
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Extracting Reusable Primitives of Key-Value Operations and Efficient Architecture Support

Permalink
https://escholarship.org/uc/item/5sm7d0h5

Author
wang, Bangyan

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5sm7d0h5
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Extracting Reusable Primitives of Key-Value Operations and

Efficient Architecture Support

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Bangyan Wang

Committee in charge:

Prof. Yuan Xie, Chair
Prof. Zheng Zhang
Prof. Yufei Ding
Prof. Kerem Camsari

September 2023



The Dissertation of Bangyan Wang is approved.

Prof. Zheng Zhang

Prof. Yufei Ding

Prof. Kerem Camsari

Prof. Yuan Xie, Committee Chair

June 2023



Extracting Reusable Primitives of Key-Value Operations and Efficient Architecture

Support

Copyright © 2023

by

Bangyan Wang

iii



Acknowledgements

I thank everyone who helped me in this journey.

First, I would like to express my heartfelt gratitude to my advisors, Prof. Yuan

Xie and Co-Advisor Prof. Zheng Zhang, for their unwavering guidance, support, and

encouragement throughout my Ph.D. study. Their invaluable insights and expertise have

been instrumental in shaping my research and academic growth. I am truly grateful for

their mentorship, and I will always cherish the lessons I learned from them.

I want to extend my appreciation to my family for their unconditional love and un-

wavering support. Their constant encouragement and motivation helped me stay focused

during challenging times, and I am deeply grateful for their presence in my life.

I am also grateful to my collaborators, including the SEAL-members Liu Liu, Lei

Deng, Zheng Qu, Shuangcheng Li, Zhaodong Chen, and the professors and students

from Tsinghua, Guohao Dai, Tianyu Fu, Chiyue Wei, Xiangyu Li, Huazhong Yang, and

Yu Wang. Their contributions to my research have been invaluable, and I am honored

to have had the opportunity to work with such talented and dedicated individuals.

Furthermore, I would like to express my gratitude to my mentors and colleagues at

Alibaba DAMO Academy and Amazon, Fei Sun and Sheng Xu, for their guidance, sup-

port, and inspiration during my three internship programs. Their mentorship provided

me with invaluable industry experience and helped me gain a broader perspective on my

research.

Finally, I would like to thank everyone who supported me during my Ph.D. journey,

including my friends, colleagues, and all those who have been a part of my academic

journey. Your support and encouragement have been truly appreciated, and I could not

have achieved this milestone without you.

iv



Curriculum Vitæ
Bangyan Wang

Education

2017- Ph.D. ECE, University of California, Santa Barbara.

2016 Feb∼Aug Exchange Student, ETHz, Zurich, Switzerland.

2013-2017 B.S in Electronic Engineering, Tsinghua University, Beijing, China.

Publications

[1]. Bangyan Wang, Guohao Dai, Yuan Xie “A One-for-all Architecture for the Reduce-
by-Key Operation: A Coordinated Parallelism, IO, and Storage Perspective” (In submis-
sion)
[2]. Bangyan Wang, Lei Deng, Fei Sun, Guohao Dai, Liu Liu, Yu Wang, Yuan Xie
“A One-for-All and O(V log(V ))-cost Solution for Parallel Merge Style Operations on
Sorted Key-Value Arrays” Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2022
[3]. Guohao Dai, Zhenhua Zhu, Tianyu Fu, Chiyue Wei, Bangyan Wang, Xiangyu Li,
Yuan Xie, Huazhong Yang, Yu Wang “DIMMining: Pruning-Efficient and Parallel Graph
Mining on Near-Memory-Computing” 49th IEEE/ACM International Symposium on
Computer Architecture (ISCA), 2022
[4]. Bangyan Wang, Lei Deng, Zheng Qu, Shuangcheng Li, Zheng Zhang, Yuan Xie
“Efficient Processing of Sparse Tensor Decomposition via Unified Abstraction and PE-
interactive Architecture” IEEE Transactions on Computers, 2021
[5]. Zhaodong Chen, Lei Deng, Bangyan Wang, Guoqi Li, Yuan Xie “A Comprehensive
and Modularized Statistical Framework for Gradient Norm Equality in Deep Neural Net-
works” IEEE Transactions on Pattern Analysis and Machine Intelligence,2020
[6]. Zheng Qu, Bangyan Wang, Lei Deng, Hengnu Chen, Jilan Lin, Ling Liang, Guoqi Li,
Zheng Zhang, Yuan Xie “Hardware-Enabled Efficient Data Processing with Tensor-Train
Decomposition” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems,2021
[7]. Hongzhi Zuo, Manxiu Cui, Bangyan Wang, Cheng Ma “A spectral-domain model-
based method for simultaneous oxygen saturation quantification and contrast agent iden-
tification” Optics in Health Care and Biomedical Optics XI,2021
[8]. Manxiu Cui, Hongzhi Zuo, Bangyan Wang, Xuanhao Wang, Cheng Ma “A convex
cone method for accurate blood oxygenation photoacoustic imaging” Proceedings Volume
11550, Optoelectronic Imaging and Multimedia Technology,2020

v



Abstract

Extracting Reusable Primitives of Key-Value Operations and Efficient Architecture

Support

by

Bangyan Wang

The advancement of general-purpose architecture has reached a juncture where the

continuing investment to improve instruction per cycle (IPC) yields diminishing re-

turns. While domain-specific architecture more efficiently converts silicon resources into

throughput, economic viability hinders their wider adoption, except in a few areas. A

more feasible way is to extract reusable operations that can be used across multiple

domains and then find efficient architecture to support them.

This dissertation focuses on operations involving pairs of keys and values. The appli-

cation spans a wide range of domains, including database, graph computing, genomics,

and sparse computing. The processing of key-value pairs is divided into two categories:

ordered and unordered. For the ordered category, we optimized the general merge style

operations on a sorted key-value array by creating a set of highly composable primitives.

Next, we show that many widely used ordered data structures and algorithms, such as

heap and binary search, can be accelerated by rewriting them to use merge operation as

a building block. For the unordered ones, we observe that reduce-by-key is a common

bottleneck in many domains. We propose the design of the Reduce-By-Key core and in-

troduce a new algorithm to accelerate this operation. We also analytically prove that our

method is close to optimal. Lastly, we investigate the decomposition operation on sparse

tensors - a special form of key-value pairs. We show how a PE-interactive architecture

can be used to significantly increase data reuse.
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Chapter 1

Introduction

In the past decades, the single-core performance of general-purpose processors has been

improved by only ∼ 2, suggesting the point of diminishing returns has been reached

for the classical path of improving instruction-per-cycle(IPC). The increase in the core

count has been the main driver of performance improvement for both CPU and GPU,

but the slowdown of Moore’s law, in particular, the stall transistor-per-dollar ratio, has

made it less efficient to continue in this direction. Seeing scheduling and decoding of

instructions as an expensive tax added to the useful computation, a trend in recent

years is to hardcode more complex computation directly in hardware to amortize this

overhead. Both domain-specific accelerators (DSA) and domain-specific processors (with

customized instruction set) are representative examples of this approach. However, the

cost of developing a new DSA or processor is high, and the economic viability prevents

their wider adoption except in a few areas with huge market demands, such as AI.

To optimize the cost-benefit ratio of specializing hardware, it is essential to extract

reusable operations that can be applied to multiple domains. This thesis focuses on the

process of (key,value) pairs in associative containers. Those (key,value)-related operations

are often used as workhorses across multiple domains, including AI, database, genomic
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Introduction Chapter 1

processing, graph analysis, and scientific computing. At the same time, (key,value)-

related operations are challenging for modern processors with high parallelism (such as

SIMD on CPU, and GPU) because they were designed to provide high computation and

memory throughput for regular arrays, such as dense arrays or matrices. (key-value)-

related operations demand equally efficient key-based search, comparison and maneuver

capability, which is challenging in both computation and memory subsystems for con-

ventional architecture.

1.1 Motivation

We divide the (key,value)-related operation into two categories and they are handled

separately.

• Ordered: Certain ordered constraints exist between the keys, and those constraints

must also be preserved in output after the operation. The keys must have defined

the ≤ operator and = operator.

• Unordered: No ordering relation is defined between the keys in the input, nor is it

required in the output. The keys must have defined the = operator.

The support for the (key,value) operations is motivated by the following applications:

Scientific computing: The processing of sparse vectors, matrices, and tensors is the

central computation workload in many scientific computing scenarios, including circuit

simulation (e.g. SPICE) and psychic simulation (e.g. finite element method), etc. Those

sparse arrays are usually encoded directly as a sorted (key, value) array where the key

is the index of the non-zero element. Due to the high sparsity, arithmetic operations

over them, including addition (+), element-wise multiplication (.∗), and multiplication

(×) should only iterate through the non-zero elements, and all scalar operations must be

2



Introduction Chapter 1

performed on values with matched keys. Being sorted by keys allows the key-matching

between those sparse arrays to be efficient, and preserving the ordered constraint is

necessary for subsequent operations.

Database: The tables in a relational database are naturally (key,value) arrays. The ta-

ble can be sorted or not, and many database operations can be seen as ordered/unordered

(key,value) operations. This include 1) various join-operations are defined between two

or more tables to produce a new table. 2) group-by aggregation requires de-duplicating

the keys meanwhile aggregating the values with identical keys. 3) query or partition all

tuples in a table into bins according to the range where their keys belong to. The range

is usually defined by another sorted (key,value) array. 4) sorting, which transforms an

unordered (key,value) array into an ordered one.

Graph: Graph is a typical data structure in many AI applications, such as recom-

mendation systems, fraud detection, and social network analysis. The graph is usually

represented as adjacency lists, a sorted (key,value) array where the keys are the ID of

neighbor nodes, and the values are some edge properties. Two types of (key,value) op-

erations are widely used in graph processing: 1) the set operations (union, intersection,

difference, etc.) between two lists, which are used in analytic graph algorithms to extract

graph patterns, such as clique-counting. 2) the push-update operation, where a small

active set of nodes is pushing updates the union of all their neighbors through the edges,

leading to an operation similar to the group-aggregation in databases.

Genomic Analysis: K-mer counting in a DNA/RNA sequence is the foundation step of

many genomic analysis applications. It can be seen as reducing (key,value) tuples where

the keys are the K-mer and the values are the counts of the K-mer in the sequence.

3
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1.2 Challenge, Approach, and Contribution

We seek to design a minimized, multi-domain, performant, “confident” architecture

for (key, value) operations, and such architecture can be easily integrated into general

purposed processors or accelerators.

• Being minimized means both the extra circuit components and primitive definitions

added to the architecture to be minimized. However, a unified encoding of (key,

value) operations that can be used in multiple domains is not obvious. Avoiding

inflation of the hardware size, ISA, and compilers requires novel ways of viewing

and decomposing those operations.

• Being performant means the architecture should be highly parallel and memory-

friendly. However, many (key, value) operations are inherently sequential (for or-

dered operations), write-conflict-heavy (for unordered operations), and have a bad

memory access pattern (unordered operations).

• Being “confident” means we know how far we are from the optimal solution. This

requires analysis and proof of the performance-critical criteria on both the proposed

and optimal theoretical design. Those criteria include, for example, the memory

footprint, traffic, and the “randomness” of random-memory access.

It’s common in architecture research to numerically evaluate a proposed design

against a reference design and report the relative speedup. However, it was rarely

known how much room was left for improvement.

With the above pursuits, our approach follows three major steps: 1) find a unified

abstraction for the targeted problem domain, 2) design a performant architecture, and

3) provide a theoretical analysis of performance-critical criteria.

4



Introduction Chapter 1

For ordered operations, the key observation is the unique role of one particular fam-

ily (key, value) operations, which we named the merge style operation (MSO) on the

sorted key-value array. MSO can efficiently implement other ordered operations with

appropriate algorithm rewrite.

• Our first work tackles the MSO on CPU SIMD platform. To address the challenge

of the diversity of MSO operations, we 1) proposed a unified abstraction called

“restricted zip machine.” to encode all possible MSO operations. 2) designed a

set of highly composable SIMD primitives such that only four new instructions are

required to implement arbitrary MSO operations. To address the challenge of the

sequential dependency of MSO operations and the quadratic hardware cost (O(V 2)

for SIMD width V ), we 3) designed a highly parallel hardware implementation with

only O(V (log(V ))) hardware cost.

• Our second work expands the usability of MSO SIMD primitives to even broader

applications. We show that more sophisticated ordered data structures/algorithms

can be rewritten based on MSO. They include binary heap, binary search (batched),

and k-way additive merge.

For unordered operations, we focus on addressing the bad memory access pattern that

make memory subsystem the performance bottleneck. We investigated two operations

on unordered (key, value) pairs.

• Our third work look at the “reduce-by-key” operation. We propose to use an

incremental de-duplication scheme on “sorted, deduplicated hash array (SDHA)”

to finish this operation. Comparing to the existing methods, the advantage of

this methods is it successfully addressed the profound conflicts between multiple

optimization goals including parallelism, traffic reduction, and memory footprint

and the memory access pattern.

5
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In this work, we show 1) a new algorithm that are suitable in the context of parallel

hardware that share a memory hierarchical, 2) the hardware design of “reduce-by-

key” core to implement the algorithm, and 3) an analysis on the near-optimality of

memory footprint, memory traffic, and randomness of random memory access.

• Our fourth work look at the decomposition of sparse tensors. Sparse tensors can

be regard as a special form of (key, value) pairs. We designed an accelerator for

sparse tensor decomposition with a new PE-to-PE communication protocal to help

reduce the off-chip memory traffic and improve performance.

1.3 Related Work

The technique proposed in this thesis for efficiently processing key-value data has

broad applications across domains, including scientific computing and graph analytics.

Although research into computer architectures in these domains has been active for many

years, the processing of key-value data represents a higher-level abstraction than the

individual domain-specific operations. To my knowledge, no prior work has approached

the subject from this perspective. Consequently, the related work section will introduce

only the domain-specific hardware designs by subdomain, while detailed surveys of related

work will appear in the corresponding chapters.

Both scientific computing and artificial intelligence (AI) frequently require processing

large numerical tensors (multi-dimensional arrays). Matrix-matrix and matrix-vector

multiplications are among the most common operations. The dense variants of these

operations have been thoroughly studied and optimized over the past decades. For in-

stance, Nvidia’s GPUs with tensor cores and Google’s TPUs with systolic arrays possess

dedicated hardware units for matrix-matrix multiplication, achieving unparalleled energy

efficiency (exceeding 2TFLOPs/Watt). However, the sparse versions of these operations

6
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present more of a challenge due to data irregularities and the need for key-based searches

and matches. Many hardware designs utilize a sorted-set intersection/union algorithm to

identify matched keys from two sparse arrays. The primary hurdle is the sequential depen-

dency of such operations, which hampers parallelization. Furthermore, existing designs

typically cater to specific types of sparse tensor operations, such as sparse matrix-vector

multiplication (SpMV) and sparse matrix-sparse matrix multiplication (SpGEMM).

Databases are commonly organized into tables, where columns function as keys. Many

database operations, like join operations, sorting, and group-by aggregation, naturally

align with key-value operations. Offloading database operations to FPGAs was a hot

research topic over the last decade. However, industry adoption remains limited. The

primary hindrance is that offloading proves more complicated than other acceleration

methods requiring only software modifications, like utilizing SIMD instructions.

Similarly, genomics and graph analysis involve data structures interpretable as key-

value pairs. Despite numerous accelerator proposals over the past decades, the scenario

mirrors database acceleration: offloading to standalone hardware complicates the soft-

ware stack, and the performance gains don’t sufficiently justify the associated costs.

7



Chapter 2

Merge Style Operation on Ordered Data

In this chapter, we investigate merge-style operations (MSO) on sorted key-value arrays.

MSO is widely used in scientific computing, deep learning, databases, graph analysis,

sorting, set operations, and more. MSOs dominate the execution time in important

applications such as SpGEMM (by 90%) and graph mining. However, MSO is a SIMD-

unfriendly operation. This is not only because MSO cannot be efficiently implemented

using existing SIMD instructions available in ISAs that are widely used commercially

(e.g., x86, ARM, RISC-V), but also because even defining a set of feasible SIMD instruc-

tions that can implement MSO is a challenging task. By “feasible”, we mean achieving

performance gains, maintaining low hardware costs, minimizing ISA modifications, and

providing sufficient flexibility to cover all relevant use cases. In this chapter, we present

a solution to this problem.

2.1 Background

We provide a brief background on merge style operations (MSOs) in this section,

including their definitions, applications, existing solutions, and the limitations of these

8
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solutions.

2.1.1 Definition

MSOs are very similar to merge sort but are more general. They take two sorted

key-value arrays as inputs and produce another sorted array as output, as illustrated

in Figure 2.1(a). They utilize a binary function op(x, y) to process pairs of values with

matched keys. Additionally, they might remove, insert, or duplicate certain elements

when dealing with matched or mismatched keys based on specific rules referred to as

“patterns”. These patterns include OR, AND, SORT, and Range-Match patterns, as

illustrated in Figure 2.1(b)-(e).

Merge

c.key[0],c.key[1],. . .

c.val[0],c.val[1],. . .

a.key[0],a.key[1],. . .

a.val[0],a.val[1],. . .

b.key[0],b.key[1],. . .

b.val[0],b.val[1],. . .

(a)

op(x, y) = ( 1 = x, 2 = y)

1 3 5 6a.key

a1 a3 a5 a6a.val

1 2 4 5b.key

b1 b2 b4 b5b.val

(b) OR-pattern

(Key appears
on either side)

1 2 3 4 5 6c.key

a1 0 a3 0 a5 a6c.val. 1

b1 b2 0 b4 b5 0c.val. 2

Application:
Sparse Addition
Set-Union
Outer-Join

(C) AND-pattern

(Key appears
on both sides)

1 5c.key

a1 a5c.val. 1

b1 b5c.val. 2

Application:
Sparse Multiplication
Set-Intersection
Inner-Join

(d) SORT-pattern

(Like merge sort)

1 1 2 3 4 5 5 6c.key

a1 0 0 a3 0 a5 0 a6c.val. 1

0 b1 b2 0 b4 0 b5 0c.val. 2

Application:
Merge Sort

(e) Range-Match

(Match (i, j) when
a.key[i] ≤ b.key[j] <

a.key[i + 1])

1 2 4 5c.key

a1 a1 a3 a5c.val. 1

b1 b2 b4 b5c.val. 2

Application:
Piecewise function
CSR→COO
COO→CSR

Figure 2.1: MSOs and the patterns.

9
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2.1.2 Applications

Scientific computing and deep learning. Many scientific computing and deep learning

problems involve sparse vectors/matrices/tensors. The coordinate (COO) format can

be seen as a key-value array, while the compressed sparse row (CSR) format can be

viewed as a collection of key-value arrays wherein each one represents a sparse row.

Several types of operations on sparse vectors/matrices/tensors can be implemented as

MSOs. (1) Element-wise sparse addition and multiplication can be implemented with

OR-pattern and AND-pattern. (2) Sparse matrix multiplication can be implemented

as weighted sum of sparse vectors, which in turn becomes OR-pattern. (3) The con-

version between COO↔CSR formats requires a kind of transform between arrays like

[0,0,0,1,1,2,2,2]↔[0,3,5,8] which can be implemented using Range-Match-pattern. An-

other application of Range-Match-pattern is numerical interpolation for piecewise func-

tions. (4) The transpose of sparse matrices/tensors is partially a sort problem, which is

SORT-pattern.

Graph analytics. Many algorithms in graph analytics involve operations similar to

sparse matrix multiplication, but with + and × operators replaced by other operators,

and the value type is usually a data structure instead of a 32-bit floating-point num-

ber. These algorithms can be implemented using the OR-pattern. Additionally, graph

mining can be implemented using set intersection (AND-pattern) and set difference (Diff-

Pattern).

Sorting. Merge sort is the most commonly used stable sorting algorithm. Its basic

building block involves merging two sorted key-value arrays into one longer key-value

array, which is a SORT-pattern Merge-Sort Operation (MSO).

10
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Databases. Join operations combine information from two tables into one table based

on matching keys. There are multiple variations of join operations, as depicted in Figure

2.2. They can be implemented as MSOs using different patterns.

Outer Join Inner Join Outer Excluding Join

Left Excluding Join Right Excluding Join

Left Outer Join Right Outer Join

Figure 2.2: Various forms of join operations in database.

2.2 Challenges and Related Work

Sequential design results in low throughput, while parallel design incurs high costs. An

MSO can be implemented either sequentially or in parallel. Sequential design can be

accomplished through a FIFO merger that takes two FIFOs as input ports. In each

cycle, the heads of the two FIFOs are compared, and the smaller one is popped. The

advantages of sequential design include simplicity and low cost. Additionally, this FIFO

merger can easily accommodate various merge patterns, such as the AND-pattern [1, 2, 3]

and OR-pattern [4, 5, 6]. However, its main limitation is the 1-tuple/cycle throughput,

resulting from the sequential dependency in comparing and popping keys from the FIFOs

(as shown on the left in Figure 2.3-Challenge 1).

To eliminate the dependency of later comparisons on previous ones, parallel design

often involves performing all-to-all key comparisons within a local scope of V elements.

This approach yields V 2-bit comparisons, leading to higher resource costs, as illustrated

11
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a.key[0] vs. b.key[0]

a.key[1] vs. b.key[0]

a.key[2] vs. b.key[1]

a.key[2] vs. b.key[2]

<

=

>

Has sequential dependency

Stream Merger

Throughput: O(1)! /
Matrix Comparator Array

Cost: O(V 2)! /

Dependency-free

VS.

Challenge 1: Sequential design suffers low through-
put, while parallel design suffers high cost

Iter 0 Iter 1 Iter 2

1 3 5 7 9 11 13 15 17 19 21 23

6 7 8 9 10 11 12 13 14 15 16 17

Matched 9 missed Matched 15 missed

a.key

b.key

Challenge 2: Supporting long input arrays

SORT, Range, · · ·

✓ Set-alike patterns can be
represented as truth table.

✗ Cannot be repre-
sented as truth table

Challenge 3: Lacking uniform representation of matching patterns

1 1 2 2A.key.I VReg0

1 3 0 4A.key.J VReg1

1 1 1 2B.key.I VReg2

1 2 4 1B.key.J VReg3

1 2 3 4 5 6 ̸=
1 1 2 2A.key.I VReg0

1 1 1 2B.key.I VReg2

1 3 0 4A.key.J VReg1

1 2 4 1B.key.J VReg3

1 2 3 4 5

1 2 3 Not monotone!(a) 1 MSO to find matched key pairs
with tuple size k = 2

(b) k = 2 seperate MSOs to find
matched key pairs with tuple size 1

Note: (a) cannot be transformed to (b). Es-
pecially (b) are not legal MSOs as the key
array for the second field J alone are not
sorted.

Challenge 4: Supporting variable tuple size via decomposition

Figure 2.3: Challenges of MSOs.
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Table 2.1: Latency of x86 all-to-all comparison instructions [14].

Instruction V Latency

PCMPESTR 4 19 cycles
VPCONFLICT 256 8 37 cycles
VPCONFLICT 512 16 67 cycles

Table 2.2: Supported patterns using known techniques.

Pattern
Accelerators CPU

Sequential Parallel Sequential Parallel
AND-Pattern ✓ ✓ ✓ ✓
SORT-Pattern ✓ ✓ ✓ ✓
OR-Pattern ✓ ✓ ✓ ✗

Other Patterns. . . ✓ ✗ ✓ ✗

on the right in Figure 2.3-Challenge 1. Accelerators typically face a trade-off between

the O(V 2) cost and the O(1) performance [7, 8, 9]. On SIMD-based CPUs, some studies

[10] utilize specialized x86 instructions for all-to-all comparison, but these instructions

suffer from long latency (Table-2.1). Other works employ last-byte-check and shuffle

techniques to achieve an equivalent
√
V ×

√
V comparison [11, 12]. After obtaining the

V 2-bit result, key matching is generated using specialized circuits (in accelerators) or

pre-computed lookup tables. For intersection (AND-pattern), the table requires 2V en-

tries [10]. However, for other patterns (e.g., OR-pattern), the table would necessitate an

impractical 2V
2
entries, making it inapplicable. In the case of merge sort, both acceler-

ators and SIMD implementations benefit from the sorting network technique introduced

by Ken Batcher in 1968 [13], which requires only O(V log(V )) comparisons. Nonetheless,

this method is only suitable for SORT-pattern operations. Currently known supported

patterns using sequential or parallel design are summarized in Table 2.2.

Supporting long input arrays. In hardware, the width V for parallel execution (e.g.,

SIMD width on a CPU) is often fixed (e.g., 4, 8, or 16), whereas the two input key-value

arrays can have arbitrary lengths. To address this challenge, loop-tiling can be employed
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to divide the original problem into multiple sub-problems with shorter lengths. However,

applying loop-tiling to MSOs is more intricate compared to its element-wise counterpart

and does not yet have a universal solution.

Primarily, the naive approach to loop tiling is not viable for nearly all MSOs:

Merge(a[0:end],b[0:end]) != Concat(

Merge(a[0:V],b[0:V]),

Merge(a[V:2V],b[V:2V]),

Merge(a[2V:3V],b[2V:3V])...)

Figure 2.3-Challenge 2 provides an example of how matched elements can be missed

(9 and 15) if we naively divide the 12-element input arrays into 3 sub-problems ([0:4],

[4:8], [8:12]). Partial solutions do exist for the AND-pattern and SORT-pattern. For the

AND-pattern, a commonly employed approach involves comparing the last element of

the two input vectors and advancing the smaller side [10, 7, 11, 12, 8]. In the case of the

SORT-pattern, one method is to retain the larger half (V elements) of the sorted result

(2V elements) for the next iteration and sort using the V elements from the smaller side

of the two input arrays [15, 7]. However, these solutions are conditionally correct (as they

do not support inputs with duplicated keys), inefficient in terms of work (resulting in a

waste of 50% of useful operations), and most importantly, they cannot be generalized to

other MSO patterns, such as the OR-pattern. Unfortunately, no comprehensive solutions

have been identified in the literature that apply universally across all known matching

patterns.

The lack of uniform representation of matching patterns. There are no strict models that

properly encode different patterns and handle them uniformly (see Figure 2.3-Challenge

3). A truth table is a good candidate to cover set-operation-related patterns (e.g., those

in Figure 2.2), but it cannot accommodate SORT, Range-Match, or other one-to-many-

14
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match patterns. Most prior work focuses on only one or two specific patterns and does

not address this problem.

Support variable tuple sizes via decomposition. Many applications of MSOs require the

key and value to be tuples comprising multiple 32-bit fields. Given the fixed nature

of hardware, a single SIMD operation cannot directly support variable key tuple sizes.

The only feasible approach is to decompose an MSO, whose key tuple contains k 32-bit

fields, into k fixed-sized operations. The challenge, however, is that one MSO with a key

tuple size of k vastly differs from k independent MSOs each having a key tuple size of

one. Moreover, each of these MSOs processes just one field of the original problem, as

depicted in Figure 2.3-Challenge 4. This difference obstructs the previously mentioned

decomposition approach. This same challenge extends to programmable platforms like

CPU/GPU, not just to accelerators. The scenario here contrasts sharply with element-

wise operations, where complex element-wise operations can be easily broken down into

a finite set of basic element-wise operations such as +, −, ×, <, etc. As of now, no prior

work support variable key sizes, with the exception of a CGRA-based design [3], which

can modify the hardware datapath during runtime.

Discussion: Bandwidth and data reuse rate. A single MSO operation, in isolation, has

relatively low arithmetic intensity. This suggests that, with advancements in the compu-

tation aspect of MSO, there’s a need to either promote higher-level data reuse or provide

increased memory bandwidth. When applications use MSO as a foundational building

block, there is typically significant potential for data reuse across multiple MSOs. Ex-

amples include employing a merge tree buffered on-chip to implement multi-way merges

[15, 9] or leveraging application-specific data reuse techniques [8]. As an alternative,

accelerators often contemplate using emerging technologies, such as HBM, to furnish
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greater memory bandwidth. Although this paper concentrates on the computational as-

pect of MSO, capitalizing on higher-level data reuse for each unique application can be

achieved at the software layer and isn’t the central focus of this work.

2.3 Uniform Representation

This section addresses the challenges of finding a uniform representation to encode

matching patterns by introducing two sequential models: the general zip machine (GZM)

and the restricted zip machine (RZM). The GZM is a more general yet strictly sequential

machine. After partially specializing the state machine within the GZM, we derive the

RZM. Any RZM can be implemented using the proposed SIMD primitives, which are

detailed in Section 2.4.

Extended
Merge
Sort

State Machine
State

Out FIFO
eventactionc.val[0],. . .

event:(src,key,val)

action:(NoPush) or (Push val)

a.key[0],. . .

a.val[0],. . .

b.key[0],. . .

b.val[0],. . .

Figure 2.4: General zip machine (GZM).

2.3.1 General Zip Machine (GZM)

The MSO represented in Figure 2.1(a) can be reinterpreted as “a 2-to-1 merge sort

followed by a state machine,” as depicted in Figure 2.4. The underlying rationale for

this transformation is that identical keys become neighbors after a 2-to-1 merge sort,

simplifying key matching. Consequently, the primary stage of the GZM comprises an

“extended merge sort unit” that sorts two key-value arrays. In addition, it logs the
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origin of each output key-value pair. The output is a sequence of tuples (src, key, val),

where src can be ‘a’ or ‘b’ (1-bit); we refer to each tuple as an event. These events are

then channeled to a state machine that processes them sequentially. Typically, “state”

is utilized to retain a sliding window of the event stream, enabling the discovery of

matching keys within this window. For each incoming event, the state machine produces

an action. This action can either instruct the “Out FIFO” to append a value val at the

end (PushResult val) or do nothing (NoPush). Any MSO can be represented as a GZM

by selecting a suitable state machine. For instance, “sparse vector multiplication” can

utilize a state machine that maintains a sliding window of 2 events; if their keys align,

their val segments are multiplied (op(x, y) = x× y), and the result is pushed. If there’s

a mismatch in keys, nothing is pushed (NoPush). Other MSOs, such as “sparse vector

addition” and “set-diff”, have their unique state machines. For one-to-one matching, the

state typically encompasses a sliding window of 2 or 3 events. In one-to-many matching,

a key might replicate indefinitely, seemingly requiring an infinitely long sliding window.

However, this can be circumvented by embedding supplementary data within the state

while retaining a finite sliding window in the state machine.

It’s noteworthy that the key (c.key[0], . . .) is absent from the output array in Figure

2.4 (only c.val[0], . . . is visible) compared to Figure 2.1(a). This omission retains gen-

erality: we can always retrieve the key by constructing an auxiliary GZM wherein the

original key constitutes part of the proxy value. For example, one can assign V alC ′ =

(Key, V alC), V alA′ = (Key, V alA), V alB′ = (Key, V alB), op′((kx, vx), (ky, vy)) =

((kx|ky), op(vx, vy)) in the proxy GZM to concurrently extract Key and V alC from

V alC ′.
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2.3.2 Restricted Zip Machine (RZM)

The RZM is derived from the GZM by constraining the state machine in the GZM to

a fixed pipeline, with only a few components being configurable. Nevertheless, the RZM

remains potent enough to encompass intriguing use cases such as OR-pattern, SORT-

pattern, and so on. We will first discuss several foundational ideas prior to delving into

its formal definition.

Constructing two operand streams: The state machine in the GZM transforms a

stream (the event stream) into an output stream (the c.val[0], . . .). This process can

consistently be divided into two phases. 1) Construct two operand streams from the

event stream, which correspond to the two operands of the binary operator op(x, y). 2)

Implement the operator op(x, y) element-wise to the two operand streams, generating the

desired output stream. Figure-2.5 illustrates an instance of the set-union operation for the

inputs a = [1, 2, 5, 8] and b = [1, 3, 5, 7]. In this scenario, the two operand streams have

all matching elements perfectly aligned, with zeroes judiciously placed where necessary.

Subsequently, applying an element-wise bitwise-OR to the two streams yields the union of

the sets c.val = [1, 2, 3, 5, 7, 8]. (Given that the key and value for each event in the event

stream are identical in this example, they are portrayed on a singular row to conserve

space in Figure-2.5 and subsequent illustrations. Blue zeroes are inserted while the rest

are derived from the value portion of the event stream.)
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a b a b a b b asrc

1 1 2 3 5 5 7 8key/val

event
stream

1 2 0 5 0 8a

1 0 3 5 7 0b

operand
streams

1 2 3 5 7 8c.val
output
streams

Figure 2.5: Operand streams as an intermediate step

Employing FIFO and commands to construct operand streams: A single operand

stream can be formed using a FIFO, which accepts a command stream associated with the

event stream. We have identified four distinct command types, as delineated in Table-2.3.

By selecting the appropriate commands, data can be aligned in various manners to match

the desired pattern. Figure-2.6 provides an illustration, crafting the operand streams from

the aforementioned set-union example. Additionally, Figure-2.7 offers another instance,

showcasing how the PushMostRecent command can facilitate the implementation of one-

to-many matching patterns.

a b a b a b b asrc

1 1 2 3 5 5 7 8key/val

event
stream

a

b

command
streams

C N C D C N D C

N C D C N C C D

a

b

FIFO
(temporal)

1 2 0 5 0 8

1 0 3 5 7 0

1 2 0 5 0 8a

1 0 3 5 7 0b

operand
streams

(C)“PushCurrent”

(D)“PushDefault”

(N)“NoPush”

Figure 2.6: Use FIFO and command streams to build operand streams
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a

b

FIFO
(temporal)

1 1 5

2 3 4 5 6 7

(R)“PushMostRecent”

1 5 5

Figure 2.7: Extra example: Use PushMostRecent to implement one-to-many range-match

Table 2.3: Behaviors of M-FIFOs.

actions.a/b Effect

(N)NoPush Do nothing
(C)PushCurrent Push the value of current event
(R)PushMostRecent Duplicate the last element in the FIFO
(D)PushDefault Push default value (usually 0)

Commands can be deduced from a sliding window of three events: The command

streams are derived from the event stream. For each event, its corresponding commands

can be determined by only considering its immediate neighbors (left and right) along

with the event itself. This is rooted in the fact that commands are contingent upon the

presence of a matched pair for the given event. After the merge sort, a check on the two

neighbors suffices to ascertain the existence of such a pair.

Every matching pattern can be encoded as a function mapping a 5-bit input to a

4-bit output: Within the sliding window of three events, namely event[i-1], event[i],

and event[i+1], each event takes the form of a tuple (src, key, val). However, only 5

bits of information are crucial, as depicted in Figure-2.8. The val component and the

absolute magnitude of key don’t influence the matching determination. What truly

counts are the src values of the three events and the comparative relationships (<,=, >)

of the keys. Additionally, given that keys are already arranged in a non-decreasing order

within the event stream, only two points of comparison can yield different outcomes:

the comparison of event[i-1].key and event[i].key, as well as that of event[i].key and

event[i+1].key. Diverse matching patterns are differentiated by the two commands they
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generate for the possible 25 scenarios, which means they can be represented as functions

mapping 5-bit inputs to 4-bit outputs, or equivalently, 128-bit values (25 × (2 + 2) bits).

In subsequent sections, we refer to the stream of these ”5-bits” as the info stream. An

exemplification of encoding the range-match pattern into such a 5-bit to 4-bit function,

along with its application, is portrayed in Figure-2.91.

a b a b a b b asrc

1 1 2 3 5 5 7 8key/val

event
stream

a

b

command
streams

C N C D C N D C

N C D C N C C D

Sliding Window

≠ =

[b,a,b,≠,=] = 0x16 

16 09 17 0b 16 0d 1b 13info(hex)info
stream

Extract 5-bit info

Match Pattern

5-bit

4-bit

Figure 2.8: Extracting 5-bit info from the sliding window[pattern: union pattern (one-to-one)]

Put everything together: The RZM’s architecture, as depicted in Figure-2.10, initi-

ates by merging two input streams into the event stream, mirroring the functionality of

GZM. Successively, by applying a function (which encodes the desired pattern) to the

5-bit section of each sliding window comprising three elements, two command streams (la-

beled as actions.a/b) are generated. Following this, with the aid of two FIFOs (denoted

FIFO A/B), the event stream, and the two command streams, two operand streams are

constituted. The terminal phase involves inspecting the pairs from both FIFOs: when

both FIFOs contain elements, the operator op(x, y) is applied to the fetched pair, and

the outcome is appended to c.val. Otherwise, no action is taken.

1In this depiction, for simplification, we have retained identical values for key and input. However,
in practical scenarios, values often deviate from keys.
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0 10 20a(key/val)

3 7 9b(key/val)

input
streams 20 25

a b b b a a b bsrc

0 3 7 9 10 20 20 25key/val

event
stream

(x) (y) (z)

? ? ?

Sliding Window

(m) (n)

pair<command,command> range_match(AB x, AB y,
AB z, EQ m, EQ n){

if (y=="a"){
if (z=="a") return {NoPush,NoPush};//Case 1
else return {PushThis, NoPush}; //Case 2

} else {// y=="b"
if (x=="a") return {NoPush,PushThis};//Case 3
else return {PushMostRecent,PushThis};//Case 4

}
}

Sliding Window

≠ ≠

a

b

FIFO
(temporal)

0 20a

3 7 9 20 25b

operand
streams

0 20

3 7 9 20 25

0 0 20

200 0

Figure 2.9: Example: Use range-match pattern to put b=[3,7,9,20,25] into bins
[0,10),[10,20),[20,+∞) defined using delimiters a=[0,10,20]. The 5-bit are named as
[x,y,z,m,n] respectively.
[pattern: range-match pattern (one-to-many)]
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Extended
Merge
Sort

event
a.key,. . .

a.val,. . .

b.key,. . .

b.val,. . .

event.src · · ·

event.key · · ·

event.val · · ·

i-2 i-1 i i+1 i+2

info · · ·

Extract 5-bit info from
sliding window [i-1,i,i+1]

Match
Pattern

FIFO A

FIFO B

command.a/b

c.val[0],. . .

op(x, y)

Figure 2.10: Illustration of the Restricted Zip Machine (RZM).

2.3.3 Exploring the Divide-and-Conquer Relation

In this section, we delve into the divide-and-conquer relationship intrinsic to the

GZM model (which naturally encompasses the RZM as its subset). Specifically, we

question if operations within the GZM with large input arrays can be segmented into

more digestible sub-tasks of a confined size. This consideration gains prominence when

aiming to utilize hardware with a predetermined length to accommodate input arrays

of undefined dimensions. As elucidated in Section-2.2, elementary tiling yields incorrect

outputs. However, we can ascertain the following result: for any given GZM, any given

length V (for instance, the SIMD vector length), any preset state of its state machine s,

and any two input arrays a and b:

∃s′,∆A,∆B,∆C such that :

GZM(s, a, b) = GZM(s, a[0 : V ], b[0 : V ])[0 : ∆C],

++GZM(s′, a[∆A : end], b[∆B : end])

(2.1)

Here, ++ symbolizes array concatenation. It’s worth noting that the first component on

the equation’s right side possesses a bounded input, while the second component can be
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continually divided following this method until all the sub-tasks are restrained by the

size V .

To comprehend why this relationship is valid, let’s visualize the execution ofGZM(s, a, b)

using an illustrative approach: Imagine using paper cards marked with a “?” symbol to

obscure and conceal the numbers of arrays a and b starting from their V +1-th elements.

This scenario is depicted in Figure-2.11-left. As we proceed with the GZM execution,

the moment it encounters the first “?”, it halts as the next steps become undefined. At

this juncture, we establish a breakpoint. Subsequently, we note down:

• The number of elements consumed in both input arrays, represented as ∆A and

∆B.

• The count of elements directed to the output, termed as ∆C.

• The prevailing state of the state machine, denoted as s′.

This is illustrated in Figure-2.11-right.

Following this, we discard all the paper cards and resume the execution until its

conclusion. It’s evident that the introduction and removal of these cards won’t alter the

GZM’s output, but it essentially divides the execution into two distinct phases. Regarding

the first phase, the outcomes of the following are identical:

1. The first ∆C elements resulting from GZM(s, a[0 : V ], b[0 : V ]).

2. The first ∆C elements emanating from GZM(s, a, b).

For the second phase, the outcomes of these are analogous:

1. The result of GZM(s′, a[∆A : end], b[∆B : end]).

2. The subarray of GZM(s, a, b) commencing from the (∆C + 1)-th element to its

termination.
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Merge
Sort

s

[1, 3, 5, 6, ?, ?, . . .]

[2, 3, 7, 9, ?, ?, . . .]

[]

V = 4 elements observable.

Merge
Sort

s′
[?, ?, . . .]

[7, 9, ?, ?, . . .]

[1, 2, 3, 5, 6]

(∆A = 4)

(∆B = 2)

(∆C = 5)

Run until reaching “?”

Figure 2.11: Visualization of the hypothetical execution process.
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pa = pb = pc = 0;
state = // initialize state machine ....
while (pa < lenA || pb < lenB){

// load to vector reg: load(address, count)
inputA = load(addr_a + pa, min(lenA-pa,V));
inputB = load(addr_b + pb, min(lenB-pb,V));

info = //initialize ...
info = KeyCombine(info, inputA, inputB);
cmdA,cmdB = Match(info, state, OR_PATTERN_128Bit);
breakPoint = GetBreakPoint(info, state,

OR_PATTERN_128Bit);

partA = SEPermute(cmdA, inputA, 0, 0);
partB = SEPermute(cmdB, inputB, 0, 0);
outC = SimdBitwiseOR(partA,partB);

// write to memory: store(address, simdReg, count)
store(addr_c + pc, outC, breakPoint.deltaC);

// update
pa += breakPoint.deltaA;
pb += breakPoint.deltaB;
pc += breakPoint.deltaC;
state = breakPoint.nextState;

}

(a) The dataflow in RZM model (b) The dataflow using 4 primitives (c) Sample code of (b)

Figure 2.12: The correspondence between the RZM model and its implementation
using the four primitives

Merging these two phases furnishes us with Equation-2.1.

2.4 Four Primitives to Implement RZM

We introduce four vectorized primitives for implementing RZM: KeyCombine, Match,

SEPermute, and GetBreakpoint. Figure 2.12 contrasts the dataflow of RZM in part (a)

with the implementation based on these four primitives in part (b). These primitives

allow for the completion of an RZM execution in a single pass, consuming both input

streams a and b to simultaneously generate the output stream c.val. Intermediate streams

defined in the RZM model, such as the event stream, the two command streams, and the
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two operand streams, are also immediately consumed once they are produced. All of these

streams are consumed/produced at vector granularity, i.e., approximately V elements per

iteration. The mapping of the RZM model to these primitives can be described as follows

(at a high-level approximation):

1. The generation of the event stream from the two input streams is accomplished by

KeyCombine. Essentially, it performs a merge sort.

2. The two command streams are generated from the event stream based on a given

matching pattern (encoded in 128-bit). This is achieved using Match, which fun-

damentally executes multiple “32-entry 4-bit/entry” table lookups independently

and in parallel.

3. The generation of the two operand streams from both the event stream and the

command streams is accomplished by SEPermute. This process is conceptually akin

to a permute/shuffle instruction.

4. The output stream (c.val) is generated from the operand streams using the binary

operator op(x, y). This can be achieved using traditional element-wise SIMD arith-

metic primitives (suitable for CPU/GPU) and does not necessitate new primitives.

5. The divide-and-conquer parameter as mentioned in Section 2.3-3 (s′, ∆A, ∆B, and

∆C) is generated by GetBreakpoint.

The aforementioned design is a reasonable approach, but it possesses two limitations.

Firstly, we can improve efficiency by avoiding the explicit construction of the entire event

stream. To understand this, consider that the command generation in the Match operation

uses only 5 bits for each sliding window of the event stream. Moreover, SEPermute

can directly generate the output stream from the input streams, eliminating the need
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for the event stream. Thus, constructing the full event stream becomes superfluous.

Secondly, within SEPermute, the command streams necessitate additional preprocessing

before being processed by its permutation circuit. Given that SEPermute is often invoked

multiple times with the same command, it is more efficient to transfer this recurring

preprocessing task from SEPermute to its predecessor operation, Match. This is because

Match is called only once per iteration, making it more suitable for post-processing tasks.

Consequently, our pragmatic design introduces additional optimizations to the initially

described approach as follows:

1. KeyCombine will no longer yield a complete event stream as its output; it will produce

the info stream instead.

2. SEPermute will directly access the input streams, bypassing the event stream.

3. Match will utilize the info stream as input, replacing the event stream. Additionally,

Match has an added responsibility: to post-process the command stream so that it

can be seamlessly integrated into the permutation circuit of SEPermute.

2.4.1 KeyCombine

The KeyCombine function takes two input streams and internally performs a merge

sort to produce the event stream. It then extracts the ”5-bit” information from each

sliding window, which includes determining the source of events (either ‘a’ or ‘b’) and

comparing whether the keys of neighboring pairs are equal.

Use of the Bitonic Sorting Network: A well-established method for merge sorting two

pre-sorted arrays (let’s call them a and b) of fixed length V (which is the hardware vector

length) in parallel is the bitonic sorting network. One issue with the traditional design

of the bitonic sorting network is that it doesn’t guarantee stability in the results: that is,
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when elements have identical keys, they should be sorted first by their source (elements

from a first, followed by those from b) and then by their original order in the input array.

This stable property is a requirement for our GZM/RZM model. A straightforward

solution is to include the source and the element’s position in the original stream as part

of a proxy key for comparison. For instance, the second occurrence of the number 2 in

the input array a = [1, 2, 2, 3] would have a proxy key represented as:

proxy key = ⟨key = 2, src = ‘a”, loc = 2⟩

Lexicographical Sorting with Tuple Keys: There are scenarios where the keys are

tuples comprising multiple fields. Applying the classical bitonic sorting network field-

by-field yields individual results instead of a lexicographically sorted array. We address

this by cascading the comparison outcomes between the processing of distinct fields.

From a programmer’s standpoint, performing a merge sort on tuples with k fields can be

accomplished using k KeyCombine calls:

info = // initialize

info = KeyCombine(info, a.key.field1, b.key.field1)

info = KeyCombine(info, a.key.field2, b.key.field2)

...

info = KeyCombine(info, a.key.fieldk, b.key.fieldk)

Here, field1 is the most significant field, while fieldk is the least significant.

The foundational architecture still relies on the bitonic sorting network. However, we

have enhanced each switch with a 2-bit state. Remember that a classical bitonic sorting

network is a log(2V )-layer butterfly-like network, where each crossover functions as a 2-

input 2-output compare-and-swap switch. There are a total of V log(2V ) such switches,

with each acting like a minimal sorter for 2 elements. The additional 2-bit state lets each
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switch recall previous results. If all earlier (more significant) fields of the key are equal,

the switch remains in an undecided state, with the determination deferred to the latter

(less significant) fields. Conversely, if in a frozen state, subsequent fields can’t modify the

comparison outcome. We delineate four states using these 2 bits: Strong ¡, Strong ¿ (the

two frozen states), and Weak ¡, Weak ¿ (the two undecided states). For each KeyCombine

action, every switch (with proxy key inputs x and y) updates its state as follows:

1. In a Strong ¡ or Strong ¿ state, it remains unchanged.

2. In a Weak ¡ or Weak ¿ state, if x.key ̸= y.key, the state transitions to Strong ¡ or

Strong ¿, contingent on whether x.key < y.key or vice versa.

3. In a Weak ¡ or Weak ¿ state, if x.key = y.key, it shifts to Weak ¡ or Weak ¿,

dependent on whether ⟨x.src, x.loc⟩ < ⟨y.src, y.loc⟩ or the reverse.

The rest mirrors the traditional bitonic network. The state of the switch is also

incorporated into the info. Summing up, info now comprises: 1) the 2-bit states for

each of the V log(2V ) switches, 2) the ”5-bits” gathered from every sliding window.

Lastly, following the lexicographical merge sort, KeyCombine needs to extract the ”5-

bits” from each sliding window. The ”src” can be derived from the sorted proxy keys of

the final KeyCombine execution. However, when juxtaposing a key with its adjacent key,

it must aggregate the ”equals” through the logical AND across all previous k KeyCombine

executions. This is because two keys aren’t equal if even one of their k fields differs.

2.4.2 SEPermute

SEPermute is a vital component designed to generate the operand streams from the

input stream. Functionally, it mirrors the semantics of traditional data permute or
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Figure 2.13: Illustration of the Squeeze-Expand network.

shuffle instructions. Here, the post-processed command streams emulate the control

masks typically found in conventional permute/shuffle instructions.

Order-Preserving Permutations Only: The permutation functionality demanded by

our problem is strictly of an order-preserving nature. That is, elements in the output

retain the order they had in the input. Valid operations include element removal, insertion

of constant elements (e.g., 0), and element duplication. Changing the original order,

however, is not permitted. Taking an input such as [1,2,3,4], valid outputs might resemble

[1,0,0,2,2,2,0,4], but not [4,2,3,1]. This specificity suggests that the conventional O(V 2)-

cost crossbar approach is excessive for our needs.

The Squeeze-Expand Network Solution: To cater to the unique order-preserving per-

mutations required, we introduce the Squeeze-Expand network, an efficient O(V log(V ))-

cost solution. The network is structured with log(V ) squeeze layers, followed by log(2V )

expand layers. A visual representation of this design is presented in Figure-2.13.
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The squeeze network can drop part of the elements and shift the remaining elements

towards the left to make them compact. For example, [1,2,3,4] → [1,3,-,-]. At layer

i (counting from 0), the elements can either shift left by 2i positions or move straight

down. Such usage of the squeeze network is not a new idea and was commonly used for

stream compaction.

The expand network can insert an extra constant element between existing elements

or duplicate elements. For example, [1,3] → [0,1,1,0,3,3,3,0]. It appears like an upside-

down version of the squeeze network. At layer i, the elements can 1) shift right by V/2i

positions, 2) move straight down, or 3) broadcast in both directions. The last case is

used to duplicate elements. As far as we know, this is the first time such a network with

duplication support has been used.

The combination of the squeeze network and the expand network is sufficient to

cover all order-preserving permutations. The primary challenge is to implement the

routing control logic. We first define the format of the control signals (the post-processed

command stream) it receives from Match:

1. For each element, there is a valid bit that decides whether it will appear in the

output.

2. For each element, there is a number specifying how many positions it will shift to

the left in the squeeze network in total. It is a log(V ) bit integer, named sl (“shift

left”).

3. For each element, it will shift to the right and be broadcasted over a range in the

expand network. There are two numbers specifying the amount of right-shift for

both the first and last elements of the broadcasted range. If no duplication is made,

then the numbers for the first and the last will be equal. These two numbers are

log(2V ) bit integers, named sr_f and sr_l (“shift right first/last”).
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The complete control signal for each element is therefore a tuple comprising 4 com-

ponents: (valid, sl, sr_f, sr_l).

Routing at squeeze network: At layer i, the squeeze network uses the i-th bit (i = 0

being the least significant bit) of sl to decide whether it should shift to the left. The

correctness is based on a simple fact: sl = sl[0]× 20 + sl[1]× 21 + sl[2]× 22 + . . ., where

sl[b] is defined as (sl>>b) & 1.

Routing at expand network: At layer i, the expand network forwards elements to the

right by V/2i positions, straight down, or both (for duplication). Assume one copy of

the element has been shifted to the right by x positions (thus, sr_f ≤ x ≤ sr_l). The

routing rules are:

1. Forward to the right if x+ V/2i ≤ sr_l.

2. Forward straight down if sr_f ≤ x.

There is an efficient way to implement the above rules without using adders and com-

parisons, which is advantageous in hardware to reduce cost and latency. As shown in

Figure-2.13, we use two extra flag bits (bottomFree and rightFree) that are initialized to

0 to incrementally build the above inequalities layer-by-layer, thus reducing the latency

of each layer to 3 gates.

2.4.3 Match

Match first generates two command streams (for both a and b) from the info stream and

then postprocesses them. The initial step involves using each ”5-bit” to look up a 32-entry

table with 4-bits per entry, encoding the matching pattern. This step is embarrassingly

parallel. The subsequent step transforms the command streams into the (valid, sl, sr_f,

sr_l) tuples, as mentioned in SEPermute. This transformation is essentially a set of prefix
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sum operations. We have two streams, a and b. Since they are symmetric, we can denote

them as (x = a, x̄ = b) or (x = b, x̄ = a). The postprocessed command streams are

referred to as postCmd streams.

1. (About valid) Whether an element is used in the final result depends solely on

whether it is pushed; i.e., the command is PushThis in the command stream x and

src is x.

2. (About sl_l) The number of positions an element should shift to the left is the

sum of preceding elements that were not pushed to the array. That is, the count of

prior elements whose command is NOT PushThis in the command stream x and

src is x.

3. (About sr_f) The number of positions to shift an element in x to the right is

the count of extra elements inserted before this element either by its opposite side

x̄—i.e., the count of prior elements whose command is NOT NoPush in command

stream x and src is x̄—or by the same side when inserting default elements, i.e.,

the count of prior elements whose command is PushDefault in command stream x

and src is x.

4. (About sr_l) The number of duplications (sr_f-sr_l) corresponds to the number of

PushMostRecent commands executed for this element. Specifically, it’s the count of

directly subsequent elements whose command is PushMostRecent in the command

stream x, not interrupted by any other commands like PushThis or PushDefault.

We observe that “counting the number of prior elements that satisfy a certain con-

dition” across all positions is a parallel prefix sum operation, which addresses points (2)

and (3). Similarly, point (4) can be understood as a parallel segmented suffix sum. Thus,
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determining the tuple (valid, sl, sr_f, sr_l) for each element can be efficiently imple-

mented in hardware using established techniques. One distinction we must account for

is the presence of V results for a and another V for b. These 2V results are intertwined

in a merge-sorted order. To separate them, we can route them along the inverse path in

the bitonic network (the necessary routing data is already available: the 2-bit states of

comparators are encapsulated within info). An additional circuit-level enhancement is

to integrate the prefix sum operation into the separation step, allowing both processes

to be completed in a single pass.

2.4.4 GetBreakpoint

The GetBreakpoint calculates the divide-and-conquer parameters as outlined in Section-

2.3.3, specifically (s′,∆A,∆B,∆C). As per its definition, the initial step involves deter-

mining the moment when our GZM/RZM can no longer progress due to the uncertainty

of the value of the element following the first V elements of both input arrays. It’s crucial

to understand that the last event executed before this breakpoint corresponds to one of

the two V -th elements of the input arrays, specifically the one that appears earlier in the

event stream. This determination can be made solely using the event stream. However,

in our design, the GetBreakpoint accepts the more concise info stream as its input. To

ascertain the values of ∆A,∆B, and ∆C, the GetBreakpoint module needs only to tally

the number of consumed and pushed elements as indicated in the command stream up to

the last event executed before the breakpoint. Lastly, representing the state s′ accurately

demanded a slew of engineering tactics and adaptations. While we won’t delve into the

specifics here, the pivotal outcome is our ability to represent s′ with just two bits.
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2.5 Evaluation

In this section, we evaluate the correctness, performance, and flexibility of our design.

We have implemented several representative workloads, which can be categorized into

two groups: the simple workloads that are direct MSOs, and the complex workloads

where an MSO serves as a foundational building block for more intricate operations.

We compare the baseline CPU with the same CPU enhanced by our SIMD extension.

Essentially, we contrast two optimized kernels: one employs only traditional scalar and

SIMD instructions, while the other also leverages the proposed SIMD primitives. For all

workloads, we employ SIMD baselines where appropriate and resort to scalar baselines

otherwise. As mentioned in Section-2.2, only two special cases of MSO can be expressed

in SIMD form using existing SIMD primitives. We defer the examination of the other

two use-cases of our design, namely ”baseline GPU vs. the same GPU with our SIMD

extension” and ”MSO-related accelerators vs. the same accelerator with ourO(V log(V ))-

cost design as a drop-in replacement”, to future research.

2.5.1 Experiment Setup

We extend the GCC(v10.1.0)/Binutils(v2.35) toolchain and the gem5(v20.1.0.2) CPU

simulator to support our proposed SIMD primitives. The base ISA employs Armv8 with

the SVE extension. The simulated processor is an out-of-order CPU modeled after the

Arm Cortex A15. Additionally, a 32KB L1I cache, 32KB L1D cache, 1MB L2 cache, and a

TaggedPrefetcher for the L1D cache are enabled. Given that instruction latency in cycles

is influenced by numerous factors such as the technology node, frequency, and voltage,

we have conservatively estimated the latency of the proposed primitives. This estimation

is based on a straightforward reference: “a 32-bit integer addition can be executed in one

cycle”. Based on this, we established the cycle count for instruction latency. To derive
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an even more reliable lower bound for performance improvement, we further scaled the

latency for each primitive by a factor of approximately 3, ensuring ample margin for

real-world implementation2. Lastly, given a SIMD width V , the latency for our proposed

primitives in the gem5 simulator is detailed in Table 2.4. The area synthesized at 22nm

is depicted in Table-2.5. For context, a 4-core Intel Haswell processor fabricated at a

22nm technology node has an area of around 200mm2. Incorporating our primitives

(with V = 16, for instance) results in a mere 0.098% area overhead.

Discussion: Practical Engineering Details. Firstly, the encoded primitives necessitate

bit-packing of their input/output to ensure the number of input register operands does

not exceed three and that the number of output registers remains at one. Secondly, even

though the KeyCombine primitive exhibits a relatively long latency, a sequence of cascaded

KeyCombine primitives designed to manage multi-field keys can be fully pipelined. This

is possible even when data dependencies exist on info. The reason being, different

segments of info are updated exclusively in one of the log(2V ) layers of the bitonic

network and these updates occur in non-overlapping cycles. Consequently, cascaded

KeyCombine primitives can be pipelined layer-wise.

Table 2.4: Latency of primitives.

Primitive Latency(cycles)

KeyCombine 3 log2(2V )
Match log2(2V )
SEPermute log2(2V )
GetBreakpoint log2(2V )

Table 2.5: Area overhead 22nm
V 4 16 64

Area(mm2) 7.83E-03 4.91E-02 2.74E-01

2Excluding this scaling factor, there would be an approximate 20% additional performance boost.
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2.5.2 Simple Workloads

Figure 2.14 displays the throughput for set operations, including set-union, set-

intersection, set-diff, and set-xor, as well as database join operations, namely join-inner,

join-outer, join-diff, join-xor, and join-left. These kernels showcase the flexibility of our

method in supporting various matching patterns. Meanwhile, Figure 2.15 exhibits the

throughput of element-wise additions and multiplications for both real and complex num-

bers between sparse vectors, matrices, and tensors, as well as an MSO associated with

merging adjacency lists in graph analytics applications. These kernels underline our

method’s adaptability to handle different tuple sizes for keys and values, and varying

functions of op(x, y). It is assumed that all inputs are already sorted into a key-value

array format. In our simulations, both len(a) and len(b) are set to 10k, with through-

put defined as (len(a) + len(b))/time. We have also marked the speedup compared to

the scalar baseline3 for three SIMD widths, V = 4, 16, 64, which correspond to SIMD

bitwidths of 128-bit, 512-bit, and 2048-bit, respectively. The average speedup across all

these kernels for V = 16 is 7.1×.

2.5.3 Breakdown of Speedup

We analyze the sources of speedup by representing the execution time of an MSO in

terms of three factors:

3Of all the aforementioned kernels, currently only set-intersection has a known SIMD implementation
method, so only the scalar baseline is used here.
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Figure 2.16 illustrates how SIMD impacts the three aforementioned factors, using

sparse vector addition as an example. From the figure, several observations can be made.

When compared to the scalar implementation, the SIMD implementation:

1. Reduces the number of iterations by approximately 1.5V times ,, which is the

primary driver behind the throughput improvement.

2. Incurs about 3 times more instructions per loop /, attributed to the increased

complexity.
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3. Experiences a higher cycles-per-instruction (CPI)/due to a combination of reasons.

Specifically, while the SIMD implementation gets rid of the difficult-to-predict branch

present in scalar codes ,, it also faces longer instruction latency and is more susceptible

to bandwidth pressure /. The final speedup is a product of these three factors.

Generally, the throughput scales favorably with the SIMD width V up to V = 32. The

growth in throughput stagnates when V is extended to 64, a phenomenon attributable

to the memory subsystem becoming saturated. At present, the longest SIMD width in

mainstream CPUs is 16 (as seen in AVX-512). Therefore, the saturation issue observed at

V = 64 remains hypothetical. Furthermore, in real-world scenarios, CPU manufacturers

typically enhance the memory subsystem bandwidth (especially cache bandwidth) when-

ever they opt to double their SIMD width, which would likely mitigate the bandwidth

constraints.

2.5.4 Complex Workloads

We assess two intricate workloads that are built upon MSOs: 1) sorting, and 2)

general sparse matrix-matrix multiplication (SpGEMM).

Sorting. For our baselines, we employ two scalar sorting algorithms: quicksort (via

std::sort) and merge sort (via std::stable_sort), as well as a SIMD sorting algorithm,

specifically Bramas SIMD[16]. The benchmarks encompass both 32-bit integer sorting

and 32-bit key-value sorting. We use arrays that are randomly generated, each containing

10k elements. Figure 2.17 illustrates the absolute performance of the baseline methods

in comparison with our design (i.e., the proposed SIMD). When V = 16, our approach is

3.4× swifter than Bramas SIMD and 8.0× more rapid than the scalar sorting methods.

The efficiency of our proposed SIMD approach is not just demonstrated by its speed
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Table 2.6: Properties of 4 sorting methods.

std::sort std::stable_sort Bramas Proposed
SIMD ✗ ✗ ✓ ✓
Stable ✗ ✓ ✗ ✓
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but also by its stability, as highlighted in Table 2.6. A sorting algorithm is consid-

ered stable if the relative order of key-value pairs with identical keys remains unchanged

post-sorting. Notably, traditional algorithms like Quicksort and other SIMD sorting

methods, including bramas, are typically unstable. A prevalent remedy to ensure sta-

bility in these methods is to embed the original position as a secondary key. However,

this workaround induces additional overhead, leading to an approximately 1.5× surge in

execution time[17].

The introduction of the GetBreakpoint primitives offers two distinct benefits over the

conventional loop-tiling technique: (1) it halves the iteration count, and (2) it ensures

stability. As depicted in Table 2.7, the rudimentary tiling approach for sorting processes

2V elements each iteration but only yields V elements. In contrast, the GetBreakpoint

mechanism produces roughly 1.78V elements on average per iteration when V = 16.

Table 2.7: Progress per iteration using two tiling methods.
SIMD 4 SIMD 8 SIMD 16 SIMD 32 SIMD 64

Naive 4 (V ) 8 (V ) 16 (V ) 32 (V ) 64 (V )
GetBreakPoint 6.16 (1.54V ) 13.53 (1.69V ) 28.53 (1.78V ) 59.00 (1.84V ) 120.48 (1.88V )

SpGEMM. General sparse matrix-matrix multiplication (SpGEMM) can often be real-

ized as the weighted sum of sparse vectors. Such an operation can particularly benefit

from the accelerated sparse vector addition, facilitated through an OR-pattern MSO

using SIMD. To evaluate the end-to-end performance improvement, we implemented a

SpGEMM kernel drawing upon the SIMD-optimized sparse vector addition. This was

pitted against an assortment of scalar baselines for comparison.

As Figure 2.18 illustrates, both the throughput and the relative speedup (for SIMD

widths of 4, 16, and 64) versus the finest scalar baseline for each dataset are presented.

Remarkably, for a SIMD width of V = 16, an average speedup of 4.4× is attained.
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Shifting focus to Figure 2.19, it charts out the fraction of the total SpGEMM execution

time consumed by the MSO. Here, the innermost narrow rings correspond to diverse

datasets, while the outermost expansive rings depict their geometric mean. One key

takeaway is the overwhelming dominance of the MSO in the execution timeline, even

when leveraging broad SIMD units — for instance, it constitutes 90% at V = 16 (512-bit).

Moreover, the speedup achieved through SIMD over standalone sparse vector addition (as

spotlighted in Figure 2.15) is predominantly sustained in holistic SpGEMM kernels. For

SIMD widths of V = 32 and V = 64, Amdahl’s law mildly impacts the performance, as

the non-MSO segments (or the residual parts) account for 14.5% ∼ 19% of the execution

duration.
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Figure 2.18: Throughput of SpGEMM and relative speedup of SIMD 4/156/64 vs.
the best one of scalar.

Quality Assurance for SpGEMM Baselines. In our pursuit of a reliable benchmark for

SpGEMM, we first gravitated towards the renowned and portable library, Eigen[18]. A

pertinent issue is the platform specificity of many well-optimized open-source libraries and
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Figure 2.19: Percentage of execution time spent on the MSO in SpGEMM under
different SIMD width.

research artifacts—most are tailored for x86, while our focus is on Armv8. Consequently,

a direct runtime comparison on our simulated Arm core is unfeasible.

To navigate this challenge, we meticulously implemented all major SpGEMM algo-

rithms documented in the literature in a platform-agnostic manner. This includes the

heap, hash, dense vector, and iterative merging algorithms. Following optimization,

these algorithms were executed on both x86 and Arm platforms, establishing a con-

duit for inter-platform comparison. As depicted in Figure 2.20, our baseline set closely

mirrors the performance of contemporary, state-of-the-art SpGEMM implementations

such as Yu’s Hash and HashVec[19]. Notably, these implementations already outperform

MKL and prior work. This congruence in performance bolsters our confidence that our

proposed design would exhibit comparable speedups over x86-specific libraries, albeit

through an indirect comparison. It’s worth highlighting that while Yu’s HashVec does

employ SIMD, its application is confined to parallel hash table probing. This restricts

its potential benefits from broader SIMD widths in future implementations.
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Figure 2.20: Performance comparison of our platform-agnostic baseline collection on
x86 with x86-specific SpGEMM libraries (Yu’s Hash and HashVec).

2.6 Conclusion

In this chapter, we present a one-for-all solution to implement MSOs in parallel

and overcome the limitations of prior work. We note the following: (1) different MSO

patterns can be encoded as functions that map a sliding window of three elements, post-

merge sort, to actions; (2) the V -to-V comparison problem evident in prior work can be

transformed into a sorting problem; (3) a comparator of fixed size can compare tuples

of any size lexicographically, provided it is equipped with a 2-bit state machine. Our

techniques enable a single hardware unit to support up to 2128 patterns with complete

flexibility in datatype and value calculation using only O(V log(V )) hardware resources.

In our evaluations on CPUs using the gem5 simulator, for V = 16 (512-bit SIMD, 32-bit

element), we achieve significant speedups on a variety of representative kernels. This

includes set operations (8.4×), database joins (7.3×), sparse vector/matrix/tensor addi-

tions and multiplications with real/complex numbers (6.5×), merge sort (8.0× compared

to scalar, 3.4× compared to the state-of-the-art SIMD), and SpGEMM (4.4× over the

best benchmark in our baseline collection).
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Chapter 3

High-level Operations on Ordered

(Key,Value) Data Structures

In real-world applications, many frequently used data structures/algorithms on ordered

(key, value) pairs cannot be efficiently accelerated using existing SIMD instruction and

have a more complex data organization than a simple sorted array. However, in this

chapter, we will show how to rewrite those data structures/algorithms into a form dom-

inated by merge style operation (MSO) and therefore obtain the performance advantage

of SIMD using the same SIMD primitives introduced in the last chapter. This chap-

ter complements the last chapter, showing the broad application of the proposed SIMD

primitives. Following, we will discuss three operations: heap, binary search, and K-way

additive merge.
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3.1 Binary Heap based on MSO
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Figure 3.1: The performance of the SIMD heap is compared with that of the scalar im-
plementation. The SIMD heap allows for any combination of insertion and extraction
operations with different granularity and ordering properties, including: 1) a block of
sorted data, 2) a block of unsorted data, 3) sorted data, and 4) unsorted data inserted
one-by-one.

Traditional binary heaps are typically considered purely scalar, and it may not be

immediately clear where SIMD instructions could be effectively applied, as a SIMD in-

struction operates on V elements simultaneously, where V is the SIMD width. However,

we can rewrite the traditional binary heap as a pair of larger and smaller heaps, with the

overall algorithm working by combining their results. The smaller heaps have a constant

size and can be operated on in unit time. The larger heap contains all the remaining data,

and operates at most 1/V as frequently as the smaller heap. However, each operation

can be accelerated by a factor of V when using MSO SIMD primitives.
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3.1.1 The Smaller Heap

The smaller heap is implemented as a short sorted array that contains fewer than V

elements, where V is the SIMD width.

1. The heap insertion operation involves inserting the new element into the sorted

array. The position for insertion can be easily determined using a SIMD scalar-

vector comparison. If the array contains exactly V elements after the insertion, all

V elements will be moved to the larger heap, and the smaller heap will be cleared.

2. The heap extraction operation involves extracting the smallest element from the

sorted array, which is simply the first element. We can use SIMD vector copy to

move the remaining elements to the front of the array.

3.1.2 The Bigger Heap

The bigger heap is implemented as a complete binary tree, where each node contains

V elements. It enforces several constraints:

1. The V elements in each node are sorted.

2. The elements in child nodes are always equal to or greater than the elements in

parent nodes.

3. The top node is a special case, where it may contain fewer than V elements. How-

ever, it must be non-empty unless the bigger heap is empty as a whole.

Insertions into the bigger heap are limited to batches of V elements that are already

sorted. To insert a batch, a new node is created from the V elements and added to the

end of the tree. The heap-fix process is then performed to restore the heap property,

starting at the newly inserted node and proceeding up the parent chain. Let’s denote the
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current node as q, and its parent node as p = parent(q). Using SIMD-accelerated merge,

we exchange the V + V elements in nodes p and q such that the elements in p are less

than or equal to the elements in q. This means that after the merge, the parent node p

will contain the smaller half of the V + V elements, while the child node q will contain

the larger half. The above process can be summarized in the following pseudocode:

p← parent(q)

[low half, high half]← merge(Content(p),Content(q))

Content(p)← low half

Content(q)← high half

The heap-fix process will continue until the root is reached, or as an optimization,

terminate early if the smallest element in p is not changed during the exchange. Whether

or not early termination is taken, the heap property is restored when the heap-fix steps

end.

For heap extraction from the bigger heap, the first element in the top node is removed

and returned. As with the smaller heap, we can use SIMD vector copy to move the

remaining elements in the top node to the front. If multiple extractions result in the

top node becoming empty, additional heap-fix steps are required to refill it. These steps

consist of a top-down pass and a bottom-up pass.

The top-down pass treats the top node as a ”hole” and moves it towards the bottom

of the tree (the leaves) using a series of exchange steps. This process makes the binary

tree incomplete, as one of the leaves will be missing. The bottom-up pass then restores

the complete binary tree by moving the last leaf to the hole and performing heap-fix steps

bottom-up to restore the heap property. These bottom-up steps are similar to those used

in the insertion operation but are more likely to terminate early.
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Here we will discuss the exchange steps to move the ”hole” towards the bottom in

more detail. Let’s denote the current node (the ”hole”) as q, and its children nodes as

c1 and c2. We compare the last element of the two children nodes, c1 and c2, and denote

the smaller one as c− and the larger one as c+. For example,

last(c1) ≤ last(c2) =⇒ c− = c1 and c+ = c2 (3.1)

last(c1) > last(c2) =⇒ c− = c2 and c+ = c1 (3.2)

We will then use SIMD-accelerated merge to process the V +V elements. The current

node (the “hole”) q will take the smaller half of the V + V elements, the child node c+

will take the larger half, and the child node c− will become the new “hole”.

[low half, high half]← merge(Content(c−),Content(c+)) (3.3)

Content(q)← low half (3.4)

Content(c+)← high half (3.5)

Content(c−)← new hole (3.6)

The exchange steps will proceed with the new hole being c− until the bottom is

reached. The subsequent bottom-up pass has already been described in the previous

discussions.

Mixing extraction and batch insertion can lead to a corner case where the top node

is not full while the heap-fix step of batch insertion reaches the top. In this case, the

merge will have fewer than V +V input elements. This can be fixed by always letting the

high half contain the larger V elements, and the low half contain the remaining elements,

which may be fewer than V .
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3.1.3 The overall algorithm

The overall algorithm for insertion and extraction involves forwarding the insertion

and extraction to the smaller and bigger heaps, with proper coordination between the

two sub-heaps.

To perform insertion, we first insert the new element into the smaller heap. The

insertion procedure terminates if the smaller heap contains fewer than V elements. Oth-

erwise, all the elements in the smaller heap will be moved to the bigger heap, and a batch

insertion will be performed.

To perform extraction, we compare the top elements in the smaller heap and the

bigger heap. We select the smaller one and perform an extraction operation on the

corresponding heap.

Observation: The heap-fix operations at the bigger heap will occur at most 1/V as

frequently as the scalar insertion/extraction operations in the overall algorithm.

This is because:

1. To trigger every heap-fix operation related to batch insertion, we need to insert at

least V elements into the smaller heap to make it full.

2. To trigger every heap-fix operation related to extraction, we need to extract at least

V elements from the bigger heap to make the top node empty.

This leads to two advantages compared to the textbook scalar binary heap:

1. The parallelism of SIMD is exploited: The heap-fix operation operates on nodes

with a granularity of V elements per node, making the use of SIMD possible.

Meanwhile, heap-fix will be triggered at 1/V of the original frequency, so the total

computation is not increased. The overall performance is improved by exploiting

the specialized SIMD extension to accelerate the V + V element merge.
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2. This design is more cache-friendly when the heap is large. Most insertion/extraction

operations (actually V − 1 out of V ) will only touch the smaller heap and the top

node of the bigger heap. When the heap-fix is performed in the remaining 1/V

cases, all V continuous elements in a node are used, increasing the portion of useful

data in a cache line. The total cache miss rate is eventually reduced by a factor of

V .
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Algorithm 1: Insertion to the heap

Data: Smaller heap: s is a sorted array of size ns; ensuring always have ns ≤ V .
Data: Bigger heap: B is a number of blocks of V elements. The nB is the

number of blocks. nt is the number of elements in the top node.
Input: input element x
begin

/* 1. insert x into the smaller heap using textbook insertion. Because

ns ≤ V , the following step finishes in one step using SIMD. */

last← 0;
// Use SIMD

for i← 1 to ns do
if s[i] ≤ x then

last← i+ 1;
else

s[i+ 1]← s[i];
end

end
s[last]← x;
ns ← ns + 1;
/* 2. if the smaller heap is full, move all elements to the bigger heap

and perform the batch insertion. */

if ns = V then
/* 2.1. move all elements to the bigger heap */

// Use SIMD

for i← 1 to V do
B[nB][i]← s[i];

end
nB ← nB + 1;
FixHeap(B, nB, nB − 1, nt);
ns ← 0;

end

end
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Algorithm 2: Fix Heap Bottom Up

Function FixHeap(B, nB, at, nt) is
while at > 0 do

parent← (at− 1)/2;
if parent = 0 then

np ← nt;
else

np ← V ;
end
// Use SIMD

merged← MergeSort(B[parent], B[at]);
// Use SIMD

for i← 1 to np do
B[parent][i]← merged[i];

end
// Use SIMD

for i← 1 to nt do
B[at][i]← merged[np + i];

end
at← parent;

end

end
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Algorithm 3: Extration from the heap

Data: Smaller heap: s is a sorted array of size ns; ensuring always have ns ≤ V .
Data: Bigger heap: B is a number of blocks of V elements. The nB is the

number of blocks. nt is the number of elements in the top node.
Output: the top element y
begin

/* 1. compare the top elements in the smaller heap and the bigger heap */

topAt← null;
if ns ̸= 0 then

topAt←′ small′;
end
if topAt←′ big′;
then nt > 0 and B[0][0] < ns[0]

end
/* 2. perform the extraction on the corresponding heap */

if topAt = null then
return null;

end
else if topAt =′ small′ then

/* 2.1. extract from the smaller heap */

y ← s[0];
ns ← ns − 1;
// Use SIMD

for i← 1 to ns do
s[i− 1]← s[i];

end
return y;

end
else if topAt =′ big′ then

/* 2.2. extract from the bigger heap */

y ← B[0][0];
nt ← nt − 1;
// Use SIMD

for i← 1 to nt do
B[0][i− 1]← B[0][i];

end
if nt = 0 then

// Use SIMD

FixHeapTopDown(B, nB, 0);

end
return y;

end

end
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3.2 Batched Binary Search based on MSO

Scalar V=4 V=8 V=16 V=32 V=64
0

50

100

150

200

250

#Q
ue

ry
 / 

s

0.9x

0.9x

1.0x

1.1x

1.2x
#Bins = 64 (~Vec Reg)

Scalar V=4 V=8 V=16 V=32 V=64
0

50

100

150

200

0.9x
1.0x

1.1x

1.3x

1.6x
#Bins = 256 ( L1 (32KB))

Scalar V=4 V=8 V=16 V=32
0

20

40

60

80

#Q
ue

ry
 / 

s

1.3x

1.4x

1.6x

2.0x
#Bins = 32768 ( L2 (2MB))

Scalar V=4 V=8 V=16
0

5

10

15

20

25

2.0x

2.2x

2.1x
#Bins = 1024865 (out cache)

Performance of batched binary search (bn ? < bn + 1) 
 Scalar v.s. Classicle SIMD v.s. Merge-based SIMD

Scalar
Classical SIMD@V=4
Merge SIMD@V=4
Classical SIMD@V=8
Merge SIMD@V=8
Classical SIMD@V=16
Merge SIMD@V=16
Classical SIMD@V=32
Merge SIMD@V=32
Classical SIMD@V=64
Merge SIMD@V=64

Figure 3.2: The performance of SIMD binary search using the new merge-SIMD prim-
itives versus the classical SIMD implementation. While both implementations provide
significant speedup over the scalar version, the new merge-based SIMD solution offers
extra speedup when the number of bins is large and cannot fit into L1 or L2. This is
due to the streaming access, which eliminates the need for SIMD gather.

The traditional way to parallelize binary search is to use each SIMD lane to execute

an independent binary search, effectively behaving like V small cores running in lockstep.

However, while the computation part can be accelerated by a factor of V , the memory

load operation (a ”gather” operation) to the middle elements does not improve with the
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SIMD width V , becoming the bottleneck. This is because the load/store unit in modern

processors can only handle one or two (constant) distinct addresses per cycle, while the

memory load address diverges in different SIMD lanes in the binary search.

To overcome this bottleneck, we introduce a new algorithm that eliminates the

”gather” memory load. Suppose the length of the delimiter array is S and the num-

ber of queries is Q, with a focus on the case Q ≥ S. We divide the query array into

segments of size near S, selecting S ′ = 2⌈log2 S⌉ as a reasonable choice. This gives us

⌈Q/S ′⌉ segments in total. We process each segment in order, sorting the query keys of a

segment together with their index in the original array as a payload. We then perform a

two-way merge (with interpolation rule) of the sorted segment with the delimiter array,

generating a result array consisting of matched pairs (DIdx,QIdx) where QIdx is the

index of the query key in the original array and DIdx is the index of the matched delim-

iter key. Finally, we scatter the DIdx values to the result array using the QIdx values

as the scatter address. The overall algorithm is shown in Algorithm 4.

This modification brings two benefits without increasing the time complexity. First,

all computation steps can be vectorized using SIMD. Specifically, step 2 and 3 (sorting and

interpolation merge) can be implemented as a two-way merge operation and accelerated

using the MSO SIMD primitives. Second, all memory load/store operations, except the

last scatter, are vector accesses of V continuous elements. This eliminates the memory

load (“gather”) bottleneck and improves the throughput of the algorithm.

Note that although the last scatter step is still non-continuous, it is faster than the

previous ”gather”-based implementation for two reasons: 1) the scatter is invoked only

once at the end, instead of log2(S) times in a loop, and 2) the scatter is not on the critical

path in the new algorithm; i.e. the core does not have to wait for it to finish. In contrast,

the gathered data in the original algorithm has data dependency, making it part of the

critical path.
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Finally, the time complexity remains O(Q log(S)/V ), as we have Q/V segments and

the sorting and interpolation merge steps are O(S logS/V ) and O(S/V ), respectively.

This is the same as the original SIMD binary search algorithm O(Q log(S)/V ).

3.3 K-way Additive Merge

In this section, we cover an operation called “K-way additive merge” and present

an algorithm to effectively utilize MSO primitives for its implementation. Unlike the

previous two sections, this operation requires careful analysis of the algorithm’s time

complexity, as we have discovered an input pattern that can lead to significant perfor-

mance degradation if the algorithm is not designed thoughtfully. A robust new algorithm,

along with a formal proof of its time complexity, is provided.

We organize this section as follows: First, we introduce the concept of K-way additive

merge and explain why we cannot simply adopt the merge sort algorithm. Next, we

present a new algorithm termed the α-merge based merge scheme, which is designed

specifically for K-way additive merge. Finally, we analyze the time and space complexity

of the α-merge based merge scheme.

3.3.1 Concept of K-way additive merge

The concept of K-way additive merge originated from operations in sparse linear

algebra. It involves merging k sorted lists into a single sorted list while consolidating

elements with identical keys found in all lists into a single element. When the elements

in the list consist of pairs of keys and values, the lists can be thought of as dictionaries.

The process can be generalized to include a reduce operator (often addition) that is

applied to the values of identical keys.

K-way additive merge is often used to implement sparse accumulators where partial
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sums in sparse multiplication operations form the sorted lists that need to be merged1.

Table 3.1 shows several examples.

There are two classic ways to implement K-way additive merge: using a heap or

iteratively performing two-way merges.

Heap-based method: One classic way to implement K-way additive merge uses a heap

that tracks the smallest element in each list. The algorithm starts by adding the first

element of each list to the heap. Then, the smallest element is removed from the heap

and added to the result list, potentially consolidated with the last element already in the

result list. The next element from the list the smallest element came from is added to

the heap. This process is repeated until all elements are added to the result list. This

algorithm has a time complexity of O(n log k), where n is the total number of elements

in all lists, and k is the number of lists. A limitation of this algorithm is that it fails to

exploit the consolidation of identical elements to reduce the number of comparisons.

Iterative merge: Another way to implement K-way merge is by performing a series

of two-way merges. This algorithm is suitable for our MSO SIMD primitives, so we will

focus on this method.

3.3.2 Why we cannot just imitate nature merge sort

The iterative K-way merge algorithm looks very similar to the nature merge sort, but

simply borrowing the methods used in merge sort leads to severe problems. The purpose

of this subsection is to explain the differences.

Suppose we have k sorted arrays l1, . . . , lk as input, and they have lengths |l1|, . . . , |lk|,

listed as follows:

l1, l2, . . . , lk

1This usually requires the operands to be stored in a sorted format, such as compressed sorted rows
(CSR).
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We can take arbitrary pairs of arrays (e.g., la and lb) and merge them (additively)

into a new array l′ab, leading to k − 1 remaining arrays to merge as follows:

l1, . . . , la−1, la+1, . . . , lb−1, lb+1, . . . , lk; l
′
ab

Finally, the above procedure is iterated k − 1 times to obtain the last result array.

The cost of merging two arrays la and lb is proportional to the sum of their lengths

|la|+ |lb|. Therefore, it is always preferable to merge short arrays with short arrays and

long arrays with long arrays, and avoid merging a short array with a long array. Up

to this point, the procedure is very similar to merge sort. To pick a good merge order

to minimize cost, one may consider using the same merge order as in sorting, such as

Huffman-tree-based merge order, or the TimSort algorithm. However, we found that the

truth is the opposite. The Huffman-tree based merge order can have significantly worse

space complexity, while the TimSort based algorithm can have significantly worse time

complexity.

These problems ultimately stem from one subtle difference: in additive merge, if

multiple elements have the same key, their value will be combined, so the result array

will be shorter than the sum of the lengths of the input arrays.

|MergeSort(la, lb)| = |la|+ |lb|

|MergeAdditive(la, lb)| ≤ |la|+ |lb|
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Following is an example,

l1.keys = {1, 2, 3}

l2.keys = {1, 3, 5}

MergeAdditive(l1, l2).keys = {1, 2, 3, 5}

MergeSort(l1, l2).keys = {1, 1, 2, 3, 3, 5}

This difference has three consequences:

1. The dynamic nature of intermediate length in additive merge will introduce some

noise to the scheduling of the merge order, which may lead to a suboptimal merge

order.

2. Algorithms for additive K-way merge can aim for better time complexity because

the total length reduces instead of being kept constant after every round of two-way

merge.

3. The iterative version of this algorithm for additive K-way merge can aim for better

space complexity (O(|
⋃

i li|), the length of the output array) instead of simply

O(
∑

i |li|) (the total length of all input arrays).

The problem with Huffman-tree based merge order

A method to schedule the merge order statically is to build a Huffman-tree using

the length of each array as the weight of each leaf node. The non-leaf nodes represent

intermediate result arrays. Then, an array’s merge order is the path from the leaf node

to the root node. However, the order obtained from Huffman-tree has two limitations:
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First, because the Huffman-tree computes the weight of non-leaf nodes by summing

the weights of its two children, this weight does not consider the possible consolidation

of the same intermediate array and may not accurately reflect the actual length of the

intermediate result array (it may be significantly larger than the actual length). This

sum of two children provides misleading information for the selection of the merge order.

Consider an extreme case where a subset of 2n input arrays has exactly the same set of

keys (say k keys), when they are merged together, the length of the result array will still

be k while their weight in the Huffman-tree will be 2nk. In general, any static scheduling

method can obtain a suboptimal merge order because the exact length of an additive

two-way merge is not predictable and known in advance.

Second, the input arrays are dynamically generated in many application scenarios,

such as sparse linear algebra. This means it is possible to accept one input array at a time

and incrementally merge it with the existing intermediate arrays. Since additive merge

can reduce the total size when identical keys are consolidated, the space complexity can

be kept small. In contrast, the Huffman-tree merge order is not suitable for this case

because it needs to wait for all input arrays to be available before a Huffman-tree can be

built. Moreover, the shortest pair of two arrays may be located at the beginning and end

of all arrays. Both of these factors force the Huffman-tree-based merge order to buffer

the entire input arrays before beginning, which consistently demands a space complexity

of O(
∑

i |li|), where li is the length of the i-th input array. Ideally, the space complexity

should be O(|
⋃

i li|), the length of the output array.

We should note that both limitations are related to the consolidation of identical keys

that reduce the size of merged arrays. The Huffman-tree-based merge order is still good

for merge sort. On the one hand, the length of the merged array (in merge sort) is fully

predictable. On the other hand, there is no regret about the O(
∑

i |li|) space complexity

since there is no way to make it smaller anyway.

62



High-level Operations on Ordered (Key,Value) Data Structures Chapter 3

The problems with TimSort’s stack-based merge order

The TimSort algorithm is the default sorting algorithm in Python and Java. It

extends the idea of merging sorts and deciding the merge order of many existing sorted

arrays using an elegant strategy that is cheap to evaluate. Moreover, there are already

formal proofs of its time complexity stating that when merging k arrays l1, l2, . . . , lk, the

worst-case time complexity is O(
∑

i |li| log k) (weaker version) or O ((
∑

i |li|) · (Hl + 1))

(stronger version) where Hl is the entropy of lengths (i.e., Hl = l′i log2(l
′
i), l

′
i = li/

∑
i li).

However, when the same strategy is applied to additive merge, it degrades to signif-

icantly worse quadratic time O((
∑

i |li|)2) (which is ≤ O(
∑

i |li| × k) ≤ O(
∑

i |li| log k))

in the worst case. Even worse, this worst case is not rare; a simple set of randomly

generated arrays can trigger this worst case. It can easily become 10x, 100x, 1000x (or in

fact, arbitrary) times worse than a naive merge order in the shape of a full binary tree.

The catastrophic failure of TimSort’s strategy is rather tricky, but it is ultimately

caused by the reduced result length of merge results, which merge sort does not have,

i.e., MergeAdditive(l1, l2) ≤ |l1|+ |l2|. With this background, we make two contributions:

1. We show that a one-line modification to TimSort’s strategy is sufficient to overcome

the problem. The modified strategy is still based on a stack and is called the α-

merge based merge order.

2. We analyze the space and time complexity of the new strategy and obtain new

upper bounds that are very different from sorting.

Since both TimSort’s strategy and the α-merge based merge order are based on

a stack, we will first introduce the α-merge strategy and then revisit how TimSort’s

strategy fails in this section.
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3.3.3 The α-merge based merge scheme

The α-merge-based merge scheme is a method for dynamically scheduling merging

orders and reducing total merge costs. It has been previously discussed in the context of

sorting [20]. Although the algorithm looks similar to our additive merge, we have found

that its time and space complexity are different (as we have already seen in the example

of TimSort), and so we reanalyze them in this subsection.

The algorithm starts by initializing an empty stack and then processing each of the

input arrays. The stack may contain intermediate arrays that are not yet merged, and

it needs to maintain an invariant about the length of arrays in the stack. Let’s denote

the arrays in the stack S as S = r1, r2, . . ., where r1 is the bottom of the stack, and |ri|

denotes their length. The number of arrays in a stack S is denoted as [S]. The invariant

states that the stack needs to maintain |ri+1| ≤ α|ri| for all i. The parameter α is a

constant that controls the size of the intermediate arrays and is usually set to 0.618 (the

inverse of the golden ratio).

To process an input array, the array is first added to the top of the stack. Then, the

stack is checked to see if the invariant is violated. If it is, then the top two arrays (r[S]

and r[S]−1) or the second two arrays (r[S]−1 and r[S]−2) are merged, whichever is cheaper.

This process is repeated until the invariant is satisfied. When all the input arrays are

processed, the stack will be merged from the bottom to the top and squashed into one

array. The entire procedure is shown in Algorithm 5.

In Algorithm 5, the function FixStack is first used to maintain the invariant (line 6)

and then collapse the stack (line 8). It iteratively merges two of the top three arrays in

the stack until the condition test returns false. In practical implementation, the condition

test for all possible i (the “∃i such that |s[i]| > α|s[i− 1]|”) can be simplified to test only

i = [S] and i = [S]− 1 (between the top three arrays), because at any moment, only the
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current top two arrays can differ from the end of the last invocation of FixStack in line

6.

This α-merge-based method is suitable for additive merge because it adapts to the

length of earlier merge results instead of being predetermined ahead of time.

3.3.4 Analysis of the α-merge based merge scheme

In this subsection, we present our results on the space and time complexity of the

α-merge based merge scheme. The proofs for these results are provided in the Appendix

at the end of this chapter.

Theorem 3.3.1. The peak memory footprint of the α-merge based merge scheme is asymp-

totically optimal and bounded by the number of unique keys |Key| in all input arrays,

i.e., |Keys| = | ∪k
i=1 li|.

Peak Memory ≤ O(|Key|)

Theorem 3.3.2. (Weaker Version) The time complexity of the α-merge is following:

Time Complexity = O

(
I ·
(
Hl − log

(
I

X

)
+ 1

))
where

I =
k∑

i=1

|li| is the input size

Hl = −
k∑

i=1

|li|
I

log

(
|li|
I

)
is the entropy computed using input lengths

X = | ∪k
i=1 li| = |Keys| is the output size
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Notice that the term O(I · (Hl + 1)) coincides with the lower-bound of any merge

sort, which can be achieved using a Huffman-tree to decide the merge order. The rest of

the term −I · log(I/X) is obviously negative. Therefore, we can confirm that our k-way

merge scheme runs at least as fast as the sorting problem.

If we look closer at the negative term, we can see that it shows how eliminating

duplicate tuples helps to reduce the time complexity. The ratio I/X is the ratio of the

input size to the output size, which indicates the degree of eliminated duplicates during

the merge. The larger the ratio, the more time is saved. Consider two extreme cases:

1. If the keys in the input arrays are almost unique and there are few tuples with

identical keys to be merged into one during the execution, the ratio I/X is close

to 1.

2. If there are a lot of duplicated keys in the input arrays, so the output size X is

much smaller than the input size I, and the ratio I/X can be a huge number.

Finally, it is important to note that I · (Hl − log(I/X)) ≤ I ·Hl ≤ I log k, where k is

the number of input arrays. Therefore, the α-merge-based scheme is at least not worse

than trivially using a complete binary tree.

The upper bound of the time complexity can be strengthened by replacing the term

X (the number of all distinct keys globally) with the average working set size W , which

represents the number of active keys at any given moment. The average working set

size W can be much smaller than the number of all distinct keys globally X if the input

arrays are not in a random order, and the keys appearing in one array are also likely to

appear in recent input arrays before it.
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Theorem 3.3.3. (Stronger Version) The time complexity of the α-merge is following:

Time Complexity = O

(
I ·
(
Hl − log

(
I

W

)
+ 1

))
where

I =
k∑

i=1

|li| is the input size

Hl = −
k∑

i=1

|li|
I

log

(
|li|
I

)
is the entropy computed using input lengths

W is the average working set size, defined following:

Definition 3.3.1. The average working set size W is defined as the geometric mean of the

per-element working set of each input element We,t:

W = exp

(∑k
i=t

∑
e∈lt log(We,t)∑k

i=t

∑
e∈lt 1

)

Definition 3.3.2. The per-element working set sizeWe,t is defined as the number of distinct

keys that appeared in the input array since the last time e appeared, plus the length of

the current input array lt.

We,t =

∣∣∣∣∣
t−1⋃

i=last+1

li

∣∣∣∣∣+ |lt|
where last =


0 ̸ ∃i < t, e ∈ li

max{i < t|e ∈ li} otherwise
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Corollary 3.3.4. The time complexity of the α-merge is following:

Time Complexity = O (I · (Hl +HKey − log(I) + 1))

where

I =
k∑

i=1

|li| =
∑

e∈Keys

|Ce| is the input size

Hl = −
k∑

i=1

|li|
I

log

(
|li|
I

)
is the entropy computed using input lengths

HKey = −
∑

e∈Keys

|Ce|
I

log

(
|Ce|
I

)
is the entropy computed using all distinct keys

Ce = {i|e ∈ li} is the indexes of input arrays that contain key e

This result becomes more elegant when considering the sparse patterns of all input

arrays as a probability matrix. The upper bound can then be expressed as the mutual

information between the rows and columns:

Time Complexity = O (I · (H(Y ) +H(Z)−H(Y, Z) + 1))

= O (I · (I(Y ;Z) + 1))

Specifically, we need to represent the input arrays as a sparse matrix, where each row

corresponds to an input array and each column corresponds to a key. The number of

rows is k, and the number of columns is |Keys|. This matrix can be seen as the joint

probability distribution of a pair of random variables (Y, Z), where all non-zero elements

have an equal probability of 1/nnz, where nnz = I =
∑

i li. In this representation,

Hl = H(Y ) is the entropy of random variable Y , and HKey = H(Z) is the entropy of
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random variable Z. Finally, we have log(I) = log(nnz) = H(Y, Z).

The results have interesting applications. When the mutual information I(X;Y )

between the rows and columns is small, the time complexity is also small. This is the

case in the following situations:

• When the number of input arrays is small (k is small) or the length of input arrays

is highly unbalanced (Hl is small). This is because I(X;Y ) ≤ H(X) ≤ log(k).

• When the number of distinct keys is small (|Keys| is small) or the number of

frequencies of each key is highly unbalanced (HKey is small). This is because

I(X;Y ) ≤ H(Y ) ≤ log(|Keys|).

• When the sparsity pattern of different input arrays is highly similar. This makes

H(X) +H(Y ) ≈ H(X, Y ), therefore I(X;Y ) ≈ 0.

The results presented in this section are highly related, with Theorem 3.3.3 being the

strongest. The corollary 3.3.4 and the weaker version of time complexity are consequences

of Theorem 3.3.3.

Lemma 3.3.5. The logarithm of the average working set size is upper-bounded by the

entropy of keys:

logW ≤ HKeys

Proof. We first observe that the per-element working set of element e at the t-th input

array covers the keys since the last time it appears in the input array, i.e., the input

arrays with index last + 1, last + 2, . . . , t. This is a disjoint range from the coverage of

another occurrence of the same e on another t′-th input array with t ̸= t′. We denote

Ce = t|e ∈ lt, then we have:
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∀e ∈ Keys,
∑
t∈Ce

We,t ≤
k∑

t=1

|lt| = I

Therefore, we have:

∑
t∈Ce

log(We,t) ≤ |Ce| log
(∑

t∈Ce
We,t

|Ce|

)
≤ |Ce| log

(
I

|Ce|

)
= −I ·

(
|Ce|
I

)
log

(
I

|Ce|

)

Also realize that iterating over keys and over input arrays are interchangeable:

∑
e∈Keys

∑
t∈Ce

· · · =
k∑

t=1

∑
e∈lt

· · ·

Therefore, we have:

logW =

∑k
i=t

∑
e∈lt log(We,t)∑k

i=t

∑
e∈lt 1

=

∑
e∈Keys

∑
t∈Ce

log(We,t)∑
e∈Keys

∑
t∈Ce

1

≤ −
∑

e∈Keys

(
|Ce|
I

)
log

(
I

|Ce|

)
= HKeys

Therefore, the Theorem-3.3.3 implies Collary-3.3.4 and also Theorem-3.3.2 if we no-
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tice that HKey ≤ log(|Key|) = log(X):

I ·
(
Hl − log

(
I

W

)
+ 1

)
︸ ︷︷ ︸

bound in Theorem-3.3.3

≤ I · (Hl +HKey − log(I) + 1)︸ ︷︷ ︸
bound in Collary-3.3.4

≤ I ·
(
Hl − log

(
I

X

)
+ 1

)
︸ ︷︷ ︸

bound in Theorem-3.3.2

Therefore, we only need to prove the main Theorem-3.3.3, which is left to a separate

Section-3.3.6 due to its length.

3.3.5 Appendix 1: Proof of the space complexity

The space complexity is related to the peak memory footprint (M) of the stack.

Case 1: The invariant hold on the stack; this is the status before pushing a new array

into the stack at line-4.

∀i, |stack[i]| ≤ α|stack[i+ 1]|

Suppose there are n arrays in the stack, then we have memory footprint Mhold:

Mhold =
n−1∑
i=0

|stack[i]| ≤ |stack[n− 1]| ×
n−1∑
i=0

αi

< |stack[n− 1]| × 1

1− α

Because intermediate arrays do not contain duplications, they must be shorter than
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the total number of distinct elements in the input, which is O(|
⋃

i li|)

|stack[n− 1]| ≤ |
⋃
i

li|

Therefore, we have

Mhold <
|
⋃

i li|
1− α

Case 2: After pushing the input array but before invoking FixStack at line-6, the

stack may violate the invariant. But because the stack satisfies the invariant before the

push, its memory footprint MpostPush is:

MpostPush ≤Mhold +max
i
|li|

< (
1

1− α
+ 1)|

⋃
i

li|

Case 3: During invoking FixStack at line-6. Because FixStack iteratively merges two

arrays at a time, while MergeAdditive can only reduce or keep the size of the merged array

compared to its two inputs, the memory footprint MFix strictly decreases. Therefore, we

have

MFix ≤MpostPush

Case 4: During invoking FixStack at line-8, the total length of the arrays in the

stack is strictly decreasing. Because the stack invariant hold when the function is called

at line-8, we have:

MCollaps ≤Mhold
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In summary, the overall space complexity M is the maximum of the prior four cases:

M = max(Mhold,MpostPush,MFix,MCollaps) ≤ O(|
⋃
i

li|)

The space complexity is O(|
⋃

i li|), which is asymptotically optimal because the size

of the result array is |
⋃

i li|. When the ratio of identical keys is high, this O(|
⋃

i li|) space

complexity is much smaller than the O(|
∑

i li|) space complexity of the original merge

sort.

3.3.6 Proof of the time complexity

Notations:

We have k input arrays. They are l1, l2, . . . , lk, their length are denoted as |l1|, |l2|, . . . , |lk|.

The total length of all input arrays is
∑k

t=1 |lt|, the number of unique keys in the input

arrays is denoted as |Key| = | ∪ki=1 lk|. Here we abuse the union notation to denote the

number of unique keys from a set of arrays after duplication removed.

We denote the stack state before pushing the t-th array as St. The state immediately

after pushing the t-th array is denoted as F 0
t . A sequence of merged will be performed.

The state after the h-th merge after push the t-th array is denoted as F h
t . The total

number of merge triggered after push the t-th array and before the next push is mt. The

state after the final input array being processed is denoted as Sk+1. It is followed by the

final collapse step. The state after the h-th merge after the final collapse is denoted as

Gh and there are mG merges in final collapse.

Therefore, the stack goes through following sequence of states: each row represent

the statis of the stack after a push, and each column represent the state after a merge;

the every new row represent the state after the next push.
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S1 → F 0
1 → F 1

1 → F 2
1 → · · · → Fm1−1

1 →

S2 → F 0
2 → F 1

2 → F 2
2 → · · · → Fm2−1

2 →

· · · · · ·

Sk → F 0
k → F 1

k → F 2
k → · · · → Fmk−1

k →

Sk+1 → G0 → G1 → G2 → · · · → GmG

We donate the total merge cost of a sequence of state transition X → · · · → Y as

C(X → · · · → Y ). Obviousely, C(X → · · ·Y → · · ·Z) is the sum of C(X → · · ·Y ) and

C(Y → · · ·Z). Therefore, the total cost of the whole merge process can be decomposed

as following:

C(S1 → · · · → GmG) = C(S1 → · · · → Sk+1) + C(Sk+1 → G0 → · · · → GmG)

=
k∑

t=1

C(St → F 0
t → · · · → Fmt−1

t → St+1)

+ C(Sk+1 → G0 → · · · → GmG)

The first term (
∑k

t=1C(St → F 0
t → · · · → Fmt−1

t → St+1)) is the cost of pushing all

the input arrays into the stack. The second term (C(Sk+1 → G0 → · · · → GmG)) is the

cost of final collapse. We investigate them seperately to get the upper bound of the total

cost.

Definition 3.3.3. The last occurrence array index L(e; t) of a key e against a prefix set

of of t input arrays Lt := [l1, l2, · · · , lt] is defined as the index of the last input array
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in Lt that contains e (if t = 0, Lt = ∅). If e does not appear in any array of Lt, then

L(e; t) = 0.

L(e; t) =


0 if ̸ ∃i, e ∈ li

max{i < t|e ∈ li} otherwise

Definition 3.3.4. The block reuse distance R(e; t) of a key e against a prefix t input arrays

Lt := [l1, l2, · · · , lt] is defined as the number of distinct keys that have been encountered

since the array of the last occurrence of e in Lt.

R(e; t) =

∣∣∣∣∣∣
t−1⋃

i=L(e;t)+1

li

∣∣∣∣∣∣
Proposition 3.3.6. The total merge cost is bounded as follows:

C(S1 → · · · → GmG) ≤ O

(
k∑

t=1

∑
e∈lt

1 + log

(
1 +

R(e; t)

|lt|

))

Note this bound is identical to the one in Theorem-3.3.3 after some transform if only we

notice that R(e; t) + |lt| = We,t.

The cost of final collapse:

We first investigate the cost of final collapse.

Proposition 3.3.7. The cost of the final collapse is bounded by O(|Key|).

C(Sk+1 → G0 → · · · → GmG) ≤ O(|Key|)

Proof. We denote the number of arrays in stack before the final collapse (Sk+1) as [Sk+1]
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, and laytout it from the bottom to the top as r1, r2, · · · , r[Sk+1], as shown in Figure-3.3.

r1
r2

r3
r4
r5
· · ·

Figure 3.3: The stack before the final collapse, i.e. status Sk+1.

When the stack get collapsed into a single array in the final state (GmG) using a

sequence of merges, the merge order can be represented as a binary tree, as shown in

Figure-3.4. The root of the tree is the final array, and the leaves are the arrays in the

stack Sk+1. The non-leaf node also represent the result of a merge, whose cost is bounded

by the sum of the length of the two children. Therefore, the cost of the final collapse is

bounded by the weighted sum of the length of leaves with the depth of the tree as weight.

We denote di as the depth of the ri in the tree.

C(Sk+1 → G0 → · · · → GmG) ≤
[Sk+1]∑
i=1

|ri| · di

Due the rule of merge operation, the status of stack must satisfy all the constraint

about the length that the length of the array must decrease exponentially by a factor of

α from the bottom to the top, therefore:

|ri| ≤ αi−1|r1| ≤ αi−1|Key|
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r5, r4, r3, r2, r1

r5, r4, r3, r2

r5, r4, r3

r5 r4, r3

r4 r3

r2

r1

depth=3

depth=4depth=4

depth=2

depth=1

Figure 3.4: Binary tree rooted at ABCDE with new node names and rounded rectangle
nodes.

Meanwhile, the merge rule only considerd merge the two top arrays, or the second top

array and the third top array. Therefore, the i-th array ri will not participate merge until

the remaining size of the stack is less than i + 2. Afterward, even the array participate

every subsequent merge, the total number of merge it participate will be less then the

number of remaining array substract one. Therefore, the depth of the i-th array ri is

bounded by i+ 1:

di ≤ i+ 1

Therefore, the total merge cost is bounded as following:
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C(Sk+1 → G0 → · · · → GmG) ≤
[Sk+1]∑
i=1

|ri| · di

≤
[Sk+1]∑
i=1

αi−1|Key| · (i+ 1)

≤ |Key| ×

(
∞∑
i=1

αi−1 · (i+ 1)

)

≤ |Key| × 2− α

(α− 1)2

≤ O(|Key|)

The cost of pushing all the input arrays into the stack

We now focus on the merge cost of the first term (
∑k

t=1C(St → F 0
t → · · · → Fmt−1

t →

St+1)). We denote the status of the stack after pushing the i-th input array as St. We

denote the number of arrays in stack after pushing the i-th input array as [St].

First recall that there are to cases when performing a merge on the stack: merge the

top two arrays, or merge the second top array and the third top array. We denote them

as Type A and Type B respectively, as illustrated in Figure-3.5.

Type A

Type B

Merge

Merge

Figure 3.5: The two types of merge.

From the state St to St+1, there are totally mt merges. We can divide them into two

halves by taking the all contiguous Type B merge in the front as the first halves, and

all the rest as second half. We denote the number of merge of the first group as p. For
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example, we may list the mt merges as below:

mtmerges︷ ︸︸ ︷
B B · · · B︸ ︷︷ ︸

(p leading Type B merges)

A A B · · ·︸ ︷︷ ︸
(mt−p) rest merges of Type A or B,

lead by A
Or this part can be empty as a whole.

Therefore, we decompose the cost of pushing an input array and the merges afterwards

into two parts, with the first part start from state St and end at state F p
t , containing the

first p merges, and the second part start from state F p
t and end at state St+1, containing

the rest mt − p merges.

C(St → F 0
t → · · · → Fmt−1

t → St+1) = C(St → F 0
t → · · · → F p

t )︸ ︷︷ ︸
cost of first p merge

+ C(F p
t → · · · → Fmt−1

t → St+1)︸ ︷︷ ︸
cost of rest mt − p merge

Proposition 3.3.8. The cost of the first p merges after pushing the t-th input array is

bounded by the length of input array |lt| by a constant time.

C(St → F 0
t → · · · → F p

t ) ≤ O(|lt|)

Proof. We denote the array in the stack after pushing the t-th input array as r1, r2, · · · , r[St]

which is similar to the final collapse step shown in Figure-3.3. Then F 0
t is simply append-

ing the t-th input array to the end of the stack, which is equivalent to r1, r2, · · · , r[St], lt.

In the following subsequent p merges of Type B, the second and third top array remain-

ing in the stack will be merged. So the state St, F
0
t , F

1
t , · · · , F

p
t can be illustrated as

following:
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St = r1, r2, · · · , r[St]

F 0
t = r1, r2, · · · , r[St], lt

F 1
t = r1, r2, · · · , r[St]−2,Merge(r[St]−1, r[St]), lt

F 2
t = r1, r2, · · · , r[St]−3,Merge(r[St]−2,Merge(r[St]−1, r[St])), lt

· · ·

F p
t = r1, r2, · · · , r[St]−p−1,Merge(r[St]−p,Merge(r[St]−p+2, · · · ,Merge(r[St]−1, r[St]))), lt

Therefore, the total merge cost from St to F p
t is bounded the weighted sum of the

length of the arrays in the stack, as the content in r[St]−p+0, r[St]−p+1, · · · , r[St]−1, r[St] will

participate no more than 1, 2, · · · , p− 1, p, p times in the merge (r[St] is a special case).

C(St → F 0
t → · · · → F p

t ) ≤
p∑

i=0

|r[St]−p+i| · (i+ 1)

Then, because St is in a state no merge can be triggered, so their length satisfy the

exponential descreasing property:

|ri+1| ≤ α|ri|, for all i ∈ 0, · · · [St]− 1

In addition, because Type B are triggered, to satisfy the condition, the top array (lt)

must be longer than the third top array in states F 0
t , F

1
t , · · · , F

p−1
t , therefore we have:

|lt| ≥ |r[St]−p|
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In summary, we have:

C(St → F 0
t → · · · → F p

t ) ≤
p∑

i=0

|r[St]−p+i| · (i+ 1)

≤ |r[St]−P |
p∑

i=0

αi · (i+ 1)

≤ |lt|
1

(1− α)2

≤ O(|lt|)

Definition 3.3.5. The height function h(e;S) of an key e on a stack S of arrays S =

(r1, r2, · · · , r[S]) are defined as:

h(e;S) =


0, ̸ ∃i, e ∈ ri

max{i|e ∈ ri}, otherwise

Definition 3.3.6. The height function H(S) of a stack S of arrays S = (r1, r2, · · · , r[S])

are defined as:

H(S) =
∑

e∈Keys

h(e;S)

where Keys is the set of all unique keys in the input arrays ∪[S]i=1li. But since h(e;S) is

0 by default if e is not in any array in the stack, so it can also use ∪[S]i=1ri.

Proposition 3.3.9. For any subarray from sequence of state transition F p
t → · · · →

Fmt−1
t → St+1, say X → Y → Z → · · · → W , the merge cost C(X → W ) is bounded by

the decrease height function H(S) of the stack S in state W by a constant time.

C(X → Y ) ≤ O(H(X)−H(Y ))
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Proof. It is suffice to prove two adjecent states X → Y such that Y is the result of a

merge operation after X.

Since X → Y undergoes either a Type A or Type B merge, we only focus on the top

three arrays on the stack, and we denote them as U , V and W (from bottom to top)

respectively.Therefore, we can represent X and Y as following:

X = · · · , U, V,W

Type A: Y = · · · , U,Merge(V,W )

Type B: Y = · · · ,Merge(U, V ),W

Case 1: Y is the result of a merge operation of Type B. The merge cost of Type B is

C(X → Y ) = |U | + |V |. In order to have Type B merge triggered, we have |U | < |W |.

Because all distinct keys e ∈ V ∪W has their height decreased by 1, while all other keys

has their height unchanged, so we have:


h(e;X) = h(e;Y ) for all e ̸∈ V ∪W

h(e;X) = h(e;Y ) + 1 for all e ∈ V ∪W

Therefore, we have:

H(X) = H(Y ) + |V ∪W |
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C(X → Y ) ≤ |U |+ |V |

≤ |W |+ |V |

≤ 2|V ∪W |

≤ 2(H(X)−H(Y ))

Case 2: Y is the result of a merge operation of Type A. The merge cost of Type A is

C(X → Y ) = |V | + |W |. In order to have Type A merge triggered, we have |U | ≥ |W |.

Because all distinct keys e ∈ W has their height decreased by 1, while all other keys has

their height unchanged, so we have:

H(X) = H(Y ) + |W |

Now we only need to prove that |V | ≤ z · |W | for some constant z. Realize that current

stack status at X is the result of a sequence of Type A or Type B merge from the state

F 0
t (so X is F v

t for some v), we can write down where different arrays in X are merged

from in F 0
t :

St = r1, r2, · · · , r[St]

F 0
t = r1, r2, · · · , r[St]−1, lt

X = F v
t = r1, r2, · · · , r[St]−v−1︸ ︷︷ ︸

U

,Merge(r[St]−v, · · · , r[St]−v+w)︸ ︷︷ ︸
V

,Merge(r[St]−v+w+1, · · · lt)︸ ︷︷ ︸
W

Because St is at the state no merge can be triggered, so α · |ri| > |ri+1|. Therefore, we
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have a upper bound on |V |:

|V | ≤
w∑
i=0

·|r[St]−v+i|

≤ |r[St]−v−1| ·
w∑
i=0

·αi+1

≤ |U | · α

1− α

≤ |W | · α

1− α

With the upper bound on |V |, we have:

C(X → Y ) ≤ |V |+ |W |

≤ |W | · α

1− α
+ |W |

≤ |W | · 1

1− α

≤ 1

1− α
· (H(X)−H(Y ))

Putting the two cases together, we have:

C(X → Y ) ≤ max(2,
1

1− α
) · (H(X)−H(Y ))

≤ O(H(X)−H(Y ))

Therefore, applying Proposition-3.3.9 to the merge cost of the whole sequence of state

transition F p
t → · · · → Fmt−1

t → St+1, we have:

C(F p
t → · · · → Fmt−1

t → St+1) ≤ O(H(F p
t )−H(St+1))
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Proposition 3.3.10. The change of height function from H(St) to H(F p
t ) can be bounded

by the block reused distance of the input array being pushed into the stack with following

relation:

H(F p
t )−H(St) ≤ O

(∑
e∈lt

1 + log

(
1 +

R(e; t)

|lt|

))

Proof. From F 0
t to F p

t , all merge operations are Type B merge, so the layout at F p
t can

be written as two parts: lt and the rest (we denote as F p
t /lt )

F p
t = r1, r2, · · · , r[St]−p−1,

Denote as r′
[St]−p︷ ︸︸ ︷

Merge(r[St]−p, · · · ,Merge(r[St]−1, r[St]))︸ ︷︷ ︸
part 1: F p

t /lt

, lt︸︷︷︸
part 2:lt

Because all arrays in F p
t /lt are merged from existing arrays in St and their height is

decreased or unchanged, so we have:

H(St) ≥ H(F p
t /lt)

Now we focus on H(F p
t ) −H(F p

t /lt) =
∑

e∈lt h(e;F
p
t ) − h(e;F p

t /lt). For each e ∈ lt,

it appear on the top array lt of F
p
t , so we have:

h(e;F p
t ) = [F p

t ] = [St] + 1− p

In addition, 0 ≤ h(e;F p
t /lt) ≤ [F p

t /lt], we analysis case by case.

1. h(e;F p
t /lt) = [F p

t /lt] − n, for n ≥ 2, then e is in an array r[St]−p−n, which is below

r[St]−p−1. The array above r[St]−p−n, i.e. r[St]−p−n+1 are array untouched from St,

and have

αn−2 · |r[St]−p−n+1| ≥ |r[St]−p−1|
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Because p is the number of the longest prefix of Type B merge sequence, the next

merge, if it exists, must be TypeA merge, and the merge rule demands that the

third top array must be longer than the top array, i.e.

|r[St]−p−1| ≥ |lt|

Because array r[St]−p−n contains the last input array that contain e before the t-th

input array, therefore the array between them r[St]−p−1 is the merged result of the

subset of input array lLast(e;t−1)+1, . . . , lt−1. Therefore,

R(e, t) ≥ |r[St]−p−n+1|

Putting everything together, we have for all e ∈ lt,

αn−2R(e, t) ≥ αn−2 · |r[St]−p−n+1| ≥ |r[St]−p−1| ≥ |lt|

And we have (note 1/α > 1):

H(F p
t )−H(F p

t /lt) = n ≤ 2 + log1/α

(
R(e, t)

|lt|

)

Note that we must have R(e, t) ≥ |lt|.

2. h(e;F p
t /lt) = [F p

t /lt]−n for n = 0, 1, then e is part of the second or third top array

in F p
t /lt, i.e. r

′
[St]−p or r[St]−p−1. We directly have:

h(e;F p
t )− h(e;F p

t /lt) ≤ 2
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Putting the two cases together, we have:

h(e;F p
t )− h(e;F p

t /lt) = max(2, 2 + log1/α

(
R(e, t)

|lt|

)
)

≤ 2 ·
(
1 + log1/α

(
1 +

R(e; t)

|lt|

))

And therefore:

H(F p
t )−H(St) = (H(F p

t )−H(F p
t /lt))− (St −H(F p

t /lt))

≤ H(F p
t )−H(F p

t /lt)

=
∑
e∈lt

h(e;F p
t )− h(e;F p

t /lt)

≤ O

(∑
e∈lt

1 + log

(
1 +

R(e; t)

|lt|

))

Now consider the state transition from St to St+1, using Proposition-3.3.9 and Proposition-

3.3.10

H(St+1)−H(St) = H(F p
t )−H(St)︸ ︷︷ ︸

≤O
(∑

e∈lt
1+log

(
1+

R(e;t)
|lt|

))+H(St+1)−H(F p
t )︸ ︷︷ ︸

≤−C(F p
t →···→St+1)

We have:

C(F p
t → · · · → St+1) ≤ O

(∑
e∈lt

1 + log

(
1 +

R(e; t)

|lt|

))
+ (H(St)−H(St+1))

Therefore, we can bound the total cost after pushing t-th input array and before the
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t+ 1-th merge:

C(St → F 0
t → · · · → Fmt−1

t → St+1) = C(St → · · · → F p
t ) + C(F p

t → · · · → St+1)

≤ O(|lt|)︸ ︷︷ ︸
First half, by Proposition-3.3.8

+≤ O

(∑
e∈lt

1 + log

(
1 +

R(e; t)

|lt|

))
+ (H(St)−H(St+1))︸ ︷︷ ︸

Second half

Now we have all the necessary tools to prove the main theorem.

C(S1 → · · · → GmG) =
k∑

t=1

C(St → F 0
t → · · · → Fmt−1

t → St+1)

+ C(Sk+1 → G0 → · · · → GmG)

≤ O

(
k∑

t=1

|lt|

)

+O

(
k∑

t=1

∑
e∈lt

1 + log

(
1 +

R(e; t)

|lt|

))

+H(S0)−H(GmG)

+ O (|Keys|)︸ ︷︷ ︸
By proposition-3.3.7

≤ O

(
k∑

t=1

∑
e∈lt

1 + log

(
1 +

R(e; t)

|lt|

))

Here we use the fact that H(S0) = 0 for the initially empty stack, H(GmG) ≥ 0 for

any stack, and |Keys| = | ∪k
t=1 lt| ≤

∑k
t=1 |lt|.
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3.3.7 Appendix 2: The problem with the TimSort scheme

We need to exercise caution when applying sorting algorithms to additive merge,

despite their apparent similarity. The noise caused by the reduced result array length

can be misleading for the scheduling algorithm and significantly impair performance. One

example is the TimSort scheme, which is similar to the α-merge-based merge except for

using a different condition test to determine when to collapse the stack. The condition

test is ”∃i such that |s[i + 1]| ≥ |s[i]| or |s[i + 1]| + |s[i + 2]| ≥ |s[i]|.” In sorting, the

TimSort scheme is nearly identical to the α-merge scheme, with α set to the golden ratio,

0.618. However, in additive merge, the TimSort scheme can take quadratic time in the

worst case to the input size. An example that would cause TimSort to be extremely slow

is the following:

l1.keys = [1, 2, 3, . . . , n]

l2.keys = [1, 2, 3, . . . , n− 1]

l3.keys = [1]

l4.keys = [1]

. . .

ln.keys = [1]

Using the TimSort scheme, the stack will contain l1 and l2 from bottom to top. Then,

starting from i = 3, each time a new array li is pushed into the stack, the task looks like
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this:

−−−−bottom−−−−

r[S]−2 =[1, 2, 3, . . . , n]

r[S]−1 =[1, 2, 3, . . . , n− 1]

r[S] =[1]

−−−−top−−−−

Because |r[S]| + |r[S]−1| ≥ |r[S]−2|, a merge will be triggered between r[S] and r[S]−1.

The result array will still be [1, 2, 3, . . . , n−1], and the stack will restore to the following:

−−−−bottom−−−−

r[S]−1 =[1, 2, 3, . . . , n]

r[S] =[1, 2, 3, . . . , n− 1]

−−−−top−−−−

This means that for all 3 ≤ i ≤ n, there will be a very inefficient merge between

[1] and [1, 2, 3, . . . , n − 1], resulting in n merge costs. Therefore, the total merge cost is

O(n2), scaling quadratically with the input size.

Unfortunately, the situation described above (which I call the ”performance trap”)

is not a rare case that only happens in deliberately constructed scenarios; it can happen

almost anywhere. The key to triggering this problem is that r1 and r2 contain almost

all different keys, and r1 is only slightly shorter than r2. Then, for any new array (even
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Figure 3.6: Abnormally high cost for additive merge when using a TimSort-like scheme
on randomly generated input with an even distribution. One would naturally expect
that any method performing well in merge sort should perform better in additive
merge. However, this is not true for the TimSort-like scheme. On the other hand, the
Alpha merge does not have this problem.
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Figure 3.7: Case in which the TimSort-like scheme performs normally for additive merge.
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a very short one) that is pushed to the stack, it will be immediately merged, while the

new r1 (the merged result) is still likely to be shorter than r2, since most of the keys are

already contained in the original r1. This situation persists (whereas in merge sort, it

would be escaped). For example, a set of randomly generated samples from a fixed set

can trigger this problem, as shown in Figure 3.6. Only when the sparse array is very

dense can the TimSort scheme escape from this situation and perform similarly to the

α-merge scheme, as shown in Figure 3.7.

The ultimate cause of this problem is that the TimSort scheme is designed for sorting,

where the result array is the same size as the input array. Hence, the above-inefficient

merge of a length-1 and length n− 1 array will happen only once instead of repeatedly.
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Algorithm 4: SIMD-friendly Batched Binary Search

Input: delimiter array D of size S, query array Q of size Q.
Output: result array R of size Q.
begin

S ′ ← 2⌈log2 S⌉;
D′ ← zip(D, 0 . . . S ′ − 1);
D′[S ′]← (+∞, S ′);
for i← 0 to ⌈Q/S ′⌉ do

/* 1. Take the i-th segment of Q */

for j ← 0 to S ′ do
seg[j]← (Q[i ∗ S ′ + j], i ∗ S ′ + j);

end
/* 2. Sort the segment by the query keys */

Sort seg[0..S ′ − 1] by the first field;
/* 3. Merge the segment with D using the interpolation rule */

merged← MergeInterpolate(D′, seg[0..S ′ − 1], S ′);
/* 4. Scatter the result to R */

for j ← 0 to S ′ do
R[merged[j].second]← merged[j].f irst;

end

end

end
Function MergeInterpolate(d, q, lq) is

pa, pb← 0, 0;
while pb ≤ lq do

(keyA, valA)← d[pa];
(keyB, valB)← q[pb];
if keyA ≤ keyB then

pa← pa+ 1;
end
else

M [pb]← (valA, valB);
pb← pb+ 1;

end

end
return M

end
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Name Expression Relation
SpMSpV yj =

∑
i Aijxi where A and x are sparse A[i, :]xi forms sorted lists

SpMSpM Cij =
∑

k AikBjk where A and B are sparse
Method 1: A[i, k]B[k, :] forms sorted lists
Method 2: A[:, k]B[k, :] forms sorted lists

SpMSpT Cijl =
∑

k AikTkjl where A and T are sparse A[i, k]T [k, :, :] forms sorted list

Table 3.1: Sparse multiplication operations are implemented using k-way additive merge

Algorithm 5: The α-merge based merge scheme

Input: input arrays l1, l2, . . . , lk, constant α
Output: merged array m
// Following, if s is a stack, s[i] denotes the i-th array from the bottom.

1 begin
2 stack ← ∅;
3 for i← 1 to k do
4 stack.push(li);
5 FixStack(stack, lambda (s) {
6 ∃i such that |s[i+ 1]| > α|s[i]| });
7 end
8 FixStack(stack, lambda (s): s.size >= 2);
9 return stack[0];

10 end
11 Function FixStack(stk, condTest) is
12 while stk.size ≥ 2 and condTest(stk) do

// d is the depth of the stack. p1, p2, p3 are the top three arrays in the

stack.

13 d← [stk];
14 if stk.size = 2 or |stk[d]| ≤ |stk[d− 2]| then
15 p1, p2 ← stk.pop(), stk.pop() ;
16 p′1 ← MergeAdditive(p1, p2);
17 stk.push(p′1);

18 else
19 p1, p2, p3 ← stk.pop(), stk.pop(), stk.pop();
20 p′2 ← MergeAdditive(p2, p3);
21 stk.push(p′2), stk.push(p1);

22 end

23 end

24 end
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Chapter 4

Reduce-by-key Operation on Unordered

(Key,Value) Operation

In this chapter, we present a method for performing a reduce-by-key operation on an un-

sorted (key, value) array. The new method offers several advantages over classic methods,

such as hash tables or sorting, in terms of parallelism and memory access traffic/pattern.

This makes the method more suitable for modern architectures with massive parallelism

on a single chip, such as GPUs, and layered memory hierarchies.

In prior research, this operator is typically studied as part of a complete application,

where reduce-by-key is used in pairs with another upstream operator that produces the

(key, value) pairs, forming a frontend-backend structure. Frontends in different applica-

tions are typically different, while the backend is the same. Although prior work have

different intended application domains, they often focus on attacking the same challenges

in the backend. On the other hand, the application-dependent frontend usually turns

out to be simpler and less central. In this work, instead of focusing on one specific ap-

plication, we fully concentrate on the backend part and leave the frontend optimization

problem to future full system-level integrators.
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Why do we need yet another method? For a small-scale problem and when using a

single thread, a textbook hash table suffices. However, if the number of threads scales

to thousands (such as an Nvidia A100 GPU or an accelerator) and the problem size

scales to gigabytes (such as a large genomic dataset), hash tables and their variants are

limited by inefficient random memory access and write-conflict. Other methods, such

as using sorting or partition preprocessing, can alleviate the problem but lead to other

problems, such as increased memory traffic, increased peak memory footprint, or reliance

on prior knowledge about the input. None of those methods is optimal in all aspects (we

summarized a checklist of features that applications from different domains may need,

see Table-4.1).

We observe that earlier methods can be broadly categorized into two mindsets: ”lazy

deduplication” and ”eager deduplication,” which represent two opposite extremes. The

advantages and disadvantages of these methods arise from the selection of one of these

mindsets, with the opposite advantages and disadvantages resulting from selecting the

other. In our approach, we employ an ”incremental deduplication” scheme at every layer

of the memory hierarchy to achieve the best of both worlds. Additionally, our method

includes a memory-friendly deduplication method that stores all partial results in SDHA

arrays, which serve as dedicated containers.

Numerical evaluation using simulations has shown that the new method offers ad-

vantages on parallel hardware over existing methods, including hash, sorting, and their

variants or hybrids. However, these advantages are presented more directly by theoreti-

cal analysis, which establishes a relation between the method’s memory footprint, traffic,

access pattern, and that of the theoretical optimal of any design.
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4.1 Applications with a Frontend/Backend Structure

In recent years, emerging applications like graph processing, genome analysis, sparse

computing, and database have attracted researchers’ interest in developing domain-

specific accelerators. Many of them can be formulated in a “frontend-backend” structure

logically.

• Frontend: The frontend generates a stream of tuples in a form of (key, val).

• Backend: Recieve the tuple stream from the frontend and aggregate tuples with

identical keys using a reduce operator (usually +, max, or min).

Following are some examples.

Graph computing: Graph computation is widely used in social networks, machine

learning and other problems. Many graph algorithms can be implemented by iteratively

pushing the information from an active subset of vertices to their neighbor as updates,

usually known as the “push-style” method (Sample-Code 1). It will iterate through the

active vertices and generate an update for every neighbor vertices. Next, all updates

to the same vertex will be aggregated. The second phase of this problem can be seen

as a reduce-by-key operation. Each update can be seen as a tuple where the key is the

id of the neighbor vertex. The challenge of this graph workload is how to resolve the

write-conflict and random memory access when aggregating those updates[21, 22, 23].

Input: graph (V,E), active vertices VA ⊆ V ,

vertex data Dv, edge data DE

Output: updated vertices data Fv

Customizable: function op, reduce operator Reduce
Initialize Fv into a empty dictionary

for u in VA:

for v in neighborE(u):

Fv[v] = Reduce(Fv[v], op(Dv[v], DE[(u,v)]))

Sample Code 1: Push-style method for graph computation
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Genome Analysis: With the development of the DNA sequencing technique, an es-

timation of zettabytes of data has been collected and which greatly benefits the areas

like Physiology or Medicine, especially during the Covid-19 pandemic. K-mer counting

is one of the most frequently used tool to discover the relevance between DNA sequences.

The algorithm will scan the whole DNA sequence with a sliding window size of K and

count the number of occurrences for each k-length subsequence (k-mer). Such a counting

problem can be seen as a “reduce-by-key operation” by treating each occurrence of a

k-mer as a tuple. The performance of K-mer counting not only suffers from random

access and write-conflict but also a huge dictionary that can easily become tens or even

hundreds of GB due to the huge number of distinct k-mers in a large DNA dataset

[24, 25, 26, 27, 28, 29]. The latter imposes a high standard of space efficiency and any

implementation that trades space for speed, such as using data replication, will be not

affordable. The algorithm is shown in Sample-Code 2.

Input: a DNA sequence

Output: a dictionary dict for the counting

Parameter: window size k

Initialize dict into an empty dictionary

for i in range(len(DNA)-K):

seed = DNA[i:i+k]

dict[seed] += 1

Sample Code 2: K-mer counting

Sparse Linear Algbra The multiplication between sparse vectors, matrices, or tensors

with a reduced dimension can be seen as a “reduce-by-key” operation. Taking the general

sparse matrix multiplication (SpGEMM) for example, the sparse partial sums can be

seen as the tuples to aggregate by seeing the row and column indices in the result matrix

as keys[30, 31, 32, 33, 34, 35, 36, 37, 38]. Sparse computing requires the “reduce-by-

key” operation to be performed in parallel with the partial sums generation, i.e. to be
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on-line. This is because the number of intermediate partial sums is usually huge and

off-line algorithms may run out of memory even if the size of the result matrix is small.

Therefore they require an on-line algorithm to aggregate tuples at the same speed as

the multipliers that generate those tuples, instead of dumping all partial sum tuples to

memory and performing an off-line aggregation in the end. For example, a sort-based

SpGEMM (off-line) implementation CUSP[31] and bhSparse[34], despite being faster,

run out of memory more frequently than the hash table-based methods[38].

Consider how a well-known example, the outer-product implementation of general

sparse matrix-matrix multiplication SpGEMM, can be written in the form of reduce-by-

key operation as shown in Sample-Code 3.

Input: sparse matrices A (CSC) and B (CSR)

Output: sparse matrix C = AB
Initialize dict C into an empty dictionary

for i in range(k):

for (row_idx, va) in A.sparseColumn(i):

for (col_idx, vb) in B.sparseRow(i):

C[(row_idx,col_idx)] += va * vb1

Sample Code 3: Outer-product implementation of SpGEMM

Database: Group-by aggregation is one of the most frequently used operators in

databases. It is a “reduce-by-key operation” by seeing each row as a tuple[39, 40, 41,

42, 43, 44]. In databases, the data often have highly skewed distributions that are non-

uniform both in frequency (e.g. power-law) and temporal location (e.g. moving cluster).

Such non-uniformness can severely degrade the parallel computation performance by

amplifying the contention’s propobility. This requires an skew-resilient implementation

to obtain a robust performance across different input distributions.
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Table 4.1: Features supported by different methods (left) and demanded by applica-
tions (right) (|Input|: size of the input. |Key|: number of unique keys in the input.
P : number of parallel threads.)

Feature
Supported by methods Required by applications

Sorting Shared Hash Private Hash Partition+Hash Proposed (SDHA) Graph Genmoic Sparse Database

Parallelism
Write-Conflict-Free ✓ ✗ ✓ ✓ ✓ Yes Yes Yes Yes
Skew-Resilience ✓ ✗ ✓ ✗ ✓ Yes Yes

Memory
Access

Random-Access-Free ✓ ✗ ✗ ✓ ✓ Yes Yes Yes Yes
Reduced traffic ✗ ✓ ✓ ✗ ✓ Yes Yes Yes Yes

Space
On-line ✗ ✓ ✓ ✗ ✓ Yes

Near-optimal storage
(Optimal is |Key|) ✗O(|Input|) ✓O(|Key|) ✗O(P × |Key|) ✗O(|Input|) ✓O(|Key|) Yes

4.1.1 The checklist

Different application domains impose different subset technical requirements on the

“reduce-by-key” operation. We summarize a checklist shown in the right side of Table-

4.1. They can be categorized into three aspects:

• Parallelism

– Write-conflict-free: It should effectively reduce the overhead of write conflict.

– (+) Skew-resilience: It should maintain robust performance even for highly

skewed input. Since skewness amplifies the probability of write-conflict, it is

a strictly higher requirement than write-conflict-free.

• Memory access

– Random-access-free: It should not have fine-grained random access to off-chip

memory.

– Minimum traffic: It should eagerly aggregate tuples on-chip to minimize the

total data traffic to off-chip memory. For example, if the capacity of any level

of cache is big enough to hold all distinct keys, zero traffic will spill out of that

cache.

• Space
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– On-line: It should not demand all tuples be generated before starting.

– (+) Near-optimal storage: The memory footprint should not be more than

the necessary amount by a constant factor; specifically, the footprint should

not depend on both input length and the number of threads. It is a strictly

higher requirement than being on-line.

We marked (+) above for two entries (skew-resilience and near-optimal storage), since

the other entry above them is the prerequisite for them: a skew-resilient algorithm must

be write-conflict-free, and a near-optimal storage algorithm must be on-line.

4.1.2 The strength and limitation existing methods

We summarize the situation with existing methods on the left side of Table-4.1.

Sort-based method: The sort-based method first sorts all of the input tuples according

to the key, followed by a linear scan to merge identical keys. Sorting algorithms such

as merge sort have good parallelism, are resilient to skewed distribution, and have no

random access, but they need to wait for all tuples to be ready (therefore off-line) and

thus require large storage that is proportional to |input|. In addition, sorting usually has

larger data traffic than hash-table-based methods, especially when the number of distinct

keys, i.e. the “key cardinality” |Key| is smaller than the on-chip memory size.

Hash table (common): Hash table-based methods directly aggregate incoming tuples

with an existing record. This reduced the memory footprint and also off-chip traffic if

the hash table is used with a cache. However, hash probes are random memory access.

Shared hash table: The shared hash table method uses only a global hash table shared

by all threads, which makes the memory footprint minimum. However, sharing forces it

to design a safety mechanism to prevent write-conflict break the data structure. Sharing

also makes the algorithm sensitive to the skewness of the input stream because skewness
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can concentrate all parallel accesses into one spot.

Private hash table: Private hash table use duplicated tables for each thread, which

eliminates write conflict. However, this significantly increases the memory footprint by

the factor of parallelism P . It also indirectly causes more off-chip traffic because tuples

on-chip with the same key will not be aggregated if they are owned by different threads

– the privatization reduces the effective capacity of on-chip memory.

Partition + hash table: This method uses a preprocessing step to divide the input

tuples into disjoint groups according to the keys, similar to a step in the radix sort. By

assigning different groups into different threads, write conflict is prevented. However,

the pre-processing step makes it an off-line algorithm and increases its memory footprint

and traffic.

4.2 Duplication is Evil and Necessary Evil

The reduce-by-key operation can be thought of as a sequence of insertions into a

record dictionary. For each new input tuple, the algorithm must determine whether to

immediately search for a tuple with the same key in the dictionary and merge the two

tuples, or to store the new tuple in a designated location and wait for a more opportune

moment to merge it with others. The latter option allows for duplication of the same

key in memory, which is not entirely unreasonable. Algorithms like partition-based hash

tables preserve duplication in their first phase with the goal of reducing the range of

random memory access and creating opportunities to parallelize write-conflicts, which can

introduce several issues. However, the situation is not so straightforward. If duplication

is maintained, it will interact with hardware efficiency in numerous ways, creating many

issues while also being beneficial in overcoming other problems. To illustrate this point,

consider two extremes:
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Not allow any duplication:

All tuples with an identical key must be merged

immediately when seen from the input array. An

example is hash table-based algorithms.

Peak memory footprint: The memory footprint

is minimized because no redundant tuples are stored.

In particular, it is bounded by O(|Key|), where

|Key| is the number of distinct keys.

Random access: Random access is inevitable

not only because of the random projection of the

”hash function” in a hash table but also in any al-

gorithm where only duplication is strictly prohib-

ited. In such algorithms, the access pattern must

be at least as random as the key distribution since

there is no other place to store tuples with the

same key except the last tuple sharing the same

key. However, random access can severely impact

performance when the range exceeds the cache size.

Write conflict: When multiple threads run con-

currently and duplication is not allowed, write con-

flict is inevitable because all threads must write to

the same memory location for the same key.

Memory traffic: Performing deduplication ea-

gerly helps reduce memory traffic by decreasing

the total number of tuples that need to be moved

in subsequent operations. Moreover, most hard-

ware features a multi-layer memory hierarchy, and

merging tuples at higher levels, such as the cache,

can reduce traffic to lower levels, such as the main

Allow arbitrary duplication:

Merging tuples with identical keys can be de-

layed until the algorithm deems it appropriate. Ex-

amples include sorting-based algorithms and partition-

based hash algorithms.

Peak memory footprint: The memory footprint

is unbounded due to the delayed merge. It can be

as large as the input array, O(|input|).

Random access: Long-range random access can

be avoided by writing the tuple to the end of an

array out of a few arrays instead of immediately

merging it with an existing one. After performing

a few passes of rearrangement (like sorting and par-

tition) to concentrate tuples with the same key in

memory, subsequent operations enjoy better local-

ity and can be more efficient.

Write conflict: When multiple threads run con-

currently, write conflict can be avoided by allowing

each thread to have its own copy of the tuple with

the same key. The duplication can be merged in

the end as a post-processing step.

Memory traffic: Delaying deduplication misses

the opportunity to reduce traffic, even a “half-delay”

can result in a serious penalty in memory traf-

fic. For instance, if we are using parallel hardware

with thousands of threads, such as a GPU, with

a last-level cache that can hold approximately 1

million tuples. When we use eager deduplication,
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memory. Depending on the number of distinct keys

buffered in the cache, the higher ratio of traffic can

be filtered out by ensuring zero duplication in the

cache.

we can achieve almost zero traffic to memory when

the number of distinct keys is less than 1 million,

|Key| < 1M . However, when we use private hash

tables, this threshold is reduced to 1000 keys. It’s

worth noting that even though the private hash ta-

ble is already very “eager” in deduplication as it

removes all duplication within each thread, it still

suffers from delayed deduplication for tuples with

the same key but from different threads.

The summary, the situation appears to be a dilemma:

• Eagerly deduplication is necessary: It keeps memory footprint low and memory

traffic low, especially with a memory hierarchy.

• Eagerly deduplication can be expensive: Large-range random access and write-

conflict cause performance degradation.

One solution is to first attempt eager deduplication with limited effort; if it turns

out not beneficial or too expensive, fall back to non-eager algorithms. For example,

Muller et.al.[45] first check the input tuple in a small hash table (which can fit into the

cache) to see if it can be merged with an existing tuple. If not, proceed like a normal

partition-based hash method. The method makes sense both for scenarios where the key

cardinality (|Key|, number of distinct keys) is so small that all tuples can be absorbed by

the cache resident hash table, and for scenarios where the key cardinality is so large that

the cache resident hash table is ineffective. The algorithm automatically falls back to the

non-eager algorithm (i.e., partition-based hash method), sacrificing memory footprint to

trade for performance.

It is impossible to contain and not contain duplication in a piece of memory at the

same moment, but we don’t have to. The requirements from the above dilemma focus on
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two different moments; thus we can design a data structure that breathes between the

two states and answers a seemly impossible “yes and no” to the dilemma. We noticed

that:

1. To avoid long-range random access and write-conflict, the key is to permit preserv-

ing duplication when inserting a new tuple to shared or off-chip memory.

2. To avoid unbounded memory footprint and high memory traffic, the key is to elimi-

nate duplication 1) before spilling traffic from one memory layer to the next memory

layer, or 2) when the total memory footprint exceeds the minimum necessary size

by a few times.

We tweaked a new algorithm that uses incremental deduplication that, for the first

time, allows us to achieve the best of both worlds by switching between duplication-

rich and duplication-clean states. The overhead of repeated invoked deduplication steps,

of course, should be minimized. This is achieved by reducing their frequency using a

control strategy and by reducing each execution cost using a structure called “sorted and

deduplicated hash array (SDHA)”.

4.3 Algorithm

In this section, we introduce the algorithm used in our design. Due to its complexity,

we will first present the sequential version of the algorithm in Subsection 4.3.1 and then

discuss the parallel version in Subsection 4.3.4. Both versions rely on two building blocks,

introduced in Subsection 4.3.2 and Subsection 4.3.3, respectively.
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SDHA

SDHA SDHA

(Tuples…)

Tuples from the input stream
…

Region 1: smallest, fastest

 Accept single tuple insertion

 Eagerly merge tuples: no duplication

Region ( ) larger, slower.

✘ Do not accept single tuple insertion

 Accept SDHA insertion

 Multi-way SDHA merge to remove 

duplications

Rule 1

Rule 2a Rule 2b

…

Rule 2a Rule 2b
…

SDHA

Figure 4.1: The organization of the SDHA data structure into the hierarchical memory.

4.3.1 A sketch of the SDHA build&merge algorithm

The algorithm will divide the storage space into a sequence of regions with exponen-

tially growing sizes with a large multiply factor (ideally 64 ∼ 128) as shown in Figure-4.1.

The insertion is made fast in amortize by ensuring that most insertions will only touch

the smallest region, while larger regions will be touched exponentially less frequently.

Meanwhile, the total memory footprint is kept low by managing the duplications in the

largest region, which in turn set an upper bound for the total size of all regions, seeing it

as the sum of a power series. When we map the algorithm into hardware, it will be best

to map different regions to different levels of the memory hierarchy, for example, map-

ping region-1,2,3 and 4 to private scratch-pad, cluster-local scratch-pad, global shared

scratch-pad, and DRAM, etc.

The smallest region supports single tuple insertion and immediately eliminates dupli-

cated tuples. (Rule 1:) When it is full, it will dump all its tuples into the next region as

a whole and in the form of a “sorted & deduplicated hash array (SDHA)”. An SDHA is

an array of tuples that 1) do not contain tuples with identical keys (aka “de-duplicated”)
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and 2) are sorted according to the hash value of their keys. After this, the smallest region

will restore empty.

Starting from the second smallest region, single tuple insertion is NOT supported.

Instead, they accept the insertion of a batch of tuples that are packed in an SDHA array

at a time, which is received from their prior (smaller) region. The inserted SDHA array

will be simply appended to the region. (Rule 2a:) When the region is nearly full such that

won’t be able to accept the insertion of the next SDHA array, all existing SDHA arrays

in this region will be merged into a single SDHA array, which will remove all duplications

between those arrays and create some extra empty space in this region. (Rule 2b:) But

if the region is still more than 2/3 full after this step, the resulting SDHA array will be

dumped to the next region, making this region completely empty.

The final rule to add is only applied to the largest non-empty region: (Rule 3:) instead

of waiting for this particular region to be almost full to trigger merge as required by Rule

2a, we do it earlier when the total size of all SDHA arrays in this region is the larger

than longest SDHA array in the region by a factor of (1 + c), where the parameter c can

take a small integer that have c ≥ 1, such as 1 or 2. Note again that we don’t apply this

rule to other regions except the largest non-empty one.

The whole algorithm runs in a loop that each time process a tuple and applies the

rules above. At the end of the algorithm, an epilogue phase will collapse the remaining

SDHA into a single SDHA array, starting from the smallest region all the way down to the

largest non-empty region, which will be presented as the final result of this algorithm.

This epilogue will usually be short relative to the main loop because its time is only

related to the number of unique keys (|Key|) instead of the input length (|Input|); we

will see why later.

Because for each tuple, the hash value of its key will be used multiple times through

the algorithm, we will store the hash value within the tuple to avoid re-computing. To
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a) The hash values grow at 

nearly constant rate relative to 

their index in an SDHA array.

b) Using the prefix bits of the hash values can nearly equally divide 

the SDHA array into segments. The deviation relative to the length 

of each segment is decreasing due the law of big numbers. 

Figure 4.2: The uniformness of SDHA. The hash vaules are nearly linear to indices in
the SDHA array.

avoid extra storage overhead, we will strip the key field from the tuple and replace it

with its hash value. If we use an invertible hash function, the mapping between keys and

their hash values is bijective, and we can recover the key from its hash value at the end

of the epilogue.

The described algorithm so far looks very similar to the merge sort with early aggrega-

tion of tuples implemented during the merge phase, which can be seen as an optimization

of the space and traffic. However, it will cause a much stronger and more profound impact

when it is combined with SDHA’s second requirement that it shall be sorted according

to the hash value of keys instead of just keys — the uniformness. The uniformness,

informally speaking, states that if we draw a plot of the hash values in an SDHA array

against its index in the array, it looks very close to a straight line with a constant slope

(Figure-4.2-a). This is a wonderful chemical reaction when the three keywords of SDHA

meet together: sort, deduplicated, and hash. First, given a batch of input tuples, hash-

ing will uniformly project different keys into the hash domain; while deduplication will

wash off the difference in the frequency of keys; finally, sorting makes it monotone. The
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uniformness is significant because it brings the following opportunities:

• Building an SDHA array from raw input tuples can be finished in linear time. (Used

in Rule 1)

• Multi-way merging SDHA arrays with similar lengths can be finished in one pass

in linear time. (Used in Rule 2a, 3)

• Segmenting an SDHA array using prefix bits of hash value will obtain subarrays

with balanced length. (Shown in Figure-4.2-b. It is used in workload partition in

the parallel version)

In the rest of this section, we will introduce the implementation of building an SDHA

array in the smallest region for Rule 1 in Subsection-4.3.2. We discuss multi-way merging

in Subsection-4.3.3. We discuss the parallel version of this algorithm in Subsection-4.3.4.

4.3.2 Building SDHA in linear time

Here we introduce a sub-algorithm that supports two operations: 1) the insertion of

a tuple, 2) dumping all tuples as an SDHA array. The sub-algorithm is only used in the

smallest region for Rule 1, therefore it will be mapped to the first level memory hierarchy

which can be assumed to be the smallest but also the fastest.

It’s known that some algorithms like Bucket Sort can sort an array with uniform

distribution in linear time. Therefore, a modified version of Bucket Sort that enforces

early aggregation of tuples with identical keys will satisfy our purpose (which also creates

the uniformness required by the Bucket Sort itself). This modification makes the sub-

algorithm look like a hash table as well. Another change to the standard bucket sort is

to adjust the order of tuples in each bucket to make more recently used keys appear first

in the bucket.
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after
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step 2) if a match is found, merge the 

inserted tuple with the existing tuple; or 

create a new record if not found. 

Next, relocate the result tuple to be first 

one of the bucket.

Figure 4.3: The insertion phase to build an SDHA in linear time: very similar to
Bucket Sort and Hash Table, but the difference is that: 1) it uses the prefix bits of
hash to determine the bucket, not the module of hash; 2) it has extra reordering after
insertion; 3) the table size is intended to be very small to fit into a small SRAM and
the insertion logic will be hardware accelerated — so it only solves small problems.
Problems with larger key cardinality (|Key|) will be indirectly supported with the
multi-way merge discussed latter.

The sub-algorithm begins with an empty table of buckets with 2p entries where the

p is selected to fit the capacity of the smallest region. The buckets are maintained using

link lists. To insert a tuple, use the procedure defined in Algorithm-6.

When the smallness region is full, we will dump all content in the tuple as an SDHA

array. To obtain a sorted (by hash) array, we dump the buckets in order. Most buckets

will contain no more than 1 tuple. Some buckets may contain more than 1 tuple and those

buckets need to be sorted internally. But because the probability to have more than one

tuple in a bucket is exponentially decreasing with that number, a simple quadratic-time

method is sufficient, which each time dumps the smallest tuple out of the bucket and
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repeats until the bucket becomes empty. This procedure is defined in Algorithm-7. To

accelerate the dumping operation, the hardware will implement a two-level bitmap to

skip empty buckets.

Algorithm 6: Insertion a tuple in SDHA building
Input: A incoming tuple to be inserted
begin

Compute the hash value of the key using an invertible hash function;
Store the hash value in the tuple as a new field for later reuse while stripping the key field to save space;
Use the p prefix bits of the hash value to index the table and get the head of the link list for the bucket;
if A tuple with an identical hash(thus also key) is found in the link list then

Aggregate the incoming tuple with the founded tuple;
Move the tuple to the head of the link list;

else
Put the incoming tuple to the head of the link list;

end

end

Algorithm 7: Dump the SDHA array
Output: An output SDHA array
begin

for i← 0, 1, 2, . . . , 2p − 1 do
while bucket i is non-empty do

Find the tuple with the smallest hash value in the bucket and append it to the end of the output
SDHA array;

Remove that tuple from the link list;

end

end

end

A natural question is: why do we restrict the usage of this sub-algorithm to only

build short SDHA arrays in the smallest region and rely on multi-way SDHA merge

at large scales? Or more directly, why don’t we apply this mixed Bucket Sort&Hash

Table directly at the largest scale? First, the latency of random access at a larger range

is higher. Second and more importantly, we can cheaply duplicate a huge number of

hardware units that hardcoded this sub-algorithm such that each of them has a small

piece of private SRAM to be used for the Bucket Sort. Given a fixed resource budget,

instantiating many smaller tables is better than instantiating a single large table — as the

advantage of more parallelism can easily offset the disadvantage of requiring to perform

the extra multi-way merge for larger problems, especially when the multi-way merge can
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be finished in linear time.

4.3.3 Multi-way SDHA merging in linear time

We introduce a sub-algorithm that merges multiple SDHA arrays into one in linear

time. It is used in all regions starting from the 2-th region for Rule 2a and Rule 3. We

assume we have k SDHA arrays to merge and their lengths are L1, L2, . . . , Lk respectively.

In addition, we normalize the size of a tuple to 1 (the unit size) and that the capacity of

the i-th region is ci.

If we simply treat those SDHA arrays as ordinary sorted arrays, then their multi-

way merging is not a new problem. One common way is repeating the two-way merge

operation, and another is finishing it in a single pass using a heap. Both methods are

not linear time methods because they require O(log2 k ×
∑

L li) time. However, we can

improve it to linear time because SDHA arrays have uniformness.

Consider for a given integer q, we can use the q-bit prefix bits of the hash value to

segment each SDHA array into 2q segments. If we lay out those segments in a 2D matrix,

we will see k rows and 2q columns. Then, each column can be seen as a k-way merge

problem with shorter input arrays; and we obtained 2q subproblems in total as shown in

Figure-4.4. If the subproblem is small enough, it can be directly handled by the mixed

Bucket Sort&Hash Table introduced in Subsection-4.3.2.

We define the linear-time k-way merge algorithm recursively with simple devide-and-

conquer relation:

• If k-way merge is triggered at the i-th region (i ≥ 3), we divide the problem into 2q

subproblems to make them small enough to be solvable as a k-way merge problem

by the (i− 1)-th region.

• If k-way merge is triggered at the 2nd region, we divide the problem into 2q sub-
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Figure 4.4: Multi-way merge: Split a multi-way merge into independent 2q subprob-
lems using the q prefix bits of the hash value of keys, and recursively repeat this
procedure until the smallest region.
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problem to make them small enough so that the 1st region (the smallest region) can

solve it using the mixed Bucket Sort&Hash Table similar to the last Subsection-

4.3.2, which will give us a linear time complexity. In this step, we just treat the k

segments to merge as one unsorted array by simply concatenating them.

There are two problems to address for above scheme to work.

First, when we divide an SDHA array into 2q segments using its q prefix bits of the

hash value, the prefix bits become a constant in each segment and the hash values are

no longer uniform enough. To make the 2q subproblems look the same as the standard

k-way merge of SDHA arrays, they should temporarily strip the first p-bits of the hash

value and the rest of bits starting from p+ 1-th bits as the proxy hash value.

Second, the i-th region needs to select a q to ensure the 2q subproblem is small enough

to be solvable by the (i− 1)-th region. This requires the total length of the k segments

in every subproblem to be smaller than the size of (i − 1)-th region’s capacity (ci−1).

We can select q = ceil(log2((
∑

i Li)/(1/2 × ci−1))), then the average input length for

each subproblem is 1/2 × ci−1, which is half the threshold for the maximum allowed

number of the unique hash values(thus keys). The input length for each subproblem is

then approximately a Gaussian distribution with mean 1/2 × ci−1 and standard error

σ =
√

1/2× ci−1. The probability for the input length to be larger than the exceeded

threshold ci−1 is smaller than exp(−ci−1/4), which is smaller than e−25 if only ci−1 > 100,

while usually memory capacity will be much larger than 100 tuples. Finally, although

the probability is extremely low, let’s assume this unfortunate case indeed happens, then

we further subdivide this subproblem into two smaller problems (use the q + 1-th bit of

the hash value)).
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4.3.4 Parallel version

We introduce the parallel version of the algorithm by specifying the interaction be-

tween parallel computes elements with an emphasis on isolation, load balance, and more

importantly, reducing duplication of tuples privately owned by different parallel units in

pursuit of a smaller total memory footprint — specifically, we not only want the memory

footprint to be O(|Key|) instead of O(P × |Key|) where P is the parallelism, but also

don’t want to pay too much in synchronization overhead for that purpose.

To have better isolation between parallel compute units, their interaction is restricted

to two forms 1) they can dump SDHA arrays into a shared region, and 2) when the shared

region is near full (Rule 2a), they share the responsibility to merge the SDHA arrays in

the shared region (also when Rule 3 is satisfied). Because dumping SDHA arrays to the

shared region and merging of them are less frequent compared to the number of input

tuples, the parallel compute units works in complete isolation for most of their execution

time.

The memory footprint and load-balance problem is also solved. Because Rule 2a and

3 control the duplication in the shared region via multi-way merge, the total memory

footprint is independent from the increase of parallelism. Finally, to evenly divide the

workload of the multi-way merge to P compute units, we will use the log2(P ) prefix bits

of the hash values of SDHA arrays to divide multi-way merge problem into P almost

equal-sized subproblems, exploiting the uniformness of SDHA arrays. (As a result, we

will in practice use prefix bits to subdivide the multi-way problem twice in nested for

different purposes. The first time we use log2(P ) prefix bit into P subproblems for

workload balance. The second time is used inside the multi-way merge algorithm defined

in Subsection4.3.3 which will further divide them into 2q subproblems to make them

small enough.)

115



Reduce-by-key Operation on Unordered (Key,Value) Operation Chapter 4

The benefit of reduced memory footprint from O(P × |Key|) to O(|Key|) is two

foldeded. In addition to capability to handle larger problems, the less noticed aspect is

the indirect reduction of memory traffic by increasing the effectiveness as a traffic filter

for every layer of memory hierarchy. Consider a shared buffer with capacity c, it can filter

out the traffic of tuples to the next layer of memory hierarchy whose key is contained in

the set of c keys that are stored in this buffer by aggregating them. Without removing

the duplication that privately owned by the P parallel units, the shared buffer can store

effectively only c/P distinct keys. In contrast, removing the duplication allows it to store

c distinct keys and therefore filter out more traffic to the next memory layer.

Following we present the details of the parallel algorithm. We assume our algorithm

runs on hardware that organizes parallel compute elements hierarchically: the basic

compute elements are grouped into small clusters, then small clusters are grouped into

larger clusters, which procedure can repeat multiple times until finally, the largest cluster

forms the whole system. We label them as L1, L2, . . . , LT clusters from small to large.

For convenience, the L1 cluster is defined to be the basic compute element although it is

not a “cluster” in the parallel sense. For each level i, Li contains a buffer that are shared

by its children clusters and correspond to the i-th region in the sequential version of the

algorithm. They works as follows:

• The input stream of tuples is distributed to the L1 clusters.

• L1 clusters build SDHA array using the mixed Bucket Sort&Hash Table method

introduced in Subsection-4.3.2. It obeys Rule 1.

• All Li−1 children cluster dump SDHA arrays to their parent Li cluster when Rule

1 or Rule 2b are triggered.

• When Rule 2a or Rule 3 applies a Li cluster, it first demand all its subcluster to
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wrap up on-going work, and invoke multi-way merge to all SDHA arrays in its

buffer by distributing the workload to its subclusters.

• A Li cluster may be demanded by its parent Li+1 cluster to wrap-up on-going work.

It forwards the demand to its children clusters. After that, merge existing SDHA

arrays and dump to its parent Li+1 cluster.

• A Li cluster may be demanded by its parent Li+1 cluster to participate its multi-

way merge problem. It first load the corresponding segments of each array to its

buffer and finish the subproblem by further divide it and forwarding them to its

subclusters. If Li is L1, it finish the multi-way merge using the mixed Bucket

Sort&Hash Table.

4.4 Hardware

This section introduces the “reduce-by-key core (R-Core)” and discusses several implementation-

related optimizations, including data compression and data mapping issues.

R-Core is just the smallest building block of the hardware. On top of R-Cores,

we organize the system into a hierarchical structure by grouping R-Cores into multiple

levels of nested clusters, and each cluster has a buffer shared by all its subclusters.

We present an example configuration that we will use in the numerical evaluation in

Table-4.2. However, our methodology does not have a mandatory requirement on those

parameters, including the number of levels, subclusters per cluster, and the size of buffers;

the selection presented in Table-4.2 is also not intended to be our main contribution,

but as an illustration of concepts. When people absorb our design in domain-specific

accelerators to serve as the backend for different applications (e.g., those mentioned in

Section-4.1), they may choose those parameters in a way that can best preserve their
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Table 4.2: An example configuration of the cluster hierarchy

Level No. subcluster Shared Buffer Sub↔Sub Interconnect
L1 (Reduce by key core)
L2 8 256KB SRAM 512bit Cubic
L3 4 4MB SRAM 512bit All pairs
L4 4 1GB HBM (256GB/s) 512bit All pairs
L5 1 128GB DDR4 (32GB/s) N/A

original top-level organization of those accelerators.

4.4.1 The “reduce-by-key core (R-Core)”

The “reduce-by-key core” mainly implements the modified Bucket Sort introduced

in Subsection-4.3.2, which is the working horse for both SDHA building and multi-way

merging. We emphasize squeezing the number of cycles for the basic operations in the

design, including inserting and dumping tuples.

Bucket Table: The central part is the bucket table and its access logic. To reduce the

average probe time in insertion, we need to reduce the chance multiple tuples fall into the

same bucket, which requires making the table more empty by either increasing the bucket

table size or reducing the number of tuples stored in the table. To avoid wasting precious

SRAM, we store the tuples and the meta-data of the bucket table (mainly pointers of

the link list) separably (The “Pointers” and “Tuples”in yellow box in Figure-4.5-a). The

pointers’ bit-width is small since a tiny SRAM’s address space is very small, so we decide

it is affordable to make the bucket table 4 times larger than the maximum number of

tuples to store. We consider the following configuration for the rest discussion:

1. We store maximum c = 1k tuples, each tuple is W = 8Byte long.

2. The bucket table has 4ci entries and is stored in an SRAM with (5 + 1)c entries,

each entry is log2(c) = 10bits. The first 4ci entries store the pointer toward the
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first tuple of the 4ci bucket. For 0 ≤ x < c, the 4ci + x entry is the pointer to the

next tuple of the tuple stored in position i.

To efficiently iterate through all non-empty buckets when we dump all tuples, we also

store a two-level bitmap to mark all non-empty buckets (The “Bitmap” in the yellow box

in Figure-4.5-a). The first level is a
√
4c bitmap whose i-th bit indicates whether any of

the i
√
4c ∼ i

√
4c−1 buckets non-empty. The second level is an array of

√
4c bitmap, each

)
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Figure 4.5: The detailed architecture of RCore with Bucket Table and Hash/Inverse Hash.
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containing
√
4c bits indicating the emptiness of every bucket (Figure-4.5-b). To achieve

a near one-tuple-per-cycle insertion throughput in the pipeline, several operations must

be executed simultaneously: probing the bucket table to obtain the pointer, reading the

hash value field, reading the value field, updating the value field of the last tuple with the

result from the ALU, and updating the linked-list in the bucket by moving the last tuple

to the head of its bucket. Consequently, we partition the SRAM into several segments: an

8KB 1R1W SRAM for tuples, a 5KB 1R1W SRAM for the “head pointer” of the bucket

table, a 1.25KB 2RW SRAM for the “next pointer” of the bucket table, and a 0.5KB

bitmap. In summary, each “reduce-by-key core” requires a total of 14.75KB of SRAM.

All operations are pipelined, yet particular attention must be given to read-after-write

hazards. These hazards can arise when reordering the linked list in the bucket table if

an earlier pipeline stage contains a tuple in the same bucket and is traversing the linked

list. We note that when such a hazard occurs, there are two possible scenarios:

1. The two tuples in the same bucket share an identical key; thus, the earlier tuple

can forward its address and value to the subsequent tuple.

2. The two tuples in the same bucket possess distinct keys; consequently, the later

tuple must await the completion of the update to the linked list by the earlier

tuple.

The forwarding mechanism resolves the hazard in the first scenario, and the second

scenario is fortunately infrequent (as elucidated below), allowing the pipeline to achieve

nearly one-tuple-per-cycle throughput.

The rarity of the second scenario arises due to the following reasons:

1. A read-after-write hazard does not occur if the keys of the two tuples are mapped

to different buckets.

120



Reduce-by-key Operation on Unordered (Key,Value) Operation Chapter 4

2. A read-after-write hazard is not encountered if the two tuples are spaced far apart

in the input stream, meaning their distance surpasses the pipeline depth. This

situation can only arise when a majority of the input tuples cluster around a few

keys, and these keys coincidentally map to the same bucket.

3. The hash function ensures a uniform distribution of different keys across distinct

buckets.

Given the above three factors, it can be inferred that a read-after-write hazard will

only materialize when a specific key overwhelmingly represents the majority of input

keys. In such cases, forwarding can effectively mitigate the hazard.

Hash and Inverse Hash: The “reduce-by-key core” need to implement an invertible

hash function in both directions, as we need to compute the hash value of a key in the

SDHA building phase and recover the key from the hash value in the epilogue. A hash

function is invertible if it is a composition of the following primitives, and its inverse is

the composition of the inverse of each primitive in reversed order:

• hash = hash * odd constant; (with truncate)

• hash = hash + constant; (with truncate)

•
−−→
hash = A ×

−−→
hash +

−→
b ; (Here,

−−→
hash is the bit vector representation of hash. A is

an invertible matrix with elements in finite field GF (2))

The third term above is the generalization of the following operations:

hash ^= constant;

hash = some permutation of bits(hash);

hash ^= hash >> constant;

hash ^= hash << constant;
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Figure 4.6: The structure of the Hash unit

The hardware implementation of the Hash/Inverse Hash unit is shown in Figure-4.5-c.

It can be configurated by how the three primitives (Figure-4.6-(a)) are composed layer

by layer (Figure-4.6-(b)).

4.4.2 Data compression

We discuss the opportunity and the method to compress SDHA arrays. Data com-

pression can be used both in off-chip memory to reduce DRAM/network traffic and

footprint and in on-chip to increase effective on-chip memory capacity.

The SDHA arrays are more compression-friendly than other methods like hash tables.

First, the streaming access pattern makes the added latency for (de)compression nearly

transparent. Second, it permits compression methods that only apply to data in chunks

instead of a single element. Third, the hash field of adjacent tuples in an SDHA array

has similar prefix bits and, therefore, is naturally compressible.

Consider an SDHA array with length L; due to the uniformness and monotonicity of

SDHA arrays, the first log2(L)bit of the hash field of two adjacent tuples is likely to be
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the same or differ by just one. This allows us to save up to log2(L)bit per tuple if the

proper compression method is used. We have two compression methods as follows; let’s

define r = ceil(log2(L)) and L∗ = 2r, so L∗ ≤ L < 2L∗.

• Method 1 (faster (de-)compression): Use the (r − 5) prefix bits of the hash value

to divide the SDHA into chunks of 32 ∼ 64 tuples. We create an auxiliary array

to store the offset to each compressed chunk. For each such chunk, we don’t store

the common (r− 5) prefix bits in tuples to save space, which can be infered by the

chunk id implicitly. The offset for each chunk cause ∼ 1 bit amortized overhead

per tuple, so we save (r−6) bits per tuple1. The (de)-compression is highly parallel

and simple.

• Method 2 (higher compression ratio): We strip the r prefix bits of the hash values

to save space. We use two bitmaps to recover them. The first bitmap has length

L, and the i-th bits indicate whether the i-th tuple’s r prefix bits of the hash value

are identical to the prior tuple. The second bitmap has length L∗, and the i-th bits

indicate whether there is at least one tuple whose r prefix bits equals i. Then, we

also use the (r−10) prefix bits to divide the SDHA array into chunks of 1024 ∼ 2048

tuples and use an auxiliary array to store the offset. In this way, we save about

(r − 2) bits per tuple. The (de-)compression of each chunk is more complicated.

This saving becomes significant when the SDHA array is long. For example, an off-chip

SDHA array usually has L ∼ 1M , then ∼ 18bit can be saved per tuple, which is ∼ 28%

reduction for an 8byte tuple. In addition, this saving is unconditional to applications.

The value field of the tuple might also be compressible, but this opportunity is appli-

cation dependent. For counting-like applications, such as the k-mer counting in genome

1The number 5 is the best choice under this scheme
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analysis, most values are small integers like 1 or 2. They are also suitable for variable-

length integer encoding.

In hardware, use Method 1 to compress SDHA arrays on-chip and Method 2 to

compress SDHA arrays in off-chip memory.

4.5 Analysis

We group the buffers according to their capacity and list their capacity from small to

big as c1, c2, . . . , cL and the number of buffers with capacity ci as ni. ci also correspond

the capacity of i-th region.

Theorem 4.5.1. The peak memory usage MaxUsei in the buffer with capacity ci is bounded

by the following equation:

MaxUsei ≤ min(ci, (1 + c) · |Key|+ ci−1)

Proof. Since an SDHA array can not have duplicated keys, any SDHA array can’t be

longer than the number of unique keys known from the input.

If the buffer had never spilled any SDHA array before, then either it is empty, or it

still contains the longest SDHA array that had ever appeared in this buffer. In the first

case, the memory usage is 0. In the second case, suppose the length of that array is l,

then a Rule 3 merge will be triggered when the memory usage exceeds (1 + c)l. The

peak memory usage is reached when its usage is slightly below (1+ c)l while one of child

spilled an SDHA array to it, whose length l′ is bounded by ci−1. Then the memory usage

will be (1 + c)l + l′ ≤ |Key|+ ci−1.

If the buffer had spilled some SDHA arrays before, then |Key| ≥ 2/3ci and Rule 3

will have no impact on this buffer since the threshold to trigger Rule 3 is already lower
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than Rule 2a, as (1 + c) · 2/3ci ≥ ci for c ≥ 1. The peak memory usage is bounded by ci.

Therefore, the peak memory usage is bounded by the minimum of ci and (1 + c) ·

|Key|+ ci−1.

Corollary 4.5.2. The total memory usage

TotalMemUse :=
L∑
i=1

ni ·MaxUsei

≤
L∑
i=1

ni ·min(ci, (1 + c) · |Key|+ ci−1)

≤ C< + p≥ · (
5

2
+ c) · |Key|

= O(|Key|)

where C< is the total capacity of all memory regions whose capacity is smaller than

3
2
|Key|, and p≥ is the number of smallest level of clusters whose buffer is just larger than

3
2
|Key|.

In real hardware, the lower-layer memory is usually significantly larger than the upper-

layer memory. For example, the L1 cache is usually 32KB, L2 cache is 256KB, L3

cache is 12MB on a typical desktop CPU as of 2022. Therefore we can approximately

consider the total memory footprint as the sum of those largest nonempty regions, which

is p≥ · (52 + c) · |Key|.

Notice the dependency of the total memory footprint on parallelism. The multiplica-

tive factor p≥ can be greater than 1 when |Key| is small, but it reduces to 1 when |Key|

is large. We usually care about space efficiency only when the workload consumes a lot

of memory; therefore, p≥ is harmless as it is 1 when it is matters.

Finally, since as |Key| grows p≥ → 1 (only the largest buffer), the asymptotic memory

footprint is O(|Key|).
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4.5.1 Access grainularity

All data traffic between memory hierarchy levels is either for dumping an SDHA

array or merging multiple SDHA arrays. Both are reading/writing long continuous array

access instead of randomly scattered tuples, and their lengths are more than sufficient to

obtain the full bandwidth from the memory system.

First, we consider dumping an SDHA array from the i-th region to the next(i+1)-th

region. The length of the SHDA array is at least 2/3 of the maximum capacity of the

i-th region (according to rules 1, 2a, 2b).

Second, we analyze the granularity of memory access during a multi-way merge. The

access granularity is the segments of the k-array. By taking q = ceil(log2((
∑

i Li)/(1/2×

ci−1))) required in Subsection-4.3.3, the average length of a segment is ci−1/(2k). The k

can’t be arbitrarily large because the SDHA arrays at the i-th regions are either dumped

from the (i− 1)-th region or the result of a multi-way merge of them; and according to

Rule 2b, their length is at least 2/3× ci−1. Then we have k ≤ ci/(2/3× ci−1). We finally

derive that the memory access granularity is at least c2i−1/(3ci).

For illustration, let’s suppose ci−1 = 1M tuples (SRAM), ci = 1G tuples (DRAM).

Then the access granularity to the DRAM is 1M tuples to dump an SHDA array (write

operation) and 333 tuples to merge SDHA arrays (read operation). If each tuple is 8bytes,

then memory access will be at least 2.6KB of continuous data, which is enough to be

considered as streaming access for an 8GB (ci × 8Byte) DRAM.

4.6 Memory Traffic

We can prove that the data traffic caused by our algorithm will not be significantly

worse than any possible algorithm. However, there are still some ambiguities in this

description. For example, we need to carefully define what we mean by ”any possible
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algorithm.”

To address this, in the rest of this section, we will proceed in the following order:

1. We provide definitions for ”hardware” and ”legal execution paths.”. We define an

algorithm as a function that maps inputs to execution paths, enabling us to discuss

the set of ”all possible algorithms.”

2. We examine a simple two-level memory hierarchy hardware. On this hardware, the

memory traffic caused by our algorithm will not be significantly worse than any

possible algorithm, and in particular, the subset of all practical algorithms that do

not depend on the future input information.

3. We generalize our results to hardware with multiple levels of the memory hierarchy.

4.6.1 Define Hardware and Legal Execution Paths

We take a inpue sequence I that consists of |I| tuples [(k1, v1), (k2, v2), . . . , (k|I|, v|I|)].

For all i, ki ∈ Keys and vi ∈ V alues. For convenience, we can assume all elements in

Keys have appeared in I at least once2.

We consider hardware with an on-chip memory called “Cache” and an off-chip mem-

ory “DRAM”. The on-chip memory has a finite capacity C, and the off-chip memory

has an infinite capacity (but countable). Aggregation operation can only be applied to

two tuples on Cache, and the result must also be written to Cache. Each memory slot

can hold up to one tuple or be “Empty”. We label each memory slot with an integer,

2otherwise, we can remove it from the Keys
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specifically as follows:

Cache = {1, 2, . . . , C}

DRAM = {C + 1, C + 2, . . .}

so Cache ∪DRAM = N+

The memory state can be encoded as a map from positive integers to the stored

content, which is either a tuple or Empty.

MemState : N+ → (Keys× V alues) ∪ {Empty}

At any moment, the state of the remaining input sequence is a sequence of tuples.

We define the InputState as the set of all possible remaining input sequences, which is

(Keys× V alues)+

InputState = (Keys× V alues)+

When hardware is executing, its overall state consists of the memory state and the

remaining input sequence:

SystemState : MemState× InputState

The hardware can perform the reduce-by-key operation because it executes a sequence

128



Reduce-by-key Operation on Unordered (Key,Value) Operation Chapter 4

of actions that move the hardware from one state to another.

state0 → state1 → state2 → · · · → staten

Definition 4.6.1. The final state staten is said to be success to finish the input sequence

when it satisfies the following conditions:

1. The remaining input sequence is empty.

2. The memory slots in Cache are all empty.

3. Each key k in Keys appears exactly once in the memory slots in DRAM. The value

of the tuple in the memory slot is the sum of all values of tuples in I that have key

k.

SucessI(state) = let: (mem, rest) = state in

rest = ∅

∧∀i ∈ Cache,mem(i) = Empty

∧∀k ∈ Keys, exist and only exist one i ∈ DRAM,mem(i) = (k, vk)

where vk ∈ V alues, and vk is the sum of all v in tuples from Iwho has key k

Now we look at actions that trigger state transitions: statei → statei+1. All possible

actions are lised as follows:

Definition 4.6.2. Possible actions to perform on a hardware at state statei = (mem, rest):

1. Load(s, d), load a tuple from DRAM position s to Cache position d.

(a) Prequeisites 1: s ∈ DRAM and d ∈ Cache.
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(b) Prerequisites 2: mem(s) ̸= Empty, and mem(d) = Empty.

2. Store(s, d), store a tuple from Cache position s to DRAM position d.

(a) Prequeisites 1: s ∈ Cache and d ∈ DRAM.

(b) Prerequisites 2: mem(s) ̸= Empty, and mem(d) = Empty.

3. Input(s), take a tuple from the remaining input sequence and store it in Cache

position s.

(a) Prequeisites 1: s ∈ Cache.

(b) Prerequisites 2: mem(s) = Empty.

(c) Prerequisites 3: rest ̸= ∅.

4. Aggegate(s1, s2, d), aggregate two tuples in Cache positions s1 and s2 and store the

result in Cache position d.

(a) Prequeisites 1: s1, s2, d ∈ Cache.

(b) Prequeisites 2: mem(s1) ̸= Empty, mem(s2) ̸= Empty, and mem(d) =

Empty.

(c) Prequeisites 3: mem(s1).key = mem(s2).key.

Definition 4.6.3. A sequence of actions A = [a1, a2, . . . , an] is said to be legal for a state

sequence S = [state0, state1, . . . , staten] if it satisfies the following conditions:

1. state0 is the initial state, the memory slots in Cache are all empty, and the remain-

ing input sequence is I. For each key, there is exactly one tuple in the memory

slots in DRAM, storing the initial values for each key, like zero. In particular, if,

in our algorithm, we require those initial tuples to be organized in the layout as an

SDHA array.

130



Reduce-by-key Operation on Unordered (Key,Value) Operation Chapter 4

2. staten is successful in finishing the input sequence.

3. For all i, ai is applicable to statei.

4. For all i, statei+1 = execute(statei, ai).

The execute function can be defined using the description of actions in the previous

definition, and we do not repeat it here.

There is a design choice about the initial state. Alternative to above definition, we

can also require the memory slots in DRAM to be empty. This difference makes little

difference if the input sequence is long enough. But the current definition makes the

initial state and the final state symmetry, and the benefit is the number of load(s,t) and

store(s,t) actions are precisely the same.

Lemma 4.6.1. If a legal sequence of actions A is executed on hardware, then the traffic

of the hardware is the same as the number of Load(s, d) and Store(s, d) actions in A.

|{a ∈ A|a is Load}| = |{a ∈ A|a is Store}|

Proof. We count the DRAM usage as the number of memory slots in DRAM that are

not empty.

DRAM usage = |{ı ∈ DRAM|mem[i] ̸= Empty}|

We only need to notice that Load(s, d) decreases the DRAM usage by 1, and Store(s, d)

increases the DRAM usage by 1. The other actions do not change the DRAM usage.

Both the initial state and the final state have the same DRAM usage, which is |Key|.

Therefore the number of Load(s, d) and Store(s, d) actions in A is the same.
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Now we can define the traffic of the hardware when it executes a legal sequence of

actions. It is the number of Load(s, d) and Store(s, d) actions that are performed on the

hardware.

Definition 4.6.4. The traffic of a legal sequence of actions A is defined as:

Traffic(A) :=
∑
a∈A

if a is Load or Store, then 1 else 0

The store traffic is the number of Store(s, d) actions that are performed on the hardware.

Store traffic(A) :=
∑
a∈A

if a is Store, then 1 else 0

With Lemma-4.6.1, we have:

Traffic(A) = 2× Store traffic(A)

Definition 4.6.5. We can define the legal set of actions Legal(C, I) according to the input

sequence I and the number of memory slots in Cache, C.

Legal(C, I) := {legal sequences of actions that finished I and use less than C cache size}

Definition 4.6.6. The optimal traffic is defined as the minimum possible traffic of a legal

sequence of actions.

Opt(C, I) := min
A∈Legal(C,I)

Traffic(A)

We can now properly define algorithm.

Definition 4.6.7. An algorithm Alg is a function that maps a cache size C and an input
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sequence I to a legal sequence of actions A in Legal(C, I).

Alg :N× (Keys× V alues)+ → Actions+

with Alg(C, I) ∈ Legal(C, I)

We usually care more about a subset of algorithms that are practical in engineering.

That is, the algorithm is deterministic, which means it should not depend on future

information. We can define the deterministic algorithm as follows.

Definition 4.6.8. An algorithm Alg is said to be deterministic if its first j input tuples

fully determine the actions before the j + 1-th Input-action.

Specifically, for any to input sequence I1 and I2 that are the same before the j-th

tuple, their actions, A1 = Alg(C, I1) and A2 = Alg(C, I2), are the same before the j+1-th

action.

∀I1, I2 ∈ (Keys× V alues)+ ∀j ∈ N with j < |I1|, j < |I2|

I1[1 : j] = I2[1 : j] =⇒ the prefix of A1 = Alg(C, I1) and A2 = Alg(C, I2)

are the same upto the j + 1-th Input action

4.6.2 Two-level system

We first briefly review the data traffic generated by different steps in our algorithm.

Then we focus on the dump-related traffic and compute an upper bound for this type of

traffic. It is then used to set the upper bound for the total traffic of the algorithm.

1. When a new input tuple xt arrives if the on-chip memory is not full, then it is

inserted into the on-chip memory.

2. After the intersection, if the on-chip memory is full, then all content in the buffer
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is fully deduplicated. (Rule 2a)

3. After deduplication, if the on-chip memory is still at least 2/3 full, then all the

content in the buffer is dumped to the off-chip memory in the form of a SDHA

array. This step may cause traffic (many Store(s,d)) from the on-chip memory to

the off-chip memory. (Rule 2b)

4. If the total usage of the off-chip memory exceeds the longest SDHA array that had

ever appeared by a factor of (1+ c) (here, c is a small constant, such as some value

between 1 and 2), then all SDHA arrays in the off-chip memory are merged into a

single SDHA array. Since aggregation can only happen on-chip, those arrays need

to be streamingly loaded on-chip, and the result needs to be stored back. This step

may cause traffic (Load(s,d)) from the off-chip memory to the on-chip memory and

traffic (Store(s,d)) from the on-chip memory to the off-chip memory. (Rule 3).

5. Otherwise, continue to process the next input tuple.

6. Finally, after there are no rest input tuples, we start the post process that ag-

gregates all remaining tuples in both on-chip and off-chip memory: it performs

full-deduplication on-chip, then dump it to off-chip memory, and then performs a

multi-way merge. This step causes both Load(s,d) and Store(s,d) traffic.

We refer to the traffic in step 3 as dump-related traffic (denoted as Spill) and the

traffic in step 4 as merge-related upward/downward traffic (denoted as Merge Up and

Merge Down respectively). The traffic in step 6 can be considered an extra, final, and

unconditionally part of dump-related + merge-related traffic.
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Dump-related traffic

Theorem 4.6.2. The total dump-related traffic Spill, when running our algorithm on a

machine with on-chip memory capacity C for input I, is bounded by the optimal traffic

in the following way:

Spill ≤ min
0<r<1

1

2
· 1

1− r
·Opt(

2r

3
· C, I)

Proof. We let our algorithm Algour run on a machine with capacity C for input I. The

action sequence it executes is:

Aour = Algour(C, I) ∈ Legal(C, I)

At the same time, for all r that have 0 < r < 1, we consider a hypothetical machine

with a slightly smaller capacity 2r
3
· C. This machine runs the optimal action sequence

Aopt ∈ Legal(2r
3
· C, I):

Aopt = argmin
A∈Legal( 2r

3
·C,I)

Traffic(A)

Aour and Aopt have an exactly equal number of Input actions, which also match the

number of input tuples |I|.

Now, let’s denote the number of times that dumps are triggered by Rule 2b as K. The

k-th dump is triggered after tk-th input tuple. So they are triggered at the t1, t2, . . . , tK-

th input tuple. We set t0 = 0 and tK+1 = |I|. (Then we have t0 < t1 < t2 < . . . < tK <

tK+1).

We divide Aour into K + 1 segments, where the j-th segment (1 ≤ j ≤ k + 1) covers

the actions after (inclusive) the tj-th Input action and before (exclusive) the tj+1-th Input
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action. We denote those segments as Aj
our.

Aour = A1
our ++A2

our ++ . . .++AK+1
our

like following

Input( )︸ ︷︷ ︸
1st

, · · · ,
Aj

our︷ ︸︸ ︷
Input( )︸ ︷︷ ︸

tj-th

, · · · , Input( )︸ ︷︷ ︸
tj + 1-th

, · · · , Input( )︸ ︷︷ ︸
tj+1-th

, · · · , Input( )︸ ︷︷ ︸
|I|-th

, · · ·

︸ ︷︷ ︸
Aour

Similarly, we divide Aopt into K + 1 segments, using the same t1, t2, . . . , tK as the

boundaries. We denote those segments as Aj
opt.

Aopt = A1
opt ++A2

opt ++ . . .++AK+1
opt

like following

Input( )︸ ︷︷ ︸
1st

, · · · ,

Aj
opt︷ ︸︸ ︷

Input( )︸ ︷︷ ︸
tj-th

, · · · , Input( )︸ ︷︷ ︸
tj + 1-th

, · · · , Input( )︸ ︷︷ ︸
tj+1-th

, · · · , Input( )︸ ︷︷ ︸
|I|-th

, · · ·

︸ ︷︷ ︸
Aopt

We denote the dump-related traffic of our algorithm’s j-th segment (Aj
our) as Spillj,

and the store traffic of the optimal action sequence’s the j-th segment (Aj
opt) as OptjStore,

the total store traffic of the optimal action sequence as OptStore. Then we have:

Spill =
k+1∑
j=1

Spillj

OptStore =
k+1∑
j=1

OptStore

In addition, applying Lemma-4.6.1, we know that for any legal action sequence, the total
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traffic is twice the store traffic. Therefore, we have:

Opt(
2r

3
· C, I) = 2×OptStore

In the K + 1 segments, the first k segments are triggered by Rule 2b, and the last

segment is part of the post-process and is unconditional. We discuss them separately.

For the first k segment, according to Rule 2b, those dumps are triggered only when

there is still more than 2r
3
·C tuples in the on-chip memory after performing full dedupli-

cation, and those tuples will be dumped to the off-chip memory as a whole. Therefore,

we have:

Spillj ≥
2r

3
· Cif j < K + 1

Meanwhile, in our algorithm, each segment starts with an empty on-chip memory;

this is because the last segment dumped all the tuples in the on-chip memory into the

off-chip memory. Therefore, in order to make this dump happen, this segment must take

at least 2r
3
·C tuples as input to have so many distinct keys on-chip. Therefore, the slice

of input sequence I from tj to tj+1 must have at least 2r
3
·C distinct keys in its key field.

i.e.

|{I[tj].keys, I[tj + 1].keys, . . . , I[tj+1 − 1].keys}| ≥ Spillj ≥
2r

3
· C

Now consider the j-th segment of Aopt in the optimal action sequence, i.e. Aj
opt. It

reads the same set of input tuples as our algorithm’s j-th segment Aj
our. Therefore, it

also contains the Input actions that bring the input from I[tj] to I[tj+1−1] to the on-chip

memory. There must be at least Spillj ≥ 2r
3
·C distinct keys in their key field. But since

it’s on-chip memory capacity is only 2r
3
·C, and the only action that can reduce the number
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of distinct keys in the on-chip memory is Store(s,d), so the optimal action sequence must

contain at least
(
Spill− 2r

3
· C
)
Store(s,d) actions in Aj

opt. (Note: Aggregate(s1, s2, d))

only combine tuples with the same key).

Therefore, we have:

OptjStore ≥ Spill− 2r

3
· C

And we have ∀j ∈ {1, 2, . . . , k}:

OptjStore
Spillj

≥
Spill− 2r

3
· C

Spillj

≥
2
3
· C − 2r

3
· C

2
3
· C

= 1− r

For the last segment, the number of unique keys in the corresponding part of input

sequence I is exactly Spillk+1. At the same time, remember that after the last segment of

optimal action sequence Ak+1
opt , the on-chip memory must be empty, therefore Ak+1

opt must

contain at least Spillk+1 Store(s,d) actions. Therefore, we have:

Optk+1
Store

Spillk+1

≥
Spillk+1

Spillk+1

= 1
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Then, with 0 < r < 1,

Opt(2r
3
· C, I)

Spill
=

2 ·OptStore
Spill

=
2 ·
∑K+1

j=1 OptjStore∑K+1
j=1 Spillj

≥
2 ·
∑K+1

j=1 Spillj · (1− r)∑K+1
j=1 Spillj

= 2 · (1− r)

Now, take all possible r in range (0, 1) into consideration, we have:

Spill ≤ min
0<r<1

1

2
· 1

1− r
·Opt(

2r

3
· C, I)

Merge-related Traffic

Now we shift our focus to the merge-related traffic.

We denote the merge-related upward/downward traffic as Merge Up and Merge Down,

respectively. Then we have:

Theorem 4.6.3. The merge-related downward traffic is bounded by:

Merge Down ≤ 1

c
· Spill + |Key|

where c is the const threshold parameter used in Rule 3.

Proof. We only need to observe that since we have an initial SDHA array in off-chip

memory with length |Key| and, after every multi-way merge, the length of the result
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SDHA array is still not changed since it will contain at least |Key| distinct keys and also

at most |Key| distinct keys.

To trigger a multi-way merge (except the last one), the usage of off-chip usage must

exceed (1 + c) · |Key|. After each multi-way merge, the result off-chip usage is |Key,

which means at least c · |Key| tuples are spilled to the off-chip memory since the last

merge. Therefore, the number of times that multi-way merges are triggered nMulti-Merge

(including the last unconditional one in past process) is bounded:

nMulti-Merge ≤
Spill

c · |Key|
+ 1

Since in each merge, the result SDHA array has length |Key|, the merge-related

downward traffic is bounded by:

Merge Down ≤ nMulti-Merge · |Key| ≤ 1

c
· Spill + |Key|

Then we can compute the total traffic of our algorithm:

Theorem 4.6.4. The total traffic of our algorithm is bounded by:

Totalour ≤ min
0<r<1

1 + c

c
· 1

1− r
·Opt(

2r

3
· C, I) + 2 · |Key|

Proof. The total traffic of our algorithm is the sum of the spill-related traffic and the

merge-related traffic:

Totalour = Spill + Merge Down︸ ︷︷ ︸
As Store actions

+ Merge Up︸ ︷︷ ︸
As Load actions
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Due to Lemma-4.6.1, the number of Load actions are equal to that of Store actions,

therefore:

Totalour = Spill + Merge Down +Merge Up

= 2 · (Spill + Merge Down)

≤ 2 ·
(
Spill +

1

c
· Spill + |Key|

)
≤ min

0<r<1

1 + c

c
· 1

1− r
·Opt(

2r

3
· C, I) + 2 · |Key|

Discussion

Consider the upper-bound in Theorem-4.6.4, the direction of min0<r<1 term means

the effective upper-bound is the best (smallest) one for all possible r.

It’s not obvious to see which r is the effective r without knowing the exact input

sequence I. However, we can still get some insights.

1. When r → 1, the term 1
1−r will increase dramatically; on the otherside, the term

Opt(2r
3
· C, I) is decreasing. In particular, if the number of actively used keys is

smaller than the threshold 2r
3
·C, the term Opt(2r

3
·C, I) will be very close to zero.

Therefore, for input sequence with small working set, the effective upper-bound

took when r is close to 1.

2. When r → 0, the term 1
1−r will be minimized (being 1); on the other side, the term

Opt(2r
3
·C, I) is increasing as it looks like a machine with very small cache size, and

all traffic are spilled (in a sense like all cache access is missing) and Opt(2r
3
· C, I)
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is approximately the input size. Therefore, for input sequence with large working

set such that the small on-chip memory size is ineffective anyway, the effective

upper-bound took when r is close to 0.

3. Finally, r is not a design parameter. We don’t set it’s value. It only appear in

analysis at automatically choose the best one to be the effective upperbound.

The second term in upper-bound, 2 · |Key|, is contributed by the final post-process.

It is a constant that is independent with the length of input sequence. It can become

negligible when the length of input sequence scales to a sufficient length (e.g. repeat the

input sequence for 100 times). In particular, it is trivial to see that any algorithm need

to produce at least 2 · |Key|:

∀X,Opt(X, I) ≥ 2 · |Key|

The more important part is the first term. It make a lot of sense to write such

upper-bound in the following parameterized form (X,Y ):

min
0<r<1

1

Y
· 1

1− r
·Opt(X · r · C, I)

In our case, X = 2/3 and Y = c/(1 + c). The most direct reason is that, this form is

tightly related to the (h, k) paging problem in the study of page-replacement algorithms.

It compare the page miss rage of an on-line page replacement algorithm with cache size

k, and the page miss rate of an off-line page replacement algorithm with cache size h. It

is said to be c(h, k)-competitive ratio if the page miss rate of the on-line algorithm is at

most c(h, k) times of the optimal algorithm.

Many algorithms have k
k−h+1

-competitive ratio, and each of them can be easily trans-

formed to our algorithm with X = 1 and Y = 1. A list of them includes[46]:
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1. Least recetnly used (LRU)

2. First-in, first-out (FIFO)

3. Not recently used (NRU)

4. Gready Dual

5. Flush when full3

6. LANDLORD

This is not a coincidence. In fact, k
k−h+1

is the best possible for any deterministic online

algorithm (i.e. not knowing the future input)(Theorem-5 from [47]). Using exactly the

same construction of input sequence, we can obtain equivalent result for reduce-by-key

operation and conclude that (X,Y ) = (1, 1) is the best what we can get.

So a question is, is our current (X,Y ) = (2/3, c/(1 + c)) good enough? It is easy to

see that both X and Y are the bigger, the better, as Opt(X, I) is a monotone decreasing

function of X. The current (X,Y ) is close to (1, 1), but still have some gap. In exchange,

it ensured a continuous memory access pattern to off-chip memory. Any reduce-by-key

algorithm that attempt to achive smaller traffic using a page-replacement algorithm to

manage on-chip memory will inevitability have random access since all page-replacement

algorithm will ensure there is only one copy of page instead of allowing many copy of

unmerged partial sums. As we analyzed earlier, no redundancy will enforce random

access (and also write-conflict).

3This algorithm is some what similar to our algorithm in a very important aspect that dump all
content (as Rule 2a). But there are also differences like we do not “immediate load missing page” for
each missing key, but perform multi-way merge in the end. This is not possible in the context of page-
replacement, and it is used here because we have an extra purpose about making off-chip memory access
not random.
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4.6.3 Multi-level Memory Hierachy

We consider the memory traffic across every cross-section of a multi-layer memory

hierarchy. The overall analysis method is similar to the two-level case since our algorithm

is similar at different memory levels. We highlight the main difference here.

1. In the multi-level case, aggregation operation can still be performed on the top

memory level. Therefore the multi-way merge at lower levels must go across mul-

tiple cross-sections. Therefore, the traffic between two adjacent levels lv ↔ lv + 1

includes the following:

(a) The dump traffic from level lv to level lv + 1 (same as two-level case).

(b) The multi-way merge traffic at level lv + 1 (same as two-level case).

(c) The multi-way merge traffic for all levels below (lv + 2, lv + 3, · · · ). This is

the new part.

2. The memory level lv + 1 now also have finite capacity, and multi-way merge will

be triggered more often due to Rule 2b.

3. The number of Load from lv + 1 to lv is no longer symmetric to the number of

Store from lv to lv + 1.

Accurate analysis is rather complicated. We simplify the problem by considering

several approximations that are generally true in real hardware:

1. The capacity is usually growing very rapidly when moving down the memory hi-

erarchy. Therefore, compared to the memory capacity at level lv, the sum of the

capacity of all memory above lv (i.e. < lv) are negligible to lv’s capacity. (e.g. the

total capacity of L1 and L2 caches are smaller than the L3 cache).

144



Reduce-by-key Operation on Unordered (Key,Value) Operation Chapter 4

2. The bandwidth is usually dropping very rapidly when moving down the memory

hierarchy. Therefore, considering the traffic between a upper cross-section TA =

i↔ i+1 level, and a lower cross-section TB = j ↔ j +1 level (i < j), then we can

always treat

TA + const× TB ≈ TA

when we analysis the traffic i ↔ i + 1, because: it is either correct, or wrong but

doent matter anymore.

(a) TA ≫ TB, TB is negligible compared to TA. Then TA + const× TB ≈ TA hold

directly.

(b) If TB is non-negligible to TA, then the precise value of the traffic between

i ↔ i + 1 doesnt matter a lot. The system bottleneck is at j ↔ j + 1. We

won’t get a wrong performance estimation based on the wrong traffic at the

wrong TA.

3. The input sequence is sufficiently long, such that for any cross-section, a constant

term of order O(|Key|) or O(clv) can be treate as small. Here clv is the capacity of

memory capacity except the last one.

With above simplification, when we analysis the traffic between lv ↔ lv + 1, we can

largely ignore the existence of memory level 1, 2, . . . , lv − 1 (as their capacity are too

small) and the existence of level lv+1, lv+2, . . . (as their merge traffic, although needing

to go through lv ↔ lv + 1, but can be ignored here).

With those approximations, the traffic between lv ↔ lv+1 in our algorithm can have
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following upper bound:

Traffic(lv ↔ lv + 1) ≤ min
0<r<1

1

Y ′
· 1

1− r
·Opt(X ′ · r · C, I)

where X ′ = 2/3

Y ′ = min(
c

c+ 1
, 1/3)

4.6.4 Discussion

We can have some interpretation for the X and Y in the above equations.

1. X represents how effectively an algorithm uses the on-chip memory capacity to

filter off-chip traffic.

2. Y represents “what percentage of memory traffic is really necessary”.

Now, instead of using Opt to compute the upper-bound of our algorithm’s memory

traffic, let’s use the Opt is also a nature lower bound of any other possible algorithm

when using (X,Y ) = (1, 1). Several existing methods demonstrate the deficiency by

having worse lower bounds due to the reasons we introduced in Section-4.1.2. This can

be clearly reflected by their X and Y values.

The impact of privatization: Consider an on-chip buffer with capacity C. If there are

P threads running in parallel and divide the buffer into P parts and privatize it, then,

with this single design choice, it’s traffic Traffic(C, I) ≥ Opt(C/P, I). I.e., it’s X ≤ 1/P

no matter what algorithm it uses.

The impact of cachelines: Consider an algorithm that relies on the cache mechanism

provided by the hardware to bring frequently used keys into the on-chip memory, such

as hash tables. If the cacheline size is 64Byte, and the tuple size is 8Byte, then each

cacheline can hold 8 tuples. However, if on-chip memory must be managed at cacheline
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grainularity, each cacheline can only hold 1 useful tuple if the |Key| is larger than the

on-chip memory by multiple times. This force X ≤ 1/8. In addition, bringup or storing

a tuple will always bring up or store a whole cacheline, which means the memory traffic

is amplified by 8 times and force Y ≤ 1/8.

Therefore, even we ignore other non-ideal fact of their implementation, the best pos-

sible result of using privatization and cacheline-supported hash tables already make their

(X,Y ) far worse than 1.

4.7 Evaluation

4.7.1 RTL Implementation

We implement the R-Core in Chisel, an RTL language that provides the same low-

level control on the circuit details as Verilog or VHDL. The design is synthesized using

both Synopsys Design Compiler (for ASIC) on a 12nm process at 1.42GHz. The function

correctness is verified, and the throughput of tuple insertion (when R-Core is used in

isolation) is measured using RTL-level simulation with Verilator. The area is 1.20e5 µm2,

and the power is 9.55 mw.

4.7.2 Methodology

We use simulation to numerically compare our proposed SDHA-based method with

existing sort and hash-related methods in several aspects: memory footprint, data traffic,

resilience to skewness, and throughput. When we model our baseline methods, we assume

they have implemented the optimizations found in recent work to represent the state-

of-the-art design. During the modeling, some approximation and simplification are only

taken when it is optimistic to our baselines, so it is pessimistic to the presented speed-up
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of our method. For example, we neglect the overhead of complicated concurrent hash

table resizing problems in hash table-related baselines.

Following are the baseline methods we modeled. All of them are normalized to have

identical buffer capacity/bandwidth resources (shown in Table-4.2) for a fair comparison.

The total number of independent “threads” in all methods in our evaluation is 128 and

they run at 1GHz.

• MS (Merge Sort): Merge sort-based method. Our model refers to the design made

by Jun et al[48]. The model assumes vectorized sorting networks and merger trees

are used.

• RS (Radix Sort): Radix sort-based method. Our model refers to the radix sorter

by Liu et al[49]. The model assumes 8-bit (256-radix) partition is used.

• Shared Hash: Use globally shared hash tables at L3 to aggregate tuples; the local

buffers in L1, L2 shown in Table-4.2 are bypassed. Each of the four L3 buffer is

implemented as 8 (same as [22]) banks and each bank support one atomic operation

for “hash insertion/update” per cycle. Our model refers to the design of Graphi-

cionado [22], Yang et al’s design[50], and Absalyamov et al’s design[43, 51] for the

on-chip, HBM, and DDR4 memory part respectively.

• Private Hash: Independent hash tables are located at the last level of memory and

all buffers above it are utilized as cache with 4-way associativity. Buffer resources

are partitioned and privately owned by the different threads.

• Partition Hash: Similar to the private hash except that a partition phased is per-

formed as pre-processing. The partitioning phase also refers to the radix sorter by

Liu et al[49].
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Following the convention of database-related work, we synthetic sufficiently long in-

put stream (1010 tuples) with different key cardinality (|Key|) using the following four

commonly used patterns:

• Uniform: All keys are sampled from a uniform distribution independently. It char-

acterizes applications where the locality of keys is bad, such as k-mers in Genomics.

• Heavy Hitter: Half of the tuples share the same keys, while the rest half has a

uniform distribution. It characterizes highly skewed datasets.

• Moving Cluster: Only a small subset of keys are frequent at any moment, while

this subset changes slowly over time. It characterizes datasets with good temporal

locality. We set the window size to be the square root of |Key|.

• Zipf: The frequency follows a power-law distribution. This pattern is typical for

real-world sparse matrices and graphs.

4.7.3 Effectiveness of SDHA compression

Figure-4.7 shows the compression ratio of the two methods introduced in Subsection-

4.4.2. As a rule of thumb, on-chip SDHA arrays are compressed by about 20%, while

those off-chip ones are compressed by at least 30%.

4.7.4 Memory footprint

Figure-4.8 shows the memory footprint for different methods for the uniform pattern.

Other patterns make little difference in memory footprint. The merge sort, radix sort, and

partition-hash are “in the sky” because their memory footprint is O(|input|). The rest

three (shared hash, private hash, and the proposed SDHA) have better ∝ |Key| memory

footprint, while usually |Key| ≪ |input|. Among the three, the memory footprint of
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Figure 4.7: Compression ratio of two methods (Method 1 is faster while Method 2
shares a higher compression ratio).

private hash is always P = 128 times higher than the shared hash methods due to the

duplications of hash tables. Our proposed SDHA spontaneously switches between the

two: when the |Key| is very small (especially when |Key| < P ), it is similar to the

private hash method (∝ P ×|Key|) – this waste of space here is, in fact, positive because

it avoids the contention caused by the phenomenon of “Pigeonhole principle”; while when

|Key| grows to be very large, the “Pigeonhole principle” phenomenon diapers, and the

memory footprint approaches the shared hash method (∝ |Key|) which is more space

efficient. This is not a deliberate action but the nature consequent of the Rule 2a,b and

3.

4.7.5 Data traffic and Throughput

We compare the amount of data movement and throughput between different meth-

ods. Usually, the throughput is highly correlated with the traffic on the last cross-section
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Figure 4.8: The memory footprint for different methods for the uniform pattern.

that has non-negligible traffic, but it will also be influenced by other factors such as

contention.

Traffic: Because our system has four cross-sections between five levels of memory

hierarchies, as depicted in Figure-4.9-(a), we study the traffic for all of them. In Figure-

4.9-(b), we measure the traffic for a uniform input stream with fixed length 1010 tuples

and different key cardinality. We can observe that:

1. The data traffic for the sort-based method (merge sort and radix sort) is irrelevant

to the key cardinality(|Key|), while the hash-based methods are sensitive to the

growth of |Key| especially when |Key| is close to the capacity of the buffer capacity,

where a cliff-like increase in traffic can be observed due to the failure of cache.

Before the failure point, the data traffic is negligible for the shared/private hash

method and SDHA method thanks to the eager aggregation of tuples.

2. The partition hash method has a similar failure point except it has background
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Figure 4.9: Traffic and throughput comparison between different methods.

traffic in all cross-sections due to the partition pre-processing without regard to

the |Key|. This makes partition hash uncompetitive: the SDHA or other hash

methods have near zero traffic to the last level memory (DDR4) when |Key| is not

too large. Even though it has the advantage in the traffic to the upper levels of

memory, the partition method is still much slower because the traffic to the last

level of memory will demonstrate the time.

3. Private hash is only competitive when |Key| is small. When |Key| increases, and

due to the privatization, its intermediate memory level begins to spill traffic to the

next memory level earlier while the SDHA method still has near-zero traffic there.

So it always has “the disadvantage of a level of memory hierarchy”.

4. The shared hash method is as competitive as the proposed SDHA method in terms

of off-chip traffic. Its major limitation, however, is the contention which is not

reflected here in traffic and will be discussed later.
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5. The proposed SDHA-based method has minimum traffic in almost every case (ex-

cept in layer L1 and L2 which is bypassed by the shared hash method). Compare

to the sort-based method, it enjoys early aggregation. Compared to several hash-

based methods, the advantage in traffic reduction comes from several factors: 1)

more effective utilization of buffer capacity, 2) there is no useless data transmission

due to the 64byte cacheline granularity, and 3) SDHA array compression.

A question is whether our baselines, the hash table-based methods, can be signifi-

cantly improved by using a smaller cacheline to match the SDHA method. The answer

is NO and we at best replace the “transmission of unused data” with the “idling cycles

of memory bus”. The fundamental limitation of the hash tables in this problem is:

• Hash tables demands memory throughput in terms of “number of distinct ad-

dresses” instead of just “number of bytes”.

• Reduce the cacheline size by 8 times does not automatically increase the system’s

“addresses throughput” by 8 times, but makes the data bus idle instead (e.g. DDR4

memory).

• It is much harder to double “address throughput” than “byte throughput” in the

memory system.

In this aspect, the proposed SDHA-based design will be favored in the long term because

it only requires continuous access and only demands “byte throughput”.

Throughput We measure the sustainable backend throughput, i.e. how many tuple

insertions can be finished in a cycle. In this experiment, we assume the frontend can

always generate tuples sufficiently fast to saturate the backend. The tuple generation is

application dependent. For example, on SpGEMM, tuples are generated by computing
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the outer product of two sparse vectors. The generated tuples are directly forwarded to

the reduce-by-key cores(R-Cores) without a round trip to the memory.

Under this setting, figure-4.9-(c) shows the backend throughput of four traffic patterns

(Uniform, Moving Cluster, Heavy Hitter, Zipf) for SDHA and baseline methods. We can

observe that:

1. When |Key| is very small (|Key| < 1000), the SDHA and private hash method

have the best performance because the working set fits into the smallest buffer.

2. As |Key| grows, SDHA method consistently performs well while the throughput of

private hash drops quickly. One reason for this difference is private hash method

privatized the intermediate shared buffers (L2 and L3) which reduced their effective

capacity, while SDHA did not. The shared hash method takes over to become the

second-best method below SDHA.

3. The shared hash method is very sensitive to contention and the performance can

drop by more than a magnitude. Contention happens when 1) the key cardinality

is very small (|Key| < 25), as shown in the left end of subfigures in Figure-4.9-(c),

or 2) the frequency of different keys is highly non-uniform, such as Heavy Hitter

(50% of the tuple share the same key) and Zipf distribution.

4. The partition hash method and two sort-based methods have stable performance

irrespective of the input pattern or key cardinality. On the other hand, this in-

sensitivity also makes their performance relatively uncompetitive when |Key| is

very small since they cannot exploit this fact. They are mainly bounded by the

bandwidth of the last memory level (DDR4) which is only 32GB in our setting.

5. Overall, the SDHA-based method consistently performs well for different traffic

patterns and key cardinality. This stability allows it to be used as the “one-for-all”
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multi-purpose design for the reduce-by-key backend.

4.8 Conclusion

The reduce-by-key operation is the common backend of important workloads including

graphs, genomics, sparse computing and database. Those application scenarios not only

expose some common challenges like random access and write conflicts but also impose

personalized requirements such as space efficiency, being on-line, and resilience to the

skewness. Existing methods cannot simultaneously meet that requirement but have to

sacrifice one aspect for another.

This work presents a new method built on top of linear-time construction and multi-

way merge of sorted&deduplicated hash array (SDHA); both computations be efficiently

finished in the proposed “Reduce-by-key Core” architecture. This design checks all the

boxes we desired: no random memory access, write-conflict-free, provably near-optimal

memory footprint and data traffic, resilient to skewness, and compression friendly. In our

evaluation, the SDHA-based method shows robust performance in all input patterns and

all key cardinalities and is steadily one of (or the only) the fastest methods, sometimes

even a magnitude better than the second-best choice. This allows the design to become

an all-purpose backend design for the reduce-by-key operation.
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Chapter 5

Acceleration of Sparse Tensor Decomposition

Using PE-Interactive Design

In this chapter, we introduce an accelerator for sparse tensor decomposition (SpTD).

Given a set of (key, value) pairs, where the domain of keys results from the combination

of several smaller sets, SpTD can factorize these pairs into multiple smaller components.

When these components undergo tensor multiplication, they yield an approximation that

closely mirrors the original (key, value) pairs. This method proves to be a valuable tool

for both unsupervised learning and data completion tasks in multi-dimensional tagged

data. Its applications span across various domains, including social network analysis,

EDA, and image processing.

5.1 Background

Tensor is the generalization of vectors (i.e., 1D data) and matrices (i.e., 2D data).

A d-dimension (termed as mode) tensor of size n1 × n2 × · · ·nd can be denoted as

X ∈ Rn1×n2×···nd . If most elements in a tensor are zeros, then the tensor is sparse and
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can be stored using only O(nnz) rather than O(n1 × n2 × · · ·nd) memory, where nnz is

the number of non-zeros. Today, sparse tensors have been widely used to represent real-

world data. For example, Amazon reviews can be represented as a 3-mode User-Product-

Review sparse tensor; publications make up a 4-mode Author-Title-Journal/Conference-

Year sparse tensor; and any incomplete scientific simulation sweeping over d variables

forms a d-mode sparse tensor. Despite the superior expressive power of tensors, the tra-

ditional numerical algorithms targeted on vectors and matrices (such as principle com-

ponent analysis (PCA)) are not efficient in handling tensors due to the extra dimensions.

Tensor Decomposition:
Given , find , , such that

Tensor Network

Tensor Contraction: Compute 

74 13 24 30

59 76 65 31

6 97 68 69

32 30 33 16

95 64 61 43

71 97 32 25

12 68 91 99

24 44 56 43

7 100 33 93

1 37 12 100

22 48 48 90

64 24 83 32

25 82 28 36

11 97 10 36

14 91 5 23

73 57 29 61

:3-mode tensor

2

1

Figure 5.1: Tensor contraction and tensor decomposition.

A prominent solution to address the challenges posed by tensors is the sparse tensor

decomposition (SpTD). Given a sparse input tensor, SpTD algorithms typically produce

a tensor network that approximates the original tensor using significantly fewer variables,

as depicted in Figure 5.1. Prior research has observed that SpTD algorithms are capable

of extracting essential data patterns, making them invaluable for big data analysis in fields

like social network analysis [52, 53], discussion tracking [54], Internet traffic analysis for

cybersecurity [55, 56], and healthcare [57, 58]. Another significant application of SpTD

lies in the completion of missing data: a majority of the zero entries in a tensor can be

interpreted as missing data, and the tensor network derived from SpTD can function as
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a trained model to predict these missing values [59, 60, 61, 56]. Additionally, SpTD can

drastically reduce data volume and computational costs [62, 63]. However, despite its

vast applicability, efficiently processing SpTD presents significant challenges.

…… ……

Figure 5.2: Different tensor network structures: CP, Tucker, TT (tensor train), and
HT (hierarchical Tucker), from left to right.

A tensor network is a graphical representation used to illustrate the multiplication of

multiple tensors, showcasing the structure of tensor decomposition. In this network, each

node symbolizes a tensor. The edges emanating from a node correspond to its modes

(i.e., dimensions). As an example, a node representing a vector (a 1D tensor) will have

exactly one edge, whereas a node representing a matrix (a 2D tensor) will have two edges,

and so on. If an edge bridges two (or more) tensors, as depicted by the red lines in Figure

5.1, this indicates that the tensors will be multiplied and aggregated along this mode. An

edge not connected to another tensor signifies that the corresponding dimension remains

intact. Ultimately, after this matrix multiplication within the entire tensor network, a

new tensor is derived. Comprehensive discussions on the concept and applications of

tensor networks can be sourced from previous studies like [64]. Taking Figure 5.1 as a

case in point, the factor tensors A, B, and C compose a tensor network, with indices i,

j, and k retained in TABC , while r is omitted through summation:

TABC(i, j, k) =
R∑

r=1

A(i, r)B(j, r)C(k, r). (5.1)
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In real-world scenarios, tensor networks can manifest in varied structures, as illus-

trated in Figure 5.2. The method of computing the resulting tensor (i.e., TABC) for a

specified tensor network is termed tensor contraction. In contrast, tensor decomposition

describes the reverse process—determining a fitting tensor network such that its con-

traction approximates a given tensor. This paper emphasizes tensor decomposition. To

avert ambiguity, in subsequent sections, we refer to the tensor awaiting approximation as

the input tensor (sparse in SpTD contexts), and the tensors within the tensor network

as factor tensors. A tensor or matrix is termed low-rank if it emerges as the contrac-

tion result of a tensor network, and the contracted edges (dimensions) of this network

are minimal. To grasp the essence of SpTD without delving deep into its background,

one can examine a rudimentary SpTD instance. For instance, the subsequent equation

demonstrates the tensor decomposition challenge linked to the tensor network portrayed

in Figure 5.1:

argmin
A,B,C

∑
i,j,k

(
Xi,j,k −

R∑
r=1

A(i, r)B(j, r)C(k, r)

)2

. (5.2)

5.2 Challenge and Motivation

As highlighted in Section 5.1, executing SpTD algorithms on traditional general-

purpose architectures proves inefficient. In this section, we delve deeper into the chal-

lenges, setting the stage for our proposed solution.
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5.2.1 Limited Algorithm Flexibility

A pivotal step in accelerating domain-specific applications involves distilling common

computation patterns and extracting reusable kernels. However, achieving this in the

SpTD domain is challenging due to the inherent algorithmic diversity. Generally, an

SpTD algorithm manifests in the form of the subsequent optimization problem:

argmin
factor tensors

∑
i,j,k∈Ω

E(Xi,j,k, Ti,j,k),

Ti,j,k = Contract(factor tensors)i,j,k

s.t. additional constraints

(5.3)

Here, T = Contract(factor tensors) calculates the anticipated tensor through contract-

ing the tensor network, while E measures the approximation error between the predicted

tensor T and the input tensor X . Evidently, SpTD algorithms can exhibit: 1) diverse

tensor network structures (embodied by “Contract”), 2) varied loss functions that de-

termine the approximation error (i.e., E), 3) multiple optimization methodologies for

deriving solutions, and 4) occasionally, distinct constraint conditions.

Consequently, the kernels necessitated by SpTD algorithms can significantly vary, as

illustrated on the left side of Figure 5.3. Even though prior research [65] provides a com-

mendable illustration of the myriad loss functions encountered when deploying the CP

tensor network topology combined with the gradient descent optimization technique, the

diversity highlighted therein arises from merely altering a subset of the aforementioned

factors.

While the prevalent BLAS library addresses some operations necessary for SpTD,

such as matrix multiplication and matrix inversion, it is ill-equipped for handling sparse

tensors. Recognizing this limitation, specialized kernels designed to optimize the process-
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SpMTTKRP

SpTTMc

SpLrMM

LrSamplingTensor Network

App. Error

Opti. Method

Figure 5.3: Algorithm diversity of SpTD (left) and two proposed core kernels to cover
most algorithms (right).

ing of sparse tensors on general processors or distributed platforms have been introduced.

Notable among these are the SpMTTKRP kernel [66, 67, 68, 69, 70, 71, 72, 73, 74] and

the SpTTMc kernel [66, 68, 75, 72, 73, 76]. Nevertheless, these kernels have their re-

strictions. Specifically, SpMTTKRP is primarily geared towards CP decomposition with

square loss, while SpTTMc is tailored for Tucker decomposition employing the HOSVD

or HOOI methods. In essence, their application is not sufficiently broad.

Requirements. To sidestep this piecemeal approach and foster a more encompassing

acceleration of SpTD research, it’s crucial to discern a unified abstraction for kernels that

can accommodate a range of algorithms.

5.2.2 Variable Buffer Size Requirement and Insufficient Data Movement

Bandwidth

SpTD algorithms have a distinctive data access pattern. Specifically, when engaging

any sparse entry of X , such as Xijk, the data access is confined to a small fragment of

factor tensors, namely A(i, :), B(j, :), and C(k, :), which are delineated by the indices i,

j, and k. Consider two sparse entries, Xijk and Xi′j′k′ . If they share some indices, data
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access from factor tensors can be repurposed. For instance, the data from A(i, :) can

be reused for A(i′, :) if i = i′. However, without meticulous preprocessing, the order of

indices in consecutive sparse entries can be unpredictable, stemming from their inherent

randomness. This unpredictability obscures the potential for data reuse.

  

Tilling box size

Non-zero sparse 
entries ( )

Required Buffer 
Size

Data Reuse Rate

 

Figure 5.4: Data reuse analysis in SpTD.

To optimize data reuse among sparse entries, it is ideal for adjacent entries to be

processed concurrently, as illustrated in Figure 5.4. For instance, by processing the

sparse entries in a tiling box where each dimension is b, we optimize efficiency. Given

that the density of the sparse tensor X is ρ, the number of sparse entries within this box

is roughly ρbd. But, due to inter-sparse entry data reuse, only data of size O(b) rather

than O(ρbd) is required. This optimization necessitates a buffer of size Cbuffer that can

accommodate the data of size O(b), leading to the proportionality b ∝ Cbuffer. Given

this, we can infer the data reuse rate λ as:

λ ∝ ρO(bd)

Cbuffer

∝ ρO(bd−1) ∝ ρCd−1
buffer. (5.4)

This property leads to a challenge: when the tensor density ρ decreases (i.e. sparsity

increases), the data reuse rate drops in proportion to the decrease in tensor density.

Unfortunately, ρ in real-world tensors usually varies over a wide range, such as from 10−1
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to 10−9, causing an unbearably low data reuse rate. However, this property also brings

an opportunity: if the buffer capacity increases by a factor of γ, the data reuse rate

increases by a factor of γd−1, which can mitigate the negative effect of the decrease of ρ.

CPU GPU

Local 
Buffer

N 28 cores 80 SMs

C 1056 KB 384 KB

B 140~360 GB/s 172~2,457 GB/s

L 4~13 cycles 28 cycles

Global 
Buffer

C 38.5 MB 6 MB

B 40.5 GB/s 27 GB/s

L 50~70 cycles 193 cycles

Off-Chip 
Mem.

B 5 GB/s 11.25 GB/s

Figure 5.5: Variable buffer size requirement affected by the tensor density ρ. Here we
take the CP decomposition with R = 8 as an example. The table lists the number
of cores/SMs (N), local memory size per core/SM or memory size of global buffer
(C), buffer bandwidth (B), and local buffer hit latency (L). The global buffer/off-chip
memory bandwidth values are evenly distributed onto each core/SM. The CPU and
GPU listed above are Intel Xeon Platinum 8180 and NVIDIA Titan V, respectively.

The unique property of SpTD in Equation (5.4) leads to a variable buffer size re-

quirement based on the sparsity of the input tensor. If we aim for a satisfactory data

reuse rate1, then it varies as illustrated on the left side of Figure 5.5. This can be con-

trasted with the table on the right that displays the actual buffer capacities and their

bandwidths in traditional general-purpose processors. The strategy of “fixed small local

buffer & large global buffer” appears inadequate here. Specifically, the needed buffer size

1Currently, we use the value of 10 as an example, which is merely an approximation for illustration.
However, it does not affect the main conclusion of Figure 5.5. The emphasis in Figure 5.5 is on the slope
of the curves. A flatter slope suggests that enlarging the buffer size in SpTD is vital to maintaining a
satisfactory data reuse rate. This approximation slightly influences the offset of the y-axis but doesn’t
affect the slope. The satisfactory data reuse rate in practice depends on multiple factors, such as 1) the
intrinsic computation per data when processing one sparse entry, 2) the hardware’s compute power to
memory bandwidth ratio, and 3) our satisfaction level given the resource utilization.
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often surpasses that of the local buffers. Meanwhile, the global buffer, although more

sizable, delivers a significantly reduced bandwidth compared to the local ones. Moreover,

the local buffers can’t be repurposed to extend the global buffer capacity when needed.

Requirements. The aforementioned issues present two primary requirements for ar-

chitecture design: i) it should facilitate a flexible buffer configuration to adapt to varying

tensor sparsity; ii) it must address the limitation of on-chip interconnection bandwidth.

5.2.3 Difficult Kernel Fusion

When tasked with executing multiple kernels, there is often an opportunity to enhance

efficiency by merging them. This fusion offers two main advantages: i) data required

by several kernels may be loaded a single time; ii) some computation results can be

shared among different kernels. However, achieving kernel fusion for parallel execution

is challenging due to memory write conflicts arising from distinct kernels. We initially

observe this post-fusion (as depicted in Algorithm 11), where every sparse entry in the

input tensor (e.g., Xijk) must append results to various objects like Out1(i, :), Out2(j, :),

and Out3(k, :). Running multiple sparse entries in parallel could lead to write conflicts,

especially when any of the indices i, j, or k overlap among the entries.

Figure 5.6 and 5.7 illustrate the challenges posed by write conflicts when attempting

kernel fusion. Consider a hypothetical fused kernel wherein each sparse entry, denoted as

Xijk, contributes a partial sum to three outputs: Out1(:, i), Out2(:, j), andOut3(:, k). The

two figures depict strategies to avoid write conflicts, both with and without kernel fusion.

Both scenarios involve partitioning the sparse entries of the 3-mode input sparse tensor

into distinct groups for parallel execution. A sparse entry labeled by the index (i, j, k)

can be visualized as a point in a 3D space, with differently colored regions indicating

separate PEs.
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Figure 5.6: In the absence of kernel fusion, kernels are executed in three distinct runs,
each producing one of the three outputs. Left: Partitioning of sparse entries based on
index i. These entries are subsequently written to Out1(:, i), allowing write conflicts
to be easily circumvented. Middle: Analogous to the left, but partitioning is based on
index j, with entries written to Out2(:, j). Right: Similar to the left, but partitioning
is based on index k, directing entries to Out3(:, k).

Figure 5.7: When implementing kernel fusion, it becomes necessary to partition the
sparse entries based on the indices i, j, and k simultaneously. This approach results in
over-partitioning and introduces complexity in scheduling and synchronization tasks.
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Several software-level solutions have been proposed to address the write conflict asso-

ciated with kernel fusion. However, none are entirely satisfactory for our needs. Specifi-

cally, the conflict-free partition method [77, 78] segregates the sparse entries across differ-

ent threads (or PEs) ensuring their indices (e.g., i, j, k) do not overlap. This approach,

although conflict-free, leads to over-partitioning of the workload (meaning P d partitions

for P threads) and poses challenges in terms of intricate scheduling and synchronization.

Compounding the problem, any conflict-free partition strategy will inadvertently hamper

buffer sharing between threads. This sharing is crucial for SpTD, especially given the

extensive buffer capacity required to manage highly sparse data.

Requirements. Given the challenges of mitigating write conflicts at the software

level, it’s imperative to tackle the issue from an architectural perspective. Essentially,

the architecture should be capable of handling operations akin to “atomic-add” on a

large scale.

5.3 Algorithm Abstraction

To address the issue of algorithmic diversity, we first introduce two general core

kernels that are parameterizable based on the tensor network structure. These kernels

are termed as SpLrMM and LrSampling. Subsequently, we demonstrate that these kernels

are sufficiently versatile to encompass a wide range of SpTD algorithms.

5.3.1 SpLrMM Kernel

SpLrMM stands for sparse-matrix low-rank-matrix multiplication. This kernel is a

variant of matrix-matrix multiplication in which one of the two operand matrices is
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sparse, while the other is of low rank. It can be succinctly represented as:

Out = W TX (5.5)

where X is sparse and W is of low rank. The low-rank matrix W can be represented

by a tensor network. Figure 5.8(a) provides an example wherein W comprises three

internal factor tensors: A, B, and C. This particular example of the SpLrMM kernel

is used in TT-based decomposition. It is primarily chosen for illustration because it

encompasses a wider variety of operations. By altering the network structure within W ,

diverse variants of SpLrMM kernels can be devised to cater to different SpTD algorithms.

Both the previously mentioned SpMTTKRP and SpTTMc are merely specific instances

of SpLrMM.

(a) 
(b) 

For each 
sparse 

entry in 

Figure 5.8: An example of performing SpLrMM.

We will exploit two distinct properties of W and X to execute SpLrMM efficiently:

the low-rankness of W and the sparsity of X. The former property enables us to compute

the result directly from the tensor network representation without the need for an explicit

construction of W , while the latter property lets us process only the non-zero entries.

To demonstrate how these properties can be leveraged, let’s refer back to the example in

Figure 5.8(a). Each entry in the sparse matrix X can be treated separately, yielding a

167



Acceleration of Sparse Tensor Decomposition Using PE-Interactive Design Chapter 5

partial sum that is appended to the respective column of Out. This is depicted in Figure

5.8(b) and can be equivalently expressed as:

Out(:,i) ← Out(:,i) +W T
(:,(j,k,l))X((j,k,l),i). (5.6)

For the sparse entry X i, j, k, l, the column W T (:, (j, k, l)) solely depends on A(j, :),

B(k, :, :), and C(l, :). The result is subsequently accumulated onto Out(:, i). Fundamen-

tally, all data accesses hinge directly on the indices of the sparse entries. The pseudocode

for SpLrMM is outlined in Algorithm 8, which corresponds to Figure 5.8.

Algorithm 8: Pseudocode for SpLrMM

for No. ∈ {1, 2, ..., nnz} do
x← Value(No.), i, j, k, l← Index(No.)// x = Xi,j,k,l

a← A(j, :), b← B(k, :, :), c← C(l, :)

t1 = ax (vector-scalar product), t2 = t1b (vector-matrix product)
t3 = cT t2 (vector outer product)

Out(:, i)← Out(:, i) + reshape(t3)
end

Notice that SpLrMM differs from sparse-dense matrix multiplication, even though it

is mathematically correct to regard both as matrix multiplication. Let’s use the Email

[79] dataset as an example. This sparse tensor has dimensions of 6K × 6K × 224K × 1K

and contains 54 million sparse entries. To decompose this tensor using TT-based SpTD

algorithms (assuming we set rank = 16), we must perform a SpLrMM with W being a

(6K × 6K × 1K) × (16 × 16) dense matrix and X being a (6K × 6K × 1K) × 224K

sparse matrix (with 54 million non-zero entries). If we naively employ the conventional

sparse-dense matrix multiplication method to compute the W TX operation, we first

need to recover W from the tensor network format before executing W TX. This is

clearly impractical and inefficient due to W ’s exponential size (with 9.2E12 elements).

It’s essential to utilize the low-rank property of matrix W . In this example, W has an
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internal tensor network format as depicted in Figure 5.8, and we only need to store A, B,

and C which have smaller sizes of 6K × 16, 1K × 16× 16, and 6K × 16× 16 respectively

(or, with only 9.6E4, 1.5E6, and 2.6E5 elements, respectively). Furthermore, we only

compute the columns of W(:,(j,k,l)) when required by a sparse entry. Additionally, we

can employ the most efficient method to compute W(:,(j,k,l)) by summing as early as

possible (as illustrated in Algorithm 8). The crux of this method is to harness both the

sparsity and low-rankness to minimize computation. This was independently identified

under various names (e.g., “avoiding intermediate size explosions” or “factoring”) in

previous software and hardware works (like the recent Tensaurus [80]) for SpMTTKRP

and SpTTMc, both of which are specific instances of SpLrMM. We extend this concept

to any W with a low-rank internal tensor network representation.

Table 5.1: Mapping SpTD algorithms onto the proposed SpLrMM and LrSampling
kernels. The marked data are low-rank tensors and sparse tensors, respectively.

Loss Function Iterative Method Update Formula Derivation Kernel Mapping

ALS
H ← (λI +W TW )−1W TX

Key Components: W TW , W TX

SpLrMM: W TX

Tensor Contraction: W TW

Square Loss: ∥X −WH∥2 Gradient Descent
δH ← W TX − (W TW )H

Key Components: W TW , W TX

SpLrMM: W TX

Tensor Contraction: W TW

Multiplicative Update
Hai ← Hai[(W

TX)ai/(W
TWH)ai]

Key Components: W TW , W TX

SpLrMM: W TX

Tensor Contraction: W TW

ALS

H[:, i]← (λI +W ′
i
TW ′

i )
−1W ′

i
TX[:, i]

where W ′
i = diag(ΩX [:, i])W

Key Components (raw): W ′
i
TW ′

i , W
′
i
TX[:, i]

Key Components (simplified & batched):

(W T ⊙W T )ΩX , W
TX

SpLrMM: (W T ⊙W T )ΩX

SpLrMM: W TX

Masked Square Loss: ∥ΩX ◦ (X −WH)∥2 Gradient Descent

δH[:, i]← W ′
i
T (X[:, i]−W ′

iH[:, i])

where W ′
i = diag(ΩX [:, i])W

Key Components:

R1 ← X − ΩX ◦ (WH), R2 ← W TR1

LrSampling: R1 ← X − ΩX ◦ (WH)

SpLrMM: R2 ← W TR1

Multiplicative Update

Hai ← Hai[(W
′
i
TX[:, i])a/(W

′
i
TW ′

iH[:, i])a]

Key Components (raw): W ′
i
TW ′

i ,W
′
i
TX[:, i]

Key Components (simplified & batched):

(W T ⊙W T )ΩX , W
TX

SpLrMM: (W T ⊙W T )ΩX

SpLrMM: W TX

KL Divergence: DKL(X∥WH) Multiplicative Update

Haµ ← Haµ[(
∑

iWia
Xiµ

(WH)iµ
)/(
∑

iWia)]

Decompose into two steps:

Step 1: Siµ ← [Xiµ/(WH)iµ]

Step 2: Haµ ← Haµ[(W
TS)aµ/(W

T 1⃗)a]

Key Components: [Xiµ/(WH)iµ], W
TS, W T 1⃗

LrSampling: [X iµ/(WH)iµ]

SpLrMM: W TS

Tensor Contraction: W T 1⃗
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Algorithm 9: Pseudocode for LrSampling

for No. ∈ {1, 2, ..., nnz} do
i, j, k ← Index(No.)
a← A(i, :), b← B(j, :, :), c← C(k, :)

t1 = ab (vector-matrix product), t2 = t1c
T (vector inner product)

Out(No.)← t2 // Out(i, j, k)← t2
end

5.3.2 LrSampling Kernel

LrSampling (sampling elements from a low-rank tensor according to sparse entries).

The purpose of this kernel is to sample values (e.g., Ti,j,l) from a low-rank tensor T , which

is implicitly represented by a tensor network, given a set of sparse entries (∀(i, j, k) ∈ Ω).

Analogous to SpLrMM, LrSampling is also parameterizable with respect to the tensor

network structure. LrSampling can be expressed as:

Out = T ◦ Ω (5.7)

where ◦ signifies the element-wise product, and Ω contains binary values that indicate the

sampling locations. The pseudocode for an example LrSampling operation is provided in

Algorithm 9. We observe a consistent access pattern based on the indices of the sparse

entries.

5.3.3 Connection to SpTD Algorithms

To demonstrate that the proposed SpLrMM and LrSampling kernels can encompass a

range of SpTD algorithms, we initially recast the objective function of a SpTD algorithm

into an equivalent matrix representation. For instance, the original objective function, de-

noted as argminA,B,C ∥X − TA,B,C∥, can be reformulated as argminA,B,C ∥X −WB,CHA∥.

Here, HA and X are matrices reshaped from A and X , respectively, and the matrix WB,C
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Algorithm 10: Pseudocode example for CP decomposition without kernel fusion

1) LrSampling Step
for No. ∈ {1, 2, ..., nnz} do

Load:
i, j, k ← Index(No.)// x = Xi,j,k

a← A(i, :), b← B(j, :), c← C(k, :)

Compute:
t1 = b ◦ c //vector element-wise product
t2 = t1a

T //vector inner product

Update:
T (No.)← t2

end

2) An element-wise Step to compute the per-sample gradient for the square loss
for No. ∈ {1, 2, ..., nnz} do

G(No.)← V alue(No.)− T (No.) //Gi,j,k = Xi,j,k − Ti,j,k

end

3) SpLrMM Step for A’s Gradient
for No. ∈ {1, 2, ..., nnz} do

Load:
g ← G(No.), i, j, k ← Index(No.)// g = Gi,j,k

b← B(j, :), c← C(k, :)

Compute:
t1 = bg //vector-scalar product
t2 = t1 ◦ c //vector element-wise product

Update:
Out1(:, i)← Out1(:, i) + tT2

end

4) SpLrMM Step for B’s Gradient
for No. ∈ {1, 2, ..., nnz} do

Load:
g ← G(No.), i, j, k ← Index(No.)// g = Gi,j,k

a← A(i, :), c← C(k, :)

Compute:
t1 = ag //vector-scalar product
t2 = t1 ◦ c //vector element-wise product

Update:
Out2(:, i)← Out2(:, i) + tT2

end

5) SpLrMM Step for C’s Gradient
for No. ∈ {1, 2, ..., nnz} do

Load:
g ← G(No.), i, j, k ← Index(No.)// g = Gi,j,k

a← A(i, :), b← B(j, :)

Compute:
t1 = ag //vector-scalar product
t2 = t1 ◦ b //vector element-wise product

Update:
Out3(:, i)← Out3(:, i) + tT2

end
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is derived by excluding the A component from the original tensor network TA,B,C . Fol-

lowing this transformation, an update equation for HA (and, by extension, for A) can

be discerned from the matrix representation. Typically, such updates can be efficiently

executed using the SpLrMM and LrSampling kernels, as illustrated in Table 5.1.

This procedure can likewise be applied for updating other factor tensors, such as B

and C. Herein, the tensor factors undergo iterative updates until convergence is achieved.

During each iteration, several SpLrMM/LrSampling kernels are typically invoked, with

each kernel constituting a loop that iterates over all sparse entries (as seen in Algorithm 8

and 9). Algorithm 10 provides an example of utilizing gradient descent to accomplish CP-

based SpTD using the SpLrMM/LrSampling kernels. Notably, only the second step, a

straightforward element-wise subtraction with minimal computational overhead, deviates

from the SpLrMM and LrSampling methodologies. However, this deviation is inconse-

quential and will be seamlessly integrated once all kernels are fused within the unified

framework to be discussed. The precise time distribution across different operations is

contingent on various hyper-parameters, such as rank and sparsity.

5.3.4 Kernel Fusion and the Unified Framework

It’s feasible to merge multiple discrete kernels (or loops) into a singular, cohesive loop

to minimize repetitive computation and data access. This can be observed in Algorithm

112. From the preceding discussions, it’s evident that the kernels we have proposed are

versatile enough to cater to a broad spectrum of SpTD algorithms. Moreover, they are

crafted in standard formats that align seamlessly with our designated architecture.

Comparing with the SF3 Framework in Tensaurus [80]. Recent work on Tensaurus

[80] introduces an accelerator design tailored for generalized sparse-dense operations.

2In certain algorithms, particularly those based on the ALS method, factor tensors necessitate al-
ternating updates. This renders the complete fusion of all kernels unattainable. However, substantial
benefits can still be reaped by merging kernels that are designated for updating the same factor tensor.
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Algorithm 11: Pseudocode example with kernel fusion

for No. ∈ {1, 2, ..., nnz} do
//Same function as Algorithm 10, but with kernel fusion enabled.
Load:
//All loaded data are reused by LrSampling, SpLrMM-A,B,C
x← Value(No.), i, j, k ← Index(No.)// x = Xi,j,k

a← A(i, :), b← B(j, :), c← C(k, :)

Compute:
t1 = b ◦ c//Result reused by LrSampling(t2) and SpLrMM-A
t2 = t1a

T

g = x− t2//g is immediately reused, without round trip to DRAM.
t3 = t1g
t4 = ag//Result reused by SpLrMM-B, SpLrMM-C
t5 = t4 ◦ c
t6 = t4 ◦ b
Update:
Out1(:, i)← Out1(:, i) + tT3
Out2(:, j)← Out2(:, j) + tT5
Out3(:, k)← Out3(:, k) + tT6

end
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Figure 5.9: Overview of the STE architecture design.
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Applications are mapped to Tensaurus using the SF3 framework. Succinctly, the SF3

framework encapsulates operations as:

fiberout =
∑
D1

fiber1 (op)
∑
D2

scalar · fiber2

where (op) can be a Hadamard product, a Kronecker product of two vectors, or an outer

product. Both our framework (as presented in Algorithm 11) and SF3 share similarities,

such as supporting SpMTTKRP and SpTTMc. The fundamental distinction between

SF3 and STE rests in the order of processing sparse entries. While SF3 navigates all

sparse entries in the dictionary order of their indices (i, j, k), STE approaches them

based on tiling boxes. SF3’s methodology benefits from allowing sparse entries with

identical index D1 to share computational aspects. This is especially advantageous when

the compaction ratio of D2 is substantial and the second operation (associated with

fiber1 and shared) outweighs the first (linked with fiber2 and not shared) in terms

of expense. Conversely, STE leverages kernel fusion for computational efficiency. It’s

pivotal to highlight that SF3 solely endorses one output target (Out1(:, i)), which hinders

Tensaurus from incorporating kernel fusion. This is because kernel fusion necessitates

multiple output targets for each sparse entry (Out1(:, i), Out2(:, j), Out3(:, k), and so

on). Differences also arise in the memory access patterns of STE and SF3. As previously

mentioned, SF3 adheres to dictionary order for accessing sparse entries. This leads to

swift changes in index k, causing data like C(:, k) to experience suboptimal data locality

and reuse. STE presents a more favorable approach by segmenting the sparse tensor into

cubes. Lastly, SF3 poses limitations regarding the maximum supported tensor modes,

typically accommodating up to 3-mode tensors. In contrast, our work remains unbounded

in this respect.
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5.4 STE Architecture Design

In this section, we introduce the STE, an efficient architecture designed to execute the

core kernels previously discussed. Figure 5.9 provides an overview of our design, which

includes 16 × 16 PEs, a scheduler, and a memory controller. PEs can communicate via

a Network-on-Chip (NoC) infrastructure, forming PE groups for task processing. We

detail the design of the major components, outline the task execution flow, and explain

the deployment of SpTD algorithms.

5.4.1 Design Philosophy

A central challenge we address is the need for flexible buffer sizes. Each PE possesses

a fixed 128KB private buffer. When a task requires a buffer size beyond this limit, PEs

are grouped collaboratively, pooling their buffer capacities. The cumulative buffer size

of such a PE group is PENum× 128KB, where PENum represents the number of PEs in

the group. However, merely grouping PEs doesn’t fully address the challenge. Fetching

data from another PE over the NoC, which has higher latency and lower bandwidth, is

considerably slower than accessing the local buffer of a PE.

To mitigate this, we advocate for the shared computational resources of PEs within a

group. This involves the active relocation of tasks from one PE to another that already

holds the required data, significantly reducing traffic on the NoC. For instance, in matrix-

vector multiplication, if a matrix resides in one PE and the vector in another, the task is

moved to the PE containing the matrix, necessitating only the movement of the vector.

This approach ensures that computations benefit from both the high bandwidth of intra-

PE buffers and the extensive capacity of inter-PE groupings.

Secondly, consider the challenge posed by write conflicts in kernel fusion. This ne-

cessitates support for operations akin to atomic add, but with high throughput. Our
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PE-interactive design addresses this inherently. Each PE retains its private local buffer,

and other PEs can only modify this buffer by transferring tasks to the owning PE. As a

result, write conflicts are effectively eliminated.

Finally, several other challenges must be addressed to realize the practicality of the

aforementioned design. This includes minimizing the communication and control over-

head associated with task transfers, ensuring efficient allocation of workspace for tasks

given constrained on-chip memory, and avoiding PE idleness and deadlock during task

exchanges. These issues have been tackled in our STE architecture, the specifics of which

are elaborated upon in the subsequent sections.

5.4.2 Processing Element Specialization

As depicted on the right side of Figure 5.9, a Processing Element (PE) comprises sev-

eral components: a configuration unit, task receive/send FIFOs, a task injection unit, a

factor data replacement unit, a scratchpad memory, a compute unit, and a NoC interface.

Terminology definitions. As tasks traverse the NoC, they interact with multiple PEs.

The originating PE is termed the “home PE”, while all others are referred to as ”remote

PEs”. Tasks within their home PE are denoted “native tasks”, whereas tasks in any

other PE are classified as “guest tasks”. It’s important to note that while a task may

deem a PE remote, another task could simultaneously regard that same PE as its home.

Configuration Unit. This unit oversees the high-level states of the PE. It exposes

configuration registers and an instruction buffer to the scheduler.

Task FIFOs. Task FIFOs are designed in pairs, with one dedicated to native tasks

and the other to guest tasks. As tasks arrive, they are directed to the appropriate receive

FIFO based on their status. After undergoing processing in the compute unit, tasks are

transitioned to their respective send FIFO (either native or guest). The distinction be-
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tween native and guest FIFOs is purposeful, primarily to preempt and prevent deadlocks

in the event of congestion, a scenario elaborated upon in subsequent sections. These

FIFOs facilitate communication between PEs through message exchanges.

Task Injection Unit. This unit is responsible for fetching sparse entries in COO (co-

ordinate list) format from off-chip memory. For each sparse entry retrieved, it generates

a task and directs this task into the native task receive FIFO. A vital feature of the

task injection unit is its self-throttling capability. This ensures that the unit doesn’t

indiscriminately inject new tasks without accounting for the completion status of prior

tasks. To achieve this self-throttling behavior, a mechanism employing a slot id pool is

in place. Additionally, there’s a set limit on the number of active tasks, or ”on-the-fly”

tasks, that can be initiated by each PE. Whenever a task is introduced, it’s allocated a

slot id from the pool. This slot id is later returned to the injection unit upon the task’s

termination (indicating that the task’s final phase must be managed by its home PE).

The pool initially houses a predefined number of slot ids, symbolized by SlotMax (the

aforementioned bound). If the pool is depleted, the injection of new tasks is temporarily

halted.

Scratchpad Memory. The scratchpad memory in each PE stores a portion of the

factor tensor data and also houses intermediate results as a working space. This working

space is categorized into two types: temporary (Temp) and permanent (Perm). Both

native and guest tasks can utilize the Temp working space. Once a task departs from

this PE, subsequent tasks can overwrite the data in the Temp working space. On the

other hand, only native tasks of the current PE can access the Perm working space,

requiring a slot id for data retrieval. This necessitates its division into SlotMax separate

segments. Each on-the-fly task possesses a secure storage area in its home PE’s Perm

working space, ensuring data retention even if the task departs its home PE. This data

remains intact until the task completes, at which point the slot id is relinquished to the
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task injection unit. The presence of the Perm working space reduces data transit in the

NoC, as only necessary data is transmitted while the rest stays in the home PE.

In our design, each PE’s scratchpad memory has a capacity of 128KB, which con-

tributes to the total on-chip memory of 32MB. The access latency for this memory is

1-cycle. This capacity adequately accommodates both the temporary and permanent

working spaces required by SpTD algorithms with a reasonable rank. However, for un-

avoidable situations where a very large rank is present, software/algorithm-level parti-

tioning can be explored to prevent overflow. Two possible strategies include distributing

the data across different PEs within the same PE group or spreading the computation

over multiple runs.

Factor Tensor Data Replacement Unit. The factor tensor data replacement unit pre-

fetches the factor tensor data for the upcoming tiling box into a ping-pong buffer. This

mechanism effectively decouples off-chip access from on-chip computation. It’s important

to note that each PE in a group loads only its designated portion of the factor tensor

data.

Compute Unit. This unit supports five types of instructions: i) retrieving a message

from task receive FIFOs and directing it to the appropriate PC (program counter); ii)

determining which PE possesses the required factor tensor data (e.g., for A(i, :), the result

is mod(i, PENUM)); iii) executing arithmetic operations; iv) constructing a message and

placing it into task send FIFOs; v) relaying the slot id back to the task injection unit

upon task completion.

The available arithmetic operations encompass scalar ones (e.g., +, −, ×, ÷) and

tensor ones (e.g., inner product (·), outer product (⊗), element-wise product (◦), matrix-

vector product). These are designed to support the operations stipulated by SpLrMM

(Algorithm 8) and LrSampling (Algorithm 9). We have adopted two techniques to bolster

throughput, as illustrated on the right side of Figure 5.9. Initially, these operations
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necessitate only a single instruction to execute all tasks, obviating the need for software

loops. This instruction, when executed, expands in hardware to initiate a series of micro-

operations, thus evading potential instruction overhead. Subsequently, an 8-lane vector

unit is utilized for these operations to leverage data-level parallelism. Notably, all the

tensor arithmetic instructions mentioned above boil down to one operation distinguished

merely by different parameters, as elucidated in Figure 5.10. To implement this, we

employ a ”loop-controller” (depicted at the bottom right of Figure 5.9) to yield three

addresses: addr1, addr2, and addr3 using an ”address matrix (ai1 ∼ ak3)”. A minor

discrepancy exists between the code shown in Figure 5.10 and the hardware depicted

in Figure 5.9: we’ve opted for adders over multipliers in address computation to curtail

hardware expenses.

for(int i=0;i<i_max;++i){

for(int j=0;j<j_max;++j){

for(int k=0;k<k_max;++k){

int addr1 = base1 + ai1*i + aj1*j + ak1*k;

int addr2 = base2 + ai2*i + aj2*j + ak2*k;

int addr3 = base3 + ai3*i + aj3*j + ak3*k;

mem[addr3] += mem[addr1] * mem[addr2];

}

}

}

Figure 5.10: Code explaining instructions for inner product (·), outer product (⊗),
element-wise product (◦), and matrix-vector product are actually only one operation,
because all of them can be mapped into the above form.

Dest Src PacLen Cat Payload

Dest Src PacLen Cat T_Payloadhome PE id slot id PC

(a)

(b)

Figure 5.11: Packet format of task messages: (a) general format; (b) specific format for
inter-PE communication. The black segments will be processed by the NoC interface.

NoC Interface. The NoC interface manages the receipt and dispatch of packets to

and from other PEs. The format of these packets is depicted in Figure 5.11(a). They
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consist of the following fields: destination (Dest), source (Src), packet length (PacLen),

traffic category (Cat), and Payload. Different traffic categories are designated for packets

exchanged between PE↔PE, PE↔scheduler, and PE↔memory controller.

For the communication specifically between PE↔PE, the packet format is detailed

in Figure 5.11(b). The header for the Payload is streamlined, consisting of: the home

PE id (8 bits), slot id (8 bits), and PC (16 bits). Here, PC signifies the progression of

the given task. The T Payload transports the necessary data for the destination PE, and

both its length and content are subject to variation across different processing stages.

5.4.3 Wrapped Memory Controller

The memory controller is encapsulated within a PE-like structure and termed as a

“Reduction PE” before being integrated into the PE array. The components within the

“Reduction PE” are largely similar to those in a standard PE, except that the 128KB

local buffer is replaced by an off-chip memory controller for the DRAM interface. The

motivation behind this design is to address the potential write conflicts. Even though

write conflicts within each PE group are effectively mitigated through the compute trans-

fer, they might still arise between PE groups when their index ranges overlap (e.g., when

both PE groups cover the range from i to i+31). By configuring the memory controller

as a PE, this inter-PE group write conflict is avoided. After a PE group completes a

tiling box operation, the standard PE’s factor data tensor replacement unit dispatches

the final partial sum of factor tensors (e.g., Out(:, i : i + 31)) from the current tiling

box to the “Reduction PE” in a manner akin to standard task delegation. Subsequently,

this “Reduction PE” accumulates the partial results directly into the DRAM. Since the

“Reduction PE” utilizes a task receive queue, the accumulation of partial results from

various PE groups occurs sequentially, ensuring the absence of write conflicts.
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The ‘Reduction PE’ doesn’t require high throughput; employing 8 adders3 as seen

in standard PEs suffices. This is because most reductions are predominantly executed

within each PE group, and the “Reduction PE” is primarily responsible for the ultimate

reduction of partial sums from distinct PE groups.

5.4.4 The Lifetime of A Task

From the core kernels outlined in Algorithm 8 and 9, it’s apparent that each sparse

entry necessitates several operations as itemized in the loop body. For every sparse

entry, we instantiate a task, culminating in a total of nnz tasks for each kernel execution.

Given the lightweight nature of each task, the large number of non-zeros won’t contribute

significantly to control overhead. Now, let’s delineate the lifetime of a task using a

streamlined example derived from Algorithm 8. Suppose the sparse entry is X4,7,2,5 = 3.5

and the requisite operations for this entry are:

1. Multiply X4,7,2,5 by vector A(4, :) to yield vector t1.

2. Multiply vector t1 with matrix B(7, :, :) to produce vector t2.

3. Calculate the outer product of vector t2 and vector C(2, :), resulting in matrix t3.

4. Reshape and accumulate matrix t3 onto Out(:, 5).

It’s imperative to note that A(4, :), B(7, :, :), C(2, :), and Out(:, 5) could reside in

disparate PEs within a group. For simplicity, consider that A(4, :) is located in the PE

identified by id = mod(4, PENum). The positioning for B(7, :, :), C(2, :), and Out(:, 5)

follows a similar logic. Thus, the task embarks on a journey across several PEs to reach

completion.

3It should be noted that even for multiplicative updates, the primary reduction operation remains
addition rather than multiplication. The multiplication with the old factor tensor takes place once all
partial results are consolidated.
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Initially, an arbitrary PE within the group (e.g., PE0) retrieves the integer indices

4,7,2,5 alongside its value 3.5, subsequently initiating a task. This act designates PE0 as

the home PE for the ensuing task. The Task Injection Unit then assigns a slot id (say,

3) to the task and lodges it into the Native Task Receive FIFO in the form of a message.

This format is illustrated in Figure 5.11 with an initial PC value of 0. The Compute

Unit cyclically fetches tasks from the Task Receive FIFOs for execution. As a task gets

retrieved and executed, it commences at the instruction delineated by PC within the

message (with instruction lists being consistent across all PEs). The execution process

persists until a ”send task” instruction is encountered. This prompts the generation of

a message in the Task Send FIFOs to dispatch the task and cues the Compute Unit to

embark on the next task in the Task Receive FIFOs. Drawing from the aforementioned

example, the task will launch at PE0 and will undergo four phases:

1. It transitions to the PE containing A(4, :), performs requisite operations, and re-

turns to PE0.

2. It migrates to the PE hosting B(7, :, :), conducts operations, and circles back to

PE0.

3. The same sequence ensues for C(2, :).

4. Likewise for Out(:, 5).

Upon its final return to PE0, the task restores the slot id to the Task Injection Unit

and concludes.

5.4.5 Deadlock Avoidance

Congestion might occur when certain PEs turn into hot spots. Overflowing receive

FIFOs in these PEs could propagate traffic congestion throughout the NoC, further
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obstructing other traffic flows. We observe that, while a PE could potentially have up to

(PENum−1)×SlotMax incoming guest tasks simultaneously in the worst-case scenario,

it never holds more than 1× SlotMax native tasks at any given time. This observation

leads us to implement the following measures to mitigate deadlock:

1. Tasks must alternately visit their home PE and remote PEs, following a sequence

like: home PE→remote PE→home PE→remote PE→...;

2. To ensure native task receive FIFOs don’t overflow, the FIFO capacity should be

set to at least Size(packet)× SlotMax;

3. Traffic heading out from the home PE to a remote PE should never hinder traffic

moving from the remote PE back to the home PE, even if the outgoing traffic is

stalled. This can be achieved by dedicating a set of virtual channels in the NoC

specifically for the returning traffic.

Guest Native

Guest Native

Compute Unit

Home PE

Guest Native

Guest Native

Compute Unit

Remote PE

Guest Native

Guest Native

Compute Unit

Home PE

Guest Native

Guest Native

Compute Unit

Remote PE

…… ……

The Trajectory Of A Task

Figure 5.12: The task trajectory across PEs.

By adhering to the aforementioned measures, deadlocks are effectively avoided. As

depicted in Figure 5.12, since the native task receive FIFO is guaranteed not to overflow or

encounter blockages, traffic from a remote PE returning to the home PE (represented by

the green arrows in Figure 5.12) will remain uninterrupted. This ensures the guest send
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FIFO can continually dispatch packets, implying that the compute unit can process guest

tasks without halt. This in turn signifies that the guest receive FIFO won’t experience

blockages. Consequently, traffic from the home PE directed at remote PEs (illustrated

by the blue arrows in Figure 5.12) proceeds without hitches. To sum up, the deadlock

situation is effectively averted.

5.4.6 Mapping Algorithms onto STE

In this section, we delve into the mapping of SpTD algorithms onto STE. This pro-

cess encompasses algorithm compilation, data preprocessing, and hardware execution, as

depicted in Figure 5.13.
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Figure 5.13: Algorithm mapping flow.

Algorithm Compilation. Our process begins with the SpTD algorithm, which we

express using the SpLrMM and LrSampling kernels. Subsequently, we integrate these

kernels into a standardized format, as illustrated in Algorithm 11. We then categorize the

operations from this standard format into multiple processing stages. In this setup, each

task undergoes execution for one stage on a singular PE. Intermediate results traverse

between stages either through the Perm working space or via the T Payload field of the

task. Preferably, the use of the latter is minimized to curtail on-chip communication
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overheads.

Our initial step involves assigning factor tensor data access operations, such as a ←

A(i, :) and b ← B(j, :, :), to distinct stages. Following this, we allocate compute oper-

ations, like t ← a ∗ b, to the most related stage, thereby minimizing data movement.

For instance, if Size(a) < Size(b), the operation t ← a ∗ b is assigned to the stage

containing b ← B(j, :, :), subsequently transferring a over the NoC. In situations where

Size(a) = Size(b), either assignment is viable.

Once operations corresponding to a sparse entry are designated to their pertinent

stages, we introduce instructions related to ”send message” between each pair of stages.

This includes determining the subsequent PE id and packaging data into the message

payload. We finalize by presenting the program as an instruction set. It is crucial to

note that the program for all tasks must be uniform, limiting the compiler to general

assumptions. Hence, certain optimizations, specific to particular sparse entries, remain

unexplored. A common misconception might be the unlikely occurrence of a non-zero

Xi,j,k, wherein the home PE and remote PEs inadvertently coincide. In such cases, one

might assume the compiler can consolidate all steps into a singular stage. However,

our design doesn’t leverage this potential, ensuring consistent kernel size and compila-

tion time. Presently, our compilation process is manual, but it inherently possesses the

capability for automation.

Data Preprocessing. The input sparse tensor is segmented into multiple boxes, each

of the dimensions b1 × b2 × · · · × bd. Each of these tiling boxes is then processed within

a PE group. The determination of {bi} adheres to two primary guidelines, as detailed in

Section 5.2: i) When the tensor density, ρ, is low, the size of the tiling box is augmented

to enhance the data reuse rate; ii) Without contradicting the first guideline, the size of

the tiling box should be minimized whenever feasible to decrease the necessary buffer

size. This in turn results in a smaller PE group, leading to reduced on-chip traffic. With
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a designated tiling box size, the size of the PE group is ascertained, and the sparse entries

within each tiling box are consolidated into a list of tasks.

Hardware Execution. The scheduler dynamically assigns tiling boxes to PE groups.

Although these PE groups operate autonomously, PEs within a group are interdependent

and communicate among themselves. Before the onset of computation, all PEs must load

the essential factor tensor data into their scratchpad memory. Fortunately, the latency

of this loading process can be efficiently masked utilizing a ping-pong buffer strategy.

Subsequently, the PEs embark on processing the sparse entries. Upon the completion

of all sparse entries in a tiling box, the scheduler then transitions the PE group to the

subsequent tiling box.

5.4.7 Minor Optimizations

Relative Indexing. After tensor tiling, the sparse entries only need to store the relative

indices within each tiling box. This approach minimizes index overhead and further

reduces off-chip memory accesses.

Continuous Tiling Box Assignment. The scheduler always strives to assign adjacent

tiling boxes to the same PE group. By doing so, only one piece of the factor tensor

data (e.g., A(i, :)) needs replacement, while the remaining d − 1 pieces can be reused

consecutively (e.g., B(j, :), C(k, :)). This strategy also contributes to a decrease in off-

chip memory accesses. The most straightforward method is to schedule tiling boxes in

the (i, j, k) dictionary order. A snake-like trajectory can also be effective. It’s important

to note that ensuring continuity most of the time is sufficient; occasional deviations from

this requirement only marginally impact performance.

Random Permutation. In order to achieve a balanced workload distribution among

PEs, we implement three additional preprocessing steps: i) Prior to tiling, we randomly
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permute the indices of each tensor mode; ii) Post-tiling, we evenly distribute the sparse

entries of each tiling box among intra-group PEs; iii) Finally, within each PE, the order

of the assigned sparse entries is randomized.

5.4.8 Advantage Summary

Major Advantages.

1. Algorithm Generality: STE supports a broad spectrum of SpTD algorithms through

its unified abstraction.

2. Flexible Buffer Capacity and High Bandwidth: Our architecture tailors the PE

group size to the actual tensor density, ρ, ensuring variable buffer capacity. The

task transfer mechanism further ensures that tasks benefit from the high bandwidth

of local scratchpad memory in each traversed PE.

3. Kernel Fusion Enabled: Our design is free from write conflicts. This is attributed

to the compute transfer, which facilitates operations locally within the PE storing

the necessary data.

Task Created Task Finished

Execution Period on a Single PE
Lifetime of a Task

Time
Temp Working Space
This Task (e.g. )

Perm Working Space

Remote PE (who has ) 

Home PE (who created task )  

Other Remote PEs ……
Remote PE (who has ) 

……

Figure 5.14: The memory trajectory across PEs.

Other Advantages.
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1. Latency Insensitivity: All memory accesses during execution are localized, elimi-

nating performance drops due to stalls from non-local memory accesses. If a task

requires factor tensor data not present in the current PE, it migrates to another

PE possessing the needed data via the NoC (refer to Figure 5.14). This strategy

ensures continuous compute unit utilization. Although individual tasks might ex-

perience delays in the receive FIFOs, the overall throughput remains unaffected as

long as every receive FIFO is non-empty and the compute unit stays active.

2. Lightweight Message: Each message carries a mere 4B of additional overhead

(namely, home PE id, slot id, and PC) beyond the effective payload. Addition-

ally, the Perm workspace in the home PE shortens the T Payload since only data

required by the destination PE is transmitted.

5.5 Evaluation

5.5.1 Experimental Setup
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Figure 5.15: STE performance for different algorithms under various input tensor
densities. The PE group size is set to 8× 8.

System Configuration and Simulation. We evaluate performance through two types of

simulations: the single PE level and the PE array level. At the single PE level, we employ

send/receive FIFOs and the compute unit, both implemented using Chisel [81]. RTL
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simulation allows us to ensure the functional accuracy and wholeness of our instructions

and determine their cycle-specific execution times. For a comprehensive performance

assessment, we adapt an NoC simulator, specifically BookSim2.0, to model the PE array.

New modules are introduced to replicate behaviors of the PE components such as the task

injection unit, task receive/send FIFOs, compute unit, and the factor data replacement

unit. Within this simulation, the compute unit’s actions are abstracted as a countdown

timer, with delays set according to the RTL simulation results for a single PE. Traffic

in BookSim2.0 encompasses both PE-to-PE and PE-to-memory interactions. To extract

detailed data, we incorporate additional performance counters to gauge the compute

unit’s utilization, the NoC, and the memory controller. It’s important to note that we

opted against a full-system RTL simulation due to the prohibitively extended simulation

time. Instead, we limited RTL simulation to determine the instruction execution times

in cycle counts.

For every test bench, our simulator operates across multiple periods to execute a

SpTD algorithm, with each period spanning 20K cycles. Simulation concludes once any of

the subsequent criteria is achieved: 1) completion of all non-zero entries; 2) the simulator

has executed three or more periods and the performance metrics stabilize. Hence, for

smaller tensors, all non-zero values are processed. Conversely, for larger tensors, we

initially derive steady performance metrics from a subset of sparse entries over restricted

simulation durations, which then guides our estimations for the aggregate execution time.

Table 5.2: System configuration.

PE

PE array size: 16×16
Scratchpad Memory: 128 KB per PE
Task Send/Receive FIFOs: 16 KB per PE
Compute Unit Vector Width: 8
SlotMax: 50

NoC Channel Width: 128 bits
Off-chip Memory Bandwidth: 24∼96 GB/s
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Table 5.3: Area and power breakdown at 22nm and 1GHz.

Interconnect Compute Scratchpad Memory Controller Total
Power 26% 29% 42% 3% 62 W
Area 43% 28% 28% 1% 115 mm2

To estimate the area and power, we employ CACTI [82] for the SRAM simulation,

DSENT [83] for the NoC, and McPAT [84] for simulating the DRAM memory controller.

The remaining parts of the PE are implemented in RTL and compiled with the Synopsis

Design Compiler. For the floating-point unit, we adopt the Berkeley FPU implementation

[85]. All these simulations use a 22nm technology library to ensure a fair comparison

with contemporary CPU/GPU architectures. Table 5.2 details the system configuration,

while Table 5.3 provides a power and area breakdown. It’s essential to note that the

power values reported represent the peak (worst-case) consumption observed in our tests.

Additionally, the default off-chip memory bandwidth is set to 24 GB/s in all experiments,

except when juxtaposing performance with CPU/GPU in Section 5.5.3. We chose the

lower default bandwidth (24GB/s) as it more aptly demonstrates the efficacy of our

architecture. Conversely, the elevated bandwidth (96GB/s) used in the comparison with

CPU/GPU ensures equitable evaluation, given the typically high memory bandwidth of

CPUs and GPUs.

Table 5.4: Testing cases for each tensor network structure.

Name Operations or Algorithms Kernels

Op1 W TX SpLrMM

Op2 (W T ⊙W T )Ω SpLrMM

Op3 ΩX ◦ (WH) LrSampling

Alg1 Masked Square Loss (ALS or Multiplicative Update) Fused SpLrMMs

Alg2 Masked Square Loss (Gradient Descent) Fused SpLrMM & LrSampling

Alg3 KL Divergence (Multiplicative Update) Fused SpLrMM & LrSampling

Testing Benchmarks. We evaluate a total of 19 cases to showcase our STE’s exten-
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sive capability in supporting SpTD algorithms. As discussed earlier, the diversity in

algorithms is primarily attributed to three factors: i) the network structure; ii) the loss

function; iii) the iterative method. In terms of network structure, we focus on the most

commonly adopted structures, namely CP, TT, and Tucker. For the latter two factors,

we select the ones most widely used in the industry (refer to Table 5.4). It’s important

to note that for the Tucker structure, an additional variant Op1(/c) exists for Op1. This

variant represents a modified SpLrMM kernel, with its core factor tensor omitted. This

version essentially equates to SpTTMc.

Unless mentioned otherwise, we utilize randomly generated sparse tensor data in our

simulations. This choice is motivated by our aim to explore the sparsity spectrum system-

atically, thus offering a more comprehensive understanding. Additionally, performance

evaluations on CPU/GPU are carried out using actual real-world tensor datasets. For

the sake of simplicity, we have fixed the rank values at 16 throughout this section.

Table 5.5: Bounding factors and solution suggestions.

Bounding Factor Solution Suggestions
(Comp.) Compute unit Increase the compute resources

(NoC) NoC
Decrease PE group size, use compute transfer, or
increase NoC channel width

(Mem.1)
Load sparse entries

(i.e. (Xijk, i, j, k))
Increase off-chip memory bandwidth

(Mem.2)
Load factor tensor data

(e.g. A(i, :),B(j, :, :))
Increase PE group size, or increase on-chip mem-
ory capacity

5.5.2 Overall Performance

Figure 5.15 depicts the overall performance in FLOPs across various SpTD algorithms

and input data densities, ranging from 10−1 to 10−9. The system’s performance spans

from 82 GFLOPs to 3.9 TFLOPs, covering a diverse set of algorithms and sparsity levels.

For context, the theoretical peak performance of STE is 4 TFLOPs. It’s evident that

191



Acceleration of Sparse Tensor Decomposition Using PE-Interactive Design Chapter 5

algorithms based on the CP structure typically yield a lower throughput. This outcome

is attributed to the fact that CP-based algorithms usually encompass fewer computations

for each sparse entry as compared to their TT and Tucker counterparts. Consequently,

the performance of CP-based algorithms is more constrained by the process of fetching

sparse entries from off-chip memory, unlike the computation-intensive nature observed

in TT- and Tucker-based algorithms.

In our analysis, we identify four primary factors that potentially restrict system per-

formance, as detailed in Table 5.5. The performance bottleneck can emerge from the

compute unit (Comp.), NoC, or the process of loading either sparse entries (Mem.1) or

factor tensor data (Mem.2) from off-chip memory. The dominant factor affecting perfor-

mance is contingent upon the chosen algorithm, input tensor sparsity, and specific system

configurations, including the PE group size and off-chip memory bandwidth.

1.0

10.0

100.0

O
p
1

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

O
p
1

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

O
p
1

O
p
1/
c

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

CP TT Tucker

Sp
e
e
d
u
p 1E-1

1E-3

1E-5

1E-7

1E-9

CP TT Tucker

Figure 5.16: Speedup over CPU.

1

10

100

1,000

O
p
1

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

O
p
1

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

O
p
1

O
p
1/
c

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

CP TT Tucker

Sp
e
e
d
u
p 1E-1

1E-3

1E-5

1E-7

1E-9

CP TT Tucker

Figure 5.17: Speedup over GPU.
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Figure 5.18: Performance curve with increasing input tensor sparsity and PE group size.

5.5.3 Comparison with CPU and GPU

To benchmark STE against CPU and GPU implementations, we employ Taco [86] to

generate codes corresponding to Op1, Op2, and Op3. Since Taco lacks support for kernel

fusion, the cases Alg1, Alg2, and Alg3 are implemented by invoking Op1, Op2, and Op3

separately. While there exist specialized high-performance routines for SpTD on both

CPU (like SPLATT [71]) and GPU (such as B. Liu et al. [72]), these only cater to one or

two specific kernels, thus limiting the scope for a comprehensive comparison. However,

it’s worth noting that Taco-generated codes exhibit performance levels comparable to

hand-tuned kernels [86]. The CPU we benchmarked with is 2× Intel(R) Xeon(R) CPU

E5-2620 v4, paired with four DDR4 2133 MHz memory modules, and we deployed 32

threads for execution. Each CPU comprises a cache size of 22.25MB (accumulative of L1,

L2, and L3), culminating in a system-wide cache of 44.5MB with the dual CPUs. Our

chosen GPU for benchmarking is the NVIDIA Titan V. It should be noted that while

the default off-chip memory bandwidth of STE stands at 24 GB/s, the bandwidths for

the CPU and GPU can escalate to 96 GB/s and over 500 GB/s, respectively. To level

the playing field in our comparison, we’ve enhanced STE’s off-chip memory bandwidth

to 96 GB/s for this section. The CPU and GPU platforms peak at 600 GFLOPs and

15.7 TFLOPs, respectively.

Figures 5.16 and 5.17 illustrate the speedup of STE over the CPU and GPU using
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synthetic data, respectively. It is essential to note that this is a juxtaposition of sim-

ulated results from our proposed architecture against real-world empirical results from

CPUs and GPUs. Although the simulation may exhibit minor deviations from the actual

performance due to inherent simplifications, it distinctly underscores the efficacy of our

architectural design. On average, STE realizes a speedup of 45× over the CPU and 29×

over the GPU. Specifically, remarkable acceleration is observed in CP-Op2, CP-Alg1, and

Tucker-Op1(/c) scenarios, primarily because the performance in these cases is majorly

influenced by the ”Mem.2” factor, underscoring STE’s distinct advantage.

Moreover, Table 5.6 presents the speedup of STE over CPU/GPU using real-world

datasets, mirroring the results observed with synthetic data. The data origins are as

follows: DNN represents a reshaped weight matrix from a pruned fully-connected layer in

deep neural networks; Nell2 [87] is sourced from a natural language dataset; NIPS [88] is a

tensor capturing publication statistics from the Annual Conference on Neural Information

Processing Systems; and Email [79] is a tensor logging email transmission statistics. This

table further showcases the broader implications of our work across various domains.

The DNN-CP-Op1 scenario, bound by memory, warrants further elucidation: its relative

speedup over the CPU/GPU is slightly reduced compared to synthetic data. This can

be attributed to the tensor in this scenario being both denser and of smaller size, which

enhances the CPU/GPU performance by optimizing cache utilization. Conversely, for

DNN-Tucker-Op1, which is computation-bound, STE continues to maintain a substantial

performance edge.

5.5.4 Analysis of Tensor Sparsity and PE Group Size

For this analysis, we focus solely on Alg2 (GD) to streamline our experimental scope.

As illustrated in Figure 5.18, there’s a discernible decrease in performance following a
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Table 5.6: Speedup over CPU and GPU using real-world data.

Name Alg Size Density STE/CPU STE/GPU

DNN CP-Op1 512×512×392 3.0E-01 3.3× 3.4×
Nell2 CP-Op1 12K×9K×28K 2.4E-05 11.1× 14.2×
DNN Tucker-Op1 512×512×392 3.0E-01 50.1× 7.0×
Nell2 Tucker-Op1 12K×9K×28K 2.4E-05 70.6× 14.4×
NIPS TT-Op1 2K×3K×14K×17 1.8E-06 40.2× 24.1×
Email TT-Op1 6K×6K×224K×1K 5.5E-09 33.2× 20.0×

”ladder-shaped” trajectory as tensor sparsity intensifies. This pattern mirrors observa-

tions from other algorithms as seen in Figure 5.15. These ”ladder-shaped” curves can be

segmented into three distinct regions, possibly resulting from varying bounding factors

in tandem with the increase in sparsity.

To explore this supposition further, we assessed the resource allocation across various

hardware components, as illustrated in Figure 5.19. These findings have been annotated

in Figure 5.18 for clarity. A conspicuous observation is that in scenarios of extreme

sparsity, the performance is often limited by the factor tensor loading (Mem.2). This

limitation arises due to an increased demand for buffer capacity that outstrips the PE

group’s thresholds. Larger PE group sizes proffer augmented buffer capacity, which in

turn postpones the initiation of the performance decline. However, this advantage does

come at a cost. An increase in PE group size inherently augments the inter-PE com-

munication distance, thereby negatively impacting performance when the NoC becomes

the binding constraint, as reflected in the regions demarcated with NoC in Figure 5.18.

Therefore, there’s no one-size-fits-all solution when configuring the PE group size, given

the variable sparsity levels. A pragmatic approach would entail tailoring the PE group

size to the actual sparsity level of the input tensors.

We glean three noteworthy observations from Figure 5.18.

1. At lower sparsity levels, CP-GD’s performance is constrained by Mem.1 (loading
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Figure 5.19: Resource utilization breakdown.

Table 5.7: Computation and memory costs for each sparse entry. Mem.2 can be
amortized due to the inter-sparse entry reuse. MACs: multiplication-and-accumula-
tion operations.

Algorithm Comp. (MACs) NoC (Bytes) Mem.1 (Bytes) Mem.2 (Bytes)

CP-GD 161 768 14 768

TT-GD 3169 1792 16 8704

Tucker-GD 26225 768 14 66304

sparse entries). In contrast, TT-GD and Tucker-GD are bounded by Comp. This

can be attributed to the higher computational requirements of TT-GD and Tucker-

GD for each sparse entry, as delineated in Table 5.7.

2. Surprisingly, Tucker-GD does not exhibit a NoC bound region. A possible expla-

nation lies in its significantly elevated MACs/traffic ratio, as further elucidated in

Table 5.7.

3. Tucker-GD’s throughput remains non-zero, even in the face of heightened sparsity.

Revisiting Figure 5.2, we can attribute this resilience to the core tensor inherent

in the Tucker decomposition. Its applicability across all sparse entries ensures a

baseline computational consistency.
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5.5.5 Analysis of Memory Optimization

To discern the implications of varying off-chip memory bandwidths on performance,

we scaled the bandwidth from the baseline 24 GB/s to 2×, 3×, and 4× its initial value.

The resulting performance variations are depicted in Figure 5.20. A deeper understanding

of these fluctuations necessitates an intersectional reading of Table 5.5 and Figure 5.18.

In dense tensor scenarios like CP-GD (ρ = 10−1 and ρ = 10−5), we observe an

initial uptick in performance which plateaus at the 2× bandwidth. This surge is a direct

consequence of Mem.1 restrictions at the onset, with the ensuing saturation arising from

the subsequent NoC bounds. On the other hand, for exceedingly sparse tensors such as

CP-GD with ρ = 10−9, our testing revealed a consistent performance uptrend, given the

perpetual bounding by Mem.2. Contrarily, TT-GD and Tucker-GD showed no perceptible

performance shifts for densities ρ = 10−1 and ρ = 10−5, underscoring their computation-

intensive nature over memory dependencies.
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Figure 5.20: Normalized performance with increased off-chip memory bandwidth. The
PE group size is set to 4× 4.
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Figure 5.21: Normalized performance with increased SlotMax. The tensor density is 10−1.

The influence of SlotMax is illustrated in Figure 5.21. A smaller SlotMax trans-
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lates to fewer on-the-fly tasks, rendering the compute unit more susceptible to idle-

ness. Notably, a conspicuous performance penalty surfaces when SlotMax < 20. As

SlotMax surpasses 50, any further performance enhancements cease. Hence, we opt for

SlotMax = 50 in our architecture design.

5.5.6 Analysis of Compute Optimization

We ascertain the impact of kernel fusion and compute transfer optimization in Figure

5.22. In absence of kernel fusion optimization, kernels must execute individually, en-

gendering redundant computations and off-chip accesses. It’s essential to emphasize that

Op1, Op2, and Op3 are impervious to the advantages of kernel fusion due to their solitary

nature. Without compute transfer optimization, computation is confined solely to the

home PE, relegating remote PEs to respond solely to rudimentary read/write requests

(emulated through tasks) via the NoC. This approach generates an on-chip traffic vol-

ume akin to conventional reads/writes from/to the shared global buffer on conventional

architectures, making it a viable approximation. The resultant performance nosedive is

notably profound, occasionally plummeting to a mere 8
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The tensor density and PE group size are set to 10−5 and 8× 8, respectively.
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5.6 Conclusion

We identify that the challenges in processing sparse tensor decomposition (SpTD)

include the algorithm diversity, requirements for buffer flexibility and data bandwidth

due to variable sparsity, and the hardness to fuse kernels. To address these issues, we

propose a unified abstraction, namely two general sparse kernels (i.e., SpLrMM and

LrSampling) and a unified execution framework that can accommodate most algorithms

with kernel fusion. Then, we design a specialized accelerator, STE, to implement our

top-down solution. The PE-interactive architecture enables the sharing of local memory

capacity/bandwidth of each PE and avoids write conflicts during kernel fusion. The

deadlock is also eliminated by identifying and satisfying three requirements during task

mapping. Through extensive experiments, we demonstrate an average speedup of 45×

over CPU and 29× over GPU. Comprehensive analysis of the impact of tensor sparsity,

PE group size, and memory/compute optimizations are further presented to give design

guidance. Our design can stimulate more researches in designing specialized architectures

for high-performance tensor decomposition.
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Summary

(Key, Value) pairs are one of the most prominent forms of data structures in modern

computer systems, and the operations on them represent a significant portion of com-

putation in many domains, including AI, databases, genomic processing, graph analysis,

and scientific computing. For each of these domains, a lot of research on architecture

design and hardware acceleration can be found. However, these research efforts are rarely

adopted in the real world due to the high cost of developing new DSAs or processors.

Economic viability prevents their wider adoption except in a few areas with huge market

demands, such as AI. In this thesis, we aim to gain a more essential understanding and

abstraction of (key, value) pair operations. Subsequently, we strive to develop a more

general and reusable design that can be applied across multiple domains.

We first address the problem of handling operations on a data structure of ordered

(key, value) pairs. Our journey begins with a simple but fundamental operation: the

merge-style operation that combines two sorted arrays into one, allowing for customiz-

able behavior when dealing with matched and mismatched tuples. This operation en-

compasses several widely recognized tasks, such as sparse additions and multiplications,

database joins, and sorting. Implementing such operations in hardware posed significant
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challenges, each of which we tackled. Firstly, we introduced a novel abstraction known

as the restricted zip machine (RZM), capable of representing all merge-style operations.

Secondly, we presented four single instruction, multiple data (SIMD) primitives that can

be employed to implement any RZM operation. Thirdly, we devised a hardware design

for these four SIMD primitives with a complexity of O(V log(V )), where V represents

the SIMD width. In contrast to existing work, this design covers a broader range of ap-

plications while reducing total hardware costs from O(V 2) to O(V log(V )). The resulting

design is adaptable for use with CPUs, GPUs, or domain-specific accelerators. Upon inte-

gration into CPUs as SIMD primitives (as demonstrated in our evaluation), we achieved

significant speedup ranging from 4× to 8× across various representative kernels. These

include set operations (8.4×), database joins (7.3×), sparse vector/matrix/tensor addi-

tion/multiplication involving real/complex numbers (6.5×), merge sort (8.0× compared

to scalar, 3.4× compared to state-of-the-art SIMD), and SpGEMM (4.4× improvement

over the best result in the baseline collection).

Our second step involves addressing higher-level ordered (Key, Value) data structures

and their operations beyond mere array merging. Interestingly, the addition of new hard-

ware isn’t necessary. The accelerated merge-style operation (which we already possess)

emerges as a potent tool, enabling significant enhancements to higher-level operations

through algorithm redesign alone. We present several examples:

1. Heap: We reimagine the conventional binary heap as a combination of large and

small heaps. This restructuring allows us to harness the power of the merge-style

operation SIMD primitives, resulting in a theoretically achievable O(V ) speedup,

where V denotes the SIMD width. In practice, on a CPU with V = 16, we attain

speed-ups of around 7× for batch operations and approximately 3× for single-

element operations.
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2. Batched Binary Search: Utilizing a combination of SORT-pattern and Interpolate-

pattern merge-style operations, batched binary search demonstrates speedups rang-

ing from 1.6× to 2× when the data is located in L2 cache or off-chip memory.

3. K-way Additive Merge: We demonstrate that a meticulously designed merge-order

scheduling algorithm can proficiently execute K-way additive merge operations.

This design guarantees a per-sparse entry time complexity, bounded by the mature

information of the sparse pattern.

For unordered operations on (Key, Value) pairs, one of the most commonly used is the

reduce-by-key operation. However, this operation is known to be unfriendly to hardware

due to issues with parallelism, memory access patterns/traffic, and space efficiency. We

recognize that the key problem lies in deciding whether to accept or reject duplications.

This decision leads to dramatic distinctions in parallelism, memory access, and space

characteristics. We introduce a new hardware-friendly algorithm that capitalizes on the

uniformity of a data organization called the “sorted, deduplicated hash array (SDHA).”

This data organization smoothly transitions between two statuses and combines the best

aspects of both. Importantly, this approach is not only empirical but also has provably

near-optimal space and traffic characteristics. Additionally, we present a hardware de-

sign that efficiently supports the operations required by this new algorithm. Evaluation

demonstrates that our design consistently achieves superior performance compared to

existing methods across a wide range of input distributions.

Finally, we delve into a data analysis method on (Key, Value) pairs for multi-field

keys named “sparse tensor decomposition (SpDT),” where the sole assumption is that

the relation between the key and value can be perceived as samples from a low-rank

tensor. We propose a hardware design for SpDT that fulfills its data reuse requirement

by enabling private buffers for each processing element (PE) to be logically shared through

202



Summary Chapter 6

light-weight task migration between PEs. This design ultimately reduces traffic over the

Network on Chip (NoC) and off-chip memory, thereby enhancing performance.

With all the work mentioned above, we have presented a comprehensive study on

how to define expressive abstractions and efficient hardware designs for (Key, Value) pair

operations. These operations, in turn, constitute a substantial portion of computations

across various domains. We firmly believe that our efforts will serve as a catalyst for

further research in this field, and the designs introduced throughout this series of work

will become indispensable components of future general-purpose processors and domain-

specific accelerators.

Lessons and Future Work

There are two types of explorations in designing specialized hardware: one is a stan-

dalone accelerator that completes the entire workload without assistance from external

resources, and the other is to extend composable low-level primitives that can be easily

integrated with other existing primitives in general-purpose processors. In most cases,

the latter style is commercially more promising, as investments in hardware design tend

to be reusable in a wider range of applications. Our series of work mostly falls into the

second category, and we have witnessed how this choice pays off: by simply rewriting

a few tens or hundreds of lines of software code, the merge-style operation primitives

designed bring about up to an 8x speedup, spanning from scientific workloads like sparse

computing and graph analysis to business workloads like database operations and “daily

utilities” such as sorting, searching, and priority queues. This result also highlights an

important fact:
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mainstream ISAs are still very incomplete, even for very common tasks with vast po-

tential users. There is still plenty of room for improvement in this direction.

Now, let’s revisit the (key, value) operations. I believe there is one remaining aspect

we have yet to explore: (key, value) operations with complex data dependencies driven by

the keys. These operations include one of the most crucial kernels in scientific computing

and engineering design: sparse Gaussian elimination, a key component for solving linear

equations. None of the methods proposed in this thesis, nor the existing massively

parallel architectures like GPUs, can handle this problem flawlessly. For instance, the

GPU library cuSolver sometimes re-offloads tasks back to CPUs. The reason behind

this challenge is that the ”data dependency depends on data” aspect is too intricate

to be expressed in a SIMD fashion. Therefore, it would be particularly intriguing to

devise a method for designing hardware capable of handling this challenging-to-exploit

parallelism.

Once again, we emphasize our preference for ”reusable low-level primitives” over

”standalone accelerators” in this scenario. Thus, what we are ultimately seeking is a way

to abstract the capability for managing dependencies (rather than computation) into a

”primitive.”

Future Direction: How can we design, abstract, and ultimately implement the capabil-

ity to manage complex parallel dependencies as a form of reusable low-level primitive,

similar to what we have done for computation primitives?
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