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ABSTRACT OF THE THESIS

Adversarial Attacks and Defense using Energy-Based Image Models

by

Jonathan Craig Mitchell

University of California, Los Angeles, 2022

Professor Song-Chun Zhu, Chair

In this article we briefly review current research in adversarial attacks and defenses and form

a basis for a theoretical explanation as to why a generative energy model is the solution to

the defense problem as it exists for securing naturally trained classifiers. We further expand

on this topic and discuss future efforts toward the use of a generalized adversarial defense

framework based on Stochastic Security to defend against the strongest known adversarial

attacks. We further expand on this idea and demonstrate that Energy-based models can be

extended towards multiple tasks and datasets. Furthermore, we discuss some architectural

improvements to the framework that lead to improvements in synthesis and defense (The

Hat-EBM and the Fixer). This work lies at the intersection of generative modeling, adversarial

defense, and chaotic dynamics.
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3.1 Illustration of the sampling trajectories that we study in this work. The shortrun

samples are initialized from a generator that is trained in tandem with the EBM

because the goal is self-contained synthesis. Midrun and longrun samples are
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and we study the ability of the EBMs to preserve the quality of the input image

from defense and density estimation points of view. The plots show the FID score

[HRU17] of 5,000 samples across Langevin steps. The shortrun samples improve

on the generator initialization to achieve high-quality synthesis around 250 steps.

The midrun samples achieve reasonably low FID in a critical range of about
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synthesis across the entire trajectory, and much further. The shortrun and midrun
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5.2 Left: Loss curve using MSE loss as in equation 5.3 to pretrain the fixer for 40
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is a latent vector. An image is generated using X = Y + G(Z) for a generator
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of the pair (Y, Z). This allows for principled probabilistic learning which can

incorporate the latent space of any generator. Right: Unconditional ImageNet

128×128 samples generated by a Hat EBM. . . . . . . . . . . . . . . . . . . . . 66

((a))66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

((a))66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

((b))66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

((b))66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xiii



6.3 Visualization of tandem training method for hat network and generator. The

left side illustrates training for the hat network H(x; θ). Z is drawn from a

latent distribution, Y is initialized from the 0 image and updated according

to p(Y |Z; θ) = p(Y |G(Z;ϕ); θ). Then data samples X+ and negative samples

X− = Y +G(Z;ϕ) are used to update the weight θ of the hat network. On the
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several past updates of the EBM have much higher diversity than a single snapshot. 75
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CHAPTER 1

Introduction

1.1 Introduction

Security and safety of machine learning systems is paramount due to their increased adoption

in modern society. Deep neural networks have a variety of use cases and trained DNN models

are being used in autonomous vehicle perception, person identification, fraud detection, and

Natural Language Processing.

The goal of this work is to create an adversarial robust purification method to remove

adversarial signals from a perturbed image for the task of image classification. This work

leverages the use of an MCMC-based energy model as an auxillary purification tool to remove

adversarial signals.

This thesis is broken down into three pillars. Foundation, Scaling, and Extension.

Foundation introduces the Stochastic Security framework which lays the foundation for

how to use an Energy-Based Model to defend against adversarial attacks. Scaling demonstrates

how we can scale such as model to defend against larger datasets namely ImageNet. This was

part of the EBM Life Cycle work [HMC22a]. Extension is the most recent research, which

demonstrates how we can extend a trained model to new datasets and tasks (Universal

Defender). We also extend the purification method in The Fixer, which is a Generator-like

model that removes impurities from purified images after langevin sampling before they are

seen by the classifier. In parallel I also worked on the Hat EBM [MZ23], which constructs a

new EBM architecture that encapsulates existing and co-trained generator models for image

refinement and synthesis. Evolution of my research can be seen in figure 1.1.

Throughout this work we come back to the central hypothesis: "Can we use EBM’s to
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defend against adversarial attacks?". We answer the following questions throughout the text:

• Why do they work? What about descriptive models (DM) enables them to remove

adversarial signals?

• Capacity: How big can we make these models? What architectures can be leveraged to

produce them?

• Domain transfer: Can EBM’s internal knowledge translate between tasks and datasets?

Figure 1.1: Above presents the scope of work for this dissertation. We started off with

Stochastic Security where we built the problem and framework [HMZ21]. We then scaled

these models in the EBM life cycle work [HMC22a]. This also led to the Hat EBM [MZ23].

After scaling we extended the framework to defend against multiple tasks and datasets. After

this we came up with "The Fixer" as an auxillary network to help fix misclassification caused

by Langevin sampling.

1.2 Adversarial attacks

A seemingly benign change to an input of a trained state of the art classifier can cause

the classifier to be fooled. The adversary targets the input to create an adversarial sample

indistinguishable from the original input as shown in figure 1.2. This is known as an adversarial

attack; an algorithm that perturbs an image to fool a classifier. This may cause serious

security issues as vision algorithms integrate into our daily lives.
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Figure 1.2: Adversarial signal added to a simple panda image using the FGSM attack

(equation 1.2) applied to GoogLeNet[SLJ14] trained on Imagenet [RDS14]

1.2.1 What are adversarial attacks

There are three categories of adversarial attacks with respect to vision and images. In

increasing order of strength these methods are widely known as "black box", "transfer" and

"white box" attacks respectively. Black box attacks are aware of a targets task, dataset, and

training environment (hyper parameters and tuning variables), but they are not aware of

the model parameters (weights). Transfer attacks utilize gradient-based information of a

surrogate model trained in the same environment as the target model and attempt to transfer

the attack to the target. A white box attack has direct access to the model’s parameters

and utilizes gradient based information to uniquely target each specific model. This work is

primarily concerned with white box attacks, specifically FGSM, PGD, and BPDA attacks.

1.2.1.1 Formulation

Consider the saddle point optimization formulation from [MMS18]. Given a dataset {Xi}ni=1

where Xi ∈ RD with underlying data distribution q. Natural image training based on

empirical risk minimization seeks to minimize Eq[L(x, y, θ)] where x ∈ X and y ∈ Rk are

labels with k classes and θ are the classifiers trainable parameters. However, simple empirical
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risk minimization will not provide an adversarially robust classifier (as shown in fig 1.2).

Therefore our goal is to train the classifier under the following optimization criteria:

min
θ

E(x,y)∈q[max
δ∈S

L(x+ δ, y, θ)] (1.1)

Where S ∈ RD is the set of allowed pixel perturbation around the original image

constraints by the l∞ norm which is considered to be an ϵ− ball around x. δ is one of those

perturbations such that x+ δ ∈ S. L(x+ δ, y, θ) is the classifiers loss function. This saddle

point formulation can be decomposed into the inner maximization portion; whose goal is to

create "true adversaries" that are able to fool the classifier. The outer minimization portion

is tasked to limit the amount of these adversaries and create a robust classifier that can’t be

fooled. Robustness is a heuristic used to measure the accuracy of a classifier with respect to

adversarial samples.

1.2.1.2 Targeted vs Untargeted attacks

There is also a distinction among adversarial attack destinations. Given an input xi with

label yi, a targeted attack is one where the adversary attempts to perturb the input xi so that

the classifier predicts class yj st i ̸= j where j is a specific class target. An untargeted attack

creates an adversary to increase L(x, y, θ) solely to cause misclassification of yi without any

specific "targeted" class in mind. In both cases the perturbation should be "imperceptible"

such that the original image and the adversarial image can not be distinguished by humans.

1.2.1.3 Specific attacks

In this work we describe three different untargeted attacks. The Fast Sign Gradient Method

(FGSM) attack is an l∞ bounded adversarial algorithm from [MMS18] that computes adver-

sarial examples using eq (1.2)

x̂ = x+ ϵsgn(∇xL(θ, x, y)) (1.2)

where L represents the loss function after a forward pass of the network and x̂ = x+ δ is the

adversarially perturbed image, x corresponds to the original image, y the class label, θ the
4



model parameters, and ϵ is the constraint of allowed perturbation of each pixel with respect

to the l∞ norm. We also borrow a variant of FSGM from [MMS18] known as Projected

Gradient Descent (PGD), that iteratively attacks each newly formed adversarial image and

projects it back to the l∞ constrained ϵ-ball around the original image x

x̂i+1 = Πx+S(x̂i + αsgn(∇xL(θ, x, y))) (1.3)

where α is the learning rate and where the space of allowed pixel perturbations on x is S

specified by the aforementioned l∞-ball around x. This ensures that the difference between x

and the adversarial image x̂i+1 (which has gone through multiple attacks) is imperceptible.

Both of these attacks are considered white box because they utilize gradient information of

the model and untargeted because they are not being pushed towards a specific class.

Currently, the most robust form of adversarial defense against equationss 1.2, 2.8 is to

train a classifier on adversarial samples, as shown in [MMS18]. However, this detracts from

the original task of the model in that it does not increase task performance (natural image

classification) and increases both training time and computational load. For this purpose,

auxillary white box defense methods that do not require classifiers to undergo adversarial

training have been explored such as [SKN18], [SKC18], etc. We will refer to these methods as

"add-on purification" and their defense algorithms as purifiers. These purifiers proved hopeful

until further analysis by the authors of [ACW18] revealed that the majority of these methods

were simply adding non-differentiable components/layers to existing classifiers which caused

them to "obfuscate" their gradients and create weak adversarial samples during testing.

To combat this "false sense of security" the authors of [ACW18] created a Backwards

Pass Differentiable Attack (BPDA) which is a straight-through attack algorithm that is able

to differentiate through add-on purifiers to the core network in order to create adversarial

samples [ACW18]. The approach consists of performing a forward pass on the network

in standard fashion and simply replacing the purifier with the identity on backwards pass

differentiation.

x̂i+1 = Πx+S(x̂i + αsgn(∇xL(θ, f(g(x)), y)) (1.4)
5



Eq 1.4 provides an approximation of the true gradient because on average g(x) ≈ x.

However, this also requires that more iterations of the attack are performed because g(x)

is treated as an approximation of the true gradient on each step. The function g(x) is the

purifier in this case. We can treat the output as xp ← g(x) where xp is a purified image. We

perform the same projection as in eq 2.8 after the perturbation.

1.3 Energy-Based Models

Throughout this work we come back to Energy-Based models, what they are, how they work,

and what applications they can be used for.

1.3.1 Formulation

To present a formal definition of the models used herein, we begin with an energy-based

Gibbs-Boltzmann density and propose the formulation as seen in [NHH19], [BZ19].

pθ(x) =
1

Z(θ)
exp{−U(x; θ)}

where x is an image signal and U(x; θ) is an energy potential that belongs to a family of

distributions P = {pθ}θ∈Θ

Stochastic gradients are useful in cases where the partition function Z(θ) =
∫
X
exp{−U(x; θ)}dx

is intractable. Our goal in using this energy-based model is to synthesize realistic images

x ∼ pθ(x) to be as close as possible to the true data distribution q(x). In doing so we

formulate our loss function as

min
θ

KL(q||pθ) = min
θ

Eq

[
log

q(x)

pθ(x)

]
(1.5)

min
θ

Eq[log q(x)]− Eq[log pθ(x)] (1.6)

where Eq does not depend on θ. Additionally, for an i.i.d dataset {Xi}ni=1, using the law

of large numbers we can approximate the expectation of the true underlying distribution

Eq[log pθ(x)] ≈ 1
n

∑n
i=1 log pθ(Xi) therefore

= min
θ
−Eq[log pθ(x)] (1.7)
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= max
θ

Eq[log pθ(x)] (1.8)

and therefore minimizing KL(q||p) also maximizes the log likelihood of pθ(x) which is

equivalent to minimizing the negative log likelihood. The likelihood l(x|θ):

min
θ

l(x|θ) = min
θ

log(Z(θ) + Eq[U(X; θ)] (1.9)

We can approximate the intractable partition function using the gradient of logZ(θ)

which can be expressed in closed form as ∇θ logZ(θ) = −Epθ [∇θU(X; θ)] [GBC16], thus we

can minimize l(θ) by taking the derivative

∂

∂θ
l(x|θ) = ∂

∂θ
Eq[U(X; θ)]− Epθ [

∂

∂θ
U(X; θ)] (1.10)

≈ ∂

∂θ

( 1
n

n∑
i=1

U(X+
i ; θ)−

1

m

m∑
i=1

U(X−i ; θ)
)

(1.11)

where U(X+
i ; θ) are known as positive samples that follow the true underlying distribution

of the data q and where U(X−i ; θ) are known as negative samples obtained using MCMC

from the models currently learned distribution pθ(x). [NHH19]. Positive samples are simply

randomly sampled training images while the negative (MCMC) samples are obtained using

Langevin dynamics. The advantage of using an energy-based model is that it does not have

to approximate the partition function because it simply tries to create "realistic" synthesized

images from our model and compare them to the data itself. Thus MLE forces the MCMC

samples from the model pθ(x) to be as close to q as possible.

For applications throughout this body of work the underlying architecture of the EBM

model pθ(x) changes from simple lightweight Convolutional Neural Networks [HMZ21] to

larger SNGAN based architectures [MKK18] and ResNets [ZK16]. We consider a forward

pass of the network f(x; θ) = −U(x; θ) and where U(x; θ) ∈ R.

There are also several training strategies to achieve different EBM models. We have

short-run models for image synthesis, mid-run models for adversarial defense, and long-run

models for probabilistic density estimation [HMC22a].
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1.3.1.1 Langevin dynamics

We utilize the Langevin equation to perform Langevin Monte Carlo (LMC) sampling of the

model during training to obtain the negative samples. LMC is a special case of HMC that is

used when the trajectory to propose a new state consists of one leapfrog step. [Nea12]. In

typical LMC we sample momentum variable values from their zero mean and unit variance

Gaussian white noise distribution Zi ∼ N(0, I).

X∗i = Xi −
ε2

2

∂

∂x
U(Xi; θ) + εZi (1.12)

Where ε > 0 is a constant noise factor. According to the work of [CFG14], [NHH19], the

momentum update of the second HMC variable as well as the Metropolis-Hastings update

step can be ignored in practice.

Energy-Based Models are related to our adversarial defense problem via the purification

triangle in fig 1.3

Figure 1.3: Purification Triangle where Langevin sampling represents stochastic Langevin

dynamics in eq 1.12 where Xpur are purified samples and Xadv are the adversaries created

from Xpur using eq 1.4

For EBM-based defenses it is useful to observe that the added noise introduces stochastic

behavior into the algorithm which contributes to the stochastic vector in the purification
8



triangle 1.3. This makes it difficult for any attack to clearly target the a stochastic purifier

and create strong adversaries. This is highlighted in greater detail in Chapter 2: Stochastic

Security.
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CHAPTER 2

Foundation: Stochastic Security

2.1 Stochastic Security

This chapter presents stochastic security: a framework designed to secure naturally trained

classifiers against adversarial white box attacks. The vulnerability of deep networks to

adversarial attacks is a central problem for deep learning from the perspective of both

cognition and security. The current most successful defense method is to train a classifier using

adversarial images created during learning. Another defense approach involves transformation

or purification of the original input to remove adversarial signals before the image is classified.

We focus on defending naturally-trained classifiers using Markov Chain Monte Carlo (MCMC)

sampling with an Energy-Based Model (EBM) for adversarial purification. In contrast

to adversarial training, our approach is intended to secure highly vulnerable pre-existing

classifiers. To our knowledge, no prior defense method is capable of securing naturally-trained

classifiers, and our method is the first to validate a post-training defense approach that is

distinct from current successful defenses which modify classifier training.

The memoryless behavior of long-run MCMC sampling will eventually remove adversarial

signals, while metastable behavior preserves consistent appearance of MCMC samples after

many steps to allow accurate long-run prediction. Balancing these factors can lead to effective

purification and robust classification. We evaluate adversarial defense with an EBM using the

strongest known attacks against purification. Our contributions are 1) an improved method

for training EBM’s with realistic long-run MCMC samples for effective purification, 2) an

Expectation-Over-Transformation (EOT) defense that resolves ambiguities for evaluating

stochastic defenses and from which the EOT attack naturally follows, and 3) state-of-the-art
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adversarial defense for naturally-trained classifiers and competitive defense compared to

adversarial training on CIFAR-10, SVHN, and CIFAR-100.

2.2 Motivation and Contributions

Deep neural networks are highly sensitive to small input perturbations. This sensitivity can

be exploited to create adversarial examples that undermine robustness by causing trained

networks to produce defective results from input changes that are imperceptible to the

human eye [GSS15]. The adversarial scenarios studied in this paper are primarily untargeted

white-box attacks on image classification networks. White-box attacks have full access to

the classifier (in particular, to classifier gradients) and are the strongest attacks against the

majority of defenses.

Many whitebox methods have been introduced to create adversarial examples. Strong

iterative attacks such as Projected Gradient Descent (PGD) [MMS18] can reduce the accuracy

of a naturally-trained classifier to virtually 0. Currently the most robust form of adversarial

defense is to train a classifier on adversarial samples in a procedure known as adversarial

training (AT) [MMS18]. Another defense strategy, which we will refer to as adversarial

preprocessing (AP), uses defensive transformations to purify an image and remove adversarial

signals before classification ([SKN18, SMM19, CRK19, YZK19], and others). AP is an

attractive strategy compared to AT because it has the potential to secure vulnerable pre-

existing classifiers. Defending naturally-trained classifiers is the central focus of this work.

[ACW18] revealed that many preprocessing defenses can be overcome with minor adjust-

ments to the standard PGD attack. Both stochastic behavior from preprocessing and the

computational difficulty of end-to-end backpropagation can be circumvented to attack the

classifier through the defensive transformation. In this paper we carefully address [ACW18] to

evaluate AP with an EBM using attacks with the greatest known effectiveness and efficiency.

Langevin sampling using an EBM with a ConvNet potential [XLZ16] has recently emerged

as a method for AP [DM19, GWJ20]. However, the proposed defenses are not competitive

with AT (see Table 2.1 and [CH20]). In the present work we demonstrate that EBM defense
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Figure 2.1: Left: Visualization of calculating our stochastic logits F̂H(x) from (5.2). The

input image x is replicated H times and parallel Langevin updates with a ConvNet EBM

are performed on each replicate to generate {x̂h}Hh=1. Purified samples are sent in parallel to

our naturally-trained classifier network f(x) and the resulting logits {f(x̂h)}Hh=1 are averaged

to produce F̂H(x). The logits F̂H(x) give an approximation of our true classifier logits F (x)

in (2.4) that can be made arbitrarily precise by increasing H. Right: Graphical diagram of

the Langevin dynamics (6.3) that we use for T (x). Images are iteratively updated with a

gradient from a naturally-trained EBM (6.1) and Gaussian noise Zk.

of a naturally-trained classifier can be stronger than standard AT [MMS18] and competitive

with state-of-the-art AT [ZYJ19, CRS19].

Our defense tools are a classifier trained with labeled natural images and an EBM trained

with unlabeled natural images. For prediction, we perform Langevin sampling with the EBM

and send the sampled images to the naturally-trained classifier. An intuitive visualization of

our defense method is shown in Figure 2.1. Langevin chains constitute a memoryless trajectory

that removes adversarial signals, while metastable sampling behaviors preserve image classes

over long-run trajectories. Balancing these two factors leads to effective adversarial defense.

Our main contributions are:

• A simple but effective adjustment to improve the convergent learning procedure from

[NHH20]. Our adjustment enables realistic long-run sampling with EBMs learned from

complex datasets such as CIFAR-10.

• An Expectation-Over-Transformation (EOT) defense that prevents the possibility of

a stochastic defense breaking due to random variation in prediction instead of an
12



adversarial signal. The EOT attack [ACW18] naturally follows from the EOT defense.

• Experiments showing state-of-the-art defense for naturally-trained classifiers and com-

petitive defense compared to state-of-the-art AT.

2.3 Related Work

Adversarial training learns a robust classifier using adversarial images created during each

weight update. The method is introduced by [MMS18]. Many variations of AT have been

explored, some of which are related to our defense. [HRF19] apply noise injection to each

network layer to increase robustness via stochastic effects. Similarly, Langevin updates with

our EBM can be interpreted as a ResNet [HZR16] with noise injected layers as discussed by

[NHZ19a]. Semi-supervised AT methods [AUH19, CRS19] use unlabeled images to improve

robustness. Our EBM also leverages unlabeled data for defense.

Adversarial preprocessing is a strategy where auxiliary transformations are applied to

adversarial inputs before they are given to the classifier. Prior forms of pre-processing defenses

include rescaling [XWZ18], thermometer encoding [BRR18], feature squeezing [XEQ18],

activation pruning [DAB18], reconstruction [SKC18], ensemble transformations [RSF19],

addition of Gaussian noise [CRK19], and reconstruction of masked images [YZK19]. Prior

preprocessing methods also include energy-based models such as Pixel-Defend [SKN18] and

MALADE [SMM19] that draw samples from a density that differs from (6.1). It was shown

by [ACW18, TCB20] that many preprocessing defenses can be totally broken or dramatically

weakened by simple adjustments to the standard PGD attack, namely the EOT and BPDA

techniques. Furthermore, many preprocessing defenses such as [CRK19, RSF19, YZK19] also

modify classifier training so that the resulting defenses are analogous to AT, as discussed in

2.13. No prior preprocessing defense is competitive with AT when applied to a naturally-

trained classifier.

Energy-based models are a probabilistic method for unsupervised modeling. Early

energy-based image models include the FRAME [ZWM98] and RBM [Hin02]. The EBM
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(6.1) used in this work is introduced by [XLZ16] and important observations about the

learning process are presented by [NHH20, NHZ19a]. Preliminary investigations for using

the EBM (6.1) for adversarial defense are presented by [DM19, GWJ20] but the results are

not competitive with AT (see Section 2.6.1). Our work builds on the convergent learning

methodology from [NHH20] to apply long-run Langevin sampling as a defense technique.

2.4 Improved Convergent Learning of Energy-Based Models

The Energy-Based Model introduced in [XLZ16] is a Gibbs-Boltzmann density

p(x; θ) =
1

Z(θ)
exp{−U(x; θ)} (2.1)

where x ∈ RD is an image signal, U(x; θ) is a ConvNet with weights θ and scalar output, and

Z(θ) =
∫
X exp{−U(x; θ)}dx is the intractable normalizing constant. Given i.i.d. samples

from a data distribution q(x), one can learn a parameter θ∗ such that p(x; θ∗) ≈ q(x) by

minimizing the expected negative log-likelihood L(θ) = Eq[− log p(X; θ)] of the data samples.

Network weights θ are updated using the loss gradient

∇L(θ) ≈ 1

n

n∑
i=1

∇θU(X+
i ; θ)−

1

m

m∑
i=1

∇θU(X−i ; θ) (2.2)

where {X+
i }ni=1 are a batch of training images and {X−i }mi=1 are i.i.d. samples from p(x; θ)

obtained via MCMC. Iterative application of the Langevin update

Xk+1 = Xk −
τ 2

2
∇Xk

U(Xk; θ) + τZk, (2.3)

where Zk ∼ N(0, ID) and τ > 0 is the step size parameter, is used to obtain the samples

{X−i }mi=1.

[NHH20] reveal that EBM learning heavily gravitates towards an unexpected outcome

where short-run MCMC samples have a realistic appearance and long-run MCMC samples

have an unrealistic appearance. The work uses the term convergent learning to refer to the

expected outcome where short-run and long-run MCMC samples have similar appearance,

and the term non-convergent learning to refer to the unexpected but prevalent outcome where

14



Adam SGD
sh
or
t-
ru
n

lo
n
g
-r
u
n

10k batches 25k batches 50k batches 75k batches 100k batches 150k batches

Figure 2.2: Comparison of long-run and short-run samples over model updates for our

improved method of convergent learning. The model is updated in a non-convergent learning

phase with the Adam optimizer for the first 50,000 batches. The majority of short-run

synthesis realism is learned during this phase, but the long-run samples are very unrealistic.

The second learning phase uses SGD with a low learning rate. Short-run synthesis changes

very little, but the long-run distribution gradually aligns with the short-run distribution.

models have realistic short-run samples and oversaturated long-run samples. Convergent

learning is essential for our defense strategy because long-run samples must be realistic for

classifiers to maintain high accuracy after Langevin transformation (see Appendix 2.11).

As observed by [NHH20], we were unable to learn a convergent model when updating θ

with the Adam optimizer [KB15]. Despite the drawbacks of Adam for convergent learning,

it is a very effective tool for obtaining realistic short-run synthesis. Drawing inspiration

from classifier training from [KS17], we learn a convergent EBM in two phases. The first

phase uses Adam to update θ to achieve realistic short-run synthesis. The second phase uses

SGD to update θ to align short-run and long-run MCMC samples to correct the degenerate

steady-state from the Adam phase. This modification allows us to learn the convergent EBMs

for complex datasets such as CIFAR-10 using 20% of the computational budget of [NHH20].

See Figure 2.2. We use the lightweight EBM from [NHZ19a] as our network architecture.

We use long run chains for our EBM defense to remove adversarial signals while maintaining

image features needed for accurate classification. The steady-state convergence property
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ensures adversarial signals will eventually vanish, while metastable behaviors preserve features

of the initial state. Theoretical perspectives on our defense can be found in Appendix 2.10 and

a comparison of convergent and non-convergent EBM defenses can be found in Appendix 2.11.

2.5 Attack and Defense Formulation

2.5.1 Classification with Stochastic Transformations

Let T (x) be a stochastic pre-processing transformation for a state x ∈ RD. Given a fixed

input x, the transformed state T (x) is a random variable over RD. In this work, T (x) is

obtained from K steps of the Langevin update (6.3) starting from X0 = x. One can compose

T (x) with a deterministic classifier f(x) ∈ RJ (for us, a naturally-trained classifier) to define

a new classifier F (x) ∈ RJ as

F (x) = ET (x)[f(T (x))]. (2.4)

F (x) is a deterministic classifier even though T (x) is stochastic. The predicted label for x

is then c(x) = argmaxj F (x)j. In this work, f(x) denotes logits and F (x) denotes expected

logits, although other choices are possible (e.g. softmax outputs). We refer to (2.4) as

an Expectation-Over-Transformation (EOT) defense. The classifier F (x) in (2.4) is simply

the target of the EOT attack [ACW18]. The importance of the EOT formulation is well-

established for adversarial attacks, but its importance for adversarial defense has not yet

been established. Although direct evaluation of F (x) is generally impossible, the law of large

numbers ensures that the finite-sample approximation of F (x) given by

F̂H(x) =
1

H

H∑
h=1

f(x̂h) where, x̂h ∼ T (x) i.i.d., (2.5)

can approximate F (x) to any degree of accuracy for a sufficiently large sample size H. In

other words, F (x) is intractable but trivial to accurately approximate via F̂H(x) given enough

computation.

In the literature both attackers [ACW18, TCB20] and defenders [DAB18, YZK19, GWJ20]
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Figure 2.3: The histograms display different realizations of the logits F̂H(x) for the correct class

and the second most probable class for images x1 (left) and x2 (right) over different choices of

H. In both cases, F (x) (dashed vertical lines) gives correct classification. However, the overlap

between the logit histograms of F̂H(x1) indicate a high probability of misclassification even

for large H, while F̂H(x2) gives correct prediction even for small H because the histograms

are well-separated. The EOT defense formulation (2.4) is essential for securing borderline

images such as x1.

evaluate stochastic classifiers of the form f(T (x)) using either F̂1(x) or F̂Hadv(x) where Hadv

is the number of EOT attack samples, typically around 10 to 30. This evaluation is not sound

when F̂H(x) has a small but plausible chance of misclassification because randomness alone

could cause x to be identified as an adversarial image even though F̂H(x) gives the correct

prediction on average (see Figure 2.3). In experiments with EBM defense, we identify many

images x that exhibit variation in the predicted label

ĉH(x) = argmax
j

F̂H(x)j (2.6)

for smaller H ≈ 10 but which have consistently correct prediction for larger H ≈ 150. Fair

evaluation of stochastic defenses must be based on the deterministic EOT defense F in (2.4)

and attackers must use sufficiently large H to ensure that F̂H(x) accurately approximates

F (x) before declaring that an attack using adversarial image x is successful. In practice,

we observe that F̂150 is sufficiently stable to evaluate F over several hundred attacks with
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Algorithm 1 for our EBM defense.

2.5.2 Attacking Stochastic Classifiers

Let L(F (x), y) ∈ R be the loss (e.g. cross-entropy) between a label y ∈ {1, . . . , J} the outputs

F (x) ∈ RJ of a classifier (e.g. the logits) for an image x ∈ RD. For a given pair of observed

data (x+, y), an untargeted white-box adversarial attack searches for the state

xadv(x
+, y) = argmax

x∈S
L(F (x), y) (2.7)

that maximizes loss for predicting y in a set S ⊂ RD centered around x+. In this work, a

natural image x+ will have pixels intensities from 0 to 1 (i.e. x+ ∈ [0, 1]D). One choice of S is

the intersection of the image hypercube [0, 1]D and the l∞-norm ε-ball around x+ for suitably

small ε > 0. Another option is the intersection of the hypercube with the l2-norm ε-ball.

The Projected Gradient Descent (PGD) attack [MMS18] is the standard benchmark when

S is the ε-ball in the lp norm. PGD begins at a random x0 ∈ S and maximizes (2.7) by

iteratively updating xi with

xi+1 =
∏
S

(xi + αg(xi, y)), g(x, y) = argmax
∥v∥p≤1

v⊤∆(x, y), (2.8)

where ΠS denotes projection onto S, ∆(x, y) is the attack gradient, and α > 0 is the attack

step size. Standard PGD uses the gradient ∆PGD(x, y) = ∇xL(F (x), y).

The EOT attack [ACW18] circumvents the intractability of F by attacking finite sample

logits F̂Hadv , where Hadv is the number of EOT attack samples, with the gradient

∆EOT(x, y) = ∇xL(F̂Hadv(x), y). (2.9)

The EOT attack is the natural adaptive attack for our EOT defense formulation. Another

challenge when attacking a preprocessing defense is the computational infeasibility or theoret-

ical impossibility of differentiating T (x). The Backward Pass Differentiable Approximation

(BPDA) technique [ACW18] uses an easily differentiable function g(x) such that g(x) ≈ T (x)

to attack F (x) = f(T (x)). One calculates the attack loss using L(f(T (x)), y) on the forward

pass but calculates the attack gradient using ∇xL(f(g(x)), y) on the backward pass. A simple
18



but effective form of BPDA is the identity approximation g(x) = x. This approximation is

reasonable for preprocessing defenses that seek to remove adversarial signals while preserving

the main features of the original image. When g(x) = x, the BPDA attack gradient is

∆BPDA(x, y) = ∇zL(f(z), y) where z = T (x). Intuitively, this attack obtains an attack

gradient with respect to the purified image and applies it to the original image.

Combining the EOT attack and BPDA attack with identity g(x) = x gives the attack

gradient

∆BPDA+EOT(x, y) =
1

Hadv

Hadv∑
h=1

∇x̂h
L

(
1

Hadv

Hadv∑
h=1

f(x̂h), y

)
, x̂h ∼ T (x) i.i.d. (2.10)

The BPDA+EOT attack represents the strongest known attack against preprocessing defenses,

as shown by its effective use in recent works [SMM19, TCB20]. We use ∆BPDA+EOT(x, y) in

(2.8) as our primary attack to evaluate the EOT defense (2.4). Pseudo-code for our adaptive

attack can be found in Algorithm 1 in Appendix 2.8.

2.6 Experiments

We use two different network architectures in our experiments. The first network is the

lightweight EBM from [NHZ19a]. The second network is a 28 × 10 WideResNet [ZK16]

classifier. The EBM and classifier are trained independently on the same dataset. No

adversarial training or other training modifications are used for either model. We use the

parameters from Algorithm 1 for all evaluations unless otherwise noted. Code and pre-trained

models to reproduce these results are publicly available.

2.6.1 PGD Attack from Base Classifier for CIFAR-10 Dataset

We first evaluate our defense using adversarial images created from a PGD attack on the

classifier f(x). Since this attack does not incorporate the Langevin sampling from T (x), the

adversarial images in this section are relatively easy to secure with Langevin transformations.

This attack serves as a benchmark for comparing our defense to the IGEBM [DM19] and

JEM [GWJ20] models that also evaluate adversarial defense with a ConvNet EBM (6.1). For
19



all methods, we evaluate the base classifier and the EBM defense for K = 10 Langevin steps

(as in prior defenses) and K = 1500 steps (as in our defense). The results are displayed in

Table 2.1.

Table 2.1: CIFAR-10 accuracy for our EBM defense and prior EBM defenses against a PGD

attack from the base classifier f(x) with l∞ perturbation ε = 8/255. (*evaluated on 1000

images)

Base EBM Defense, EBM Defense,

Classifier f(x) K = 10 K = 1500

Nat. Adv. Nat. Adv. Nat. Adv.

Ours 0.9530 0.0000 0.9586 0.0001 0.8412 0.7891

[DM19] 0.4714 0.3219 0.4885 0.3674 0.487* 0.375*

[GWJ20] 0.9282 0.0929 0.9093 0.1255 0.755* 0.238*

Our natural classifier f(x) has a high base accuracy but no robustness. The JEM base

classifier has high natural accuracy and minor robustness, while the IGEBM base classifier

has significant robustness but very low natural accuracy. Short-run sampling with K = 10

Langevin steps does not significantly increase robustness for any model. Long-run sampling

with K = 1500 steps provides a dramatic increase in defense for our method but only minor

increases for the prior methods. Further discussion of the IGEBM and JEM defenses can be

found in Appendix 2.14.

2.6.2 BPDA+EOT Attack

In this section, we evaluate our EBM defense using the adaptive BPDA+EOT attack (3.3)

designed specifically for our defense approach. This attack is recently used by [TCB20] to

evaluate the preprocessing defense from [YZK19] that is very similar to our method.

CIFAR-10. We ran 5 random restarts of the BPDA+EOT attack in Algorithm 1 with

the the listed parameters on the entire CIFAR-10 test set. In particular, the attacks use
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Table 2.2: Defense vs. whitebox attacks with l∞ perturbation ε = 8/255 for CIFAR-10.

Defense f(x) Train Ims. T (x) Method Attack Nat. Adv.

Ours Natural Langevin BPDA+EOT 0.8412 0.5490

[MMS18] Adversarial – PGD 0.873 0.458

[ZYJ19] Adversarial – PGD 0.849 0.5643

[CRS19] Adversarial – PGD 0.897 0.625

[SKN18] Natural Gibbs Update BPDA 0.95 0.09

[SMM19] Natural Langevin PGD – 0.0016

[YZK19] Transformed Mask + Recon. BPDA+EOT 0.94 0.15

adversarial perturbation ε = 8/255 and attack step size α = 2/255 in the l∞ norm. One

evaluation of the entire test set took approximately 2.5 days using 4x RTX 2070 Super GPUs.

We compare our results to a representative selection of AT and AP defenses in Table 2.2. We

include the training method for the classifier, preprocessing transformation (if any), and the

strongest attack for each defense.

Our EBM defense is stronger than standard AT [MMS18] and comparable to modified

AT from [ZYJ19]. Although our results are not on par with state-of-the-art AT [CRS19], our

defense is the first method that can effectively secure naturally-trained classifiers.
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Figure 2.4: Accuracy across perturbation ε for l∞ and l2 attacks against our defense and AT

[MMS18].
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We now examine the effect of the perturbation ε, number of attacks N , and number

of EOT attack replicates Hadv on the strength of the BPDA+EOT attack. To reduce the

computational cost of the diagnostics, we use a fixed set of 1000 randomly selected test

images for diagnostic attacks.
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Figure 2.5: Effect of number of attack steps N and number of EOT replicates Hadv.

Figure 2.4 displays the robustness of our model and standard AT [MMS18] for l∞ and l2

attacks across perturbation size ε. Our model is attacked with BPDA+EOT while the AT

model is attacked with PGD. Our defense is more robust than AT for a range of medium-size

perturbations in the l∞ norm and much more robust than AT for medium and large ε in the

l2 norm.

Figure 2.5 visualizes the effect of increasing the computational power of the attacker.

The left figure compares our defense with AT over 1000 attacks using an increased number

Hadv = 20 of attack replicates. The majority of breaks happen within the first 50 attacks as

used in the CIFAR-10 experiment in Table 2.2, while a small number of breaks occur within

a few hundred attack steps. It is likely that some breaks from long-run attacks are the result

of lingering stochastic behavior from F̂Hdef(x) rather than the attack itself. The right figure

shows the effect of the number of EOT attack replicates over 50 attacks. The strength of the

EOT attack saturates when using 20 to 30 replicates. A small gap in attack strength remains

between the 15 replicates used in our attacks and the strongest possible attack. Some of this
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effect is likely mitigated by our use of 5 random restarts.

The diagnostics indicate that the report in Table 2.2 is a fair evaluation. Increasing Hdef

would secure some borderline images that break due to random effects while increasing N and

Hadv would lead to stronger attacks. The evaluation in Table 2.2 pushes the limits of what is

computationally feasible with widely available resources. Our defense report is an accurate

approximation of the defense of our ideal classifier F (x) in (2.4) against the BPDA+EOT

attack (3.3) although we acknowledge that more computation would yield a more accurate

estimate.

SVHN and CIFAR-100. The attack and defense parameters for our method are identical

to those used in the CIFAR-10 experiments. We compare our results with standard AT.

Overall, our defense performs well for datasets that are both simpler and more complex than

CIFAR-10. In future work, further stabilization of image appearance after Langevin sampling

could yield significant benefits for settings where precise details need to be preserved for

accurate classification. The AT results for CIFAR-100 are from [BGH19] and the results for

SVHN are from our implementation.

Table 2.3: Defense vs. whitebox attacks with l∞ perturbation ε = 8/255 for SVHN and

CIFAR-100.

SVHN CIFAR-100

Nat. Adv. Nat. Adv.

Ours 0.9223 0.6755 0.5166 0.2610

[MMS18] 0.8957 0.5039 0.5958 0.2547

2.7 Conclusion

This work demonstrates that Langevin sampling with a convergent EBM is an effective defense

for naturally-trained classifiers. Our defense is founded on an improvement to EBM training

that enables efficient learning of stable long-run sampling for complex datasets. We evaluate
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our defense using non-adaptive and adaptive whitebox attacks for the CIFAR-10, CIFAR-

100, and SVHN datasets. Our defense is competitive with adversarial training. Securing

naturally-trained classifiers with post-training defense is a long-standing open problem that

this work resolves.

In the next section we explore how we can scale up these models to defend attacks against

ImageNet [DDS09] and what modifications we must make to the training and initialization

mechanisms to achieve good defense.

24



Appendix

2.8 Attack Algorithm

Algorithm 1 BPDA+EOT adaptive attack to evaluate EOT defense (2.4)

Require: Natural images {x+
m}Mm=1, EBM U(x), classifier f(x), Langevin noise τ = 0.01,

Langevin updates K = 1500, number of attacks N = 50, attack step size α = 2
255

, maximum

perturbation size ε = 8
255

, EOT attack samples Hadv = 15, EOT defense samples Hdef = 150

Ensure: Defense record {dm}Mm=1 for each image.

for m=1:M do

Calculate large-sample predicted label of the natural image ĉHdef(x
+
m) with (4.1).

if ĉHdef(x
+
m) ̸= ym then

Natural image misclassified. dm ← False. End loop iteration m.

else

dm ← True.

end if

Randomly initialize X0 in the lp ε-ball centered at x+
m and project to [0, 1]D.

for n=1:(N+1) do

Calculate small-sample predicted label ĉHadv(Xn−1) with (4.1).

Calculated attack gradient ∆BPDA+EOT(Xn−1, ym) with (3.3).

if ĉHadv(Xn−1) ̸= ym then

Calculate large-sample predicted label ĉHdef(Xn−1) with (4.1).

if ĉHdef(Xn−1) ̸= ym then

The attack has succeeded. dm ← False. End loop iteration m.

end if

end if

Use ∆BPDA+EOT(Xn−1, ym) with the lp ε-bounded PGD update (2.8) to obtain Xn.

end for

end for
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Algorithm 1 is pseudo-code for the attack and defense framework described in Section 2.5.

One notable aspect of the algorithm is the inclusion of an EOT defense phase to verify

potentially successful attacks. Images which are identified as broken for the smaller sample

used to generate EOT attack gradients are checked again using a much larger EOT defense

sample to ensure that the break is due to the adversarial state and not random finite-sample

effects. This division is done for purely computational reasons. It is extremely expensive to

use 150 EOT attack replicates but much less expensive to use 15 EOT attack replicates as a

screening method and to carefully check candidates for breaks when they are identified from

time to time using 150 EOT defense replicates. In our experiments we find that the EOT

attack is close to its maximum strength after about 15 to 20 replicates are used, while about

150 EOT defense replicates are needed for consistent evaluation of F from (2.4) over several

hundred attacks. Ideally, the same number of chains should be used for both EOT attack

and defense, in which case the separate verification phase would not be necessary.

2.9 Improved Learning of Convergent EBMs

Algorithm 2 provides pseudo-code for our improvement of the convergent learning method

from [NHH20]. This implementation allows efficient learning of convergent EBMs for complex

datasets.

2.10 Erasing Adversarial Signals with MCMC Sampling

This section discusses two theoretical perspectives that justify the use of an EBM for

purifying adversarial signals: memoryless and chaotic behaviors from sampling dynamics. We

emphasize that the discussion applies primarily to long-run behavior of a Langevin image

trajectory. Memoryless and chaotic properties do not appear to emerge from short-run

sampling. Throughout our experiments, we never observe significant defense benefits from

short-run Langevin sampling.
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2.10.1 Memoryless Dynamics

The first justification of EBM defense is that iterative probabilistic updates will move an

image from a low-probability adversarial region to a high-probability natural region, as

discussed in prior works [SKN18, SMM19, GWJ20]. Comparing the energy of adversarial

and natural images shows that adversarial images tend to have marginally higher energy,

which is evidence that adversarial images are improbable deviations from the steady-state

manifold of the EBM that models the distribution of natural images (see Figure 2.6).

The theoretical foundation for removing adversarial signals with MCMC sampling comes

from the well-known steady-state convergence property of Markov chains. The Langevin

update (6.3) is designed to converge to the distribution p(x; θ) learned from unlabeled data

after an infinite number of Langevin steps. The steady-state property guarantees that

adversarial signals will be erased from the sampled state as long as enough steps are used

because the sampled state will have no dependence on the initial state. This property is

actually too extreme because full MCMC mixing would completely undermine classification

by causing samples to jump between class modes.

The quasi-equilibrium and metastable behaviors of MCMC sampling [BH06] can be as
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useful as its equilibrium properties. Metastable behavior refers to intramodal mixing that

can occur for MCMC trajectories over intermediate time-scales, in contrast to the limiting

behavior of full intermodal mixing that occurs for trajectories over arbitrarily large time-scales.

Although slow-mixing and high autocorrelation of MCMC chains are often viewed as major

shortcomings, these properties enable EBM defense by preserving class-specific features while

sampling erases adversarial signals.

Our EBM samples always exhibit some dependence on the initial state for computationally

feasible Langevin trajectories. Mixing within a metastable region can greatly reduce the

influence of an initial adversarial signal even when full mixing is not occurring. Successful

classification of long-run MCMC samples occurs when the metastable regions of the EBM

p(x; θ) are aligned with the class boundaries learned by the classifier network f(x). Our

experiments show that this alignment naturally occurs for convergent EBMs and naturally-

trained classifiers. No training modification for f(x) is needed to correctly classify long-run

EBM samples. Our defense relies on a balance between the memoryless properties of MCMC

sampling that erase noise and the metastable properties of MCMC sampling that preserve

the initial state.

2.10.2 Chaotic Dynamics

Chaos theory provides another perspective for justifying the erasure of adversarial signals

with long-run iterative transformations. Intuitively, a deterministic system is chaotic if an

initial infinitesimal perturbation grows exponentially in time so that paths of nearby points

become distant as the system evolves (i.e. the butterfly effect). The same concept can be

extended to stochastic systems. The SDE

dX

dt
= V (X) + ηξ(t), (2.11)

where ξ(t) is Brownian motion and η ≥ 0, that encompasses the Langevin equation is known

to exhibit chaotic behavior in many contexts for sufficiently large η [LLB03].

One can determine whether a dynamical system is chaotic or ordered by measuring the
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maximal Lyapunov exponent λ given by

λ = lim
t→∞

1

t
log
|δXη(t)|
|δXη(0)|

(2.12)

where δXη(t) is an infinitesimal perturbation between system state at time t after evolution

according to (2.11) from an initial perturbation δXη(0). For ergodic dynamics, λ does not

depend on the initial perturbation δXη(0). Ordered systems have a maximal Lyapunov

exponent that is either negative or 0, while chaotic systems have positive Lyapunov exponents.

The SDE (2.11) will have a maximal exponent of at least 0 since dynamics in the direction

of gradient flow are neither expanding nor contracting. One can therefore detect whether a

Langevin equation yields ordered or chaotic dynamics by examining whether its corresponding

maximal Lyapunov exponent is 0 or positive.
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Figure 2.7: Left: Maximal Lyapunov exponent for different values of η. The value η = 1

which corresponds to our training and defense sampling dynamics is just above the transition

from the ordered region where the maximal exponent is 0 to the chaotic region that where

the maximal exponent is positive. Right: Appearance of steady-state samples for different

values of η. Oversaturated images appear for low values of η, while noisy images appear for

high η. Realistic synthesis is achieved in a small window around η = 1 where gradient and

noise forces are evenly balanced.

We use the classical method of [BGS76] to calculate the maximal Lyapunov exponent of

the altered form Langevin transformation (6.3) given by

Tη(X) = X − τ 2

2
∇XU(X; θ) + ητZk (2.13)
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for a variety of noise strengths η. Our results exhibit the predicted transition from noise

to chaos. The value η = 1 which corresponds to our training and defense algorithms is just

beyond the transition from the ordered region to the chaotic region. Our defense dynamics

occur in a critical interval where ordered gradient forces that promote pattern formation and

chaotic noise forces that disrupt pattern formation are balanced. Oversaturation occurs when

the gradient dominates and noisy images occur when the noise dominates. The results are

shown in Figure 2.7.

The unpredictability of paths under Tη is an effective defense against BPDA because

informative attack gradients cannot be generated through chaotic transformation. Changes

in adversarial perturbation from one BPDA attack to the next attack are magnified by the

Langevin transformation and it becomes difficult to climb the loss landscape L(F (x), y) to

create adversarial samples. Other chaotic transformations, either stochastic or deterministic,

might be an interesting line of research as a class of defense methods.

2.11 Effect of Number of Langevin Steps and Comparison of Con-

vergent and Non-Convergent Defenses

We examine the effect the number of Langevin steps has on defense accuracy for the CIFAR-10

dataset (see Figure 2.8). Each point displays either the baseline accuracy of our stochastic

classifier (orange) or the results of a BPDA+EOT attack (blue) on 1000 test images. The

attacks used to make this diagram use a reduced load of Hadv = 7 replicates for EOT

attacks so these defense accuracies are slightly higher than the full attack results presented in

Figure 2.4. Short-run Langevin with K ≤ 100 steps yields almost no adversarial robustness.

Increasing the number of steps gradually increases robustness until the defense saturates at

around K = 2000. We chose K = 1500 steps in our experiments as a good tradeoff between

robustness, natural accuracy, and computational cost.

For comparison, we run the same experiment using a non-convergent EBM. The network

structure and training are identical to our convergent model, except that we use Adam instead

of SGD throughout training. The non-convergent EBM defense cannot achieve high natural
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Figure 2.8: Accuracy on natural and adversarial images created from the BPDA+EOT attack

(3.3) for EBM defense with different number of Langevin steps, and images sampled from

the EBM. Left: Defense with a convergent EBM. Using approximately 1500 Langevin steps

yields a good balance of natural and robust accuracy. Right: Defense with non-convergent

EBM. Oversaturated long-run images prevent non-convergent EBM defense from achieving

high natural or robust accuracy.

accuracy with long-run sampling because of the oversaturated features that emerge. Without

a high natural accuracy, it is impossible to obtain good defense results. Thus convergent

EBMs that can produce realistic long-run samples are a key ingredient for the success of our

method.

We can further examine the difference between convergent and non-convergent EBM

defenses by measuring the FID score of samples initialized from the data (see Figure 2.9). The

convergent EBM maintains a reasonably low FID score across many steps so that long-run

samples can be accurately classified. The non-convergent EBM experiences a quick increase

in FID as oversaturated samples appear. Labels for the oversaturated samples cannot be

accurately predicted by a naturally-trained classifier, preventing successful defense.
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Figure 2.9: FID scores of samples from a convergent and non-convergent EBM that are

initialized from training data. The FID of the convergent model remains reasonably low

because the steady-state of the convergent model is aligned with the data distribution. The

FID of the non-convergent model quickly increases because the oversaturated steady-state

of the non-convergent model differs significantly from the data distribution. Maintaining a

sampling distribution close to the data distribution is essential for achieving high prediction

accuracy of a natural classifier on transformed states.

2.12 Discussion of Defense Runtime

Robustness does not depend on the computational resources of the attacker or defender

[ACW18]. Nonetheless, we took efforts to reduce the computational cost of our defense to

make it as practical as possible. Our defense requires less computation for classifier training

but more computation for evaluation compared to AT due to the use of 1500 Langevin steps

as a preprocessing procedure. Running 1500 Langevin steps on a batch of 100 images with our

lightweight EBM takes about 13 seconds on a RTX 2070 Super GPU. While this is somewhat

costly, it is still possible to evaluate our model on large test sets in a reasonable amount
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of time. The cost of our defense also poses a computational obstacle to attackers, since

the BPDA+EOT attack involves iterative application of the defense dynamics. Thoroughly

evaluating our defense on CIFAR-10 took about 2.5 days for the entire testing set with 4

RTX 2070 Super GPUs.

Our EBM is significantly smaller and faster than previous EBMs used for adversarial

defense. Our EBM has less than 700K parameters and sampling is about 20x to 30x faster

than IGEBM and JEM, as shown in Appendix 2.14. Generating adversarial images using

PGD against a large base classifier is also expensive (about 30x slower for a PGD step

compared to a Langevin step because our base classifier uses the same Wide ResNet backbone

as the JEM model). Therefore 50 PGD steps against the base classifier takes about the same

time as 1500 Langevin steps with our EBM, so our model can defend images at approximately

the same rate as an attacker who generates adversarial samples against the base classifier.

Generating adversarial examples using BPDA+EOT is much slower because defense dynamics

must be incorporated. Further reducing the cost of our defense is an important direction for

future work.

Our approach is amenable toward massive parallelization. One strategy is to distribute

GPU batches temporally and run our algorithm in high FPS with a time delay. Another

strategy is to distribute the workload of computing F̂H across parallel GPU batches.

2.13 A Note on Modified Classifier Training for Preprocessing De-

fenses

Many works that report significant robustness via defensive transformations ([CRK19, RSF19,

YZK19] and others) also modify classifier learning by training with transformed images rather

than natural images. Prior defensive transformations that are strong enough to remove

adversarial signals have the side effect of greatly reducing the accuracy of a naturally-trained

classifier. Therefore, signals introduced by these defensive transformations (high Gaussian

noise, ensemble transformations, ME reconstruction, etc.) can be also considered "adversarial"

signals (albeit perceptible ones) because they heavily degrade natural classifier accuracy much
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like the attack signals. From this perspective, modifying training to classify transformed

images is a direct analog of AT where the classifier is trained to be robust to "adversarial"

signals from the defensive transformation itself rather than a PGD attack. Across many

adversarial defense works, identifying a defensive transformation that removes attack signals

while preserving high accuracy of a natural classifier has universally proven elusive.

Our experiments train the classifier with natural images alone and not with images

generated from our defensive transformation (Langevin sampling). Our approach represents

the first successful defense based purely on transformation and validates an entirely different

approach compared to defenses which modify training of the base classifier ([MMS18, CRK19,

RSF19, YZK19] etc.). To our knowledge, showing that natural classifiers can be secured with

post-training defensive transformation is a contribution that is unique in the literature. Our

task independent approach has the potential of securing images for many applications using a

single defense model, while AT and relatives must learn a robust model for each application.

2.14 Discussion of IGEBM and JEM Defenses

We hypothesize that the non-convergent behavior of the IGEBM [DM19] and JEM [GWJ20]

models limits their use as an EBM defense method. Long-run samples from both models have

oversaturated and unrealistic appearance (see Figure 2.10). Non-convergent learning behavior

is a consequence of training implementation rather than model formulation. Convergent

learning may be a path to robustness using the IGEBM and JEM defense methods.

Both prior works use very large networks to maximize scores on generative modeling

metrics. As a result, sampling from these models can be up to 30 times slower than sampling

from our lightweight EBM structure from [NHZ19a] (see Figure 2.10). The computational

feasibility of our method currently relies on the the small scale of our EBM. Given the

effectiveness of the weaker and less expensive PGD attack in Section 2.6.1 and the extreme

computational cost of sampling with large EBM models, we do not to apply BPDA+EOT to

the IGEBM or JEM defense.

The original evaluations of the IGEBM and JEM model use end-to-end backpropagation
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Figure 2.10: Left: Approximate steady-state samples of the IGEM and JEM models. Both

exhibit oversaturation from non-convergent learning that can interfere with defense capabilities.

Right: Comparison of running time for Langevin sampling with a batch of 100 images. The

small scale and fast sampling of our EBM are important for the computational feasibility of

our defense.

through the Langevin dynamics when generating adversarial examples. On the other hand,

the relatively weak attack in Section 2.6.1 is as strong or much stronger than the theoretically

ideal end-to-end attack. Gradient obfuscation from complex second-order differentiation

might hinder the strength of end-to-end PGD when attacking Langevin defenses.

The IGEBM defense overcomes oversaturation by restricting sampling to a ball around

the input image, but this likely prevents sampling from being able to manifest its defensive

properties. An adversarial signal will be partially preserved by the boundaries of the ball

regardless of how many sampling steps are used. Unrestricted sampling, as performed in our

work and the JEM defense, is essential for removing adversarial signals.
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Algorithm 2 ML with Adam to SGD Switch for Convergent Learning of EBM (6.1)
Require: ConvNet potential U(x; θ), number of training steps J = 150000, step to switch

from SGD to Adam JSGD = 50000, initial weight θ1, training images {x+
i }Ndata

i=1 , data

perturbation τdata = 0.02, step size τ = 0.01, Langevin steps K = 100, Adam learning rate

γAdam = 0.0001, SGD learning rate γSGD = 0.00005.

Ensure: Weights θJ+1 for energy U(x; θ).

Set optimizer g ← Adam(γAdam). Initialize persistent image bank as Ndata uniform noise

images.

for j=1:(J+1) do

if j = JSGD then

Set optimizer g ← SGD(γSGD).

end if

1. Draw batch images {x+
(i)}mi=1 from training set, where (i) indicates a randomly

selected index for sample i, and get samples X+
i = x(i)+τdataZi, where Zi ∼ N(0, ID)

i.i.d.

2. Draw initial negative samples {Y (0)
i }mi=1 from persistent image bank. Update

{Y (0)
i }mi=1 with the Langevin equation

Y
(k)
i = Y

(k−1)
i − τ 2

2

∂

∂y
U(Y

(k−1)
i ; θj) + τZi,k,

where Zi,k ∼ N(0, ID) i.i.d., for K steps to obtain samples {X−i }mi=1 = {Y (K)
i }mi=1.

Update persistent image bank with images {Y (K)
i }mi=1.

3. Update the weights by θj+1 = θj − g(∆θj), where g is the optimizer and

∆θj =
∂

∂θ

(
1

n

n∑
i=1

U(X+
i ; θj)−

1

m

m∑
i=1

U(X−i ; θj)

)

is the ML gradient approximation.

end for

36



CHAPTER 3

Scaling: The Mid-Run sampler

"If I have seen further than others, it is by standing upon the shoulders of giants"

– Sir Isaac Newton

Stochastic security [HMZ21] laid the ground work for an EBM-based defense. It was

a great proof of concept but there were a lot of areas we didn’t expand on. The network

architecture underlying the EBM was hand-crafted and very small with limited capacity.

It worked very well for the CIFAR10 32x32 resolution but it would not scale to something

like ImageNet [DDS09] at 128x128. We also wanted to find new ways of training the EBM

models. What began as just pure experimentation led to the lifecycle paper [HMC22a] which

is explained throughout this chapter.

In the lifecycle paper [HMC22a] we create three different models for three different

applications. The shortrun model for image synthesis, midrun model for adversarial defense,

and longrun model for principled density estimation. In this chapter we will only be covering

the mid-run model since its the one tailored toward adversarial defense but at times we

touch on the short-run and long-run models to show the evolution of this project. For more

information about short-run and long-run please see [HMC22a].

3.1 Introduction

Generative models attempt to model complex signals to learn their underlying distributions.

Maximum likelihood learning of an EBM model follows what is known as "Analysis-by-

synthesis". For each learning iteration, we sample from the current model to synthesize

samples p(x, θ) and then update the weights / parameters θ of the model according to the
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difference between the synthesized samples and observed samples q(x) [NHZ19b] [GM06].

After doing this enough times, the synthesized samples and the observed samples will be

aligned. The closer the synthesized samples are to the observed samples, the better and more

powerful the generative model.

On approach to generative modeling is to posit the existence of a density q(x) of signals x

that generated data. For learning Energy-Based Models (EBM) we learn the data distribution

q(x) using a model p(x; θ), where θ are the weights/parameters of the model. This can be seen

in other generative models. In EBMs [XLZ16], score-based models [SE19, SE20], normalizing

flows [KD18], auto-regressive models [OKV16], Variational Auto-Encoders (VAEs) [KW13]

using a joint model p(x, z; θ). Here we consider modeling q(x) using an EBM density p(x; θ)

for image signals x.

The most common goal in generative modeling is synthesis, creating realistic images from

nothing. It is well known that short-run sampling with an EBM is a valid method for image

generation but synthesis results for EBMs are still behind GANs [GPM14], diffusion models

[HJA20] and score-based models. Within EBM research there is also a focus on learning

valid probabilistic densities [NHH20] and combining generative and descriminative learning

via the Joint Energy Model [GWJ20]. There also exists the work in Chapter 2: Stochastic

Security [HMZ21] where EBMs are used for adversarial defense on image classifiers. In this

chapter we are going to focus on defensive applications of EBMs. Later on in section 3.2.4

we compare score based models and EBMs as it pertains to adversarial defense.

Each task is naturally associated with a certain length of MCMC trajectory. Image

synthesis is most effective with shortrun trajectories (about 20 to 200 steps) that can rapidly

generate new images. Adversarial defense requires midrun trajectories (about 1000 to 2500)

that can preserve the class features through metastable behaviors [HMZ21] while sampling

removes adversarial signals. Density modeling requires longrun trajectories (50K steps or

more) to ensure proper calibration of probability mass for the model steady-state.

It is known that EBMs have a near universal tendency to learn a misaligned steady-state

focusing on unrealistic images [NHH20], and there are very few existing solutions to correct
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Figure 3.1: Illustration of the sampling trajectories that we study in this work. The shortrun

samples are initialized from a generator that is trained in tandem with the EBM because the

goal is self-contained synthesis. Midrun and longrun samples are initiated from a high-quality

starting image obtained from a pre-trained SNGAN, and we study the ability of the EBMs

to preserve the quality of the input image from defense and density estimation points of view.

The plots show the FID score [HRU17] of 5,000 samples across Langevin steps. The shortrun

samples improve on the generator initialization to achieve high-quality synthesis around 250

steps. The midrun samples achieve reasonably low FID in a critical range of about 2k steps

where defense is achieved. The longrun sample maintains reasonable synthesis across the

entire trajectory, and much further. The shortrun and midrun samples eventually produce

defective results outside of their tuned window of stability.
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this. We intuitively refer to the spectrum of trajectories as the life cycle of an MCMC sample,

from youth through middle age to maturity. Young samples have the highest quality visual

appearance, middle age samples are useful for securing classifiers (defense), and mature

samples represent grounded knowledge of the data density (or lack thereof in the widespread

case of a misaligned steady-state). Figure 3.1 illustrates the sampling paths that we study in

this work.

A valid density estimator should also be a good synthesizer and a good defender, but

synthesis and density modeling are two tasks that are at odds with each other. To obtain

high quality image synthesis, its better to use shortrun sampling with a non-probabilistic and

degenerate data density rather then using long run sampling with a stable density [NHH20].

A shortcoming of great synthesis models is that they lack great defensive capability. The

EBM defense from [HMZ21] advocated the use of valid density approximation to stabilize

trajectories but that is too strict given the difficulty of valid density approximation. It is

much more feasible to learn midrun sampling trajectories for defense on complex datasets

such as ImageNet than to apply valid density estimation, even if the longrun samples from

the defensive model are not realistic. The Lifecycle [HMC22a] work is the first to explore this

conversation. The purpose of that paper is to discuss techniques for building sampling paths

from shortrun to longrun, with the goal that the techniques will eventually ennable both high

quality synthesis and defense from one model.The difficulty of valid density modeling leads

us to restrict our focus to separate time scales of the sampling regime necessary for each task.

EBM training naturally accommodates learning at different trajectory lengths.

Strategies for improving EBM learning beyond the standard framework (e.g. [XLG18,

DM19, NHH20]) can broadly be divided into methods that focus on the initialization of MCMC

samples [XLG18, GLZ18, NHZ19a] and methods that focus on the ML learning objective

[YSS20]. Some works explore both [GNK20, DLT20]. Our novel learning methods focus on

MCMC initialization, and we retain the standard ML objective and use conventional network

architectures. We introduce three new MCMC initialization strategies which are tailored to

the three different trajectories lengths we explore. During training we exclusively use shortrun

MCMC to ensure computational feasibility. Learning models with midrun and longrun

40



trajectories is accomplished by simulating longer trajectories via well-chosen initialization

and optimizer annealing. Our initialization strategies are able to significantly improve the

state-of-the-art across the tasks we investigate. We show that persistent initialization with

appropriately tuned rejuvenation from in-distribution states can be used to train EBMs with

stable trajectories of several thousand MCMC steps. This allows us to extend the method of

[HMZ21] to obtain state-of-the-art purification-based defense for CIFAR-10 and to scale the

EBM defense to ImageNet.

Our initialization methods will primarily build upon persistent [Tie08, DM19] and coop-

erative [XLG18] initialization. All of our methods will use a generator network as the source

of rejuvenation for persistent states. Our shortrun experiments will learn the generator in

tandem with the EBM so the synthesis process is self-contained, while our midrun experiments

will use pretrained generators since we will apply sampling paths from in-distribution initial

images rather than synthesizing from scratch.

3.1.1 Background on EBM Defense

The most popular method for adversarial defense is adversarial training (AT) [MMS18,

WRK20, SNG19] which aims to train a classifier to correctly predict adversarial samples

within a small ball around a natural input. Another popular defense method is randomized

smoothing [CRK19], which adds Gaussian noise to images to remove adversarial signals

before classification. Both of these approaches modify classifier training. Although many

methods have been proposed to secure a naturally trained classifier, most have been broken

by stronger attacks. A recent method that has been shown to secure a natural classifier is

Langevin sampling with an EBM [HMZ21].

The EBM defense uses a classifier trained with labeled natural images and an EBM

trained with unlabelled natural images. The two networks are trained independently, which

is a key advantage of EBM defense over adversarial training and randomized smoothing.

Since the EBM is independent of the classifier, EBM defense has the potential to secure

many classifiers across diverse tasks with a single defensive model, while existing methods are
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typically tailored to a single method. Starting with a naturally classifier trained on natural

images f(x), we define its robust counterpart as

F (x) = ET (x)[f(T (x))] (3.1)

where T (x) is a random variable representing K steps of the Langevin transformation (6.3)

initialized from a state x. We cannot evaluate F (x) directly so we approximate it using

F̂H(x) =
1

H

H∑
h=1

f(x̂h) where x̂h ∼ T (x) i.i.d., (3.2)

where f(.) is a forward pass of our classifier to return logits and where the accuracy of

approximation is driven by the number of replicates H. Meaningful evaluation of adversarial

defenses must be based on adaptive attack methods which are aware of both f(x) and T (x).

For our attack we use the BPDA+EOT formulation from [ACW18, TCB20] to obtain the

attack gradient

∆BPDA+EOT(x, y) =
1

Hadv

Hadv∑
h=1

∇x̂h
L

(
1

Hadv

Hadv∑
h=1

f(x̂h), y

)
, x̂h ∼ T (x) i.i.d. (3.3)

which we use in the standard PGD framework to generate adversarial examples. Algorithm 3

gives a sketch of the defense evaluation.

3.2 Midrun Samplers for Adversarial Defense

This section presents a method for learning EBMs that are capable of preserving the ap-

pearance of an in-distribution initial state across several thousand MCMC steps. Such

models are useful for the purpose of adversarial defense. Our defense framework is based on

the approach in [HMZ21], which uses an EBM to defend an independent naturally trained

classifier. Appendix 3.1.1 briefly reviews the EBM defense and compares this approach with

other defense methods. We then present our proposed method for learning a defensive EBM

(4), which is based on persistent initialization using a fixed pretrained generator as a source

of rejuvenation. Finally, we apply our defense to achieve state-of-the-art performance for

purification-based defense on CIFAR-10 and ImageNet.
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Algorithm 3 EBM Defense Algorithm
Require: Natural images {x+m}Mm=1, EBM U(x; θ), classifier f , Langevin noise η, attack replicates

Hadv, defense replicates Hdef, l∞ radius ε, attack step size, α, Langevin steps K

Ensure: Defense record {Dm}Mm=1 for each image initialized as ones.

for 1 ≤ i ≤M do

select(Xi, yi)from batch

Randomly initialize adversary X̂0 inside L∞ ball around Xi

for 1 ≤ j ≤ N do

cj = argmaxℓ[F̂Hadv(X̂j−1)]ℓ

∆j = ∆BPDA+EOT(X̂j−1, yi)

if cj ̸= yi then

c′j = argmaxℓ[F̂Hdef(X̂j−1)]ℓ

if c′j ̸= yi then

Di = 0

end if

end if

X̂j = PGD(X̂j−1,∆j , ε, α)

end for

end for
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One limitation of prior EBM defense is the reliance on persistent initialization with no

rejuvenation to learn the defensive model. This is done to ensure that defensive sampling

trajectories remain stable for arbitrary numbers of steps. However, removing rejuvenation

from persistent learning has drawbacks discussed in Section ??. In particular, it becomes

very difficult to learn meaningful EBMs for large and complex datasets such as ImageNet in

this framework because the persistent bank cannot represent the diversity of the dataset and

the quality of persistent images without rejuvenation quickly degrades. Methods for efficient

learning of defensive EBMs at a greater scale are needed to extend the EBM defense to more

realistic situations.

We overcome this obstacle by building on the observation that fully stable sampling paths

are not required for successful defense. While the defense from [HMZ21] uses EBMs with

stable sampling for 100K steps or more, the defense results require less than 2000 steps.

A natural question is whether it is possible to learn stable MCMC trajectories for only a

predefined midrun range to achieve the defensive benefits without fully stabilizing samples

over longrun trajectories. Defining a learning procedure to obtain such models is the goal of

this section. Efficiently learning EBMs with stable midrun trajectories allows us to scale up

the EBM defense to significantly more challenging domains.

3.2.1 In-Distribution Rejuvenation for Learning a Defensive EBM

The initialization method for our midrun sampler is similar to standard persistent initialization

with the adjustment that persistent states are rejuvenated from a frozen pretrained generator

rather than noise. We use a generator in our experiments so that the EBM and generator could

be used after training to sample from scratch. This choice is not necessary and rejuvenation

from data samples, or another efficient in-distribution initialization, is also effective for

learning defensive EBMs. We note that MCMC initialization from a trained generator or

from data samples is not explored in recent work because the goal of most current EBM

learning is image synthesis, which becomes trivial if EBM trajectories are always initialized

from high-quality samples. From the perspective of synthesis our learning process is nearly
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invisible but from the perspective of defense its utility becomes concrete.

Learning an EBM for defense involves tuning the length of the sampling trajectory via the

number of shortrun training steps and the rejuvenation rate, and tuning the annealing schedule

of the EBM optimizer. Given a desired number of MCMC steps Kdef for a defensive update

and a shortrun trajectory K ≈ 100, we simply set the rejuvenation rate to prejuv = K/Kdef to

ensure that on average samples will travel Kdef steps before rejuvenation. While in practice

we use Kdef = 2000 and prejuv = 0.05, we have found that this method can yield stable paths

for at least Kdef = 50K MCMC steps when prejuv is low.

Initialization alone is insufficient to stabilize MCMC pathways when model weights are

changing quickly. Using a low learning rate late in training is a key aspect of stabilizing

sampling paths [NHH20, HMZ21]. Intuitively, if the EBM optimizer has a sufficiently

low learning rate then MCMC trajectories in the persistent image bank can function as

approximate trajectories from the current model, since weights change very little as the

persistent states are updated. By annealing in tandem with our initialization, we are

effectively using midrun trajectories of length Kdef initialized from the generator to update

the EBM while we are actually using shortrun trajectories of length K from the persistent

bank. Annealing is a crucial component for stabilizing both midrun and longrun trajectories.

Without annealing, sampling paths are not able to maintain realism for large Kdef.

3.2.2 Experiments: Defending Natural Classifiers with an EBM

We train our EBMs using the persistent initialization described above in tandem with a

pretrained generator on both CIFAR-10 and ImageNet. We use the same SNGAN models as

before for our CIFAR-10 experiments, with the exception that the generator is pretrained

instead of learned. For our ImageNet experiments, we use the BigGAN [BDS19] discriminator

architecture for our EBM modified for input size 224 × 224 and a pretrained BigGAN

Generator. Our naturally trained classifier f(x) is a pretrained WideResNet 28-10 [ZK16] for

CIFAR-10 and a pretrained EfficientNetB-7 architecture [TL20] for ImageNet.

We evaluate our models using the attack gradient (3.3) and Algorithm 3. For CIFAR-10
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Figure 3.2: Persistent initialization. Positive samples are from data and negative samples are

MCMC samples initialized from a batch from the image bank. Some states are randomly

rejuvenated when returning to the bank.

we use Kdef = 1500 Langevin steps with l∞ adversarial parameters ε = 8
255

and α = 2
255

,

where ε is the size of the l∞ ball and α is the gradient step size. For ImageNet we used

Kdef = 200 Langevin steps for defense with l∞ adversarial parameters ε = 2
255

and α = 1
255

.

We attack ImageNet for 50 attacks steps across 10K val samples. For CIFAR-10 we perform

the same number of attacks across 5k validation samples.

On CIFAR-10, we surpass the robustness of the existing EBM defense using a much more

reliable learning framework. The importance of midrun learning is clearly demonstrated by

our successful application of EBM defense to ImageNet at the resolution 224 × 224. The

robustness of a naturally trained classifier secured by our EBM is comparable with adversarial

training. While the ImageNet results for EBM defense are not yet on par with state-of-the-art

adversarially trained models, our experiments are an important proof of concept that the

method can be scaled. See Appendix 3.2.3 for diagnostics and further discussion.

3.2.3 EBM Defense Experiment Details and Diagnostics
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Table 3.1: Defense vs. whitebox attacks with l∞ perturbation ε = 8/255 for CIFAR-10.

Defense f(x) Train Ims. T (x) Method Attack Nat. Adv.

Ours Natural Langevin BPDA+EOT 0.866 0.567

[HMZ21] Natural Langevin BPDA+EOT 0.8412 0.5490

[SKN18] Natural Gibbs Update BPDA 0.95 0.09

[SMM19] Natural Langevin PGD – 0.0048

[YZK19] Transformed Mask + Recon. BPDA+EOT 0.94 0.15

[CRS19] Adversarial – PGD 0.897 0.625

[ZYJ19] Adversarial – PGD 0.849 0.5643

[SNG19] Adversarial – PGD 0.859 0.4633

[MMS18] Adversarial – PGD 0.873 0.458

To verify the integrity of our results we ran an attack with heavily increased resources for

ImageNet compared to our standard evaluation. While using these resources for all attacks

is infeasible in practice, we want to ensure our defense maintains robustness as attacker

resources increase. As shown in Table 3.3, our benchmark accuracy remains consistent when

we increase the number of attack steps (from 50 to 200) and EOT attack replicates (Hadv).

We demonstrate results over varying numbers of langevin steps K. We can see in Fig 3.3

that our sampling trajectory for defending imagenet at K = 200 is reasonable to achieve high

natural image classification as well as robustness.

3.2.4 Comparison with Diffusion Models for Adversarial Defense

The score-based model from [SE20] and its annealed Langevin dynamics process has recently

been used for purifying adversarial signals [LO21, YHL21]. One approach is add noise and

the using the score model to denoise [LO21]. The robustness of this method is upper-bounded

by standard randomized smoothing [CRK19]. Another approach is to initiate the Langevin

process of the score model from a natural image as done in the EBM defense. A score model

can be used in a langevin process T (x) that is a direct analogue to the EBM langevin process
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Table 3.2: Defense vs. l∞ whitebox attacks for ImageNet.

Defense f(x) Train Ims. ε Nat. Adv.

Ours Natural 2
255 0.684 0.418

[WRK20] Adversarial 2
255 0.609 0.4339

[SNG19] Adversarial 2
255 0.644 0.4339

[QMG19] Adversarial 4
255 0.822 0.427

[XTG21] Adversarial 4
255 0.822 0.586

Table 3.3: Defense for l∞ against high-power whitebox attacks on ImageNet.

Dataset Nat Adv Hadv Hdef samples

ImageNet 0.683 0.38 32 64 1600

in (6.3) and (3.3). Given a score model Sθ(x) for a low noise value σ, one can define the

Langevin equation

Xt = Xt−1
η2

2
Sθ(Xt−1) + ηZt

where Sθ(x) ≈ ∇x log q(x) since σ is low.

We experimented with this process as a defense mechanism by selecting the smallest

trained noise value σ = 0.01 and using the Langevin process as a method to purify adversaries.

We evaluated this method using our BPDA+EOT attack framework over different numbers

of Langevin steps during purification. In contrast to reports from [YHL21], we were unable

to obtain any significant defense using a pretrained score model when initializing sampling

directly from adversarial or natural images. In Figure 3.4, one can see that the score-based

model drives natural images toward saturation quickly, leading to a sharp decrease in natural

classification that undermines the possibility of robustness from sampling. The misaligned

steady-state of the score-based models prevents it from being an a defensive transformation

because natural accuracy drops before robustness kicks in. Since the score-based model does

not perform sampling during training, and one cannot adjust the stability of its sampling
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Algorithm 4 Training a midrun sampler for EBM defense
Require: Natural images {x+m}Mm=1, EBM U(x; θ), frozen pre-trained generator g(z), Langevin noise

η, Langevin steps K, EBM optimizer hU , initial weights θ0, rejuvenation probability p, number of

training iterations T .

Ensure: Weights θT for defensive EBM.

Initialize image bank {X−i }Ni=1 from generator using X−i = g(Z)

for 1 ≤ t ≤ T do

Select batch {X̃+
b }Bb=1 from data samples {x+m}Mm=1.

Get negative sample batch {X̃−b,0}Bb=1 from {X−i }Ni=1.

Update {X̃−b,0}Bb=1 with K Langevin steps (6.3) to obtain negative samples {X̃−b }Bb=1.

Get learning gradient ∆
(t)
U using (6.2) with samples {X̃+

b }Bb=1 and {X̃−b }Bb=1.

Update θt using gradient ∆
(t)
U and optimizer hU .

Rejuvenate each X̃b from a pretrained generator g with probability p.

Return {X̃−b }Bb=1 to {X−i }Ni=1 by overwriting previous states.

end for

process as we do in this work. While it is not immediately clear how to overcome this problem,

we believe that defense with a score model is possible and we hope that our observation lead

to efforts to stabilize the sampling paths of score models as we do for EBMs in this work.

3.3 Related Work

Energy-Based Models. Early forms of EBMs include the exponential family distribution,

the FRAME model [ZWM98] and Restricted Boltzmann Machines [Hin02]. Recent work

has introduced the EBM with a ConvNet potential [XLZ16, DM19]. This dramatically

increased the learning capacity of the model which led to many follow-up works on image

synthesis [GLZ18, LXF18, NHZ19a], adversarial robustness [HMZ21], and joint learning of

discriminative and generative models [GWJ20]. Several works investigate training and EBM

in tandem with an auxilary model. [KB16] train an EBM and generator and tandem without

MCMC by using samples from the generator as direct approximations of the EBM density

and training the generator using a variational objective. A similar approach is explored
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Figure 3.3: Accuracy over varying numbers of langevin steps K for ImageNet experiments.

by [GKH21]. Cooperative learning [XLG18] trains the EBM and generator by using the

generator to initialize samples needed to train the EBM and uses reconstruction loss between

generator and EBM samples to learn the generator. [GNK20] learn an EBM using Noise

Contrastive Estimation with an auxiliary flow model. [XKK21] use a pretrained VAE to

facilitate EBM learning. Our work builds on cooperative learning by identifying and resolving

symmetry breaking problems in early training, leading to state-of-the-art EBM synthesis for

unconditional ImageNet. Despite the formulation of the EBM as an unnormalized density, it

has been shown that most EBMs have strong misaligned steady-state distributions [NHH20].

Our work introduces new methods to learn a model with correct steady-state alignment.

Adversarial Robustness. Adversarial Training (AT) [MMS18], which trains a classifier

using PGD-generated adversaries, is the most popular and studied adversarial defense. Many

variations and improvements have been introduced, including optimizing the training loop by

recycling gradients of past adversaries [SNG19], combining single step FGSM with random

initialization to achieve similar robustness [WRK20], learning with auxiliary unlabeled

data [CRS19], local linearization [QMG19], and the use of smooth activation functions

[XTG21]. An alternative approach to adversarial training involves the use of preprocessing

transformations. Randomized smoothing [CRK19] and related methods [SSY20] add noise

to the input signal to remove adversarial signals. Many other preprocessing defenses have

been proposed [GRC18, SKN18, YZK19], but nearly all of these methods can be broken by
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Figure 3.4: Score-based Langevin experiment on the CIFAR-10 dataset. Left: Accuracy of

natural and adversarial images resulting from a BPDA+EOT defense using a score-based

model with an annealed langevin purification method for 125 samples over varying steps.

Right: Samples received from this annealed langevin diffusion process over the same sampling

lengths.

adaptive attacks that are aware of the preprocessing method [ACW18]. A notable exception

is the EBM defense [HMZ21], which uses midrun MCMC trajectories to purify images. We

ease the restriction of learning EBMs with stability for arbitrary MCMC runs in the EBM

defense by introducing a midrun sampler that enables faster learning of defensive EBMs and

allows the EBM defense to scale to more complex datasets.

3.4 Conclusion and Future Work

We have described a unique MCMC initialization procedure for training a mid-run sampler

capable of adversarial defense. For training methods related to short-run models for image

synthesis and long-run samplers for density estimation please see [HMC22a]. We have

demonstrated the flexibility of these mechanisms by using similar architectures, data, and

training platforms to create different EBMs for different applications. We hope that future

research incorporates these new training initialization schemes to improve their generative

models for a wide variety of tasks.

In the next chapters: Extension and Fixer, I will show how we took this framework and
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extended it towards multiple tasks and datasets. As well as provide some enhancements to

make the defense even stronger.
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CHAPTER 4

Extension

4.1 The Universal Defender: One Classifier To Rule Them All

4.2 Intro

In the introduction we spoke about "transferability" between domains. Can the EBM transfer

knowledge between domains? If an EBM is trained on a dataset q with classes k, can it defend

against attacks on a dataset with classes p if k ∩ p? We can consider the same question for

extending tasks. Can we extend tasks from classification to another task?. The EBM knows

nothing about the task classification, yet it is able to secure pretrained image classifiers.

If that’s the case, then why can’t the EBM defend against other tasks, such as "Image

Segmentation"?

4.3 Dataset Extension

If we train our EBM U(x; θ) on ImageNet [DDS09] which contains 1000 classes, can it defend

attacks using a dataset containing images from one of those classes? In theory, if the EBM is

able to defend a particular class that defense should extend to multiple datasets containing

the same class.

As an experiment we trained a classifier on the flowers dataset [NZ08] which contains 10k

images of flowers with 104 classes of different flowers. We used the same mid-run sampler

from [HMC22a] to defend against attacks on the flowers dataset, even though the classifier

we are defending was not trained on this dataset.
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Dataset F (X_nat) F (X_adv) Samples

Flowers 0.821 0.519 4520

ImageNet 0.684 0.418 10000

Table 4.1: Results for EBM defense using the mid-run sampler EBM trained on

ImageNet[DDS09] from [HMC22b] to defend against a flowers 10k dataset BPDA attack.

A 52% robustness on a dataset never seen by the EBM is significant. This shows that the

EBM can be trained once and extended to defend datasets within its learned domain.

4.4 Task Extension

4.4.1 Image Segmentation: What is it?

Image Segmentation is the process of partitioning a digital image into various subgroups called

segments. In the canonical task of image segmentation each cluster or group of pixel segments

belongs to a particular class. The standard method of training an image segmentation network

is to use an architecture known as a U-Net. [RFB15] and use a per-pixel cross entropy loss

to force the network to learn the correct class contours.

4.4.2 Extending the attack toward segmentation

We setup an experiment where we train a U-Net DNN for semantic segmentation on the

Pets dataset [PVZ12]. We then defend against this task using the mid-run sampling EBM

defender which was trained on ImageNet [DDS09]. In this case we are extending both the

task and the dataset.

In the original formulation of the EOT attack and defense from [HMZ21] we determined

a correct or false classification based on cross entropy over the per-image label class:

ĉH(x) = argmax
j

F̂H(x)j (4.1)

However, semantic segmentation is a different problem. To extend from per-image classification
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toward semantic segmentation we introduce the DICE coefficient [Dic45] and follow a similar

attack pattern to [DPA21] except that we use the BPDA attack [ACW18] instead of PGD

[MMS18]. The dice coefficient was originally developed as a statistic to measure the similarity

between two samples, similar to F1 score.

2TP
2TP + FP ∗ FN + ϵ

(4.2)

where TP represents true positives, false positives, false negatives and ϵ is an offset value of

1e− 9 to prevent division by 0. To compute a correct result we reformulate eq 4.1 to:

ĉH(x) =
Dice(x̂)
Dice(x)

< 0.5 (4.3)

where X̂ represents the purified sample x̂ ∼ T (x) that has been attacked and purified using

the EBM and x is the original observed sample from the data distribution x ∼ q. Thus if the

Dice score drops by half of the original value we determine the segmentation to be incorrect.

We proceed to attack the network using BPDA + EOT [ACW18] as in Stochastic Security

[HMZ21] for fair evaluation.

4.4.3 Results

Dataset Defense F (X_adv) Samples

Pets No 0.43 800

Pets Yes 0.60 800

Table 4.2: Adversarial Defense w.r.t the BPDA attack on the image segmentation task using

the pets dataset [PVZ12].

In table 4.2 we can clearly see that when using the ImageNet EBM trained with an

SNGAN [MKK18] architecture from the lifecycle work [HMC22a] we gain 17% in robustness.

Thus, task extension works.
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4.5 Conclusion and Next Steps

Now that we have shown we can extend both the task and dataset domain of our EBM defense,

what other improvements can we make to the core architecture of the defense framework so

that it is even more robust? In the next section we dive in to the "Fixer" architecture.
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CHAPTER 5

The Fixer

5.1 The Fixer

There is noise left over from EBM-based purification. It isn’t perfect. When we use the

metastable image basins to remove adversarial signals and replace them with features from

the same class some noise is left over (because we use noise when sampling). Sometimes,

our classifier misclassifies samples not from the adversarial signal but from the impurities

caused by Langevin sampling. I drew inspiration from [SSY20] to essentially close the gap

between purified adversarial samples and the natural image distribution. To do this, we

extend the Stochastic Security formulation [HMZ21] to include G, an SNGAN [MKK18]-based

Generator-like model called "The Fixer". We "Fix" the impurities caused by EBM sampling.

The Fixer closes the gap KL(G(T (x; θ), ϕ)||q)) where T (x) represents a Langevin process

using EBM U(x; θ) with weights θ and G is the Fixer with weights ϕ. When training, we

simply purify a natural image, and use G to close the gap. The main goal of the fixer is to

improve our upper bound which how well we classify natural images that have been purified

F (xnat).

5.2 Extending Stochastic Security

A glance at figure 5.1 makes it obvious that adversarial purification with the Fixer is a clear

extension of Stochastic Security. Namely, we reformulate the approximation of the stochastic

classifier to encompass the fixer component.

F (x) = EG(T (x))[f(G(T (x)))]. (5.1)
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Figure 5.1: Illustration of the fixer method. Here we can see a direct extension of the method

presented in Chapter 2: Stochastic Security with the addition of the Fixer network G(.) after

purification. The samples shown here are downscaled ImageNet samples whereas figure 5.3

shows these same images at a larger scale.
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This is fair since we still evaluate the attack as the Expectation Over Transformation (EOT)

as done in [HMZ21]. The addition of G(.) simply adds another component to the existing

purifier. The approximate stochastic classifier becomes:

F̄H(x) =
1

H

H∑
h=1

f(x̄h) where, x̄h ∼ G(T (x)) i.i.d., (5.2)

In essence, the purification method for secure the classifier now encapsulates the fixer, so any

attack that targets purification-based defenses will naturally target those methods with the

fixer as well.

Figure 5.2: Left: Loss curve using MSE loss as in equation 5.3 to pretrain the fixer for 40

epochs. We can see that after 40 epochs to fixer loss saturates and it is ready for the next

phase. Right: Loss curve using Perception loss for 100 epochs as in equation 5.4. The blue

curve represents loss w.r.t training data while the orange curve is loss w.r.t validation data.

We can see that the loss saturates around 100 epochs and we use early stopping so that it’s

not overfit.

5.2.1 Training The Fixer

To train the Fixer we use two loss mechanisms. To train this model we have two schedules.

First, we pre-train the generator for 40 epochs using MSE loss (fig 5.2 left )

Lmse = ∥G(x;ϕ)− x∥22,where x̂ ∼ T (x) (5.3)
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Where x is a natural image and ϕ are the weights of the Fixer. The goal is to make the

Generator the identity x = G(x) to warm up the weights. Then in the next schedule we use

the perceptual loss [JAF16] on purified and natural image samples for 100 epochs as in figure

5.2 right. This extension is natural. Perceptual loss was created for style transfer, and I am

essentially trying to make the EBM un-style the impurities caused by purification.

Instead of attempting to have to pixels from G(x̂; θ) match the exact pixels of x, we

want them to have similar feature map representations within a neural network δ [JAF16].

Consider a loss network δ which for practical purposes is a VGG network [SZ14]. If this

network is a function then δj(x) is the feature map activations of the jth layer of this network.

Since VGG is a Convolutional Neural Network, then the feature map would have shape

(Cj, Hj,Wj) which denotes channels, height, width respectively. We consider the feature

reconstruction loss of this network to be the perceptual loss for all practical purposes:

lδ,jfeat(G(x̂;ϕ), x) =
1

CjHjWj

∥δj(G(x̂;ϕ))− δj(x)∥22,where x̂ ∼ T (x) (5.4)

This pushes the output of G(x̂) to be similar to x. In practice we use VGG-16 as the loss

network. Note that the EBM weights are frozen throughout the duration of Fixer training.

To integrate this model into our pipeline we swap T (x) in Stochastic Security for G(T (x); θ).

The Fixer problem can actually be framed as a Super Resolution problem. [LTH16].

Where SRGAN [LTH16] tries to remove noise caused by upsampling, we want to remove

noise caused by Langevin sampling. The only difference is that we don’t have to upsample

the network, we can just maintain the same dimensionality.

With this in mind, I decided to pretrain the Fixer on data q (eq 5.3) just until the loss

started to saturate as can be seen in fig 5.2 left. Then I swapped in perceptual loss to take

over as in eq 5.4 and fig 5.2 right. I got this idea from a FastAi article [Ant19].

5.2.2 Attacking the fixer

By direct evaluation of the BPDA attack [ACW18] on ImageNet we measure the robustness

of our classifiers when using the fixer.
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Table 5.1: Defense vs. l∞ whitebox attacks for ImageNet.

Defense f(x) Train Ims. ε Nat. Adv.

Fixer Natural 2
255 0.742 0.498

[HMC22b] Natural 2
255 0.684 0.418

[WRK20] Adversarial 2
255 0.609 0.4339

[SNG19] Adversarial 2
255 0.644 0.4339

[QMG19] Adversarial 4
255 0.822 0.427

[XTG21] Adversarial 4
255 0.822 0.586

In table 5.1 we compare results from the mid-run sampling in Lifecycle [HMC22b] to the

same model with an appended Fixer architecture. We can see that the Fixer improves our

upper bound F (xnat) which leads to a ∼ 9% increase in robustness. Any jump in natural

image accuracy will also scale toward more adversarial robustness.
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Figure 5.3: Example showing the adversarial images replicates xh, their purified counter

parts x̂h and after the fixer x̄h. In this diagram we can clearly see the fixer doing it’s work.

Notice how x̂h has some coarse features that are smoothed away when we see their "fixed"

counterparts in x̄h
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CHAPTER 6

The Hat EBM

6.1 Motivation

The idea for the Hat-EBM stems from the Lifecycle [HMC22a] paper. The Hat-EBM shares the

principle of generator-based initialization from [XLG18] [XZF21] that was further enhanced

by the shortrun method in [HMC22a]. Furtheremore, we also brough the improvements to

cooperative learning into the Hat EBM which includes the idea of using historical generator

updates during learning to improve EBM memory and stability. This is further described in

section 6.4.5 and figure 6.4. Moreover, we also carried over the idea of paired-banks during

generator updates, we kept the bank of latent samples and added another bank for residual

images. This work was a collaboration with Mitch Hill, Erik Nijkamp, and Bo Pang [MZ23].

The core idea for the HAT-ebm is to use any generator as the foundation of an Energy-

Based Model (EBM). We posit that observed images are the sum of unobserved latent

variables passed through the generator G(.) and a residual random variable y that fills the

gap between the generator output and the image manifold which is depicted in figure 6.1.

We define the hat EBM as an EBM that includes the generator as part of its forward pass.

This model can be trained without inferring the latent variables of the observed data or

dealing with the Jacobian determinant of the generator. This allows us to enable explicit

probabilistic modeling of the output distribution of any generator-based network. Ours

experiments show strong performance of the proposed method on (1) unconditional image

sampling on ImageNet at 128x128 resolution. (2) Refinement of existing generators and (3)

Retrofitting non-probalistic generators. Throughout this work we can see a lot of familiarity

with the work of [HMC22a]. Specifically the way the memory banks are shared.
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Figure 6.1: Visualization of the residual y closing the gap between the manifold of the

generator G(.) and the natural image distribution. The goal of the HAT-EBM is to move

synthesized samples into the natural image distribution because that’s where realism occurs.

6.2 Introduction

One challenge of generative models is obtaining an explicit representation of the probability

distribution defined by the output of the network after transforming the latent space. For

Generative Adversarial Networks (GANs) [GPM14, RMC15] and Variational Autoencoders

(VAEs) [KW13, RMW14] where the latent states that correspond to realistic images follow

a naive distribution (e.g. isotropig Gaussian), it’s difficult to obtain image space probabilities

since we must calculate the log determinant of the Jacobian of the generator transform for

density change-of-variables. For other models such as the deterministic autoencoder, the

latent space that corresponds to realistic images is much smaller than the image space in

terms of dimensionality which makes it even more difficult to obtain probabilistic samples.

The Hat EBM [MZ23] proposed a method for using a generator network as the foundation

of an Energy-Based Model (EBM). The generator network is concatenated with a hat network

that takes in an image as input and outputs a scalar. A residual image is added to the

generated output before it is then fed into the hat network. This residual image spans

the gap between the generator output and the image manifold as shown in fig 6.1. The

complete function, including the generator, and the residual image, and the hat network is

called the Hat EBM. Therefore, we define an EBM which encapsulated a generator latent

space as part of its internal MCMC sampling process. In figure 6.2 we show a diagram of

the Hat EBM and selected Hat EBM samples for unconditional ImageNet. There already

exist some methods for converting generators to EBMs but those only apply to specific
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generator models like GAN [CZS20] or VAE [XKK21]. The HAT-EBM is able to convert

any generator-based model into an EBM. Moreover, our learning method doesn’t require any

inference of the latent states of the observed data which is required in related works such as

[KW13, XLG18, HNF19, PHN20].

The Hat EBM is a tool to be used in conjunction with pretrained generators. It can

refine samples from an existing probabilistic generator (GANs) and synthesize samples using

a non-probabilistic generator (Autoencoders). Moreover, we propose a self-contained learning

strategy that extends cooperative learning [XLG18] of EBM and generator networks to

achieve great synthesis. The main contributions are:

• We introduce a method for defining a Hat EBM that incorporates a generator network as

part of its forward pass. This EBM uses the generator latent space as part of Langevin

sampling.

• We show that our method can refine samples from pretrained GAN generators and sample

from the latent space of deterministic autoencoders which were originally incompatible

with sampling.

• We propose a self-contained Hat EBM learning method that trains both a generator

and energy network from scratch. This enables us to achieve an FID score of 29.2 on

unconditional ImageNet at resolution 128×128, demonstrating that EBMs are competitive

with state-of-the-art generative models on complex and high resolution datasets.

6.3 Related Work

EBM. An EBM defines an unnormalized density or a Gibbs distribution. The prototypes

include exponential family distributions, Boltzmann machines [AHS85, SH09], and the

FRAME (Filters, Random field, And Maximum Entropy) model [ZWM98]. Recent work has

introduced the EBM with a ConvNet potential [XZW17, XZG18]. This dramatically increases

the model capacity and demonstrates strong image synthesis performance [NHZ19a, DM19]

and adversarial robustness [HMZ21]. Several works investigate training and EBM in tandem
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Figure 6.2: Left: The model takes a joint input (Y, Z) where Y is a residual image and Z is

a latent vector. An image is generated using X = Y +G(Z) for a generator G(Z), and the

image is passed to the hat network H(X; θ) to obtain the energy of the pair (Y, Z). This

allows for principled probabilistic learning which can incorporate the latent space of any

generator. Right: Unconditional ImageNet 128×128 samples generated by a Hat EBM.
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with an auxiliary model. The work [KB16] jointly trains an EBM and generator without

MCMC by using samples from the generator as direct approximations of the EBM density

and training the generator using a variational objective. A similar approach is explored

by [GKH21]. Cooperative learning [XZF21] trains the EBM and generator by using the

generator to initialize samples needed to train the EBM and uses reconstruction loss between

generator and EBM samples to learn the generator. The work [GNK20] learns an EBM using

Noise Contrastive Estimation with an auxiliary flow model.

Latent Space EBM. EBMs in the data space can be highly multi-modal, and MCMC

sampling can be difficult [XLZ16, NHZ19a, DM19]. Recent works [PHN20, PW21] explore

learning an EBM in latent space, which is then mapped to the data space with a learned

generator. The energy landscape in the latent space is smoother and less multi-modal because

it lives on a much lower dimensional manifold than the data space. These works define a prior

EBM in the latent space as a correction of the non-informative uniform prior or isotropic

Gaussian prior. To learn the model, one needs to infer the posterior of the latent variables.

Posterior inference given such a complicated model is non-trivial. One needs to either design

a sophisticated amortized inference network or run expensive MCMC. Our model also defines

an EBM in the latent space, while its learning does not need posterior inference, making

the learning much simpler and more scalable. [CZS20] leverages a pretrained GAN to define

an EBM in the latent space of the generator with a correction based on the discriminator,

and shows improved synthesis quality over the pretrained GAN. The work [XKK21] uses a

pretrained VAE to facilitate EBM learning. Our model is similar in that it can be utilized

to improve pretrained GAN or VAE generators. Our method is however more general since

it can be used to improve any pretrained generator, even the non-probabilistic ones like

deterministic autoencoders.

6.4 Formulation of Hat EBM

This section presents the formulation of the Hat EBM energy function and the proposed

learning procedure. We first review the fundamental equations of EBM learning. Then we
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introduce two variants of the Hat EBM: one for sampling from the latent space directly, and

one for sampling a residual image conditioned on the generator output. Finally, we propose a

method for learning the hat network and generator network of a Hat EBM at the same time

so that our model can be used for self-contained image generation without the need for a

pretrained generator.

6.4.1 Review of EBM Learning

Here we provide a very small review of EBM learning which is also provided in previous

chapter. Our EBM learning follows the standard model defined in [Hin02, ZWM98, XLZ16].

The Deep Frame EBM follows the gibbs boltzman distribution:

p(x; θ) =
1

Z(θ) exp{−U(x; θ)} (6.1)

where U(x; θ) is a deep neural network with weights θ and Z(θ) is the intractable normalizing

constant. Given a true but unknown data density q(x), Maximum Likelihood (ML) learning

uses the objective argminθ DKL(q(x)||p(x; θ)), which can be minimized using the stochastic

gradient

∇L(θ) ≈ 1

n

n∑
i=1

∇θU(X+
i ; θ)−

1

n

n∑
i=1

∇θU(X−i ; θ) (6.2)

where the positive samples {X+
i }ni=1 are a set of data samples which are also commonly

referred to as q throughout this body of work. The negative samples {X−i }ni=1 are samples

from the current EBM model p(x; θ). To obtain the negative samples for the EBM, we use a

form of MCMC sampling known as Langevin Sampling with K steps.

X(k+1) = X(k) − ε2

2
∇X(k)U(X(k); θ) + εVk, (6.3)

where ε is the step size and Vk ∼ N(0, I). The Langevin trajectories are initialized from a

set of states {X−i,0}ni=1 obtained from a certain initialization strategy.

6.4.2 Hat EBM: Joint Distribution of Latent and Residual Image

The Hat EBM adapts a fixed pretrained generator network G(Z) into an EBM. The Hat

EBM defines the joint distribution of the random variable Z ∈ Rm in the m-dimensional
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latent space of the generator network and a random variable Y ∈ Rd in the d-dimensional

image space. The joint energy has the form

U(Y, Z; θ) = H(G(Z) + Y ; θ) (6.4)

where H(x; θ) is a neural network that takes an image x ∈ Rd as input and returns a scalar

output. The weights of H are given by θ. We call H the hat network because it sits atop the

generator G to incorporate the generator latent space directly into the probabilistic model.

The random variable Y is meant to accommodate the gap between the output of G(Z)

and the image manifold (see fig 6.1). We expect that G(Z) contains an approximate but

imperfect representation of the image distribution which can further be refined by the residual

state Y . The majority of the appearance of G(Z) + Y comes from the generator network and

not the residual image Y and therefore the majority of the sampling dynamics of our model

are determined by movement in the latent space of G(Z).

The Hat EBM formulation allows us to learn a model without calculating the log determi-

nant of G(Z) which would typically be required for an energy U(G(Z); θ) or for inferring the

Z latent vectors associated with observed image samples X [PHN20]. This is true because

we define the distribution of observed images X by X = G(Z) + Y where each pair (Y, Z)

is drawn from a true unknown density q(y, z). Thus we can use the Maximum Likelihood

learning framework (in Section 6.4.1) to learn the weights θ of the hat network H(x; θ) by

minimizing argminθ DKL(q(y, z)||p(y, z; θ)) where

p(y, z; θ) =
1

Z(θ) exp{−H(G(z) + y; θ)}. (6.5)

One can obtain negative samples using alternating Langevin updates

Y (k+1) = Y (k) − ε21
2
∇Y (k)H(G(Z(k)) + Y (k); θ) + ε1Vk,1 (6.6)

Z(k+1) = Z(k) − ε22
2
∇Z(k)H(G(Z(k)) + Y (k+1); θ) + ε2Vk,2 (6.7)

which switches off between updates with respect to z and updates with respect to y. The

algorithm is essentially Metropolis-within-Gibbs. This is because the Langevin update can
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be written as a Metropolis-Hastings step with Gaussian proposal. This shows that (6.6) and

(6.7) define a valid sampler for p(y, z; θ). Finally, updating θ can be accomplished using

∇L(θ) ≈ 1

n

n∑
i=1

∇θH(X+
i ; θ)−

1

n

n∑
i=1

∇θH(G(Z−i ) + Y −i ; θ) (6.8)

where X+
i are observed image samples and the pairs (Y −i , Z−i ) are obtained via MCMC. In

our formulation the observed data are sufficient statistics for H(x; θ) so there’s no need to

infer the (Y, Z) pairs for the positive samples when learning the weights of the hat network.

6.4.3 Conditional Hat EBM: Residual Image Conditional on Latent Sample

The previous version of the Hat EBM is ammendable to any generator network G(Z). In

this section we define a conditional version of the Hat EBM tailored toward generator

networks that map a trivial latent distribution to complex high dimensional manifolds. For

these generators, we utilize the latent distribution as an ancestral distribution and learn a

conditional distribution on the residual image Y given the latent sample z.

Suppose we use a trivial marginal distribution p0(z) for Z and a generator trained

using this latent distribution. We can now define a conditional Hat EBM p(y|z; θ) =

1
Zz(θ)

exp{−H(G(z) + y; θ)} and a joint density

p(y, z; θ) =
1

Zz(θ)
p0(z) exp{−H(G(z) + y; θ)}. (6.9)

In this case, we posit that observed images X are generated according to X = G(Z) + Y for

some distribution q(y, z) = p0(z)q(y|z). Extracting the negative samples (Z−i , Y
−
i ) is achieves

by first drawing Z−i from p0(z) and then obtaining Y −i |Z−i using Langevin updates on the

conditional probability p(y|z; θ). Note that p(y|z; θ) = p(y|G(z;ϕ); θ) because of the form of

(6.9). We update θ using the same equation (6.8) as the joint Hat EBM because X+
i remains

a sufficient statistic for learning H(x; θ) and because we do not need to infer the Z+
i for X+

i

since the prior p0(z) does not contain any model parameters.
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6.4.4 Learning the Hat Network and Generator in Tandem for Conditional Hat

EBM

In the two previous formulations we assumed access to a pretrained generator network G(z).

Here we describe a self-contained method for learning the Hat EBM which trains both

the hat network H(x; θ) parametrized by θ and the generator G(z;ϕ) parameterized by ϕ

simultaneously. This method is based on coop-nets [XLG18]. First, we review the Coop-Nets

learning framework and then present the learning strategy for the Hat EBM. A stark difference

between the two is that the origin coop learning strategy requires MCMC inference of the

latent space Ẑ associated with an MCMC sample X to train G(Z;ϕ) whereas the conditional

Hat EMB formulation does not because the formulation of the latent variables Z is well

defined and does not need to be inferred. This lends a large computational advantage to the

Hat EBM learning method since we don’t need to compute MCMC inference on the hat Ẑ.

In cooperative learning [XLG18], the generator output G(z;ϕ) is trained to match the

appearance of a Langevin chain XK sampled from the potential U(X; θ) and initialized from

the state X0 = G(Z0;ϕ) where Z0 ∼ N(0, I). This model defines the conditional density of

images X given latents Z ∼ N(0, I) as X|Z ∼ N(G(Z;ϕ), η2I) for some sufficiently small

η. Given a sampled state Xt, updating G(z;ϕ) requires inferring Z|XK using the latent

Langevin equation

Zk+1 = Zk −
ε2

2

(
Zk +

1

2η2
∇Zk
∥G(Zk;ϕ)−XK∥22

)
+ εVk (6.10)

before updating ϕ using the Maximum Likelihood objective function

LG(ϕ) =
1

n

n∑
i=1

1

2η2
∥G(ZK,i;ϕ)−XK,i∥22 (6.11)

where the i index denotes a member i of a batch with size n. In the code released with the

coop learning paper, the latent variable is not inferred at all and Z0 ∼ N(0, I) is used in

place of ZK in the objective function (6.11). Inferring ZK often hurts model performance

and leads to additional complications. Both the difficulty of inferring Z|XK and omission of

this step leads to a gap in the cooperating learning formulation which can be bypassed using
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Figure 6.3: Visualization of tandem training method for hat network and generator. The left

side illustrates training for the hat network H(x; θ). Z is drawn from a latent distribution, Y

is initialized from the 0 image and updated according to p(Y |Z; θ) = p(Y |G(Z;ϕ); θ). Then

data samples X+ and negative samples X− = Y +G(Z;ϕ) are used to update the weight θ

of the hat network. On the right, pairs (X ′, Z ′) from past hat network updates will be drawn

randomly from a bank of states to update the weight ϕ of the generator. The bank memory

(X ′, Z ′) will then be overwritten by new pairs (X,Z) from the current model.

the Hat EBM generator update framework since we do not need to infer Zk in the Hat EBM

formulation.

To learn a Hat EBM generator, we initialize Langevin sampling from X0 = G(Z;ϕ) + Y0

where Y0 = 0 and Z ∼ N(0, I) to draw residual sample YK . The Langevin update is only

used to update Yk while Z remains fixed, as in the method from Section 6.4.3. We once more

define our model as X|Z ∼ N(G(Z;ϕ), η2I) except we further define the data distribution

of (X,Z) as Z ∼ N(0, I) and X = Y + G(Z;ϕt) where Y |Z is drawn from the Hat EBM

density (6.9) using the generator G(Z;ϕt). Then G(z;ϕ) can be trained using the Maximum

Likelihood objective

ϕt+1 = argmin
ϕ
LG(ϕ;ϕt) = argmin

ϕ

1

n

n∑
i=1

1

2η2
∥G(Zi;ϕ)− (YK,i +G(Zi;ϕt))∥22. (6.12)

Conceptually, this loss function should allow G(Z;ϕ) to match the appearance of samples

X = Y + G(Z;ϕt) for a fixed generator G(Z;ϕt) and the current hat network H(x; θt).
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Rigorous training of H and G involves using the gradient of (6.12) until convergence and

then updating the hat network according to (6.8), and continuing this cycle until the EBM

converges. In practice, we implement (6.12) to obtain ϕt+1 using only one update initialized

from ϕ = ϕt rather than training until full convergence. This is done to increase training

efficiency and to avoid the need of maintaining a separate copy of generator weights for the

fixed network G(z;ϕt).

We observe that the objective (6.12) has some limitations because the generator output can

become too tethered to biases of the hat network which is a problem stemming from the original

cooperative learning objective (6.11). For an illustration please see sec 6.4.5. To overcome

these problems, we choose to train G(z;ϕ) at time t+ 1 to match the historical distribution

of hat H(x; θtℓ) and generator G(z;ϕtℓ) for a selection of past epochs t1, t2, . . . tL ≤ t instead

of training the generator to match the distribution of the current networks H(x; θt) and

generator G(z;ϕt). This involves redefining the data distribution (X,Z) by first sampling tℓ

from {t1, . . . , tL} and then generating Z and XK = YK + G(Z;ϕtℓ) where Y |Z follows the

energy H(G(Z;ϕtℓ) + Y ; θtℓ). In this case, the gradient (6.12), replacing ϕt with ϕtℓ , is a

stochastic approximation of the Maximum Likelihood gradient defined by the joint distribution

(tℓ, Z,XK). See section 6.4.5 for details. In practice, we implement this procedure by keeping

a persistent bank of 10,000 pairs (X,Z) created from past hat network updates. When

updating the generator, we draw n = 128 pairs from the bank and replace it with a newly

generated batch of n = 128 pairs from the current hat EBM. This ensures that the selection

{t1, . . . , tL} of past epochs always remains within a certain range of the current epoch t.

Saving the generated images X at each EBM update allows us to learn from past generator

weights ϕtℓ without maintaining a copy of the weights. See Figure 6.3 for an illustration.

6.4.5 Historical Generator Update to Improve EBM Memory and Stability

The Conditional Hat EBM makes use of historical EBM samples to update the generator

instead of samples from the current EBM in memory to improve synthesis. If we use

current EBM samples and not historical samples, the generator will fail because our MCMC
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trajectories would be too short and cannot have enough influence on samples coming out of

the generator. Therefore, if the generator-derived samples lack diversity, our EBM will also

lack diversity because we cannot move far enough away from the generator’s manifold with a

small number of MCMC steps (see fig 6.1). The idea for this was unrolled in the [HMC22a]

work and we continue to implement this each time we use cooperative learning.

A Lack of sample diversity leads to EBM instability because the EBM will try to urgently

shift its distribution to cover modes it thinks it never learned. This leads the EBM to forget

previously learned modes in favor of new modes. Then once it learns new modes it forgets

the old ones and the loop continues. If the EBM was a computer, using historical updates

gives it more RAM.

We visualize the importance of our historical update in Figure 6.4. This figure compares

cooperative learning [XLG18] with and without batch normalization to Hat EBM synthesis

for CIFAR-10. One Hat EBM experiment uses only the current EBM to update the generator,

while the other uses the historical approach we outline in the text. Neither of our Hat EBM

experiments use batch norm. We see that the Hat EBM using historical updates is the most

successful synthesis method.

This historical update can be viewed as performing maximum likelihood where the data

distribution (X,Z) is defined as the marginal of the joint distribution of (tℓ, X, Z) where

X = YK +G(Z;ϕtℓ) and YK |Z is sampled from

p(Y |Z, tℓ) ∝ − exp{H(Y +G(Z;ϕtℓ); θtℓ)}.

This is true because

E(tℓ,Z,X)[− log pG(X,Z;ϕ)] = E(tℓ,Z,X)

[
1

2η2
∥G(Z;ϕ)−X∥22

]
+ C

≈ 1

n

n∑
i=1

1

2η2
∥G(Zi;ϕ)− (YK,i +G(Zi;ϕtℓi

))∥22 + C

for n samples {(tℓi , Zi, Xi)}ni=1.
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Coop. (no batch norm) Coop. (batch norm) Hat EBM (current) Hat EBM (historical)

Figure 6.4: Samples after 500 weight updates for different EBM learning methods. Cooperative

learning fails without batch norm because the tether between the EBM and generator leads

to lack of diversity and instability. Including batch norm in cooperative learning helps add

some diversity, but samples can still remain very visually similar. The Hat EBM has similar

problem as cooperative learning when current EBM samples are used to update the generator.

This problem is greatly alleviated by instead using historical samples to update the generator,

because several past updates of the EBM have much higher diversity than a single snapshot.

6.5 Experiments

In the subsequent empirical evaluations, we will address the following questions:

1. Refinement: To what extent can our method refine samples from a pretrained generator

model with known prior distribution?

2. Retrofit: Is our method capable of turning a generator model pretrained as a deterministic

auto-encoder into a generative model that samples realistic images?

3. Synthesis: Can we learn a generator from scratch for competitive image synthesis? Can

our method be scaled up to challenging high dimensional datasets such as ImageNet with

competitive synthesis for unconditional sampling?

4. Out-of-Distribution: Can the Hat EBM be used for Out-of-Distribution (OOD) detection

to distinguish between samples from the training distribution and samples from dissimilar

distributions?
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Figure 6.5 visualizes some representative sampling paths for the models trained for

questions 1, 2, and 3 on the CIFAR-10 dataset. For details related to pseudocode, training

parameters, and model architectures please see the appendix.

6.5.1 Refinement

In this section we take a pretrained SNGAN with Generator network G and refine the

samples. This situation was previously explored in [CZS20] and we build on top of this

work from the lens of the joint Hat EBM from Section 6.4.2. We learn a Hat EBM that

includes G in order to refine samples coming out of the generator. The architecture of the

Hat EBM is the same as the SNGAN discriminator with the exclusion of spectral norm

layers. We fix the parameters of the batch norm layers of the generator and our energy is

determistic. We perform experiments for the CIFAR-10 dataset at 32x32 resolution and

CelebA at 64x64 resolution. During evaluation we compare with Discriminator Driven Latent

Sampling (DDLS) [CZS20], which uses a pretrained Discriminator D trained with G. DDLS

samples form the potential U(z) = D(G(z)) + 1
2
∥z∥22. We trained D and G according to

the Mimicry [LT20] repository for reproducible GAN experiments which provides stronger

baseline scores for G(z) than those in [CZS20].

Table 6.1 shows our results. The Hat EBM is capable of refining an image better than

DDLS on both CIFAR-10 and CelebA. We use the joint version of the Hat EBM so that both

Y and Z are updated during sampling. We initialize Y0 = 0 and Z0 ∼ N(0, I). The sampling

will learn to tilt Z away from its initial normal distribution to find a nearby latent vector

with a more realistic appearance.

Table 6.1: Improvement in FID by refinement of samples from a fixed generator learned by

SNGAN.

Model CIFAR-10 CelebA

SNGAN (baseline) [MKK18] 18.58 ± 0.08 6.13 ± 0.03

DDLS [CZS20] 14.59 ± 0.07 6.06 ± 0.01

Hat EBM (Ours) 14.04 ± 0.11 5.98 ± 0.02
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Figure 6.5: Visualization of shortrun Langevin sampling paths used for training and evaluating

each Hat EBM type. In each grouping, the three rows correspond to image X, generator

output G(Z), and residual image Y . All paths are initialized with residual Y0 = 0 which

corresponds to a grey image. For visualization purposes, all Y images have been magnified

by a factor of 5. The Refinement paths (left) use the joint Hat EBM to refine the appearance

of a pre-trained SNGAN generator. The residual Y is barely noticeable, but still is essential

for stable learning. The Retrofit paths (center) use the joint Hat EBM to sample using

a non-probabilistic autoencoder generator. The residual Y is somewhat noticeable after

magnification but most of the image appearance comes from G(Z). The Synthesis paths

(right) use the conditional Hat EBM to sample refine a generator learned in tandem. G(Z)

is fixed during sampling. The residual Y plays a significant role in refining the generator

appearance. See section 6.7.1 for a broader explanation on why Y is important

We observe that the majority of the refinement occurs in the latent space, and that the

residual image Y is essentially imperceptible. See Figure 6.5. We notice that training quickly

becomes unstable when Y is removed from the Hat EBM. It’s essential to incorporate the

residual for stable learning. A possible reason for this phenomenon is that the hat network

can learn to discriminate between generator images and images not from the generator,

whether they are realistic or not. If so, the hat network can assign increasingly high energy

to generator samples in the absence of the residual Y . Even an imperceptible Y appears

enough to prevent the hat network from easily distinguishing positive and negative samples

so that learning becomes stable.
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6.5.2 Retrofit

In this section, we incorporate a non-probabilistic generator network G(z) into a probabilistic

Hat EBM model. This essentially allows us to sample from the latent space of G(z) to

find latent samples whose mapping corresponds to a realistic image. Similarly to results

in Section 6.5.1, the residual image has small norm in the image space and most of the

appearance of the sampled images comes from G(z). This happens naturally without the

need to coerce Y to be close to 0 by including a prior term such as p0(y) = ∥y∥22, although

including a prior term can further limit growth of Y .

The autoencoder generator G(z) is pre-trained as the second half of a standard inference

network and generator network pairing. An image X is fed into the inference network I

and converted into a latent state Z = I(X), which is then decoded with X̂ = G(Z). The

inference network and generator are learned jointly using the MSE loss ∥X̂ −X∥22. To keep

the latent space mapping of I(X) numerically stable, we project the raw output of the

inference network to the sphere around the origin with radius
√
m so that ∥I(X)∥2 =

√
m.

More sophisticated methods such as perceptual and adversarial loss could have been used to

train the autoencoder, but we use MSE loss to keep our implementation very simple. We

observe that when Z is a vector-shaped latent state, it can be extremely difficult to achieve

reconstructions X̂ with sharp appearance even for simple datasets like CIFAR-10. To obtain

better reconstructions and therefore a latent space with more realistic mappings to the image

space, we use image-shaped latent states Z. The details of our autoencoder networks can be

found in the appendix. When Z is an image shaped latent, we treat it exactly the same as a

vector latent in the learning and sampling algorithms.

We experiment with assimilating an autoencoder into a Hat EBM potential for the

CIFAR-10 dataset. Our results are presented in Figure 6.5 with additional results in the

supplementary appendix. We train the Hat EBM using shortrun learning in the latent and

image space by initializing Y0 = 0 and Z0 ∼ N(0, I) and using K = 100 MCMC steps of (6.6)

and (6.7) from initialization during both training and testing evaluation to generate samples.

During the Langevin dynamics, image appearance is refined mostly in the latent space. Our
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Table 6.2: Comparison of FID scores among representative generative models. (*=EBM)

CIFAR-10 (32× 32)

Model FID

Hat EBM (Ours)* 19.30 ± 0.15

Improved CD EBM [DLT20]* 25.1

VERA [GKH21]* 27.5

Cooperative EBM[XLG18]* 33.6

Multigrid EBM [GNK20]* 37.3

JEM [GWJ20]* 38.4

IGEBM [DM19]* 40.6

DDPM [HJA20] 3.2

NCSNv2[SE20] 10.9

BigGAN [BDS19] 14.7

SNGAN [MKK18] 18.6

CelebA (64× 64)

Model FID

Hat EBM (Ours)* 11.57 ± 0.04

Divergence Triangle [HNF19]* 31.9

SNGAN [MKK18] 6.1

NCSNv2[SE20] 10.2

ImageNet (128× 128)

Model FID

Hat EBM (Ours)* 40.24 ± 0.18

SNGAN [MKK18] 65.7

SSGAN [CZR19] 43.9

InfoMax GAN [LTC21] 58.9

Hat EBM, scaled (Ours)* 29.37 ± 0.15

SSGAN, scaled [CZR19] 23.4

best model achieves a solid FID score of 26.01 ± 0.09. This demonstrates that Hat EBM can

learn a probabilistic model over a non-probabilistic latent space.

6.5.3 Synthesis

In this section, we use the conditional Hat EBM formulation from Section 6.4.4 to learn a

hat network and generator network from scratch for self-contained synthesis. We explore

synthesis for CIFAR-10, CelebA at resolution 64×64, and unconditional ImageNet at resolution

128×128. While recent generative models show promising results for class-label conditional

sampling, unconditional sampling with high quality synthesis remains a significant challenge.

We find especially strong results for ImageNet synthesis using the conditional Hat EBM.

This demonstrates strong potential for our synthesis method for learning with highly diverse

unstructured datasets.

We use SNGAN architectures for sizes 32 × 32, 64 × 64, and 128 × 128, where the

discriminator architecture is used for the hat network. During learning, we keep the generator

batch norm parameters fixed to mean 0 and variance 1. We remove all spectral norm layers

79



from the hat network. Training parameters can be found in the supplementary material.

For ImageNet models, we found that annealing the generator and hat network learning rate

by a factor of 10 after 250K weight updates for each network further improved the FID

score significantly. Our results are shown in Table 6.2. See the supplementary material for

uncurated samples from each model.

Results show strong performance compared to a selection of representative generative

models across all datasets, with an especially strong performance for ImageNet. Our method

significantly outperforms other EBM learning methods on CIFAR-10. The Hat EBM synthesis

results are on par with the SNGAN baseline for CIFAR-10 and CelebA. The Hat EBM results

for ImageNet significantly outperform SNGAN. At the budget of ~8 GPUs, our Hat EBM

achieves a score of 40.0, outperforming the small-scale SSGAN.

To our knowledge, the current state-of-the-art score for unconditional ImageNet 128× 128

is the SSGAN [CZR19] with a score of 23.4 trained using a BigGAN network and 128-core

TPUv3 pods. To scale up our Hat EBM, we doubled the number of channel dimensions for

both the hat network and generator network from the original SNGAN architecture and

trained on 32-core TPU-v3 pods. Our best FID score for unconditional ImageNet 128×128

was 29.2, which comes within a competitive range of state-of-the-art. We believe that further

scaling in future work could enable Hat EBM to match or surpass state-of-the-art. Our results

decisively demonstrate the potential of EBM learning well beyond the scale investigated in

any prior EBM work.

6.5.4 OOD

We assess our model performance on Out-Of-Distribution detection. We use the conditional

Hat EBM model trained on CIFAR-10 from Section 6.5.3 and calculate the energy H(X; θ)

on in-distribution images from the CIFAR-10 test set and the OOD datasets which include

CIFAR-100, CelebA, and SVHN. We follow standard OOD evaluation from works such as

[NMT19] which use the AUROC metric. This metric measures the ability of the Hat EBM

to distinguish between in-distribution samples not seen during training and OOD samples.
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Table 6.3: Comparison of OOD scores (AUROC) among representative models. We separate

scores for fully unsupervised models (above the line) and models which used supervised data

(below the line).

Model SVHN CIFAR-100 CelebA

Ours 0.92 0.87 0.94

IGEBM [DM19] 0.43 0.54 0.69

VAEBM [XKK21] 0.83 0.62 0.77

Improved CD EBM [DLT20] 0.91 0.83 –

JEM [GWJ20] 0.67 0.87 0.77

HDGE [LA21] 0.96 0.91 0.80

OOD EBM [LWO20] 0.91 0.87 0.78

OOD EBM (fine-tuned) [LWO20] 0.99 0.94 1.00

Following [GWJ20, XKK21], we expect that the energy of the OOD datasets be higher than

the energy of in-distribution test images.

Our results are shown in Table 6.3. The Hat EBM shows strong performance as an

OOD detection method. Among methods that are fully unsupervised, our model has the

top performance across all three OOD datasets. Our method approaches the results of

methods that are trained with labelled data such as HDGE [LA21] and the fine-tuned

OOD EBM [LWO20], although we do not yet match these scores. Overall, there is strong

evidence at the Hat EBM is naturally an effective method for OOD detection, especially

when supervised label information is unavailable.

6.6 Conclusion

Maximum-likelihood based learning of EBMs is challenging since we must draw negative

samples from the current density model, which is often highly multi-modal. Prior art addresses

this challenge by recruiting approximations of the EBM in the form of an ancestral sampling

from a generator model, truncated Langevin chains, flow-based models, or lifting the EBM

into the induced latent space of generator models. In contrast, the Hat EBM work proposes

a method for absorbing any generator as a backbone of an EBM. The formulation assumes
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that observed images are the sum of unobserved latent variables pushed forward through the

generator and a residual random variable which closes the gap between generator samples

and image manifold (see fig 6.1). Thus, the Hat EBM sits atop the generator. The generator

allows for efficient sampling but may only capture the coarse structure of the images, while

the residuals can capture fine-grained or even imperceptible details.

The Hat EBM formulation is presented in three variations: (1) joint learning of latent

and residual image for adapting any fixed generator, (2) conditional learning for generators

with known prior distribution, (3) self-contained learning of both EBM and generator from

scratch. Notably, the training doesn’t require computing the log determinant of the generator

Jacobian or inference of latent variables which makes learning much more scalable and simpe

to do.

Empirical evaluations demonstrate the various capabilities of the Hat EBM: (1) Strong

performance for the ImageNet synthesis at 128×128 resolution with self-contained learning, (2)

Significant refinement of the quality of synthesis of pre-trained generators on CIFAR-10 and

CelebA with conditional learning, (3) Retrofitting pre-trained auto-encoder generators with a

means of sampling, and (4) Out-of-Distribution detection with state-of-the-art performance

for unsupervised models.

6.7 Appendix

6.7.1 Importance of Residual Image for Stability

Throughout our experiments with different versions of the Hat EBM, we find the inclusion of

the residual image Y essential for stability. In particular, one could consider an alternate

version of the Hat EBM where

U(z; θ) = H(G(z); θ) (6.13)

without a residual state. As long as the training data is of the form X+ = G(Z+) for a latent

state Z+, one could learn the hat network using the same procedure as the Hat EBM without

the residual Y . In practice, it is usually not possible to exactly invert the generator. In
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other words, real images X+ never lie exactly on the generator output manifold, although the

might be close by. Nonetheless, one could bend the rules and use X+ to train the potential

(6.14) with the justification that there is some Z+ such that X+ ≈ G(Z+). In practice, this

leads to instability as shown in Figure 6.7. Even when it is nearly invisible, the residual state

Y is still required for the hat network to balance the energy of positive and negative samples

and achieve stable learning.

Figure 6.6: Unstable learning using the energy (6.14) (left) and stable learning using the

joint Hat EBM (right). Both settings replicate the refinement experiment using CIFAR-10

with a pretrained SNGAN generator. Even though the appearance of the residual image Y is

nearly invisible, including the residual is essential both from a theoretical perspective and for

practical stability. This is explicitly apparent when logging the gradient magnitude of the

residual during learning.

6.7.2 Algorithm for Joint Training of Conditional Hat EBM

A code sketch of training our Conditional Hat EBM for image synthesis is presented below.

Note that the equation numbers in the Algorithm refer to equations in the main paper and

not equations in the appendix.
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Algorithm 5 Training a Conditional Hat EBM for Image Synthesis
Require: Natural images {x+

m}Mm=1, EBM U(x; θ), generator G(z;ϕ) Langevin noise ε, number of shortrun steps K, EBM

optimizer hU , generator optimizer hG, random initial weights θ0 and ϕ0, number of training iterations T , bank size N .

Ensure: Learned weights θT for EBM and ϕT for generator.

Initialize bank of random latent states {Zi}Ni=1 i.i.d. from the Gaussian N(0, I).

Initialize image bank {X−
i }

N
i=1 from generator using X−

i = g(Zi;ϕ0)

for 1 ≤ t ≤ T do

Steps to Update EBM

Select batch {X̃+
b }

B
b=1 from data samples {x+

m}Mm=1.

Draw latent samples {Z̃b}Bb=1 i.i.d. from the Gaussian N(0, I).

Initialize residual images {Ỹ −
b,0}

B
b=1 from the image with all pixels set to 0.

Update residual images {Ỹ −
b,0}

B
b=1 with K Langevin steps of Equation 6 to obtain {Ỹ −

b,K}
B
b=1. Keep Z̃b fixed.

Sum generated image and residual image using X̃−
b = G(Z̃b, ϕt−1) + Ỹ −

b,K to obtain negative samples {X̃−
b }

B
b=1.

Get learning gradient ∆
(t)
U using Equation 8 with samples {X̃+

b }
B
b=1 and {X̃−

b }
B
b=1.

Update θt using gradient ∆
(t)
U and optimizer hU .

Steps to Update Generator

Randomly choose unique indices {i1, . . . , iB} ⊂ {1, . . . , N}.

Get paired batches {Zib}Bb=1 and {X−
ib
}Bb=1 from {Zi}Ni=1 and {X−

i }
N
i=1.

Get learning gradient ∆
(t)
G using Equation 11 with samples {Zib}Bb=1 and {X−

ib
}Bb=1.

Update ϕt using gradient ∆
(t)
G and optimizer hG.

Overwrite old states {Zib}Bb=1 and {X−
ib
}Bb=1 in bank with update Zib ← Z̃b and X−

ib
← X̃−

b .

end for

6.7.3 Discussion of EBM Synthesis Methods

This appendix briefly introduces the EBM methods, including methods presented in Table 2

of the main paper, and draws relevant comparisons between the Hat EBM and other EBM

models.

One branch of EBM works uses MCMC-based Maximum Likelihood with persistent

initialization of MCMC states. Persistent initialization uses samples of prior short run EBM

trajectories to initialize the current sampling trajectory. This approach is introduced by

Persistent Contrastive Divergence (PCD) [Tie08]. The IGEBM [DM19] is trained using a

bank with 10,000 images to hold persistent states. States are rejuvenated from a Gaussian

or uniform noise image with of between 0.5% and 5% probability before being returned to

the image bank. The Improved CD EBM [DLT20] builds on these results by including an

approximate KL divergence term in EBM learning to minimize the difference between the
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data distribution and the sampled distribution, and by rejuvenating MCMC trajectories

using data augmentation instead of resetting states with noise. The Joint Energy Model

(JEM) [GWJ20] trains an unconditional EBM and a classifier model simultaneously with the

same network using persistent initialization with noise rejuvenation. The use of persistent

states in our work differs from prior work because we use persistent states to update only

the generator while the EBM is updated by states generated from scratch in the current

iteration. This is done to increase the diversity of samples used to update the generator,

which is essential for enabling the generator to create distinct appearances for different Z

early in training (see Appendix 6.4.5).

Another branch of EBM works trains a generator network in tandem with the energy

network. Most works use the standard EBM update or a close variant to train the energy

network, as we do. In some works, the generators produce the final samples and no MCMC

is used, while other works use the generator to initialize samples and then refine the samples

with MCMC driven by the energy network. Our work adopts the second strategy. To our

knowledge, the first work that explores the idea jointly training an energy network and

generator network is by Kim & Bengio [KB16]. This work suggests using the generator

samples directly as negative samples without use of MCMC, and updating the generator

network to decrease the energy of the generator samples. The EGAN [DAB17] builds on

[KB16] by introducing a entropy maximization term which is needed for a valid Maximum

Likelihood objective and which prevents generator collapse. The entropy term is estimated

by neighborhood methods and variational methods. MEG [KGC19] and VERA [GKH21]

build on [DAB17] by introducing more sophisticated methods of entropy maximization. The

GEBM [AZG21] uses an approach similar to [DAB17], with the major differences being use

of a generalized log likelihood objective that bridges the gap between the support of the

generator output and the full image space distribution of the data, and a novel approximate

KL bound for learning the generator. Like the Hat EBM, none of these methods require the

log determinant of the generator Jacobian or inference of latent states for data. Unlike the

Hat EBM, the probability models from these methods lie in the latent space (or the restricted

image space given by the generator outputs) instead of the full image space. The methods are
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also incompatible with non-probabilistic generators, unlike Hat EBM. None of the works above

use MCMC during training, although some use MCMC during synthesis [GKH21, AZG21].

Cooperative learning [XLG18] uses Maximum Likelihood learning described in Section 3.4.

This requires MCMC sampling for both image and latent states. The conditional Hat EBM

for synthesis requires sampling for image states but not latent states.

A third branch of EBM methods initialize MCMC sampling from a noise distribution

and use a fixed length MCMC trajectory to generate states without a generator network.

This branch differs from persistent methods because no persistent bank is used and negative

samples to update the EBM are created from scratch each time the EBM weights are updated.

It differs from generator methods because realistic synthesis is achieved through pure MCMC

without initial realistic states from the generator. The Multigrid EBM [GLZ18] has a MCMC-

based training method where images are synthesized and sampled at multiple resolutions.

Multiple EBMs are learned in parallel at different resolutions, and generated images from

low resolution EBMs are passed to high resolution EBMs to initialize MCMC sampling.

Generation can be performed by trivial sampling (uniform, Gaussian Mixture, KDE, etc.) at

a single-pixel resolution and passing the generated MCMC states along from the single-pixel

EBM to the full-size EBM. The short run initialization method [NHZ19a] starts sampling

from a uniform image distribution and runs 50 to 100 MCMC steps to generate images during

each EBM update, bypassing the need for persistent banks. Our retrofit Hat EBM training

is a variation of the short run method where both the Y and Z are initialized from uniform

noise. Since the generator is non-probabilistic, the short run trajectories of Z must move from

uniform latent samples that represent noisy images to tuned latent samples whose generated

images match the data appearance.

6.7.4 Importance of Residual Image for Stability

Throughout our experiments with different versions of the Hat EBM, we find the inclusion of

the residual image Y essential for stability. In particular, one could consider an alternate

86



version of the Hat EBM where

U(z; θ) = H(G(z); θ) (6.14)

without a residual state. As long as the training data is of the form X+ = G(Z+) for a latent

state Z+, one could learn the hat network using the same procedure as the Hat EBM without

the residual Y . In practice, it is usually not possible to exactly invert the generator. In

other words, real images X+ never lie exactly on the generator output manifold, although the

might be close by. Nonetheless, one could bend the rules and use X+ to train the potential

(6.14) with the justification that there is some Z+ such that X+ ≈ G(Z+). In practice, this

leads to instability as shown in Figure 6.7. Even when it is nearly invisible, the residual state

Y is still needed for the hat network to balance the energy of positive and negative samples

and achieve stable learning.

Figure 6.7: Unstable learning using the energy (6.14) (left) and stable learning using the

joint Hat EBM (right). Both settings replicate the refinement experiment using CIFAR-10

with a pretrained SNGAN generator. Even though the appearance of the residual image Y is

nearly invisible, including the residual is essential both from a theoretical perspective and for

practical stability.
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6.7.5 Hyperparameters

Synthesis Training

Dataset Celeb-A CIFAR-10 ImageNet

Training Steps 100000 100000 300000

EBM LR 1e-4 1e-4 1e-4

EBM Optimizer Adam Adam Adam

EBM Gradient Clip 0 0 50

Langevin Epsilon 1e-4 1e-4 1e-4

MCMC Steps 50 50 50

MCMC Temperature 1e-8 1e-3 1e-8

Persistent Bank Size 10000 10000 10000

Generator LR 1e-4 1e-4 5e-5

Generator Optimizer Adam Adam Adam

Retrofit Training

Dataset CIFAR-10

Training Steps 100000

Data Epsilon 1e-3

EBM LR 1e-4

EBM Optimizer Adam

Image Space Epsilon 5e-3

Latent Epsilon 5e-3

MCMC Steps 100

MCMC Temperature 1e-3
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Refinement Training

Dataset Celeb-A CIFAR-10

Training Steps 150000 150000

Data Epsilon 2e-2 2e-2

EBM LR 1e-4 1e-4

EBM Optimizer Adam Adam

Image Space Epsilon 1e-4 1e-4

Latent Epsilon 5e-3 5e-3

MCMC Steps 100 100

MCMC Temperature 1e-4 1e-4
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6.7.6 Visualization of Synthesis Results

Figure 6.8: Initial image states (left) and sampled image states (right) for retrofit Hat EBM

that uses a pretrained generator from a deterministic autoencoder. The training dataset is

CIFAR-10.
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Figure 6.9: Uncurated Hat EBM samples for CIFAR-10 at resolution 32× 32.

Figure 6.10: Uncurated Hat EBM samples for Celeb-A at resolution 64× 64.
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Figure 6.11: Uncurated Hat EBM samples for unconditional ImageNet at resolution 128×128.
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CHAPTER 7

Conclusion

7.1 Themes

7.1.1 Compute and Capacity

A common theme in this body of work is that we keep going bigger and constructing larger

models. As our models got bigger and better, I grew our infrastructure at the same time.

MCMC is very compute intensive because you have to sample. I started out with my first lab

issued GPU, a 1080. Later, in 2019 I built a 4 GPU server called "Odin" which we used to

run all the experiments for the Stochastic Security paper. After that we received a generous

TPU grant from Google for 5 TPUV3-8 and 5 TPUV2-8, we increased compute to train large

scaled EBMs on ImageNet, CelebA, CIFAR10, Pets, Flowers, COCO, and other 4D medical

datasets.

The architecture of our EBMs increased with our compute. At first, we had a very simple

4-layer Convolutional Neural Network EBM model. For the Lifecycle paper we started with

a ResNet18-like architecture [ZK16], and eventually settled on an SNGAN64-like [MKK18]

architecture. In the Hat EBM chapter we scaled this even further and utilized TPUV3-32

nodes with data parallelism to scale even higher.

7.1.2 Historical Updates and Paired Banks

Another theme is the idea of using the paired image and latent vector banks to use historical

samples during learning. We found that by storing older samples we can mimic a very long

MCMC trajectory without sacrificing stability. In the lifecycle and Hat EBM chapters we
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re-use the idea of paired bank storage and use of historical samples during learning to make

the models incredibly stable and diverse. This is why our results were so strong. I believe

going forward the wider community will adapt these strategies to drastically increase EBM

model diversity during trainining.

7.1.3 Tradeoff between natural image accuracy and robustness

Another common theme is the trade-off between natural image accuracy and adversarial

robustness. If we use a method, that has great robustness it must decrease the natural image

accuracy because we are extending the inference capacity to encompass a much larger manifold

then the natural image distribution. Any method, whether it be Adversarial Training (AT) or

Purification-based defense will lower natural image accuracy. While the current state of the

art for robustness against white-box attacks is still much lower then 80% there currently still

room for growth. Eventually I believe that the natural image accuracy of a defense approach

will asymptotically approach natural image classifier performance.

We can see in the "Fixer" chapter that by improving our upper bound on F (xnat)) we

also improve performance on F (xadv).

7.1.4 Chaotic Dynamics

I didn’t highlight this very much but the connection between chaotic dynamics and adversarial

defense is incredibly fascinating. The fact that our defense only emerges at the border of

chaotic and ordered lyapunov exponents is very interesting and we hope to explore this

further in the future.

7.1.5 General Conclusion

As you have seen throughout this thesis, we are able to defend against a wide variety of

datasets, and tasks using the Energy-based model [WXZ18] [NHH19] [HMZ21]. By harnessing

metastable behavior of this model we can make off the shelf classifiers very robust towards

the strongest-known adversarial attacks. Today we can see new models building on top of the
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same framework that Stochastic Security developed. [NGH22] [YHL21]. Adversarial attacks

are one of the central limitations of deep learning models today and we hope that in the

future our defense methods are so robust that they won’t be a problem.

When developing adversarial defense research I also encountered some new ideas for

unconditional image synthesis along the way. This work led to the Hat EBM and the

short-run sampler in the Lifecycle paper.

I have described the progression of my research in adversarial defense from laying the

foundational groundwork to scaling the models to finding new architectures and improvements

along the way. We hope to continue this research in the future and incorporate new ideas

and architectures as the field of Deep Learning evolves.
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