z := |x|−γ1X and Z ′ := |x|−γ2(Y − x) (3.32)

then have the joint law

P
(
(Z,Z ′) ∈ B

)
= ηβ

∫
B

exp

{
−ηβ

∫
1{|z̃|2d+|z̃′|2d≤|z|2d+|z′|2d}dz̃dz̃′

}
dzdz′ (3.33)
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Scaling z̃ and z̃′ by (|z|2d+ |z′|2d)1/d, the integral in the exponent is shown to equal c0(|z|2d+

|z′|2d). (This is where using 2d-powers in (3.30) is crucial.) Thus Z and Z ′ are indeed

independent with above law (3.20).

Next define the event A(x) as follows: When |x| is large enough (with exact bounds

including those mentioned above and those further given below), set

A(x) :=
{
|Z| > |x|γ−γ1

}
∪
{
|Z ′| > |x|γ−γ2

}
(3.34)

and let A(x) be the entire probability space otherwise. On the event A(x)c the edge (X, Y )

lies in I since |X| ∨ |Y − x| ≤ |x|γ and so (bXc, bY c) ∈ E by (3.28). Moreover, both X

and Y are within distance 2|x| of the origin (as long as |x| is large enough; this is part of the

bounds on |x|). Recalling the notation B(y, r) := {z ∈ Rd : |z − y| < r}, similar arithmetic

as in [BL19, eq. (2.29) and (2.30)] establishes

B
(
0, 2|bXc|

)
⊆ B

(
0, 2|x|

)
and B

(
x, 2|bY c − x|

)
⊆ B

(
0, 2|x|

)
. (3.35)

Picking a path achieving D̃(0, bXc), concatenating it with edge (bXc, bY c) and a path

achieving D̃(x, bY c) then produces a path in B(0, 2|x|) whose length dominates the restricted

distance D̃(0, x).

Using (3.18) to bound D̃(0, x) by |x|11A(x) when A(x) occurs, this yields the pointwise

inequality

D̃(0, x) ≤ D̃
(
0, b|x|γ1Zc

)
+ D̃

(
x, x+ b|x|γ2Z ′c

)
+ 1 + |x|11A(x). (3.36)

In light of (3.29), the two instances of D̃ on the right can be regarded as independent of

each other and of the variables Z and Z ′. Invoking translation invariance of the law of D̃,

the proof is reduced to (3.23). This follows readily from (3.34) and (3.20).
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3.2.2 Convergence for restricted distance

The next several steps hew closely to the original article. Indeed, taking expectation in

(3.22) with γ1 = γ2 = γ gives

ED̃(0, x) ≤ 2ED̃
(
0, b|x|γZc

)
+ 1 + |x|1P

(
A(x)

)
(3.37)

In order to unite the arguments in the two expectations and get an expression that can be

iterated, we replace x by the random variable

W := Z0

∞∏
k=1

|Zk|γ
k

, (3.38)

where Z0, Z1, . . . are i.i.d. copies of Z. As shown in [BL19, Lemma 3.1], the infinite product

converges and W ∈ (0,∞) a.s., with W admitting a continuous, a.e.-non-vanishing proba-

bility density and finite moments of all orders. Noting that for W and Z independent we

get |W |γZ law
= W , taking W independent of the D̃’s then yields

ED̃(0, rW ) ≤ 2ED̃(0, rγW ) + c (3.39)

for c := 1 + supx∈Rd |x|1P (A(x)). This implies the existence of the limit

Lβ(r) := lim
n→∞

ED̃
(
0, brγ−nW c

)
2n

(3.40)

giving us

∀r > 1: φβ(r) := Lβ(r)(log r)−∆ (3.41)

From (3.40) we get Lβ(rγ) = 2Lβ(r), which is responsible for the log-log-periodicity (3.15).

The construction via a (essentially) decreasing limit then ensures that φβ is bounded from

above on (1,∞) while [BL19, Theorem 2.5] implies that φβ is also uniformly positive.

While simple, the construction of Lβ via (3.40) harbors several conceptual problems.

First, it concerns the restricted distance. Second, it depends on W which itself depends on β

and η. In [BL19, Section 3], these concerns are dispelled by subsequently proving that, for
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all r ≥ 1 and Lebesgue a.e. x ∈ Rd,

D̃
(
0, brγ−nxc

)
2n

−→
n→∞

Lβ(r), P -a.s. (3.42)

see [BL19, Proposition 3.3]. The proof of this is based on the subadditivity estimate (3.22)

and, modulo rounding of the arguments of D̃, it can be taken over varbatim.

Another concern is the regularity of r 7→ Lβ(r). As in [BL19], this can again be handled

using the subadditivity bound (3.22) which gives

D̃
(
0, brγ−nxc

) law

≤ D̃(0, brγ1γ−n|x|γ1Zc
)

+ D̃′
(
0, brγ2γ−n|x|γ2Z ′c

)
+O(1), (3.43)

where, thanks to (3.23), O(1) is bounded in L1 uniformly in x and r ≥ 1. Since Z is

continuously distributed, (3.42) gives

Lβ(r) ≤ Lβ(rγ1) + Lβ(rγ2) (3.44)

for all γ1, γ2 ∈ (0, 1
2
(1 + γ)) with γ1 + γ2 = 2γ. This implies convexity of t 7→ Lβ(et) and

thus continuity of r 7→ Lβ(r) and r 7→ φβ(r) on (1,∞).

The next step in the argument is the replacement of a limit along doubly exponentially

growing sequences by a plane limit r →∞. This comes at the cost of reinserting W :

Lemma 19. Suppose D̃ and W are independent. Then

D̃
(
0, brW c

)
L(r)

−→
r→∞

1, in probability and in L2. (3.45)

Proof. The corresponding statement in [BL19] (see Proposition 3.7 there) is deduced from

the fact that, for Xn(r) := 2−nD̃(0, rγ
−n
W ), the limits EXn(r)→ Lβ(r) and Var(Xn(r))→ 0

are locally uniform in r ≥ 1. This is in turn proved by noting that, thanks to (3.22), both

EXn(r) and E(Xn(r)2) are downward monotone in n modulo vanishing additive correction

terms. As r 7→ Xn(r) is continuous in the continuum model, the local uniformity is then

extracted from Dini’s Theorem.
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In order to adapt this reasoning to our setting, we need to supply an argument for

continuity. This can be achieved by extending the definition of x 7→ D̃(0, x) to all x ∈ Rd

as follows: Let dist∞ denote the `∞-distance on Rd and let h : [0, 1]d × {0, 1}d → [0, 1] be

defined by

h(x, σ) :=
[
1− dist∞(x, σ)

]( ∑
σ′∈{0,1}d

[
1− dist∞(x, σ′)

])−1

(3.46)

This function is continuous in x with h(σ, σ′) = δσ,σ′ for all σ, σ′ ∈ {0, 1}d. Now set

D̃(0, x) :=
∑

σ∈{0,1}d
h
(
x− bxc, σ

)
D̃
(
0, bxc+ σ

)
(3.47)

The subadditive bound (3.22) (which implied the aforementioned downward monotonicity)

holds without any rounding albeit with “1” on the right replaced by a d-dependent constant

thanks to |D̃(0, x)−D̃(0, bxc)| ≤ d for all x ∈ Rd. This constant is irrelevant in the argument

and so we can then proceed as in [BL19].

Before we move on, we record a useful consequence of above derivations:

Corollary 3. For each β ∈ (0,∞) there is c ∈ (0,∞) such that

∀x ∈ Zd r {0} : Eβ
(
D̃(0, x)

)
≤ c
[
1 + (log |x|)∆

]
(3.48)

Proof. The above gives EβD̃(0, rW ) ≤ c(log r)∆ once r is sufficiently large. Using that

Z
law
= W/|W ′|γ for W ⊥⊥ W ′ with W ′ law

= W gives

EβD̃(0, rZ) ≤ cE
((

log(r|W |−γ))∆
)

(3.49)

Since W has a bounded density and at most Gaussian tails, the expectation on the right is

at most c[1 + (log r)∆] once r is sufficiently large. The claim now follows from (3.37) and the

bound (3.23).
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3.2.3 Actual distance

We are now ready to start working towards the asymptotics of the actual distance D. Paral-

leling the approach in [BL19, Section 4], fix γ ∈ (γ, 1) and extend D̃ to a family of restricted

“distance” functions,

D̃k(x, y) := min

n ≥ 0:
{(xi−1, xi) : i = 1, . . . , n} ⊆ E , x0 = x, xn = y,

∀i = 1, . . . , n : |xi − x| ≤ 2|x− y|γ−k

 . (3.50)

These interpolate between the actual distance and the restricted distance monotonically:

D(x, y) ≤ · · · ≤ D̃k+1(x, y) ≤ D̃k(x, y)

≤ · · · ≤ D̃1(x, y) ≤ D̃0(x, y) = D̃(x, y).
(3.51)

Since k 7→ D̃k(x, y) is non-increasing, non-negative, and takes values in Z, the sequence

{D̃k(x, y)}k≥1 must stabilize; i.e., D̃k(x, y) = D̃(x, y) for all k sufficiently large, depending

on x, y, and on the random edges that determine the distances. A key fact is that, at large

scales, this happens uniformly with high probability:

Lemma 20. Let W be independent of the distances D̃k and D. There is a k ∈ N such that

lim
r→∞

P
(
D̃k

(
0, brW c

)
= D

(
0, brW c

))
= 0. (3.52)

Proof. This is a lattice version of [BL19, Lemma 4.2] whose proof went through by way of

the discrete distances and so can be taken over without change.

The next result to establish is an analogue of [BL19, Lemma 4.3], which bounds the

ratio ED̃k(0, brW c)/L(r) asymptotically by one from below. In [BL19], the proof relied on

continuity of β 7→ φβ(r) which was in turn proved using scaling arguments that do not seem

to apply here. However, the above does give us the following:

Lemma 21. For each r > 1, β 7→ φβ(r) is left-continuous and downward monotone. There

exists an (at most) countable set Σ ⊆ (0,∞) such that, for each r > 1, the function β 7→ φβ(r)

is continuous at all points β′ ∈ (0,∞) r Σ.
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Proof. In light of (3.41), the downward monotonicity follows from (3.42) and the fact that,

under a monotone coupling of edge sets for two different β, distances are ordered pointwise.

Being a downward limit of continuous functions, β 7→ Lβ(r) is left-continuous, and hence so

is β 7→ φβ(r).

The convexity of t 7→ Lβ(et) show above guarangees that, for any 0 < β0 < β1 <∞ and

1 < r0 < r1 <∞, the family of functions{
r 7→ Lβ(r) : β ∈ [β0, β1]

}
(3.53)

is uniformly equicontinuous on [r1, r2]. This implies that, if β 7→ φβ(r) is continuous at

some β′ ∈ (0,∞) for all r ∈ Q ∩ [r1, r2], then it is continuous at β′ for all r ∈ [r1, r2].

Invoking the log-log-peridicity (3.15), β 7→ φβ(r) is continuous for all r > 1 as soon as β

does not belong to

Σ :=
⋃

r∈Q∩[eγ ,e]

{
β ∈ (0,∞) : lim

β′↓β
φβ′(r) > lim

β′↑β
φβ′(r)

}
. (3.54)

This set is (at most) countable, since for each r ∈ Q ∩ [eγ, e] the set of jump discontinuities

of β 7→ φβ(r) is at most countable.

All that continuity of β 7→ φβ was needed for in [BL19] is condensed into:

Lemma 22. Let Σ be as in Lemma 21. Then for each β 6∈ Σ,

lim
β′↓β

inf
r>1

φβ′(r)

φβ(r)
= 1. (3.55)

Proof. We will prove the contrapositive. First observe that, by the log-log-periodicity (3.15),

we may restrict the infimum to r ∈ [eγ, e] without changing the result. Next, since the ratio

is non-increasing in β′, we can take β′ down to β along any decreasing sequence βn ↓ β.

The continuity and boundedness imply existence of a minimizer; call it rn for β′ = βn. By

compactness of [eγ, e] we may assume rn → r∞ ∈ [eγ, e] as n → ∞. But then the uniform

equicontinuity of (3.53) implies

lim
β′↓β

inf
r∈[eγ ,e]

φβ′(r)

φβ(r)
= lim

n→∞

φβn(r∞)

φβ(r∞)
. (3.56)
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If the latter limit is not equal to one, then β′ 7→ φβ′(r∞) is not continuous at β, thus forcing

β ∈ Σ. Hence β 6∈ Σ implies (3.55) as desired.

Let us henceforth write Pβ for the probability and Eβ for the expectation associated with

edge probabilities pβ. We then have:

Proposition 2. Let β 6∈ Σ and let W be as in (3.38) for Z with law (3.20) for η := 1. Then

∀k ≥ 1: lim inf
r→∞

Eβ ⊗ EW D̃k(0, rW )

φβ(r)(log r)∆
≥ 1, (3.57)

where the product of expectation indicates that W and D̃k are independent.

Proof. As in [BL19], the statement will be deduced from the fact (to be proved) that, for

each k ≥ 1, β > 0 and ε ∈ (0, 1/2) there is c = c(k, β, ε) ∈ (0,∞) such that

Eβ ⊗ EW D̃k

(
0, brε−

1
2d−sW c

)
≤ 2Eβ(1−2ε) ⊗ EW D̃k+1

(
0, brγε−

1
2d−sW c

)
+ c. (3.58)

Indeed, dividing both sides φβ(1−2ε)(r)(log r)∆ and taking r →∞ shows

lim inf
r→∞

Eβ′ ⊗ EW D̃k+1(0, rW )

φβ′(r)(log r)∆
≥
[

inf
r>1

φβ(r)

φβ′(r)

]
lim inf
r→∞

Eβ ⊗ EW D̃k(0, rW )

φβ(r)(log r)∆
, (3.59)

where β′ := β(1−2ε). Since (3.57) holds for k := 0 and all β > 0 by Lemma 19, this bounds

(3.57) inductively for any k ≥ 1 by

k∏
j=1

inf
r>1

φβ(1−2ε)−j(r)

φβ(1−2ε)1−j(r)
≥
[

inf
r>1

φβ(1−2ε)−k(r)

φβ(r)

]k
, (3.60)

where the inequality follows from downward monotonicity of β 7→ φβ. Taking ε ↓ 0 and

applying Lemma 22 we then get (3.57) for all β 6∈ Σ.

As in [BL19], the proof of (3.58) is based on a variant of the argument from Proposition 1.

Let µ, resp., µ′ be as in (3.24–3.25) for η := ε and let I , resp., I ′ be independent Poisson

processes with intensity measures µ, resp., µ’. For any (x̃, ỹ) ∈ Rd×Rd satisfying |x̃|2 ≤ |ỹ|2,

|x̃| ≤ |x|γ, and |ỹ − x| ≤ |x|γ we have

µ
((
bx̃c+ [0, 1)d

)
×
(
bỹc+ [0, 1)d

))
+ pβ(1−2ε)

(
bx̃c, bỹc

)
≤ pβ

(
bx̃c, bỹc

)
(3.61)
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provided |x| is sufficiently large. Letting E ′ be a sample of edge configuration with probabil-

ities pβ(1−2ε) which we assume independent of I and I ′′, we can couple the above processes

to a sample E of edge configurations with probabilities pβ so that

{
(bx̃c, bỹc) : (x̃, ỹ) ∈ I

}
∪ E ′ ⊆ E . (3.62)

We then use I ∪ I ′ to pick a pair (X, Y ) minimizing (3.30), define (Z,Z ′) from these as

in (3.32) and A(x) as in (3.34) unless |x| is small, in which case we set A(x) to the whole

probability space.

On A(x)c we are guaranteed (X, Y ) ∈ I and so (bXc, bY c) ∈ E . Next note that, once |x|

is sufficiently large (which is a restriction that is made part of the definition of A(x)), the

fact that γ < γ < 1 implies

B
(
0, 2|X|γγ−(k+1)) ∪B(x, 2|x− Y |γγ−(k+1)) ⊆ B

(
0, 2|x|γ−k

)
(3.63)

whenever A(x) occurs. Writing D̃′k for the distances generated by E ′ and D̃k for those

generated by E , concatenating a path minimizing D̃k+1

(
0, bXc

)
with edge (bXc, bY c) and the

path minimizing D̃k+1

(
x, bY c

)
produces a path contributing to the optimization underlying

D̃k

(
0, x
)
. Thanks to (3.62) we thus get

D̃k

(
0, x
)
≤ D̃′k+1

(
0, bXc

)
+ D̃′k+1

(
x, bY c

)
+ 1 + |x|11A(x). (3.64)

Rewriting X and Y using Z and Z ′, plugging for W for x and taking expectation, this

yields (3.58) except with W defined using η := ε. As a calculation shows, the change in

normalization effectively replaces W by ε−
1

2d−sW .

We are now ready to give:

Proof of Theorem 11. Let β 6∈ Σ. Summarizing the above developments, for W (defined

using η := 1) independent of D we have

D
(
0, brW c

)
Lβ(r)

−→
r→∞

1 in probability and L2. (3.65)
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Indeed, the upper bound is supplied by Lemma 19 and D(0, x) ≤ D̃(0, x), while the lower

bound follows from Lemma 20 and Proposition 2.

Fix δ ∈ (0, 1). Using that W admits a probability f , the expectation of the quantity on

the left of (3.16) is bounded by

1

rd
#B(0, δrd) +

cr(δ)

ε
Eβ ⊗ EW

(∣∣∣D(0, brW c)
Lβ(r)

− 1
∣∣∣), (3.66)

where

cr(δ) := max
x∈B(0,r)rB(0,εr)

(∫
x+[0,1]d

f(z/r) dz
)−1

. (3.67)

Since f is continuous positive on Rdr {0} we have supr≥1 cr(δ) <∞. The second term thus

tends to zero as r → ∞ by (3.65). Noting that r−d#B(0, δr) ≤ cδd, the claim follows by

taking r →∞ and δ ↓ 0.

120



REFERENCES

[AK81] Mustafa A. Akcoglu and Ulrich Krengel. “Ergodic Theorems for Superadditive
Processes.” J. Reine Angew. Math., 323:53–67, 1981.

[AP96] Peter Antal and Agoston Pisztora. “On the chemical distance for supercritical
Bernoulli percolation.” Ann. Probab., 24(2):1036–1048, 1996.

[Bar16] Albert-László Barabási. Network Science. Cambridge Univ. Press, 2016.

[BB01] Itai Benjamini and Noam Berger. “The diameter of long-range percolation clus-
ters on finite cycles.” Random Struct. Alg., 19(2):102–111, 2001.

[BCG16] Alexei Borodin, Ivan Corwin, and Vadim Gorin. “Stochastic Six-Vertex Model.”
Duke Math. J., 165(3):563–624, February 2016.

[Bei77] Henk van Beijeren. “Exactly Solvable Model for the Roughening Transition of a
Crystal Surface.” Phys. Rev. Lett., 38(18), 1977.

[Ber04] Noam Berger. “A lower bound for the chemical distance in sparse long-range
percolation models.” arXiv:math/0409021, 2004.

[Bis04] Marek Biskup. “On the scaling of the chemical distance in long-range percolation
models.” Ann. Probab., 32(4):2938–2977, 2004.

[Bis11a] Marek Biskup. “Graph diameter in long-range percolation.” Random Struct.
Alg., 39(2):210–227, 2011.

[Bis11b] Marek Biskup. “Recent progress on the random conductance model.” Probab.
Surv., 8:294–373, 2011.

[BK21] Marek Biskup and Andrew Krieger. “Arithmetic oscillations for the chemical
distance in long-range percolation on Zd.” In preparation, 2021.

[BKP04] Itai Benjamini, Harry Kesten, Yuval Peres, and Oded Schramm. “Geometry of
the uniform spanning forest: transitions in dimensions 4,8,12,. . . .” Ann. Math.,
160:465–491, January 2004.

[BL19] Marek Biskup and Jeffrey Lin. “Sharp asymptotic for the chemical distance in
long-range percolation.” Random Struct. Alg., 55(3):560–583, 2019.

[CEP96] Henry Cohn, Noam Elkies, and James Propp. “Local Statistics for Random
Domino Tilings of the Aztec Diamond.” Duke Math. J., 85(1):117–166, 1996.
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