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Abstract: In the United States, regulations are in place to ensure the quality of drinking water.
Such precautions are intended to safeguard the health of the population. However, regulatory
guidelines may at times fail to achieve their purpose. This may be due to lack of sufficient data
regarding the health hazards of chronic low dose exposure to contaminants or the introduction of
new substances that pose a health hazard risk that has yet to be identified. In this review, examples of
different sources of contaminants in drinking water will be discussed, followed by an evaluation of
some select individual toxicants with known adverse neurological impact. The ability of mixtures to
potentially cause additive, synergistic, or antagonistic neurotoxic responses will be briefly addressed.
The last section of the review will provide examples of select mechanisms by which different classes
of contaminants may lead to neurological impairments. The main objective of this review is to bring
to light the importance of considering trace amounts of chemicals in the drinking water and potential
brain abnormalities. There is continued need for toxicology studies to better understand negative
consequences of trace amounts of toxins and although it is beyond the scope of this brief overview it is
hoped that the review will underscore the paucity of studies focused on determining how long-term
exposure to minute levels of contaminants in drinking water may pose a significant health hazard.

Keywords: drinking water quality; reservoirs; neurotoxic metals; neurotoxic organics; public health;
brain function

1. Introduction

The purity of drinking water forms a critical basis for overall considerations of public health
since consumption involves the whole population. Although stringent regulations are in place
to ensure that drinking water does not contain harmful chemicals, there are trace amounts of
impurities. The overall quality of the drinking water is dependent on the source and purification
processes used. Contamination of water supplies rarely entails acute evidence of poisoning but rather
encompasses a gradual and progressive impairment of health. This is due to chronic low-dose exposure
that leads to bioaccumulation of water-soluble amphiphilic environmental toxins that can also be
concentrated in lipid deposits. Once a threshold concentration is reached, cellular dysfunction may
ensue. Thus, exposure to trace amounts of water contaminants may pose a risk for increased incidence
of slow progressing diseases that are generally associated with aging or impaired development. Many
of these disorders involve the central nervous system (CNS), which is especially susceptible to damage
during development and then with acceleration of neurodegenerative changes during aging.

The adverse consequences of environmental contaminants that are present in drinking water
are based on the developmental phase of organisms. For instance, in utero exposures that cause
impaired mitochondrial function can lead to insufficient energy production. Such disruption of
normal cellular activity may in turn interrupt proper CNS growth. Another early consequence
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of exposure to contaminants may be abnormalities in regulated gene expression necessary for
appropriate development. Genetic imprinting may also occur during early CNS growth that do not
immediately manifest changes in function. However, later in the lifespan of an individual, when aging
processes work in concert with these early genetic modifications, predisposition to disease may be
enhanced. Exposure during later stages of lifespan may compound age-associated deterioration of
CNS performance. For instance, an increase in both oxidative stress and inflammation is observed in
senescence. As reviewed in this article, many of the contaminants present in drinking water increase
one or both of these processes, which are thought to be key contributors to neurodegenerative disorders.
The focus of this review is mainly on adverse consequences in the adult brain rather than direct changes
to the fetal CNS.

2. Sources of Contamination of Drinking Water

2.1. Industrial Waste

Many industrial processes use large quantities of water, and the runoff from these has the potential
to pollute residential water supplies. Chemicals reaching water supplies in this manner include both
inorganic salts and organic compounds. Recently, hydraulic fracturing (fracking), a method used to
extract shale gas, has had a major impact on the quality of water leaving sites of this activity. Following
drilling, there is a potential that hydrocarbons such as methane, ethane, and propane may leak and
contaminate shallow groundwater. Surface water contamination can also occur from the injected
hydraulic fracturing fluid, which contains a variety of chemicals including acids, surfactants, acrylic
polymers, and borate compounds, amongst other factors [1]. The presence of neurotoxic acrylamide in
water supplies, due to breakdown of polyacrylamide grouting agents, is generally overshadowed by
the much greater amounts found in cooked foods and coffee [2] and thus is not discussed here.

2.2. Agricultural Runoff

Runoff of materials applied to agricultural crops that often end up in water sources, include
pesticide and fertilizer residues. Irrigation with polluted water containing a range of agrochemicals are
dominant sources of metals and organic compounds in agricultural soils [3,4]. In addition, livestock
farming can add animal wastes and bacteria to the water effluent from fields. Finally, run-off from
garden chemicals can make a contribution to the water burden of contaminants. One example of
an agricultural contaminant in water sources is nitrate. Nitrate is commonly found because of the
prevalent use of nitrogen fertilizers [5]. Neural tube defects have been shown to be four times greater
in the progeny of women whose public water supply contained nitrate above the US maximum
contaminant level [6].

A large number of pesticides have neurotoxic properties [7]. These are often present in
combinations with unknown synergistic or antagonistic consequences. Maximum water concentration
levels (MCVs) and regulatory guidance levels (RGVs) of many pesticides vary by several orders of
magnitude. Furthermore, these values often exceed the calculated upper values for human health risk
allowing for uncertainty. Many implied dose limits are above tolerable daily intake values. Despite
the fact that worldwide jurisdictions are making efforts to regulate pesticide levels in water and also
in other sources, as yet, current worldwide regulatory mechanisms related to drinking water do not
provide safe standards in a manner so as to protect public health. Much improvement in this area is
clearly needed [8,9].

2.3. Water Treatment

Another threat to the quality of water stores ironically comes from procedures intended to improve
the potability of water. Formation of a biofilm in drinking water distribution systems allows microbial
growth [10]. One method of disinfection is to use of chlorine and its derivatives. Interaction of
these agents with trace amounts of organic compounds in water can lead to formation of stable and
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potentially harmful chlorinated organics. Chlorinated wastewater has been shown to be cytotoxic to
mammalian cells [11]. A combination of chlorine and ammonia, used for disinfecting water causes
erosion of copper piping that may increase the content of the metal in the drinking water. The impact of
chlorine on corroding copper pipes is pH dependent [12]. Another potentially harmful material added
to water in order to precipitate organic matter and thus to clarify water involves the application of
alumina as a means of coagulating particulate contaminants. This can increase the aluminum content
of water [13]. The increasing prevalence of acid rain leads to aluminum leaching from rocks and
can thus further elevate the aluminum burden of water resources. Epidemiological evidence reveals
that aluminum levels in drinking water are related to the incidence of Alzheimer’s disease (AD) [14].
This is supported by laboratory data with experimental animals exposed to levels of aluminum in
drinking water that parallel those found in some residential supplies [15,16]. However, the issue of a
causal relation of Al in water and the promotion of AD remains controversial [17].

A recent study evaluated how exposure to disinfection by-products found in tap water during
pregnancy relate to adverse neurodevelopmental consequences of the child. Although there was a
positive correlation between exposure to disinfection by-products and mental score for girls at one
year of age, the difference did not persist when the evaluation was conducted at 4–5 years of age [18].
Thus, more studies are needed to better understand if and how trace amounts of disinfectants in the
tap water may have neurodevelopmental or neurodegenerative consequences.

2.4. Water Conduits

Water delivery through metal-lined conduits can be another factor that can impair the quality of
the final product emerging from household taps. While the use of lead piping has been greatly curtailed
in recent years, lead soldering is still a popular means of annealing piping. The evidence that even low
levels of lead is a developmental hazard to human populations is unambiguous [19]. In addition, the
use of copper tubing is currently widespread. Newly emerging data involving both epidemiological
reports and studies on experimental animals are increasingly indicating that water-borne copper can
also be a source of neurotoxicity [20–23].

2.5. Consumer Products

Pharmaceutical agents can enter the aquatic environment and eventually the drinking water [24,25].
According to the Center for Disease Control and Prevention (CDC), 48.7% of the population uses at least
one prescription drug every 30 days and some of these chemicals gradually get into the water sources.
Water from public drinking water supply wells on Cape Cod frequently contained levels of the antibiotic
sulfamethoxazole, the anticonvulsant phenytoin, and the surfactant perfluorooctane sulfonate at high
levels [26].

In the aquatic environment, pharmacological agents may have adverse effects. Environmentally
relevant doses of the anxiolytic drug oxazepam can alter the behavior of fish [27]. Thus, the presence
of pharmacological agents in water supplies can lead to adverse consequences to aquatic life and
eventually to human health. Metals can enter the water supply as a result of the improper disposal of
lead containing batteries and of brake pads, which are high in zinc and copper. A number of metals
such as cadmium, zinc, lead, and copper, present in brakes and tires, can also contaminate storm water
runoff from roadways [28].

3. Consideration of Neurotoxic Potential of Individual Contaminants

3.1. Metals

3.1.1. Lead (Pb)

The seepage of lead from industrial wastes into drinking water is an old problem. This is
compounded by the existence of significant amounts of lead in some waters, especially those from
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low-lying areas [4,29]. Whereas lead toxicity was once believed to involve only a small population
of industrially exposed workers, the neurotoxicity of very low levels of lead that can be relevant to
large populations, has been widely recognized for the last 20 years. This adverse effect is especially
pronounced in the developing fetal and neonatal brain. Low-dose exposure to lead has been associated
with behavioral and cognitive impairments [30].

One of the more recent incidents involving lead exposure through the drinking water, is from Flint,
Michigan. In an effort to cut costs, the city of Flint switched its water source from the Detroit Water
and Sewage Department to Flint River water treated at Flint Water Service Center [31]. Many water
samples tested subsequently contained lead above the safe level [32]. Blood lead levels in children
were significantly increased [33]. In California, contamination from a lead battery recycling plant has
led to community concerns regarding potential neurological impacts [34]. An analysis of blood lead
levels in children less than six years old revealed that residential proximity to the plant had an impact
on these levels [35].

The potential for lead to cause brain abnormalities is not limited to neurodevelopment. A hallmark
of Alzheimer’s disease is senile plaques composed of amyloid beta (Aβ) protein derived from the
amyloid precursor protein (APP). Prenatal lead exposure may have delayed long-term consequences
in that it can influence Aβ-related biological pathways that have been implicated in Alzheimer’s
disease [36]. Early gene imprinting by environmental lead exposure may subsequently enhance
expression of genes associated with neurodegenerative disorders [37]. In monkeys, exposure to Pb
during an early phase of brain development caused an increase in APP expression and amyloid
deposition in later life [38,39].

3.1.2. Aluminum (Al)

The prevalence of Al in drinking water varies considerably [40]. The metal is often added to
water as a coagulant of organic matter and the residual levels that are inadvertently solubilized are
considered innocuous. However, increasing evidence from both epidemiological and from laboratory
studies, suggests that levels of Al found in some drinking water may be harmful. Chronic exposure to
such levels can cause neuroinflammation and oxidative stress in experimental animals [15,21].

Al exposure may potentiate the progression of neurodegenerative disorders such as Alzheimer’s
disease. This is strengthened by findings showing elevated Al in postmortem AD brain tissue [41–43].
Al is found in the cerebral arteries of AD patients [44] suggesting that the metal may disrupt aspects
of the blood brain barrier [45]. Epidemiological studies have been able to strengthen this connection
between Al ingestion and neurodegenerative disease. The prevalence of AD dose-dependently
increased in areas where Al concentrations in the drinking water supply are high [46]. A meta-analysis
of nine reports associated elevated Al concentrations with diminished cognitive performance [47].
A complicating factor in evaluation of the effects of Al in drinking water, is evidence from human and
animal studies showing that the simultaneous presence of silicic acid appears to be protective against
Al toxicity, presumably due to formation of an inert aluminosilicate [48,49]. It is difficult to link one
specific exposure to AD since it is a pleiotropic disease with many causes. The positive and negative
evidence for Al being a factor in AD has recently been evaluated and summarized [50].

3.1.3. Copper (Cu)

Low concentrations of copper salts in water that were previously considered harmless may also
be related to adverse neurological effects. Unlike lead and aluminum, Cu is a trace element that has a
biological role as a cofactor in many enzymes. However, because the free forms of Cu are toxic, there
are many mechanisms that are in place to keep the metal bound to proteins. Two hereditary disorders
that disrupt Cu homeostasis (Menkes’ and Wilson’s diseases) illustrate the neurotoxic potential of
Cu [51].

Cu in the drinking water has been shown to be more toxic than corresponding concentrations of
the metal that are present in food [52]. The levels of the metal in drinking water are governed by the
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pH and the types of conduits that are used. Households that use Cu tubing in the plumbing system
have higher concentrations of the metal due to gradual corrosion. However, the amounts of Cu in tap
water are much lower if the water is allowed to run before use [53]. The establishment of regulations
concerning copper content of residential water set the maximum standard for copper as 1.3 ppm [54].
Levels of up to 7.8 mg/L can be reached if water remains stagnant in corroding copper pipes [55].

Increased copper ingestion from drinking water can be associated with gastrointestinal
symptoms [56]. There are concerns that the metal may also play a causative role in neurodegenerative
disorders such as Alzheimer’s disease and Parkinson’s disease (PD). These concerns are based on
the findings that the non-ceruloplasmin bound component of Cu is increased in the serum of AD
patients [57] and cerebrospinal fluid of patients with PD [58]. There is evidence from a transgenic
mouse model of AD that chronic copper exposure accelerates disease-associated pathology [22,23]
and occupational exposure to Cu has been linked to an increased risk of PD [59]. Free Cu has been
associated with cognitive decline [60] and this observation strengthens its potential role in AD [61].

Specific Cu-binding sites are present on the amyloid precursor protein [62] as well as the amyloid
peptide [63] where the metal attaches [64]. Upon binding, Cu undergoes redox cycling which leads to
formation of reactive oxygen intermediates [65,66]. Low-dose exposure to Cu in the drinking water
significantly increased markers of oxidative stress in the brain of exposed animals [21] and increased
activation of the transcription factor, AP-1 [67]. Since AP-1 is activated by redox status, the mechanism
by which Cu modulates the transcription factor is likely related to its stimulation of oxidative processes.
Inability of microglia to sequester Cu bound to amyloid plaques may enhance inflammatory events
known to be exacerbated in AD [68]. Most recently, levels of Cu as low as 2 µM (a level only 10%
of maximal levels of Cu recommended by the EPA) in the drinking water of aged mice, have been
found to inhibit the actions of low-density lipoprotein receptor-related protein 1 (LRP1), which is
involved in the transport of β-amyloid out of cells. This leads to accumulation of β-amyloid and
neuroinflammation within the brain [69]. Overall, this concordance of laboratory and studies of human
populations suggests a major, largely unacknowledged hazard.

Thus, Cu in drinking water may have the ability to cause adverse neurological effects through
several separate but intertwined mechanisms.

3.1.4. Arsenic and Cadmium

The presence of inorganic arsenic or cadmium in drinking water can present a serious hazard.
Chronic arsenic poisoning is found in large parts of Bangladesh and adjoining parts of India,
where ground water is severely contaminated with heavy metals [70]. One study of nearly a million
subjects in a part of West Bengal reported a prevalence rate of arsenicosis in over 15% of the inhabitants.
The highest level of arsenic found in drinking water was over 1300 µg/L and values of over 100 µg/L
were common. Peripheral neuropathy was present in 16% of cases [71].

Arsenic exposure has also been linked to neurodevelopmental abnormalities. For example, in a
case control study conducted in Bangladesh, mothers with higher arsenic exposure and folate deficiency
were found to be at a higher risk of giving birth to an infant with neural tube defects. This was
associated with histone modifications, which were taken to imply epigenetic effects [72]. Furthermore,
cognitive [73,74] and motor [75] function is lower in children that consume arsenic contaminated
water for a prolonged period. This metal may also enhance biological processes associated with
neurodegenerative disorders. For example, arsenic promotes accumulation of α-synuclein, a neuronal
protein that plays an important role in Parkinson’s disease [76]. An epidemiological relation between
arsenic exposure and a higher incidence of neurodegenerative disorders has been reported [77].
This may be attributable to the ability of arsenic to promote oxidative stress and inflammation, both of
which are associated with neurodegeneration [78].

The hazards of arsenic in drinking water are not confined to third world countries. Some parts
of the US, notably Texas and the Great Lakes Basin, have arsenic levels of over 50 µg/L in
groundwater [79].



Int. J. Environ. Res. Public Health 2018, 15, 2 6 of 15

While the neurotoxic aspects of arsenic are overshadowed by its potential as a carcinogen,
damage to the developing nervous system poses a grave long-term risk. Similarly, while cadmium
exposure is associated with nephrotoxicity, low doses of cadmium in drinking water can promote
excess free radical related oxidative events. The brain appears to be more sensitive to such changes
than other organs [80]. It is likely that exposure to neonates is more harmful compared to adults [81].
Cadmium levels in drinking water have been found to exceed the permissible limits of the World Health
Organization in both Egypt and Iran [82,83]. The hazard posed by seemingly low-level exposures to
several heavy metals, such as cadmium, mercury and lead is exacerbated by the tendency of these
metals to accumulate in tissues over time.

3.2. Organic Materials

3.2.1. Halogenated Residues

Organochlorine pesticides owe their effectiveness to their stability rather than to their reactivity.
This durability allows prolonged allosteric interaction with key receptor sites and ion channels.
Their non-reactiveness is the same quality that can permit their persistence in aqueous media.
Another class of stable organohalogen compounds that has diffused into the environment, includes
polychlorinated biphenyls (used as electrical insulators) and polybrominated biphenyls (used as fire
retardants). The inadvertently produced dioxins are also in this group. Due to their exceptionally
low reactivity, trace amounts of these materials can persist for extended periods in water supplies.
Despite their inertness, such compounds can selectively target specific biological sites and impede
their function for long periods by allosteric means. Their neurotoxicity is well established [84].

A further presence of organohalogens in drinking water comes from the use of chlorine, bromine
or their derivatives such as chloramines and chlorine dioxide as a means of water disinfection.
Water sterilization byproducts include trihalomethanes, haloacetic acids, haloacetaldehydes,
haloacetonitriles, haloamines, nitrosamines, and halobenzoquinones [85]. While most of these have not
been extensively studied, the neurotoxicity of several disinfection byproducts, including dibromacetic
acid found in water stocks, has been described [86].

An association between extended exposure to trichloroethylene (TCE) and Parkinson’s
disease has been reported: the exposure of animals to TCE can lead to striatal degeneration
and the onset of parkinsonian characteristics. This has been attributed to mitochondrial
dysfunction perhaps due to the formation of chloral from TCE and the subsequent synthesis of
1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) a specific dopaminergic neurotoxin [87].

3.2.2. Acrylamide

Polyacrylamide is a grouting agent and is also an effective flocculent in water clarification. It is
useful in lining pipes, wells, and canals in order to reduce loss of water by leakage. Polyacrylamide
is also present in herbicide blends in order to increase viscosity. The degradation of polyacrylamide
to the monomeric acrylamide can present a toxic hazard to water supplies. There have been cases of
poisoning following consumption of water from recently grouted pipes or wells. These have led to
severe neurotoxic effects, including ataxia, hallucinations and memory disturbances [88].

There are several reasons why acrylamide contamination is generally not a major issue.
Acrylamide is biodegraded in water, with a half-life of around two days, and it is not bioaccumulated.
Also, the acrylamide intake from commonly eaten food is several orders of magnitude greater than
that to be expected from water [89].

3.2.3. Bisphenol A

Bisphenol A (BPA) is an important chemical used in large amounts in the production of various
plastics including polycarbonates and epoxy resins. In addition to being used in manufacture of bottles
and linings of cans containing food products, epoxy resins are also used to line water supply pipes.
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By acting on estrogen receptors, bisphenol A is a developmental toxin and a carcinogen. It also causes
neuronal apoptosis together with metabolic and behavioral changes by mechanisms not involving the
estrogen receptor [90]. The neurotoxicity of BPA is controversial since another study (supported by the
polycarbonate industry) failed to find evidence of neurotoxicity [91]. While the BPA content of bottled
drinking water is a major concern, this chemical has also been found in tap water in several countries,
including the US, at levels, that can be greater than that of bottled water [92].

3.2.4. Other Organic Contaminants of Anthropogenic Origin

Innocuous materials such as synthetic musks (for example, 1,3,4,6,7,8-hexahydro-4,6,6,7,
8,8-hexamethylcyclopenta[γ]-2-benzopyran) are widely used in the perfume industry. They have been
reported to contaminate water supplies in China. Since these are very stable compounds, with very
low biodegradability, they are capable of bioaccumulation and thus their potential hazard needs to be
carefully evaluated [93,94]. Other agents which find widespread use in personal care products, include
surfactants such as 4-nonylphenol. These are also found in urban stream water [94]. 4-nonylphenol is
known to be neurotoxic and to activate retinoid receptors [95].

3.3. Mixtures of Contaminants

While a variety of agents may individually be within the safety levels set by regulatory agencies,
mixtures of contaminants may produce a significant overall health hazard. In view of all potential
interrelationships between toxicants, the health consequences of such multi-component constituents
are hard to predict. For example, tap water has been linked to neural tube defects in mice embryos,
and since no single contaminant could be linked to the observation, the authors suggest that the effects
may be caused by the combinations of low-dose contaminants [96]. Concurrent exposure to a range of
toxic heavy metals, including lead, cadmium, arsenic and methylmercury are of notable concern in
view of their persistent effects on the brain. The exact toxicological mechanisms invoked by exposure
to such mixtures are still unclear, however they influence many common metabolic pathways that are
related to cognitive dysfunction [97]. A further consequence of the presence of several agents in water
impacting on related processes is that additive, synergistic, or antagonistic interactions between water
contaminants are likely. The complexity of this issue is illustrated by a study of four toxic metals in
an isolated cell system. With increasing metal concentration, effects were additive, then synergistic,
and finally antagonistic [98]. It is significant that at the lower concentrations studied, which are most
likely to reflect the real-life situation, effects were additive or synergistic. Similar additive or synergistic
interactions have been found in exposures of intact animals to levels of lead, cadmium, and arsenic
that reflect Lowest Observed Effect Levels (LOELs) of each component [99]. There is evidence from
neurodevelopmental studies in Bangladesh that arsenic, lead, and manganese can potentiate one
another’s toxicity. In human populations, lead and manganese appear to interact in a non-additive
synergistic manner [100]. Synergistic neurotoxic interactions between metals at levels paralleling
those found in some Indian ground waters have also been reported in a more defined animal model
system [101].

The question thus arises as to whether the regulatory standards for individual compounds are in
fact adequate for the real-world situation where the water content of a single constituent cannot be
considered in isolation. This is obviously a complex and difficult issue to address but is relevant to
water supplies which are rarely affected by a solitary contaminant.

4. Mechanisms of Neurotoxicity

While each of the agents potentially contaminating water supplies discussed above has a
characteristic profile of neurotoxicity, there are some effects that are common to many chemicals.
This is not surprising, as these events frequently constitute signs of an unhealthy cell with sub-optimal
metabolic activity. One such process is an enhancement of inflammatory pathways consequent to
activation of innate immune responses. Another frequent occurrence is the presence of excess levels
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of pro-oxidant activity. Both are common mechanisms associated with neurodegenerative diseases.
The pathways by which quality of drinking water may be compromised and thus impact on brain
health are summarized in Figure 1.
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Figure 1. Sources of neurotoxic agents in drinking water and their potential consequences. CNS: central
nervous system.

4.1. Neuroinflammation

The immune system is composed of a system of cellular and molecular mediators that orchestrate
resistance against various insults, including protection against chemicals, which may harm the body.
Innate immunity is a first line of defense that uses the inflammatory response to immediately recruit
cells to guard against potentially damaging substances. Key participants in inflammation are cytokines
and chemokines, which work together in a protective manner [102]. Since the blood brain barrier
provides protection for the brain, it was previously thought that the CNS is immunologically privileged.
However, it has been shown that this barrier does not confer immune privilege on the brain and that
there is active interaction of the CNS with peripheral immune cells [103]. Furthermore, the brain is
capable of innate immune activation following environmental insults [15]. Although acute immune
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responses in the brain that eventually resolve are protective, extended immune activation can occur
following a transient toxic insult and this can lead to neurodegeneration [104].

In AD, chronic neuroinflammation is enhanced with disease progression and is considered to
be one of the major mechanisms of disease pathology [105,106]. The most important inflammatory
cytokines are tumor necrosis factor alpha (TNF-α) and interleukins 1 & 6 (IL-1, IL-6), and levels of
these are elevated in AD brains [107]. Inflammatory cytokines can disrupt the integrity of the blood
brain barrier resulting in access of environmental toxicants into the brain parenchyma [108].

4.2. Oxidative Stress

Reactive oxygen species have a physiological role, and the respiratory burst is a mechanism by
which immune cells destroy pathogens [102]. However, abnormal or persistent levels of such oxidant
species can be damaging. Contaminants such as redox active metals, once accumulated, may cause
neurotoxicity by promotion of free radical formation.

Effective mitochondrial functioning is necessary for maintaining CNS health. This organelle
provides energy to actively transport nutrients into the brain and export environmental neurotoxins
that may have inadvertently entered the brain. Drinking water contaminants that disrupt
mitochondrial function or enhance production of reactive oxygen species may in time exhaust defensive
antioxidant processes. The ensuing surge in oxidative stress can lead to abnormal brain function.
Indeed, mitochondrial dysfunction and oxidative stress are commonly observed in patients with
neurodegenerative disorders such as Alzheimer’s disease [109–112].

5. Conclusions

There have been major improvements regarding the quality of residential water supplies.
However, there is still considerable variance in different communities, in part due to differing standards.
In addition to the World Health Organization and federal government, each state in the US has its
individual standards. A unified set of guidelines for drinking water, based on scientific evidence and
economic feasibility, would effectively protect global health.

One approach to mitigating the adverse consequences of contaminants in drinking water is to
institute green chemistry practices. For instance, the green pharmacy movement is a program aimed at
designing drugs that are more biodegradable or improving wastewater treatment by processes such as
ozonation, which can further degrade pharmaceutical agents [24,113,114]. Another proposed approach
is to enhance planning and technology. An example of this approach would be source separation
of wastewater so that “greywater” that is derived from showers or washing machines is collected
separately from “blackwater” that is derived from the toilet. The separated wastewater can then be
treated more efficiently [115]. Such global developments in technology would limit contaminations
and ensure that there will be sufficient clean water to sustain a rapidly developing world population.

Author Contributions: Each author contributed equally to this report.

Conflicts of Interest: The authors declare no conflict of interest. This review was not supported by any commercial
or governmental funding.
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