
UC Irvine
ICS Technical Reports

Title
LAMBDA-Graphs : a replacement for PROG

Permalink
https://escholarship.org/uc/item/5sm1q6k5

Author
Meehan, James R.

Publication Date
1979

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5sm1q6k5
https://escholarship.org
http://www.cdlib.org/

Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)

j^AMBDA-Graphs: A Replacement for PROG

James R. Meehan

ABSTRACT. The PROG feature in LISP can be viewed as a
notation for a graph of expressions, corresponding to the
standard flowchart. Although PROG and it associated special
forms, GO and RETURN, are commonly implemented as LISP
functions, we show that PROGs can be transformed into
equivalent LAMBDA-expressions that contain no GO or RETURN
statements at all, and therefore run faster than PROG by
avoiding runtime overhead. The transformation program is
included in the report.

Technical Report 135

December 1979

Department of Information and Computer Science
University of California, Irvine

Irvine, California 92717

CONTENTS

1.0 Introduction 1

2.0 EVAL and APPLY 4

3.0 COND inside PROG 6

4.0 Transforming PROG-bodies into LAMBDA-graphs 9

5.0 Eliminating PROGs altogether 10

6.0 A flaw, and a fix 10
6.1 The Hacker's Delight 12
6.2 The Better Way 13

A. Introduction to MLISP 14
B. LISP translations of the MLISP code ... 17
C. The PROG-transformer .23
D. References 27

LAMBDA-Graphs: A Replacement for PROG

James R. Meehan

1 .0 Introduction

The "purity" of LISP without the PROG feature derives

from the simplicity of the syntax and semantics of Cambridge

Polish, LAMBDA-expressions, recursion, and COND. Among such

company, the lowly PROG is something of a black sheep,

aesthetically. Jumping here and there like an assembly

program, PROG seems an all-too-obvious reminder of the

underlying architecture. Control flow in the rest of LISP

is much more elegant, even in the extended definitions of

LAMBDA and COND that permit a sequence of expressions where

ur-LISP permitted only one; e.g., (LAMBDA (...) el e2 e3)

and (COND (pi el e2 e3 ...) ...). Here, the elementary CDR

suffices to control the flow of evaluation.

Of course, PROG is a necessary part of LISP, since it

permits a more efficient implementation of iteration than is

generally possible with recursion. The body of a PROG is

also the closest LISP comes to expressing the venerable

flowchart, which seems fair to survive as a conceptual tool

of programmers.

In Stanford LISP 1.6 and its descendants, PROG is

implemented as a compiled FEXPR, one of the so-called

"special forms" in LISP. Whil€ all FEXPRs control the

evaluation of their parameters, PROG also controls the

sequencing by means of two more special forms, GO and

RETURN, which access global variables in the interpreter

that are re-bound every time PROG is called, old values

going onto a runtime stack. The expression (GO LOOP) is

interpreted by fetching a pointer to the PROG-body and

performing a linear search (!) for the atom LOOP. Thus,

re-ordering the statements in a PROG can affect its speed,

since "upward" GOs are faster than "downward" GOs.

While PROG may be necessary to LISP, that particular

implementation of PROG is not, and what we describe here is

another implementation, involving a one-time pre-processing

cost (transforming the PROG into what we call a

LAMBDA-graph). PROG is redefined as a MACRO; RETURN and GO

are entirely eliminated from the LISP interpreter.

The LAMBDA-graph runs faster than the original PROG

since there is no overhead for PROGs, GOs, and RETURNS,

which have all been eliminated. The increase in speed is

directly proportional to the frequency with which GOs and

RETURNS were executed in the PROG. A "straight-line" PROG

with no GOs at all does not benefit measurably from being

transformed into a LAMBDA-graph. A small, single-loop

function such as DREVERSE runs about 10% faster as a

LAMBDA-graph. The greatest improvements appear in long,

"loopy" PROGs with lots of GOs and top-level CONDs,

particularly where the GOs are embedded in several layers of

CONDs.

In effect, the LAMBDA-graph provides some of the

benefits that the compiling LISP code does.

The practical disadvantage of LAMBDA-graphs is that

they are, indeed, graph structures, "unprintable"

S-expressions, likely to cause havoc with unsuspecting tools

of the environment such as the editor or Break Package. Of

course, it is quite possible to reverse the transformation

by inserting labels and GOs. The result would be equivalent

but not identical to the original PROG, since there are

several ways one could insert the labels and GOs. (Lacking

any jumps whatsoever, LAMBDA-graphs avoid the problems of

being sensitive to upward-vs.-downward jumps.)

In UCI LISP, however, macros are expanded in place,

retaining both the original and the expanded forms, and most

of the environmental tools are smart enough to access the

original form, so that the LAMBDA-graphs are not

prohibitively troublesome.

Apart from the practical considerations, LAMBDA-graphs

are of aesthetic interest, perhaps, because they retain PROG

as a notation for flowcharts without actually being

interpreted like assembly programs, and also because they

point out that, somewhat unexpectedly, EVAL requires no

modification to interpret code that is represented by a data

structure — the graph — that it was not originally

designed to handle.

We begin by presenting the time-honored definition of

the LISP interpreter, updated somewhat. From the earliest

LISP articles [1,2], this has usually been done in LISP

itself, but here we use the more legible notation of MLISP

[4,5], since the source language of the interpreter is

irrelevant to the discussion. For those unfamiliar with

MLISP, a brief introduction appears in Appendix A. The LISP

translation of all the MLISP code appears in Appendix B.

2.0 EVAL and APPLY

Our definition of LISP'S top-level functions assumes that

variables are bound on an association list (ALIST) that must

be passed to any function that does its own evaluation

(e.g., FEXPRs). We assume that function definitions are

stored on property lists.

EX PR EVAL (X, ALIGT);
BEGIN NEW Y;
RETURN

IF ATOM X THEN

IF NULL X 1 X EQ T I NUMBER? X | STRING? X THEN X
ELSE IF Y _ ASSOC (X, ALIST) THEN CDR Y
ELSE ERROR <"UNBOUND VARIABLE", X>

ELSE IF ATOM X[1] THEN
ELSE IF Y GET (X[1], »EXPR) THEN

APPLY (Y, EVLIS (CDR X, ALIST), ALIST)
ELSE IF Y GET (X[1], 'FEXPR) THEN

APPLY (T, <CDR X, ALIST>, ALIST)
ELSE IF Y GET (X[1], 'MACRO) THEN

EVAL (AFPLY (Y, <X>, ALIST), ALIST)
ELSE IF Y ASSOC (X[1], ALIST) THEN

EVAL (CFR Y cons CDR X, ALIST)
ELSE ERROR <"UNDEFINED FUNCTION", X[1]>

ELSE APPLY (X[1], EVLIS (CDR X, ALIST), ALIST);
END;

EXPR APPLY (FN, ARGS, ALIST);
(WHILE ATOM FN 1 FN[1] NEQ 'LAMBDA DO:

FN ATOM FN & GET (FN, 'EXPR) | EVAL (FN, ALIST),
EVSEQ (CDDR FN, MAPCAR ('CONS, FN[2], ARGS) § ALIST));

I;; EVLIS evaluates all the expression in the list X and
creates a new list of their values. };
EXPR EVLIS (X, ALIST);

FOR NEW I IN X COLLECT <EVAL (I, ALIST)>;

{;; EVSEQ evaluates all the expression in the list X and
returns the value of the last expresion. };
EXPR EVLIS (X, ALIST);

FOR NEW I IN X DO <EVAL (I, ALIST)>;

FEXPR COND (CLAUSES, ALIST);
BEGIN NEW VAL, EXPRLIST;

1;IF NULL CLAUSES THEN RETURN NIL;
VAL EVAL (CLAUSES[1,1], ALIST);
IF NTJLL VAL THEN CLAUSES CDR CLAUSES ALSO GO 1;
EXPRLIST CDR CLAUSES[1];

2;IF NULL ElPRLIST THEN RETURN VAL;
VAL EVAL (EXPRLISTC1], ALIST);
EXPRFIST _ CDR EXPRLIST;
GO 2;
END;

{;; FROG, definition 1. NOTE: this definition is incomplete.};
FEXFR FROG (FBODY, ALIST);

BEGIN NEW PROGVARS, STATEMENT, BODY;
PROGVARS PB0DY[1];
BODY PBUDY CDR PBODY;
FOR NTW I IN "FROGVARS DO:

ALIST (I CONS NIL) CONS ALIST;
Bind the PROG-variables to NIL};

1; IF NULL BODY THEN RETURN NIL;
STATEMENT B0DY[1];
IF ATOM STATEMENT THEN {;; It's a label. Skip it.}
ELSE IF STATEMENTS] EQ 'GO

THEN {;; Find the tail of the PROG-body that starts
with the label.}

ALSO BODY STATEMENT[2] MEMO PBODY
ALSO (IF NULL BODY

THEN ERROR <"UNDEFINED LABEL",
STATEMENT[2]>)

ELSE IF STATEMENT[1] EQ 'RETURN
THEN RETURN EVAL (STATEMENT[2], ALIST)

ELSE EVAL (STATEMENT, ALIST);
BODY CDR BODY;
GO 1 ;~
END;

3.0 COND inside PROG

In the original version of LISP, SETQ was allowed only

inside PROG, and COND was defined differently. We will skip

over SETQ here and concentrate on COND. In our current

definition of PROG, we made no special check for COND, so it

would get passed to EVAL. But that isn't good enough,

because there might be a GO or RETURN inside the COND, and

EVAL doesn't know anything about those; only PROG does.

What we want to do is to treat the expressions inside COND

(past the predicates) as if they occurred at the top level

of PROG.

In a sense, they already do. After evaluating the

expressions that follow the first true predicate, we go on

to the statement following the COND (unless we reached a. GO

or RETURN). So there's no real distinction between the

statements that follow a "true" predicate and the statements

that follow the COND: they're both "top-level." For

example, the following FROGs are equivalent:

{;; Example 1.};
BEGIN NEW A,B,C;

iFa EQ 3 THEN PRINT A ALSO PRINT B
ELSE PRINT B;
FOO (BAZ);
t > > . . .} j
RETURN Z;
END;

{;; Example 2.};
BEGIN NEW A,B,C;

if'A EQ 3 THEN GO 1
ELSE GO 2;

3; FOO(BAZ);
{; ; ...};
RETURN Z;

1; PRINT A;
PRINT B;
GO 3;

2; PRINT B;
GO 3;
END;

If the PROG doesn't end with a RETURN or a GO, we can insert

a RETURN NIL.

So we revise our definition of PROG, illustrating the

equivalence of code and data in LISP: Where the control

would flow from one sequence to another, we literally APPEND

(§) the lists together containing those sequences.

{;; PROG, definition 2.};
FEXPR PROG (PDODY, ALIST);

BEGIN NEW PROGVARS, STATEMENT, BODY;
PROGVARS PB0DYL1];
BODY PBUDY CDR PBODY;
FOR NlW I IN "FROGVARS DO:

ALIST (I CONS NIL) CONS ALIST;
{;; Bind the PROG-variables to NIL};

1; IF NULL BODY THEN RETURN NIL;
STATEMENT B0DY[1];
IF ATOM STlTEMENT THEN NIL
ELSE IF STATEMENTE1] EQ 'GO

THEN {;; ... (as before)}
ELSE IF STATEMENT[1] EQ 'RETURN

THEN {;; ... (as before)}
ELSE IF STATEMENT[1] EQ 'COND

THEN BODY _ FINDTRUECLAUSE (CDR STATEMENT, ALIST) @
CDR BODY

ALSO GO 1

ELSE EVAL (STATEMENT, ALIST);
BODY CDR BODY;
GO 1 ;
END;

EXPR FINDTRUECLAUSE (CLAUSES, ALIST);
BEGIN

1;IF NULL CLAUSES THEN RETURN NIL;
IF NULL EVAL (CLAUSES[1,1], ALIST)

THEN CLAUSES CDR CLAUSES

ALSO GO 1;
RETURN CDR CLAUSESE1];
END;

The list of expressions that FINDTRUECLAUSE returns is

APPENDed to the remainder of the PROG body. If all the

predicates evaluated to NIL, then FINDTRUECLAUSE returns

NIL, and we APPEND that NIL to the CDR of BODY; i.e., we

"drop off" into the next statement.

4.0 Transforming PROG-bodies into LAMBDA-graphs

PROG is now correct, but our, hacker's hackles are raised at

the thought of having to use APPEND, creating all that new

storage. Can we avoid it? Can we use NCONC?

We are suggesting that each branch of the COND, except

those that end in GO or RETURN, actually be spliced into the

statement following the COND. Since we've already seen that

that's the same as using GO, we can do the same for all

GO-statements, too, splicing them into their "targets." We

can then eliminate the special case for GO. (GO-TO

elimination with a vengeance!) There's no need to keep the

labels around, either.

Since each branch of the COND will be spliced into

subsequent code, we can treat COND as if it were the last

statement in the PROG and delete the link to its successor.

Before we do any of this, we must insist that a "true"

branch exist in the COND, just as in original LISP. So if

there isn't one there, we insert a (T) branch that we later

splice into the statement following the COND.

At this point, PROG-bodies no longer resemble

sequences; in fact, they're graphs, since our splices can

go anywhere inside the PROG.

5.0 Eliminating PROGs altogether

The only thing left that makes PROG unique is the RETUiiiJ

statement. In one stroke, we eliminate both PROG and

RETURN.

In any sequence that includes a RETURN statement, we

can delete the link connecting RETURN to the remainder of

the sequence (we can't get there, anyway), and reduce

(REIURN X) to X. X will now be the last expression to be

evaluated, and we can have that value returned because we're

going to turn the PROG into a LAMBDA-expression by adding on

as many NILs as there are PROG-variables. So (FROG (A B C)

...) becomes ((LAMBDA (ABC) ...) NIL NIL NIL).

(The entire transformation program appears in Appendix C.)

Thus, having eliminated GO and RETURN, we can do

without the PROG FEXPR. EVAL and APPLY process the

LAMBDA-graph as they would any other LAMBDA-expression.

6.0 A flaw, and a fix

There is a problem, however. We've forgotten what happens

to the runtime stack. Whenever a FEXPR such as COND is

evaluated, EVAL is eventually going to call itself, which

requires putting (at least) a return address on the stack.

Consider the function LENGTH:

LENGTH, definition 1.};
EXPR LENGTH (L);

BEGIN NEW COUNT;
COUNT 0;

1;IF ~ATUM L then L CDR L ALSO COUNT
RETURN COUNT;
END;

That will be transformed into:

COUNT+1 ALSO GO 1;

{;; LENGTH, definition 2.};
EXPR LENGTH (L);

LAMBDA (COUNT);
(COUNT 0,
IF -ATUM L

THEN L _ CDR L
ALSO COUNT COUNT+1
ALSO IF ~ATOM L

THEN L _ CDR L
ALSO COUNT COUNT+1

ALSO IF -ATTJM L
THEN L _ CDR L
ALSO COUNT COUNT+1
ALSO {;;}

ELSE COUNT

ELSE COUNT

ELSE COUNT);
(NIL);

Every time we evaluate the COND (IF), the stack grows,

might just as well have defined LENGTH recursively!

Somehow, we've got to get the stack back down to where

it was when we first encountered the COND. We don't need

any of the information that's on the stack above the COND,

so there's no harm in deleting it. We look at two

solutions: the Hacker's Delight, and the Better Way.

6.1 The Hacker's Delight

In some LISP systems, there are functions that allow trie

programmer to access the real, live stack. (Faint-hearted

advocates of structured programming are advised to skip to

the next section.) In UCI LISP, there is a function called

SPREVAL.

(SPREVAL P V) evaluates its argument V in its local ,
. context to get a form, and then it returns to the

context specified by [stack pointer] P and evaluates
the form in that context, returning from that
context with the value. This is very similar to
SPREDO except that the EVAL-blip on the stack is
changed. [3, page 146]

That's what we need, if only we can figure out how to save

the stack pointer. We need one pointer for each level of

PROG, so we can't store it in a single global cell.

Solution; we include a new LAMBDA-variable called GCL

(Graph-COND-Level) whenever we transform a PROG into a

LAMBDA-graph, and we change the names of all the top-level

CONDs in PROGs to GCOND (so that we don't conflict with

CONDs that really do compute a value). We define a FEXPR

called GCOND that simply calls COND, but only after checking

to see whether the stack needs shrinking. If it's the first

evaluation of GCOND in that LAMBDA, GCL will be NIL, in

which case we set it to the current stack pointer (via the

function SPDLPT). Otherwise, we reset the stack pointer to

the value of GCL and go on. The code is very simple:

GCOND, definition 1.};
FEXPR GCOND (L, ALIST);

SPREVAL (GCL 1 GCL SPDLPTO, 'COND CONS L);

That resets the stack pointer, changes the current

expression on the stack from (GCOND ...) to (COND ...) and

picks up I'roni there.

While GCOND is short and simple, it is also slower than

the PROG in LISP 1.6, partly because SPREVAL takes some

time, and partly because we call CONS each time. (We can't

use RPLACA to change GCOND to COND in place, because then

we'd never get GCOND on the stack again.)

6.2 The Better Way

We can solve our stack and storage problems if we define

GCOND to be the same as COND, with one small addition:

GCOND, definition 2.};
FEXPR GCOND (CLAUSES, ALIST);

BEGIN NEW VAL, EXPRLIST;
1;1F NULL CLAUSES THEN RETURN NIL;

VAL EVAL (CLAUSES[1,1], ALIST);
IF NTJLL VAL THEN CLAUSES CDR CLAUSES ALSO GO 1;
EXPRLIST CDR CLAUSES[1];

2;IF NULL EKPRLIST THEN RETURN VAL;
The new statement: };

IF -ATOM EXPRLISTCI] & EXPRLIST[1,1] EQ 'GCOND
THEN CLAUSES CDR EXPRLIST[1]
ALSO GO 1;

VAL EVAL (EXPRLISTC1], ALIST);
EXPRlIST _ CDR EXPRLIST;
GO 2;
END;

The extra test (following 2) checks to see if the expression

to be evaluated is a GCOND. If so, then we simply go back

to the outer loop (1).

APPENDIX A

Introduction to MLISP

MLISP is an ALGOL-Iike dialect of LISP. That is, MLISP

source code is translated into LISP and runs in a LISP core

image. It was first developed in 1970 by David C. Smith of

Stanford University [5], and has been extended and greatly

revised to be compatible and concurrent with UCI LISP [3].

MLISP is now maintained and developed at UCI [4]. With the

exception of the READMACRO facility in LISP, all LISP code

is expressible in MLISP.

Most MLISP expressions have obvious meanings in LISP,

given that the syntax is like ALGOL'S. LISP's (CAR A) can

be written in MLISP as CAR (A), but it can also be written

as CAR A and A[1]. Any one-parameter LISP function can be

written as a "prefix" function without parentheses, as in

CAR A. Any two-parameter LISP function can be written as an

"infix" function without parentheses, as in X CONS Y. Any

LISP function at all can be written using parentheses around

the parameters, as in MEMQ (I, L). Many common functions

Introduction to MLISP

have single-character synonyms: + for PLUS, ~ for NOT, &

for AND, 1 for OR, _ for SETQ, @ for APPEND, and = for

EQUAL.

In addition, MLISP uses a variety of syntactic forms

f.or LISP'S special forms. Instead of COND, MLISP uses

IF-THEN-ELSE. Additional expressions in a COND-clause are

denoted by ALSO. E.g.,

(COND ((EQ X Y) (PRINT X) (PRINT Y)))

is written

IF X EQ Y THEN PRINT X ALSO PRINT Y.

Angle brackets indicate lists, so that (LIST 1 2 3) would be

written <1 ,2,3>.

MLISP has a FOR-loop with a wide variety of options.

FOR NEW I IN L DO E is translated into a PROG with a local

"index" variable I that points to successive CARs of the

list L (a la MAPC), evaluating E (any expression) each time.

finally returning the last value had.

FOR NEW I IN L DO: E (DO with a colon) always returns NIL,

so it translates into (MAPC (FUNCTION (LAMBDA (I) E)) L).

FOR NEW I IN L COLLECT E evaluates E as before, but it

also "collects" the values together in a list, APPENDing

each value to the end of the resulting list. Its

translation is

(MAPCAN (FUNCTION (LAMBDA (1) (APPEND E NIL))) L)

The APPEND ... NIL merely makes a top-level copy of E, for

Introduction to MLISP

If the word IN is replaced with ON, we get functions

similar to MAP, MAPLIST, and MAPCON. If the FOR-loop is

followed by UNTIL and some expression B, then the loop will

stop as soon as the B's value is non-NlL. If the word NEW

is missing, then the index variable is not local to the

PROG. Finally, if there is no NEW and there is an

UNTlL-condition and the UNTlL-condition comes true, the loop

will stop, and the index variable will still point to the

item in the list for which the condition was true; if the

loop goes all the way through the list without the

UNTlL-condition becoming true, then the index variable is

set to NIL. This is used in EVCONL.

"Subscript brackets" are used in place of CAR. A[1]

means (CAR A), A[2] means (CADR A), A[1,23 means

(CADR (CAR A)), and so on.

Finally, BEGIN NEW A,B,C; ... END is MLISP's way of

saying (PROG (ABC) ...).

LISP translations of all the MLISP code in the text

appear in Appendix B. For more details about MLISP, see the

reference manual [^1].

APPENDIX B

LISP translations of the MLISP code

(DEFPROP EVAL
(LAMBDA (X ALIST)

(PROG (Y)
(RETURN

(COND [(ATOM
(COND

[(ATOM
(COND

X)
[(OR [NULL X]

[EQ X T]
[NUMBERP X]
[STRINGP X])

X]
[(SETQ Y (ASSOC X ALIST)) (CDR Y)]
[T (ERROR (LIST "UNBOUND VARIABLE" X))
])]

(CAR X))
[(SETQ Y (GET (CAR X) 'EXPR))

(APPLY Y (EVLIS (CDR X) ALIST) ALIST)
]

[(SETQ Y (GET (CAR X) 'FEXPR))
(APPLY Y (LIST (CDR X) ALIST) ALIST)]

[(SETQ Y (GET (CAR X) 'MACRO))
(EVAL (APPLY Y (LIST X) ALIST) ALIST)
]

[(SETQ Y (ASSOC (CAR X) ALIST))
(EVAL (CONS (CDR Y) (CDR X)) ALIST)]

Y (ASSOC (CAR
(CONS (CDR Y)

•EXPR))
X) ALIST) ALIST)

X) ALIST))
(CDR X)) ALIST)]

EXPR)

[T (ERROR (LIST "UNDEFINED FUNCTION"
(CAR X)))])]

[T (APPLY (CAR X)
(EVLIS (CDR X) ALIST)
ALIST)]))))

(DEFPROP APPLY
(LAMBDA (FN ARGS ALIST)

LISP translations, of the MLISP code

(PROG NIL
LOOP (COND [(OR [ATOM FN] [NEQ (CAR FN) 'LAMBDA])

(SETQ FN
(OR [AND [ATOM FN] [GET FN 'EXPR]]'

[EVAL FN ALIST]))
(GO LOOP)]))

(EVSEQ (CDDR FN)

rrvni^N (APPEND (&VECTOR NIL 'CONS (CADR FN), ARCS) ALIST)))h A P K)

{;; EVLIS evaluates all the expression in the list X and
creates a new list of their values.)

(DEFPROP EVLIS
(LAMBDA (X ALIST)

(MAPCAR (FUNCTION (LAMBDA (I) (EVAL I ALIST))) X))
EXPR) . "

EVSEQ evaluates all the expression in the list X and
returns the value of the last expresion.)

(DEFPROP EVLIS
(LAMBDA (X ALIST)

(PROG (&V &LST1 I)
(SETQ &LST1 X)

LOOP (COND [(NULL &LST1) (RETURN &V)])
(SETQ I (CAR &LST1))
(SETQ &LST1 (CDR &LST1))
(SETQ &V (LIST (EVAL I ALIST)))
(GO LOOP)))

EXPR)

(DEFPROP COND
(LAMBDA (CLAUSES ALIST)

(PROG (VAL EXPRLIST)
1 (COND [(NULL CLAUSES) (RETURN NIL)])

(SETQ VAL (EVAL (CAR (CAR CLAUSES)) ALIST))
(COND [(NULL VAL)

(SETQ CLAUSES (CDR CLAUSES))
(GO 1)])

(SETQ EXPRLIST (CDR (CAR CLAUSES)))
2 (COND [(NULL EXPRLIST) (RETURN VAL)])

(SETQ VAL (EVAL (CAR EXPRLIST) ALIST))
(SETQ EXPRLIST (CDR EXPRLIST))
(GO 2)))

FEXPR)

PROG, definition 1. NOTE: this definition is
i ncornpl ete.}

LISP translations of the MLISP code

FEXPR)

' PROG

(PBODY ALIST)
(PROGVARS STATEMENT BODY)
(SETQ PROGVARS (CAR PBODY))
(SETQ BODY (SETQ PBODY (CDR PBODY)))
(MAPC (FUNCTION

(LAMBDA (I)
(SETQ ALIST (CONS (CONS I Nil

PROGVARS)
{;; Bind the PROG-variables to NIL}
(COND [(NULL BODY) (RETURN NIL)])
(SETQ STATEMENT (CAR BODY))
(COND [(ATOM STATEMENT)

NIL) ALIST))))

(SETQ

{;; It's a label. Skip it.}]
[(EQ (CAR STATEMENT) 'GO)

Find the tail of the PROG-body that
starts with the label.}

(SETQ BODY (MEMO (CADR STATEMENT) PBODY))
(COND [(NULL BODY)

(ERROR (LIST "UNDEFINED LABEL"
(CADR STATEMENT)))])]

(EQ (CAR STATEMENT) 'RETURN)
(RETURN (EVAL (CADR STATEMENT) ALIST))]

(ERROR (LIST

[(EQ (CAR STATEMENT) 'RETUR
(RETURN (EVAL (CADR STATEM

[T (EVAL STATEMENT ALIST)])
BODY (CDR BODY))

1)))

{;; Example 1.}

(PROG (A B C)
{ I * • • • }
(COND i(EQ A 3) (PRINT A) (PRINT B)] [T (PRINT B)])
(FOO BAZ)
{ }

(RETURN Z))

I;; Example 2.}

(PROG (A B C)
{55 ...}
(COND i(EQ A 3) (GO 1)] [T (GO 2)])

3 (FOO BAZ)
{55 . . .}
(RETURN Z)

1 (PRINT A)
(PRINT B)
(GO 3)

2 (PRINT B)

LISP translations of the MLISF code

(GO 3))

PROG, definition 2.}

(DEFPKOP PROG
(LAMBDA (PBODY ALIST)

(PROG (PROGVARS STATEMENT BODY)
(SETQ PROGVARS (CAR PBODY))
(SETQ BODY (SETQ PBODY (CDR PBODY)))
(MAPC (FUNCTION

(LAMBDA (I)
(SETQ ALIST (CONS (CONS I NIL)

PROGVARS)
Bind the PROG-variables to NIL}

1 (COND [(NULL BODY) (RETURN NIL)])
(SETQ STATEMENT (CAR BODY))
(COND [(ATOM STATEMENT) NIL]

[(EQ (CAR STATEMENT) 'GO)
{;; ... (as before)}]

[(EQ (CAR STATEMENT) 'RETURN)
{; ; ... (as before)}]

[(EQ (CAR STATEMENT) 'COND)
(SETQ BODY

(APPEND (FINDTRUECLAUSE
(CDR STATEMENT)
ALIST)

(CDR BODY)))
(GO 1)]

[T (EVAL STATEMENT ALIST)])
BODY (CDR BODY))(SETQ

FEXPR)
1)))

(DEFPROP FINDTRUECLAUSE
(LAMBDA (CLAUSES ALIST)

(PROG NIL

1 (COND [(NULL CLA
(COND [(NULL (EV
(COND [(NULL CLAUSES) (RETURN NIL)])
(COND [(NULL (EVAL (CAR (CAR CLAUSES)) ALIST))

(SETQ CLAUSES (CDR CLAUSES))
(GO 1)])

(RETURN (CDR (CAR CLAUSES)))))
EXPR)

{;; LENGTH, definition 1.}

(DEFPROP LENGTH
(LAMBDA (L)

(PROG (COUNT)
(SETQ COUNT 0)

1 (COND [(NOT (ATOM L))

LISP translations of the MLISP cod(

EXPK)

(SETQ L (CDR L))
(SETQ COUNT (ADD1 COUNT))
(GO 1)])

(RETURN COUNT)))

LENGTH, definition 2.}

(DEFPROP LENGTH
(LAMBDA (L)

((LAMBDA (COUNT)
(SETQ COUNT 0)
(COND [(NOT (ATOM D)

(SETQ L (CDR L))
(SETQ COUNT (ADD1
(COND

NIL))
EXPR)

[(NOT (ATOM D)
(SETQ L (CDR L

COUNT))

(SETQ L (CDR L))
(SETQ COUNT (ADD1 COUNT))
(COND [(NOT (ATOM L))

(SETQ L (CDR L))
(SETQ COUNT (ADD1 COUNT))
[>j ••••}!

[T COUNT])]
[T COUNT])]

[T COUNT]))

{;; GCOND, definition 1.}

(DEFPROP GCOND
(LAMBDA (L ALIST)

(SPDLPT)]) (CONS 'COND L)))
r bXrK)

{;; GCOND, definition 2.}

(DEFPROP GCOND
(LAMBDA (CLAUSES ALIST)

(PROG (VAL EXPRLIST)
1 (COND [(NULL CLAUSES) (RETURN NIL)])

(SETQ VAL (EVAL (CAR (CAR CLAUSES)) AL]
(COND [(NULL VAL)

(SETQ CLAUSES (CDR CLAUSES))
(GO 1)])

(SETQ EXPRLIST (CDR (CAR CLAUSES)))
2 (COND [(NULL EXPRLIST) (RETURN VAL)])

{;; The new statement:}
(COND [(AND [NOT (ATOM (CAR EXPRLIST))]

(SETQ
(COND

' (RETURN NIL)])
(CAR CLAUSES)) ALIST))

(CDR CLAUSES))

LISP translations of the MLISP cod<

FEXPK)

[EQ (CAR (CAR EXPRLIST)) 'GCOND])
(SETQ CLAUSES (CDR (CAR EXPRLIST)))
(GO 1)])

(SETQ VAL (EVAL (CAR EXPRLlST) ALIST))
(SETQ EXPRLIST (CDR EXPRLIST))
(GO 2)))

APPENDIX C

The PROG-transformer

MACRO PROG (X); EXPANDPROG (X);

EXPR EXPANDPROG (X);
BEGIN NEW LABELS, GOLIST, BODY, SS, P2;
33 _ BODY _ COPY CDR X;

Make sure that all the COND's have a final T clause.}

FOr'nEW I IN BODY DO:
IF C0N3P I

& I[1] EQ 'COND
& (LAST I)[1,1] NEQ T THEN NCONC (I, <<T>>);

{;; Also make sure that the last statement is a RETURN.}

IF (LAST 33)[1,1] NEQ 'RETURN
THEN NCONC (33, <<'RETURN, NIL>>);

Build an association list between labels and

statements, and delete the labels.};
WHILE CDR BODY DO:

IF ATOM B0DY[2]
THEN LABELS B0DY[2] CONS LABELS
ALSO RPLACD (BODY, CDDR BODY)

ELSE GOLIST (FOR NEW J IN LABELS COLLECT
<J CONS CDR BODY>)

§ GOLIST
ALSO LABELS NIL

ALSO BODY TTDR BODY;
{;; Splice COND-clauses into their successors.};
FOR NEW I ON SS DO:

IF I[1 ,1] EQ 'COND
THEN FOR NEW J IN CDAR I DO:

IF -((LAST J)[1,1] MEMQ '(GO RETURN))
THEN PROGN (NCONC (J,

<<'G0, CDR I>>),
GOLIST (CDR I CONS CDR I)
CONS GOllST);

{;; Build an association list between each statement and
its successor.};

P2 FOR NEW I ON SS COLLECT <I>;

ALSO LABELS

ALSO BODY

(GO RETURN))

FOR NEW IN P2 DO;

The PROG-transformer

BEGIN NEW Q, S, FN;
1; IF NULL Q CDR P THEN RETURN NIL;

Q is tHe 'next' statement.};
S _ Q[1];
{;; S is 'this' statement.};
FN _ SL1];
{;; FN is the function for S. (No more labels)};
{;; Splice in the new address.};
IF FN EQ 'GO

THEN RPLACD (P, CDR ASSOC (S[2], GOLIST))
ALSO GO 1;

{;; COND will be the last expression in a sequence.
Change its name to GCOND. Add its clauses to the
top level.};

IF FN EQ 'COND
THEN RPLACD (Q, NIL)
ALSO RPLACA (S, 'GCOND)
ALSO FOR NEW I IN CDR S DO:

P2 NCONC (
FOR NEW J ON I COLLECT <J>);

{;; RETURN is also last in a sequence. Keep only the
parameter.};

IF FN EQ 'RETURN
THEN RPLACD (Q, NIL)
ALSO RPLACA (Q, S[2]);

END;
{;; Construct the LAMBDA.};
RETURN ('LAMBDA CONS X[2] CONS CDR SS)

CONS (FOR NEW I IN X[2] COLLECT <NIL>);
END;

*** LISP translations ***

(DEFPROP PROG (LAMBDA (X) (EXPANDPROG X)) MACRO)

(DEFPROP EXPANDPROG
(LAMBDA (X)

(PROG (LABELS GOLIST BODY SS P2)
(SETQ SS (SETQ BODY (COPY (CDR X))))
{;; Make sure that all the COND's have a final T

clause.}
(MAPC

(FUNCTION
(LAMBDA (I)

(COND [(AND [CONSP I]
[EQ (CAR I) 'COND]
[NEQ (CAR (CAR (LAST I))) T])

(NCONC I (LIST (LIST T)))])))
BODY)

{;; Also make sure that the last statement is a
RETURN.}

(COND [(NEQ (CAR (CAR (LAST SS))) 'RETURN)
(NCONC SS (LIST (LIST 'RETURN NIL)))])

{;; Build an association list between labels and

The PROG-transformer

statements, and delete the labels.}
(PROG NIL

LOOP (COND
[(CDR BODY)

(COND
[(ATOM (CADR BODY))

(SETQ LABELS (CONS (CADR BODY) LABELS))
(RPLACD BODY (CDDR. BODY))]

[T (SETQ GOLIST
(APPEND

(MAPCAR.(FUNCTION
(LAMBDA (J)

(CONS J (CDR BODY))))
LABELS)

GOLIST))
(SETQ LABELS NIL)
(SETQ BODY (CDR BODY))])

(GO LOOP)]))
Splice COND-clauses into their successors.)

(MAP
(FUNCTION

(LAMBDA (I)
(COND

[(EQ (CAR (CAR I)) 'COND)
(MAPC

(FUNCTION
(LAMBDA (J)

(COND
[(NOT (MEMQ (CAR (CAR (LAST J)))

•(GO RETURN)))
(PROGN (NCONC J (LIST (LIST 'GO (CDR I))))

(SETQ GOLIST
(CONS (CONS (CDR I) (CDR I))

GOLIST)))])))
(CDAR I))])))

SS)
{;; Build an association list between each statement

and its successor.)
(SETQ P2 (MAPLIST (FUNCTION (LAMBDA (I) I)) SS))
(MAPC

(FUNCTION
(LAMBDA (P)

(PROG (Q S FN)
1 (COND [(NULL (SETQ Q (CDR P)))

(RETURN NIL)])
{;; Q is the 'next' statement.)
(SETQ S (CAR Q))
{;; 0 is 'this' statement.)
(SETQ FN (CAR S))
{;; FN is the function for S. (No more

labels))
Splice in the new address.)

(COND [(EQ FN 'GO)
(RPLACD P

(CDR (ASSOC (CADR S) GOLIST)

The PROG-transformer

EXPR)

(GO 1)])
{;; COND will.be the last expression in

sequence. Change its name to GCOND,
Add its clauses to the top level.}

(COND
[(EQ FN 'COND)

(RPLACD Q NIL)
(RPLACA S 'GCOND)
(MAPC

(FUNCTION
(LAMBDA (I)

(NCONC P2
(MAPLIST

(FUNCTION (LAMBDA (J) J))
I))))

. (CDR S))])
RETURN is also last in a sequence.
Keep only the parameter.}

(COND [(EQ FN 'RETURN)
(RPLACD Q NIL)
(RPLACA Q (CADR S))]))))

{;; Construct the LAMBDA.}
(RETURN (CONS (CONS 'LAMBDA

• (CONS (CADR
(MAPCAR (FUNCTION

X) (CDR SS)))
(LAMBDA (I) NIL))

(CADR X))))))

APPENDIX D

References

John McCarthy.
Recursive functions of symbolic expressions and their

computation be machine, part I.
Communications of the ACM 3:184-194, I960.

John McCarthy, Paul W. Abrahams, Daniel J. Edwards,
Timothy P. Hart, Michael 1. Levin.

LISP 1.5 Programmer's Manual.
MIT Press, Cambridge, Massachusetts, 1962.

James R. Meehan.

The New UCl LISP Manual.
Lawrence Erlbaum Associates, Hillsdale, New Jersey,

1979.

James R. Meehan.

The UCl MLISP Reference Manual.

Department of Information and Computer Science,
University of California, Irvine, CA 92717. 1979.

David Canfield Smith.

MLISP.

Stanford A1 Memo 135, October, 1970.

