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Abstract

Deep Learning in Medical Applications

by

Xinlu Zhang

The rapid advancement of deep learning has significantly impacted the medical do-

main, benefitting various applications including clinical decision-making, personalized

treatment, and medical education. Deep learning applications in the medical domain

can be categorized based on the data types used: 1) Numerical measurements model-

ing: building models on numerical clinical measurements, including static and time-series

data; 2) Natural Language Processing (NLP): training models on medical textual data

such as doctor-patient conversations and clinical notes; and 3) Multimodal learning:

leveraging data from multiple modalities to enhance the model’s medical capacity and

performance. This thesis presents works in these three categories, aiming to advance AI

systems that can assist clinicians in enhancing healthcare outcomes and efficiency.

In numerical measurements modeling, despite the effectiveness of deep learning mod-

els in decision support, many studies rely on extensive public datasets, overlooking the

data scarcity in small hospital settings. We address this by utilizing domain adaptation

techniques to improve modality prediction in ICU patients with limited data.

Concerning NLP, while Large Language Models (LLMs) like ChatGPT and GPT-4

have shown promising results, privacy concerns restrict their direct use in healthcare. We

propose integrating medical knowledge from LLMs into local models for decision support

to alleviate these privacy concerns. Furthermore, instruction tuning has become crucial

in aligning LLMs with human intents and has shown potential in medical applications.

However, existing medical LLMs ignore the diversity of tuning data, limiting their ability

ix



to follow medical instructions and generalize. This thesis presents a novel approach

to generating a diverse, machine-generated medical instruction-following dataset and

demonstrates that the model tuned on this dataset achieves superior performance in

both medical and general domains.

For multimodal learning, although improvements have been seen in medical predic-

tions using multimodal data, challenges in modeling irregularities within each modality

and integrating irregular time information into the multimodal representation persist.

We introduce strategies for addressing these challenges in multimodal electronic health

records to enhance predictions for ICU patients.

Finally, we summarize the key findings and discuss future research directions to push

the boundaries of deep learning in medical applications.
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Chapter 1

Introduction

Recently, with the accelerated development of deep learning, a variety of deep learning

techniques and frameworks have been applied to the medical domain with a range of

applications, such as early-stage mortality prediction, medical exam question answering,

and treatment recommendations, achieving state-of-the-art performance. To assist clini-

cians on various real-world medical applications, it is critical to learn medical information

from diverse data sources, such as electronic health records (EHRs), pubmed articles, and

transcripts of patient-doctor conversations, encompassing a variety of data modalities.

Due to the diverse biomedical data sources used to train deep neural networks for

various medical applications, deep learning in biomedical applications can be categorized

based on the different data modalities used for model training. In this thesis, I primar-

ily focus on three areas: 1) Numerical Measurements Modeling, which involves training

deep neural networks on biomedical numerical measurements, such as static and time-

series physiological monitoring data found in Electronic Health Records (EHRs), to sup-

port doctors’ decision-making; 2) Natural Language Processing (NLP), which focuses on

building deep neural networks for medical textual data, including clinical notes, PubMed

articles, and patient-doctor conversations, to assist in applications such as medical text
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Introduction Chapter 1

generation, exam question-answering and patient diagnosis and treatment recommen-

dation; and 3) Multimodal Learning, which utilizes data sources from more than one

modality to obtain multimodal representations for downstream medical tasks, such as

multimodal disease diagnosis and patient condition prediction.

In the following sections, I will dive into these three areas and summarize my works

and contributions.

1.1 Numerical Measurements Modeling

In numerical measurements modeling, deep neural networks take both continuous

and discrete numerical biomedical data as inputs and obtain outputs based on different

applications. One of the major usages of biomedical numerical measurements model-

ing is medical predictions in intensive care unit (ICU) scenarios. The system aims to

understand the internal relationships among various numerical features collected from

ICU patients to support medical applications such as in-hospital mortality prediction,

length-of-stay prediction and phenotype classification.

Training deep neural networks often requires a large labeled corpus to work well.

However, limited data are available in a small, private medical system for model train-

ing, especially when further narrowed into a medical sub-domain, e.g. trauma, limiting

the possible application of deep neural networks. Therefore, researchers often conduct

experiments and draw conclusion on large, public EHR datasets, assuming that sufficient

training data is available for different clinical tasks and the test set follows the same

distribution of training data. However, direct inference models trained on large public

datasets to small private datasets are challenging due to distribution shifts.

Domain adaptation (DA) is a subcategory of transfer learning that leverages knowl-

edge from a different but related source domain as additional information to improve

2
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model performance for a target domain with limited training data. Although DA has

shown progress in clinical predictions, previous studies considered overlapping data fea-

tures in source and target domains and ignored important information provided by dis-

tinct features in each domain, which can hurt the prediction performance. In addition,

how to align the target and source distributions when the target training set is extremely

inadequate has not been well studied.

In this dissertation, I aim to fully utilize the feature information from both the source

and target domains using DA techniques to enhance in-hospital mortality prediction

performance in a small hospital setting using early-stage clinical numerical measurements.

1.2 Natural Language Processing (NLP)

NLP in medical domain employs deep neural networks by analyzing a wide array of

biomedical textual data, including PubMed articles, doctor-patient dialogues, and clini-

cal notes, to facilitate various medical applications including medical question-answering,

free-form text generation and predictive modeling. Recently, advancements in large lan-

guage models (LLMs) [1, 2, 3, 4, 5] have shown considerable promise in the medical

domain, offering valuable insights and capabilities across various applications [6, 7, 8].

Despite the promise shown by LLMs in reshaping the medical domain, there emerge

critical challenges, which have not been fully explored yet.

1.2.1 Privacy in medical LLM applications.

Restrictions on the use of medical data are strict due to privacy concerns, specifically

prohibiting the sharing of private medical data with third parties [9], such as directly

uploading it to ChatGPT [4]. While data usage policies aim to protect user data, their

implementation varies across LLM APIs [4, 5, 10], leading to inconsistent levels of pro-
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tection. On the other hand, small language models (SLMs) offer a way to maintain data

privacy in the medical domain through local training, yet there is a significant perfor-

mance gap between SLMs and LLMs.

In this dissertation, I focus on enhancing medical question-answering task perfor-

mances, which require strong medical reasoning capacities, in a privacy-restricted sce-

nario. I introduce a simple yet effective approach to leverage LLMs as a medical knowl-

edge base. This involves querying LLMs for medical knowledge related to downstream

tasks using medical keywords extracted from the original questions. The resulting con-

texts, enriched with strong medical information, are then fed into local SLMs to improve

the models’ medical decision-making capacity while addressing privacy concerns. Com-

prehensive experiments and analyses are conducted to demonstrate the effectiveness of

the method.

1.2.2 Tuning data diversity in open-source medical LLMs.

Recent advancements in the training of LLMs have placed a significant emphasis on

instruction-finetuning (IFT), a critical step in enabling pre-trained LLMs to effectively

follow instructions [3, 11, 12]. To better align with human intent in the medical domain,

[13, 14, 15] tune open-source LLMs [16] on different medical datasets to obtain medical

LLMs. Although increasing in amounts, these datasets used often exhibit limited diver-

sity, relying on benchmarks or narrow task scopes, restricting the effectiveness in medical

instruction-following ability and generalizability.

In this dissertation, I propose to use stronger LLMs (e.g. GPT-4 and ChatGPT) as

teachers to create a diverse, machine-generated medical IFT dataset for tuning LLMs, to

better align with various user needs in medical applications. Comprehensive experiments

are conducted to show that even using a smaller dataset, the model tuned with this

4
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diverse IFT dataset obtains better medical instruction-following ability and maintains

strong generalizability. To foster further research, public access to the IFT dataset,

MedInstruct-52k, a clinician-curated instruction test set, MedInstruct-test and our model

AlpaCare are offered.

1.3 Multimodal Learning

Multimodal learning involves integrating information from multiple data sources across

different modalities, such as text and numerical structured data, to enhance the under-

standing and performance of deep neural networks for various downstream tasks, includ-

ing mortality prediction and diagnosis recommendations.

Health conditions among patients in ICUs are monitored via multimodal EHRs, com-

posed of numerical time series and lengthy clinical note sequences, both taken at irregular

time intervals. Although previous studies [17, 18, 19] show promising results on medi-

cal prediction by using multimodal EHRs comparing to only one modality, dealing with

such irregularity in every modality and integrating irregularity into multimodal repre-

sentations to improve medical predictions are still challenging problems.

In this dissertation, I propose to thoroughly model irregularity in multimodalities for

improving medical predictions by first addressing irregularity in each single modality re-

spectively and integrating irregularity in multimodal fusion with an interleaved attention

mechanism across temporal steps. I conduct comprehensive experiments to showcase the

effectiveness of the methods in tackling irregularity in each single modality and mul-

timodal fusion scenarios, demonstrating the importance of considering irregularity in

multimodal EHRs.

5
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1.4 Contributions

Here, I briefly summarize my contributions during my Ph.D. studies. I have been

working on building deep neural networks for different medical applications in numerical

measurements modeling, NLP, and multimodal learning.

For numerical measurements modeling, in [20], I propose methods to improve mor-

tality prediction in private, small hospital settings, addressing the challenge of data

scarcity. For NLP, in [21], I study how to leverage medical knowledge in strong LLMs

to support medical decision-making under privacy-restricted scenarios. Furthermore, in

[22], I investigate the importance of data diversity in medical LLM tuning and propose

a semi-automated process to generate a medical IFT dataset for better aligning medi-

cal LLM with user domain-specific intents. For multimodal learning, in [23], I explore

the irregularity modeling in multimodal EHRs to improve medical predictions for ICU

patients.

6



Chapter 2

Domain Adaptation for Trauma

Mortality Prediction in EHRs with

Feature Disparity

2.1 Introduction

Trauma is the leading cause of death from age 15 to 49 worldwide, resulting in the

death of more than 5 million people each year [24]. After admission to intensive care

units (ICUs), most of these deaths occur in the first several hours or days. Treatment

decisions and actions in the first several minutes or hours after injury are critical [25],

and medical decision errors are more likely to be made during this period than at later

times [26]. Thus, tools that can provide efficient and real-time prediction are critical for

clinicians to maximize the impact of treatment and improve survival rates.

Machine learning approaches are increasingly being used to detect adverse events in

clinical settings. Different from risk scores, e.g. Modified Early Warning Score (MEWS)

[27], which are developed on general populations with specific clinical measurements,
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machine learning techniques can be customized to different patient subpopulations or

professional care facilities by training models on different datasets [28]. Recently, with

the rapid development of deep learning (DL), a variety of DL techniques and frame-

works have been applied to clinical predictions, such as in-hospital mortality prediction,

length-of-stay prediction and phenotype classification [29] [30], achieving state-of-the-art

performance. DL models often require a large corpus of labeled training data to work well

[31]. Therefore, researchers often use DL approaches and draw conclusions on the basis of

large public electronic health record (EHR) datasets, such as Medical Information Mart

for Intensive Care (MIMIC III) [9], assuming that sufficient training data is available

for different clinical tasks and the test set follows the same distribution of training data.

Nevertheless, models trained on large public datasets often achieve suboptimal perfor-

mance when directly deployed to smaller private EHRs due to distribution shift [32], e.g.

differences in lab procedures and instrumentation, injury types and population groups

based on location etc. On the other hand, only limited private EHRs are available to

serve as the training set at a single medical system [28], especially when further narrowed

into a medical sub-domain, e.g. trauma, limiting the possible application of DL methods.

Domain adaptation (DA) is a subcategory of transfer learning that leverages knowl-

edge from a different but related source domain as additional information to improve

model performance for a target domain with limited training data [33]. DA has made

remarkable progress in computer vision [34] and natural language processing [35]. Some

prior works [32][36][37] have also successfully applied DA to clinical predictions across

multiple hospital systems, assuming that the distribution shift between the source and

target domain of EHRs is caused by heterogeneous patient populations (covariate shift)

and variations in data collection procedures (systematic bias). However, these methods

are used only on datasets with overlapping features in both domains, and ignore infor-

mation provided by distinct features in the target and source (feature disparity), which

8
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describe the characteristics of different datasets and can be essential for prediction perfor-

mance. For example, clinicians tend to order particular blood tests for trauma patients,

compared to other ICU patients, to identify disease states associated with coagulopathy

[38], a known contributor to trauma mortality [39]. Two challenges remain to directly

apply DA to multi-hospital system EHRs with feature disparity in a target data scarcity

setting. First, not all clinical features included in the source and target datasets are

precisely the same, and even some overlapping features collected from different hospital

systems are represented in different ways. Second, it is impracticable to align the target

and source distributions when the target training set is extremely inadequate.

In this chapter we aim to overcome the aforementioned challenges to fully utilize

DA techniques to improve DL performance on a small target dataset, by leveraging

domain-invariant knowledge from another different yet related large source dataset with

feature disparity. Specifically, we introduce the private encoding technique to map target

and source datasets from different feature spaces into the same hidden representation

space, and utilize pairing sampling techniques [40],[41] to pair each target data point to

abundant source data points, to effectively align the target and source distributions for

applying different DA approaches. We demonstrate the effectiveness of DA in mortality

prediction for trauma patients by taking feature disparity into account on two real-world

datasets. To summarize, our contributions include:

• We extend DA techniques with a proposed private encoding to enable early-stage

mortality prediction for trauma patients in multi-hospital system EHRs with fea-

ture disparity. To the best of our knowledge, this is the first work to consider

feature disparity between the source and target domain in leveraging DA methods.

• Experimental results on two small target datasets show that DA techniques with

our proposed methodology improve mortality prediction performance consistently
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and significantly in various training scenarios, with F1-scores up to 100%.

• We provide an ablation study and a 2d t-SNE [42] analysis on two datasets, which

further underscores the importance of modeling feature disparity and validates the

effectiveness of DA techniques, respectively.

2.2 Related Work

Machine learning models have been trained for many clinical tasks, with several

public datasets available, e.g. MIMIC III and eICU Collaborative Research Database

(eICU-CRD)[43]. [44] presents benchmarking results for clinical prediction tasks such as

mortality prediction, length of stay prediction, and ICD-9 code group prediction using

the MIMIC III dataset. [45] performs a length of stay prediction, utilizing a Bayesian

neural network, and conducts experiments on the eICU-CRD datasets. Although DL ap-

proaches attain state-of-the-art performance in medical domains, most of the works are

only applied to large EHRs but difficult to yield similar performance when retrospective

data are limited, which is common in real-world hospital settings.

DA leverages knowledge from a source domain to improve a target domain perfor-

mance with limited training data, and has been applied in computer vision [34] and

natural language processing [35]. One of the simplest DA methods is fine-tuning (FT)

[46], which first pretrains model parameters on a source dataset and then updates them

with a target dataset. Although widely used [47], FT tends to be sub-optimal, especially

when target training data is insufficient [40], due to catastrophic forgetting [48]. More

advanced techniques have been proposed to deal with the challenge in few-shot scenarios.

In particular, [41] proposes a Siamese architecture [49] to address visually supervised DA

by learning an embedding subspace, in which mapped raw feature domains are seman-

tically aligned but maximally separated with few labeled target data samples available.

10
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Under the same few-shot learning scenario, [40] provides a framework to exploit adver-

sarial learning to identify the embedding subspace for feature alignment. However, it is

not immediately apparent how to apply these methods to multi-hospital system EHRs

with feature disparity because these EHRs are within a different input space.

For DA in multi-hospital system EHRs, [32] shows the effectiveness of FT on mortality

prediction by pretraining on MIMIC III or eICU-CRD and fine-tuning on the other

one with overlapping features. [36] seeks domain-invariant representations between two

systems by adversarial learning for clinical task predictions. [37] proposes two causes of

discrepancies between multi-hospital system EHRs: 1) covariate shift, caused by different

patient distributions in different hospitals, and 2) systematic bias, caused by different

administrative policies and workflows of different medical systems. However, they utilize

only target and source datasets with overlapping features, and ignore the feature disparity

among EHRs. This can significantly degrade performance in the target domain since the

information provided by overlapping features between source and target is limited, and

distinctive properties provided by domain-specific features are not fully utilized.

2.3 Background

Mortality Prediction Let X |d| be a |d|-dimensional space, where d is a selected feature

set based on particular hospital systems and/or sub-medical domains, and x is a data

vector which represents clinical measurements, taking values in X |d| following distribution

p(x). Supposing that y ∈ {0, 1} is the binary outcome indicator for each sample, where

y = 0 and y = 1 denote discharge and death respectively, we can represent an EHR

dataset as a collection of N i.i.d. samples D = {xi, yi}Ni=1.

In early-stage mortality prediction, given selected clinical measurements x in the first

several hours after admission, we would like to predict whether a patient will die after

11
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certain periods:

y = Φ(x), (2.1)

where Φ is a probabilistic model. In this capter, we focus on the training data scarcity

scenario for the problem of interest.

DA in EHRs To learn a representative Φ in Eq. 2.1 in a data-scarce EHR dataset, given

that another relevant and large EHR dataset is accessible, we cast the problem in terms

of a DA problem. In the DA setting, we have a source dataset Ds = {(xs
i , y

s
i )}Ns

i=1, where

xs
i ∈ X |ds|, and a target dataset Dt = {(xt

i, y
t
i)}Nt

i=1}, where xt
i ∈ X |dt|, with Ns ≫ Nt.

Our goal is to produce an accurate survival outcome on the target domain t with training

data scarcity, by leveraging knowledge from the source domain s with a sufficient amount

of available data information, but with feature disparity, i.e. |ds ∪ dt| < |ds| + |dt|,

|ds| > |ds ∩ dt| and |dt| > |ds ∩ dt|.

2.4 Methodology

In this section we introduce the private encoding technique to deal with feature dis-

parity between multi-hospital system EHRs, and explain how it is equipped with three

DA approaches: FT, ALPCA [40] and CLPSA [41] to fully utilize source knowledge and

improve prediction performance in the target domain during inference.

2.4.1 Private Encoding

There is no universal representation for raw features in EHRs. We have X |ds| ̸=

X |dt|, given that EHRs from different hospital systems or sub-domain populations meet

discrepancies. To leverage DA, which requires target and source representations in the

12
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same space, we define a new space X̃ as the hidden feature space. Instead of obtaining

the space utilizing only overlapping features between domains, private encoders, Ks and

Kt, map all selected features, xs and xt from X |ds| and X |dt|, respectively, to X̃ to obtain

the hidden feature vectors x̃s and x̃t, by

x̃s = Ks(x
s) (2.2)

x̃t = Kt(x
t), (2.3)

following distributions p(x̃s) and p(x̃t). We assume that there is a covariate shift [50]

between x̃s and x̃t, such that the distribution p(x̃s) ̸= p(x̃t) in X̃ . Encoding all selected

features in both domains encourages x̃s and x̃t to have more comprehensive represen-

tations for corresponding domains, and can further improve the mortality prediction

performance.

2.4.2 DA techniques with private encoding

DA approaches attempt to align the distributions of the source and target domains to

obtain more domain-invariant information from the source, improving model performance

in the target domain when training data is scarce. To utilize DA techniques in EHRs with

feature disparity, we first map both source and target domain data into the same hidden

space by private encoders, and then utilize two more components for both domains:

shared encoders Hs, Ht : X̃ → Z, which take outputs from the source and target private

encoders, respectively, to obtain shared domain-invariant representations; and classifiers,

Cs, Ct : Z → Y , which take outputs from Hs and Ht to predict mortality for the source

and target domains, respectively. To improve mortality prediction in the target domain,

13
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we optimize binary cross entropy losses in both domains,

ŷ = C(H(x̃)), (2.4)

LC = −
[
y log (ŷ) + (1 − y) log(1 − ŷ)

]
, (2.5)

with different DA techniques, where ŷ, H and C are symbolic representations of the

predicted mortality, shared encoders and classifiers, respectively, for both the source and

target domains. To encourage representations of the source and target towards becoming

domain-invariant in the embedding space Z, we share parameters between Hs and Ht, i.e.

Hs = Ht = H. To ensure that representations carry the domain-specific characteristics

of source and target in Y , we set Cs ̸= Ct.

Fine-tuning (FT) FT is one of the most direct ways to apply DA. Specifically, FT is

a method that adopts a model that has already been trained for a given task, and tunes

or tweaks the model to perform on a second different but related task [51]. Here, we first

pretrain networks with the source data for mortality prediction,

ŷs = Cs(Hs(x̃
s)), (2.6)

and then fine-tune with the available target data,

ŷt = Ct(Ht(x̃
t)), (2.7)

where Ht is initialized by Hs from Eq. 2.6.

Adversarial Learning with Pairing Classes Alignment (ALPCA) Traditionally,

adversarial learning [52] introduces a min-max game training strategy to obtain domain-

invariant knowledge by seeking a discriminator, D, that can identify samples from source

and target distributions. After D is learned, H, in the role of a generator, is updated to

render D unable to distinguish samples from the source and target domains. However,
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Figure 2.1: An example illustration of pairs in four groups for ALPCA.

due to data scarcity, H cannot estimate the target population accurately. Even with

a perfect H, i.e. D cannot distinguish whether a sample is from the source or target

domain, H still cannot guarantee that samples from different domains but with the same

class label will map nearby in the embedding space, since no class information is provided

to D in standard adversarial training [40].

We follow [40] to alleviate the target training sample shortage issue in adversarial

domain adaptation and encourage networks to learn the properties of death and discharge

patients in two domains. Specifically, a pairing strategy [40] is used to overcome the

scarcity of training data by creating four groups based on domain and class information,

and a multi-class discriminator D [40] is introduced by distinguishing four pairing groups

to encourage H to generate domain-invariant representations with class information.

As shown in Figure 2.1 (encouraged by [40]), two groups (G1 and G2) consist of positive

pairs and two (G3 and G4) consist of negative pairs. Each positive pair is composed of two

samples with the same class, either death-death or discharge-discharge; while each

negative pair is composed of two samples with different classes, i.e. death-discharge.

Pairs in G1 and G3 consist of items both from the source domain, generated by randomly
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Figure 2.2: ALPCA with a discharge-death example from G4.

pairing samples drawn from the source distribution based on class information; while pairs

in G2 and G4 consist of one item from the source and another from the target distribution,

created by pairing each target sample with a number of randomly drawn source samples

based on classes. In G1 and G2, we generate death-death and discharge-discharge

with approximate ratio 1 : 1 to encourage the networks to learn more similarity infor-

mation between death patients, which is hard to achieve with very imbalanced medical

data. We construct each group of the same size for training D by matching the other

three groups’ size with the smallest one.

As demonstrated in Figure 2.2, H tries to fool D by taking hidden representations

from corresponding private encoders (Ks and Kt) and outputting domain-invariant fea-

ture representations. D takes the concatenation of domain-invariant representations to

distinguish which group a sample pair comes from, trained via a standard cross entropy

loss,

LD = −E
[ 4∑

i=1

yGi
log(D(H(K(Gi))))

]
, (2.8)

where yGi
denotes the label of group i = 1, 2, 3, 4, and K denotes a symbolic representation

of private encoders based on different pair groups, i.e. K is two Ks for G1 and G3, while
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Figure 2.3: CLPSA with a negative example.

one Kt and one Ks for G2 and G4. To output domain-invariant representations carrying

class information, H fools D to identify sample pairs from G2 as G1, and pairs from G4 as

G3, so that target samples can have indistinguishable representations with more diverse

source samples. Mathematically, H along with Kt and Ks are updated, with

LG = −E
[
yG1 log(D(H(K(G2)))) + yG3 log(D(H(K(G4))))

]
. (2.9)

Minimizing (2.9) together with the source and target classification losses,

LG&C = αLG + βLCs + LCt , (2.10)

where α and β are hyper-parameters, encourages networks to obtain domain-invariant

representations with class information and achieve good performance on classification

tasks by considering distribution differences in Y , simultaneously.

Contrastive Learning with Pairing Semantic Alignment (CLPSA) Instead of

training an additional D for aligning the feature distributions in Z to achieve the goal of
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DA, CLPSA [41] learns Z by pulling samples from different domains but the same class

as close together as possible yet pushing samples from different domains and classes as

far away as possible. Following [41], as shown in Figure 2.3, H takes x̃s and x̃t to obtain

domain-invariant representations by training with contrastive semantic alignment losses,

consisting of a semantic alignment loss LSA and a separation loss LS.

Specifically, to align the distributions of samples in the embedding space, a semantic

alignment loss is introduced,

LSA =
1∑

a=0

d(p(H(x̃s
a)), p(H(x̃t

a))), (2.11)

where x̃s
a and x̃t

a are vectors from the source and target domains in X̃ belonging to the

same class a. d is a metric to measure the distance between the distributions of x̃s
a and

x̃t
a in Z. LSA prompts samples with the same class from two different domains to map

nearby in the embedding space.

Although pulling the same class samples from different domains close together in the

embedding space encourages target groups to obtain information from similar points in

the source, minimizing LSA does not guarantee that points in different classes from two

domains are separated enough, which would significantly degrade performance in the

target domain. Therefore, we leverage a separation loss,

LS =
1∑

a=0,b=0|a̸=b

k(p(H(x̃s
a)), p(H(x̃t

b))) (2.12)

where k is a metric to measure the similarity between the distributions x̃s
a and x̃t

b

in Z. LS encourages class separation by pushing the representations of different classes

in two domains farther away, i.e. adding a penalty if the distance between distributions

p(H(x̃s
a)) and p(H(x̃t

b)) is small.

Finally, CLPSA is jointly trained with classification losses from both domains and
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contrastive semantic alignment losses,

LCCSA = LCt + γLCs + δ(LSA + LS), (2.13)

where γ and δ are hyper-parameters.

Similar to ALPCA, it is difficult to minimize Eq. 2.13 when the target training data

is scarce because LSA and LS depend on calculating distances and similarities between

distributions, and those need to learn with sufficient samples.

Therefore we pair each target sample to a large number of randomly selected source

samples and compute average pairwise distances between positive pairs

d(p(H(x̃s
a)), p(H(x̃t

a))) =
∑
i,j

d(H(x̃s
i ), H(x̃t

j)), (2.14)

where ysi = ytj = a; or similarities between negative pairs

k(p(H(x̃s
a)), p(H(x̃t

b))) =
∑
i,j

k(H(x̃s
i ), H(x̃t

j)), (2.15)

where ysi = a ̸= ytj = b, between points in the embedding space to achieve semantic

alignment. Here, the ratio between positive and negative sample pairs is 1:1, and the

ratio between the death-death and discharge-discharge pairs is also 1:1 in the positive

group, to encourage the network to learn more information from the records of patients

that died, in an imbalanced dataset.

We implement LSA and LS with contrastive loss following [53]

d(H(x̃s
i ), H(x̃t

j)) =
1

2
∥H(x̃s

i ) −H(x̃t
j)∥2, (2.16)

k(H(x̃s
i ), H(x̃t

j)) =
1

2
max(0,m− ∥H(x̃s

i ) −H(x̃t
j)∥)2, (2.17)

where ∥·∥ denotes the Frobenius norm and m is a margin to define the separability in

the embedding space.
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2.5 Experiments

2.5.1 Datasets

We conducted experiments on a source dataset extracted from MIMIC III and two

target datasets: the UCSF dataset and the EICU dataset. For the missing data issue

[54], each dataset was preprocessed in the same way. First, we excluded patients with

more than 50% of features missing, and then we applied MICE [55] data imputation for

the remaining missing values. The statistics of these processed datasets are summarized

in Table 2.1, and details are described below.

Table 2.1: Dataset Statistics

Source Target

MIMIC III UCSF EICU

# patients 29914 2069 2565

# death 3063 342 204

# discharge 26851 1727 2361

# feature 21 31 35

#overlapping 21 18 12

MIMIC III is a public data source of de-identified EHRs, which contains 53,423 patients

admitted to ICUs at a Boston-area hospital from 2001–2012 [9]. We extracted the data

following [56] and selected the 17 most common clinical features (e.g. heart rate, blood

pressure, temperature and respiratory rate, etc.),

as well as 4 demographic features (ethnicity, gender, age and weight) for the mortality

prediction. As we focus on prediction with early-stage measurements, we took the first

appearance of each clinical feature measurement in the first two hours after admission if
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it is available; otherwise, it was regarded as a missing value. After data preprocessing,

the source dataset consisted of 29914 patients with 21 features in total. We randomly

selected 80% of the data points as the training set, and the rest as the validation set.

UCSF Dataset, collected from the UCSF/San Francisco General Hospital and Trauma

Center, contains 2,190 patients admitted to a Level I trauma center. We selected demo-

graphic information, injury score, physical vital signs and laboratory results1 measured

at the time of admission or during the first two hours after admission, as features for

mortality prediction. After data preprocessing, we have 2,069 patients with 31 features,

including 18 features overlapping with MIMIC III. We randomly selected 784 and 785

patients as the validation and testing sets, respectively, and further randomly drew dif-

ferent training sizes from the remaining patients to simulated data scarcity at various

levels.

EICU Dataset is extracted from the eICU-CRD, a multi-center ICU database with high

granularity data for over 200,000 admissions to ICUs monitored by eICU programs across

the United States. We selected the first-time ICU admission of each adult patient (age >

18) with a diagnosis related to trauma. Then we queried the minimum and maximum of

clinical measurements (e.g. blood urea nitrogen, white blood cell count and hemoglobin,

etc.) and demographics information taken in the first 24 hours of a patient’s ICU stay,

following the code shared by the eICU research community2, to predict the mortality

after the first admission day. After data prepossessing, we have 2565 trauma patients

with a death and discharge ratio of approximately 1:12, and 35 features containing 12

overlaps with MIMIC III. 1032 and 1033 patients were randomly selected as validation

and test sets, and the remaining were randomly drawn for various training size scenarios,

which is the same as UCSF dataset.

1Lab tests focusing on trauma patients: Protein C, D-Dimer, ATIII, Factor II, V, VII, VIII, IX and
X

2https://github.com/mit-lcp/eicu-code
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2.5.2 Experiment settings

Evaluation Metric

We measured the performance of three DA methods and baselines by the F1-score,

with 0.5 as the prediction threshold following the previous work [57].

Model configurations

• MLP-target (baseline): This is a multi-layer perceptron (MLP) composed of

Kt, H and Ct, trained only on the target dataset.

• FT: An MLP model composed of Ks, H and Cs was first pretrained on source data.

The best performing model, evaluated by the source validation set, was saved. Then

another MLP model composed of Kt, H and Ct were trained on target data, with

Kt and Ct randomly initialized and H inherited from the pretraining step.

• ALPCA: As shown in Figure 2.2, all six networks (Ks, Kt, H, D, Cs and Ct)

in the framework are MLPs with random initialization, and the discriminator is

trained with Eq. 2.8. The other five networks are trained with Eq. 2.10 following

standard adversarial training schema [52].

• CLPSA: As shown in Figure 2.3, five networks (Ks, Kt, H, Cs and Ct) in the

framework are MLPs with random initialization. They are trained with Eq. 2.13.

For the neural networks above, we used batch normalization to normalize the input layer

by re-centering and re-scaling. For fair comparison, we assigned the same structures for

Kt, H and Ct in the MLP-target and FT, respectively. In ALPCA and CLPSA, Ks, Kt,

H, Cs and Ct have the same structure as FT. D in ALPCA is a two-layer MLP.

The size of each hidden layer in all networks was selected by grid search among

{8, 16, 32}. We implemented all models in PyTorch [58] and all of the neural networks
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Table 2.2: F1 comparison (%) of MLP-target, FT, ALPCA and CLPSA with different

training data sizes on the UCSF and EICU datasets. Mean values along with their

standard deviations in the subscript were calculated with 5 data splits.

Training size 50 100 200 300 400 500

Dataset Model

UCSF

MLP-target 36.24.7 36.40.4 39.56.1 46.84.8 46.72.0 47.40.3

FT 50.37.1 51.47.7 58.14.6 59.94.4 60.12.8 58.02.6

ALPCA 48.67.3 57.52.1 59.41.4 60.41.2 59.90.9 60.71.7

CLPSA 52.33.4 54.24.3 59.32.6 62.32.3 64.51.5 63.72.2

EICU

MLP-target 17.77.7 20.62.7 21.41.3 21.91.9 20.41.7 22.31.4

FT 23.57.0 21.85.1 26.33.7 26.75.6 25.74.5 27.91.7

ALPCA 26.15.4 25.36.5 30.73.2 29.83.2 35.64.5 36.31.9

CLPSA 28.16.4 30.45.1 34.04.5 37.52.9 40.83.5 41.02.1

were trained with Adam [59], whose learning rates were selected by grid search among

{0.0001, 0.0002, 0.0005}3.

2.5.3 Performance comparison

Our results are summarized in Table 2.2. All three DA methods yielded better per-

formance than the MLP-target in both datasets across various training data scenarios,

demonstrating the effectiveness of DA in small training data regimes. Both ALPCA

and CLPSA achieved better performance than FT. CLPSA outperformed ALPCA or

achieved comparable results in the UCSF dataset, and consistently performed better than

ALPCA in the EICU dataset, across the entire range of training data sizes. The result

3All other hyper-parameters, e.g. α, β and m etc. were selected by grid search in the same ranges
for fair comparison. We omitted these due to space limitations.
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Table 2.3: F1 comparison (%) of ablation study on three reasons for discrepancies of DA

methods on the UCSF and EICU datasets.

Model
MLP-target FT ALPCA CLPSA

C-only S+C F+S+C C-only S+C F+S+C C-only S+C F+S+C

UCSF 47.40.3 29.02.2 38.93.5 58.02.6 54.64.1 55.61.7 60.71.7 54.82.1 53.72.6 63.72.2

EICU 22.31.4 18.30.7 18.30.7 27.91.7 17.340.8 15.53.11 36.31.9 16.52.4 15.80.7 41.02.1

that ALPCA underperforms CLPSA may be primarily due to introducing an additional

network (discriminator), making the whole framework more challenging to optimize, with

more parameters to update [60]. Surprisingly, the three DA methods with 50 training

data points consistently outperformed the MLP-target with 500 training data points (10

times larger), which further strengthens the powerful capability of DA in small EHR data

regimes.

2.5.4 Ablation study on modeling feature disparity.

We have demonstrated the effectiveness of DA methods in Table 2.2, where feature

disparity (F) is modeled by private encoding strategy, as well as systematic bias (S) and

covariate shift (C). We denote this setting as F+S+C. To verify the effectiveness of modeling

feature disparity in DA, we considered two variants for both EHRs in the 500 patients

training data scenario. First, we considered both systematic bias and covariate shift but

not feature disparity, denoting as S+C. The networks were trained on both the source and

target data, only including overlapping features and not sharing parameters on private

encoders. Second, we trained the networks on two domains with overlapping features

and shared parameters on private encoders, counting only the discrepancies caused by

covariate shift, which is denoted as C-only.

Table 2.3 presents the results of our ablation study on three different causes of discrep-
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ancies, as well as the MLP-target. The empirical analysis shows that S+C is not always

better than C-only, or vice versa and they may even underperform MLP-target, which

utilizes all features in target domain including overlapping ones. However, our method,

F+S+C, consistently yields significantly better performance than S+C and C-only , demon-

strating the importance of modelling feature disparity in DA of multi-hospital systems

EHRs, especially when the overlapping features between systems are limited.

2.5.5 Analysis

To understand why DA improves prediction performance on target datasets and why

CLPSA yields the best performance compared to other DA strategies, we further ana-

lyzed 2-dimensional (2-d) embeddings of testing sets on the UCSF and EICU datasets,

respectively. Specifically, we obtain 2-d embeddings by reducing high dimensional rep-

resentations before feeding into the Ct using t-SNE [61] in Scikit-learn [62]. Then we

calculate the average difference between inter-cluster and intra-cluster distance in the

death group, which is more important than the discharge group in the medical domain,

yielding

ddiff = dinter − dintra =

∑n
i ∥ei − cdischarge∥2 −

∑n
i ∥ei − cdeath∥2

n
,

where n represents the number of patients who died, ei is i-th patient’s 2-d embedding,

and cdischarge and cdeath are centers of the discharge and death clusters in the 2-d embed-

ding space, respectively. Inter-cluster distance is an average distance between members

of a cluster and another cluster’s center; meanwhile, intra-cluster distance is an average

distance between members and their own center. We want the inter-cluster distance to

be large to push the cluster far away from the other, but the intra-cluster distance to be

small to pull members in a cluster as close as possible. Thus the ddiff should be large to

make the cluster easy to identify by Ct.
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Average ddiff results corresponding to various training data sizes in Table 2.2 are

summarized in Table 2.4. Consistent with the F1 scores in Table 2.2, CLPSA achieved a

greater or comparable ddiff, compared to other methods for both the UCSF and EICU

datasets, which indicates that hidden representations generated by CLPSA are prone to

be identified by Ct compared to other models.

We further visualized the 2-d t-SNE of all models from the same data split on both

datasets with 500 training points in Figure 2.4. The 2d t-SNEs of death and discharge

patients on both the UCSF and the EICU dataset for MLP-target in Figure(a) and

Figure(a′) are almost overlapping, indicating that it is difficult to find a straight line to

distinguish the two groups, making Ct prediction of mortality challenge. For the other

DA models, the cluster of the death group often aggregates at the right in each plot,

making it more straightforward to separate with the discharge patients compared to the

MLP-target, and illustrating the reason for improvement by utilizing DA. Comparing

the 2-d t-SNEs of different DA methods, we find that the cluster of death patients with

CLPSA in Figure(d) and Figure(d′) is more concentrated than that with FT in Figure(b)

and Figure(b′) and with ALPCA in Figure(c) and Figure(c′), which explains the better

performance of CLPSA compared to other DA strategies.

2.6 Conclusion

In this chapter we showed how DA methodologies, in particular FT, ALPCA and

CLPSA, can be used to improve the performance of mortality prediction for trauma pa-

tients in regimes with limited training data. In contrast to existing DA methodologies in

multi-hospital system EHR predictive tasks, which consider only the discrepancies caused

by covariate shift and systematic bias, we bridge the gap of feature disparity by intro-

ducing a private encoding strategy that maps clinical measurements from different raw
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Table 2.4: 2d t-SNE embedding distance evaluation of testing set in the UCSF and EICU

datasets.

Training Size 50 100 200 300 400 500

Dataset Model

UCSF

MLP-target 5.7 5.9 5.1 8.2 9.3 8.3

FT 6.9 10.8 11.8 13.0 13.9 12.9

ALPCA 11.3 11.7 13.4 11.1 13.8 11.9

CLPSA 8.2 12.1 12.9 14.5 15.8 14.0

EICU

MLP -target −0.2 0.8 2.3 1.7 2.7 2.9

FT 3.7 3.6 4.7 3.1 3.6 6.1

ALPCA 4.2 4.6 4.9 3.1 7.1 3.3

CLPSA 3.6 5.5 4.1 5.0 7.2 6.5

(a) UCSF: MLP (b) UCSF: FT (c) UCSF: ALPCA (d) UCSF: CLPSA

(b%) EICU: FT (c%) EICU: ALPCA(a%) EICU: MLP (d%) EICU: CLPSA

Figure 2.4: Testing set 2d t-SNE embedding for the UCSF and EICU dataset with the

500 training data scenario. The blue and orange dots represent the discharged and dead

patients, respectively.

feature spaces to a hidden feature space and follows with various DA techniques. Exten-

sive experimental results on two datasets demonstrate the usefulness of DA, and ablation
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studies and 2-d t-SNE analysis further explain the effectiveness of private encoding and

DA methods, respectively.
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Chapter 3

Enhancing Small Medical Learners

with Privacy-preserving Contextual

Prompting

3.1 Introduction

Figure 3.1: Synthetic medical data for illustration. Though rich in domain-specific

knowledge, medical data contains sensitive private information. We extract keywords

to mitigate privacy concerns.

Steven Smith is a 60-year-old man admitted at Auckland Hospital. He was attended by Dr. Edward Jones at Date: 
06/01/2008 . He has a past medical history significant for uncontrolled HTN who  presents with a non-reducible right 
inguinal hernia. Patient first noticed a right sided bulge in 3 months prior. Every day it slips out and he has to manually 
push it back it. He has had to present to the emergency room twice recently when he was unable to push it back it. He 
was pending an outpatient repair of his right inguinal hernia. 

What are the assessment and recommendations for this patient?

Large language models (LLMs) [1, 2, 3, 4, 5] have shown promise in the medical field

[6, 7, 8]. However, concerns about medical data privacy prevent the direct use of LLMs’

29



Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting Chapter 3

medical capabilities in healthcare domain, as illustrated in Figure 3.1. Despite data

usage policies1 to safeguard user data, the implementation of these policies varies among

LLMs, creating inconsistent protection levels. Moreover, medical data usage agreements2

are stringent, explicitly forbidding data sharing with third parties, like direct uploads to

ChatGPT [4]. Therefore, developing methods to harness LLMs’ medical knowledge while

balancing data privacy in privacy-restricted scenarios is an urgent and underexplored

research area.

Small language models (SLMs) 3 that are specific to the medical domain [64, 65, 66,

67, 68, 69] have shown superior in-domain task performance compared to general-domain

SLMs [70, 71, 72], addressing the vital need for data privacy in the medical field through

local training. However, a notable performance gap between SLMs and LLMs in medical

tasks remains [6, 8]. A critical question arises: How can we bridge the performance gap

between SLMs and LLMs for medical tasks in privacy-restricted scenarios?

One common strategy to narrow the performance gap between LLMs and SLMs in-

volves leveraging generated rationales [73, 74] from LLMs to boost the performance of

SLMs [63, 75, 76, 77]. However, previous research has often required feeding complete

data information into LLMs, ignoring privacy concerns. Thus, it is essential to explore

alternative methods that can effectively utilize LLM-generated context, which is rich

in medical knowledge, while balancing privacy concerns for LLMs and performance en-

hancement for SLMs in the medical domain.

In this chapter, we present a simple yet effective pipeline that boosts SLM perfor-

mance by incorporating medical contexts from LLMs in privacy-restricted scenarios. To

the best of our knowledge, this is the first work that has utilized LLMs to improve SLM

performance in such settings. While our primary focus is on multiple-choice medical

1https://openai.com/policies/api-data-usage-policies
2https://physionet.org/content/mimiciii/view-dua/1.4/
3Following [63], we argue that the definition of small and large models is context-dependent.
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Figure 3.2: Framework overview. (a) To mitigate privacy leakage, we use a keyword

extractor to obtain medical keywords. Clinicians then create several contexts based on

these keywords and candidate answers, which the LLM uses to produce privacy-restricted

contexts. (b) The generated contexts are used as additional input to enhance SLM

medical decision-making capacity.

Keywords

LLM

Question+ Candidate 
answers

Context

(a) Privacy-Restricted Context Prompting in LLMs

Question

Keywords

Keywords 
Extractor

Candidate 
answersContext

SLM

Prediction

+

(b) Context-Enhanced Medical Capability in SLMs

(1) Keywords Extraction (2) Context Generation

+

QA, our framework can be adapted to other tasks or domains. Figure 4.2 illustrates

our framework. Specifically, we use existing named-entity recognition (NER) models [78]

to extract keywords4, thereby mitigating privacy risks. Based on these keywords and

candidate answers, clinicians generate several medical contexts that mirror their thought

processes. These clinician-written contexts serve as demonetisation to generate contexts

for the remaining data by the LLM by in-context learning [1]. Finally, we integrate these

contexts into the SLMs to improve their performance on medical tasks.

Overall, our main contributions can be summarized as follows:

1. We propose a simple yet effective pipeline that uses keywords and candidate answers

to elicit medical knowledge from LLMs, which is then fed into SLMs to enhance

medical capabilities.

2. We introduce a privacy-conscious prompting strategy that mimics clinicians’ thinking

4Keywords can be extracted by other methods, e.g., a manually created dictionary based on domain
expertise.
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to generate medical knowledge-intensive contexts from LLMs in privacy-restricted

scenarios.

3. Our method notably surpasses standard SLM fine-tuning without context in both

full training and few-shot settings, achieving up to a 22.57% increase in accuracy,

and obtains SOTA results in two medical tasks in privacy-restricted scenarios.

3.2 Related Work

LLMs in Biomedicine. LLMs excel in NLP tasks, including medical fields [1, 2, 3, 4,

5, 8, 79, 6]. [79] used ChatGPT for the US Medical Exam. [8] leverage GPT-3.5 models

for medical reasoning tasks. MedPaLM, tuned from FlanPaLM [80], answered consumer

medical questions comparably to clinicians [6]. However, privacy concerns limit LLMs

in real-world medical uses, highlighting the need to utilize LLM medical knowledge in

privacy-restricted setting.

Biomedical SLMs. Domain-specific SLMs, either extended from general-domain pre-

training [67, 66, 81] or built from scratch on biomedical corpora [64, 65, 68], surpass

general models [70, 71, 72] in biomedical tasks [64, 65, 66, 67, 68, 69]. They also enhance

privacy through local training. However, a performance gap remains between domain-

specific SLMs and LLMs in medical tasks [8, 6], emphasizing the need for strategies to

reduce this gap.

Knowledge Distillation from LLMs. Previous studies have investigated distilling

knowledge [82] from LLMs to enhance smaller models’ performance [76, 77, 83, 63]. [76]

fine-tuned smaller models using InstructGPT-generated reasoning samples. [83] input

LLM generated rationales into SLM for question-answering. [63] applied LLM-derived

explanations for multi-task learning. However, these approaches involve prompting LLMs

without considering privacy preservation, which is vital in real-world medical scenarios
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[84, 85, 86]. We introduce a keyword-based prompting strategy to generate medical

knowledge from LLMs, while balancing LLM privacy preservation and SLM performance

enhancement.

Augmenting NLP Tasks with External Knowledge. Improving knowledge-intensive

NLP tasks can be achieved by retrieving information from large evidence corpora like

Wikipedia [87, 88, 89, 90, 91, 92, 93]. The retrieve-then-read model [94] utilizes retrievers,

such as BM25 [95] and DPR [96], to identify relevant documents within a corpus. Then,

a reader, like FiD [88], analyzes these documents to enhance NLP tasks [93, 97, 98, 99].

Some studies retrieve subgraphs from knowledge graphs to boost question-answering

tasks [89, 100]. Recent research shows that pre-trained language models can ”retrieve”

information via direct text generation [101, 102]. [103, 87] utilized LLMs to generate rele-

vant contexts or background documents for question-answering tasks. Our work leverages

LLMs as a knowledge base for medical knowledge retrieval.

Data Privacy in BioNLP. Biomedical data inherently contains sensitive information

[104]. De-identification methods eliminate private details and replace them with synthetic

data [105, 106, 107]. For example, [108, 109] treat de-identification as a NER problem,

modeling by neural networks. Despite being de-identified, sharing restrictions still apply

[9, 110]. Differential privacy (DP) provides theoretical bounds on individual data privacy

while allowing aggregate statistical disclosure for the entire database [111, 112, 113]. [114]

train a model using a DP-based approach to generate synthetic clinical notes for secure

sharing. In this work, we migrate privacy concerns during LLM inference by prompting

the LLM with medical keywords extracted from raw data.
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Figure 3.3: LLM generates privacy-restricted medical contexts to enhance SLM

decision-making. (a) The LLM generates medical knowledge-intensive context for each

instance using clinicians’ few-shot demonstrations, extracted keywords from raw data

(k), and candidate answers (A). The generation output comprises: overall context (co),

specific context of each candidate answer (caj); and preliminary decision of LLM (d).

(b) The overall and specific contexts are then concatenated (⊕) with the question as

additional input to fine-tune an SLM, enhancing its medical decision-making.

Keywords: emergency department, blood pressure, lungs, …, mucous membranes,
Candidate answers: (a) Diazepam (b) Paroxetine (c) Zolpidem (d) Trazodone
Context:

Overall    
context
(!!)
Specific
context
(!"!)

Preliminary 
decision (#)

LLM output

SLM

Input example

Demonstrations 

Few-shot examples

The woman is exhibiting symptoms of major depressive …
(a): Dopamine is a neurotransmitter that increases positive … 
It is not a treatment for the patient's symptoms.
(b): Glutamate is  …
(c): Norepinephrine is …
(d): Serotonin is …

Question Keywords: 
healthy, woman, …, Pharmacotherapy, neurotransmitters
Candidate Answers: 
(a) Dopamine (b) Glutamate (c) Norepinephrine (d) Serotonin
Context:

Therefore, the answer is (d).

Output

Input

$

%

&:A previously healthy 32-year-old woman 
…which of the following neurotransmitters?

⨁
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⨁
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⨁
!%1 :Dopamine is a neurotransmitter that..

Input

LLM

Output

ℎ&ℎ' ℎ( ℎ)
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3.3 Methodology

3.3.1 Privacy-Restricted Context Prompting in LLMs

We consider a dataset D = {(qi, Ai, yi)}N , where N denotes the total number of

instances, qi a problem, Ai a set of candidate answers, and yi the correct answer. A set

of keywords ki is extracted from each problem qi using a medical NER model [78]. To

mitigate privacy leakage, we feed ki and Ai into the LLM to generate medical context
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[76, 63].

We have a small set of clinician-written instances E = {(kp
i , A

p
i , C

p
i , d

p
i )}M , where

both Cp
i , denoting medical contexts, and dpi , representing preliminary decisions, are gen-

erated based on partial data information kp
i and Ap

i , with M ≪ N5. The medical context

Cp
i consists of an overall context and specific contexts for each candidate’s answer. The

overall context encapsulates high-level medical knowledge based on keywords and can-

didate answers, while specific contexts provide detailed information for each candidate

answer and its relationship to the overall context. The preliminary decision represents

clinicians’ predictions informed by these contexts. This prompt strategy simulates clini-

cians’ reasoning steps by producing high-level guidance based on partial data, examining

individual candidate answers in-depth, and ultimately making an initial determination

given prior analysis, as shown in Figure 3.3 (a).6.

We utilize the LLM with E as demonstration for in-context learning to generate

medical contexts and preliminary decisions for all instances in D. For 1 ≤ i ≤ N , we

concatenate all instances in E, ki, and Ai and then feed this concatenated string into the

LLM for decoding. After this, we parse the decoded sentence into two parts: the context

part Ci, which includes overall and specific contexts, and the preliminary decision part

di
7, which serves as a performance metric for the LLM. All instances of Ci are used for

SLM training, regardless of the LLM’s preliminary decision accuracy. We find that these

contexts contain valuable medical knowledge even with incorrect decisions. We defer

more details of our experiments into Section 3.5.1.

5We set M = 5 for our experiments.
6See Appendix A.6 for prompt details.
7We only use di to evaluate LLM performance and do not add this into SLM training.
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3.3.2 Context-Enhanced Medical Capability in SLMs

Given an augmented dataset D
′

= {(qi, Ai, Ci, yi)}N , our goal is to leverage the

medical context Ci generated by the LLM to enhance the SLM’s medical proficiency and

predict yi for each instance. We omit i for simplicity. Inspired by previous works [83], we

treat C as additional input for the SLM to aid the decision-making. For each candidate

answer aj ∈ A, 0 ≤ j < |A|, we provide both the overall context, co, and the specific

context of the answer, caj , concatenating these contexts with the question q and answer

aj. The SLM generates a contextual representation vector hj for each choice, which is

then fed into a linear layer to produce sj, a prediction score for the correctness of the

answer choice:

hj = SLM([q ⊕ aj ⊕ co ⊕ caj ]), sj = Linear(hj).

For each aj, the score sj is computed and normalized using the softmax function across

all candidate answers, as shown in Figure 3.3 (b). During training, models are optimized

to maximize correct answer scores employing standard cross-entropy loss between pre-

dictions and ground truths. In the inference phase, sj is calculated for each aj, and the

answer with the highest score is the predicted answer.

3.4 Experiments

3.4.1 Experimental Setup

Datasets. We evaluate our methods on the first three datasets for in-domain per-

formance and on all four datasets for out-of-domain performance: 1. MedQA [115]

contains 4-way multiple-choice questions from the US Medical Licensing Exam. It has

10,178/1,272/1,273 instances in the training/development/test sets. Results on the de-

velopment and test sets are reported. 2. HEADQA [116] features multiple-choice ques-
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tions from specialized Spanish healthcare exams conducted between 2013 and 2017. The

dataset has 2,657/1,366/2,742 instances in the training/development/test sets. We report

results on the development and test sets. 3. MedMCQA [117] is a 4-way multiple-choice

dataset from Indian medical school entrance exams. It has 182.8k/4.2k/6.1k instances

in the training/development/test sets. We use a randomly selected subset of 10,000

training instances and report results on the development set, following previous work

[7]. 4. MMLU-professional medicine [118] is a 4-way biomedical multiple-choice

dataset, with 5/31/272 instances in the training/validation/test sets. We evaluate the

Out-of-Domain (OOD) performance of our method on the test set without adaptation.

Context Generation with LLM. We use the gpt-3.5-turbo via OpenAI API8 and

employ greedy decoding for in-context learning. Each dataset has five-shot medical ex-

amples, shown in Figure 3.3.

Training SLMs with Contextual Information. After acquiring data from LLMs, we

utilize BioLinkBert-Base [65], BioLinkBert-Large [65], and BioMedLM [68] as SLM back-

bones for Fine-Tuning with Context (FTC). We compare FTC with privacy-restricted

baselines that leverage additional knowledge to aid medical decision making: QA-GNN

[89], GreaseLM [100], DRAGON [90], MurKe [86], MOEBQA [119], HDRN [120] and

VOD [121]. Also, we perform SLM standard fine-tuning (SFT) without any external

knowledge and LLM prompting with keywords and candidate answers (LLM) to validate

our method’s efficacy. To ensure a fair comparison, we keep the backbones and hyper-

parameters consistent for both FTC and SFT approaches. For BioLinkBERT-Base, We

conduct three separate runs for each setting and report the average results along with the

standard deviation. We report only a single run for BioLinkBERT-Large and BioMedLM

due to high computational cost.9. The performance are measured by accuracy (%).

8https://platform.openai.com/docs/models/gpt-3-5
9We provide implementation and training details in Appendix A.2.
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Table 3.1: Performance comparison (%) on MedQA, HEADQA and MedMCQA. Best

results are bold and second best are underlined. †: results from their original papers. ¶:

results from [90]. ‡ results from [68]. §: VOD uses 180k training instances for MedMCQA,

in contrast to our approach which utilizes only 10k instances.

MedQA HEADQA
MedMCQA

dev test dev test

QA-GNN [89] - 45.0¶ - - -

GREASELM [100] - 45.1¶ - - -

DRAGON [90] - 47.5¶ - - -

HDRN[120] - 47.6† - - -

MurKe [122] - - - 46.7† -

MOEBQA [119] 39.9† 41.6† 44.3† 46.7† -

VOD [121]

+ BioLinkBERT&BM25 41.0† 40.4† - - 51.6† §

+ BioLinkBERT& BioLinkBERT 53.6† 55.0† - - 58.3† §

LLM 38.30 41.70 47.60 47.50 35.20

SFT (w/o additional knowledge)

+ BioLinkBERT-Base 41.220.48 42.210.91 39.141.88 41.000.34 32.152.23

+ BioLinkBERT-Large - 45.1‡ 39.53 41.61 35.86

+ BioMedLM - 50.3‡ 48.68 50.33 43.63

FTC (Ours)

+ BioLinkBERT-Base 50.730.35 50.170.42 61.350.16 60.210.47 49.200.45

+ BioLinkBERT-Large 51.02 53.10 62.30 62.18 50.38

+ BioMedLM 53.85 55.90 63.10 63.17 52.09

3.4.2 Superior Medical Decision Performance of FTC

Table 3.1 compare results between Fine-Tuning with Context (FTC) and baselines.

FTC significantly outperforms standard fine-tuning (SFT), with improvements of up
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to 7.96%, 21.23%, and 17.05% in absolute accuracy on the test sets of MedQA and

HEADQA, and the development set of MedMCQA, respectively. Furthermore, FTC

exceeds LLM by 14.20%, 15.75%, and 16.90% on these datasets in privacy-restricted

scenarios. These results indicate that SLMs effectively leverage the medical knowledge

provided by the LLM to aid decision-making, highlighting the benefits of incorporating

context from the LLM in SLMs training process.

FTC with BioMedLM achieves SOTA performance on both MedQA and HEADQA

datasets. Particularly, for HEADQA, FTC with BioMedLM backbone outperforms the

best baseline MOEBQA [119] by 18.80% and 16.55% in absolute accuracy on the de-

velopment and test sets, respectively. This demonstrates the considerable impact of the

FTC on enhancing the performance of SLMs in medical tasks. Compared to the complex

VOD [121] baseline, a retriever-and-reader framework with multiple training strategies,

our approach is more straightforward. We simply fine-tune SLMs and include only one

context per candidate answer generated by the LLM. Despite this, our method achieves

superior performance in MedQA and secures second place in MedMCQA, utilizing less

than 6% of the training data required by the VOD 10.

3.4.3 Few-Shot Learning Enhancement with FTC

Real medical environments often face scarce training data [20, 123]. In this section,

we explore if additional contexts boost SLM’s medical proficiency in few-shot setting. We

experiment on BioLinkBERT-Base with training sample sizes of {100, 200, 500} for all

datasets. For every size, we randomly generate three data splits from the entire training

set, performing a single run for each split. Results are shown in Table 3.2.

FTC consistently surpasses SFT by a considerable margin, achieving absolute accu-

racy enhancements of up to 14.12%, 22.57%, and 11.81% for the test sets of MedQA

10In theory, FTC could be integrated with VOD [121]. We intend to do this once their code is ready.

39



Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting Chapter 3

Table 3.2: Results (%) of LLM, SFT and FTC under different training sizes. 11

MedQA HEADQA MedMCQA

100 200 500 full 100 200 500 full 100 200 500 full

LLM 41.70 47.50 35.20

SFT 31.400.79 33.791.34 35.270.63 42.210.91 36.540.30 39.000.61 34.882.00 41.000.34 29.070.16 28.310.86 31.431.32 32.152.23

FTC 45.521.03 46.290.32 47.871.41 50.170.42 55.031.10 56.180.76 57.450.53 60.211.47 38.821.03 40.120.58 43.061.92 49.200.45

and HEADQA, and the development set of MedMCQA, respectively. These consistent

gains demonstrate that our method not only enhances performance in full-training but

also proves highly beneficial when training data is limited. Interestingly, SFT with full

training data does not surpass LLM in HEADQA and MedMCQA, and achieves only a

comparable performance to LLM in MedQA.

In contrast, our FTC method consistently surpasses LLM and SFT with full training

data in all tasks, even with as few as 100 training data points. This underscores the

efficacy of prompting medical knowledge from the LLM to boost the SLM’s medical

capacities.

3.4.4 Out-of-Domain (OOD) Generalizability Boost with FTC

To evaluate the generalizability of our approach, we investigate the OOD performance

of FTC using BioLinkBERT-Base as the backbone, without additional training. The best

model from the source domain in Section 3.4.2 is directly applied to the target domain.

Table 3.3 presents the OOD performance.

The OOD performance of SFT is inferior compared to LLM prompting in the target

domain, indicating its limited generalization capabilities. Conversely, FTC consistently

outperforms both SFT in OOD settings and LLM prompting baselines. This underscores

11We present results for the test sets of all datasets, excluding MedMCQA. For those datasets with
available development set results, the results are provided in the Appendix A.3.
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Table 3.3: Accuracy comparison (%) between LLM on the target domain (upper), and

FTC and SFT trained on a source domain (lower) and applied directly to the target

domain.

MedQA HEADQA MedMCQA MMLU

HEADQA MedMCQA MedQA MedMCQA MedQA HEADQA MedQA HEADQA MedMCQA

LLM 41.70 47.50 35.20 52.94

SFT 35.570.24 31.322.38 35.623.19 34.344.07 30.141.07 31.770.37 41.306.89 38.842.13 32.976.07

FTC 47.260.96 49.250.17 55.271.28 61.900.38 41.140.26 45.980.78 58.951.73 54.532.11 54.660.17

Table 3.4: Accuracy comparison (%) in general domain.

CSQA OBQA

LLM 41.25 51.60

SFT 62.630.17 56.930.25

FTC 65.870.23 68.601.43

the enhanced generalizability achieved by incorporating the medical context generated

by the LLM into the SLM.

3.4.5 Strong General Applicability of FTC

Privacy concerns not only appear in the medical domain. In this section, we investi-

gate whether our method is generally applicable beyond the medical domain. We use two

general domain datasets, CommonsenseQA (CSQA) [124] and OpenbookQA (OBQA)

[125], under privacy-restricted settings in the full training scenarios. We adopt T5-base

[71] as the SLM backbone following previous works [63, 83] and utilize Fusion-in-Decoder
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[88] to incorporate contexts. We conduct three separate runs for each setting12. Table

3.4 shows the results.

FTC consistently outperforms LLM and SFT baselines on two datasets. Specifically,

FTC performs 3.24% and 11.67% better than its standard finetuning counterpart, SFT,

in CSQA and OBQA, respectively. This demonstrates the effectiveness of our method,

utilizing the LLM as a strong knowledge base and prompting knowledge within the LLM

in privacy-restricted scenarios, which in turn enhances the SLM’s knowledge capacities

and improves decision-making.

3.5 Analysis

3.5.1 Context Analysis

To further understand the effectiveness of context generated by the LLM on SLM

performance, we perform ablation studies with BioLinkBert-Base as the SLM backbone.

Role of Context Parts. We investigate the effectiveness of each part of the context

by separately providing (1) overall context (Only Overall) and (2) specific context for

each candidate answer (Only Specific) as additional information to the SLM in both few-

shot and full-training settings. Results are shown in the upper part (a) of Figure 3.4.

Despite decreased performance when providing only overall or specific context compared

to FTC, SLMs with added medical context still outperform SFT baselines across vari-

ous training settings, demonstrating the importance of both context aspects in informed

decision-making. The more pronounced performance drop for overall context in most set-

tings could be attributed to it offering general medical knowledge, while specific context

provides tailored knowledge for each candidate answer.

12We defer detailed experiment settings to the Appendix A.5.
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Figure 3.4: Results of ablation studies 13. The upper part examines the effect of context

components on SLM training, while the lower part investigates the impact of relationships

within the context.

Only OverallFTC Only Specific SFT

HEADQA MedMCQAMedQA

HEADQA MedMCQAMedQA

(a)

(b)

FTC No Relation SFT

Content Learned by SLM. Specific context for each candidate answer includes its

relationship to overall context, as shown in Figure 3.3. For example, the relation of an-

swer (a) is ”It is not a treatment for the patient’s symptoms.” We explore whether the

SLM learns from medical knowledge or merely cherry-picks relationships by removing all

relationship information in specific contexts (No Relation), retaining only the knowledge

content. Then, we train the SLM using these modified contexts in both few-shot and

full-training scenarios. Results are shown in the lower part (b) of Figure 3.4. When

relationships are removed, performance declines compared to the FTC. However, even

without any relationship information, the SLM with medical contexts consistently and

significantly outperforms the SFT. This suggests that, although relationships assist in

decision-making, the SLM prioritizes medical knowledge from context over simply repli-
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Figure 3.5: Case Study: MedQA test set contexts and predictions. yellow highlights

important local information; underlined indicates LLM-selected keywords for context

generation; green and red signify correct and incorrect contexts that could aid or confuse

the SLM, respectively. FTC succeeded 113 instances where SFT and LLM failed: 45

Targeting (left) and 68 Denoising (right).

Question: A healthy 23-year-old male is undergoing an exercise stress test as 

part of his physiology class. If blood were to be sampled at different 

locations before and after the stress test, which area of the body would 

contain the lowest oxygen content at both time points?

Question Keywords: healthy, male, exercise stress test, physiology, blood, 

sampled, locations, stress test, body, oxygen, time points

Candidate Answers: (a) Inferior vena cava (b) Coronary sinus (c) Pulmonary 

artery (d) Pulmonary vein

Context: During an exercise stress test, blood is sampled from various 

locations in the body to assess changes in physiology and oxygen levels at 

different time points.

(a): The inferior vena cava is a large vein that carries deoxygenated blood 

from the lower body to the heart, but it is not a location where blood is 

sampled during an exercise stress test.

(b): The coronary sinus is a vein that drains blood from the heart muscle. It is 

not a location where blood is sampled during an exercise stress test.

(c): The pulmonary artery carries deoxygenated blood from the heart to the 

lungs, and blood may be sampled from this location during an exercise stress 

test. 

(d): The pulmonary vein carries oxygenated blood from the lungs to the heart, 
but it is not a location where blood is sampled during an exercise stress test.
LLM preliminary decision: (c)      SFT prediction: (d)      FTC prediction: (b)

Question: After a T cell progenitor leaves the bone marrow, most of its development 

takes place in the thymus. It passes through several stages during its maturation. Positive 

selection is an important process during maturation of T lymphocytes, and it ensures the 

preservation of self-major histocompatibility complex (MHC)-restricted T cells. During 

which of the following developmental stages does a T cell undergo this process?

Question Keywords: T cell progenitor, bone marrow, development, thymus, stages, 

maturation, Positive selection, process, maturation, T lymphocytes, preservation, self-

major histocompatibility complex, T cells, developmental stages, T cell, process

Candidate Answers: (a) Pre-T cell (b) Double-positive T cell (c) Single-positive CD4+ T cell 

(d) Single-positive CD8+ T cell

Context: The cell progenitors develop in the bone marrow and undergo maturation in 

the thymus. Positive selection is a process that occurs during T cell maturation to ensure 

the preservation of self-major histocompatibility complex (MHC) recognition.

(a): Pre-T cells are T cell progenitors that have not yet undergone maturation in the 

thymus. They are not yet at the stage of positive selection.

(b) Double-positive T cells are T cells that express both CD4 and CD8 co-receptors. They 

are at the stage of positive selection, but they are not yet single-positive T cells.

(c) Single-positive CD4+ T cells are T cells that express only the CD4 co-receptor. They are 

at the stage of positive selection and are able to recognize self-MHC class II molecules.

(d) Single-positive CD8+ T cells are T cells that express only the CD8 co-receptor. They are 

at the stage of positive selection and are able to recognize self-MHC class I molecules.

LLM preliminary decision: (d)          SFT prediction: (a)          FTC prediction: (b)

Targeting Denoising
❌ ❌ ❌ ❌

cating relationships directly.

Context Case Study. To examine what medical knowledge is generated by the LLM

using keywords and candidate answers, and how FTC reasons with these generated con-

texts, we analyzed instances from the MedQA test set where the FTC correctly predicted

answers while both the SFT and LLM failed. Clinicians identified two distinct categories

among the cases: (1) Targeting, where the LLM successfully refines the target scope

and generates high-quality medical contexts, albeit arriving at an incorrect answer; the

SLM integrates these contexts with the raw question and correctly predicts the answer.

(2) Denoising, where the LLM fails to figure out the correct relationship of the correct

answer and generates noisy medical knowledge; the SLM effectively obtains useful in-

formation, combines it with localized data, and ultimately makes the correct prediction.

Figure 3.5 provides examples of each case. This case study demonstrates that LLMs
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Table 3.5: Performance comparison of FTC and FTCR in the full-training setting 14.

MedQA HEADQA MedMCQA

FTCR 48.120.66 57.790.65 46.550.28

FTC 50.170.42 60.211.47 49.200.45

can generate valuable medical information even when making incorrect decisions based

on partial data, and that the FTC can extract useful medical knowledge from noisy

contexts, thereby enhancing SLM medical reasoning capabilities.

Context Quality. To further quantitatively demonstrate that LLM-generated context

retains medical knowledge even with incorrect preliminary decisions. We compared FTC

and Fine-Tuning with Context and Rejection (FTCR) in full training settings. FTCR

uses context for SLM training only if the LLM’s preliminary decision is correct; other-

wise, no additional context is provided. The results are in Table 3.5. FTC consistently

outperforms FTCR across three medical tasks, implying valuable medical knowledge re-

mains in contexts even with LLM’s incorrect decisions. SLM can harness these insights

from imperfect contexts to enhance medical capabilities.

3.5.2 Privacy Analysis

We conduct a privacy analysis on MedQA using BioLinkBERT-Base and introduce

the privacy budget, a metric estimating information usage, presented in Table 3.6. The

privacy budget is calculated as the ratio of the number of words provided to the LLM

to the total words in the original question. Lower privacy budgets signify better privacy

preservation 15.

14We present results for the test sets of all datasets, excluding MedMCQA. For those datasets with
available development set results, the results are provided in the Appendix A.3.

15We defer BPC evaluation result on privacy to appendix A.4
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Table 3.6: Privacy budget statistics in MedQA. Avg. K and Avg. Q are the average

word count for keywords and raw questions, respectively, across the dataset. Budget is

privacy budget.

Avg. K Avg. Q Budget

Train + Dev 49.1 116.2 42.3%

Test 50.7 119.6 42.4%

Table 3.7: Results of different information representation methods, maintaining the same

privacy budget on MedQA.

Dev Test

LLM prompting

+ Random Span 27.59 28.52

+ Random Words 30.03 30.48

+ Keywords 38.30 41.70

SLM fine-tuning

SFT 35.670.47 33.990.87

FTC

+ Random Span 42.950.33 44.100.80

+ Random Words 44.181.11 45.061.38

+ Keywords 46.420.28 47.910.51

Why Keywords? We evaluate the effectiveness of using keywords (Keywords) to rep-

resent raw data when querying LLMs and compare it to two other methods of raw data

representation: (1) random consecutive word spans (Random Span), and (2) random

word bags from the original data (Random Words). Given the same privacy budget, we
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Figure 3.6: LLM and FTC results under different keyword usage ratios on MedQA.

Standard divisions of FTC and SFT are omitted for simplicity.

TestDev

randomly select a shared set of 1000 training instances for each method, use these to

query the LLM for medical contexts, and then use these contexts as additional input for

SLM training. Table 3.7 displays the accuracy of LLM prompting and SLM fine-tuning.

All FTC methods consistently outperform the SFT baselines, demonstrating their effec-

tiveness. Keywords perform better than Random Span and Random Words, providing a

more efficient representation of medical knowledge within the same privacy budget. LLM

prompting performance parallels SLM training, underscoring the importance of raw data

representation in context generation and effective SLM training.

Privacy Budget-Model Performance Trade-off. We analyze the trade-off between

privacy budget and model performance by generating context from the LLM using ran-

domly selected {25%, 50%, 75%, 100%} of keywords and training the SLM with full

training data and corresponding context. Figure 3.6 displays the accuracy for LLM

prompting and SLM fine-tuning at various privacy budgets. As privacy budget increases,

performance improves. Impressively, FTC outperforms SFT using context from just 25%
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of keywords, resulting in LLM prompting performance below 15%—significantly lower

than the 25% random guess rate. This suggests that LLM-generated context maintains

essential medical knowledge despite limited raw data information, and the SLM effec-

tively learns from it.

3.6 Conclusion

We introduce a simple yet effective pipeline that enhances the SLM performance in

medical tasks by using medical keywords to prompt LLMs within privacy-restricted sce-

narios. Our experimental results across three medical tasks in various training settings

underscore the effectiveness of our proposed approach. Through a comprehensive analy-

sis, we gain a deeper understanding of our method capabilities and the impact of LLMs

on SLM performance in privacy-restricted scenarios.
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Chapter 4

AlpaCare: Instruction Fine-tuned

Large Language Models for Medical

Applications

4.1 Introduction

Recent advancements in the training of large language models (LLMs) have placed

a significant emphasis on instruction-finetuning (IFT), a critical step in enabling pre-

trained LLMs to effectively follow instructions [3, 11, 12]. However, relying solely on

NLP benchmarks to create instructional datasets can lead to ‘game-the-metric’ issues,

often failing to meet actual user needs [3]. To better align with human intent, [126]

introduces the concept of fine-tuning LLMs using diverse machine-generated instruction-

response pairs. Subsequent works further highlight the importance of diversity in IFT

datasets [127, 128, 129, 130, 131]. However, how to improve dataset diversity in the

medical domain for aligning with various user inquiries is still underexplored.

LLMs have demonstrated significant potential in the medical domain across various
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topic: Cardiology
view: Medical Student
type: USMLE Style Q&A
difficulty: 5

instruction: Answer the following question which aims 
to test your knowledge about blood flow in the heart.
input: A 50-year-old man with a history of 
hypertension presents to the emergency department 
with complaints of chest pain radiating to his left 
arm, shortness of breath, and diaphoresis. An 
electrocardiogram (ECG) shows ST-segment elevation in 
leads II, III, and aVF. Cardiac enzymes are elevated. 
Which of the following changes is most likely 
occurring in the coronary circulation during this 
acute event?
A) Vasodilation of coronary arteries; 
B) Decreased oxygen extraction by the myocardium; 
C) Decreased coronary blood flow; 
D) Decreased coronary artery resistance; 
E) Increased capillary filtration in the myocardium

topic: Pharmacology
view: Pharmacy Student
type: Classifications 
difficulty: 1
 
instruction: Classify these drugs as either 
antibiotics, antivirals or antifungals.
input: Penicillin, Lamivudine, Fluconazole

Figure 4.1: Selected example from the clinician-crafted seed set. We focus on

4 perspectives: topic, viewpoint, task type, and difficulty level, to improve the seed set

diversity. The set is further used to query GPT-4 to generate medical tasks.

applications [7, 132, 6, 133, 8, 21]. To alleviate privacy concerns and manage costs,

several medical open-source LLMs [13, 14, 15, 134] have been developed by tuning LLaMA

[16, 135] on medical datasets. Even substantial volumes, these datasets are limited in

task scopes and instructions, primarily focusing on medical benchmarks or specific topics,

due to the high cost of collecting real-world instruction datasets [126], particularly when

extending further into the medical domain[136, 137]. This lack of diversity can negatively

impact the models’ ability to follow instructions in various medical applications and their

effectiveness in the general domain. Therefore, there is an urgent need for a method

to generate diverse medical IFT datasets that align with various domain-specific user

inquiries while balancing cost.

To bridge this gap, inspired by [126], we propose a semi-automated process that uses

GPT-4 [5] and ChatGPT [4] to create a diverse medical IFT dataset for tuning a med-

ical LLM, which can better align with various domain-specific user intents. Initially, to

guide the overall task generations with meaningful medical instructions and considering

different user needs, we create a high-quality seed set of 167 clinician-curated tasks span-

ning various medical topics, points of view, task types, and difficulty levels, as shown in

Figure 4.1. To automatically generate a broader array of tasks for training, we prompt
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GPT-4 to create instructions for new medical tasks by leveraging the existing clinician-

curated tasks as demonstrations. After generating tasks and conducting deduplications,

we employ ChatGPT to provide responses to the valid tasks. Consequently, we compile

a 52k medical self-instruct dataset, MedInstruct-52k, which supervises the tuning on the

LLaMA series models [16, 135], resulting in AlpaCare. Due to the limited number of test

sets available for evaluating medical LLMs in terms of instruction-following ability and

medical capacity, we introduce a new clinician-crafted free-form instruction evaluation

test set, MedInstruct-test, covering medical tasks across different difficulty levels.

Our comprehensive experiments within medical and general domains reveal that Al-

paCare, solely tuned on the 52k diverse medical IFT dataset, exhibits enhanced perfor-

mance on medical applications and strong generalizability. It achieves up to a 38.1%

absolute gain over the best baselines in medical free-form instruction evaluations and a

6.7% absolute gain averaged over multiple general domain benchmarks. Moreover, our

human study on free-form instruction evaluations shows that AlpaCare consistently pro-

duces better responses compared to existing medical LLMs by a large margin in terms

of both correctness (+12%) and helpfulness (+49%).

This chapter makes the following contributions:

• To address the challenge of generating cost-effective, high-quality IFT data for LLM

alignment in various medical applications, we propose a pipeline to create a diverse

medical machine-generated IFT dataset for tuning LLMs.

• We conduct extensive experiments in medical and general domains, demonstrating

that tuning LLMs with a diverse medical IFT dataset can boost their capacity in

medical applications and generalization simultaneously.

• We release, MedInstruct-52K, a diverse medical IFT dataset comprising 52K instruction-

response pairs and, MedInstruct-test, a test set of 216 clinician-crafted novel medical

51



AlpaCare: Instruction Fine-tuned Large Language Models for Medical Applications Chapter 4

tasks, to facilitate the building and evaluation of medical LLMs.

4.2 Related Work

IFT. Closed-form IFT [12, 11] creates IFT datasets from existing NLP benchmarks to

improve model generalization on new tasks. For instance, FLAN [12], T0 [138], and Flan-

T5 [80] construct their IFT datasets using existing NLP tasks with carefully designed

instructions and demonstrate that fine-tuning with diverse task instructions enhances

performance on unseen tasks. However, these closed-form instructions are often simpler

compared to cases in real-world scenarios, making their models fail to align with various

real-world user intentions. Alternatively, [3] collects a diverse IFT dataset with real-world

instructions and responses, which is rich in both instruction forms and task types, and

trains GPT-3 [139] to obtain InstructGPT [3] on this dataset, showing promising results

in aligning with diverse actual user needs. Due to the closed-source propriety of strong

LLMs (e.g. ChatGPT and GPT-4), various open-source instruction fine-tuned models

[127, 128, 129, 140] have been proposed to fine-tune open-source LLMs using datasets ob-

tained from these strong teacher models to enhance their instruction-following abilities.

Alpaca [127] creates a 52k diverse machine-generated IFT dataset by distilling knowl-

edge from the ”teacher” Text-Davinci-003 [82, 63]. [140] utilizes the same instructions

with Alpaca but adopts GPT-4 as the ”teacher” LLM to generate higher-quality and

more diverse responses to improve the model’s alignment on 3H (Helpfulness, Honesty,

and Harmlessness) [141]. Vicuna [129] is trained on the ShareGPT data [142], which

contains actual ChatGPT users’ diverse instructions, obtaining strong response quality

and instruction-following ability. However, creating diverse IFT datasets for aligning

models with various domain-specific user intentions in the medical domain remains un-

derexplored.
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LLMs in Biomedicine. Closed-source LLMs have demonstrated significant proficiency

in the medical domain [4, 5, 133, 6]. ChatGPT demonstrates promise in the US Med-

ical Exam [79] and serves as a knowledge base for medical decision-making [21]. The

MedPaLM [6, 133] have shown performance in answering medical questions on par with

that of medical professionals. GPT-4 [5] obtains strong medical capacities without spe-

cialized training strategies in the medical domain or engineering for solving clinical tasks

[7, 132]. Due to privacy concerns and high costs, several open-source medical LLMs

[134, 13, 14, 15] have been built by tuning open-source base model, such as LLaMA

[16, 135], on medical corpus. However, due to the high cost of collecting diverse real-

world user instructions [126], their datasets are limited in diversity and primarily focus

on medical benchmarks or narrow task scopes, such as doctor-patient conversations.

ChatDoctor [14] is fine-tuned using 100k online doctor-patient dialogues, while Baize-

Healthcare [134] employs about 100k Quora and MedQuAD dialogues. MedAlpaca [13]

utilizes a 230k dataset of question-answer pairs and dialogues. PMC-LLAMA [15] contin-

ually trains LLaMA with millions of medical textbooks and papers, and then tunes it with

a 202M-token dataset formed by benchmarks and dialogues in the IFT stage. However,

these datasets are limited in diversity, mainly focusing on benchmarks or within certain

topics, hampering models’ medical instruction-following ability and generalizability. To

address this, we propose building a cost-effective diverse medical machine-generated IFT

dataset by using GPT-4 and ChatGPT for model tuning to better align the model with

various medical user intents. Follow-up works by others [143, 144] consistently show the

benefits of tuning medical LLMs with diverse machine-generated datasets.
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topic: Medical Education
view: Med School Professor
type: Rewrites
difficulty: 1

instruction: …
input:…

! 167 seed tasks

! GPT-4 Output task 1
Output task 2
…

1. Task instruction generation 

Machine-
generated

Tasks

2. Filtering

Rouge-L 
> 0.7

! ChatGPT

Q: Provide a brief explanation of the 
pathophysiology behind Type 1 Diabetes 
Mellitu.

Input Question

A: Type 1 diabetes mellitus is a 
chronic autoimmune disease 
characterized by the body's inability …

3. Response generation

MedInstruct-
52K

4. Instruction tuning

AlpaCare 

Output Answer

Output Tasks

Figure 4.2: The pipeline of AlpaCare. The process starts with a small set of clinician-

curated seed tasks. 1. Task instruction generation: GPT-4 iteratively generates a

series of new task instructions using 3 tasks from the seed set. 2. Filtering: Ensures tex-

tual diversity by removing similar instructions via Rouge-L. 3. Response generation:

ChatGPT creates responses for each task, forming MedInstruct-52K. 4. Instruction

tuning: The dataset is used to fine-tune LLaMA models, developing AlpaCare.

4.3 Method

Collecting a large-scale medical IFT dataset is challenging because it necessitates 1)

a deep understanding of the specific domain knowledge and 2) creativity in designing

novel and diverse tasks by considering different real-world medical needs. To mitigate

human effort while maintaining high quality, we propose a pipeline by instructing GPT-4

and ChatGPT to create a machine-generated dataset containing diverse domain-specific

tasks. The process starts with utilizing a small set of high-quality clinician-curated seed

tasks with 167 instances to prompt GPT-4 in generating medical tasks. Similar instruc-

tions are removed from the generated medical tasks, preserving 52k instances which are

subsequently inputted into ChatGPT for response generation. The instruction-response
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pairs dataset, MedInstruct-52k, is used to tune the LLaMA, resulting in AlpaCare with

superior medical instruction-following ability and generalizability. The pipeline is shown

in Figure 4.2.

4.3.1 Clinician-curated seed dataset

A diverse and high-quality seed task is essential for prompting LLMs in automatic

task generation [126]. We focus on 4 key areas, taking into account various user intents in

medical applications, to improve the diversity of seed instructions: topic, view, type, and

difficulty level. Specifically, the topic covers various submedical domains, such as radiol-

ogy, genetics, and psychophysiology. The view is derived from diverse medical personnel,

including researchers, medical students, and patients, who have different inquiries, to en-

sure a comprehensive range of viewpoints based on various levels of domain knowledge.

For the type, we include various task formats, such as summarization, rewriting, single-

hop, and multi-hop reasoning, to align with different application needs. Lastly, each task

is categorized by its medical difficulty level, ranging from 1 to 5 (low to high), to ensure

that the seed tasks can prompt new tasks on a wide range of expertise levels. We defer

the explanation of the difficulty score to Appendix for further clarification. A clinician

crafts each task considering these 4 dimensions, and each task contains instruction and

may have a corresponding input, which could be a detailed medical example to further

elucidate the instruction and enhance task diversity. Examples are shown in Figure 4.1.

4.3.2 Medical IFT dataset generation and LLM tuning

We utilize GPT-4 for in-context learning by randomly selecting 3 tasks from the seed

set and generating 12 tasks for each run. To ensure generated task diversity, we instruct

GPT-4 to consider the 4 aspects outlined in 4.3.1. Detailed prompt instructions are pro-
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vided in Table B.2 in the Appendix. To further amplify textual diversity, instructions

with a Rouge-L similarity above 0.7 to any other generated task are discarded [126].

Due to the lengthy propriety of medical text, we separately generate responses for each

task using ChatGPT (GPT-3.5-turbo), which has demonstrated efficacy in the medi-

cal domain [21]. Finally, we result 52k machine-generated medical instruction-response

pairs, MedInstruct-52k. To verify medInstcut-52k ’s data quality, we randomly select 50

instances for a clinician to evaluate, resulting in 49 out of 50 responses being graded as

correct, which demonstrates the dataset’s high quality.

In the IFT stage, we adopt the same training prompt and hyper-parameter setup as

[127] to fine-tune LLaMA models on MedInstruct-52k, Specifically, we employ instruc-

tions and inputs (when available) as inputs to tune the model to generate corresponding

response outputs through a standard supervised fine-tuning with cross-entropy loss. We

defer hyper-parameter setup into Appendix B.3.

4.4 Experimental Setup

4.4.1 Free-form Instruction Evaluation

Table 4.1: MedInstruct-test statistics. The distribution of task counts across various

difficulty levels in MedInstruct-test is approximately equal to comprehensively evaluate

medical proficiency.

Difficulty Level 1 2 3 4 5

Count 44 46 41 41 44

Datasets. To evaluate the effectiveness of LLMs in a user-oriented manner, we conduct
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free-form instruction evaluations on two medical datasets. (1) iCliniq1, a dataset com-

prising transcripts of real patient-doctor conversations collected from an online website

[14]. In this task, the model processes patient inquiries as input and then simulates a

doctor to provide corresponding answers. (2) MedInstruct-test, a dataset created by our

clinicians, includes 216 medical instructions. These instructions mimic inquiries posed

by different medical personnel, varying in difficulty on a scale from 1 to 5, with 1 being

the simplest and 5 being the most challenging. We present the statistics of this dataset

in Table 4.1, and the description of the difficulty levels is provided in Appendix 4.3.1.

Evaluation Metric. We conduct auto-evaluation by employing GPT-3.5-turbo to serve

as a judge [145]. The judge pairwise compares responses from a model with reference

responses produced by another LLM API for each instruction in the test sets. To conduct

a holistic evaluation, we employ reference outputs generated by 4 different APIs: Text-

davinci-003, GPT-3.5-turbo, GPT-4 and Claude-2, respectively. To ensure unbiased

evaluation and avoid positional bias [146], we evaluate each output comparison twice,

alternating the order of the model output and the reference output. We follow [147] to

score our models and baselines by calculating the win rate. To ensure fair comparisons,

we set the maximum token length to 1024 and utilize greedy decoding for the generation

of all model outputs and reference responses.

4.4.2 Benchmark Evaluation

Datasets. We further evaluate AlpaCare on 4 medical multiple-choice benchmarks,

namely MedQA [136], HeadQA [148], PubmedQA [137], and MedMCQA [117], as well

as a summarization dataset, i.e., MeQSum [149]2, to assess the model’s medical capacity.

Evaluation Metric. Following [150], we conduct the multiple-choice benchmark evalu-

1We randomly selected 1,000 instances for evaluation from the 10,000 instances proposed by [14].
2We randomly selected 200 out of 1000 instances in MeQSum.
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ation and report the accuracy. For the summarization task, we utilize greedy decoding

with a maximum token length of 1024 to generate outputs and report the ROUGE-L

score.

4.4.3 Baselines

We evaluate the performance of AlpaCare by comparing it with both general and

medical LLMs based on the LLaMA models. We consider a range of models including:

(1) Alpaca, tuning on 52k general domain machine-generated samples with responses from

Text-davinci-003; (2) ChatDoctor, fine-tuning with 100k real patient-doctor dialogues;

(3) MedAlpaca, utilizing approximately 230k medical instances such as Q&A pairs and

doctor-patient conversations; (4) PMC-LLaMA (PMC), a two-step tuning model that was

first trained on 4.8 million biomedical papers and 30k medical textbooks, then instruction-

tuned on a corpus of 202 million tokens; and (5) Baize-Healthcare (Baize-H), training

with around 100k multi-turn medical dialogues.

4.5 Experiment Results

4.5.1 Main Results

Free-form Instruction Evaluation Performance. The evaluation results for 4 ref-

erence models on both datasets are summarized in Table 4.2. AlpaCare outperforms its

general domain counterpart, Alpaca, demonstrating that domain-specific training bol-

sters medical capabilities. Despite tuning with only 52k medical instruction-response

pairs, AlpaCare consistently and significantly surpasses other medical models, which are

trained on considerably larger datasets, across various reference LLMs. Specifically, for

average scores across reference models, AlpaCare demonstrates a relative gain of 130%
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Table 4.2: Comparative analysis of free-form instruction evaluation. Perfor-

mance comparison of AlpaCare and instruction-tuned baselines. GPT-3.5-turbo acts as

a judge for pairwise auto-evaluation. Each instruction-tuned model is compared with

4 distinct reference models: Text-davinci-003, GPT-3.5-turbo, GPT-4, and Claude-2.

‘AVG’ denotes the average performance score across all referenced models in each test

set.

iCliniq MedInstruct

Text-davinci-003 GPT-3.5-turbo GPT-4 Claude-2 AVG Text-davinci-003 GPT-3.5-turbo GPT-4 Claude-2 AVG

Alpaca 38.8 30.4 12.8 15.6 24.4 25.0 20.6 21.5 15.6 22.5

ChatDoctor 25.4 16.7 6.5 9.3 14.5 35.6 18.3 20.4 13.4 18.2

Medalpaca 35.6 24.3 10.1 13.2 20.8 45.1 33.5 34.0 29.2 28.1

PMC 8.3 7.2 6.5 0.2 5.5 5.1 4.5 4.6 0.2 4.6

Baize-H 41.8 36.3 19.2 20.6 29.5 35.1 22.2 22.2 15.6 26.6

AlpaCare 66.6 50.6 47.4 49.7 53.6 67.6 49.8 48.1 48.4 53.5

on iCliniq and 90% on MedInstruct, respectively, compared to the best baselines. These

results highlight the advantages of improving medical proficiency by training with a di-

verse, domain-specific IFT dataset. Surprisingly, medical LLMs don’t always outperform

general ones in medical tasks, and some even fail to generate useful responses, possibly

due to their limited training scope restricting conversational skills.

Benchmark Evaluation Performance. Table 4.3 presents an extensive evaluation of

AlpaCare on 5 medical benchmarks. AlpaCare obtain the best performance on average,

highlighting its robust capability in the medical domain. Benchmarks evaluate a model’s

intrinsic knowledge[150], which is mainly gained in LLM pretraining instead of instruction

fine-tuning [151]. AlpaCare’s strong medical capability, combined with its superior ability

to follow medical instructions, enables it to meet a wide range of medical application needs

effectively.
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Table 4.3: Results on medical benchmarks. ‘AVG’ represents the mean performance

score across tasks.

MEDQA HeadQA PubmedQA MEDMCQA MeQSum AVG

Alpaca 35.7 29.1 75.4 29.2 24.4 38.8

ChatDoctor 34.3 30.0 73.6 33.5 27.1 39.7

Medalpaca 38.4 30.3 72.8 31.3 11.0 36.8

PMC 34.2 28.1 68.2 26.1 9.2 33.2

Baize-H 34.5 29.3 73.8 32.5 8.1 35.6

AlpaCare 35.5 30.4 74.8 33.5 29.0 40.6

4.5.2 Generalizability Evaluation

Training models with specific data may lead to catastrophic forgetting, limiting their

generalizability kirkpatrick2017overcoming. Our approach, instruction tuning a model

with a diverse, domain-specific dataset, aims to improve its generalizability simultane-

ously. We test this using AlpaCare in AlpaFarm [152], MMLU [118], BBH [153] and

TruthfulQA [154]. We compare AlpaCare with 4 reference LLMs in AlpaFarm and re-

port the average score, and follow [155] to holistically evaluate models’ general domain

knowledge on MMLU (5-shot) and BBH (3-shot), receptively; and evaluate the model

truthfulness on TruthfulQA (0-shot) with eval-harness. The results are shown in Table

4.4. The detailed score for each reference model on AlpaFarm and more general domain

experiment are deferred to Table B.5 and Table B.6 in the Appendix.

Medical LLMs typically lag behind or achieve results comparable to the general do-

main LLM, Alpaca, in terms of generalizability. However, AlpaCare significantly outper-

forms both medical and general domain baselines in multiple general tasks on average.

Specifically, AlpaCare shows a significant relative improvement of 57.8% on AlpacaFarm

compared to the best baseline, demonstrating strong general instruction-following ability.
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Table 4.4: Performance on general domain tasks. AlpacaFarm is a free-form in-

struction evaluation, MMLU and BBH are knowledge benchmarks and TruthfulQA is a

truthfulness task. ‘AVG’ denotes the average score across all tasks.

AlpacaFarm MMLU BBH TruthfulQA AVG

Alpaca 22.7 40.8 32.4 25.6 30.4

ChatDoctor 21.2 34.3 31.9 27.8 28.8

Medalpaca 25.8 41.7 30.6 24.6 30.7

PMC 8.3 23.6 30.8 23.8 21.6

Baize-H 18.3 36.5 30.1 23.5 27.1

AlpaCare 40.7 45.6 34.0 27.5 37.0

Moreover, AlpaCare scores higher in general knowledge tasks and maintains comparable

truthfulness scores compared to other baselines, indicating strong generalization abilities

due to high data diversity.

4.5.3 Ablation Study

To further understand the effectiveness of AlpaCare, we conduct systematic ablation

studies on two medical free-form instruction evaluations and report the average score of

each task across 4 reference models, receptively. The results of each reference model are

detailed in the Appendix B.4.3.

AlpaCare consistently delivers superior performance in 13B model compar-

isons. To explore the impact of scaling up the LLM backbone, we fine-tune AlpaCare-

13B on LLaMA-13B and compare its performance against other 13B IFT baselines.The
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results are shown in Table 4.5.

Table 4.5: Result comparison on 13B instruction-tuned models. Comparing the

average performance of AlpaCare-13B and its 13B baselines with GPT-3.5-turbo as the

judge across 4 distinct reference models.

Alpaca Medalpaca PMC AlpaCare

iCliniq 31.3 3.9 25.4 54.4

MedInstruct 26.9 0.1 34.7 54.5

AlpaCare-13B consistently outperforms other 13B IFT models in both tasks. This

reaffirms the conclusion drawn from the 7B model comparison: tuning models with a

diverse medical instruction-following dataset can better align the model with user needs

across different medical applications.

AlpaCare achieves superior performance across various backbones. To ex-

plore the effect of different LLM backbones, we tune Alpaca-LLaMA2/3 and AlpaCare-

LLaMA2/3 by training LLaMA2-7B touvron2023llama-2 and LLaMA3-8B llama3modelcard

on Alpaca data and MedInstruct-52k, respectively. Table 4.6 compares the performance

of Alpaca and AlpaCare based on different LLM backbone families.

Consistent with the results of using LLaMA-1 as the backbone, AlpaCare-LLaMA2/3

consistently and significantly outperforms Alpaca-LLaMA2/3 in both datasets. This

further underscores the backbone agnostic property of our method and emphasises tuning

with a diverse medical IFT dataset can bolsters models’ medical capabilities.

AlpaCare shows robust performance across different judges. Recent studies

have highlighted potential biases in the LLM evaluator [146]. ChatGPT may give higher

preference on outputs from ChatGPT and GPT-4, which both trained by OpenAI. To

robustly evaluate our method, we introduce an alternative judge, Claude-2[10] from An-
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Table 4.6: Results on different LLM backbones. Comparing the performance of

Alpaca and AlpaCare using different LLM backbones.

iCliniq MedInstruct

LLaMA
Alpaca 24.4 23.2

AlpaCare 53.6 53.5

LLaMA-2
Alpaca 30.3 26.8

AlpaCare 53.7 54.2

LLaMA-3
Alpaca 26.8 20.7

AlpaCare 56.9 56.6

thropic, to mitigate the potential biases of relying on a single family of judges. The

results are shown in Table 4.7.

Table 4.7: Results evaluated by the different judge. Free-form instruction evalua-

tion with Claude-2 as the judge.

iCliniq MedInstruct

Alpaca 26.7 23.5

ChatDoctor 17.4 21.7

Medalpaca 26.7 23.1

PMC 1.3 1.8

Baize-H 25.5 19.8

AlpaCare 38.8 31.5
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Upon evaluation by Claude-2, it is observed that AlpaCare consistently outperforms

its IFT baselines with a large margin. This aligns with findings from assessments using

GPT-3.5-turbo as the judge. Such consistency underscores the superior medical profi-

ciency of our approach.

4.6 Human Study

69

54

20

12

11

34

AlpaCare PMC Tie

(b)helpfulness

(a)correctness

Figure 4.3: Human study results. Head-to-head clinician preference comparison be-

tween AlpaCare-13B and PMC-13B on 100 medical free-form instruction instances on (a)

correctness and (b) helpfulness.

We further conduct human studies to label question-and-answer pairs in medical free-

form instruction evaluation. Three annotators with MD degrees in progress are involved

in the study to perform pairwise comparisons for each question and answer pair. Specif-

ically, we randomly select 50 prompts from each test set, totaling 100 prompts. These

prompts, along with the responses generated by both AlpaCare-13B and PMC-13B, the

best baseline in the 13B models, are presented to the annotators for evaluation. The

evaluation is based on two criteria: correctness and helpfulness. Correctness evaluates

whether the response provides accurate medical knowledge to address the question posed,
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while helpfulness measures the model’s ability to assist users concisely and efficiently, con-

sidering the user intent. In practical terms, an answer can be correct but not necessarily

helpful if it is too verbose and lacks guidance. To determine the final result for each

criterion of each evaluation instance, we employ a majority vote method. If at least two

of the annotators share the same opinion, their preference is considered the final answer;

otherwise, we consider the outputs of the two models to be tied. The results are shown

in Figure 4.3.

Consistent with previous results, the AlpaCare-13B obtains better performance than

PMC-13B in the human evaluation. The output generated by AlpaCare-13B is more ac-

curate than that from PMC-13B, with 54% answers preferred by expert annotators. This

result shows a superior medical capacity of AlpaCare. Beyond correctness, AlpaCare gen-

erates answers that are significantly more helpful compared to PMC-13B. 69% answers

generated by AlpaCare are preferred by domain experts, highly exceeding the 11% pref-

erence rate for PMC-13B outputs, demonstrating better practical usability. The higher

relative gain in helpfulness of AlpaCare compared to correctness is expected because the

goal of IFT is to obtain the instruction-following ability of LLMs to align the model with

various user needs, rather than gaining new knowledge [151].

4.7 Analysis & Case Study

4.7.1 Instruction-following Dataset Diversity Analysis

Training a model with diverse instructions enhances its ability to follow instructions

[126, 130]. However, current medical IFT models often have training data lacking in

instructional diversity, typically using repetitive instructions across different instances

[14, 13, 15]. To examine the diversity in our dataset, we plot the distributions of 4
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(e) Language

(a) Topic

(c) Type 

(b) View

(d) Difficulty

Figure 4.4: Analysis of diversity in the MedInstruct-52k. In panels (a-c), the

top 20 entries for topic, view, and type are displayed, respectively. Panel (d) shows the

distribution of instruction medical difficulty levels. Panel (e) analyzes linguistic diversity

to depict the top 20 root verbs in the inner circle and their 4 primary direct noun objects

in the outer circle in the generated instructions.

key areas for instruction generation from MedInstruct-52k, shown in Figure 4.4 (a)- (d).

Specifically, we present the top 20 topics, views, types, and difficulty levels from 1 to 5,

offering insight into training data distribution. We further analyze instruction linguistic

diversity by showing the root verbs and their corresponding direct-object nouns from

each instruction. The top 20 root verbs and their 4 most common direct-object nouns

are displayed in Figure 4.4 (e), representing 22% of the total dataset. Our findings show

quite diverse medical intents and textual formats in our MedInstruct-52k.

To quantitatively showcase our dataset’s diversity in comparison to the tuning data

of other medical IFT models, we calculate the linguistic entropy in the instructions of
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instruction-following datasets used for medical IFT models. Higher entropy values signify

greater diversity. Specifically, we analyze the top 20 root verbs and their 4 primary direct

noun objects for each dataset and calculate verb-noun pair entropy, as shown in Table

4.8. AlpaCare’s dataset, MedInstruct-52K, exhibits the highest entropy, underscoring its

superior diversity, which enhances the model’s instruction-following capabilities.

Table 4.8: Quantitative comparison of linguistic diversity in medical instruc-

tional datasets. Comparing linguistic entropy of each instructional dataset for medical

IFT models. The higher value represents better diversity.

ChatDoctor Medalpaca PMC Baize-H AlpaCare

Entropy 0 0 2.85 3.45 5.57

4.7.2 Generation Case Study

We randomly selected one win case from MedInstruct-test for correctness and another

for helpfulness, as described in Section 4.6. Figure 4.5 displays the instructions and

outputs of the base model, LLAMA-13B, and 13B medical models, AlpaCare and PMC.

Figure 4.5(a) showcases a case on correctness with a high medical difficulty level.

LLAMA-13B struggles to provide correct answers to the questions in the instruction. In

contrast, Medical LLMs demonstrate a marked improvement in the response accuracy.

PMC offers a general overview, citing common causes like stress, hormonal imbalances,

and nutritional deficiencies. However, it falls short by using ambiguous terms like ”certain

medical conditions” and ”an underlying medical condition,” which lack specificity and fail

to deliver actionable medical insights. Conversely, AlpaCare provides a detailed analysis,

pointing specific conditions such as hypothyroidism and iron deficiency anemia that could

explain the patient’s symptoms and offering a nuanced understanding that significantly
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Instruction: I've been feeling really tired all the 
time, even when I get plenty of rest and eat right. I also 
noticed unusual hair loss. What might these symptoms 
signify? Should I seek immediate medical attention? 
Difficulty level: 5

LLAMA: 
Anemia, thyroid disorders, and autoimmune diseases 
can cause fatigue and hair loss.

PMC:
Hello! Tiredness and hair loss can be caused by a 
variety of factors, including stress, hormonal imbalances, 
nutritional deficiencies, and certain medical conditions. If 
you have noticed these symptoms and they are causing 
you concern, it is a good idea to schedule an 
appointment with your healthcare provider. They can 
perform a physical exam and run some tests to 
determine the underlying cause of your symptoms. In 
some cases, unusual hair loss can be a sign of an 
underlying medical condition, so it is always best to get 
it checked out by a healthcare professional.

AlpaCare:
Feeling tired all the time and experiencing unusual hair 
loss can be indicative of various medical conditions. 
While these symptoms alone may not necessarily signify 
a serious underlying problem, it is important to 
investigate further. 
Here are a few possibilities that could cause these 
symptoms: 

1. Hypothyroidism: An underactive thyroid gland can 
lead to fatigue and hair loss. 
2. Iron deficiency anemia: Low levels of iron can cause 
fatigue and hair loss. 
3. Chronic stress: Prolonged periods of stress can 
contribute to fatigue and hair loss. 
4. Nutritional deficiencies: Lack of certain vitamins and 
minerals can lead to fatigue and hair loss.

However, if you are experiencing additional symptoms 
such as severe pain, rapid weight loss, difficulty 
breathing, or notice any changes in your menstrual 
cycle, it is advisable to seek immediate medical 
attention. Only a healthcare professional can accurately 
diagnose the cause of your symptoms after considering 
your medical history, conducting a physical examination, 
and possibly ordering further tests.

Instruction: Briefly communicate the clinical uses, appropriate dosage, 
side effects, and contraindications of  Metoprolol. Utilize bullet points to make it 
clear. 
Difficulty level: 1

LLAMA: 
Metoprolol is a beta blocker used to treat hypertension, angina, and heart 
failure. It is also used to prevent migraines and treat arrhythmias. It is taken 
orally, with a dose of  25-100 mg once daily. Common side effects include 
fatigue, cold hands and feet, weight gain, and sleep disturbances. In some 
cases, it may cause more serious effects like asthma exacerbation, heart block, 
and low blood pressure. Its use requires careful monitoring, especially in 
patients with asthma or diabetes.

PMC:
Metoprolol is a beta-blocker medication that is commonly used to treat high 
blood pressure, chest pain (angina), and heart failure. It can also be used to 
reduce the risk of  migraines and prevent palpitations. 
The usual starting dose for Metoprolol is 25-50 mg once a day, usually with an 
increase to 100 mg/day after one week. The maximum dose is 400 mg/day, 
but your doctor may adjust the dose based on your individual needs and 
response to treatment. 
Some common side effects of  Metoprolol include fatigue, dizziness, and 
difficulty breathing. It may also cause decreased heartbeat, decreased blood 
pressure, and impotency. 
Contraindications for Metoprolol include a history of  asthma, allergic reactions, 
and severe bradycardia. It should also be avoided in patients with severe heart 
failure or shock, and those with a history of  heart block.

AlpaCare:
Clinical uses: 
- Metoprolol is commonly used to treat high blood pressure (hypertension) and 
angina (chest pain). 
- It is also prescribed for certain heart conditions such as heart failure, heart 
attack, and abnormal heart rhythms. 
Appropriate dosage: 
- The dosage depends on the condition being treated, but it typically ranges 
from 25-200 mg per day. 
- It can be taken with or without food, but it should be taken consistently as 
directed by the healthcare provider. 
Side effects: 
- Common side effects include fatigue, dizziness, low blood pressure, slow 
heart rate, and cold hands/feet. 
- Other possible side effects may include shortness of  breath, diarrhea, nausea, 
vomiting, and sleep problems. 
Contraindications: 
- Metoprolol is contraindicated in patients with bradycardia (slow heart rate), 
heart block, severe liver disease, and certain metabolic disorders. 
- It should not be taken by patients with allergies to metoprolol or other beta-
blockers. 

(a) (b)

Figure 4.5: Case Study of 13B models of AlpaCare and PMC focusing on (a) correctness

and (b) helpfulness. Key points in the instructions are highlighted in blue, and primary

responses are emphasized in yellow.

enhances the precision and utility of the guidance provided. Additionally, it emphasizes

the importance of medical attention for severe symptoms, making its recommendations

more actionable.

In the case of helpfulness illustrated in Figure 4.5(b), both the base model and medical

models generate accurate medical information on Metoprolol from different perspectives.

However, LLAMA and PMC do not adhere to the instruction to use a bullet-point format,
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which would enhance clarity. Conversely, AlpaCare clearly follows the instruction with

well-structured formatting, demonstrating that fine-tuning with a diverse instruction-

following dataset improves the ability to follow instructions and, in turn, increases help-

fulness.

4.8 Conclusion

In conclusion, our study highlights the critical role of data diversity in enhancing

medical IFT models. We produce a diversity set of medical instructions using GPT-

4, leading to the creation of 52k medical machine-generated instruction-response pairs,

termed MedInstruct-52k. This dataset is used to fine-tune LLaMA-series models, specifi-

cally AlpaCare, which exhibits strong medical capacity and robust generalization ability

compared to other medical IFT models. Our approach demonstrates versatility across

various metrics, including different LLM judges (such as ChatGPT and Claude-2), a

range of base model families (like LLaMA-1,2,3), and various model sizes (7B and 13B).

This underlines the significant benefits of incorporating diverse data in medical AI model

development.

69



Chapter 5

Improving Medical Predictions by

Irregular Multimodal Electronic

Health Records Modeling

5.1 Introduction

ICUs admit patients with life-threatening conditions, e.g. trauma [156], sepsis [157],

and organ failure [158]. Care in the first few hours after admission is critical to patient

outcomes. This period is also more prone to medical decision errors than later times

[26]. Automated tools with effective and real-time predictions can be much beneficial in

assisting clinicians in providing appropriate treatments. Recently, the health conditions

of patients in ICUs have been recorded in EHRs [159], bringing the possibility of applying

deep neural networks to healthcare [30, 29], e.g. mortality prediction [160] and phenotype

classification [161]. EHRs contain multivariate irregularly sampled time series (MISTS)

and irregular clinical note sequences, as shown in Figure 5.1. The multimodal structure

and complex irregular temporal nature of the data present challenges for prediction. This
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Heart Rate

Temperature

Glucose

Clinical notes

0:59 AM: 86
9:32 AM: … 62 
year old man with 
diffuse rales…

3:59 AM: 36.6
5:48 AM: 128.0

M
IS
TS

Figure 5.1: An example of a patient’s ICU stay includes MISTS with three features

and a series of clinical notes. For MISTS, heart rate and temperature are monitored

regularly with different frequencies, and glucose is a laboratory test ordered at irregular

time intervals based on doctors’ decisions. Clinical notes are free text, collected with

much sparser irregular time points than clinical measurements.

leads us to formulate two research objectives:

1. Tackling irregularity in both time series and clinical notes

2. Integrating irregularity into multimodal representation learning

To the best of our knowledge, none of the existing works has fully considered irregularity

in multimodal representation learning.

We observed three major drawbacks for irregular multimodal EHRs modeling in ex-

isting works. 1) MISTS models perform diversely. While the numerous MISTS models

have been proposed to tackle irregularity [162, 163, 164, 165, 166, 167], none of the ap-

proaches consistently outperforms the others. Even among Temporal discretization-based

embedding (TDE) methods, including hand-crafted imputation [162] and learned inter-

polation [163, 164], which transform MISTS into regular time representations to interface
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with deep neural networks for regular time series, there is no clear superior approach. 2)

Irregularity in clinical notes is not well tackled. Most existing works [17, 18] directly con-

catenate all clinical notes of each patient but ignore the note-taking time information.

Although [168] proposes an LSTM variant to model time decay among clinical notes,

this approach utilizes only a few trainable parameters, which could be less powerful. 3)

Exiting works ignore irregularity in multimodal fusion. [169, 19] have demonstrated the

effectiveness of combining time series and clinical notes for medical prediction tasks, how-

ever, these works are deployed only on multimodal data without considering irregularity.

Their fusion strategies may not be able to fully integrate irregular time information into

multimodal representations, which can be essential for prediction performance in real-

world scenarios.

Our Contributions. To tackle the aforementioned issues, we separately model irregu-

larity in MISTS and irregular clinical notes, and further integrate multimodalities across

temporal steps, so as to provide powerful medical predictions based on the complicated

irregular time pattern and multimodal structure of EHRs. Specifically, we first show

that different TDE methods of tackling MISTS are complementary for medical predic-

tions, by introducing a gating mechanism that incorporates different TDE embeddings

specific to each patient. Secondly, we cast note representations and note-taking time

as MISTS, and leverage a time attention mechanism [164] to model the irregularity in

each dimension of note representations. Finally, we incorporate irregularity into multi-

modal representations by adopting a fusion method that interleaves self-attentions and

cross-attentions [170] to integrate multimodal knowledge across temporal steps. To the

best of our knowledge, this is the first work for a unified system that fully considers

irregularity to improve medical predictions, not only in every single modality but also

in multimodal fusion scenarios. Our approach demonstrates superior performance com-

pared to baselines in both single modality and multimodal fusion scenarios, with notable
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relative improvements of 6.5%, 3.6%, and 4.3% in terms of F1 for MISTS, clinical notes,

and multimodal fusion, respectively. Our comprehensive ablation study demonstrates

that tackling irregularity in every single modality benefits not only their own modality

but also multimodal fusion. We also show that modeling long sequential clinical notes

further improves medical prediction performance.

5.2 Related Work

Multivariate irregularly sampled time series (MISTS). MISTS refer to observa-

tions of each variable that are acquired at irregular time intervals and can have misaligned

observation times across different variables [171]. GRU-D [172] captures temporal depen-

dencies by decaying the hidden states in gated recurrent units. SeFT [166] represents the

MISTS to a set of observations based on differentiable set function learning. ODE-RNN

[167] uses latent neural ordinary differential equations [173] to specify hidden state dy-

namics and update RNN hidden states with a new observation. RAINDROP [165] models

MISTS as separate sensor graphs and leverages graph neural networks to learn the de-

pendencies among variables. These approaches model irregular temporal dependencies in

MISTS from different perspectives through specialized design. TDE methods are a sub-

set of methods for handling MISTS, converting them to fixed-dimensional feature spaces,

and feeding regular time representations into deep neural models for regular time se-

ries. Imputation methods [162, 161, 174] are straightforward TDE methods to discretize

MISTS into regular time series with manual missing values imputation, but these ignore

the irregularity in the raw data. To fill this gap, [163] presents interpolation-prediction

networks (IP-Nets) to interpolate MISTS at a set of regular reference points via a kernel

function with learned parameters. [164] further presents a time attention mechanism

with time embeddings to learn interpolation representations. However, learned interpo-
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lation strategies do not always outperform simple imputation methods. This may be

due to complicated data sampling patterns [166]. Inspired by Mixture-of-Experts (MoE)

[175, 176], which maintains a set of experts (neural networks) and seeks a combination

of the experts specific to each input via a gating mechanism, we leverage different TDE

methods as submodules and integrate hand-crafted imputation embeddings into learned

interpolation embeddings to improve medical predictions.

Irregular clinical notes modeling. [17, 18] concatenate each patient’s clinical notes,

divide them into blocks, and then obtain text representations by feeding a series of note

blocks into BERT [177] variants [178, 64], ignoring the irregularity in clinical notes. [168]

further proposes a time-awarded LSTM with trainable decay function to model irregular

time information among clinical notes. However, this approach can be less powerful due

to limited parameters. To fully model irregularity, we cast clinical note representations

with irregular note-taking time as MISTS, such that each dimension of a series of clinical

note representations is an irregular time series, and perform a time attention mechanism

[164] to further model the irregularity.

Multimodal fusion. Combining both time series and clinical notes outperforms the

results obtained when only one of them is used [179]. [180, 169, 19] directly concatenate

representations from different modalities for downstream predictions. [181] utilizes an

attention gate to fuse multimodal information. [182] selects multimodal fusion strategies

from addition, concatenation and multiplication by a neural architecture search method.

However, these fusion methods are only performed on EHRs without considering irreg-

ularity, failing to fully incorporate time information into multimodal representations,

which is critical in real-world scenarios. To fill this gap, we first tackle irregularity in

time series and clinical notes, respectively, and further leverage fusion module, which

interleaves self-attentions and cross-attentions [170] to obtain multimodal interaction in-

tegrated with irregularity across temporal steps.
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Figure 5.2: The model architecture, which encodes MISTS and clinical notes separately,

and then performs a multimodal fusion. UTDE is a gating mechanism to obtain MISTS

representations by dynamically fusing embeddings of imputation and a time attention

module, mTANDts. Irregular clinical notes are encoded by a pretrained language model,

TextEncoder, whose outputs are fed into mTANDtxt to obtain text interpolation rep-

resentations. The multimodal fusion strategy contains J identical layers. Each layer

interleaves self-attentions (MH) and cross-attentions (CMH) to integrate representations

from multimodalities and incorporate irregularity into multimodal representations. A

classifier with fully connected layers is used to predict patient outcomes.

5.3 Method

Our method models irregularity in three portions: MISTS, clinical notes, and mul-

timodal fusion, as shown in Figure 5.2. In this section, we will illustrate each part

thoroughly.

5.3.1 Problem setup

Denote D = {(xts
i , t

ts
i ), (xtxt

i , ttxti ),yi}Ni=1 to be an EHR dataset with N patients, where

(xts
i , t

ts
i ) is dm-dimensional MISTS, xts

i being observations and ttsi being corresponding

time points, (xtxt
i , ttxti ) is a series of clinical notes with note-taking time and yi is the
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target outcome, e.g. discharge or death for modality prediction. In the following part, we

drop the patient index i for simplicity. Each dimension of the MISTS, (xts
j , t

ts
j ), where

j = 1, · · · , dm, has ltsj observations, and each patient’s (xtxt, ttxt) includes ltxt clinical

notes. In early-stage medical predictions, given (xts, tts) and (xtxt, ttxt) before a certain

time point (e.g. 48-hour) after admission, α, we seek to predict y for every patient.

5.3.2 MISTS

TDE methods

We will describe two TDE methods to facilitate the introduction of our proposed

MISTS embedding approach. An illustration is shown in Figure 5.3 for better under-

standing.

Imputation. We first discretize xts based on tts, to hourly time intervals with a se-

quence of regular time points, α = [0, 1, · · · , α − 1]. Then, for each feature, we use the

last observation, if multiple observations are in the same interval, and regard intervals

without any observations as missingness. We impute missing values with the most recent

observation if it exists, and to the global mean of all patients otherwise. For example,

with α = [0, 1, 2, 3] being the first 4-hour prediction, a feature with observations [10, 8, 12]

collected at [1.2, 1.5, 3.7] hours after admission is discretized to [miss1, 8,miss2, 12], where

miss1 and miss2 will be imputed by global mean and the previous observed value, respec-

tively. The regular time series is fed into a 1D causal convolutional layer with stride 1 to

obtain imputation embeddings with hidden dimension dh, etsimp ∈ Rα×dh .

Discretized multi-time attention (mTAND). We leverage a discretized multi-time

attention (mTAND) module [164] to re-represent MISTS into α. To incorporate irregular

time knowledge of MISTS, a time representation, Time2Vec [183], is learned to transform

each value in a list of continuous time points, τ , with arbitrary length, lτ , to a vector of
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size dv and obtain a series of time embeddings θ(τ ) ∈ Rlτ×dv ,

θ(τ )[i] =


ωiτ + ϕi if i = 1

sin(ωiτ + ϕi), if 1 < i ≤ dv,

where θ(τ )[i] is the i-th dimension of Time2Vec, and {ωi, ϕi}dvi=1 are learnable parameters.

The sine function captures periodic patterns while the linear term captures non-periodic

behaviors, conditional on the progression of time [183].

The mTAND module leverages V different Time2Vec, {θv(·)}Vv=1, to produce inter-

polation embeddings at α, based on a time attention mechanism. Specifically, similar

to the multi-head attention [170], {θv(·)}Vv=1 are performed on α and all dimensions of

MISTS to embed all time points to V different dv-dimensional hidden spaces simultane-

ously, capturing various characteristics of different time points with regard to the overall

time information in different time subspaces. For each θv(·), a time attention mechanism

is performed for each dimension of the MISTS simultaneously, which takes α as queries,

ttsj as keys and xts
j as values, and acquires x̂ts

j ∈ Rα, a series of interpolations of corre-

sponding univariate time series at α. Therefore, an interpolation matrix ots
v ∈ Rα×dm is

obtained by

ots
v = [x̂ts

1 , x̂
ts
2 , · · · , x̂ts

dm ]

x̂ts
j = Attn(θv(α)wq

v, θv(t
ts
j )wk

v ,x
ts
j )

where j = 1, · · · , dm, and wq
v and wk

v are learned parameters. Afterwards, ots
1 ,o

ts
2 , · · · ,ots

V

are further concatenated and linearly projected to obtain mTAND embeddings, etsattn ∈

Rα×dh .

Unifying TDE methods

The imputation approach ignores the irregularity of the time series, while mTAND

could result in worse performance, probably due to different time series sampling strate-
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Figure 5.3: Architecture of UTDE module with two input features. UTDE incorporates

two TDE methods: Imputation and mTANDts, as submodules, and learns to integrate

different embeddings that are best suited to patients for a given task, via a gating mech-

anism.

gies [166]. We propose a Unified TDE module, UTDE, via a gate mechanism to take

advantage of both, for tackling complex time patterns in EHRs. The architecture of

UTDE is illustrated in Figure 5.3. UTDE incorporates Imputation and mTAND as sub-

modules, and learns to dynamically integrate etsimp into etsattn to obtain compounding

embeddings zts ∈ Rα×dh . Formally,

zts = g⊙ etsimp + (1 − g) ⊙ etsattn

g = f (etsimp ⊕ etsattn),

where f (·) is a gating function implemented by MLP for simplicity, ⊕ is the concatenation

operator and ⊙ is point-wise multiplication. Specifically, we perform UTDE in 3 levels

in which g has different dimensions : 1) patient level with g ∈ R , 2) temporal level

with g ∈ Rα, and 3) hidden space level with g ∈ Rα×dh . The g on the hidden space

level can be more powerful than temporal and patient levels, while it introduces more
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parameters to update, making the whole module more challenging to optimize. In the

experiment section, we use validation sets to decide the level on which to operate.1 In

principle, UTDE can be applied to any two TDE methods. Here, we utilize Imputation

and mTAND as submodules based on empirically results.

5.3.3 Irregular clinical notes

To extract relevant knowledge from the clinical notes, we first encode the notes by a

in-domain pretrained language model, TextEncoder. Then we extract the representation

of the [CLS] token for each encoded clinical note, to obtain a series of note representations,

etxt ∈ Rltxt×dt ,where dt is the hidden dimension of the encoded text. Formally,

etxt = TextEncoder(xtxt).

To tackle irregularity, we sort etxt by ttxt and cast (etxt, ttxt) as MISTS, such that

each hidden dimension of etxt is a time series sequence and every time series sequence

has the same collected time points. The mTAND module introduced in section 5.3.2

is further leveraged to re-represent etxt into α. Specifically, the mTANDtxt takes α as

queries, ttxt as keys and etxt as values and outputs ztxt ∈ Rα×dh , a set of text interpolation

representations at α. Thus we have

ztxt = mTANDtxt(α, ttxt, etxt).

For mTANDts, the mTAND module for time series, and mTANDtxt, we utilize the

same {θv(·)}Vv=1 to encode irregular time points of two modalities to obtain temporal

knowledge, because all continuous time points are in the same feature space. However, all

of the other components in mTANDts and mTANDtxt are learned separately because the

1we defer more discussion on computation resource of UTDE to Appendix C.1.

79



Improving Medical Predictions by Irregular Multimodal Electronic Health Records Modeling
Chapter 5

representations of time series and clinical notes are in different hidden spaces. Moreover,

since the mTANDtxt projects ztxt to the same dimension dh as the zts, the dot-products

are adoptable in attention modules in the fusion.

5.3.4 Multimodal fusion

Previous works [180, 169, 19, 182] perform fusion strategies on multimodal data omit-

ting irregularity. In our work, we first obtain MISTS and irregular clinical note repre-

sentations, zts and ztxt, by UTDE and mTANDtxt, respectively. In addition, we leverage

an interleaved attention mechanism [170], which fuses zts and ztxt across temporal steps

and integrates irregularity into multimodal representations, as shown in Figure 5.2.

Our multimodal fusion module is composed of a stack of J identical layers. Each layer

consists of two self-attention sublayers and two cross-attention sublayers across temporal

steps to explore the latent interactions between two modalities. Specifically, for each

modality in the j-th layer, we first perform a multi-head self-attention (MH) [170] across

temporal steps by taking the output of the corresponding modality from the j − 1-th

layer to obtain contextual embeddings. Formally, we acquire the contextual embeddings

of time series and clinical notes, ẑtsj and ẑtxtj , by

ẑtsj = MHts
j (ztsj−1), ẑtxtj = MHtxt

j (ztxtj−1),

where j = 1 . . . J , and zts0 = zts and ztxt0 = ztxt. To capture the cross-modal information

between two modalities, two multi-head cross-attentions (CMH) [170, 184] are leveraged

to learn knowledge of another modality attended by the current modality and vice versa.

Specifically, for a time series branch in the j-th layer, a CMHts
j transforms ẑtxtj to keys and

values to interact with time series modality, and output ztsj , the time series representations

carrying information passed from clinical notes. For the text branch, the same process

is performed but transforming ẑtsj to keys and values, to output ztxtj , the clinical note
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representations integrated with information passed from time series. Formally,

ztsj = CMHts
j (ẑtsj , ẑ

txt
j ), ztxtj = CMHtxt

j (ẑtxtj , ẑtsj ).

Upon the CMH output of each modality, a position-wise feedforward sublayer is stacked.

We apply pre-layer normalizations and residual connections to every MH, CMH and

feedforward sublayer. For simplicity, we only draw MH and CMH in multimodal fusion

in Figure 5.2.

In this process, each modality alternately collects temporal knowledge by a MH, and

updates its sequence via external information from another modality by a CMH. After

zts and ztxt are passed through J layers, the output of each modality fully integrates

information from another modality. Eventually, the last hidden states of ztsJ and ztxtJ are

extracted and concatenated to pass through a classifier with fully-connected layers to

make predictions.

5.4 Experiments

To demonstrate the effectiveness of our methods, we conducted comprehensive experi-

ments and ablation studies on two medical tasks: 48-hour in-hospital mortality prediction

(48-IHM) and 24-hour phenotype classification (24-PHE), which are critical in the clinical

scenario [185, 186].

5.4.1 Experimental setup

Dataset. MIMIC III is a real-world public EHR of patients admitted to ICUs, including

numerical time series and clinical notes [9]. We select the MISTS features and extract

clinical notes following [161] and [180], respectively. For each task, the data split of

training, validation, and testing sets follows [161], and patients without any clinical
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notes before the prediction time are removed. We defer additional data preprocessing

details to the Appendix C.2. After preprocessing, the number of patients in the training,

validation and testing sets for the 48-IHM are 11181, 2473 and 2488; and for the 24-PHE,

they are 15561, 3410 and 3379, respectively.

Evaluation metric. The 48-IHM is a binary classification problem with label imbal-

ance with death to discharge ratio of approximately 1:7. The 24-PHE is a multi-label

classification problem with 25 acute care conditions, which is more changeling due to

earlier prediction time and more prediction classes. We measured the performance of our

proposed methods and baselines by the F1 and AUPR on 48-IHM and F1(Macro) and

AUROC on 24-PHE, following the previous work [57, 187].

MISTS baselines. We compare UTDE with a classical and 5 SOTA baselines of MISTS:

Imputation, IP-Net [163], mTAND [164], GRU-D [172], SeFT [166] and RAINDROP

[165]. We utilize Transformer [170] as backbone for UTDE and TDE methods, because

Transformer has achieved SOTA results in regular time series modeling [188, 189]. We

feed time series embeddings into Transformer and extract the last hidden states of the

Transformer output to pass through fully-connected layers to make predictions. Follow-

ing [165], we added two methods initially designed for forecasting tasks, DGM2-O [190]

and MTGNN [191] in our baselines. Details on MISTS baseline descriptions are in the

Appendix C.3.1.

Irregular clinical note baselines. Considering the in-domain knowledge and the

length of clinical notes, we utilize Clinical-Longformer [192] with a maximum input se-

quence length of 1024 as our text encoder, which covers more than 98% of notes in both

tasks. Same as time series modality, we feed the text interpolation representations ob-

tained by mTANDtxt into Transformer for predictions. We compare our method with

two baselines: T-LSTM [193], FT-LSTM [168], and GRU-D [172], which shows strong

performance in MISTS modeling. All of these methods model irregularity by acquiring
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a series of clinical note representations with irregular note-taking time information. To

demonstrate our method’s effectiveness at tackling irregularity, we further introduce two

baselines: Flat [169], utilizing the average of clinical note embeddings of a patient for

predictions, and HierTrans [194], utilizing Transformer to model sequential relationships

among a series of clinical notes representations without considering irregular note-taking

time. We defer additional baseline descriptions to the Appendix C.3.2.

Multimodal fusion baselines. To examine the effectiveness of our fusion method, we

consider four baselines for fusion: concatenation [180, 169], Tensor Fusion [195, 196],

MAG [181, 197], and MulT [184]. While the first three are asynchronous methods that

do not consider temporal information, MulT and our method are synchronous relying on

a cross-attention mechanism to integrate information across temporal steps. Additional

multimodal fusion baseline details can be found in the Appendix C.3.3.

5.4.2 Main results

In this section, we compare results between our proposed methods and their corre-

sponding baselines in MISTS, irregular clinical notes, and multimodal fusion scenarios,

respectively. The data split of each task is fixed across all methods. We conduct 3 dif-

ferent runs for each setting and report the corresponding mean values along with the

standard deviations in testing sets, based on the best average performance on validation

sets. Details for the hyperparameter selection can be found in the Appendix C.4.2

MISTS. Table 5.1 compares the UTDE with other time series baselines. UTDE, which

incorporates two different TDE methods, obtains the best performance across two tasks

on different evaluation metrics, demonstrating the advantages of our hybrid approach

for downstream predictions. Specifically, UTDE relatively outperforms the strongest

baseline by 4.4% in terms of AUPR on 48-IHM. Additionally, UTDE shows a 6.5% relative

2All experiments are conducted on 1 RTX-3090.
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Table 5.1: Comparison between UTDE and other MISTS methods. We report average

performance on three random seeds, with standard deviation as the subscript. The Best

and 2nd best methods under each setup are bold and underlined, respectively. The

performance of 48-IHM is measured on F1 and AUPR, and 24-PHE on F1 (Macro) and

AUROC, respectively.

Imputation IP-Net mTAND GRU-D SeFT RAINDROP DGM2-O MTGNN UTDE (Ours)

48-IHM F1 39.731.39 37.222.75 43.870.54 42.820.57 16.468.61 39.463.70 39.081.53 38.602.50 45.260.70

AUPR 44.361.36 39.361.10 47.541.28 45.900.40 23.890.46 36.230.37 37.791.54 36.492.10 49.641.00

24-PHE F1 23.360.45 17.900.66 19.900.38 18.960.99 6.100.15 21.811.71 18.400.18 14.481.69 24.890.43

AUROC 74.930.22 73.450.10 73.480.11 73.330.10 65.660.11 73.950.89 71.710.16 70.560.68 75.560.17

improvement in F1 score on the more challenging 24-PHE task compared to the best

baseline. Excluding UTDE, mTAND and Imputation are the top performers on 48-IHM

and 24-PHE, respectively. However, UTDE, which dynamically incorporates Imputation

and mTAND, outperforms its submodules for both tasks across various metrics, showing

its ability to integrate knowledge and benefit medical predictions.

Irregular clinical notes. We compare our method with baselines in the clinical notes

modality in Table 5.2. All of the methods that model the sequential relationships among

clinical notes yield better results than Flat by a large margin, demonstrating that ex-

ploiting sequential information of clinical notes can significantly improve the downstream

predictions. T-LSTM, FT-LSTM and GRU-D outperform or have comparable result com-

pared to HierTrans on 48-IHM, but do not perform well on the more challenging 24-PHE

task, where note sequences are sparser. This highlights the difficulty in modeling irregu-

larity in sparse clinical note sequences. The proposed method, mTANDtxt, significantly

outperforms HierTrans by relative margins of 7.8% and 5.3% in terms of F1 on the 48-

IHM and 24-PHE, respectively. This shows the importance of modeling the irregularity

present in clinical notes. Additionally, the results show that mTANDtxt surpasses other
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Table 5.2: Results comparison in the clinical notes modality.

48-IHM 24-PHE

F1 AUPR F1 AUROC

Flat 39.781.14 51.690.79 18.141.36 74.810.22

HierTrans 48.762.44 52.981.69 50.251.21 84.900.25

T-LSTM 50.320.89 52.573.25 39.131.35 82.030.07

FT-LSTM 48.511.67 54.391.38 38.240.61 81.070.27

GRU-D 51.011.50 54.340.75 51.091.02 84.190.20

mTANDtxt (Ours) 52.571.30 56.051.09 52.950.06 85.430.07

irregularity-modeling methods, particularly achieving a 3.6% relative improvement in

terms of F1 on the 24-PHE, demonstrating its strong performance in tickling irregularity

in clinical notes.

Multimodal fusion. We first obtain MISTS embeddings by UTDE and irregular clin-

ical note embeddings by mTANDtxt, since they have the best results in each modality,

and then fuse their representations via various multimodal fusion strategies. The results

are shown in Table 5.3. Compared to models that use only one source of available data,

most fusion strategies achieve better results, illustrating the effectiveness of multimodal

fusion. Our fusion method yields better results than baselines for both tasks, achieving

a particularly 4.3% relative improvement in F1 on the 48-IHM, showing the power of

the interleaved attention mechanism. Synchronous strategies consistently achieve better

results than asynchronous methods by incorporating temporal information in multimodal

fusion, resulting in better integration of irregularity and fusion of different modalities.

Our method further outperforms the MulT, which separately applies a cross-modal Trans-
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Table 5.3: Performance comparison of different fusion strategies. Concat and TF use the

concatenation and Tensor Fusion method to fuse the two modalities, respectively.

48-IHM 24-PHE

F1 AUPR F1 AUROC

TS only 45.260.70 49.641.00 24.890.43 75.560.17

Note only 52.571.30 56.051.09 52.950.06 85.430.07

Concat 52.770.70 57.130.7 53.300.35 85.940.21

TF 51.440.66 57.070.82 49.840.83 84.740.16

MAG 53.202.13 57.861.07 53.730.37 85.940.07

MulT 54.131.20 58.941.94 54.200.33 85.960.07

Interleaved (Ours) 56.451.30 60.231.54 54.840.31 86.060.06

former and a self-attention Transformer for each modality. This result shows that alter-

nately obtaining temporal information and cross-modal knowledge for different modalities

is more capable of fusing different modalities and integrating irregularity into multimodal

representations than learning these two components separately.

5.4.3 Ablation study

UTDE with different submodules in MISTS. UTDE could have incorporated dif-

ferent TDE methods as submodules to obtain fused time series embeddings. We explored

the effectiveness of the gate mechanism in UTDE by substituting mTAND to IP-Net in

Table 5.4. The UTDEIP−Net underperforms UTDEmTAND but still achieves better results

than its submodules, Imputation and IP-Net, on both tasks, demonstrating that UTDE

successfully learns from different submodules and achieves optimal performance via the
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gate mechanism.

Table 5.4: Ablation study on the effects of substituting different submodules in UTDE.

UTDEIP−Net consists of IP-Net and Imputation, and UTDEmTAND incorporates mTAND

and Imputation.

Imputation IP-Net UTDEIP−Net UTDEmTAND

48-IHM F1 39.731.39 37.222.75 44.881.96 45.260.70

AUPR 44.361.36 39.361.10 45.493.45 49.641.00

24-PHE F1 23.360.45 17.900.66 24.060.51 24.890.43

AUROC 74.930.22 73.450.10 75.170.07 75.560.17

UTDE with various backbones in MISTS. To evaluate the effectiveness of UTDE

across different backbone encoders, we further leverage CNN [198] and LSTM [199] to

encode time series representations obtained from TDE and UTDE methods. The results

are shown in Table 5.5. The empirical analysis shows that Imputation and mTAND

performance varies across different time series encoders. However, UTDE consistently

outperforms them, demonstrating the gains of dynamically integrating different time

series embeddings for medical predictions regarding the effectiveness and generalizability

across time series backbones.

Does UTDE benefit performance in multimodal fusion? We drop UTDE (w/o

UTDE) in our fusion model and perform only Imputation (w Imputation) and mTAND

(w mTANDts) to obtain MISTS embeddings, respectively. Table 5.6 shows results. Con-

sistent with the time series modality, the fusion model with learned mTAND embeddings

does not consistently outperform the one with classical imputation embeddings, and vice

versa. However, our fusion model with UTDE consistently surpasses those using only one
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Table 5.5: Comparison of UTDE and its submodules with different time series backbones.

CNN LSTM Transformer

Imputation mTAND UTED Imputation mTAND UTED Imputation mTAND UTED

48-IHM F1 39.661.72 41.401.16 44.451.41 39.720.70 43.610.55 44.580.18 39.731.39 43.870.54 45.260.70

APUR 41.840.52 46.620.27 48.220.99 42.520.98 47.360.67 48.170.36 44.361.36 47.541.28 49.641.00

24-PHE F1 20.090.70 19.051.17 20.640.54 19.211.37 19.490.32 21.550.21 23.360.45 19.900.38 24.890.43

AUROC 74.690.07 72.310.21 74.900.06 73.950.14 71.500.04 75.150.11 74.930.22 73.480.11 75.560.17

Table 5.6: Ablation study of our multimodal fusion model.

48-IHM 24-PHE

F1 AUPR F1 AUROC

Ours 56.451.30 60.231.54 54.840.31 86.060.06

:w/o UTDE

w Imputation 54.590.91 56.800.54 54.460.17 85.980.02

w mTANDts 54.891.09 59.111.21 54.070.51 85.920.12

:w/o mTANDtxt 51.141.79 57.810.76 53.330.62 85.600.06

TDE approach. This result further indicates that UTDE can maintain optimal perfor-

mance for predictions by integrating MISTS embeddings from different TDE approaches.

Does tackling irregularity in clinical notes improve performance in multimodal

fusion? We remove mTANDtxt and directly fuse a series of clinical notes representations

with UTDE representations. The results are shown in the last row in Table 5.6. Per-

formance drops when the fusion model ignores irregularity in clinical notes, showing the

importance of tackling irregularity in clinical notes for medical predictions.

Does the length of clinical notes affect results in multimodal fusion? Clinical

notes are often lengthy and contain valuable patient information. A longer encoded
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Figure 5.4: Performance of fusion models along with different maximum input sequence

lengths.

clinical note brings more expressive power. We adjust our fusion model by encoding

clinical notes with Bio-Clinical BERT [67] with maximum input sequence lengths of 128,

256, and 512, and Clinical-Longformer [192], with a maximum input sequence length of

1024, respectively. Figure 5.4 shows improvement in performance as maximum input

sequence length increases in both tasks across various evaluation metrics, highlighting

the value of clinical notes and the importance of modeling long-term dependency in text

in the multimodal fusion scenario.

5.5 Conclusion

In this chapter, we propose a unified system to fully model irregularity in multimodal

EHRs for medical predictions. We first tackle irregularity in time series via a gating

mechanism and long sequential clinical notes via a time attention mechanism separately,

and effectively integrate irregularity into multimodal representations by an interleaved
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fusion strategy. We hope that our work will encourage further explorations of tackling

irregularity in both single modality and multimodal scenarios.
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Chapter 6

Conclusion and Future Work

In this thesis, I detail works I conducted during my Ph.D. studies aimed at building deep

learning models to enhance diverse medical applications. My contributions spanned

numerical measurement modeling, NLP, and multimodal learning. In this concluding

chapter, I will summarize the key findings and outline future research directions for each

area of focus.

6.1 Numerical Measurement Modeling

In [20], we focus on the training data scarcity setting and propose utilizing domain

adaptation for modeling medical clinical measurements in EHRs to improve medical

predictions. We comprehensively study three different domain adaptation methods: fine-

tuning, adversarial learning, and contrastive learning, and investigate their effectiveness

in improving the performance of mortality prediction for trauma patients within this

data scarcity setting. The results show that learning domain-invariant information from

large public EHRs via different domain adaptation methods can improve the medical

prediction performance within small hospitals or sub-medical domains with data scarcity.
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In addition, aggregating the distinct features in source and target domains in domain

adaptation frameworks significantly improves target domain performances compared to

using overlapping features of the two domains. This encourages potential future work to

fully utilize data information on such data scarcity settings:

• Application to diverse medical conditions: Explore the application of domain adap-

tion methodologies beyond trauma patient mortality prediction to other medical

conditions and healthcare settings. This aims to validate the adaptability and ef-

fectiveness of these techniques across various clinical prediction tasks with more

diverse data sources, potentially revolutionizing outcome prediction in different

medical domains.

• Advanced encoding techniques: Innovate more sophisticated encoding strategies

to address complex feature disparities in healthcare data, including temporal pa-

tient data, unstructured clinical notes and, multi-modal data sources, to improve

the generalizability of leveraging domain adaptation methods in scenarios of data

scarcity with feature disparity.

6.2 NLP

In [21], we propose a novel method to improve downstream tasks under privacy-

restricted scenarios by leveraging medical knowledge in the powerful LLMs while alle-

viating the privacy concerns of private medical data. We assert the importance of the

privacy-restricted scenario in the medical domain. Especially, LLMs are becoming more

powerful, and their applications are becoming more common through simple API calls.

However, there is a concern that these models may not effectively address data privacy

issues. We believe the following directions are worth pursuing:
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• Building generally applicable medical SLM models for various medical tasks by

distilling medical knowledge from strong LLM teachers under privacy-restricted

scenarios.

• Although recent studies [7] have shown the medical capacity of LLMs, the hal-

lucination of medical knowledge generation still raises concerns. Improving the

quality of medical data generated by LLMs, which is highly correlated with the

decision-making ability of SLMs, is worth exploring.

In [22], we introduce a semi-automated pipeline for creating a diverse machine-

generated medical instruction fine-tuning (IFT) dataset, named MedInstruct-52k, aimed

at enhancing the effectiveness of medical LLMs. We offer public access to MedInstruct-

52k, and a series of medical LLMs trained on the dataset AlpaCare. In addition, to

better evaluate the medical instruction-following ability of existing medical LLMs, we

propose a clinician-curated instruction test set, MedInstruct-test, for evaluation. Our

work encourages potential future work on :

• Investigating data filtering techniques to secure a higher-quality medical dataset for

instruction tuning. [130] underscored the significance of training models with high-

quality data over merely increasing the dataset size. The challenge of evaluating

data quality within the medical domain remains largely unexplored.

• Integrating the internet with LLM as teacher models to generate more reliable and

up-to-date medical instruction-response pairs, improving data quality and diversity.

6.3 Multimodal Learning

In [23], we emphasize the significance of addressing irregularities within multimodal

EHRs and propose a method to comprehensively modeling the irregularity for improv-
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ing medical predictions. We believe our findings can encourage further explorations of

tackling irregularity in both single modality and multimodal scenarios:

• Investigating training strategies or designing gate mechanisms to reduce the com-

plexity of training could offer valuable insights. The selection of a model that

optimally integrates information across various levels in MISTS modality demands

more computational resources due to the introduction of submodules and the em-

ployment of the most effective integration method during inference.

• Further exploration of alternative multimodal fusion strategies by both considering

the irregularity and improving the effectiveness of model training is encouraged.
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Appendix A

Enhancing Small Medical Learners
with Privacy-preserving Contextual
Prompting

Limitations

While our work enhances SLM performance by using keyword representations of raw
data, it only mitigates but does not eliminate privacy concerns. Given that FTC is based
on GPT3.5, the medical knowledge it generates may be inaccurate or biased, which can
impact SLM performance. Moreover, the inference time for LLMs may be slower than
that of SLMs, leading to longer overall inference times compared to models solely reliant
on local SLMs. Furthermore, due to the training cut-off time, the medical knowledge
in LLM could be outdated, potentially hindering medical decision-making. We aim to
integrate LLM with the internet and knowledge graph in future work to generate more
reliable medical knowledge for enhancing SLM decision-making. These issues underscore
the need for further research on the use of LLMs in privacy-restricted medical scenarios.

A.1 Data and code

Our codes and generated data are public at:https://github.com/XZhang97666/
PrivacyBoost-SLM.

A.2 SLM implementation and training details

We implement both SFT and FTC based on huggingface transformers [200], and train
on NVIDIA A40-48GB GPUs. For all datasets, we utilize AdamW [201] as optimizer.
For MedQA and HEADQA, we set learning rates of 5 × 10−5, 5 × 10−5, and 2 × 10−6

for BioLinkBERT-Base, BioLinkBERT-Large, and BioMedLM in both FTC and SFT
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settings. For MedMCQA, we set learning rates of 2 × 10−5, 2 × 10−5, and 2 × 10−6 for
BioLinkBERT-Base, BioLinkBERT-Large, and BioMedLM in both FTC and SFT set-
tings. For BioLinkBERT-Base and BioLinkBERT-Large, we limit training to 100 epochs
with a 200-step warm-up and apply early stopping after 5 epochs without validation im-
provement. Batch sizes are 8 for few-shot and full-training scenarios across all datasets.
For BioMedLM, we set the training epochs to 10 for all datasets. We run experiments
with three random seeds {0, 1, 2} and report mean results and standard deviations.

A.3 Additional experimental results

Development sets results of MedQA and HeadQA. We report development sets
results of MedQA and HeadQA in Table A.1 and A.2, and Figure A.1.

Table A.1: Results (%) on development sets of MedQA and HEADQA between LLM,
SFT, and FTC under different training sizes.

MedQA HEADQA

100 200 500 full 100 200 500 full

LLM 38.30 47.60

SFT 33.280.85 34.011.00 34.200.96 42.210.91 36.540.30 39.000.61 34.882.00 41.480.48

FTC 43.661.26 45.700.10 45.620.70 50.730.35 55.031.10 56.180.76 57.450.53 60.211.47

Table A.2: Results comparison of FTC and FTCR in the full-training setting on devel-
opment sets of MedQA and HEADQA.

MedQA HEADQA

FTCR 48.560.62 58.170.78

FTC 50.730.35 61.350.16

A.4 Alternative measurement for privacy budget

We further conducted BPC measurement experiments on the training, validation, and
test sets of the MedQA dataset, respectively, to demonstrate the effectiveness of using
keywords to represent raw medical data while keeping privacy. To evaluate the BPC of
raw data and keywords, we separately input keywords with various proportions and raw
data into BioMedLM across different sets. Specifically, for each list of keywords, we form
a sentence of keywords by concatenating the list of keywords and separating each pair
of keywords with an empty space. Subsequently, we calculate the corresponding BPC
values to assess the outcomes. The results are shown in Table A.3.
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Figure A.1: Accuracy comparison (%) of ablation studies on development sets of MedQA
and HEADQA. The upper part of the table examines the effect of different context
components on SLM training, while the lower part investigates the impact of relationships
within the context.

Only OverallFTC Only Specific SFT

HEADQAMedQA

HEADQAMedQA

(a)

(b)

FTC No Relation SFT

Table A.3: Comparison of BPC values for raw data and concatenated keywords across
different data splits of the MedQA dataset

Raw Data Keywords
- 25% 50% 75% 100%

Training 12.41 10.37 10.04 9.91 9.87
Validation 12.44 10.31 10.01 9.92 9.89
Test 12.44 10.32 10.06 9.94 9.91

The BPC values of keywords consistently exhibit lower values than those of
the raw data. A higher BPC is consistently observed across various subsets of the
MedQA dataset when compared to the approach of inputting keywords into BioMedLM.
This comparison implies that, on average, raw data holds a greater level of uncertainty in
contrast to the utilization of keywords. This disparity could be attributed to the fact that
raw data encompasses a larger amount of medical-unrelated information, which includes
privacy-related data, despite its comprehensive information coverage.

A decrease in the proportion of keywords results in an increase in BPC. De-
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creasing the number of keywords fed into the BioMedLM leads to an increase in BPC.
This indicates that a higher volume of keywords contributes to a more meaningful rep-
resentation of medical information in raw data, subsequently enhancing the performance
of both LLM and FTC.

Keywords representation obtains the lowest BPC compared to random words
and random span. We further evaluate the BPC of different raw data representation
methods (random span, random words and keywords) while maintaining the privacy bud-
get the same. Specifically, we feed different data representation content into BioMedLM
on the training, validation and test sets of the MedQA dataset, and calculate the corre-
sponding BPC values respectively. The results are presented in Table A.4.

Table A.4: BPC values different raw data representation methods.

Representation Methods Keywords Random words Random span

Training 9.87 10.04 12.25
Validation 9.89 10.05 12.22
Test 9.91 10.04 12.22

Keyword representation consistently obtains the lowest BPC compared to the other
two data representation methods, providing a more effective representation of medical
knowledge within the same privacy budget. Interestingly, the order of BPC performance
aligns with the performance of LLM prompting and SLM fine-tuning in Table 7 of our
work. The method with a lower BPC value achieves better performance in both LLM
prompting and SLM fine-tuning. This further highlights the importance of raw data
representation in generating high-quality context and effective SLM training.

A.5 General domain experimental setup

We perform experiments on two commonsense datasets to demonstrate the broad
applicability of our approach.
Datasets. 1. CommonsenseQA [124] is a multi-choice question-answering dataset
featuring 5 options per question, requiring commonsense reasoning. The dataset is split
into 9741/1221/1140 instances for training, development, and test sets, respectively. As
the test set is not publicly accessible, we follow previous work [63] and report results on
the development set. 2. OpenbookQA is a 4-option multi-choice question-answering
dataset that demands open book facts, broad common knowledge, and multi-hop rea-
soning [125]. The dataset is split into 4957/500/500 instances for training, development,
and test sets, respectively. We report results on the test set.

Context generation from LLM. We utilize the grounded entities from [100] as key-
words to query the GPT-3.5 gpt-3.5-turbo engine, generating context through a greedy
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decoding process (by setting the temperature to 0). We employ the same demonstration
format as in the medical domain and create a privacy-restricted context in accordance
with the in-context learning paradigm. For each dataset, we supply seven-shot hand-
crafted examples.
SLM training. We employ T5-base [71] as the SLM backbone for both SFT and FTC.
In FTC, we use Fusion-in-Decoder [88] to incorporate context information for decision-
making. Specifically, each context related to a candidate answer is concatenated with
the question and all candidate answers, then processed independently by the encoder.
The concatenated representations of all contexts are subsequently fed into the decoder
to generate predictions. In both datasets, we utilize AdamW [201] with a learning rate
of 5 × 10−5 for both SFT and FTC. We limit training to 100 epochs with a 200-step
warm-up and apply early stopping after 5 epochs without validation improvement. The
batch size is set to 8 for both datasets.

A.6 Prompt details

In this section, we present examples of prompts for both medical and general domains.
The context of each example consists of three parts: (1) An overall context, which pro-
vides high-level information derived from the extracted keywords and candidate answers
(red); (2) A specific context, which focuses on the knowledge associated with a candi-
date answer (blue) and its relation to the overall context (green); and (3) A preliminary
decision, which draws a conclusion based on the contexts provided earlier (orange).

Prompts for medical datasets. Three clinicians were involved in the prompt design
and writing. We held 5 meetings with clinicians to discuss the prompt design and iterate
4 versions. The final version of context needs around 10 minutes to write per context.
Our medical prompts on MedQA and MedMCQA are based on [6], HEADQA is based
on Wikipedia and written and verified by clinicians. Here we provide the prompts that
we used in our experiments.

Table A.5: Prompts for MedQA

Question Keywords: male, marathon runner, office, complaint, right-sided rib
pain, Physical examination, normal heart, lung findings, exhalation, dysfunction,
ribs 4-5, right, muscles, muscle groups, dysfunction, direct method
Candidate Answers: (a) anterior scalene (b) latissimus dorsi (c) pectoralis minor
(d) quadratus lumborum

Continued on next page
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Context: Normal heart and lung findings on a physical exam coupled with evidence
of exhalation dysfunction in ribs 4-5 on the right suggest a musculoskeletal cause of
exertional chest pain.
(a): The anterior scalene muscle attaches to the first rib. It is not associated with
exhalation dysfunction in ribs 4-5.
(b): The latissimus dorsi muscle attaches to ribs 9 and 10. It is not associated with
exhalation dysfunction in ribs 4-5.
(c): The pectoralis minor muscle is attached to ribs 3, 4, and 5. Dysfunction in the
fourth and fifth ribs can be caused by issues with the pectoralis minor muscle due
to its attachment to these ribs. It is associated with exhalation dysfunction in ribs
4-5.
(d): Quadratus lumborum muscle attaches to ribs 11 and 12. It is not associated
with exhalation dysfunction in ribs 4-5.
Therefore, the answer is (c).

Question Keywords: male, office, low back pain, denies, any, trauma, says, truck,
day, job, Examination, patient, prone position, deep sacral, left, posterior inferior
lateral angle, right, lumbosacral junction, springs, freely, compression, diagnosis
Candidate Answers: (a) left-on-left sacral torsion (b) left-on-right sacral torsion
(c) right unilateral sacral flexion (d) right-on-right sacral torsion

Context: The physical exam shows the deep sacral sulcus on the left, a posterior
inferior lateral angle on the right and normal spring test.
(a): This condition is characterized by the deep sacral sulcus on the right, a posterior
inferior lateral angle on the left and normal spring test. It is not consistent with the
findings from the physical exam.
(b): The left-on-right sacral torsion would be indicated by a deep sacral sulcus on
the right, a posterior inferior lateral angle on the left, and a positive spring test. It
is not consistent with the findings from the physical exam.
(c): This condition is characterized by a posterior inferior lateral angle on the right,
a deep sacral sulcus on the right, and an absence of normal spring test. It is not
consistent with the findings from the physical exam.
(d): This condition is characterized by a deep sacral sulcus on the left, a posterior
inferior lateral angle on the right and normal spring test. It is consistent with the
findings from the physical exam.
Therefore, the answer is (d).

Continued on next page
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Question Keywords: man, comes, office, nonproductive cough, runny nose, frontal
headache, headache, morning, nd, ibuprofen, relief, not, shortness of breath, Medical
history, no medications, ibuprofen, pain, Vital signs, temperature, 37.4, °, 99.4, °,
pulse, 88/min, 18/min, blood pressure, 120/84, Examination, nares, erythematous,
mucous membranes, Examination, throat, erythema, follicular lymphoid hyperplasia,
posterior oropharynx, no, cervical adenopathy, Lungs, clear, auscultation, patient’s,
symptoms
Candidate Answers: (a) Allergic rhinitis (b) Epstein-Barr virus (c) Mycoplasma
pneumonia (d) Rhinovirus

Context: Sore throats are common symptoms in multiple upper respiratory viruses.
(a): A non-productive cough is a common symptom in upper respiratory viruses but
is not present in allergic rhinitis. It is not the cause of the symptoms.
(b): The absence of shortness of breath indicates mycoplasma is less probable. It is
not the cause of the symptoms.
(c): Cervical adenopathy is commonly seen in cases of Epstein Barr virus. The
absence of cervical adenopathy indicates Epstein Barr virus is less likely. It is not
the cause of the symptoms.
(d): Rhinovirus can cause this patient’s symptoms, including sore throat, runny nose
and a frontal headache. It is the cause of the symptoms.
Therefore, the answer is (d).

Question Keywords: healthy, woman, comes, physician, 8, months, husband,
killed, car crash, decreased, difficulty falling asleep, states, sad, cries, frequently,
door lock, five, house, five, pieces, toilet paper, perfectionist, urges, rituals, Pharma-
cotherapy, neurotransmitters
Candidate Answers: (a) Dopamine (b) Glutamate (c) Norepinephrine (d) Sero-
tonin

Context: The woman is exhibiting symptoms of major depressive episodes, such as
difficulty falling asleep, frequent crying, and a persistent feeling of sadness.
(a): Dopamine is a neurotransmitter that increases positive emotions. It is impli-
cated in many disease processes, including Parkinson’s and ADHD, and is targeted
by antipsychotic medications but not used as a sleep aid. It is not a treatment for
the patient’s symptoms.
(b): Glutamate is a neurotransmitter that is associated with multiple neurological
disorders including epilepsy, stroke, and autism. It is not a treatment for the patient’s
symptoms.
(c): Norepinephrine is a catecholamine with adrenergic properties. It is not a treat-
ment for the patient’s symptoms.

Continued on next page
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(d): Serotonin is a neurotransmitter which is the target for multiple antidepressants,
anxiolytics, and antipsychotics. It could be a treatment to address the patient’s
symptoms of depression and anxiety.
Therefore, the answer is (d).

Question Keywords: man, comes, office, preoperative, evaluation, adrenalectomy,
scheduled, 2, weeks, One, month, care, emergency department, pain, right flank,
motor vehicle collision, blood pressure, 160/100, mm Hg and CT scan, abdomen,
incidental, left adrenal mass, laboratory studies, complete blood count, serum elec-
trolyte concentrations, liver function tests, reference ranges, patient, healthy, el-
evated blood pressure, no medications, follow-up visit, office 2, weeks, disclosed,
elevated, urinary normetanephrine, metanephrine, plasma, concentrations, patient,
surgeon, recommended, adrenalectomy, vital signs, temperature, 36.6, 97.9, pulse,
100/min, 14/min, blood pressure, 170/95, Physical examination, no significant, find-
ings, preoperative, preparation, treatment
Candidate Answers: (a) Labetalol (b) A loading dose of potassium chloride (c)
Nifedipine (d) Phenoxybenzamine

Context: The patient is being evaluated for adrenalectomy due to a large left
adrenal mass, which is likely causing elevated blood pressure as a symptom of
pheochromocytoma. Elevated urinary normetanephrines confirm the diagnosis.
(a): This beta-blocker works by blocking the effects of adrenaline and other stress
hormones on the heart and blood vessels. It is not a treatment for pheochromocy-
toma.
(b): The use of a potassium chloride loading dose is a treatment specifically for
hypokalemia, which is a condition where there are abnormally low levels of potassium
in the blood. It is not a treatment for pheochromocytoma.
(c): This drug is commonly prescribed to treat high blood pressure and angina. It
can also help relieve symptoms of Raynaud’s phenomenon. It is not a treatment for
pheochromocytoma.
(d): This medication is used as a preoperative preparation treatment to block alpha-
adrenergic receptors in the body and it effectively treats hypertension caused by
pheochromocytoma. It is a treatment for pheochromocytoma.
Therefore, the answer is (d).

Table A.6: Prompts for HEADQA

Question Keywords: autosomal dominant trait

Continued on next page
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Candidate Answers: (a) The trait appears more frequently in males. (b) The
unaffected people do not transmit the trait. (c) The trait tends to skip generations.
(d) The affected people have both affected parents. (e) The trait tends to appear in
the progeny of related parents.

Context: Autosomal dominant inheritance is a mode of genetic transmission in
which a trait or condition can be passed down from parent to child. One copy of a
mutated gene from one parent can cause the genetic condition. For example, let ’A’
represent the affected allele and ’a’ represent the unaffected allele. An affected person
may have the genotype AA or Aa, while an unaffected person has the genotype aa.
Consequently, an individual with genotype AA has a 100% chance of passing on the
affected allele, and someone with genotype Aa has a 50% chance of doing so.
(a): Autosomal dominant inheritance is not influenced by an individual’s sex, as it
is not sex-dependent. The expression of the trait occurs regardless of gender. It is
not a characteristic of autosomal dominant inheritance.
(b): Unaffected individuals do not have the mutated gene and therefore cannot
transmit the trait. It is a characteristic of autosomal dominant inheritance.
(c): Autosomal dominant traits can be passed down through multiple generations.
Since the affected allele is dominant, an individual will express the trait as long
as they inherit the affected gene. It is not a characteristic of autosomal dominant
inheritance.
(d): Only one affected parent is needed to transmit on the autosomal dominant trait
to their child. It is not a characteristic of autosomal dominant inheritance.
(e):A dominant gene can appear in any progeny, regardless of the parent. It is not a
characteristic of autosomal dominant inheritance.
Therefore, the answer is (b).

Question Keywords: caring, patient, supraglottic laryngectomy
Candidate Answers: (a) He has lost the ability to speak by extirpation of the
true vocal cords. (b) The tracheostomy they have performed will be permanent. (c)
You have a risk of bronchoaspiration due to difficulty swallowing. (d) You may have
constipation due to cervical dissection. (e) A portion of the larynx has been removed
along with a vocal cord.

Context: Supraglottic laryngectomy or horizontal partial laryngectomy is an op-
eration to remove the epiglottis, false vocal cords, and superior half of the thyroid
cartilage.
(a): Supraglottic laryngectomy removes the false vocal cords, but the true vocal
cords are not affected, and the patient’s ability to speak should not be significantly
impacted. It is not typical to lose the ability to speak by extirpation of the true
vocal cords.

Continued on next page
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(b): If a tracheostomy tube is in place after the procedure, it is typically removed
within 24-48 hours of surgery. It is not typical to involve A permanent tracheostomy
as a part of the supraglottic laryngectomy process.
(c): Supraglottic laryngectomy results in severe disturbance to the swallowing mech-
anism by removal of protective layers and sensation. There is an increased risk of
bronchoaspiration. It is related to care of patients with supraglottic laryngectomy.
(d): Constipation is not a side effect of supraglottic laryngectomy. It is not related
to care of patients with supraglottic laryngectomy.
(e): Supraglottic laryngectomy is an operation to remove the epiglottis, false vocal
cords, and superior half of the thyroid cartilage. In this procedure, the true vocal
cords are not typically affected, preserving the patient’s ability to speak as much as
possible. It is not common to remove a portion of the larynx along with a true vocal
cord during this procedure.
Therefore, the answer is (c).

Question Keywords: estrogenic treatment, adverse effects, NOT, adverse effect,
pharmacological action
Candidate Answers: (a) Edema (b) Breast pain (c) Ovarian cancer (d) Sickness
(e) Headaches

Context: Estrogen therapy involves supplementing a patient with estrogen, the
primary female sex hormone. Potential side effects include breast tenderness or
swelling, edema, nausea, leg cramps, endometrial cancer, and more.
(a): Edema is a potential adverse effect of estrogen therapy. Estrogen and aldos-
terone both originate from cholesterol, and an excessive amount of estrogen in the
body can stimulate aldosterone receptors, leading to water retention in nephrons.
This water retention can result in edema. It is a non-adverse effect.
(b): Estrogen promotes ductal growth and fat deposition in the breasts. Excessive
estrogen levels can lead to mammary duct hyperplasia, which may result in breast
pain. It is not a non-adverse effect.
(c): Ovarian cancer is not known to be an adverse effect of estrogenic treatment. It
is a possible choice for a non-adverse effect.
(d): Edema is a possible adverse effect of estrogenic treatment, and swelling in body
parts may cause the feeling of sickness. It is not a non-adverse effect.
(e): Headache is a possible adverse effect of estrogenic treatment. It is not a non-
adverse effect.
Therefore, the answer is (c).

Question Keywords: cardiac valvular prosthesis, biological, mechanical, im-
planted, patient, aspects, characteristics, patient, prosthesis, INCORRECT, state-
ment

Continued on next page
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Candidate Answers: (a) Permanent anticoagulation is necessary in mechanical
prostheses. (b) In general, biological prostheses are indicated in young patients,
with long life expectancy. (c) Biological prostheses would be indicated in cases that
present a formal contraindication for anticoagulation. (d) The rate of structural
deterioration of a biological prosthesis is inversely proportional to the age of the
subject. (e) Biological prostheses do not require permanent anticoagulation.

Context: Cardiac valvular prostheses (biological or mechanical) are artificial car-
diac valves implanted into a patient’s heart. Mechanical valves may last a lifetime,
but they come with an increased risk of blood clots, necessitating the use of blood
thinners such as warfarin. In contrast, biological valves, which are made from pig
or cow tissue, do not increase the risk of bleeding or clotting but tend to wear out
sooner.
(a): Mechanical valves increase the risk of blood clotting. It is not an incorrect
statement.
(b): The latest revisions of the ESC/EACTS guidelines suggest that bioprostheses
are acceptable in patients aged between 60 and 65 years at the time of surgery. The
reoperation rate for structural valve degeneration (SVD) of bioprostheses occurred
exclusively among patients younger than 56 years. Young patients are not typically
recommended for a biological prosthesis.
(c): Biological prostheses, which are made from pig or cow tissue, do not increase
the risk of either bleeding or clotting but will wear out sooner. It is not an incorrect
statement.
(d): The disadvantages of biological heart valves are a smaller valve orifice area and
the risk of structural valve degeneration, which may necessitate reoperation. Thus,
the younger the patient, the higher risk of structural deterioration. It is not an
incorrect statement.
(e): Biological prosthesis do not increase the risk of clotting so do not require per-
manent anticoagulant. It is not an incorrect statement.
Therefore, the answer is (b).

Question Keywords: connection, automatic, emotional responses, control, behav-
iors, guiding, behavior, manifestation, emotional responses
Candidate Answers: (a) The angular gyrus of the limbic system. (b) The convo-
lution or lobe of the insula. (c) The prefrontal orbitofrontal or ventromedial cortex.
(d) The thalamus (e) The cortex of somatosensory association.

Continued on next page
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Context: The prefrontal orbitofrontal cortex has multiple functions including me-
diating context specific responding, encoding contingencies in a flexible manner,
encoding value, encoding inferred value, inhibiting responses, learning changes in
contingency, emotional appraisal, altering behavior through somatic markers, driv-
ing social behavior, and representing state spaces. The orbitofrontal cortex thus
plays a key role in emotion, by representing the reward value of the goals for action.
(a): The angular gyrus (AG) is a hub of several networks that are involved in vari-
ous functions, including attention, self-processing, semantic information processing,
emotion regulation, and mentalizing. It is not the area responsible for connecting
automatic emotional responses and controlling complex behaviors.
(b): The insula is important for gustatory and sensorimotor processing, risk-reward
behavior, autonomics, pain pathways, and auditory and vestibular functioning. It is
not the area responsible for connecting automatic emotional responses and control-
ling complex behaviors.
(c): The prefrontal cortex guides behavior by controlling the manifestation of emo-
tional responses through understanding rewards, encoding values, and driving be-
haviors. It is the potential correct answer.
(d): The thalamus acts as the body’s information relay station. All sensory informa-
tion (except for olfaction) must be processed through the thalamus before being sent
to the cerebral cortex for interpretation. It is not the area responsible for connecting
automatic emotional responses and controlling complex behaviors.
(e): The somatosensory cortex is responsible for processing all bodily sensations.
These sensations originate from receptors located throughout the body that detect
temperature, pain, touch, pressure, and proprioception. It is not the area responsible
for connecting automatic emotional responses and controlling complex behaviors.
Therefore, the answer is (c).

Table A.7: Prompts for MedMCQA

Question Keywords: Maximum, increase, prolactin level
Candidate Answers: (a) Risperidone (b) Clozapine (c) Olanzapine (d) Aripipra-
zole

Continued on next page

106



Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting Chapter A

Table A.7 – Continued from previous page

Context: The four drugs in answer choices are all atypical antipsychotics, which are
used to treat psychotic conditions like schizophrenia through blockage of dopamine
and serotonin receptors. These drugs block dopamine D2 receptors and serotonin
5-HT2 receptors. Maximum increase in prolactin, or hyperprolactinemia, is one of
the side effects of atypical antipsychotics, because dopamine tends to inhibit pro-
lactin release from the anterior pituitary. (a): Risperidone is a type of atypical
antipsychotics that block dopamine D2 receptor and serotonin 5-HT2 receptor. It is
generally used to treat schizophrenia or disorders with concomitant psychosis. Hy-
perprolactinemia is one of the most common side effects of risperidone. It is the drug
to increase prolactin levels.
(b): Clozapine is used to treat schizophrenia or disorders with concomitant psy-
chosis. Clozapine is associated with side effects such as agranulocytosis, seizures,
and myocarditis, but it does not appear to elevate prolactin levels. It is not the drug
to increase prolactin levels.
(c): Olanzapine is used to treat schizophrenia or disorders with concomitant psy-
chosis. The side effect of olanzapine does not include hyperprolactinemia. It is not
the drug to increase prolactin levels.
(d): Aripiprazole is generally used to treat schizophrenia or disorders with concomi-
tant psychosis. The side effect of olanzapine does not include hyperprolactinemia.
It is not the drug to increase prolactin levels.
Therefore, the answer is (a).

Question Keywords: male, complains, severe back pain, inability, left lower limb,
Radiographic studies, compression, nerve elements, intervertebral, foramen, verte-
brae L5, S1, structure, space-occupying lesion
Candidate Answers: (a) Anulus fibrosus (b) Nucleus pulposus (c) Posterior lon-
gitudinal ligament (d) Anterior longitudinal ligament

Context: The male is complained of a severe back pain and inability to move,
and radiographic evidence shows the compression of a nerve component. This may
suggest a herniated intervertebral disk through a tear in the surrounding annulus
fibrosus. The soft, gelatinous nucleus pulposus is forced out through a weakened
part of the disk, compressing nerve components of the spinal cord and resulting in
back pain and nerve root irritation. This impingement is resulting in paralysis, and
should be considered a medical emergency.
(a): Annulus fibrosus is a tough, circular exterior of the intervertebral disc, made up
of fibrous connective tissue. It surrounds the soft inner core, the nucleus pulposus.
It is not the component that is forced out by the tear.
(b): Nucleus pulposus is the inner core of the vertebral disc. The tear in the annulus
fibrosus causes it to be forced out. It could result in compression of the nerve
components of the vertebrae.

Continued on next page
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(c): Posterior longitudinal ligament connects and stabilizes the bones of the spinal
column. It runs almost the entire length of the spine, from the 2nd vertebra in
the cervical spine (neck) all the way down to the sacrum (end of the spine). This
ligament is located adjacent to the spinal cord. It is not easily teared or curved.
(d): Anterior longitudinal ligament is a ligament that runs down the anterior surface
of the spine. It traverses all of the vertebral bodies and intervertebral discs on their
ventral side. It has a high tensile strength and is resistant to tearing or deformation.
It is not easily teared or curved.
Therefore, the answer is (b).

Question Keywords: Neuroendocrine cells, lungs
Candidate Answers: (a) Dendritic cells (b) Type I pneumocytes (c) Type II
pneumocytes (d) APUD cells

Context: Neuroendocrine cells are part of the neuroendocrine system. The neu-
roendocrine cells of the lung make hormones that control the flow of air and blood
in the lungs.This may suggest a herniated intervertebral disk through a tear in the
surrounding annulus fibrosus. The soft, gelatinous nucleus pulposus is forced out
through a weakened part of the disk, compressing nerve components of the spinal
cord and resulting in back pain and nerve root irritation. This impingement is re-
sulting in paralysis, and should be considered a medical emergency.
(a): Dendritic cells are a type of antigen-presenting cell in the immune system that
act as messengers between the innate and adaptive immune systems. It is not a type
of neuroendocrine cell.
(b): Type I pneumocytes are alveolar cells that line the alveolar surface of the lungs
and are responsible for gas exchange. It is not a type of neuroendocrine cell.
(c): Type II pneumocytes are alveolar cells that secrete surfactant to reduce alveolar
surface tension and prevent alveolar collapse. It is not a type of neuroendocrine cell.
(d): APUD cells are a type of neuroendocrine cell that function through amine
precursor uptake and decarboxylation. It is accurate to say that they are a type of
neuroendocrine cell.
Therefore, the answer is (d).

Question Keywords: Presence, remote, contamination,water
Candidate Answers: (d) Streptococci (b) Staphalococci (c) Clastridium pertringes
(d) Vibrio

Context: Infections that can be spread through water contamination are generally
transmitted orally or via fecal matter. (a): Streptococci are spread through direct
contact with the nose and throat discharges of an infected individual or with infected
skin lesions. Water is not a medium for the spread of streptococci. It is not related
water contamination.

Continued on next page
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(b): Staphylococci is spread by skin contact, like a bite or cut. It is not related water
contamination.
(c): Clostridium perfringens are one of the most common causes of food poisoning.
They are environmentally stable and specific to contamination by sewage. Their
spread is a indicator of water contamination.
(d): Vibrio species are gram-negative bacteria that spread through foodborne infec-
tion, but they are highly salt tolerant and unable to survive in fresh water. It is not
related water contamination.
Therefore, the answer is (c).

Question Keywords: True, Mooren’s ulcer, 2007, 2013
Candidate Answers: (a) Painless condition (b) Affects cornea (c) Sudden loss of
vision (d) Bilateral in majority of cases

Context: Mooren’s ulcer is characterized by painful peripheral corneal ulceration
of unknown etiology. The disease generally begins with intense limbal inflammation
and swelling in the episclera and conjunctiva. Patients often experience severe pain,
photophobia, and tearing along with a red inflamed eye.
(a): Mooren’s ulcer is a painful ulceration of the eye. It is not the truth of Mooren’s
ulcer.
(b): Mooren’s ulcer is characterized by painful peripheral corneal ulceration of un-
known etiology. It is the truth of Mooren’s ulcer.
(c): The symptoms of Mooren’s ulcer do not include sudden loss of vision. It is not
the truth of Mooren’s ulcer.
(d): About one third of Mooren’s ulcer cases present bilaterally. The proportion is
less than half. It is not the majority of cases.
Therefore, the answer is (b).

Prompts for general domain datasets. Our prompts on CommonsenseQA and Open-
bookQA are based on [63].

Table A.8: Prompts for Commonsense QA

Question Keywords: fountain pen, people, ink, absorb, pen, hand done, extra,
use, fountain
Candidate Answers: (a)shirt pocket (b) calligrapher’s hand (c) inkwell (d) desk
drawer (e) blotter

Context: Fountain pens need to be filled with ink for writing. Extra ink should be
absorbed using special tools.

Continued on next page
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(a): A fountain pen can be conveniently carried in a shirt pocket. It is not associated
with the tool to absorb extra ink from fountain pens.
(b): Calligraphers use fountain pens to create stunning handwriting. It is not asso-
ciated with the tool to absorb extra ink from fountain pens.
(c): An inkwell serves as a container for the ink used in a fountain pen. It is not
associated with the tool to absorb extra ink from fountain pens.
(d): A fountain pen can be kept safely in a desk drawer. It is not associated with
the tool to absorb extra ink from fountain pens.
(e): Blotters are designed to absorb excess ink from pens. It is the tool for absorbing
extra ink.
Therefore, the answer is (e).

Question Keywords: fox, forest, walk, look, city
Candidate Answers: (a) pretty flowers (b) hen house (c) natural habitat (d)
storybook (e) dense forest

Context: Foxes are animals that typically live in forests. They walk from the city
to the forest to look for their living place.
(a): Pretty flowers are in forests. It is not a reason for a fox walking into the forest.
(b): Foxes sometimes prey on chickens in hen houses. It is not a reason for a fox to
walk into the forest.
(c): Forests are the natural habitat of foxes. Foxes walk from city to forest to look
for their natural habitat. (d): Forests and foxes are common subjects in storybooks.
It is not a reason for fox walking to the forest.
(e): Dense forest is a type or category of forests characterized by having a high
density of trees and vegetation. It is a type of forest.
Therefore, the answer is (c) or (e).

Question Keywords: grape, put, check
Candidate Answers: (a) mouth (b) grocery cart (c) super market (d) fruit basket
(e) fruit market

Context: Grapes need to be put into a place for checking out.
(a): Grapes can be eaten by mouth. It is not a place to put grapes for checking out.
(b): Grapes can be brought during grocery shopping and people put groceries into
grocery carts before checking out. It could be a potential place to put grape.
(c): Super markets sell grapes. It is not a place to put grapes for checking out.
(d): Fruit markets sell grapes. It is not a place to put grapes for checking out.
(e): Fruit baskets are often used as gifts to hold and present a variety of fresh grapes.
It is not a place to put grapes for checking out.
Therefore, the answer is (b).

Continued on next page
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Question Keywords: drawstring bag, head, woman, bag, drawstring, check, bag-
gage
Candidate Answers: (a) garbage can (b) military (c) jewelry store (d) safe (e)
airport

Context: A woman can check baggage such as a drawstring bag at the check-in
counter.
(a): A garbage can is a container that is specifically designed to hold and contain
trash or waste materials. It is not related to the context.
(b): Military refers to the armed forces of a country, which is responsible for defend-
ing the nation and its interests against external threats. It is not a place where a
woman can check bags.
(c): Jewelry stores sell jewelry. It is not a typical place to check baggage.
(d): Check baggage could keep the bag safe. A woman can check her drawstring bag
to keep the bag safe.
(e): Airport is a place where the woman can check her drawstring bag as baggage
at the check-in-counter. It is common to check baggage in airport.
Therefore, the answer is (e).

Question Keywords: cable, entertainment, home, require, equipment
Candidate Answers: (a) radio shack (b) substation (c) television (d) cabinet (e)
desk
Context: A cable transmits electricity or information and data to home entertain-
ment equipment that requires electricity.
(a): Radio Shack is a retailer that sells cable. It is not a home entertainment
equipment used cable.
(b): Cables are used to transmit electrical energy between substations and other
parts of the electrical power system. It is not a home entertainment equipment used
cable.
(c): Television is a type of home electric entertainment equipment that requires
cable. It is a home entertainment equipment used cable.
(d): Cabinet is a place to store cable. It is not a home entertainment equipment
used cable.
(e): Desk with built-in cable management features can help keep cables tidy. It is
not a home entertainment equipment used cable.
Therefore, the answer is (c).

Question Keywords: people, populate, might, may, sammy, go
Candidate Answers: (a) populated areas (b) race track (c) desert (d) apartment
(e) roadblock

Continued on next page
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Context: People may like to go to places where people populate together. (a): Pop-
ulated areas are locations where people gather and live in close proximity to each
other. It could be a place where people populate together. (b): Deserts are inhos-
pitable environments for people. It is not a place where people populate together.
(c): People go to race competitions on the race track. It could be a place where
people populate together. (d): Apartments serve as living spaces for people. It is
not a place where people populate together. (e): Roadblocks are structures set up
to restrict or regulate the movement of people and vehicles. It is not a place where
people populate together. Therefore, the answer is (a) or (c).

Question Keywords: highway, maps, replace, street, google, map, highway, gps,
service
Candidate Answers: (a) united states (b) mexico (c) countryside (d) atlas (e)
oceans

Context: Google Maps and GPS services have replaced traditional physical maps
for navigating highways and streets.
(a): People in the United States use Google Maps and GPS services to navigate
highways and streets. It is not the tool that GPS replaced with.
(b): People in Mexico use Google Maps and GPS services to navigate highways and
streets. It is not the tool that GPS replaced with.
(c): Google Maps and GPS services cover the countryside. It is not the tool that
GPS replaced with.
(d): Google Maps and GPS services have replaced traditional physical maps for
navigating highways and streets. Atlases are examples of traditional physical maps.
It is the tool that GPS replaced with.
(e): Google Maps and GPS services cover the oceans and are commonly used in
marine navigation. It is not the tool that GPS replaced with.
Therefore, the answer is (d).

Table A.9: Prompts for Openbook QA

Question Keywords: acid, environment, aquatic, rain, effect, acid rain
Candidate Answers: (a) decrease in plant life (b) increase in fish population (c)
increase in plant growth (d) cleaner and clearer water

Context: The acid rain is a type of rain that has an acidic effect due to the presence
of acid in the atmosphere. Acid rain is harmful to the environment, especially aquatic
life.The acid in the rain can have a negative effect on the water quality of aquatic
environments.

Continued on next page

112



Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting Chapter A

Table A.9 – Continued from previous page

(a): Acid rain can have a negative effect on plant life. The acid in the rain can
damage plant cells and cause a decrease in plant growth, leading to a decrease in
plant life. It is likely to have a decrease in plant life by acid rain.
(b): Acid rain can have a harmful effect on aquatic life, including fish. The acid in
the water can make it difficult for fish to breathe and can harm their reproductive
systems. It is not likely to have an increase in fish population by acid rain.
(c): As previously mentioned, the acid in the rain can damage plant cells and cause
a decrease in plant growth. It is not possible to have an increase in plant growth.
(d): Acid rain can have a harmful effect on water quality, making it more acidic and
harmful to aquatic life. It is not possible to have cleaner and clearer water.
Therefore, the answer is (a).

Question Keywords: moon, surface
Candidate Answers: (a) is smooth on the entire surface (b) contains large cavities
cause by explosions (c) contains an internal core of cheese (d) is filled with lakes

Context: The moon is a natural satellite that orbits around the Earth. Its surface
is covered with dead volcanoes, impact craters, and lava flows, some visible to the
unaided stargazer.
(a): The moon has mountains, craters, and other features caused by impacts from
meteoroids and asteroids. It is not entirely smooth on the surface.
(b): Impact craters are formed when an asteroid craters, each of which was formed
when an asteroid or comet collided with the Moon’s surface. The moon’s surface
contains large cavities caused by explosions from impacts.
(c): The core is largely composed of iron and some nickel. The inner core is a solid
mass about 480 km in diameter. It does not contain an internal core of cheese. (d):
The moon has lunar maria composed of basalt formed from surface lava flows that
later congealed. It is not filled with lakes.
Therefore, the answer is (b).

Question Keywords: car, approach, night
Candidate Answers: (a) the headlights become more intense (b) the headlights
recede into the dark (c) the headlights remain at a constant (d) the headlights turn
off

Context: Headlights of a car are a source of light. As a car approaches, the source
of light becomes closer, and that source will appear brighter.
(a): As the car becomes closer, the distance to the source of light decreases. The
headlights become brighter and more intense. This is a possible phenomenon.
(b): If the source does not change and the headlights are closer, the headlights cannot
become dimmer. This is not a commonsense relation.

Continued on next page
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(c): If the distance to the source of light changes, the brightness of headlights will
change. It is not able to remain constant.
(d): Turning off the headlights would cause the driver to be driving in complete
darkness, which is dangerous and can lead to accidents. It is not a reasonable
condition.
Therefore, the answer is (a).

Question Keywords: change, easter, weather change, weather, christmas
Candidate Answers: (a) the air may chill (b) the ground may freeze (c) the plants
may die (d) the ground may warm
Context: In the US, Christmas falls in the winter season, while Easter arrives at

the beginning of spring.
(a): The air becomes chill as temperature drops. The temperature commonly in-
creases from winter to spring. It is not a likely scenario.
(b): During winter, the ground usually freezes, whereas in spring, it does not. It is
not a probable scenario.
(c): Extreme cold or hot weather can cause plants to die. The beginning of spring
provides suitable weather conditions for plants to grow. It is not common to have
plants die.
(d): As winter transitions into spring, the weather becomes warmer. The tempera-
ture of the ground is influenced by the weather.
Therefore, the answer is (d).

Question Keywords: heat, recipe, moisture, good, ocean
Candidate Answers: (a) a violent storm (b) violent sea animals (c) condensation
(d) inland storms

Context: The ocean, a vast body of water that covers a large portion of the Earth’s
surface, serves as a source of heat and moisture.
(a): The heat and moisture present in the ocean can create ideal conditions for a
hurricane or typhoon. Hurricane and typhoon are violent storms.
(b): Violent sea animals are not related to heat and moisture in the ocean. It is not
a likely choice.
(c): Condensation is the process by which water vapor becomes liquid, which is the
reverse of evaporation. This can happen in one of two ways: either the air is cooled
to its dew point or it becomes so saturated with water vapor that it cannot hold any
more water. It is not likely to occur in hot conditions.
(d): Although heat and moisture can cause inland storms, they are not directly
related to the ocean. It is not a likely choice.
Therefore, the answer is (a).

Continued on next page
114



Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting Chapter A

Table A.9 – Continued from previous page

Question Keywords: hummingbird, take
Candidate Answers: (a) bees (b) energy (c) pollen (d) honey

Context: Hummingbirds dip their long bills into flowers to drink nectar to get
energy.
(a): Hummingbirds and bees are both attracted to the sweet nectar produced by
flowers, but bees extract the nectar from the base of the flowers, while hummingbirds
dip their long bills into the flowers to drink the nectar and obtain energy. No
relationship can be found.
(b): Hummingbirds obtain energy by getting nectar from flowers through dipping
their long bills into the flowers. No relationship can be found.
(c): When hummingbirds drink nectar, they also inadvertently take grains of pollen
which stick to their feathers and bills, and get carried to the next flower they visit.
No relationship can be found.
(d): Hummingbirds do not produce or consume honey. This fact is unrelated to their
method of obtaining energy by drinking nectar from flowers.
Therefore, the answer is None.

Question Keywords: responsible, sun
Candidate Answers: (a) puppies learning new tricks (b) children growing up and
getting old (c) flowers wilting in a vase (d) plants sprouting, blooming and wilting

Context: The sun is the source of energy for physical cycles on Earth.
(a): Puppies learning new tricks involves the acquisition and processing of informa-
tion, which is essential for the puppies to learn and adapt to their environment. It
is not directly related to the effect of the sun.
(b): Children grow up and age over time. The sun is not directly responsible for the
passage of time itself. It is not directly related to the effect of the sun.
(c): Flowers in a vase become wilting because they are cut from their original source
of nutrients and water and are no longer able to receive the essential nourishment
they need to stay healthy and vibrant. It is not directly related to the effect of the
sun.
(d): Plants need sunlight to photosynthesize and grow, and the sun’s heat and light
play a crucial role in the process of plant growth and decay. It is the thing that the
sun is responsible for.
Therefore, the answer is (d).
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Appendix B

AlpaCare: Instruction Fine-tuned
Large Language Models for Medical
Applications

Limitations

Our approach utilizes ’teacher’ LLMs, such as GPT-4 and ChatGPT, to automatically
generate medical instruction-response pair datasets, employing these teacher models as
medical knowledge bases. However, this could result in hallucinations in the medical
knowledge generation. To enhance the generation reliability, we aim to integrate LLMs
with the internet and knowledge graphs in future work.

B.1 Medical Task Difficulty Level Scoring System

We introduce a clinician-crafted seed set to generate MedInstruct-52k and a free-form
medical instruction evaluation set, MedInstruct-test. This set spans a medical difficulty
scale ranging from 1 to 5, where 1 represents the easiest tasks and 5 indicates the most
challenging ones. A clinician assessed the difficulty levels of all instances within both
the seed set and MedInstruct-test based on the scoring system shown in Table B.1 This
system offers a refined dimension for prompting GPT-4 to produce tasks across varied
difficulty levels and to evaluate medical proficiency of IFT models.
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Table B.1: Scoring system for evaluating the difficulty level of medical tasks.

Score Description

1 The fact is very basic. The answer becomes apparent immediately after reading the
question, or it can be easily found through a direct internet search.

2 The fact is simple but may require a slight application of real-world knowledge,
rephrasing, or extending the information to find the answer.

3 This involves facts that require more real-world application, dealing with practical
and somewhat complicated situations. It may require more complex paraphrasing
and/or communication skills, such as emotional support, psychological evaluations,
and ethical considerations. The tested knowledge in this category can be quite
challenging.

4 This level involves complicated medical facts. Answering questions at this level may
require multi-step thinking processes. The questions might be lengthy and detailed,
necessitating simplification for a clearer answer. This category might include most
USMLE questions. It may also require a demonstration of enhanced emotional
support, psychological evaluations, and ethical considerations. Questions might be
based on vague symptom descriptions, making the diagnosis challenging, or involve
recent advancements, publications, or current global health issues like pandemics.

5 This category involves complex medical knowledge applied to real-world, intricate
situations. The questions are detailed and lengthy, often requiring simplification and
multi-step thinking to answer. Some questions might be based on actual medical
cases with challenging diagnoses and treatments. The symptom descriptions might
be highly vague. Questions could also involve new technologies, recent publications,
or current pandemics, requiring decision-making or choosing the best available op-
tion. Instructions might also necessitate the demonstration of humane care.

B.2 Prompt details for MedInstruct-52k generation

Here we provide prompts that we use for query GPT-4 and ChatGPT for task and
response generation.
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Table B.2: Task generation prompt

Your objective is to generate diverse medical-related tasks.

Here are the requirements:
1. Ensure that all tasks are related to the medical domain.
2. Craft tasks that encompass varied points of view, e.g. experts, students and patients,
etc.
3. Maximize the range of task topics, e.g. diseases, treatment, diagnoses, epidemiology,
pharmacology, pathophysiology, anatomy, genetics, medical education, etc.
4. Introduce different task formats, e.g. text generation, open Q&A, chat, rewrites,
summarizations, classifications, USMLE style Q&A, multiple-choice Q&A, single-hop rea-
soning and multiple-hop reasoning etc.
5. All the formats specified in point 4 MUST be represented in the task you generate.
6. Create tasks with medical difficulty levels from 1 to 5, with 1 being the easiest and 5
the hardest.
7. Use diverse language in the instructions. For instance, combine questions with imper-
ative forms.
8. Some instructions might require specific inputs. If an input is not necessary, such as
with general instructions like ”What are the side effects of COVID-19?”, use ”¡noinput¿”
in the input field.
9. When provided, inputs must range between 50 to 200 words and offer detailed medical
context , e.g. symptom descriptions, radiology reports, clinical notes, and exam questions,
etc.
10. Generate a detailed and comprehensive input instead ask user-provided input.
11. Ensure USMLE style Q&A and multiple-choice Q&A tasks have both questions and
choices in input, and the question context should be detailed.
12. The USMLE-style question length must exceed 50 words.
13. Match instruction and input to the task’s perspective. Patient perspectives should be
simple and in the first person, while clinician views should have professional terminology.
14. Ensure the lengths of inputs for different tasks are notably distinct.
15. Each task should adhere to the following structure: ’Type: \n, Topic: \n, View: \n,
Difficulty: \n, Instruction: \n, Input: ’. Start each new task with ’###’.

List of 15 tasks:
Seed task 1
Seed Task 2
Seed Task 3

B.3 Training hyperparameter details

We report the hyperparameter setup for model tuning of AlpaCare 7B and 13B mod-
els. The details are shown in Table B.4.
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Table B.3: Output generation prompt

You are a medical expert tasked with answering various medical questions. You MUST
generate your response based on the requirements.

Here are the requirements:
1. For multiple-choice, calculation, and classification problems, you can generate interme-
diate thinking steps if necessary; otherwise, provide the final answer directly.
2. All the intermediate thinking steps must be generated before final answer.
3. For multiple-choice questions, you MUST generate the answer choice in the following
format: ‘The answer is (your choice).’ For example:
‘Choose the correct answer. Where in your body will you find the tibia bone? A) Arm B)
Foot C) Skull D) Leg
The tibia bone is one of the two bones in the lower leg, the other being the fibula. The
answer is D) Leg.’
4. For other types of questions, except multiple-choice, do not use the format mentioned
in point 3.

task instruction
task input (if exist)

Table B.4: AlpaCare hyperparameter setup.

Model Size Data Size GPUs Epoch LR Batch Size
7B 52k 4 40G A100 3 2e-5 128
13B 52k 4 80G A100 5 1e-5 128

B.4 Additional experimental results

B.4.1 General domain free-form instruction evaluation

We show the detailed score of each reference model for general domain free-form
instruction evaluation in Table B.5.

B.4.2 More analysis in general domain performance

Compared to Alpaca [127], AlpaCare achieves better results in the general domain.
This improvement is likely due to the intensive knowledge and reasoning embedded in the
medical dataset [8, 202]. For example, in the BBH results, the top three categories where
AlpaCare outperforms Alpaca are ‘dyck languages’, ‘movie recommendation’, and ‘navi-
gate’, which requires strong knowledge and reasoning abilities. To further support these
findings, we conducted a knowledge-intensive commonsense evaluation using StrategyQA
[203] and an additional reasoning benchmark evaluation using DROP [204] to compare
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Table B.5: Comparison on general domain free-form instruction evaluation. A
performance comparison between AlpaCare and IT baselines on AlpacaFarm on 4 dis-
tinct reference models: Text-davinci-003, GPT-3.5-turbo, GPT-4 and Claude-2. ‘AVG’
represents the mean performance score across all referenced models.

AlpacaFarm

Text-davinci-003 GPT-3.5-turbo GPT-4 Claude-2 AVG

Alpaca 38.7 20.6 14.5 16.9 22.7
ChatDoctor 37.4 20.3 13.1 14.0 21.2
Medalpaca 38.2 24.4 20.6 20.1 25.8
PMC 15.8 2.6 13.3 1.6 8.3
Baize-H 29.9 16.9 12.7 13.7 18.3
AlpaCare 56.4 38.6 34.2 33.7 40.7

Alpaca and AlpaCare with LLaMA [16]-7B as backbone, following the methodologies in
[150] and [155], respectively. The Table B.6 below presents the results.

Model StrategyQA DROP

Alpaca 57.80 23.68
AlpaCare 58.02 24.96

Table B.6: Performance of Alpaca and AlpaCare on StrategyQA and DROP datasets.

These results reinforce that AlpaCare’s enhanced performance is not limited to the
medical domain but also extends to broader general domain tasks, thereby confirming
its superior generalizability.
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B.4.3 Ablation study

We show the detailed score of 4 reference models for medical free-form instruction
evaluation on 13B instruction-tuned models in Table B.7.

Table B.7: Result comparison of 4 reference models on 13B instruction-tuned
models.

iCliniq
Text-davinci-003 GPT-3.5-turbo GPT-4 Claude-2 AVG

Alpaca 46.7 37.0 19.6 21.7 31.3
Medalpaca 8.1 4.4 1.0 2.0 3.9
PMC 40.6 29.0 14.3 17.5 25.4
AlpaCare 66.7 51.2 48.2 50.2 54.4

MedInstruct
Text-davinci-003 GPT-3.5-turbo GPT-4 Claude-2 AVG

Alpaca 39.8 22.5 27.1 18.1 26.9
Medalpaca 0.2 0 0 0 0.1
PMC 44.9 31.9 32.8 29.2 34.7
AlpaCare 71.3 49.1 49.8 47.7 54.5

We show the detailed score of 4 reference models for medical free-form instruction
evaluation on different backbones in Table B.8.

Table B.8: Results on different LLM backbone across 4 reference models by
using gpt-3.5-tubro as the judge. Comparing the performance of AlpaCare and
Alpaca using different LLM backbones, with 4 distinct reference models.

iCliniq
Text-davinci-003 GPT-3.5-turbo GPT-4 Claude-2 AVG

LLaMA
Alpaca 38.8 30.4 12.8 15.6 24.4
AlpaCare 66.6 50.6 47.4 49.7 53.6

LLaMA-2
Alpaca 45.8 36.3 18.2 20.8 30.3
AlpaCare 66.5 50.4 47.8 50 53.7

LLaMA-3
Alpaca 42.3 28.6 26.4 10.0 26.8
AlpaCare 77.6 53.9 46.3 49.7 56.9

MedInstruct
Text-davinci-003 GPT-3.5-turbo GPT-4 Claude-2 AVG

LLaMA
Alpaca 35.0 20.6 21.5 15.6 24.4
AlpaCare 67.6 48.8 47.4 49.7 53.5

LLaMA-2
Alpaca 39.6 22.7 26.4 18.5 26.8
AlpaCare 70.6 48.8 50.0 48.4 54.2

LLaMA-3
Alpaca 38.4 16.9 14.6 13.0 20.7
AlpaCare 78.5 50.0 51.4 46.5 56.6
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We show the detailed score of 4 reference models for medical free-form instruction
evaluation by using Claude-2 as the judge in TableB.9.

Table B.9: Medical free-from instruction evaluation results by using Claude-2
as judge.

iCliniq
Text-davinci-003 GPT-3.5-turbo GPT-4 Claude-2 AVG

Alpaca 40.7 33.4 18.5 14.2 26.7
ChatDoctor 24.5 23.8 11.3 9.9 17.4
Medalpaca 38.3 37.1 15.8 15.4 26.7
PMC 0 0 1.9 3.1 1.3
Baize-H 46.9 35.6 12.1 7.5 25.5
AlpaCare 64.5 46.8 26.9 17.1 38.8

MedInstruct
Text-davinci-003 GPT-3.5-turbo GPT-4 Claude-2 AVG

Alpaca 44.4 19.9 19.2 13.4 23.5
ChatDoctor 34.8 17.5 14.1 10.3 21.7
Medalpaca 41.4 19.3 18.0 12.5 23.1
PMC 2.8 1.5 0.1 0.7 1.8
Baize-H 40.1 25.1 21.8 15.2 19.8
AlpaCare 76.4 42.6 42.9 31.6 31.5
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Appendix C

Improving Medical Predictions by
Irregular Multimodal Electronic
Health Records Modeling

C.1 Computation resource of UTDE

We set the integration level of UTDE as a hyperparameter and use validation sets to
search the level on which to operate, which requires more computation resources than a
model with only a single TDE method. Specifically, each time series experiment run takes
less than 10 minutes with a 1 RTX-3090. The integrating operation is a hyperparameter
with three levels. In this case, the total running time of UTDE will be less than 30
minutes across different integrating levels, which is affordable.

C.2 Data prepossessing

Table C.1: Links for data generation and preprocessing used in experiments

Links
MIMIC III https://mimic.physionet.org/

Time series features selection and extraction https://github.com/YerevaNN/mimic3-benchmarks
clinical notes extraction https://github.com/kaggarwal/ClinicalNotesICU

The dataset link, and time series and clinical notes extraction used in the experiments
are listed in Table C.1. For time series, we follow [161] to select numerical time series
features and extract time series within 48/24 hours and split the training, validation and
test sets for each task. We rescale each numerical feature to be between 0 and 1. We
also rescale the time to be in [0, 1] for all tasks. The clinical notes within 48/24 hours
are extracted by following [180]. For patients with more than 5 clinical notes, we utilize
the last 5 clinical notes preceding the prediction time, due to computational resource
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limitations. We hypothesize that a note is taken closer to prediction time, the more
influential it is.

Note that our early-stage phenotype classification is a brand new task compared to
phenotype classification in [161], which uses the whole time series of an ICU stay. Our
belief is that acute care conditions should occur during the ICU stay, and the earlier they
can be predicted, the more valuable they become. Therefore, we focus on extracting the
first 24 hours of data for phenotype classification, rather than using the entire admission
data. This approach is also supported by [19] in their research on early-stage diagnoses
prediction.

C.3 Baselines

C.3.1 MISTS baselines

Imputation: Discretizes MISTS to hourly intervals and obtains imputation embeed-
ings, as described in Section 5.3.2.
IP-Net [163]: Employs a semi-parametric RBF interpolation network to obtain interpo-
lation representations and a prediction network for prediction. We utilize a Transformer
encoder as the prediction network.
mTAND [164]: Presents a multi-time attention module to obtain an interpolation rep-
resentation, as described in Section 5.3.2. We adopt a Transformer as the time series
encoder to predict downstream tasks.
GRU-D [172]: Extends the GRU model to include a learnable decay term, such that the
last observation is decayed to the empirical mean of time series.
SeFT [166] : Uses differentiable set function learning, such that all of the observations
are first modeled individually and then pooled together via an attention based approach.
RAINDROP [165]: Assumes that each variable of MISTS acts as a separate sensor and
leverages graph neural networks to learn the dependencies between different variables.
DGM2-O [190]: A model initially designed for forecasting tasks, that utilizes a kernel-
based approach to interpolate irregular time series.
MTGNN [191]: A graph neural network initially designed for forecasting tasks, in which
the inter-variate relationships are constructed by connecting each node with its top k
nearest neighbors in a defined metric space.
The implementations of IP-Net [163] and mTAND [164] follow the original paper1 2.
We directly adopt the implementations of GRU-D [172], SeFT [166], RAINDROP [165],
DGM2-O [190] and MTGNN [191] provided by [165] 3.
Following [165], predictions with forecasting models are designed as single-step forecast-
ing problems.

1https://github.com/mlds-lab/interp-net
2https://github.com/reml-lab/mTAN
3https://github.com/mims-harvard/Raindrop
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C.3.2 Irregular clinical notes baselines

Time-Aware LSTM (T-LSTM) [193]: A variant of LSTM taking the elapsed time
between notes into account with a decreasing function.
Flexible Time-aware LSTM (FT-LSTM) [168]: Encodes the temporal information of clin-
ical notes by utilizing time-aware trainable parameters in an LSTM cell.
We utilize Clinical-Longformer with a maximum sequence length of 1024 [192] as the text
encoder by using the pre-trained weights provided in HuggingFace [200]4. We directly
adopt the implementations of T-LSTM and FT-LSTM provided by [168]. and GRU-D
[172] provided by [165]. We leverage the same implementation of mTAND as MISTS
baseline.

C.3.3 Multimodal fusion baselines

Multimodal Adaptation Gate (MAG) [205, 181]:Adjusts the representation of one
modality with a displacement vector derived from the other modalities.
Tensor Fusion (TF) [195, 196]: Performs an outer product on representations of different
modalities.
Multimodal Transformer (MulT) [184]: Uses a cross-modal Transformer followed by a
self-attention Transformer to obtain multimodal representations across time steps for
each modality.
We utilize the implementations of MAG and TF provided by [19] 5, and MulT [184]
provided by the original paper6. We perform Concat, MAG and TF as late fusion by
first applying a Transformer on every modality to acquire representations of different
modalities, and then integrating the last hidden state of every single modality with
different fusion strategies to obtain multimodal representations for downstream tasks.

C.4 Hyperparameters and training details

We use a batch size of 32 and learning rate for pre-trained language models (PLMs)
of 2 × 10−5 and others of 0.0004. We use the Adam algorithm for gradient-based op-
timization [59]. We store the parameters that obtain the highest F1 and Macro-F1 in
the validation set, and use it to make predictions for testing samples for 48-IHM and
24-PHE, respectively. The chosen hyperparameters are the same across tasks (48-IHM
and 24-PHE) and models (both baselines and our methods) based on MISTS, irregular
clinical note and multimodal fusion settings.

4https://huggingface.co/yikuan8/Clinical-Longformer
5https://github.com/emnlp-mimic/mimic
6https://github.com/yaohungt/Multimodal-Transformer
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C.4.1 MISTS

For all MISTS models, we run the models for 20 epochs. We search for hidden
units of Imputation, mTAND, IP-Net, GRU-D and SeFT, over the range {64,128}. For
Imputation, we set the kernel size of 1D Convolution as 1. For mTAND we search for
hidden size of time embeddings over the range {64,128} and take the the number of
time embeddings, V, to be 8. We utilize a 3-layer Transformer as the backbone encoder
for Imputation, mTAND and IP-Net. For UTDE, we search the hyperparameters of
submodules Imputation and mTAND over the same range as the model with only a
single method, and use a 3-layer Transformer as backbone encoder. We search for the
gate integration level in {”patient”, ”temporal”, ”hidden space” }.

C.4.2 Irregular clinical notes

In our primary study, we empirically found that all models in the clinical note modal-
ity converge within 6 epochs, so that we train all the models for 6 epochs. In addition, we
found that fine-tuning the PLM in the first 3 epochs and regarding the PLM as a feature
extractor in later epochs achieved better results than fine-tuning the PLM in the whole
training. We search for hidden units of T-LSTM, FT-LSTM, GRU-D and mTANDtxt

over the range {64,128}. For mTANDtxt, time embeddings hidden size is searched over
the range {64,128} and the number of embeddings V is equal to 8.

C.4.3 Multimodal fusion

Same as the clinical note modality, we run all fusion models for 6 epochs, and fine-
tune the PLM in the first 3 epochs. We utilize 3-layer Transformer encoders to encode
each modality for Concat, MAG and TF. For MulT, we perform 3 layer cross-modal
Transformer followed by a 3 layer self-attention Transformer for each modality. We learn
a 3 layer interleaved Transformer for our multimodal fusion strategy (J=3). We search
for the hyperparameters of UTDE and mTANDtxt over the same range in each single
modality setting. We search for the hidden size of Transformers over the range {64,128}.
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