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Abstract  
 
Non-covalent interactions play a primordial role in chemistry. Beyond their quantification, the 

detailed understanding of their physical processes is necessary to rationalize chemical trends 

and improve designs of chemical systems. Energy decomposition analyses allow detailed 

insight into non-covalent interactions by extracting electrostatics, Pauli repulsion, polarization, 

dispersion and charge transfer components from interaction energies. Recent work has 

demonstrated that electronic correlation influenced significatively all of these energy 

components, whereas previous decompositions only partitioned correlation between 

dispersion and charge transfer. The MP2 energy decomposition analysis with Absolutely 

Localized Molecular Orbitals (MP2 ALMO-EDA) takes these results fully into account and 

offers a correlation correction for each extracted component. A recent detailed investigation 

of the CCSD dispersion energy showed that a small number of virtual orbitals is sufficient to 

describe dispersion interactions accurately in the long-range, which potentially offers a basis-

set independent definition of dispersion. Finally, we present an application of MP2 ALMO-

EDA to a series of unusual halogen bonding complexes where charge transfer dominates over 

the electrostatic σ-hole interaction. 

Keywords: non-covalent interactions, halogen bonding, electron correlation, energy 
decomposition analysis, dispersion interactions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Introduction 
 
Non-covalent interactions play decisive roles in chemistry, determining for example the 

formation of pre-reactive complexes,[1] the preferred orientation in enantioselective 

reactions,[2] the conformations of biological[3] or supramolecular[4] assemblies, or the most 

stable structure of molecular crystals.[5] Nowadays, quantum chemistry methods exist to 

quantify non-covalent interactions accurately. However, a detailed understanding of their 

physical processes beyond their quantification is necessary to rationalize chemical trends in 

terms of practical concepts, our basis for understanding chemistry. 

For this purpose, energy decomposition analysis (EDA) schemes were developed as early as 

the 1970s, when Kitaura and Morokuma[6] first decomposed the Hartree-Fock (HF) 

interaction energy into electrostatic, Pauli repulsion, polarization, and charge transfer 

components. The behavior of these original components was not completely satisfactory and 

they did not add up to the total interaction energy. Since then, many improved schemes have 

adressed these deficiencies, and some extended to Density Functional Theory (DFT) 

energies.[7] We are particularly interested in this minireview in variational EDA schemes, that 

obtain each energy component by fully optimizing a quantum-mechanically correct 

wavefunction with various constraints. The Absolutely Localized Molecular Orbitals EDA 

(ALMO-EDA)[7g, 8] enters this category and has recently seen some interesting developments 

regarding electronic correlation that we will review. Note that a closely related scheme is the 

Block-Localized Wavefunction EDA (BLW-EDA),[7f] and that both are based on the same 

technique to solve Hartree-Fock equations with localization constraints on the orbitals.[9] 

To obtain consistent and accurate EDA components, it is desirable to design EDA schemes 

for post-HF methods such as MP2 or Coupled Cluster with Singles, Doubles and perturbative 

Triples, CCSD(T), the current golden standard of quantum chemistry. In particular, since 

decompositions of the Hartree-Fock contribution to intermolecular interactions are already 



well-studied, it is desirable to obtain a decomposition of the electronic correlation 

contribution, i.e. the correlation binding energy (CBE). Symmetry-Adapted Perturbation 

Theory (SAPT)[10] provides a solution through a perturbative expansion of the interaction 

energy that includes electron correlation, however SAPT relies on the assumption that the 

intermolecular interaction is weak. Variational EDA schemes such as ALMO-EDA are 

applicable to the analysis of covalent bonds,[11] and their variational nature even allowed 

recent work to incorporate geometric deformation effects in each energetic term.[12] 

Previous variational EDAs only partitioned electronic correlation into dispersive or charge 

transfer energy components. Such decompositions have been applied by various groups to 

MP2[13] and to CCSD energies.[7e, 14] Here we will review recent developments in the 

understanding and decomposition of correlation binding energies, and demonstrate their 

utility in an example halogen bonding application.  

2. Influence of electronic correlation on monomer properties 
 
Since electron correlation lowers the total energy of a molecular system, we could intuitively 

expect that it would also lower intermolecular binding energies (i.e. enhance binding), 

essentially because electron correlation introduces attractive dispersion effects that are absent 

in Hartree-Fock wavefunctions. 



 

Figure 1: Four different geometries of the water dimer. The stretched geometry (a) is based on the S22 
equilibrium geometry. The other three geometries each have equivalent monomers with a bond length of 0.9584 
Å and a bond angle of 104.46º. Reprinted with permission from [15]. Copyright 2014 American Chemical 
Society. 

 
This was disproven already in 1986 by Scheiner and coworkers[16] who obtained repulsive 

correlation corrections to the water dimer binding energy. This early discovery seems 

however to have been known mostly in the SAPT community.[17] Indeed, the first direct 

decompositions of CBE that appeared later only partitioned it in attractive terms.[7e, 13-14] In 

2014, Thirman et al.[15] reinvestigated this issue in details for various conformers of the water 

dimer with different alignments of the monomer's dipoles (see Figure 1). CBEs were 

computed at the RI-MP2 level for various monomer separations and at the CCSD(T) level for 

a O···O separation of 5.5 Å (see Figure 2). 

The CBEs for geometries having a favorable electrostatic interaction (equilibrium (a) and 

aligned (b) on Figure 1) become positive in the long and medium range, whereas they are 

always negative for geometries with vanishing (perpendicular, Figure 1d) or repulsive 

(antialigned, Figure 1c) dipole interactions. This result is valid for MP2 and CCSD(T), and is 

reproduced with several basis sets.[15] The origin of repulsive correlation corrections was 

uncovered by examining the dipole moments of the monomers computed with HF and 

MP2.[15-16] Indeed, HF tends to overestimate the dipole moments of molecules, which is 



corrected by the inclusion of electron correlation. Hence, electrostatic interactions in MP2 are 

less attractive than those in HF because the electric moments of the interacting molecules 

generally become smaller. 

 

Figure 2: RIMP2 correlation binding energy (CBE) curves for the water dimer in four different geometries, 
along with a CCSD(T) value at 5.5 Å O···O separation for each.  Reprinted with permission from [15]. Copyright 
2014 American Chemical Society. 

This electrostatic-based rationalization of the CBE is consistent with the above observations 

for the various water conformers (see Figure 2). The equilibrium and aligned conformers have 

attractive dipole-dipole interactions, which are overestimated at the Hartree-Fock level, and 

thus their CBE is positive. The perpendicular conformer has a vanishing dipole-dipole 

interaction and thus its correlation correction essentially represents dispersion, quickly 

decaying to zero. Finally, the anti-aligned dimer has repulsive dipole-dipole interactions, once 

again overestimated by Hartree-Fock, so in this case the CBE is negative since it reduces the 

repulsion between the monomers.[15] 

Electronic correlation affects significantly molecular properties, including electric moments 

and polarizability. As a consequence, correlation binding energies do not contain only 

attractive components, as has been previously assumed in EDAs.[7e, 13-14] In the next section, 

we will summarize MP2 ALMO-EDA, which was built on this knowledge. 

 

 

 



3. MP2 ALMO-EDA 

3.1 Theory 

The HF ALMO-EDA method relies on intermediate constrained wavefunctions to separate 

the various physical components of an intermolecular interaction energy. In MP2 ALMO-

EDA, an MP2 correction is computed on top of each intermediate HF wavefunction. We here 

present each intermediate briefly, full details of the theory[18] and of the implementation[19] 

being available elsewhere: 

1. Computing MP2 on isolated monomers, saving the HF orbitals and the MP2 amplitudes 

tij
ab from which the MP2 energy is computed. 

2. Allowing the monomers to interact while keeping their orbitals and MP2 amplitudes 

frozen. MP2 is non-variational, thus the corresponding energy correction is based on the 

Hylleraas functional and includes orbital relaxation to yield the correct monomer MP2 

dipole moments. 

3. Polarizing wavefunctions in the field of their interacting partner. Absolutely Localized 

Molecular Orbitals (ALMOs) are optimized on each monomer using only basis functions 

on the same monomer to prevent charge delocalization. The MP2 correction is computed 

including only excitations on the same monomer (top row of Figure 3). 

4. Adding all charge-conserving correlations (two first rows of Figure 3) in the MP2 

correction. These include simultaneous excitations on both monomers associated with 

dispersion. 

5. Computing the full MP2 energy of the dimer, including fully relaxed HF orbitals and all 

excitations in Figure 3. 

In each step, we allow an additional physical effect to influence the wavefunction. Thus the 

frozen energy is obtained as the energy difference between steps 1. and 2. above, the 

polarization energy as the difference between steps 2. and 3., the dispersion energy as the 



difference between steps 3. and 4. and the charge transfer energy as the difference between 

steps 4. and 5. Each contains a correlation correction from MP2. MP2 ALMO-EDA was 

implemented in a locally modified version of Q-Chem[20] and will be released soon. 

 

Figure 3: The three types of double excitations in MP2: on monomer (upper row), charge conserving (middle 
row), charge transferring (bottom row). Reprinted from [18], with the permission from AIP Publishing. 

3.2 Basis set limit behavior 

The polarized wavefunctions in step 3. are defined by ALMOs which rely on the locality of 

atom-centered basis functions on each monomer. However, in large basis sets, basis functions 

centered on one monomer will overlap with the other monomer. As a result, the ALMO 

orbitals will partially delocalize over both monomers, and the polarized wavefunctions will 

include some charge transfer contamination. In the complete basis set (CBS) limit, the 

polarization energy will contain 100% of the charge transfer effect and the charge transfer 

energy will vanish. 

Recently, Horn and Head-Gordon[21] proposed a solution: constraining the polarized 

wavefunction to relax in a virtual space specifically tailored to represent only polarization. 

This virtual space is built from Fragment Electric Field Response Functions (FERFs), which 

exactly represent the deformation of the occupied orbitals of one monomer subjected to an 

external static electric field. Thus, the FERFs naturally exclude charge transfer even in the 

complete basis set limit. 

A related issue appears in MP2 ALMO-EDA in the definition of the dispersion energy. In 

Figure 3, we discriminate between charge-conserving and charge-transferring excitations 



based on the localization of the ALMOs on one or the other monomer. As the basis set is 

extended towards the CBS, excitations classified as charge-conserving will delocalize more 

and more over the partner monomer until they fully represent the MP2 charge transfer 

contribution. Similarly to the FERFs for polarization, it is then desirable to obtain a virtual 

space specifically tailored to represent dispersion interactions. To understand how to design it, 

we investigated compressed representations of the virtual space for CCSD dispersion energies.  

4. Dispersion-specific virtual orbitals 

4.1 Compact representation of dispersion 

To investigate the compactness of the virtual space for dispersion energies and extract the 

corresponding virtuals, we examined the CCSD dispersion energy in details.[22] Our 

investigation was limited to the long-range limit of dispersion energy Edisp, where the overlap 

between the monomers is negligible and dispersion well-defined: 

 

                                                              (1) 

where i, a are respectively occupied and virtual orbital indices localized on monomer A while 

j, b are respectively occupied and virtual orbital indices localized on monomer B. We will 

denote the set of amplitudes tij
ab for which the indices satisfy the above T2

disp and refer to them 

as dispersion amplitudes. They are easily extracted from a CCSD computation performed in a 

localized orbital basis. 

We extracted the most important components of T2
disp using Singular Value Decomposition 

(SVD). SVD factorizes a matrix as a set of right and left singular vectors whose contributions 

to the original matrix are ranked by singular values. To apply SVD to T2
disp, which contains 

four-indices amplitudes tij
ab, we arranged the amplitudes in a large matrix with indices i and a 

on the rows and indices j and b on the columns. This groups together indices belonging to the 

same monomers, which yields singular vectors that are reflective of monomer's properties. 



Each of these singular vectors contains both occupied and virtual indices, thus we will refer to 

them as geminal functions (i.e. functions of two electrons). 

We performed this analysis for the He dimer at 3.0, 6.0 and 9.0 Ǻ separation with the doubly 

augmented d-aug-cc-pVQZ basis set.[23] The obtained singular values are displayed in Figure 

4 on a logarithmic scale. Strikingly, the singular values decrease extremely rapidly, and this 

decrease becomes even more pronounced as the interatomic distance is increased. Closer 

inspection actually revealed that the three first singular values clearly dominate the other ones. 

Since this reflects the importance of the corresponding geminals in the original T2
disp, a very 

small number of them should describe the amplitudes correctly. These conclusions held for a 

variety of two-electron systems and basis sets,[22] and remained valid for larger dimers up to 

the benzene-methane dimer. 

For comparison, Figure 4 shows in black singular values from the same analysis performed 

for intraatomic amplitudes tij
ab (where all indices belong to the same monomer) that describe 

short-range correlation. Clearly, the decay of intraatomic singular values is comparatively 

very slow. This reveals the qualitative difference between short-range and long-range 

correlation, and offers physical ground for using different approximations for both.  

 

Figure 4: CCSD T2
disp singular values for He2 at 3.0 (red), 6.0 (blue) and 9.0 (green) Ǻ interatomic distances. In 

black, we show singular values obtained for the intraatomic amplitudes in He, reflecting short-range electron 
correlation. 



The approximate reconstruction of T2
disp from a limited number of geminals yielded good 

approximate dispersion energies. In all cases, we recovered between 85 and 98% of the full 

dispersion energy at short distance, to more than 99% at around 6.0 Ǻ intermonomer 

separation and beyond. For the largest system investigated (benzene-methane dimer with aug-

cc-pVTZ) the short-range relative percent error with only 3 geminals is about 15 % of the full 

dispersion energy (Figure 5). Increasing the number of geminals to reconstruct T2
disp quickly 

reduces the observed error. Upon increasing the separation between the monomers by 3.0 Ǻ, 

the relative percent error also decreases dramatically, and using only 3 geminals is already 

sufficient to reach 99% accuracy. These observations also held for Ne2, (CH4)2, (C2H4)2, and 

various two-electron systems.[22] 

 

Figure 5: Relative percent error for CCSD dispersion energy computed with T2
disp approximately reconstructed 

with 3 (red), 6 (blue), 8 (green), 11 (black) and 15 (teal) geminals at various distances for the benzene-methane 
dimer with the aug-cc-pVTZ basis set. 

4.2 Virtual space 

Since only a few geminals describe both the dispersion amplitudes T2
disp and the dispersion 

energy, there must exist a compact virtual space associated with them. We again leveraged 

SVD to examine these virtual orbitals. We wrote each geminal as a matrix, with occupied 

orbital indices on the rows and virtual orbital indices on the columns. In this manner, the SVD 



right singular vectors represent new orbitals that compactly describe the virtual part of each 

geminal. For ease of visualization, we examined monomers with only one occupied orbital. In 

this case, there is only one virtual orbital per geminal, plotted for one monomer of He2 in 

Figure 6. 

 

Figure 6: Virtual part of geminals 1 to 11 for He2 with the d-aug-cc-pVQZ basis set at 6.0 Ǻ interatomic 
separation. Orbitals are plotted at an isovalue of 0.05 and the interacting partner is located along the z-axis, 
represented in blue. Reprinted from [22], with the permission of AIP Publishing. 

In all two-electron systems in the long-range (6.0 Ǻ and beyond), we observe the same shape 

of the virtual orbitals. The first three, corresponding to the three dominating geminals, are 2p-

like orbitals. Since the occupied orbital is a 1s function, these three geminals represent 1s to 

2p excitations that generate a dipole moment. Thus, we connect these virtuals with the 

common description of dispersion as the interaction of instantaneous dipoles. The three next 

virtuals are 3p-like orbitals, and the five following them are 3d-like orbitals. We connect these 

two groups respectively to dipole-quadrupole and quadrupole-quadrupole interactions in the 

multipolar expansion of dispersion. The distance dependence of the associated singular values 

corroborates this connection.[22] 

Our work demonstrated that there indeed exists a compact basis of virtual orbitals that 

efficiently represents dispersion energies, using only 3 functions per occupied orbital in the 



long range. This is in agreement with recent results obtained in the context of the Pair Natural 

Orbital (PNO) method, where it was numerically shown that only 3 to 4 virtual PNOs were 

needed to describe each long-range correlated electron pair.[24] A virtual space specifically 

tailored for dispersion thus exists, which opens the way to a basis set independent definition 

of dispersion. We are currently exploring practical ways to extract the appropriate virtual 

space, using the CCSD-derived virtual orbitals as reference. 

5. Application to halogen bonding 

Halogen bonding is an attractive interaction involving a halogen atom X accepting a 

nucleophilic partner B, usually represented as RX···B. These interactions have been known 

for a long time[25] and have gained increasing importance in recent years as a controllable 

factor to build molecular assemblies.[4-5, 26] Halogen bonds have originally been rationalized in 

terms of charge transfer between the interacting partners.[27] However, another explanation 

appeared in terms of the σ-hole[28] on the halogen atom, that is a region of positive 

electrostatic potential opposing the σ bond with the rest of the molecule. The strength of 

halogen bonding interactions generally correlates with the size of the σ-hole. 

Recently, Huber et al.[29] uncovered a series of CX3I···Y complexes (X = F, Cl, Br, I and Y = 

halide ion or trimethylamine). In these complexes, the binding strength is inversely correlated 

with the size of the σ-hole. X = F is the most electronegative substituent, that generates the 

strongest σ-hole and electrostatic interaction, while CI4 has zero dipole and the smallest σ-

hole, yet exhibits the strongest interaction. To uncover the relative importance of 

electrostatics and charge transfer in these systems, Thirman and Head-Gordon[30] applied MP2 

ALMO-EDA to CF3I···F
- and CI4···F

-. Since the equilibrium distance in these two complexes 

differs (2.20 and 2.11 Ǻ respectively), a scan of I···F- distances was performed. For each 

distance, all other geometrical parameters were relaxed. The MP2 interaction energy (see 



original paper[30] for full details) for each of these geometries is then decomposed to yield the 

energy components presented in Figure 7 as a function of distance. 

 

Figure 7: MP2/def2-TZVPP interaction energy components for CF3I···F
- (a) and CI4···F

- (b).[30] Reproduced by 
permission of the PCCP Owner Societies. 

These curves show that CI4 exhibits larger charge transfer interactions (by about 20 kJ/mol) 

than CF3I at all distances. This is expected as the charge transfer tends to increase going down 

the periodic table. CF3I possesses a higher dipole moment and a larger σ-hole, generating an 

important frozen energy term (that contains both electrostatics and Pauli repulsion). CI4 

makes up for this difference by being more polarizable, and together the frozen and 

polarization terms make the two complexes bind with roughly the same strength. We consider 

the frozen and polarization terms together for two reasons: they are both electrostatic in nature 

and linked to the σ-hole rationalization of halogen bonds; they both contain an orbital 

deformation contribution originating in the Pauli repulsion at short distance. 

The difference in charge transfer energies only makes up for about half of the total difference 

in binding energies. Much of the rest comes from the closer equilibrium distance in CI4 

compared to CF3I, allowing a more favorable interaction. In addition, the geometric 

deformation energies to get from the isolated monomer to the equilibrium structure are 12 

kJ/mol for CI4 and 20 kJ/mol for CF3I. Thus, CI4 achieves a larger binding energy because of 

its large charge transfer component and because it is easily deformable into its dimer 



equilibrium geometry. The larger dipole moment and electrostatic interactions of CF3I are 

compensated by the larger polarizability of CI4. 

Another perspective on this interaction is provided by the adiabatic MP2 ALMO-EDA 

scheme.[12, 30] Here, the geometry of the dimer is fully optimized for each energy component, 

allowing us to directly measure the effect of each type of interaction on the geometry. The 

influence of charge transfer is confirmed to be larger for CI4. The dimer geometries including 

only the frozen and the polarization contributions have similar interaction energies, 

corroborating the above interpretation that the larger polarization of CI4 compensates for the 

larger electrostatic interactions of CF3I.  

The adiabatic MP2 ALMO-EDA shows a shortening of the C-I bond in CI4 when only frozen 

interactions are included, while charge transfer elongates the bond with respect to the 

equilibrium geometry. This means that, in the dimer equilibrium geometry, the dipole of CI4 

opposes the interaction, whereas the dipole of CF3I is enhanced by the interaction. This 

highlights the fundamental difference between these two halogen bonds: CI4···F
- is driven 

both electronically and geometrically by charge transfer, overriding the electrostatic 

interactions, while CF3I···F
- is driven by electrostatic interactions, including the σ-hole on I. 

As an example of a system that combines strong charge transfer with strong electrostatics, 

Thirman et al. then examined C(NO2)3I···F
-. We reproduce the curves of the various energy 

components as a function of distance in Figure 8. The binding energy is considerable at about 

260 kJ/mol, which arises in part from the very strong dipole of 3.2 D that generates 

electrostatic interactions more favorable than even CF3I. The charge transfer energy is very 

important as well, being even slightly more favorable than in CI4. The polarizability of 

C(NO2)3I is in between those of CF3I and CI4. Thus, without the contribution of charge 

transfer it would be difficult to predict the considerable binding energy observed. 



Thanks to accurate energy components provided by MP2 ALMO-EDA, the three systems 

investigated demonstrate that both electrostatics and charge transfer can play major roles in 

determining the strength of halogen bonds, in agreement with recent findings on λ
3-iodane 

complexes.[31] Moreover, they illustrate a case where polarizability and charge transfer follow 

different trends, which emphasizes the importance of discriminating between these two 

components.  

 

Figure 8: MP2/def2-TZVPP interaction energy components for C(NO2)3I···F
-.[30] Reproduced by permission of 

the PCCP Owner Societies. 

 

6. Conclusions 

The development of energy decompositions for correlated, accurate methods benefits from 

careful analyses of the correlation contribution to non-covalent interaction energies and from 

detailed investigations of each interaction component. Future work will focus on designing 

practical ways to obtain a compact dispersion-specific virtual space for the MP2 ALMO-EDA 

scheme. The exceptional compressibility of the virtual space for long-range correlation may 

find applications in local methods, as an alternative to the recent work by Werner[24] on 

reduced Pair Natural Orbital space for dispersive interactions. 
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