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ABSTRACT 

 

Application of Mathematical Modeling in Cancer, Blood Clotting Abnormalities and 

Migraine Headaches Research 

 

by 

 

Hamed Ghaffari 

 

Mathematical modeling of biological processes has contributed significantly to improving 

our understanding of how different biological systems function, how and why different 

diseases start and develop, and how the diseases can be prevented or treated. In the first part 

of this dissertation, we use mechanistic modeling together with local and global sensitivity 

analyses to explore why different patients and/or different cancer types respond differently 

to retinoic acid (RA), an anticancer drug. Our findings indicate that the efficacy of RA 

treatment highly depends on intracellular levels of four main RA binding proteins namely, 

retinoic acid receptor (RAR), cellular retinoic acid binding proteins (CRABP1 and 

CRABP2) and cytochrome P450 (CYP). These proteins are expressed at different levels in 

different patients and/or cell types. Our results indicate that CRABP2 and RAR are the most 

and the least important receptors, respectively, in regulating the response to RA treatment 

at physiological concentrations (1–10 nM). However, at pharmacological concentrations of 

RA (0.1–1 μM), CYP and RAR are the most sensitive parameters of the model. These 

results can help in the development of pharmacological methods to increase the efficacy of 
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the drug. In the second part of this dissertation, we study the positive side effects of RA 

therapy on blood clotting abnormalities in cancer patients. Although there are several lines 

of evidence regarding the improvement of hemostatic complications such as thrombosis and 

disseminated intravascular coagulation (DIC) in cancer patients undergoing RA therapy, 

the mechanisms underlying this improvement have yet to be understood. We build 

mechanistic and pharmacokinetics models and use in vitro and pharmacokinetics data from 

the literature to test the hypothesis that this improvement is due to RA-induced upregulation 

of thrombomodulin (TM) on the endothelial cells. Our results indicate that treatment with 

a single daily oral dose of 110 
𝑚𝑔

𝑚2
  RA, increases the TM concentration by almost two folds. 

We then show that this RA-induced TM upregulation reduces the peak thrombin levels and 

endogenous thrombin potential (ETP) up to 50 and 49%, respectively. Our results 

demonstrate that progressive reductions in plasma levels of RA, observed in continuous RA 

therapy with a once-daily oral dose of 110 
𝑚𝑔

𝑚2
 RA do not influence TM-mediated decrease 

in thrombin generation. This observation raises the hypothesis that continuous RA treatment 

will have more consistent therapeutic effects on coagulation disorders than on cancer. Our 

results reveal that the upregulation of TM expression on the endothelial cells over the course 

of RA therapy could significantly contribute to the treatment of coagulation abnormalities 

in cancer patients. In the last part of this dissertation, we use mechanistic modeling to study 

sodium homeostasis disturbance in the brain during migraines. Previous animal and human 

studies have revealed that migraine sufferers have higher levels of cerebrospinal fluid (CSF) 

and brain tissue sodium than control groups, while the underlying mechanisms of this 

increase are not known. Under the hypothesis that disturbances in sodium transport 

mechanisms at the blood-CSF barrier (BCSFB) and/or the blood-brain barrier (BBB) are 
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the underlying cause of the elevated CSF and brain, we develop a mechanistic model of a 

rat’s brain to compare the significance of the BCSFB and the BBB in controlling CSF and 

brain tissue sodium levels. Our model consists of the ventricular system, subarachnoid 

space, brain tissue and blood. We model sodium transport from blood to CSF across the 

BCSFB, and from blood to brain tissue across the BBB by influx permeability coefficients 

𝑃𝐵𝐶𝑆𝐹𝐵 and 𝑃𝐵𝐵𝐵, respectively, while sodium movement from CSF into blood across the 

BCSFB, and from brain tissue to blood across the BBB were modeled by efflux 

permeability coefficients 𝑃𝐵𝐶𝑆𝐹𝐵
′  and 𝑃𝐵𝐵𝐵

′ , respectively. We then perform a global 

sensitivity analysis to investigate the sensitivity of the ventricular CSF, subarachnoid CSF 

and brain tissue sodium levels to pathophysiological variations in 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′  and 

𝑃𝐵𝐵𝐵
′ . Our findings indicate that the ventricular CSF sodium concentration is highly 

influenced by perturbations of 𝑃𝐵𝐶𝑆𝐹𝐵, and to a much lesser extent by perturbations of 

𝑃𝐵𝐶𝑆𝐹𝐵
′ . Brain tissue and subarachnoid CSF sodium concentrations are more sensitive to 

pathophysiological variations of 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  than variations of 𝑃𝐵𝐶𝑆𝐹𝐵 and 𝑃𝐵𝐶𝑆𝐹𝐵

′  within 

30 minutes of the onset of the perturbations. However, 𝑃𝐵𝐶𝑆𝐹𝐵 is the most sensitive model 

parameter, followed by 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′ , in controlling brain tissue and subarachnoid CSF 

sodium levels within 3 hours of the perturbation onset. Our findings suggest that increased 

influx permeability of the BCSFB to sodium caused by altered homeostasis of the enzymes 

which transport sodium from blood to CSF is the potential cause of elevated brain sodium 

levels in migraines. 
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Chapter 1 

Introduction 

Mathematical modeling is a powerful tool for not only understanding how different 

diseases start and progress, but also for the development of new treatments for the 

diseases. In this dissertation, we use mathematical modeling to study the mechanism of 

action of retinoic acid (RA), an anticancer drug, in the treatment of cancer and blood 

clotting disorders, as well as explore the regulatory mechanisms of sodium levels in the 

brain during migraine headaches. In chapter 2, we use mathematical modeling to provide 

further insight into why different patients and/or different cancers respond differently to 

retinoic acid (RA), an anticancer drug. It is believed that RA exerts its therapeutic effects 

by regulating gene expression through the classical retinoic acid signaling pathway. In the 

classical pathway of retinoic acid (RA) mediated gene transcription, RA binds to a nuclear 

hormone receptor dimer composed of retinoic acid receptor (RAR) and retinoid X 

receptor (RXR), to induce the expression of its downstream target genes. In addition to 

nuclear receptors, there are other intracellular RA binding proteins such as cellular 

retinoic acid binding proteins (CRABP1 and CRABP2) and cytochrome P450 (CYP) 

enzymes, whose contributions to the RA signaling pathway have not been fully 

understood. In this work, we develop a mechanistic model of the classical retinoic acid 

signaling pathway that RAR, CRABP1, CRABP2, and CYP enzymes. We then use global 

sensitivity analysis to investigate the contribution of the RA binding proteins to RA-

induced mRNA production, when the cells are treated with a wide range of RA levels, 

from physiological to pharmacological concentrations. Our results show that CRABP2 

and RAR are the most and the least important proteins, respectively, in controlling the 
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model performance at physiological concentrations of RA (1–10 nM). However, at higher 

concentrations of RA, CYP and RAR are the most sensitive parameters of the system. 

Furthermore, we found that depending on the concentrations of all RA binding proteins, 

the rate of metabolism of RA can either change or remain constant following RA therapy. 

The cellular levels of CRABP1 are more important than that of CRABP2 in controlling 

RA metabolite formation at pharmacological conditions (RA = 0.1–1 μM). Our results 

indicate a significant negative correlation between total mRNA production and total RA 

metabolite formation at pharmacological levels of RA. Our simulations indicate that the 

significance of the RA binding proteins in the RA pathway of gene expression strongly 

depends on intracellular concentration of RA. Our findings not only can explain why 

various cell types and/or various patients respond to RA therapy differently, but also can 

potentially help develop pharmacological methods to increase the efficacy of the drug.  

In chapter 3, we study the therapeutic effects of RA on coagulation disorders in cancer 

patients. Clinical studies have shown that RA, which is known as an anticancer drug, 

improves hemostatic parameters and bleeding complications such as thrombosis and 

disseminated intravascular coagulation (DIC) in cancer patients. However, the mechanisms 

underlying this improvement have yet to be elucidated. In vitro studies have reported that 

RA upregulates thrombomodulin (TM) expression on the endothelial cell surface. In this 

chapter, we investigate how and to what extent the TM concentration changes after RA 

treatment in cancer patients, and how this variation influences the blood coagulation 

cascade. In this regard, we introduce an ordinary differential equation (ODE) model of gene 

expression for the RA-induced upregulation of TM concentration. Coupling the gene 

expression model with a two-compartment pharmacokinetic model of RA, we obtain the 
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time-dependent changes in TM and thrombomodulin-mRNA (TMR) concentrations 

following oral administration of RA. Our results indicate that the TM concentration reaches 

its peak level almost 14 h after taking a single oral dose (110 
𝑚𝑔

𝑚2
) of RA. Continuous 

treatment with RA results in oscillatory expression of TM on the endothelial cell surface. 

We then couple the gene expression model with a mechanistic model of the coagulation 

cascade, and show that the elevated levels of TM over the course of RA therapy with a 

single daily oral dose (110 
𝑚𝑔

𝑚2
) of RA reduces the peak thrombin levels and endogenous 

thrombin potential (ETP) up to 50 and 49%, respectively. We show that progressive 

reductions in plasma levels of RA, observed in continuous RA therapy with a once-daily 

oral dose (110 
𝑚𝑔

𝑚2
) of RA, do not affect TM-mediated reduction of thrombin generation 

significantly. This finding prompts the hypothesis that continuous RA treatment has more 

consistent therapeutic effects on coagulation disorders than on cancer. Our results indicate 

that the oscillatory upregulation of TM expression on the endothelial cells over the course 

of RA therapy could potentially contribute to the treatment of coagulation abnormalities in 

cancer patients. Further studies on the impacts of RA therapy on the procoagulant activity 

of cancer cells are needed to better elucidate the mechanisms by which RA therapy 

improves hemostatic abnormalities in cancer. 

In chapter four, we investigate how sodium levels are regulated in the brain during the 

onset and propagation of migraine. There are several lines of evidence regarding that 

cerebrospinal fluid (CSF) and brain tissue sodium levels increase during migraine. 

However, little is known regarding the underlying mechanisms of sodium homeostasis 

disturbance in the brain during migraine. Exploring the cause of sodium dysregulation in 
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the brain is important, since correction of the altered sodium homeostasis could potentially 

treat migraine. Under the hypothesis that disturbances in sodium transport mechanisms at 

the blood-CSF barrier (BCSFB) and/or the blood-brain barrier (BBB) are the underlying 

cause of the elevated CSF and brain tissue sodium levels during migraines, we develop a 

mechanistic, differential equation model of a rat’s brain to compare the significance of the 

BCSFB and the BBB in controlling CSF and brain tissue sodium levels. The model includes 

the ventricular system, subarachnoid space, brain tissue and blood. Sodium transport from 

blood to CSF across the BCSFB, and from blood to brain tissue across the BBB were 

modeled by influx permeability coefficients 𝑃𝐵𝐶𝑆𝐹𝐵 and 𝑃𝐵𝐵𝐵, respectively, while sodium 

movement from CSF into blood across the BCSFB, and from brain tissue to blood across 

the BBB were modeled by efflux permeability coefficients 𝑃𝐵𝐶𝑆𝐹𝐵
′  and 𝑃𝐵𝐵𝐵

′ , respectively. 

We then perform a global sensitivity analysis to investigate the sensitivity of the ventricular 

CSF, subarachnoid CSF and brain tissue sodium concentrations to pathophysiological 

variations in 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′  and 𝑃𝐵𝐵𝐵

′ . Our results show that the ventricular CSF 

sodium concentration is highly influenced by perturbations of 𝑃𝐵𝐶𝑆𝐹𝐵, and to a much lesser 

extent by perturbations of 𝑃𝐵𝐶𝑆𝐹𝐵
′ . Brain tissue and subarachnoid CSF sodium 

concentrations are more sensitive to pathophysiological variations of 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  than 

variations of 𝑃𝐵𝐶𝑆𝐹𝐵 and 𝑃𝐵𝐶𝑆𝐹𝐵
′  within 30 minutes of the onset of the perturbations. 

However, 𝑃𝐵𝐶𝑆𝐹𝐵 is the most sensitive model parameter, followed by 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′ , in 

controlling brain tissue and subarachnoid CSF sodium levels within 3 hours of the 

perturbation onset. Our findings prompt the hypothesis that increased influx permeability 

of the BCSFB to sodium caused by altered homeostasis of the enzymes which transport 

sodium from blood to CSF is the potential cause of elevated brain sodium levels in 
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migraines. This hypothesis needs to be tested experimentally. The current model can be 

used to simulate sodium transport across the BBB, the BCSFB and the ependymal surfaces 

for a particular migraine trigger, given that the effects of the migraine trigger on the BBB 

and the BCSFB permeabilities are known. 
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Chapter 2 

Identification of influential proteins in the classical retinoic acid signaling 

pathway 

 

2.1. Introduction 

Retinoic acid (RA), a biologically active form of vitamin A, plays essential roles in the 

growth and development of various cell types. RA has also been widely used as an 

anticancer drug due to its ability to inhibit cancer cell growth and induce cell differentiation. 

It is believed that RA mainly exerts its effects by regulating gene expression. The classical 

pathway of RA-induced gene transcription involves binding of RA to retinoic acid receptor 

(RAR), a member of the nuclear hormone family. The liganded RAR binds as a heterodimer 

(RA:RAR:RXR) to DNA and regulates gene expression. RAR:RXR heterodimer is the 

main transcription factor in the classical RA signaling pathway. The formation rate of 

RA:RAR:RXR complex, is highly affected by other intracellular RA binding receptors such 

as cellular retinoic acid binding proteins (CRABPs) and cytochrome P450 (CYP) enzymes. 

CRABPs are high affinity cytosolic receptors for RA that can potentially limit the access of 

RA to the RARs; CRABP1 and CRABP2 are the main members of the CRABP family. It 

has been reported that CRABP1 is responsible for sequestering RA in the cytosol, and thus 

controlling the level of free intracellular RA available for binding to RARs [1]. CRABP1 

can also facilitate RA degradation by directing RA molecules to RA-degrading 

enzymes, cytochrome P450 (CYP) [2]. However, other in vitro studies have indicated that 

CRABP1 is dispensable in the RA signaling pathway [3, 4]. CRABP2, whose expression 
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pattern is different from CRABP1 [5], delivers RA to both nuclear hormone receptors and 

CYP enzymes [6, 7]. CRABPs are bound to CYPs prior to adding RA to the cell [6, 8]. 

CYP enzymes are the main components of the pathway by which RA is cleared from 

the body. It is believed that liver cells which express high levels of CYP enzymes mainly 

mediate the synthesis and the clearance of RA [9, 10]. However, CYPs are found at various 

expression levels across different tissues and cell types [10]. Even though CRABP1, 

CRABP2, RAR and CYP are the main RA binding proteins, little is known about their 

expression levels across different human cell types. It is important to note that the cellular 

level of a protein can also vary considerably from cell to cell within a population of cells of 

the same type. Furthermore, to the best of our knowledge, the extent of contribution of the 

RA binding receptors to RA-induced gene transcription has yet to be elucidated. 

Understanding the roles and significance of RA binding receptors in the RA signaling 

pathway is important since it can help in the development of pharmacological approaches 

to limit or induce the activity of RA binding receptors, with the aim of increasing drug 

efficacy. Few previous in vitro studies have investigated the impacts of overexpression of 

CRABP1 and CRABP2 on RA-induced gene expression [3, 11]. However, their results were 

cell type-dependent, since different cell types have different expression levels of RA 

binding receptors. Furthermore, it is not clear whether the significance of the RA binding 

receptors in the RA pathway of gene expression depends on the RA concentration. In this 

study, we developed a new mathematical model to investigate the importance of various 

RA binding receptors in the RA signaling pathway in broad regions of RA concentrations. 

In this regard, we used a variance-based global sensitivity analysis (GSA) technique called 

Sobol’s method [12], which assesses the impacts of the model’s unknown parameters and 



  

 
8 

the interactions between them on the model output. Total mRNA production and total RA 

metabolite formation within 24 hours after RA treatment were selected as the model outputs, 

while the unknown parameters included kinetic rate constants and total concentrations of 

the RA binding receptors. Our results showed that all RA binding receptors could 

potentially influence mRNA production and RA metabolite formation by the RA pathway. 

However, the impact of a particular RA binding receptor on the model response largely 

depends on the concentrations of all RA binding receptors.  

The main advantage of the current study over previous in vitro studies is that our results 

were obtained using wide ranges of RA receptor concentrations for any given RA 

concentration, thus our results are applicable to most cell types or to a population of cells 

of the same type. Furthermore, our study is able to reveal the synergistic effects of a 

combination of parameters across a broad range of parameter values. In contrast, the 

obtained results from previous experimental studies [3, 11] reveal the sensitivity of the 

system with respect to one parameter when the rest of the parameters remain unchanged.  

 

2.2. Methods 

2.2.1. Model development 

We formulated a well-mixed ODE model of the RA signaling pathway. The model 

consisted of 17 species, which included proteins, mRNAs, protein-protein complexes and 

RA (Table 1).  
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Table 1. List of the model parameters 

Parameter Description 

RA Retinoic acid 

CRABP1 Cellular retinoic acid binding protein 1 

RA:CRABP1 Holo-cellular retinoic acid binding protein 1 

CRABP2 Cellular retinoic acid binding protein 2 

RA:CRABP2 Holo-cellular retinoic acid binding protein 2 

CYP CYP enzyme 

RA:CYP Liganded CYP 

RAR Retinoic acid receptor 

RA:RAR Activated retinoic acid receptor 

RA:CRABP1:CYP Activated CRABP1-CYP complex 

RA:CRABP2:CYP Activated CRABP2-CYP complex 

RA:CRABP2:RAR Activated CRABP2-RAR complex 

CRABP1:CYP CRABP1-CYP complex 

CRABP2:CYP CRABP2-CYP complex 

𝐶𝑅𝐴𝐵𝑃2𝑚𝑅𝑁𝐴 Cellular retinoic acid binding protein 2 mRNA 

𝐶𝑌𝑃𝑚𝑅𝑁𝐴 CYP enzyme mRNA 

𝑅𝐴𝑅𝑚𝑅𝑁𝐴 Retinoic acid receptor mRNA 

 

 

The model included gene transcription, protein translation, and degradation of mRNA 

and protein. The model involved the mechanisms by which RA is degraded. The core set of 

reactions describing the RA metabolism process were taken directly from [6]. We simulated 

RA-induced gene transcription through the interactions between liganded transcription 

factor and DNA (Supplementary Information in Section 2.6). The model also describes how 
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RA binding receptors interact with each other in the absence or presence of RA (Fig. 1). In 

the absence of RA, CRABPs complex with CYP enzymes, while RARs are  not bound to 

CRABPs or CYPs [6, 8]. Once RA diffuses into the cell, it binds to different RA binding 

receptors with various binding affinities. CRABP1, which has the highest binding affinity 

for RA compared to the other RA receptors, regulates the metabolic fate of RA by directing 

RA molecules to CYP enzymes. In theory, CRABP1 can also transport RA to RAR. This 

process involves dissociation of RA from CRABP1, followed by association of RA with 

RAR. CRABP2 is the second high-affinity receptor for RA [5] and can deliver RA to RAR 

and CYP. RA is transported from CRABP2 to RAR by a mechanism that involves direct 

interactions between CRABP2 and RAR [5]. 

RA is transferred to CYP enzymes either freely or bound to CRABPs. RA-induced gene 

transcription depends on the rate of transfer of RA to RAR. Free RA molecules can interact 

with RARs directly. CRABP1 and CRABP2 can also deliver RA to RAR by different 

mechanisms. Liganded transcription factors can enhance the transcriptional activation of 

CYP, RAR and CRABP2 genes after binding to DNA at a retinoic acid response element 

(RARE). We also assumed that RA was degraded only by CYP, while RA binding 

receptors, i.e. RAR, CRABP1, CRABP2, CYP were degraded by first-order reactions.  
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Figure 1. Simplified schematic of RA signaling pathway. CRABP1 is shown in green, while 

CRABP2 is shown in blue. Red circles, gray ellipsoids and yellow hexagons represent RA 

molecules, CYP enzymes and RAR molecules, respectively.   
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The full list of reactions in our model is presented in Table 2 

Table 2. List of reactions in the RA signaling pathway 

Number Reaction 

1 
RA + CRABP1⇔  RA: CRABP1 

2 
RA + CRABP2⇔  RA: CRABP2 

3 
RA + CYP⇔  RA: CYP 

4 
RA: CYP⇒ CYP + (RA metabolites) 

5 
RA + RAR⇔  RA: RAR 

6 
𝑅𝐴𝑅mRNA⇒RAR 

7 
𝐶𝑅𝐴𝐵𝑃2mRNA⇒ CRABP2 

8 
𝐶𝑌𝑃mRNA⇒CYP 

9 
RA: CRABP1 + CYP⇔ RA: CRABP1: CYP 

10 
RA: CRABP1: CYP⇒ CRABP1: CYP + (RA metabolites) 

11 
RA: CRABP2 + CYP⇔ RA: CRABP2: CYP 

12 
RA: CRABP2: CYP⇒ CRABP2: CYP + (RA metabolites) 

13 
RA: CRABP2 + RAR⇔RA: CRABP2: RAR 

14 
RA: CRABP2: RAR⇒ RA:RAR + CRABP2 

15 
CRABP1 + CYP⇔ CRABP1: CYP 

16 
CRABP2 + CYP⇔ CRABP2: CYP 

17 
CRABP1⇒∅  

18 
CRABP2⇒∅ 

19 
CYP⇒∅ 

20 
RAR⇒∅ 

21 
RA: CRABP1⇒RA + ∅ 

22 
RA: CRABP2⇒RA + ∅ 
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RA-induced expression of RAR, CRBAP2 and CYP genes are modeled using Eq. 4.  

 

 

Analysis of the model behavior required the initial concentrations of the species and the 

kinetic parameters. Our model had 44 parameters, which included total concentrations of 

the RA binding receptors, the kinetic rate constants for binding/unbinding reactions, 

transcription and translation rate constants and mRNA and protein degradation rates. We 

assumed that total concentrations of CRABP1, CRABP2, CYP and RAR were unknown, 

which implies that these proteins are expressed in various levels across different tissues and 

across a population of cells of the same type. In the absence of RA, total concentrations of 

RA receptors were given by  

 

[CRABP1𝑡] = [CRABP1𝑓] + [CRABP1: CYP]                                                                           (1)                                  

[CRABP2𝑡] = [CRABP2𝑓] + [CRABP2: CYP]                                                                           (2)                           

[CYP𝑡] = [CYP𝑓] + [CRABP1: CYP] + [CRABP2: CYP]                                                           (3)        

 

23 
RA: RAR⇒RA + ∅ 

24 
𝑅𝐴𝑅mRNA⇒∅ 

25 
𝐶𝑅𝐴𝐵𝑃2mRNA⇒∅ 

26 
𝐶𝑌𝑃mRNA⇒∅ 

27 
CRABP1: CYP⇒CYP + ∅ 

28 
CRABP1: CYP⇒CRABP1 + ∅ 

29 
CRABP2: CYP⇒CYP + ∅ 

30 
CRABP2: CYP⇒CRABP2 + ∅ 
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where [] indicates molar concentration, while subscripts 𝑡 and 𝑓 stand for total and free 

receptors. RAR does not have any interaction with the remainder of the RA binding 

receptors, i.e. CRABP1, CRABP2 and CYP, before RA treatment. However, RAR can 

homodimerize, and heterodimerize with other proteins such as RXR in the absence of RA. 

In this study, we assumed that RA molecules can bind to free RARs, and to RARs bound to 

other proteins, with the same binding affinity. Thus, all RARs are receptive to RA binding.   

We used in vitro values for 30 model parameters (see Supplementary Information in 

Section 2.6), while the remaining 14 parameters were unknown for which we considered 

some physiological bounds (Table 3).  We also assumed that for a given gene the values of 

transcription rate constants, translation rate constants, forward and reverse rate constants of 

the binding reactions and the elimination rates of proteins and mRNAs can vary within the 

in vitro values by a factor of two. This is because not only can these parameters vary across 

cell type and across cells of the same type, but also all in vitro parameters are subject to 

error.  

Table 3. List of the independent model parameters 

Parameter Description Range Reference 

CRABP1 Total concentration of CRABP1 1 nM – 10 µM 

Unknown. A 

large range is 

used. 

CRABP2 Total concentration of CRABP2 1 nM – 10 µM 

Unknown. 

A large range 

is used. 

CYP Total concentration of CYP 1 nM – 10 µM 

Unknown. A 

large range is 

used. 
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RAR Total concentration of RAR 1 nM – 1 µM 

Unknown. A 

large range is 

used. 

𝑘𝑑3 
Equilibrium dissociation constant of reaction 

#3 
1nM -64 nM [6] 

𝑘𝑜𝑛13 Forward rate of reaction #13 
3.6 × 109

− 3.6 × 1010 
[13] 

𝑘𝑑13 
Equilibrium dissociation constant of reaction 

# 13 
0.1 nM-10nM [14] 

𝑘𝑜𝑛14 Forward rate of reaction #14 50-200 1/hr [15] 

𝑘𝑜𝑛15 Forward rate of reaction #15 
3.6 × 109

− 3.6 × 1010 
[13] 

𝑘𝑜𝑛16 Forward rate of reaction #16 
3.6 × 109

− 3.6 × 1010 
[13] 

𝑓𝑅𝐴𝑅 Transcription factor fraction for RAR gene 0-1 By definition 

𝑓𝐶𝑅𝐴𝐵𝑃2 
Transcription factor fraction of CRABP2 

gene 
0-1 By definition 

𝑓𝐶𝑌𝑃 Transcription factor fraction for CYP gene 0-1 By definition 

𝑓𝐺𝑂𝐼 Transcription factor fraction for the GOI 0-1 By definition 

Reactions are shown in Table 2. 

Transcription factor fractions are defined in Section 3.1.  

 

We used large ranges for unknown initial concentrations of CRABP1, CRABP2, CYP 

and RAR [16]. This is because the cellular levels of these proteins can vary significantly 

across cell types, or in a particular cell type as a consequence of cancer and cancer therapy. 

We then performed a global sensitivity analysis to identify the influential unknown 

parameters in the RA signaling pathway.  

2.2.2. Global Sensitivity Analysis of the Model 

Global sensitivity analysis (GSA) is a numerical technique designed to analyze the 

impacts of uncertain parameters on a model’s output. In contrast to local sensitivity analysis 
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which analyzes the changes of model output by making small changes to each parameter 

while keeping the remaining parameters unchanged [17], GSA considers variations of all 

parameters over their entire range. Thus, GSA is useful for understanding the contribution 

of various model parameters to the variations in model output.  In this study, we used a 

MATLAB toolbox for global sensitivity analysis, called SAFE [18]. We used a variance-

based sensitivity analysis approach called Sobol’s method, which can quantitatively rank 

the relative importance of the model’s parameters [12, 19, 20]. Sobol’s method evaluates 

the first- and total-order sensitivity indices for each parameter. The first-order index (𝑆𝑖) 

represents the individual effects of each input on the variance of the output, while the total-

effect index (𝑆𝑇𝑖) accounts for the total contribution of the input that includes its first-order 

effect plus all higher-order effects. The higher-order effects for a given input are due to 

interactions of the input with other model inputs. The total-effect sensitivity indices are 

useful in identifying the noninfluential parameters which can be fixed anywhere over their 

range of variability without influencing the output significantly [12]. If 𝑆𝑇𝑖 ≤ 0.01 and the 

total-effect index of 𝑥𝑖 is much smaller than that of the rest of parameters, then 𝑥𝑖 can be 

fixed at any value within its range [21-23]. 

2.3. Results   

2.3.1. Gene expression through RA pathway 

We investigated the importance of various RA binding receptors in the RA signaling 

pathway after treating the model with various concentrations of RA. In this regard, we 

calculated the total mRNA production by a gene of interest (GOI) within 24 hours after RA 

therapy. The rate of production of a mRNA of interest by the classical RA signaling pathway 

is modeled by (see Supplementary Information in Section 2.6 for details) 
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d[mRNA]

dt
= 𝐼max (𝐺𝑂𝐼) (

𝑓𝐺𝑂𝐼[RA: RAR]

𝑓𝐺𝑂𝐼[RA: RAR] + 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)
),                                                        (4) 

where 𝐼max (𝐺𝑂𝐼) and 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴) are the maximal transcription rate by an activated 

transcription factor (TF𝑎) which initiates the transcription of the mRNA’s gene, and the 

equilibrium dissociation constant of binding of the transcription factor to DNA, 

respectively. 𝑓𝐺𝑂𝐼 is the transcription factor fraction of the GOI, defined as the ratio of the 

concentration of total transcription factor (TF𝑡) to the concentration of total RAR (RAR𝑡),  

 𝑓𝐺𝑂𝐼 =
[TF𝑡]

[RAR𝑡]
 ,                                                                                                                              (5) 

and is a number between 0 and 1. TF𝑡 represents those heterodimerized RAR isotypes which 

can activate the transcription of the GOI after binding to RA. Some RA target genes can be 

expressed by various RAR:RXR heterodimers, while others are expressed by a particular 

heterodimer. Thus, the concentration of total transcription factor (TF𝑡) is less than or equal 

to total concentration of RAR (RAR𝑡). In general, the value of  𝑓𝐺𝑂𝐼 depends on gene- and 

cell-type. For a given cell-type, 𝑓𝐺𝑂𝐼 varies for different genes since the value of TF𝑡 

depends on gene-type.  

Figure 2a shows the variations in the transcription rate of the GOI within 24 hours after 

adding various concentrations of RA to a model with a randomly sampled set of parameters.   
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(a) (b) 

Figure 2. Changes in the transcription rate of the GOI (a) after adding various concentrations of 

RA to a model with a set of random parameters:  [CRABP1𝑡]=10 nM, [CRABP2𝑡]=1.9 µM, 

[CYP𝑡]=15 nM, [RAR𝑡]=0.17 µM. (b) after adding 1 µM of RA to various models with different 

sets of parameters; Green: [CRABP1𝑡]=1 nM, [CRABP2𝑡]=7.7 µM, [CYP𝑡]=3.5 nM, [RAR𝑡]=9 

nM. Red: [CRABP1𝑡]=10 nM, [CRABP2𝑡]=1.9 µM, [CYP𝑡]=15 nM, [RAR𝑡]=0.17 µM. Blue: 

[CRABP1𝑡]=2.6 nM, [CRABP2𝑡]=3.2 µM, [CYP𝑡]=0.1 µM, [RAR𝑡]=3 nM. 

 

The RA-induced transcription rate strongly depends on RA concentration and model 

parameters, i.e. initial concentrations of the RA receptors and kinetic rate constants (Fig. 2). 

The transcription rate peak time, duration of transcription, and transcription rate peak level 

can change or remain unchanged after modifying RA concentration or model parameters. 

In order to investigate the significance of the model’s unknown parameters in the regulation 

of GOI expression, we calculated the time integral of the transcription rate within 24 hours 

after RA treatment.   

Model Output = ∫ 𝐼max (𝐺𝑂𝐼) (
𝑓𝐺𝑂𝐼[RA: RAR]

𝑓𝐺𝑂𝐼[RA: RAR] + 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)
)

24

0

 dt .                                  (6) 
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We then calculated the sensitivity of the model output to variations in the model 

parameters when the cells were treated with 1 nM of RA (Fig. 3). The model parameters, 

including total concentration of the RA binding proteins, kinetic rate constants, transcription 

factor fractions and maximal transcription rates were varied within their ranges of 

variability (full details in Supplementary Information in Section 2.6).  

 

 

Figure 3. Sensitivity ranking of the model parameters. The model output was set to the time 

integral of the transcription rate of the GOI within 24 hours after adding 1 nM of RA to the model. 

Blue bars indicate first-order sensitivity indices, while red bars represent total-effect sensitivity 

indices. The error bars show the bootstrap confidence intervals (95% confidence intervals) of the 

mean values [24]. Detailed parameter description is provided in Supplementary Information in 

Section 2.6. 

 

First-order and total-effect sensitivity indices of the model parameters indicated that the 

system performance was mainly controlled by the transcription factor fraction of the GOI 

(𝑓𝐺𝑂𝐼) and the total concentrations of RA binding receptors (Fig. 3). The sensitivity of the 
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output to variations in 𝑓𝐺𝑂𝐼 is trivial, since 𝑓𝐺𝑂𝐼 represents what portion of RARs can activate 

the transcription of the GOI.  

CRABP2 and RAR were the most and the least important RA receptors controlling RA-

mediated mRNA production when RA= 1 nM, respectively. CYP was the second most 

sensitive parameter in the model, followed by CRABP1. The maximal transcription rate of 

the GOI (𝐼𝑚𝑎𝑥(𝐺𝑂𝐼)) and the equilibrium dissociation constant of the transcription factor 

binding to DNA (𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)) were other sensitive parameters in the model (Fig. 3). The 

maximal transcription rate of a given gene can change from cell to cell since the elongation 

rate of the gene by RNA polymerase can vary across cell lines and across a population of 

cells of the same type [25]. RA upregulates the expression of the CRABP2, RAR and CYP 

genes [26]. We modeled these pathways using Eq. 4 with different values of transcription 

factor fractions and maximal transcription rates, i.e. 𝑓𝐶𝑅𝐴𝐵𝑃2, 𝑓𝑅𝐴𝑅 , 𝑓𝐶𝑌𝑃, 𝐼𝑚𝑎𝑥(𝐶𝑅𝐴𝐵𝑃2), 

𝐼𝑚𝑎𝑥(𝑅𝐴𝑅), and 𝐼𝑚𝑎𝑥 (𝐶𝑌𝑃) (see Supplementary Information in Section 2.6 for details). Our 

results, however, indicated that these pathways did not considerably affect the model output 

when RA= 1 nM, since the total-effect indices of 𝑓𝐶𝑅𝐴𝐵𝑃2, 𝑓𝑅𝐴𝑅 , 𝑓𝐶𝑌𝑃, 𝐼𝑚𝑎𝑥(𝐶𝑅𝐴𝐵𝑃2), 

𝐼𝑚𝑎𝑥(𝑅𝐴𝑅) and 𝐼𝑚𝑎𝑥 (𝐶𝑌𝑃) were smaller than 0.01 (Fig. 3).  

We then calculated the sensitivity indices of the model parameters when the model was 

treated with other concentrations of RA ranging from 10 nM to 1 µM. Our results showed 

that transcription factor fraction of the GOI, maximal transcription rate of the GOI and total 

concentration of RA binding receptors mainly controlled the system performance at all 

concentrations of RA (see Supplementary Information, Section 2.6, Fig. S1). Figure 4 

compares the sensitivity indices of RA binding proteins at various concentrations of RA.  
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Figure 4.  Significance of the RA binding proteins in influencing total mRNA production after 

treatment with various concentrations of RA. The blue bars show first-order sensitivity indices, 

while the red bars show total-effect sensitivity indices. The error bars indicate the bootstrap 

confidence intervals (95% confidence intervals) of the sensitivity indices. 

 

RAR is the least important protein in influencing mRNA production when the cells are 

treated with physiological levels of RA (1-10 nM). That is because RA is mainly bound to 

CRABP1, CRABP2 and CYP at low concentrations of RA, as those proteins have higher 

binding affinities than RAR for RA. Thus, variation in total concentration of RAR is less 

important than variations of the rest of RA binding proteins concentrations in changing the 

formation rate of RA:RAR, since there are not many free RA molecules available to bind 

to RARs at physiological levels of RA. However, a change in CRABP2, CRABP1 and CYP 

concentrations can remarkably accelerate or slow down the transport of RA molecules to 

RARs, which are mainly unbound at physiological conditions. In other words, RA is the 
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limiting and RAR is the excess species at physiological levels of RA, while RAR is the 

limiting and RA is the excess species at higher concentrations of RA.     

Total concentration of RAR is more important in influencing mRNA production when 

the RA concentration is RA=1 µM compared to physiological concentrations of RA. This 

is because RAR is close to saturation with RA at higher levels of RA, since there are more 

RA molecules accessible to RARs. Thus, enhancement of total RAR concentration can 

increase the activation rate of the transcription factor, which leads to an increase in the 

mRNA production rate according to Eq. 4. Figure 5 shows the variations of the RA binding 

receptors’ saturation indices at different concentrations of RA. The saturation index of each 

receptor is defined as the maximum value of the bound fraction of the receptor within 24 

hours after RA treatment. The bound fraction of a receptor changes over time, and is 

expressed as: 

Bound fraction of a receptor

=
Liganded receptor concentration

Liganded receptor concentration + free receptor concentration 
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Figure 5. Variation in the saturation index of various RA binding proteins at different 

concentrations of RA. 10000 points were randomly sampled, following a uniform distribution over 

a 44-dimensional parameter space. The models were treated with various concentrations of RA 

and the saturation indices were calculated.   

 

CRABP1 and CRABP2 are less important than RAR when the concentration of RA is 

1 µM, even though they are also close to saturation (Fig. 5). This is because RAR is almost 

saturated with RA at high levels of RA, and providing RARs with more RA molecules 

through changing CRABP1 and CRABP2 concentrations does not change the formation 

rate of activated RAR significantly.    

Another factor that makes RAR more important than other binding proteins in mRNA 

production at pharmacological conditions (RA= 0.1-1 µM) is the higher expression rate of 

CRABP2, RAR and CYP genes at pharmacological levels of RA compared to physiological 

levels. Total concentrations of RAR, CRABP2 and CYP increase after adding RA to the 

system. Figure 6 shows the variations in RA binding protein expression indices at different 
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RA concentrations. The expression index of each RA binding protein is defined as the 

average concentration of each RA binding protein within 24 hours after RA treatment, 

divided by the initial concentration of RA binding protein before the RA therapy. Our 

results show that the expression indices of all RA binding receptors increase with RA 

concentration. The expression indices of CRABP2 and CYP are larger than the expression 

index of RAR at all concentrations of RA. This is because CRABP2 and CYP have larger 

maximal transcription rates, translation constants, and smaller degradation rates than RAR 

(see Supplementary Information in Section 2.6).  

 

(a) 
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(b) 

 

 

(c) 

Figure 6. Variation in the expression index of (a) CRABP2, (b) CYP, (c) RAR at various 

concentrations of RA. 10000 points were randomly sampled following a uniform distribution over 

a 44-dimensional parameter space to generate this Figure. 
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The total concentration of CYP contributes almost equally to variations in mRNA 

production at all concentrations of RA (Fig. 4). This is because CYP level affects the 

concentrations of free CRABPs available for transferring RA to the nuclear receptors 

(according to Eq. 1 to Eq. 3).  

From Figure 4, it can be understood that CRABP2 is a more important factor in the RA 

signaling pathway when the model was treated with physiological levels of RA (1-10 nM) 

compared to pharmacological levels of RA (0.1-1 µM). This is because RAR is barely 

saturated with RA at physiological conditions, so that variations in CRABP2 concentration 

can significantly change the rate of RA transport to RARs. 

The fact that CRABP2 is more influential in mRNA production at physiological 

conditions compared to pharmacological conditions is in qualitative accordance with 

previous experimental studies [7]. A previous in vitro study [7] indicated that exogenous 

levels of CRABP2 increased the transcriptional activity of RAR only when the 

concentrations of RA or RAR were limiting (Fig. 7a-b). We performed a local sensitivity 

analysis to investigate the effect of a constant change in CRABP2 concentration on total 

mRNA production, over broad regions of RA and RAR concentrations. For this purpose, 

we sampled several sets of parameters within their ranges of variability, which characterized 

various cell types or various cells of the same type. We then calculated fold change values 

of the total mRNA production for each model after increasing CRABP2 concentration by 

200% (Fig. 7c). Our results indicated that for a vast majority of cell types, a constant change 

in CRABP2 concentration is more important in the RA signaling pathway at lower 

concentrations of RA. We also obtained fold change values of total mRNA production after 

increasing CRABP2 concentration by 200% in the absence or presence of exogenous levels 
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of RAR. Our results showed that variation of CRABP2 concentration is more important at 

lower concentrations of RAR. This result is in qualitative agreement with experimental 

observations [7] in COS-7 cells culture (Fig.7).  

  

(a) (b) 

  

(c) (d) 

 

Figure 7. Effects of CRABP2 on transcriptional activity of RAR at various levels of RA and 

RAR. COS-7 cells were transfected with a luciferase reporter construct driven by a RAR 

responsive element and the activity level of the reporter was measured in different conditions. (a) 

Luciferase activity level after adding exogenous levels of CRABP2 to the cells at various 
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concentrations of RA. Data are presented as fold induction relative to luciferase reporter activity 

level before overexpression of CRABP2. Experimental data was obtained from [7]. (b) Luciferase 

activity level after adding exogenous levels of CRABP2 to the cells, in the presence of 

endogenous RAR or upon overexpression of RAR.  Data are presented as fold induction relative to 

luciferase reporter activity level before overexpression of CRABP2. Experimental data was given 

from [7]. (c) Fold change in total mRNA production after increasing CRABP2 concentration by 

200%. Data are normalized by total mRNA production before CRABP2 overexpression. 10000 

points were randomly sampled following a uniform distribution over a 44-dimensional parameter 

space, to generate this Figure. (d) Fold change in total mRNA production after increasing 

CRABP2 concentration by 200% in the presence of endogenous RAR or exogenous RAR, i.e. 

RAR= 10 µM.  Data are normalized by total mRNA production before CRABP2 overexpression. 

10000 points were randomly sampled following a uniform distribution over a 44-dimensional 

parameter space, to generate this Figure.  

 

The total-effect sensitivity index of CRABP2 is larger than that of CRABP1 when RA= 

1-10 nM, while CRABP2 and CRABP1 contribute almost equally to variations in the model 

output when RA= 0.1-1 µM (Fig. 4).  Total-effect sensitivity indices should be used to 

compare the total contributions of different inputs to variations in the model response. For 

example, CRABP2 has a larger first-order sensitivity index than CRABP1 when RA 

concentration is 0.1 or 1 µM, while the total-effect sensitivity index of CRABP1 is slightly 

larger than that of CRABP2 (Fig. 4). This suggests that CRABP1 interacts stronger than 

CRABP2 with other parameters.   

The calculated sensitivity indices at each RA concentration indicate the relative 

importance of the parameters at the specified RA concentration. Thus, these indices cannot 

be used to compare the absolute values of the produced mRNA when the cells were treated 

with various levels of RA. CRABP2, for instance, has a larger sensitivity index in 

physiological concentration of RA compared to pharmacological concentrations.  However, 
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this does not mean that a change in CRABP2 concentration results in a larger variation in 

molar production of the mRNA at physiological levels of RA compared to the 

pharmacological concentration of RA. In general, with a fixed set of values for RA binding 

receptor concentrations, total mRNA production increases by RA dose.   

2.3.2.  RA degradation pathway  

RA metabolism is crucial in RA signaling not only because the CYP can limit the 

amount of RA available to interact with RARs, but also because some RA metabolites can 

induce the transcription of some target genes through specific pathways [27, 28]. 

Furthermore, RA resistance, observed in continuous RA treatment in cancer patients, is at 

least in part due to RA degradation. RA metabolism is mediated mainly by CYP enzymes, 

which are found in different cell types. Even though several studies have investigated the 

role of various families of CYP in biosynthesis of RA, little is known about the contribution 

of CRABPs and RARs in the RA degradation pathway. In this section we investigated the 

contributions of the RA binding receptors to production of RA metabolites. In our model, 

RA was only degraded via CYP enzymes, while interacting with CYP directly or indirectly. 

In the direct mechanism, free RA molecules can bind to CYP, while the indirect process 

involves CRABP1 and CRABP2 as carrier proteins that transfer RA to CYP. Thus, the total 

rate of RA degradation is obtained by 

d[RA metabolites]

dt
= 𝑘𝑜𝑛4[RA: CYP] + 𝑘𝑜𝑛10[RA: CRABP1: CYP] + 𝑘𝑜𝑛12[RA: CRABP2: CYP],                 (7) 

where 𝑘𝑜𝑛4, 𝑘𝑜𝑛10 and 𝑘𝑜𝑛12 are degradation rates of RA: CYP, RA: CRABP1: CYP and 

RA: CRABP2: CYP, respectively.   

We performed GSA to investigate the sensitivity of total RA metabolite production 

within 24 hours after RA therapy, to variations in the model’s unknown parameters.  
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Model Output = ∫ 𝑘𝑜𝑛4[RA: CYP] + 𝑘𝑜𝑛10[RA: CRABP1: CYP] + 𝑘𝑜𝑛12[RA: CRABP2: CYP]
24

0

 dt.            (8) 

As in the previous section, we considered physiological bounds for the parameters and 

used the Sobol’s method to calculate the sensitivity indices. Our results showed that the 

production of RA metabolites was mainly affected by cellular concentrations of the RA 

binding proteins (Fig. S2 in Supplementary Information, Section 2.6). CYP had the largest 

total-effect sensitivity index at all RA concentrations, which shows that total concentration 

of CYP was the most important parameter controlling the system performance (Fig. 8). 

CRABP1 and CRABP2 contribute almost equally to variation in the model response when 

RA= 1 nM, while CRABP1 is more important than CRABP2 in the RA degradation 

pathway when RA= 0.01-1 µM. 

 

Figure 8. Relative importance of various RA binding proteins in total RA metabolite 

formation at various concentrations of RA. The model output was set to total RA metabolite 

formation within 24 hours of treatment with various concentrations of RA. The blue bars show 

first-order sensitivity indices, while the red bars show total-effect sensitivity indices. The error 
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bars indicate the bootstrap confidence intervals (95% confidence intervals) of the sensitivity 

indices. 

 

RAR becomes more important in the RA degradation pathway as RA concentration 

increases. This can be explained by the fact that at high concentrations of RA, RAR is the 

most important parameter that controls RA-induced gene expression (Fig. 4). The cellular 

level of RAR can significantly influence RA-induced upregulation of CYP, CRABP2 and 

RAR. Our results indicated that RA-induced upregulation of CYP had significant effects on 

total RA metabolite formation when RA= 0.01-1 µM (see Section 2.6, Supplementary 

Information, Fig. S2). From Figure 8, it can be understood that for a given RA 

concentration, the rank order of first-order sensitivity indices of the parameters is not 

necessarily the same as the rank order of total-effect sensitivity indices. This is due to 

different levels of interaction of each parameter with the rest of the parameters. 

Furthermore, our results were obtained using GSA, which gives some insights into the 

functions of various receptors by covering the entire parameter space. However, it might be 

possible that for a specific set of initial concentrations the rank order of parameter 

sensitivities would be different. 

Comparing Figure 4 with Figure 8, one can observe that for a given RA concentration, 

the rank order of sensitivity of the RA binding receptors is not the same for total mRNA 

production and total RA metabolite formation. To further investigate the relationship 

between mRNA production and RA metabolite formation by the RA signaling pathway, we 

calculated Spearman’s rank correlation coefficient between total mRNA production and 

total RA product formation within 24 hours of treatment with 1 µM of RA. Our results 

revealed a significant negative correlation (ρ= - 0.7, p= 0, n= 10000) between total mRNA 
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production and total RA metabolite formation (Fig. 9). However, Spearman’s rank 

correlation coefficient decreased with the reduction of RA concentration (Section 2.6, 

Supplementary Information, Fig. S3). 

 

Figure 9. The relationship between total RA metabolite formation and total mRNA production 

within 24 hours of treatment with 1 µM of RA. 10000 points were randomly sampled following a 

uniform distribution over a 44-dimensional parameter space.   

 

One serious drawback of the clinical use of RA is that RA has a rapid and variable 

degradation rate [29, 30]. Thus, a relatively high concentration of RA is required to induce 

the expression of target genes in various cell types. The pattern of RA degradation is 

important since it can directly influence cell differentiation and gene expression by RA. In 

this section, we simulated the variations in total concentration of RA within 24 hours after 

RA treatment. For this purpose, we sampled several sets of parameters within their ranges 

of variability, which characterized various cell types or various cells of the same type. We 

then added 0.1 µM of RA to each model and obtained the changes in total RA concentration 
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over time. Our results showed that RA exhibited different elimination patterns depending 

on intracellular concentrations of the RA binding proteins, i.e. CRABP1, CRABP2, CYP 

and RAR (Fig. 10). Furthermore, RA can both down- and up-regulate its own degradation.  

 

Figure 10. Various forms of elimination of RA after treating different models with 0.1 µM of 

RA. Three models with various parameter sets are shown in blue, green and red. Green: 

[CRABP1𝑡]=8.6 µM, [CRABP2𝑡]=16.1 nM, [CYP𝑡]=11.2 nM, [RAR𝑡]=0.24 µM. Red: 

[CRABP1𝑡]=2.7 nM, [CRABP2𝑡]=11.4 nM, [CYP𝑡]=30 nM, [RAR𝑡]=0.22 µM. Blue: 

[CRABP1𝑡]=3 µM, [CRABP2𝑡]=11 nM, [CYP𝑡]=2.26 nM, [RAR𝑡]=0.71 µM. Full list of the 

models’ parameters is reported in Supplementary Information, Table S2. 

 

2.3.3.  Effects of the RA binding proteins on the efficacy and toxicity of RA 

An understanding of the roles and significance of RA binding proteins in the RA 

signaling pathway is important for both therapeutic and toxicological reasons. The results 

presented in this study can be used to develop pharmacological methods to increase the 

maximal response produced by RA. These pharmacological approaches can vary depending 
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on cancer type, as different cell types have different expression levels of RA binding 

proteins. For example, in pharmacological conditions (RA= 1 µM), induction of expression 

of the RAR gene or inhibition of expression of the CYP gene have more significant effects 

than overexpression of the CRABP2 gene on the expression levels of the GOI in a given cell 

type (Fig. 4). To further investigate how the total mRNA production at various RA 

concentrations is sensitive to variation in each RA binding protein concentration, we 

performed a local sensitivity analysis. In this regard, 10000 sets of parameters were 

randomly sampled, following a uniform distribution over a 44-dimensional parameter 

space. Variation in the total mRNA production was calculated for each model after 

increasing the concentration of each RA binding protein by 25% while the rest of the 

parameters remained unchanged (Fig. 11).   

 

 

Figure 11. Variation in total mRNA production after a 25% increase in each RA binding 

protein concentration, while the rest of the parameters are constant. 10000 points were randomly 
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sampled following a uniform distribution over a 44-dimensional parameter space, to generate this 

Figure.   

 

Our results indicate that a 25% increase in CRABP1 or CRABP2 concentrations is more 

important at physiological concentrations of RA compared to pharmacological 

concentrations, which is in accordance with our global sensitivity analysis results (Fig. 4). 

CRABP2 is the most influential protein at physiological concentration, while RAR and CYP 

are the most important proteins when RA= 1 µM. From Figure 11, it can be understood that 

a 25% increase in the total concentration of RAR enhances mRNA production for all 

models. A 25% increase in total concentration of CYP and CRABP1 decreases total mRNA 

production for most of the models, while a 25% increase in CRABP2 concentration 

enhances total mRNA production for the majority of models. In general, the way that the 

variation in total concentrations of CRABP1, CRABP2 or CYP affects mRNA production 

depends on the cellular concentrations of all RA binding receptors. Overexpression of 

CRABP1, for example, can increase or decrease the transcriptional activity of the target 

gene, depending on total concentrations of the other RA receptors. This is because these 

proteins complex with each other in the absence or presence of RA.  

The results presented in this paper can provide insight into the efficacy and safety of 

RA therapy in treatment of different cancer types and cancer patients. CRABP1, CRABP2, 

CYP and RAR expressions can be upregulated or downregulated depending on the cancer 

type [31-34] and administrated anticancer drugs [35, 36]. Cancer patients usually take 

different medications at the same time. Concurrent use of other drugs with RA can influence 

the RA signaling pathway in at least two ways. First, interaction with other medicines can 

cause variations in the pharmacokinetics and pharmacodynamics of RA, significantly 
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changing its efficacy and toxicity. For instance, it is possible that two or more drugs 

compete for the same CYP enzyme in a cancer cell, since CYP-mediated metabolism is a 

major route of elimination for many drugs. This competitive inhibition can decrease the 

availability of CYP enzymes to RA, therefore decreasing its metabolism rate and increasing 

its toxicity. Second, some drugs can inhibit or induce the expression of RA binding proteins 

such as CYP [34, 35]. Variations in the concentrations of RA binding proteins may affect 

the efficacy of RA over the course of cancer therapy. For instance, CRABP1 and CRABP2 

are the least important parameters in the model when RA= 1 µM (Fig. 4). Thus, up-

regulation or down-regulation of these proteins due to other factors such as disease progress, 

drug interactions, etc should not change the rate of mRNA production by RA significantly. 

However, if for example use of a strong RAR inhibitor or CYP inducer is unavoidable for 

the patient, the therapeutic effects of RA may be decreased significantly.  

 

 

2.4. Discussion 

Retinoic acid, a metabolite of vitamin A, modulates a wide variety of biological 

processes such as cell growth, cell differentiation and cell proliferation. RA has also been 

known to be effective in treatment of various types of cancer. Even though a vast number 

of studies have focused on exploring the regulatory target genes for RA, the significance 

and roles of various intracellular RA receptors in transduction of the RA signal have not 

been fully understood. CRABP1, CRABP2, CYP enzymes and RARs are the main 

intracellular proteins which can bind to RA as receptors. Few previous studies have 

attempted to investigate the effects of overexpression of CRABPs on the RA signaling 
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pathway, and in some cases somewhat contradictory results have been reported for different 

cell lines [2-4]. In this study, we developed a mathematical model to analyze the importance 

of CRABP1, CRABP2, CYP and RAR in production of mRNA and RA metabolites. In this 

regard, after proposing a well-mixed model of the RA signaling pathway, we performed a 

global sensitivity analysis to investigate the relative importance of RA binding receptors in 

total mRNA production via the RA pathway. Our results indicate that CRABP2 is the most 

important RA receptor at physiological levels of RA, while RAR concentration has the least 

importance among all four RA receptors. At pharmacological levels of RA, the total mRNA 

production was more sensitive to variations in RAR and CYP levels than CRABP1 and 

CRABP2 levels. It is important to note that all RA binding receptors could influence RA-

induced mRNA production within the entire region of parameter space where the 

concentrations of RA binding proteins change considerably. They are all important since 

their sensitivity indices were of the same order of magnitude. These results can explain the 

conflict between previous experimental results regarding the effects of CRABP1 on 

transcriptional activity of target genes [1, 3, 4]. Our results were obtained using GSA, which 

quantifies the effects of the model inputs on the model output by perturbing the inputs 

within large ranges. Therefore, our results indicate that in a broader region of parameter 

space, which represents various cells with various levels of RA receptors, all of the RA 

binding receptors are influential. However, there is a possibility that for a certain parameter 

set which specifies a specific tissue or cell, CRABP1 is unimportant in the RA pathway. 

Thus, for a given cell type, an accurate parameter set is necessary to determine whether a 

parameter has a substantial control on the system performance.  
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Our local sensitivity analysis indicated that CRABP2 is more important in the RA 

signaling pathway at lower concentrations of RA or RAR. This result is in qualitative 

agreement with in vitro observations in COS-7 cells[7]. Our model can be applied to various 

cell types and our results can be validated experimentally once more information is 

available about the expression levels of RA binding proteins in the cell types of interest.  

Our GSA analysis indicated that RAR-mediated increases in CRABP2 and CYP 

concentrations after RA therapy were more important in the regulation of GOI expression 

than the RAR-mediated increase in RAR concentration (see Supplementary Information in 

Section 2.6, Fig. S1). This is because total-effect sensitivity indices of 𝐼𝑚𝑎𝑥(𝐶𝑅𝐴𝐵𝑃2) and 

𝐼𝑚𝑎𝑥 (𝐶𝑌𝑃) were larger than total-effect sensitivity index of 𝐼𝑚𝑎𝑥(𝑅𝐴𝑅). Furthermore, total-

effect sensitivity indices of 𝑓𝐶𝑅𝐴𝐵𝑃2 and 𝑓𝐶𝑌𝑃 were larger than total-effect sensitivity index 

of 𝑓𝑅𝐴𝑅 at all concentrations of RA (Supplementary Information in Section 2.6, Fig. S1).  

The time-dependent increases of CRABP2, CYP and RAR concentrations after RA therapy 

can alter the relative concentrations of RA binding proteins. Thus, RA receptors can become 

increasingly or decreasingly important in the RA signaling pathway as time goes on. In this 

study, we calculated the sensitivity of the model’s outputs, i.e. total mRNA production and 

total RA metabolite formation, to variations in total concentrations of the RA binding 

receptors before RA treatment. Thus, the significance of RAR-mediated upregulation of 

CRABP2, CYP and RAR genes in the RA signaling pathway is mainly shown by the 

sensitivity index of total RAR concentration, since RAR is the only RA receptor mediating 

the transcription of target genes. 

This study has some limitations. First, we assumed that RA influences gene expression 

through the classical pathway, which involves binding of RA to a nuclear hormone receptor 
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heterodimer (RAR:RXR). The liganded heterodimer can initiate the transcription of target 

genes after binding to a DNA response element. However, there may be other intermediate 

transcription factors or nonclassical pathways that can transduce RA signal, thus our results 

can only be applied to the genes which are direct targets of the classical RA signaling 

pathway. Second, we assumed that all RA binding proteins undergo first-order degradation 

processes. This may not be the case for all types of tissues with various expression levels 

of degradation enzymes. The mechanisms mediating the elimination of RA binding 

receptors have not been fully understood, thus the model can be improved once more 

information regarding these mechanisms is available. Third, we used the kinetic rate 

constants of CYP26B1 in the model.  CYP26B1 is a member of the 26 family (CYP26s) of 

the CYP enzymes which is mainly responsible for metabolism of RA during adult life [6, 

37-39]. However, RA can also be degraded by other families of CYP which are different 

from CYP26B1 in terms of rate constants and binding affinities. In the current model, we 

assumed that the kinetic rate constants of degrading enzymes can vary by a factor of two 

around the in vitro values for CYP26B1. This assumption increases the applicability of our 

results to other cell types with different types of CYP. Thus, our results are applicable to 

those cell lines that express higher levels of CYP26B1 compared to other CYP families and 

to those cell types which have CYP enzymes with kinetic rate constants within the specified 

ranges in this study. The current simulation can be run using the kinetic rate constants of 

any arbitrary CYP enzyme. In that case, this model can be expanded to include the effects 

of RA metabolites on RA-induced gene expression if the CYP of interest forms high levels 

of active RA metabolites. The current model is applicable to those cell types whose main 

degrading enzyme is CYP26B1. The primary metabolite formed by CYP26B1 from RA is 



  

 
40 

4-OH-RA [40, 41]. CYP26B1 forms non-bioactive dehydroxylated products from 4-OH-

RA[41]. Thus, we believe that the endogenous levels of RA metabolites formed by 

CYP26B1 do not play significant roles in the RA signaling pathway. However, there are 

other active RA metabolites such as 4-oxo-RA which can potentially compete with RA for 

binding to RAR and activate the transcription of target genes [28]. Fourth, we neglected the 

possible effects of RA treatment on the model parameters such as translation rate constants, 

transcription rate constants, and degradation rate constants of proteins and mRNAs. Fifth, 

for simplicity, we proposed a well-mixed model, thus our model is not able to capture the 

dynamics of protein diffusion through the nuclear membrane. RARs are located inside the 

cell nucleus. RA must diffuse across the nucleus membrane to be able to bind to RARs. In 

reality, RA binds to CRABPs after diffusing across the cellular membrane. RA can diffuse 

across the nuclear membrane alone or bound to CRABPs. We believe that our well-mixed 

model can approximate this process due to the rank order of binding affinity of RA for 

various RA receptors. RA binds to CRABP1 and CRABP2 with higher affinity than to RAR, 

which implies that RA is primarily available for CRABPs. The remaining RA molecules 

can bind to RARs and CYP enzymes. Finally, we assumed that the ratio of total transcription 

factor concentration to total RAR concentration (𝑓) remains constant after adding RA to the 

cell. However, this depends on the gene- and cell-type. It is believed that RARs and RXRs 

each have three isotypes, namely RARα, RARβ, RARγ, RXRα, RXRβ, RXRγ, which can form 

nine different heterodimers. Depending on the gene-type, one or some of these heterodimers 

can initiate the transcription of the target gene after binding to RA. Little is known about 

the expression levels of the nuclear hormone receptors in various cell types, and their 
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interactions with each other.  The model presented in this paper can be expanded once there 

is more information about the nuclear hormone receptor expression levels and functions.  

 

2.5. Conclusions  

Cellular levels of retinoic acid receptor (RAR), cytochrome P450 (CYP) enzymes and 

cellular retinoic acid binding proteins (CRABP1 and CRABP2) significantly affect the rate 

of gene expression through the classical retinoic acid (RA) signaling pathway. In this study, 

we used computational modeling to investigate the significance of various RA binding 

proteins in the regulation of expression of a gene of interest (GOI) under physiological or 

pharmacological conditions. A better understanding of the roles and significance of RA 

binding proteins in the RA signaling pathway could lead to the development of 

pharmacological methods to induce or block the activity of specific RA binding receptor 

(s), thereby improving the efficacy of the RA. Our results indicate that CRABP2 and CYP 

concentrations are more influential than CRABP1 and RAR concentrations in controlling 

mRNA production by the RA signaling pathway in physiological concentrations of RA (1-

10 nM). However, RAR is the most sensitive parameter of the model in pharmacological 

conditions (RA=0.1-1 µM). We also identified the critical proteins in the RA metabolism 

pathway, and showed that there is a significant negative correlation between RA-induced 

mRNA production and RA metabolite formation after 24 hours of treatment with 1 µM of 

RA. Our results demonstrate that the pattern of RA degradation following RA therapy 

depends on the cell type.  

 

2.6. Supplementary Information 
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2.6.1. Formulation of the model 

The model described how RA is eliminated from the cell by CYP enzymes. CYP 

enzymes can metabolize not only free RA but also RA molecules bound to CRABP1 and 

CRABP2 [6]. RA degradation was modeled by Michaelis-Menten kinetics with in vitro 

enzyme kinetics parameters  

E + S
𝑘𝑑
⇔ES

𝑘𝑐𝑎𝑡
⇒  E + Product, 

𝐾𝑀 =
𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡

𝑘𝑜𝑛
 , 

𝑘𝑑 =
𝑘𝑜𝑓𝑓

𝑘𝑜𝑓𝑓
 , 

where 𝐾𝑀 and 𝑘𝑑 are the Michaelis constant and the equilibrium dissociation constant of 

the enzyme substrate complex. Formation of products from RA:CRABP1 had a 𝑘𝑑 of 0.024 

nM and a 𝐾𝑀 of 21.7 nM, while formation of products from RA:CRABP2 had a 𝑘𝑑 of 0.059 

nM and a 𝐾𝑀 of 24.3 nM [6]. The 𝐾𝑀 value was set at 64.6 nM for the interaction between 

CYP and free RA, while the equilibrium dissociation constant of RA:CYP complex was 

unknown. Formation of RA metabolites had catalytic rate constants of 10.2, 16.8 and 27 

1/ℎ𝑟 from RA:CRABP1, RA:CRABP2 and free RA, respectively [6].   

Most of the cellular impacts of RA rely on variation in gene expression. The expression 

of a gene of interest (GOI) is initiated once the activated transcription factor (TF𝑎) binds to 

DNA at a retinoic acid response element (RARE). RAR/RXR heterodimer is the main 

transcription factor in the classical RA signaling pathway, and becomes activated once it 

binds to RA. The transcription rate of a target gene depends on the promoter occupancy. 

The binding of an activated transcription factor to a promoter can be described by 

TF𝑎 + Promoter
𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)
⇔       TF𝑎: Promoter 
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where 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴) is the equilibrium dissociation constant of the transcription factor binding 

to the promoter, and ranges from 15 to 33 nM [42]. The fraction of time that any given 

promoter spends in the transcription factor-bound state is given by [43-45] 

Fraction of binding time =
[TF𝑎]

[TF𝑎] + 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)
 .                                                                 (S1) 

The rate of the gene transcription is proportional to the fraction of the binding time, 

𝐼

𝐼max (𝐺𝑂𝐼)
=

[TF𝑎]

[TF𝑎] + 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)
 ,                                                                                              (S2) 

where 𝐼max (𝐺𝑂𝐼) is the maximal transcription rate of the GOI by the activated transcription 

factor (TF𝑎). The value of 𝐼max (𝐺𝑂𝐼) depends on gene-type, cell-type and the transcription 

factor [16]. RA can regulate the expression of RAR, CRABP2 and CYP genes [26]. The 

values of 𝐼max (𝑅𝐴𝑅), 𝐼max (𝐶𝑅𝐴𝐵𝑃2) and 𝐼max (𝐶𝑌𝑃) were set at  4.1 × 10−11, 1.5 × 10−10,  and  

1.06 × 10−10  
M

hr
, respectively. These values were obtained by dividing the average elongation 

rate of RNA polymerase by the gene lengths. The average elongation rate for RNA 

polymerase is 2 
kbp

min
  [46], while the lengths of RAR, CRABP2 and CYP genes are 48.4 kbp 

(chr 17, GRCh38.p7), 13.4 kbp (chr 1, GRCh38.p7) and 18.6 kbp (chr 2, GRCh38.p7), 

respectively [47-49].   

Assuming that RA binds to various RAR isoforms with the same binding affinity, the 

ratio of the activated transcription factor (TF𝑎) concentration to the total transcription factor 

(TF𝑡) concentration is the same as the ratio of the liganded RAR concentration to total RAR 

concentration, thus 

[TF𝑎]

[TF𝑡]
=
[RA: RAR]

[RAR𝑡]
                                                                                                                      (S3) 
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The concentration of total transcription factor which can activate the transcription of the 

GOI is a portion of the concentration of total RAR, 

𝑓𝐺𝑂𝐼 =
[TF𝑡]

[RAR𝑡]
                                                                                                                              (S4) 

where  𝑓𝐺𝑂𝐼 represents the transcription factor fraction of the GOI with a value between 0 

and 1. Transcription factor fraction is cell-dependent for a given gene. The rate of mRNA 

production via the RA pathway is obtained by combining Eqs. S2 to S4. 

𝐼

𝐼max (𝐺𝑂𝐼)
=

𝑓𝐺𝑂𝐼[RA: RAR]

𝑓𝐺𝑂𝐼[RA: RAR] + 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)
 .                                                                             (S5) 

It is important to note that we assumed that the association/dissociation between DNA 

and transcription factor is in equilibrium because it occurs much faster than the other 

binding/unbinding reactions in the model [43, 50-52]. 

In our model, proteins and mRNAs are degraded by first-order reactions. Species are 

degraded in both bound and unbound forms. For example, CRABP1:CYP may undergo 

either CRABP1 degradation or CYP degradation.  

CRABP2, CYP and RAR genes had both basal transcription rate (𝐼0) and RA-induced 

transcription rate (Eq. S5), while CRABP1 had a constant rate of protein expression, since 

CRABP1 gene is not a target for RA [26, 53].   

The full set of reactions and rate constants in the current model are shown in Table 2 

and Table S1, respectively.  

We then modeled the chemical reactions by ODEs.  
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d[RA]

dt

= −𝑘𝑜𝑛1[RA][CRABP1] + 𝑘𝑜𝑓𝑓1[RA: CRABP1] − 𝑘𝑜𝑛2[RA][CRABP2] + 𝑘𝑜𝑓𝑓2[RA: CRABP2]

− 𝑘𝑜𝑛3[RA][CYP] + 𝑘𝑜𝑓𝑓3[RA: CYP] − 𝑘𝑜𝑛5[RA][RAR] + 𝑘𝑜𝑓𝑓5[RA: RAR] + 𝑘𝑜𝑛21[𝑅𝐴: 𝐶𝑅𝐴𝐵𝑃1]

+ 𝑘𝑜𝑛22[RA: CRABP2]

+ 𝑘𝑜𝑛23[RA: RAR]                                                                                                                             (S6) 

 

d[CRABP1]

dt

= −𝑘𝑜𝑛1[RA][CRABP1] + 𝑘𝑜𝑓𝑓1[RA: CRABP1] − 𝑘𝑜𝑛17[CRABP1] + 𝐾 − 𝑘𝑜𝑛15[CYP][CRABP1]

+ 𝑘𝑜𝑓𝑓15[CYP: CRABP1]

+ 𝑘𝑜𝑓𝑓28[CYP: CRABP1]                                                                                                                  (S7) 

 

d[RA: CRABP1]

dt

= 𝑘𝑜𝑛1[RA][CRABP1] − 𝑘𝑜𝑓𝑓1[RA: CRABP1] − 𝑘𝑜𝑛21[RA: CRABP1] − 𝑘𝑜𝑛9[CYP][RA: CRABP1]

+ 𝑘𝑜𝑓𝑓9[RA: CRABP1: CYP]                                                                                                                                           (S8) 

 

d[CRABP2]

dt

= −𝑘𝑜𝑛2[RA][CRABP2] + 𝑘𝑜𝑓𝑓2[RA: CRABP2] + 𝑘𝑜𝑛25[𝐶𝑅𝐴𝐵𝑃2mRNA]−𝑘𝑜𝑛16[CYP][CRABP2]

+ 𝑘𝑜𝑓𝑓16[CYP: CRABP2] + 𝑘𝑜𝑛30[CYP: CRABP2] + kon14[RA: CRABP2: RAR]

− 𝑘𝑜𝑛18[CRABP2]                                                                                                                                                          (S9) 

 

d[RA: CRABP2]

dt

= 𝑘𝑜𝑛2[RA][CRABP2] − 𝑘𝑜𝑓𝑓2[RA: CRABP2] − 𝑘𝑜𝑛22[RA: CRABP2] − 𝑘𝑜𝑛13[RA: CRABP2][RAR]

+ 𝑘𝑜𝑓𝑓13[RA: CRABP2: RAR] − 𝑘𝑜𝑛11[RA: CRABP2][CYP]

+ 𝑘𝑜𝑓𝑓11[RA: CRABP2: CYP]                                                                                                                                      (S10) 

 

d[CYP]

dt
= −𝑘𝑜𝑛15[CYP][CRABP1] + 𝑘𝑜𝑓𝑓15[CYP: CRABP1]−𝑘𝑜𝑛16[CYP][CRABP2]

+ 𝑘𝑜𝑓𝑓16[CYP: CRABP2] + 𝑘𝑜𝑛8[𝐶𝑌𝑃mRNA] − 𝑘𝑜𝑛9[CYP][RA: CRABP1]

+ 𝑘𝑜𝑓𝑓9[RA: CYP: CRABP1] − 𝑘𝑜𝑛11[RA: CRABP2][CYP] + 𝑘𝑜𝑓𝑓11[RA: CRABP2: CYP]

+ 𝑘𝑜𝑛27[CRABP1: CYP] + 𝑘𝑜𝑛29[CRABP2: CYP] − 𝑘𝑜𝑛19[CYP]

+ 𝑘𝑜𝑛4[RA: CYP]                                                                                                                         (S11) 
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d[RA: CYP]

dt
= 𝑘𝑜𝑛3[RA][CYP] − 𝑘𝑜𝑓𝑓3[RA: CYP]

− 𝑘𝑜𝑛4[RA: CYP]                                                                                                                        (S12) 

 

d[RAR]

dt
= −𝑘𝑜𝑛5[RA][RAR] + 𝑘𝑜𝑓𝑓5[RA: RAR] − 𝑘𝑜𝑛20[RAR] − 𝑘𝑜𝑛13[RA: CRABP2][RAR]

+ 𝑘𝑜𝑓𝑓13[RA: CRABP2: RAR]

+ 𝑘𝑜𝑛6[𝑅𝐴𝑅mRNA]                                                                                                                   (S13) 

 

d[RA: RAR]

dt
= 𝑘𝑜𝑛5[RA][RAR] − 𝑘𝑜𝑓𝑓5[RA: RAR] + 𝑘𝑜𝑛30[RA: CRABP2: RAR]

− 𝑘𝑜𝑛23[RA: RAR]                     (S14) 

d[𝑅𝐴𝑅mRNA]

dt
= 𝐼0(𝑅𝐴𝑅) + 𝐼𝑚𝑎𝑥 (𝑅𝐴𝑅) (

𝑓𝑅𝐴𝑅[RA: RAR]

𝑓𝑅𝐴𝑅[RA: RAR] + 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)
)

− 𝑘𝑜𝑛24[𝑅𝐴𝑅mRNA]                                                                                                                (S15) 

d[𝐶𝑅𝐴𝐵𝑃2mRNA]

dt
= 𝐼0(𝐶𝑅𝐴𝐵𝑃2) + 𝐼𝑚𝑎𝑥 (𝐶𝑅𝐴𝐵𝑃2) (

𝑓𝐶𝑅𝐴𝐵𝑃2[RA: RAR]

𝑓𝐶𝑅𝐴𝐵𝑃2[RA: RAR] + 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)
)

− 𝑘𝑜𝑛25[𝐶𝑅𝐴𝐵𝑃2mRNA]                                                                                                        (S16) 

d[𝐶𝑌𝑃mRNA]

dt

= 𝐼0(𝐶𝑌𝑃) + 𝐼𝑚𝑎𝑥 (𝐶𝑌𝑃) (
𝑓𝐶𝑌𝑃[RA: RAR]

𝑓𝐶𝑌𝑃[RA: RAR] + 𝑘𝑑(𝑇𝐹:𝐷𝑁𝐴)
)

− 𝑘𝑜𝑛26[𝐶𝑌𝑃mRNA]                                                                                                                           (S17) 

d[RA: CRABP1: CYP]

dt

= 𝑘𝑜𝑛9[CYP][RA: CRABP1] − 𝑘𝑜𝑓𝑓9[RA: CRABP1: CYP]

− 𝑘𝑜𝑛10[RA: CRABP1: CYP]                                                                                                           (S18) 

d[RA: CRABP2: RAR]

dt

= 𝑘𝑜𝑛13[RA: CRABP2][RAR] − 𝑘𝑜𝑓𝑓13[RA: CRABP2: RAR]

− 𝑘𝑜𝑛14[RA: CRABP2: RAR]                                                                                                         (S19) 

d[RA: CRABP2: CYP]

dt

= 𝑘𝑜𝑛11[CYP][RA: CRABP2] − 𝑘𝑜𝑓𝑓11[RA: CRABP2: CYP]

− 𝑘𝑜𝑛12[RA: CRABP2: CYP]                                                                                                         (S20) 
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d[CRABP1: CYP]

dt

= 𝑘𝑜𝑛15[CYP][CRABP1] − 𝑘𝑜𝑓𝑓15[CRABP1: CYP] − 𝑘𝑜𝑛27[CRABP1: CYP] − 𝑘𝑜𝑛28[CRABP1: CYP]

+ 𝑘𝑜𝑛10[RA: CRABP1: CYP]                                                                                                         (S21) 

d[CRABP2: CYP]

dt

= 𝑘𝑜𝑛16[CYP][CRABP2] − 𝑘𝑜𝑓𝑓16[CRABP2: CYP] − 𝑘𝑜𝑛29[CRABP2: CYP] − 𝑘𝑜𝑛30[CRABP2: CYP]

+ 𝑘𝑜𝑛12[RA: CRABP2: CYP]                                                                                                         (S22) 

 

where the numbers in the subscripts of the rate constants refer to the index of the reactions 

(Table 2).   

The model had 14 independent unknown parameters including unknown rate constants, 

unknown initial concentrations and unknown transcription factor fractions (Main Text, 

Table 3). We considered some physiological bounds for the unknown parameters. We also 

assumed that the values of maximal transcription rate constants, translation rate constants, 

forward and reverse rate constants, equilibrium dissociation rate constants, Michaelis 

constants, catalytic rate constants and elimination rates of proteins and mRNAs varied 

within a factor of two around the in vitro values. Overall, our model had 44 independent 

parameters varying within their ranges. 

 

 

2.6.2. Uncertainty Analysis of the Model 

The independent parameters were sampled uniformly over their range of possible values 

(number of samples=10000). The rest of the unknown parameters (Table S1), and the 

unknown initial concentrations (Main Text, Table 1) were obtained using the independent 

parameters.  To do so, we assumed that the system was at steady state prior to RA treatment. 

After obtaining all the parameters, the model was used to obtain total mRNA production 
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within 24 hours of RA treatment. We then used a GSA technique to assess the sensitivity 

of the model output to variations in model inputs.    

 

2.6.3. Global Sensitivity Analysis  

In this study, we used a MATLAB toolbox for global sensitivity analysis, called SAFE 

[18]. We ranked the model’s parameters in terms of their importance using Sobol’s method, 

which has been shown to be one of the most effective GSA methods for determining 

individual and cooperative sensitivities [54-56]. Sobol’s method is a variance-based 

sensitivity analysis approach that uses the principle of variance decomposition to obtain the 

sensitivity of each parameter. Given an integrable function 𝑓 over a k-dimensional 

parameter space Ω𝑘,  

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)                                                                                                             (S23)  

Sobol’s method decomposes the response into a set of functions of increasing 

dimensionality, 

𝑓(𝑥) = 𝑓0 +∑𝑓𝑖

𝑘

𝑖=1

+∑∑𝑓𝑖𝑗

𝑘

𝑗>𝑖

𝑘

𝑖=1

+⋯+ 𝑓123…𝑘    ,                                                                 (S24) 

where each individual term is a function of the parameters in its index. The unconditional 

variance of the output 𝑉(𝑌) is defined as  

𝑉(𝑌) = ∫ 𝑓2(𝑥) 𝑑𝑥 − ( ∫ 𝑓(𝑥) 𝑑𝑥

Ω𝑘

)2

Ω𝑘

.                                                                               (S25) 

The total variance is decomposed into partial variances using the expansion of 𝑓 into 

terms of increasing dimensions (Eq. S24).  
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𝑉(𝑌) =∑𝑉𝑖(𝑌)

𝑘

𝑖=1

+∑∑𝑉𝑖𝑗(𝑌)

𝑘

𝑗>𝑖

𝑘

𝑖=1

+⋯+ 𝑉123…𝑘(𝑌) .                                                       (S26) 

Based on Sobol’s method, the first-order sensitivity index for each parameter is 

calculated by 

𝑆𝑖 =
𝑉𝑖(𝑌)

𝑉(𝑌)
 ,                                                                                                                                  (S27) 

where 𝑉𝑖(𝑌) is the fraction of the total variance, which is related to changes in the parameter 

𝑥𝑖 over its range of variability. The Sobol total-effect index for the parameter 𝑥𝑖  is obtained 

by the sum of all sensitivity indices which have 𝑖 in their index 

𝑆𝑇𝑖 = 𝑆𝑖 +∑𝑆𝑖𝑗
𝑖≠𝑗

+ ∑ 𝑆𝑖𝑗𝑙
𝑖≠𝑗,𝑖≠𝑙,𝑗<𝑙

+⋯                                                                                 (S28) 

The total-effect indices account for total contribution of the input to response variation. 

Total-effect indices can be used to determine the noninfluential parameters in the model. 𝑥𝑖 

can be fixed anywhere within its range of uncertainty if  𝑆𝑇𝑖 = 0. However, previous studies 

have shown that parameters with total-effect indices smaller than 0.01 can be considered 

noninfluential [21-23]. 
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Table S1. Reaction rate constants 

 𝒌𝒐𝒏 𝒌𝒐𝒇𝒇 

Number Range Unit Reference Range Unit Reference 

1 2.13e11 M−1hr−1 [5] 13.2 hr−1 [5] 

2 1.85e11 M−1hr−1 [5] 25.2 hr−1 [5] 

3 Unknown M−1hr−1  Unknown hr−1  

4 27 hr−1 [6] -   

5 Unknown* M−1hr−1  36-140 hr−1 [57] 

6 135.6 hr−1 [16] -   

7 870.7 hr−1 [16] -   

8 190.4 hr−1 [16] -   

9 Unknown M−1hr−1  Unknown hr−1  

10 10.2 hr−1 [6] -   

11 Unknown M−1hr−1  Unknown hr−1  

12 16.8 hr−1 [6] -   

13 Unknown M−1hr−1  Unknown hr−1  

14 Unknown hr−1  -   

15 Unknown M−1hr−1  Unknown hr−1  

16 Unknown M−1hr−1  Unknown hr−1  

17 0.0385 hr−1 [58] -   

18 0.0385 hr−1 [58] -   

19 0.00835 hr−1 [16] -   

20 0.173 hr−1 [14] -   
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21 0.0385 hr−1 [58] -   

22 0.0385 hr−1 [58] -   

23 0.173 hr−1 [14] -   

24 0.138 hr−1 [59] -   

25 0.0347 hr−1 [60] -   

26 0.11 hr−1 [16] -   

27 0.0385 hr−1 [58] -   

28 0.00835 hr−1 [16] -   

29 0.0385 hr−1 [58] -   

30 0.00835 hr−1 [16] -   

* Forward rate constant of reaction 5 is obtained using an equilibrium dissociation constant between 

6 and 20 nM [51, 57].   

 

 

 

 

Table S2. Randomly sampled parameters of the models shown in Figure 10. 

Parameters Blue curve Green curve Red curve 

CRABP1 2.99E-06 8.60E-06 2.73E-09 

CRABP2 1.09E-08 1.61E-08 1.14E-08 

CYP 2.26E-09 1.12E-08 2.91E-08 

RAR 7.08E-07 2.36E-07 2.22E-07 

𝑘𝑑3 1.72E-08 2.68E-08 2.45E-08 

𝑘𝑜𝑛13 4.25E+09 1.2E+10 2E+10 

𝑘𝑑13 7.88E-10 1.60E-10 1.84E-10 
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𝑘𝑜𝑛14 152.592 74.9655 72.16303 

𝑘𝑜𝑛15 2.58E+10 1.85E+10 1.96E+10 

𝑘𝑜𝑛16 7.51E+09 2.96E+10 3.46E+10 

𝑓𝑅𝐴𝑅 0.790299 0.083393 0.332411 

𝑓𝐶𝑅𝐴𝐵𝑃2 0.116596 0.543783 0.287017 

𝑓𝐶𝑌𝑃 0.826228 0.558422 0.03116 

𝑓𝐺𝑂𝐼 0.592287 0.978981 0.404229 

𝑘𝑜𝑛6 103.5768 75.87115 71.91922 

𝑘𝑜𝑛7 439.5742 962.9376 978.0601 

𝑘𝑜𝑛8 145.5691 276.7654 234.8322 

𝑘𝑜𝑛18 0.067334 0.051427 0.049882 

𝑘𝑜𝑛19 0.005092 0.005032 0.014976 

𝑘𝑜𝑛20 0.227853 0.125652 0.149364 

𝑘𝑜𝑛24 0.245181 0.074328 0.119889 

𝑘𝑜𝑛25 0.049549 0.027726 0.049374 

𝑘𝑜𝑛26 0.146517 0.154336 0.12501 

𝐼max (𝑅𝐴𝑅) 7.17E-11 6.33E-11 3.20E-11 

𝐼max (𝐶𝑅𝐴𝐵𝑃2) 2.61E-10 8.20E-11 7.56E-11 

𝐼max (𝐶𝑌𝑃) 1.37E-10 1.99E-10 9.54E-11 

𝐼max (𝐺𝑂𝐼) 0.780444 1.926296 1.293431 

𝑘d (𝑇𝐹:𝐷𝑁𝐴) 2.10E-08 2.70E-08 1.64E-08 

𝐾𝑀3 1.20E-07 9.41E-08 5.53E-08 

𝐾𝑀9 1.55E-08 1.15E-08 4.23E-08 
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𝐾𝑀11 3.86E-08 2.79E-08 4.81E-08 

𝑘𝑜𝑛1 1.99E+11 2.51E+11 2.46E+11 

𝑘𝑜𝑓𝑓1 18.31229 22.79166 20.27421 

𝑘𝑜𝑛2 3.22E+11 2.62E+11 1.03E+11 

𝑘𝑜𝑓𝑓2 22.66635 29.69411 14.14157 

𝑘𝑜𝑓𝑓5 98.29141 76.1627 117.3805 

𝑘𝑑5 1.01E-08 1.66E-08 8.89E-09 

𝑘𝑜𝑛10 20.04989 17.52512 19.15578 

𝑘𝑜𝑛4 35.2612 49.85688 15.49563 

𝑘𝑜𝑛12 19.36441 18.11537 8.855135 

𝑘𝑑15 8.16E-08 8.86E-08 8.18E-08 

𝑘𝑑16 4.64E-08 7.50E-08 9.29E-08 

𝑘𝑑9 1.57E-11 4.00E-11 3.07E-11 

𝑘𝑑11 1.08E-10 7.91E-11 7.74E-11 
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Figure S1. (a)  
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Figure S1. (b) 
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Figure S1. (c)  
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Figure S1. Sensitivity ranking of the model parameters. The model output was set to the time 

integral of the transcription rate of the GOI within 24 hours after adding (a) 10 nM, (b) 0.1 µM 

and (c) 1 µM of RA to the model. Blue bars indicate the first-order sensitivity indices, while the 

red bars represent total-effect sensitivity indices. The error bars show the bootstrap confidence 

intervals (95% confidence intervals) of the mean values. 
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Figure S2. (a)  
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Figure S2. (b)  
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Figure S2. (c)  
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Figure S2. (d)  
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Figure S2. Sensitivity ranking of the model parameters. The model output was set to the time 

integral of the total RA metabolite formation within 24 hours after adding (a) 1 nM, (b) 10 nM, (c) 

0.1 µM and (d) 1 µM of RA to the model. Blue bars indicate the first-order sensitivity indices, 

while the red bars represent total-effect sensitivity indices. The error bars show the bootstrap 

confidence intervals (95% confidence intervals) of the mean values. 
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Figure S3. (a) 

 

Figure S3. (b) 
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Figure S3. (c) 

Figure S3. The relationship between total RA metabolite formation and total mRNA 

production within 24 hours of treatment with (a) 1 nM, (b) 10 nM, (c) 0.1 µM of RA. The results 

were obtained by random sampling of 10000 points following a uniform distribution over a 44-

dimensional parameter space.  The Spearman’s correlation coefficients and P values were (a) ρ=-

0.44, p=0, (b) ρ=-0.5, p=0, (c) ρ=-0.63, p=0. 
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proteomic analysis in mammalian cells reveals conserved, functional protein turnover. 

Journal of proteome research 2011, 10(12):5275-5284. 

59. Tsou HC, Lee X, Si SP, Peacocke M: Regulation of retinoic acid receptor expression in 

dermal fibroblasts. Experimental cell research 1994, 211(1):74-81. 

60. Redfern C, Lovat P, Malcolm A, Pearson A: Differential effects of 9-cis and all-trans 

retinoic acid on the induction of retinoic acid receptor-β and cellular retinoic acid-binding 

protein II in human neuroblastoma cells. Biochemical Journal 1994, 304(1):147-154. 

 

 

 

 

 

 

 

 

 

 

 



  

 
69 

Chapter 3 

Analysis of the role of thrombomodulin in all-trans retinoic acid treatment of 

coagulation disorders in cancer patients 

 

3.1. Introduction 

All-trans retinoic acid (RA) plays key roles in cancer treatment and prevention. Breast, 

lung, bladder, prostate, and acute promyelocytic leukemia (APL) cancers were shown to be 

suppressed by RA [1-5]. RA therapy can also improve blood clotting disorders such as 

thrombosis and disseminated intravascular coagulation (DIC) in cancer patients [6-12]. 

DIC, a life-threatening coagulation disorder associated with uncontrolled clot formation 

and/or excessive bleeding, was reported in patients with different types of cancer[13-16]. 

Some of the mechanisms involved in the occurrence of DIC in cancer patients are known, 

and others are still under investigation. Tissue factor (TF) upregulation by tumor cells is 

one of the main causes of the observed hypercoagulable state in cancer patients [17-20]. TF 

binds to factor VIIa and forms a complex which activates factors X and IX. Activation of 

factor X leads to formation of the prothrombinase complex, which converts prothrombin to 

thrombin. Expression of the cancer procoagulant (CP), a specific enzyme that directly 

activates factor X, by tumor cells is another important mechanism for the initiation of the 

coagulation cascade in cancer [21, 22]. Tumor cells can also affect the coagulation cascade 

through interactions with other cell types such as monocytes and endothelial cells. Previous 

studies showed that circulating tumor cells increased the expression of TF by monocytes 

and endothelial cells [17, 23-25]. Platelet aggregation and induction of inflammatory 

cytokine release are the other phenomena which can be responsible for blood clotting 

system abnormalities in cancer patients [26, 27]. 
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Clinical studies have indicated that RA treatment improved the plasma levels of 

hemostatic markers such as D-dimer, thrombin-antithrombin complex, and fibrinogen in 

APL patients in hypercoagulable states [11, 12]. Theories have been proposed to explain 

how RA therapy improves coagulation disorders. In vitro studies showed that RA 

significantly decreased the expression of TF in cancer cells [28, 29]. An in vivo study on 

the procoagulant activity of bone marrow blasts from APL patients under RA treatment 

revealed that TF and CP in the patients’ marrow blasts decreased after RA therapy [12]. RA 

can also affect the fibrinolytic system by increasing the synthesis of urokinase plasminogen 

activator (u-PA) in  cancer cells and tissue plasminogen activator (t-PA) in endothelial cells 

[30, 31]. Thereafter, however, RA induces the expression of plasminogen activator 

inhibitors (PAIs), such as PAI-1 and PAI-2 [32]. The way these two contradictory pathways 

influence fibrinolysis in cancer patients has not been fully understood. RA also affects the 

procoagulant and anticoagulant properties of endothelial cells and monocytes [33, 34]. 

Previous studies have reported that RA increased the antithrombotic potential of 

microvascular endothelial cells by downregulating TF and upregulating thrombomodulin 

(TM) expression [34-36]. TM, a surface high-affinity receptor for thrombin, plays a key 

role in activation of the protein C (PC) anticoagulant pathway. Activated PC, produced by 

the TM-thrombin complex, inactivates cofactors fVa and FVIIIa, thus inhibiting thrombin 

generation. Although TM has significant effects on the blood coagulation system, its role 

in RA treatment of coagulation disorders in cancer patients has not yet been studied. 

Furthermore, to the best of our knowledge, there is no experimental or computational study 

that has investigated the extent and forms of variation in TM levels over the course of RA 

therapy in cancer. Thus, the main objective of this study was to investigate if, how and to 
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what extent the RA-induced TM upregulation over the course of RA therapy with a single 

daily oral dose of RA affects thrombin generation profiles in cancer patients. Analysis of 

the variations of the thrombin generation profile is a classic/standard way of studying the 

significance of blood factors in the coagulation cascade. In this regard, we developed an 

ordinary differential equation (ODE) model of gene expression for the RA-induced 

upregulation of TM concentration on the endothelium. The expression rate of TM on the 

endothelium depends on the rate of RA diffusion from plasma into the endothelial cells. In 

plasma, a large fraction of RA (~99%) circulates bound to albumin. However, only free RA 

molecules in plasma can diffuse passively across the endothelial cell membrane and 

subsequently bind to RA receptors and activate transcription of the TM gene. The large 

amount of bound RA in plasma acts as a reservoir from which the RA is slowly released to 

the unbound form to maintain the equilibrium. Thus, we derived a new formula which 

expresses the TM transcription rate as a function of free RA concentration. Coupling the 

gene expression model with three other models, namely a two-compartment 

pharmacokinetic model of RA, an sTM release model and a mechanistic model of the 

human coagulation cascade, we investigated the effects of RA-induced TM upregulation on 

thrombin generation. Our results indicated that overexpression of TM over the course of 

RA therapy with a daily oral dose of 45 
𝑚𝑔

𝑚2
 or 110 

𝑚𝑔

𝑚2
 reduced thrombin level significantly. 

We also investigated how the progressive reduction in the plasma concentrations of RA 

over the course of continuous RA therapy with a single daily dose of (110 
𝑚𝑔

𝑚2
) RA can affect 

the corrective effects of RA therapy on thrombin generation. Increasing reductions in 

plasma concentration of RA over the course of RA treatment with a constant daily dose of 

RA is a potential sign of RA resistance at least in some cancer patients. The exact 
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mechanism of development of resistance to RA has yet to be determined. Genetic mutations 

of retinoic acid receptors, increased metabolism of RA, and upregulation of cellular retinoic 

acid binding proteins which play important roles in the RA signaling pathway [37], have 

been proposed as possible reasons for RA resistance [38]. Our model predictions of RA 

resistance effects on the efficacy of RA therapy in treatment of coagulation abnormalities 

are applicable only to those cancer patients whose plasma levels of RA decrease over 

continuous treatment days. 

3.2. Method 

In this section, we first develop a gene expression model that describes TM upregulation 

on the endothelial cell surface following RA treatment. We train the gene expression model 

using in vitro data from the literature. We then build a two-compartment pharmacokinetic 

model of RA, which describes the plasma concentration of RA in cancer patients. We couple 

the gene expression model with the pharmacokinetic model, to obtain the variations of TM 

level on the endothelial cell surface during the course of RA therapy. We then simulate the 

time-dependent variations of soluble thrombomodulin (sTM) concentration using an ODE 

model, called the sTM release ODE model. Finally, we use the output of the sTM release 

ODE model in an ODE model of the coagulation cascade to investigate the effects of RA-

induced TM upregulation on thrombin generation. The gene expression model, 

pharmacokinetic model and sTM release model are explained in the following sub-sections, 

while the ODE model of the coagulation cascade is fully explained in [39]. Figure 1 shows 

the interactions between the different models in this study. 
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Figure 1. Coupling four models to study how taking an oral dose of RA affects thrombin 

generation. Each block represents a model, while the arrows before and after each block indicate 

the input and output of the model, respectively. 
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3.2.1. Gene expression model 

3.2.1.1. Experimental Data 

There are several lines of evidence regarding the upregulation of TM gene expression 

by RA [35, 40, 41]. This upregulation is due to transcriptional changes in the TMR 

expression level [41]. In this study, we used the experimental data presented by Horie et al. 

[40], which includes time-dependent variations in TMR levels, and dose-dependent changes 

in TM levels after treating human pancreas BxPC-3 cells with RA (Fig. 2). Human pancreas 

BxPC-3 cells were used in that study, as their characteristics of RA-dependent TM 

expression are the same as those of endothelial cells [40]. The cultured BxPC-3 cells 

became confluent with fetal calf serum, whose major component is albumin, prior to adding 

RA to the medium. The TM levels in Fig. 2a were measured after treating the cells with 

various concentrations of RA for 24 hours. The relative values for TMR level in Fig. 2b 

were obtained after treating the cells with 10μM of RA.  

  

(a) (b) 

Figure 2. (a) Effects of RA treatment on TM levels in BxPC-3 cells. The reported values for TM 

level were obtained after treating the cells with RA for 24 h. Figure adopted from [40]. (b) 
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Changes in relative levels of TMR in BxPC-3 cells treated with 10µM RA. The mRNA level 

without incubation is defined as 1.  Figure adopted from [40]. 

 

3.2.1.2. Formulation of the model 

We formulated an ODE model to study the RA-induced upregulation of TM gene 

expression. The model included gene transcription, protein translation, and mRNA and 

protein degradation. The model consisted of two species, namely TM and TMR, with ten 

parameters (Table 1). 

d[TMR]

dt
 = 𝐼 + 𝐼0

− 𝑘dm[TMR]                                                                                                        (1) 

d[TM]

dt
= 𝑘trans[TMR]

− 𝑘dp[TM],                                                                                                  (2) 

where [TMR] and [TM] indicate molar concentration of TMR and TM, respectively. [TM] 

and [TMR] are functions of time. The molar concentration of TM, which is a membrane-

bound protein, was calculated by dividing the number of moles of TM by the cell volume. 

The cell volume was set to [42-44] 

𝑉cell = 10
−13L.    

The transcription rate (I) of the TM gene was the only parameter in the model that 

depended on RA concentration. An increase in RA concentration leads to activation of a 

transcription factor, which is responsible for the activation of the TM gene. Considering the 

mechanism of action of RA, we derived an expression for the TM transcription rate (𝐼), 

(Proof in Supplementary Information in Section 3.6) 
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𝐼

= 𝐼𝑚𝑎𝑥
[RA][REC1t]

[RA][REC1t] + 𝑘d2([RA] + 𝑘d1)
 ,                                                                                   (3) 

 

where [RA] and [REC1t] in Eq. 3 indicate free RA concentration and total concentration of 

the specific transcription factor which can activate the transcription of the TM gene, 

respectively. 𝐼 is time-dependent, since [RA] can change over time, while 𝐼max and [REC1t] 

are constant for the TM gene in a given cell type. The rest of the parameters in Eq. 3 are 

defined in Table 1. RA is highly bound to albumin in the culture medium [40] and in plasma 

[45]. We assumed that the unbound fraction of RA is about 1% of the total RA 

concentration[45, 46]. It is important to note that only the free drug in the culture medium 

or plasma is able to have a therapeutic effect. 

Table 1. List of the model parameters 

Parameters Description Range Reference 

𝐼0 

Basal transcription rate by 

transcription factors, which are 

not affected by RA (M/hr) 

1.6 × 10−12 − 1.6

× 10−9 
[47] 

𝑘dm TMR degradation rate (1/hr) 0.256   [48] 

𝑘trans Translation rate(1/hr) 1-10000  [47] 

𝑘dp TM degradation rate (1/hr) 0.0845 [49] 

𝐼𝐶TMR 
TMR initial concentration 

(M) 

1.6 × 10−11 − 1.6 ×

10−8  
[47, 50] 

𝐼𝐶TM 
TM initial concentration 

(M) 

1.65 × 10−5 − 2.14

× 10−5 
[40] 

𝐼max 
Maximal transcription rate 

of the TM gene (M/hr) 

1.6 × 10−12 − 1.6

× 10−9 
[47] 
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𝑘d1 

Equilibrium dissociation 

constant of RA binding to 

retinoic acid receptor (M) 

8 × 10−9 [51] 

𝑘d2 

Equilibrium dissociation 

constant of DNA-transcription 

factor complex (M) 

15 × 10−9 [52] 

[REC1t] 

Total concentration (M) of 

the specific transcription factor 

which can activate the TM gene 

transcription  

1 × 10−11 − 1 × 10−6 

Unknown. A 

large range is 

used. 

 

The translation rate (𝑘trans) and basal transcription rate (𝐼0) were the only parameters 

that depended on the other parameters. Assuming that the TM and TMR concentrations 

were in steady state before RA treatment, we calculated 𝑘trans  and 𝐼0 by  

    𝑘trans

=
𝑘dp𝐼𝐶TM

𝐼𝐶TMR
,                                                                                                                            (4) 

       𝐼0 = 𝑘dm𝐼𝐶TMR .                                                                                                                                              (5)                                                                                                              

The model had six unknown parameters, for which we considered some bounds (Table 

1). The bounds for 𝐼𝐶TM were due to the experimental errors, while the other unknown 

parameters, namely 𝐼max, 𝐼𝐶TMR, 𝑘trans, 𝐼0 and [REC1t] had physiological bounds. We 

estimated the model’s unknown parameters by minimizing the residual between simulation 

results and empirical measurements, following a parameter estimation algorithm. In this 

regard, we used a particle swarm optimization (PSO) technique [53] (See Supplementary 

Information in Section 3.6 for full details regarding the parameter estimation algorithm and 

PSO). Our simulation results for the time-dependent variations in TM and TMR 

concentrations compared reasonably well with the experimental data (Fig. 3). 



  

 
78 

 

 

 

 

  

(a) (b) 

  

© (d) 

 

Figure 3. The gene expression model training simulations. The model’s unknown parameters 

were estimated using PSO. The red lines show the mean simulated results for (a) TMR, (b) TM at 

RA= 0.1 µM, (c) TM at RA= 1 µM and (d) TM at RA= 10 µM. The shaded regions denote 99% 

confidence interval of the mean results [53, 54]. The black dots indicate the experimental data, 

while the standard deviation of each experimental data point is half the length of the total error 

bar. 
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The solid lines in Figure 3 show the mean simulated results, while the shaded regions 

in Figure 2 show the 99% confidence interval of the mean simulated results. From Figure 

3a, it can be seen that TMR reached steady state almost 18 hours after administration of 

RA, while TM did not reach steady state even after 24 hours (Fig. 3b-d).  

Using the estimated parameters from the training data set [40], we compared the model’s 

predictions with another data set [41] for the RA-induced upregulation of TM on endothelial 

cells. In this regard, fold change values of TM concentration after 24 hours of treatment 

with various concentrations of RA were obtained (Fig. 4). Figure 4 indicates that simulation 

results compared reasonably well with experimental data. 

 

Figure 4. Comparison between the simulated results for fold change values of TM concentration 

after 24 hours of treatment with various concentrations of RA with experimental data not used 

during model training. The simulation results were obtained using the gene expression model 

trained by the experimental data shown in Fig. 2,  while the experimental data in Figure was 

reproduced from [41]. 
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3.2.2.  Pharmacokinetic model 

Some cancer patients take RA as a part of their cancer treatment within three to four 

months of diagnosis [55]. The plasma concentration of RA changes significantly after oral 

administration of various doses of the drug (Fig. 5). 

 

 

Figure 5. Plasma concentration of RA after ingestion of various doses of RA on day 1 of 

treatment [48, 49]. Dots show the pharmacokinetic data, while lines indicate the simulation results 

by a two-compartment pharmacokinetic model. 

 

Oral administration of RA can be modeled via a two-compartment pharmacokinetic 

model (Fig. 6), since the plasma concentration-time curve of RA exhibits a biexponential 

decline [56, 57]. After oral administration of the drug, RA is absorbed into the bloodstream, 

which is a part of the central compartment. The central compartment includes the plasma 

and organs, where the distribution of RA is assumed to be instantaneous. The RA is 

eliminated by a first order process from the central compartment or distributed to the rest 
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of the body that represents the peripheral compartment. RA elimination mainly occurs in 

the liver and kidney, which are included in the central compartment. The peripheral 

compartment includes tissues where RA distribution occurs with a slower rate than in the 

central compartment.  

 

Figure 6. Schematic of a two compartments model for describing RA pharmacokinetics. The 

model included two main compartments namely, central compartment and peripheral 

compartment. 𝑘a, 𝑘d , 𝑘cp, 𝑘pc are first order absorption rate constant, degradation rate constant, 

distribution rate constant and redistribution rate constant. 

 

RA exchange between different compartments can be described by a system of ODEs 

dD

dt
= −𝑘aD                                                                                                                                      (6)  

d[RAc]

dt
=
𝑘aD

𝑉cM
− (𝑘d + 𝑘cp)[RAc] +

𝑘pc𝑉p

𝑉c
[RAp]                                                                  (7) 

d[RAp] 

dt
=
𝑘pc𝑉c

𝑉p
[RAc] − 𝑘pc[RAp]                                                                                           (8) 

where D, [RAc] and [RAp] represent RA dose, total RA concentration in the central 

compartment, and total RA concentration in the peripheral compartment, respectively. D, 

[RAc] and [RAp] vary over time, and are represented in g, molar and molar, respectively. 
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𝑘a, 𝑘d , 𝑘cp, 𝑘pc, 𝑉c and 𝑉p are the first-order absorption rate constant, first-order degradation 

rate constant, distribution rate constant, redistribution rate constant, central compartment 

volume and peripheral compartment volume, respectively. M is the molar mass of RA, and 

is set to 300.4 gmol-1. We also assumed that the average body surface area is 1.75 m2. We 

built the model, shown in Figure 6, in MATLAB SimBiology and fit the model parameters 

to the pharmacokinetic data (dots in Figure 5). Solid lines in Figure 5 show the model 

prediction for plasma concentration of RA ([RAc]) after taking an oral dose of 45 or 110 

mg/m2 of RA. Further details regarding the pharmacokinetic model were provided in the 

Supplementary Information file (section 3.6). We coupled the gene expression model with 

the pharmacokinetic model to study the effects of oral administration of RA on the 

expression levels of TM and TMR during the course of RA therapy (Section 3.1). Free RA 

concentration in the gene expression model ([RA] in Eq. 3) is obtained by  

[RA] = 0.01[RAc].                                                                                                                          (9)  

 

3.2.3.  sTM release model 

TM plays a key role in controlling fibrin formation. A modified form of TM is also 

found in human plasma and urine [58]. Both cellular TM and soluble TM (sTM) act as an 

anticoagulant by activating protein C [59, 60]. It is believed that soluble TM (sTM) is a 

marker for endothelial cell injury [61, 62]. Endothelial cell injury can occur due to several 

reasons, such as elevated levels of cytokines, hyperlipidemia, activation of leukocytes and 

neutrophils, hypercholesterolemia, obesity, diabetes and smoking. Blood vessel damage is 

also a common occurrence in cancer patients, as many of them undergo surgery or 

chemotherapy. It has been reported that TM is cleaved from the endothelium and released 
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into the plasma by some degrading enzymes such as protease and glycosidase upon 

endothelial cell injury [61]. Assuming the RA therapy does not affect the mechanisms 

mediating the release of cellular TM into the plasma, we modeled the rate of sTM 

production by 

d[sTM]

dt
= 𝑐1[TM] − 𝑐2[sTM] ,                                                                                                  (10) 

where 𝑐1 and 𝑐2 are the release rate constant of cellular TM into the plasma by the degrading 

enzymes and the elimination rate constant of sTM from plasma, respectively. [TM] 

represents the cellular concentration of TM, while [sTM] indicates the plasma concentration 

of sTM. 𝑐2 was set at 0.11 
1

ℎ𝑟
 [63] 

Assuming the sTM concentration to be at steady state prior to RA treatment, we 

calculated the value of 𝑐1 using the physiological concentrations of TM and sTM 

𝑐1 =
𝑐2[sTM]0 

[TM]0
,                                                                                                                             (11) 

where [sTM]0 and [TM]0 are physiological concentrations of sTM and TM, and are 

expressed in molar.  We assumed that [sTM]0 = 1nM, while [TM]0 is the steady state level 

of TM in Eq. 2 after treating the model with a physiological concentration of RA 

(RAplasma = 5 nM) [46].  

The sTM release model was used to link the gene expression model to the ODE model 

of the coagulation cascade (Section 3.3) 

 

3.3. Results 

3.3.1. Pharmacokinetics-pharmacodynamics 
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RA is mainly transported in plasma bound to serum albumin [45, 57]. The unbound 

fraction of RA in plasma is about 1% of the total RA concentration [45, 46]. Since the bound 

drugs are pharmacologically inactive, we calculated the unbound fraction of RA in plasma 

by multiplying the total concentration of RA by 0.01 (Eq. 9). We then used the plasma 

concentration of free RA as input to the gene expression model, with the parameters 

estimated in the section 2.1, to study the dynamics of the TM concentration on the first day 

of treatment. To do so, the free RA concentration in Eq. 3 varied according to the time-

dependent levels of free drug in plasma ([RA]) following RA therapy.   

 

RA treatment resulted in variations in TM and TMR concentrations (Fig. 7). The TMR 

and TM concentrations reached their peak levels almost 7 and 13 hours after taking a 45 

mg/m2 oral dose of RA, respectively (Fig. 7a). However, the peak times of TMR and TM 

levels were shifted by almost 1 hour when the RA dose was increased to 110 mg/m2 (Fig. 

7b). 

  

(a) (b) 
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Figure 7. Variations in RA, TMR, and TM concentrations following a single dose of RA (a) 45
𝑚𝑔

𝑚2
  

and (b) 110 
𝑚𝑔

𝑚2
 . The lines show the mean simulated results, while the shaded regions denote the 

99% confidence interval of the mean simulated results. 

 

The solid lines in Fig. 7 denote mean simulated results, while the shaded regions denote 

99% confidence interval of the mean simulated values. The maximum concentration of TM 

after taking a 110 
𝑚𝑔

𝑚2
 oral dose of RA (Fig. 7b) was similar to that of taking a 45 

𝑚𝑔

𝑚2
 oral 

dose of RA (Fig. 7a). This is because the transcription rate levels were comparable for both 

RA doses (Fig. 8).  

 

Figure 8. Variation of the TM transcription rate (I) following various doses of RA. 

 

3.3.2. Continuous treatment with RA  

Patients on RA therapy usually take the drug on a daily basis. We simulated the effects 

of daily administration of RA for three days, on TM expression (Fig. 9).  



  

 
86 

  

(a) (b) 

 

Figure 9. TM expression on the endothelial cell surface within three days of RA treatment. 

Daily doses of RA are taken at t=0 hr, t= 24 hr, and t=48 hr. (a) 45
𝑚𝑔

𝑚2
  and (b) 110 

𝑚𝑔

𝑚2
. The lines 

show the mean simulated results, while the shaded regions denote the 99% confidence interval of 

the mean simulated results. 

 

Continuous treatment with RA resulted in oscillatory alterations in the TM 

concentration. These oscillatory changes are important, as they can affect the blood 

coagulation cascade (Section 3.3). Taking 110 
𝑚𝑔

𝑚2
 RA per day increased the TM 

concentration to approximately twice its normal level (i.e. no RA treatment) almost 14 hours 

after drug ingestion. Daily administration of RA did not allow the TM level to return to its 

initial concentration, since it took almost 72 hours for TM to return to its initial 

concentration (data not shown).  

 

3.3.3.  RA resistance 
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In some cancers, RA resistance is associated with increasing reductions in the plasma 

concentration of RA [57]. A clinical trial of RA [64] showed that continuous treatment with 

RA caused a progressive reduction in the plasma level of RA in half of the patients that 

were on RA treatment (Fig. 10). The mechanisms involved in the progressive reduction in 

RA plasma concentration over the course of continuous RA therapy are not known. The 

mechanisms might be cancer- and patient- specific. Other pharmacokinetic patterns were 

observed in the remainder of the patients under study [64]. In some patients, the peak plasma 

level of RA remained unchanged during the RA treatment, while other patients had peaks 

that varied weekly.   

 

Figure 10. Changes in the total plasma level of RA concentration on treatment days 1, 8 and 

15 of a continuous treatment period with daily dose of 110 
𝑚𝑔

𝑚2
  RA [49]. 

 

Using the clinical data shown in Fig. 10, we simulated the effects on TM expression of 

the consistent decrease in peak plasma level of RA (Fig. 11).  
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Figure 11. TM expression on day 1, day 8, and day 15 of the treatment period. Solid lines are 

the mean simulated values. Dotted lines show the 99% confidence estimate of the mean results. 

 

The solid lines in Fig. 11 show the mean simulated values of the TM concentration, 

while the dotted lines denote the 99% confidence interval of the mean results. Figure 11 

shows that the peak level of TM on various days decreased in the order of day 8 > day 1 > 

day 15, while the peak RA plasma concentration decreased in the order of day 1 > day 8 > 

day 15. Higher TM levels on day 8 compared to day 1 was because of higher plasma levels 

of RA after 6 hours of drug administration on day 8 compared to day 1 (Fig. 10). The results 

presented in Figure 11 were obtained using the pharmacokinetic data from [64]. Thus, these 

results are not applicable to all patients with different cancer types. However, the current 
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model can be used to study the variation of TM expression over the course of RA therapy 

for different patients with different cancer types, once more pharmacokinetic data on 

different treatment days is available. In the next section we will investigate the effects of 

RA-induced TM upregulation on the coagulation cascade. We also investigate how the 

progressive reduction in the RA concentration over the course of RA therapy can decrease 

the corrective effects of RA therapy on the coagulation disorders.   

 

 

3.3.4. Effects of RA-induced TM upregulation on the blood coagulation 

system 

3.3.4.1. Effects of continuous RA therapy on thrombin generation  

In this section, we investigate whether the elevated levels of TM over the course of RA 

therapy can affect thrombin generation. In this regard, we used an ODE model of the blood 

coagulation cascade that incorporates a mechanistic description of the protein C pathway 

[39]. The coagulation model was developed based on in vitro phospholipid-based assays to 

study the contribution of various coagulation factors to thrombin generation in protein C 

deficient patients. TM was modeled at 1 nM in that study, which is an estimate of the 

physiological concentration of soluble TM (sTM) in plasma. However, our gene expression 

model predicts the variation in the concentration of TM in endothelial cells. It is believed 

that sTM is entirely derived from the TM expressed on the endothelial cell surface. To 

couple the RA model with the coagulation model, we need to obtain the time-dependent 

variations in the sTM level following the RA therapy. In this regard, we coupled the gene 

expression model with the sTM release model to obtain the variations of sTM over the 
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course of RA therapy. Figure 12 compares the variation of the cellular level of TM with that 

of the plasma level of sTM when the patient takes the drug on a daily basis for three 

consecutive days.     

 

  

(a) (b) 

Figure 12. Variations in the cellular level of TM and the plasma concentration of sTM within three 

days of RA treatment. Daily doses of RA are taken at t=0 hr, t= 24 hr, and t=48 hr. (a) 45
𝑚𝑔

𝑚2
  and 

(b) 110 
𝑚𝑔

𝑚2
. Solid lines are the mean simulated values. Shaded regions show the 99% confidence 

interval of the mean results. 

 

To run the coagulation model, we assumed that all coagulation factor concentrations 

were physiological concentrations, except the TF and sTM concentrations. The TF 

concentration was set to 5 pM to initiate the clot formation process, while the sTM 

concentration varied according to the RA treatment (Fig. 12). Since the time scale of the 

coagulation cascade (20 min) is much shorter than that of TM expression (days), the sTM 

concentration was assumed to be constant during the coagulation process. Taking once-

daily oral dose 45 
𝑚𝑔

𝑚2
 or 110 

𝑚𝑔

𝑚2
  of RA for three consecutive days reduced the peak level 

of thrombin up to 45% and 50%, respectively (Fig. 13). The endogenous thrombin profile 
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(ETP), which is defined as the time integral of thrombin generation, was decreased up to 

45% and 49% within three days of treatment with 45 
𝑚𝑔

𝑚2
 or 110 

𝑚𝑔

𝑚2
  oral dose of RA, 

respectively (Fig. 13). 

  

(a) (b) 

 

Figure 13. Impacts of RA-induced TM upregulation following drug ingestion (a) 45
𝑚𝑔

𝑚2
  and 

(b) 110 
𝑚𝑔

𝑚2
 , on thrombin generation. The blue lines indicate the thrombin generation profile in the 

control group with physiological levels of RA.  The red lines show the maximum impact of RA 

therapy on thrombin generation. The shaded red regions indicate the range of the thrombin 

generation profile within three days of continuous RA therapy. 

 

The shaded regions in Fig. 13 indicate the range of thrombin generation after RA 

therapy, with different doses of RA. The shaded regions in Fig. 13 are not only due to the 

uncertainty of the results caused by the error bars in the experimental data (Fig. 2), but also 

due to the changes in sTM level after RA treatment (Fig. 12). In fact, we obtained the range 

of thrombin generation profiles using different values of sTM, that could be expected over 

the course of RA therapy (Fig. 12). Our results indicate that the endothelium could 

potentially play a key role in RA treatment of coagulation disorders, by upregulating TM 
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and sTM. Since the sTM concentration fluctuates over time, the efficacy of RA treatment 

in preventing or treating hemostatic abnormalities is dependent upon the timing of the 

treatment.  

 

 

3.3.4.2. Effects of RA resistance on thrombin generation 

Our results indicated that the progressive reductions in plasma concentration of RA over 

the course of RA therapy with a daily oral dose (110 
𝑚𝑔

𝑚2
) of RA (Fig. 10) resulted in 

variations of cellular TM concentration (Fig. 11). Using the sTM release model, we obtained 

the variations of sTM concentration on different treatment days. We then ran the 

coagulation model using the predicted values of sTM concentration on different treatment 

days (Fig. 14), according to the procedure explained in the previous section. The blue line 

in Figure 14 indicates the thrombin generation profile for the control condition with a 

physiological level of RA, while the dashed lines show thrombin generation profiles at sTM 

peak time after taking different oral doses of RA. Thus, the area between the blue line and 

a given day’s dashed line shows the range of variation of thrombin generation on the given 

day.  
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Figure 14. Thrombin generation profile on days 1, 8 and 15 of treatment period with a daily 

dose of 110 
𝑚𝑔

𝑚2
 RA. Dashed lines show the maximum impact of RA therapy on thrombin 

generation on different treatment days. The area between each dashed line and the solid blue line 

indicates the range of the thrombin generation profile on different treatment days. RA 

concentration in plasma on different treatment days is shown in Fig. 10. 

Our simulation results indicated that the peak thrombin level was reduced up to 41%, 

44% and 32% on day 1, day 8 and day 15 of treatment period, respectively. However, the 

ETP was reduced up to 40%, 43% and 32% on days 1, 8 and 15 of continuous treatment 

with a once-daily dose of 110 
𝑚𝑔

𝑚2
 RA, respectively. It is important to note that the maximum 

reduction happens at the sTM peak time after oral administration of RA.  

Our results indicated that the reduced levels of RA on days 8 and 15 of continuous 

treatment with a single daily dose of 110 
𝑚𝑔

𝑚2
 RA could decrease thrombin peak levels and 

ETP significantly. However, the way this progressive reduction affects the efficacy of RA 

in treating cancer depends on cancer type, stage and the patient’s health conditions. In 
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general, drug dose and route of administration are determined in such a way that the plasma 

concentration of drug lies within the therapeutic window of the drug. Any significant 

reduction in plasma concentration of RA over the course of treatment can potentially 

decrease the efficacy of RA in treatment of cancer in at least some patients. Figure 10 

indicates that the peak plasma concentration of RA decreases by almost 60% within two 

weeks of RA treatment, while our results show that the peak thrombin level is reduced up 

to 44% and 32% on days 8 and 15 of treatment, respectively. The obtained values for percent 

decrease in peak thrombin level on days 8 and 15 of RA therapy are comparable with a 41% 

decrease in peak thrombin level on day 1 of treatment. Our results raise the hypothesis that 

RA therapy has more consistent, corrective effects on clotting abnormalities than on cancer. 

Further studies on different patients with different cancer types and stages are needed to 

reveal how the observed reductions in plasma levels of RA over the course of RA therapy 

affect the efficacy of RA in treatment of cancers versus hemostatic abnormalities.  

 

3.3.4.3. Effects of physiological levels of RA on thrombin generation 

We used our RA model to obtain the elevated levels of cellular TM and sTM, when the 

cells were treated with a physiological concentration of RA, RAplasma = 5 nM [46]. 

Treating the combination of the gene expression model and the sTM model with 5 nM of 

RA resulted in a 9% increase in the mean cellular TM level and subsequently the mean 

plasma level of sTM. We then investigated the effects of physiological concentrations of 

RA on the thrombin generation profile (Fig. 15). The absence of vitamin A in the diet 

increased the peak level of thrombin up to 10%, while this increase was up to 11% for the 

ETP.  
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Figure 15. Impacts of physiological levels of RA on thrombin generation profile. The blue line 

indicates thrombin generation profile for the control condition with physiological level of RA. The 

red line shows the mean thrombin generation profile when there is no RA in the plasma. The 

shaded red region indicates the 99% confidence interval of the mean result. 

 

 

 

3.4. Discussion 

Clinical observations have shown that RA has therapeutic effects on blood coagulation 

disorders such as DIC and thrombosis in cancer patients. Previous studies have mainly 

looked at RA as a treatment for cancer. Corrective effects of RA on coagulation disorders, 

which is a positive side effect of RA therapy, have rarely been studied. Elucidating the 

mechanism of action of RA in the treatment of coagulation disorders is important, since this 

can help to understand why some patients respond to the drug better than others. This is 

also useful in developing new drugs with better therapeutic effects. Down regulation of TF 

and CP on cancer cells and monocytes, upregulation of u-PA, PAI-1 and PAI-2 in cancer 
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cells, and upregulation of TM and t-PA in endothelial cells have been introduced as the 

possible mechanisms for RA to ameliorate blood coagulation disorders. In this study, we 

investigated how RA therapy regulates TM expression and how this variation affects the 

thrombin generation profile. We developed a gene expression model for the RA-induced 

upregulation of TM. Coupling the gene expression model with a two-compartment 

pharmacokinetic model of RA, we simulated the time-dependent variations of TM and TMR 

concentrations after taking different oral doses of RA. Our results indicate that the TM 

concentration increases almost twofold after taking a 110 
𝑚𝑔

𝑚2
  oral dose of RA. Since most 

of the patients who are under RA treatment take RA on a daily basis, TM expression on the 

endothelial cell surface changes over time. Our results indicate that RA treatment increases 

the mean value of TM concentration, while the nature of this regulation is oscillatory. To 

examine the effects of the upregulated TM on the blood coagulation system, we used a 

mathematical model for the human coagulation cascade [39]. Our simulations show that 

taking a 45 
𝑚𝑔

𝑚2
 or 110 

𝑚𝑔

𝑚2
  oral dose of RA reduces ETP by 45% and 49%, respectively. 

Furthermore, our results are useful in predicting the times when a patient is at a higher risk 

of clot formation. Almost fourteen hours after drug ingestion, the TM concentration begins 

to decrease, and reaches its minimum level almost before taking the next dose of the drug. 

However, the minimum level of TM during the RA treatment period is higher than the 

normal level of TM when there is no RA treatment. We also investigated the effects of 

progressive reductions in the plasma concentration of RA over a course of continuous 

treatment on thrombin generation. Our results indicated that the progressive reductions in 

plasma concentration of RA over the course of RA therapy with daily oral dosing (110 
𝑚𝑔

𝑚2
  



  

 
97 

), which has been observed in some cancer patients, do not affect the corrective effects of 

RA therapy on thrombin generation significantly. These results prompt the hypothesis that 

coagulation abnormalities may become resistance later than cancer to RA. The validity of 

this hypothesis depends on various patient- and cancer-specific factors such as the RA route 

of administration, the adequate plasma concentration of RA for cancer treatment, the 

acceptable range of reduction in plasma RA over the course of RA therapy, and the 

allowable range of toxicity. Thus, the validity of this hypothesis should be tested for 

different groups of patients with various cancer types, stages and health conditions such as 

liver and kidney health, independently. Taken together, our simulations indicate that 

oscillatory expression of TM over the course of RA therapy can play a critical role in the 

regulation of thrombin production. This finding may explain why RA therapy improves 

DIC and thrombosis in some cancer patients better than in others. Our simulation results 

suggest that one possible reason might be the impairment of PC pathway because of cancer, 

cancer treatment, etc. It is important to note that the current study cannot compare the 

significance of TM with other potentially important proteins such as t-PA, u-PA, PAI-1, 

PAI-2, TF and CP, in RA-induced improvement of clotting disorders in cancer patients. 

Further experimental and numerical studies are needed to investigate the contributions of 

the above pathways to RA therapy of DIC in cancer.  This study can be considered as a 

starting point for research studies exploring the possible effects of oscillatory protein 

expression after drug administration, on the blood coagulation cascade.  

There are some limitations to this study. First, we simulated the thrombin generation 

process using the physiological levels of all blood factors except TF and TM. This is 

because some cancer patients have coagulation factor levels within the normal ranges [65, 
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66]. However, this is not true for all cancer patients. Plasma concentrations of coagulation 

factors in cancer patients depend on several factors such as type and stage of the cancer, 

and type of the antitumor therapy. Thus, the quantitative aspect of our results on corrective 

effects of RA therapy on thrombin generation, cannot be applied to all patients with 

different disease conditions. Second, we did not consider the effects of RA treatment on the 

cancer cells’ ability to produce inflammatory cytokines. Previous in vitro studies have 

indicated that RA treatment increased the production of some inflammatory cytokines such 

as IL-1β by cancer cells [67, 68]. In theory, induction of cytokine release can favor the 

prothrombotic potential of the endothelium by upregulating TF and downregulating TM 

expression [69, 70]. However, we believe that the elevated levels of plasma cytokines after 

treatment with the specified doses of RA in this study should not influence the TF and TM 

expression significantly [67, 69, 71]. Third, the model we used for simulating thrombin 

generation was developed based on in vitro assays. Even though all coagulation factor 

concentrations were physiological concentrations, the model cannot capture some essential 

features of the coagulation in vivo, such as the cellular involvement and the effects of flow. 

In fact, our model cannot describe exactly how RA therapy improves clotting disorders in 

vivo. Instead, our simulation results indicate that the oscillatory variation in TM expression 

over the course of RA therapy significantly influenced in vitro thrombin generation. In vivo 

studies are needed to confirm the key role of TM in RA treatment of coagulopathy. Fourth, 

in constructing the sTM release model, for simplicity we assumed that the cellular TM is 

degraded by a first-order reaction. The kinetic order of the reaction depends upon the types 

and concentrations of degradation enzymes and the severity of cell injury. However, little 

is known about the types and concentrations of the enzymes which are primarily responsible 



  

 
99 

for producing sTM from cellular TM. Furthermore, the severity of cell injury depends on 

the type and stage of the cancer. Thus, the model presented in this section cannot describe 

TM cleavage for all cancer patients with different conditions. The model can be improved 

once more information about the degradation pathway is available. We have also assumed 

that the amount of cellular TM is not significantly reduced due to release of the TM into the 

plasma. This is because the number of sTM molecules in plasma is much smaller than the 

number of TM molecules on the endothelium under physiological conditions. Next, we 

assumed that the unbound fraction of RA in plasma was constant over the course of RA 

treatment. However, the unbound fraction of RA depends on different variables, such as the 

serum albumin concentration in plasma, the total concentration of RA in plasma, and the 

levels of other drugs in blood. Cancer patients usually take different medications at the same 

time. Furthermore, the serum albumin level can be affected by cancer and cancer treatment. 

Thus, the exact quantitative effects of RA therapy on TM expression can vary from patient 

to patient.  

3.5. Conclusions 

All-trans retinoic acid (RA) has been widely used to treat various types of cancer. RA 

treatment also improves coagulation abnormalities in cancer patients. However, it is not 

clear how RA therapy ameliorates coagulation disorders. In this study, for the first time, we 

developed a mechanistic model to investigate the role of thrombomodulin (TM) in RA 

therapy of cancer-induced coagulation disorders. Our results indicate that RA-induced TM 

upregulation reduces thrombin generation significantly. Daily administration of the drug 

results in oscillatory expression of TM on endothelial cells. We also demonstrate that within 

two weeks of continuous RA treatment, TM expression patterns remain almost unchanged, 
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while some cancers become resistant to RA therapy. This result raises the hypothesis that 

RA therapy has longer lasting corrective effects on coagulation disorders than on cancer. 

Clinical studies and in vivo experiments are required to test the validity of this hypothesis. 

Overall, our findings indicate the key role of TM in RA treatment of blood coagulation 

abnormalities in cancer patients. These results are in line with recent clinical observations 

regarding the therapeutic effects of recombinant human thrombomodulin, an anticoagulant 

drug with the same external structure of TM, in the treatment of DIC [72-76]. 

Moving forward, we plan to couple this model with other mechanistic models that 

simulate the effects of RA therapy on the expression levels of TF, CP, PAI-1, PAI-2, t-PA 

and u-PA, and compare the significance of different pathways in RA therapy of clotting 

disorders in cancer patients. Such models should be able to simulate how the RA treatment 

downregulates the expression of TF and CP and upregulates the synthesis of PAI-1, PAI-2, 

t-PA and u-PA in various cell types such as endothelial cells, monocytes, and tumor cells. 

Mechanistic modeling of these pathways requires concurrent experimental studies to 

explore the relevant biological pathways. 

3.6. Supplementary information 

3.6.1. All-trans retinoic acid pathway 

RA is highly bound to albumin in plasma [45] and in the cell culture medium [40]. Free 

RA molecules start to passively diffuse across the cellular membrane once the cultured cells 

are treated by RA. Passive diffusion continues to occur until the concentration of free RA 

on both sides of the cellular membrane are equal. Equilibrium is achieved relatively quickly 

due to the high permeability coefficient of RA across the endothelial cell membrane [77] 

and high surface area per volume of endothelial cells. After diffusing across the membrane, 
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RA molecules bind to different receptors (Fig. S1). Some of the RA binding receptors can 

initiate the transcription of target genes after binding to RA. When the transcription factors 

bind to RA molecules, they become activated and trigger the transcription of the TM gene 

by binding to DNA at a retinoic acid response element (RARE) located in enhancer regions 

of the gene [78, 79].    

 

Figure S1. Simplified schematic of the RA signaling pathway. RA is mainly bound to albumin 

outside of the cells. RA molecules (red circles) can diffuse across the cellular membrane and bind 

to different receptors (REC1, REC2, REC3, etc). Some of the RA binding receptors (REC1, in this 

cartoon diagram) can initiate the transcription of the TM gene after binding to RA molecules.    

 

The binding of RA to a single site on a RA binding receptor (REC) is expressed by 

RA + REC
𝑘d1
⇔ RA: REC , 

where 𝑘d1 is the equilibrium dissociation constant, 
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𝑘d1 =
[RA][REC]

[RA: REC]
 ,                                                                                                                         (S1) 

and [] indicates molar concentration. Thus, [RA], [REC] and [RA: REC] represent molar 

concentrations of free RA, free RA binding receptor and bound receptor (RA: REC), 

respectively. Assuming that RA is either free in the cell or bound to the RA binding 

receptors (REC), Eq. S1 can be written as 

𝑘d1 =
[RA]([RECt] − [RA: REC])

[RA: REC]
 ,                                                                                          (S2) 

where [RECt] stands for molar concentration of all RA binding receptors, 

[RECt] = [REC1] + [REC2] + ⋯                                                                                              (S3) 

Solving Eq. S2 for the bound fraction of RA binding receptors yields  

 

[RA: REC]

[RECt]
=

[RA]

[RA] + 𝑘d1
 .                                                                                                          (S4) 

 

The concentration of the specific transcription factor (REC1) which can activate the 

transcription of the TM gene is a portion of the total concentration of RA binding receptors 

(RECt). Assuming that RA has the same affinity to bind to different RA binding receptors, 

the ratio of the activated transcription factor concentration ([RA: REC1]) to the total 

transcription factor concentration ([REC1t])  is the same as the ratio of the activated RA 

receptors concentration ([RA: REC]) to the total RA receptors concentration ([RECt]), thus 

[RA: REC]

[RECt]
=
[RA: REC1]

[REC1t]
 .                                                                                                           (S5) 

The assumption that RA binds to various types of RA binding receptors with the same 

affinity is reasonable, since the majority of RA binding receptors found in endothelial cells 

are from the nuclear hormone receptor family. The retinoic acid receptors 
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(RARα, RARβ, RARγ) and retinoid X receptors (RXRα, RXRβ, RXRγ) are the main members 

of the nuclear hormone receptor family.  

The transcription rate of the TM gene depends on the promoter occupancy. The binding 

of an activated transcription factor to a promoter can be described by 

RA: REC1 + Promoter
𝑘d2
⇔ RA: REC1: Promoter , 

where 𝑘d2 is the equilibrium dissociation constant of the transcription factor binding to the 

promoter. The fraction of time that any given promoter spends in the transcription factor-

bound state is given by [80-82] 

Fraction of binding time =
[RA: REC1]

[RA: REC1] + 𝑘d2
 .                                                                   (S6) 

The rate of the gene transcription is proportional to the fraction of the binding time, 

𝐼

𝐼max
=

[RA: REC1]

[RA: REC1] + 𝑘d2
 ,                                                                                                          (S7) 

where 𝐼max is the maximum transcription rate by a specific transcription factor (REC1).  

The transcription rate (𝐼) can be obtained as a function of RA, REC1t, and  𝐼max by 

combining Eqs. S4, S5 and S7, 

𝐼 = 𝐼max
[RA][REC1t]

[RA][REC1t] + 𝑘d2([RA] + 𝑘d1)
 .                                                                            (S8) 

It is important to note that we assumed the association/dissociation event between RA 

and REC, and the binding/unbinding of RA: REC1 to promoter are in equilibrium. This is 

because these reactions occur on much faster time scales than gene transcription [51, 83, 

84]. Furthermore, DNA-transcription factor reactions are much faster than protein-ligand 

reactions [84, 85]. 

3.6.2. Estimation of gene expression model parameters 

3.6.2.1. Parameter estimation algorithm  
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The gene expression model had four species, i.e. TMR, TM, RA and REC1t, and seven 

parameters, namely 𝐼0, 𝑘trans, 𝐼max, 𝑘dp, 𝑘dm, 𝑘d1 and 𝑘d2. The model parameters and 

species were defined in Table 1. The values of 𝑘dp, 𝑘dm, 𝑘d1 and 𝑘d2 were taken from the 

literature (Table 1), while the values of the remaining parameters, and the initial 

concentrations of the model species, i.e. 𝐼𝐶TM, 𝐼𝐶TMR and [REC1t] were unknown. 𝑘trans 

and basal transcription rate (𝐼0) were the only parameters that depended on the other 

parameters. Assuming that the TM and TMR concentrations were in steady state before RA 

treatment (t=0), we calculated 𝑘trans  and 𝐼0 by  

𝑘trans =
𝑘dp𝐼𝐶TM

ICTMR
,                                                                                                                         (S9) 

    𝐼0 = 𝑘dm𝐼𝐶TMR .                                                                                                                                       (S10)    

                                                                                                

Overall, the gene expression model had three independent unknown parameters namely, 

𝐼max, 𝐼𝐶TMR, [REC1t], and two dependent parameters, namely 𝑘trans and 𝐼0. We instituted 

some bounds for all model unknown parameters (Table 1). The bounds for 𝐼𝐶TM were due 

to the experimental errors (Fig. 2), while the other unknown parameters had physiological 

bounds. The gene expression model unknown parameters were estimated by minimizing 

the squared difference between simulation results and the experimental data following a 

parameter estimation algorithm. The parameter estimation process was designed in such a 

way that the simulation results for the TMR concentration at different time points, i.e. 0, 3, 

6, 12, 24 h, when RA =10 µM and the simulation results for TM concentration at different 

RA concentrations, i.e. 0.1, 1, 10 µM, when t= 24 h fit the experimental data shown in Fig 

2. The objective function was defined by 
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𝐸 =∑(Mi
s − [TMR]i

s)2 +

5

i=1

∑(1− [TM]j
s)2

3

j=1

.                                                                                                   (S11) 

The first term in the objective function quantified the difference between the scaled 

experimental TMR concentration (Mi
s) and scaled numerical results for TMR level ([TMR]i

s)  

at time point i. Time points i=1, 2, 3, 4 and 5 stand for t=0, 3, 6, 12 and 24, respectively, 

while the superscript s shows that the values are scaled. Scaled experimental TMR 

concentration and scaled numerical TMR levels were given by 

Mi
s =

Mi −M1
M5 −M1

                                                                                                                                                          (S12) 

[TMR]i
s =

[TMR]i − [TMR]1
[TMR]5 − [TMR]1

                                                                                                                                 (S13) 

where the indices i=1 and 5 correspond to t=0 and 24 h, respectively. The values of Mi were 

shown in Fig. 2b, while [TMR] was the output of gene expression model. It is important to 

note that the experimental results presented in Fig. 2b were normalized by TMR 

concentration before RA treatment. However, under the new scaling (Eq. S12), the lowest 

TMR concentration in the data set was 0, while the largest TMR concentration was 1 (0 ≤ 

Mi
s ≤ 1). 

The second term in Eq. S11 represented the sum of squared differences between the 

scaled numerical results and the experimental observations for TM concentration at t= 24h 

for different RA concentrations, i.e. 0.1 µM, 1µM and 10 µM. Different values of index j 

in Eq. S11 represent different RA concentrations; j=1, 2 and 3 represent RA=0.1, 1 and 10 

µM, respectively. The scaled numerical TM level ([TM]j
s) was defined as the TM 

concentration from the model divided by experimental observation  

[TM]j
s =

[TM]j
t=24

Nj
t=24                                                                                                                                                      (S14) 
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where [TM] and N denote simulation results and experimental data for TM concentration, 

respectively. Subscript j denotes RA concentration, while superscript (t=24) indicates that 

the values are for 24 hours after RA treatment. The ranges of variation of Ni were shown in 

Fig. 2a, while [TM] was the output of gene expression model. 

The parameter estimation process was initiated by determining TM initial concentration 

(𝐼𝐶TM) at various concentrations of RA. The experimental measurements for the TM 

concentration contained error bars (Fig. 2a). However, we needed to have constant values 

for the TM concentration at the different concentrations of RA. Thus, we randomly selected 

values for the TM concentration at the various concentrations of RA following a normal 

distribution. The bars in Fig. 2a denote the mean values of the TM level at various 

concentrations of RA, while the standard deviation is half the length of the total error bar.  

Using Particle swarm optimization (PSO), a population-based stochastic optimization 

technique, we estimated the independent unknown parameters, i.e. 𝐼max, 𝐼𝐶TMR and [REC1t] 

in a way such that the simulation results for TMR and TM levels fit the experimental data 

for various concentrations of RA (Fig. 3). After estimating the unknown parameters, we 

calculated the dependent parameters, i.e. translation rate constant and basal transcription 

rate via Eq. 4 and Eq. 5, respectively. If the calculated values were within the physiological 

ranges shown in Table 1, the obtained set of the parameters was accepted. Otherwise, we 

took a step back and chose a new set of values for the TM concentration at the various 

concentrations of RA, and the same procedure for fitting the parameters was repeated. 

Figure S2 outlines the implemented procedure for model parameter estimation. 
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Figure S2. Flow chart of the parameter estimation algorithm.  

It is important to note that our problem does not have a unique solution, since the 

experimental data used for fitting the model parameters is subject to error (Fig. 2a). The 

estimated values for the unknown parameters depend on the randomly selected values for 

the TM concentration at RA=10 μM, RA= 1 μM, and RA=0.1 μM.  Thus, we repeated the 
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parameter estimation algorithm 150 times independently and obtained several sets of valid 

solutions.  

The obtained values for 𝐼𝐶TMR, 𝐼𝑚𝑎𝑥 and [REC1t] were within the ranges shown in Fig. 

S3. The y-axis range in Fig. S3 shows the physiological range for each parameter.   

 

Figure S3. Ranges of the obtained values for the TM transcription rate, the TMR initial 

concentration, and the total concentration of the transcription factor that activates TM gene. These 

results were based on 150 valid solutions. 

 

The mean estimated value for total transcription factor concentration were 7 × 10−8M 

(Fig. S3), which is comparable with the reported value of 5 × 10−8M for RAR concentration 

in promyelocytic leukemia cells [86]. The obtained values for dependent unknown 

parameters, i.e. 𝑘trans and 𝐼0 were within the ranges shown in Fig. S4. The y-axis range in 

Fig. S4 shows the physiological range for each parameter.   
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Figure S4. Ranges of the obtained values for the translation rate constant and the basal 

transcription rate. 

 

3.6.2.2. Particle swarm optimization  

The particle swarm optimization (PSO) method has been shown to be efficient in 

estimating ODE model parameters [53, 87, 88]. PSO involves a swarm of particles, where 

each particle represents a point in a D-dimensional space, where D is the number of 

parameters to be estimated. PSO finds the global optimum of the objective function by 

iteratively changing the positions of the particles. In PSO, the position of each particle in 

the parameter space is changed based on the experience, or knowledge, of the particle and 

its neighbors. Suppose that particles are randomly distributed in the parameter space at t=0, 

and the position of the ith particle in a D dimensional parameter space can be described by 

the vector 



  

 
110 

 𝒙i = [𝑥i1, 𝑥i2, … , 𝑥iD].                                                                                                        (S15) 

PSO calculates the objective function value (aka fitness value) for each particle and 

iteratively updates the position of each particle by 

𝒙i(𝑡 + 1) = 𝒙i(𝑡) + 𝒗i(𝑡 + 1)                                                                                                (S16) 

where 𝑡 and 𝑡 + 1 are two consecutive iterations of the algorithm, and 𝒗i indicates the vector 

of velocity components of the ith particle in the D-dimensional parameter space. The 

velocity of the ith particle is defined by 

𝒗i(𝑡 + 1) = 𝒗i(𝑡) + θ1(pi − 𝒙i(𝑡))R1 + θ2(g − 𝒙i(𝑡))R2,                                             (S17) 

where  pi and g denote the local best solution found by the ith particle and the best solution 

found over the entire population of the particles. θ1 and θ2, which are cognitive and social 

coefficients, respectively, modulate the magnitude of the steps taken by the particle. In this 

study, we used (θ1, θ2)=(0.05564, 0.02886), [53].  R1 and R2 are random vectors generated 

from a uniform distribution in [0,1]. The first term in Eq. S17 is called the inertia component 

and prevents the particle from significantly changing direction, while the second term in 

Eq. S17 is called the cognitive component, which indicates that the particles prefer to return 

to their own previously found best positions. The third term in Eq. S17 is named the social 

component, which accounts for the tendency of the particles to move towards the position 

of the particle which has the lowest objective function value. After updating the particle 

positions at each time step, PSO calculates the objective function value for all particles. 

PSO then updates the personal best position for each particle and the global best position 

over the whole population of the particles. This iterative optimization continues until a 

stopping criterion is met. The global best particle is represented as the best solution at the 

end of optimization process. Figure S5 shows the flow diagram of the PSO. In this study, 
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the population size (number of particles) was 1000, while the number of generations (Gen) 

was 100. 

 

Figure S5. Flow chart of the particle swarm optimization algorithm.  

 

 

 

 

 

 

 

 

 



  

 
112 

 

 

 

3.6.3. Population pharmacokinetic modelling of RA 

We constructed a two-compartment pharmacokinetic model (Fig. 6) in MATLAB 

SimBiology and fit the model parameters, i.e. 𝑘a, 𝑘d , 𝑘cp, 𝑘pc, 𝑉c and 𝑉p to the data shown 

in Fig. 5. 𝑘cp and 𝑘pc were the distribution rate constant from the central compartment to 

the peripheral compartment, and the distribution rate constant from the peripheral 

compartment to the central compartment, respectively. 𝑘cp and 𝑘pc were defined by  

𝑘cp =
𝑄cp

𝑉c
                                                                                                                                      (S18) 

𝑘pc =
𝑄cp

𝑉p
,                                                                                                                                     (S19) 

where 𝑄cp is the intercompartmental clearance [89]. We used a MATLAB function called 

nlmefista, which is designed to find the maximum likelihood estimates of the parameters 

by fitting a nonlinear mixed-effects regression model. Nonlinear mixed-effects regression 

models have been widely used for the analysis of pharmacokinetic data, as they can consider 

inter-subject variability in parameters by incorporating random effects into the model [90]. 

The estimated values for  𝑘a, 𝑘d , 𝑄cp, 𝑉c and 𝑉p were 0.62 1/h, 0.56 1/h, 0.011 L/h , 81.92 

L and 3.01 L, respectively. The simulation results corresponding to these estimated values 

were shown by solid lines in Fig. 5. We used other fitting methods in MATLAB SimBiology 

such as fminsearch and lsqcurvefit which are used to fit a model to data using a derivative 

free method [91] and a nonlinear least-square curve fitting technique [92]. The curves fit by 

different methods looked very similar. The estimated values for 𝑘a, 𝑘d  and 𝑉c by different 

methods were very close, while the estimated values for 𝑄cp and 𝑉p depended strongly on 
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the fitting method. Thus, 𝑄cp and 𝑉p were not identifiable considering the size of the data 

set. Additional data points were needed to obtain more accurate estimates for the parameter. 

However, the main goal of this study was not estimating the pharmacokinetic parameters 

following oral administration of RA. We aimed to investigate the effects of RA therapy on 

thrombin generation by coupling four different models, i.e. the pharmacokinetic model, the 

gene expression model, the sTM release model and the ODE model of the coagulation 

cascade. Since the curves fit to the pharmacokinetic data through different methods were 

almost the same, we used the output of the pharmacokinetic model, i.e. fitted curves, as 

input in the gene expression model to investigate the variations of TM and TMR following 

RA therapy. Pharmacokinetic parameters of RA following oral dosing can be better 

estimated using the presented model in this paper once there is more clinical data available.    
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Chapter 4 

Regulation of CSF and brain tissue sodium levels by the blood-CSF and blood-

brain barriers during migraine 

 

4.1.  Introduction 

Migraine is ranked among the top five causes of disability in the world [1]. Although 

the exact underlying causes of migraine are not known, common triggers of migraine 

include dehydration, stress, sleep disorders, hunger, etc. Understanding the 

pathophysiology of migraine is challenging because migraine triggering is different for 

everyone. Many of the triggers of migraine change the sodium balance in the brain. Animal 

and human studies [2-5] have revealed that migraine sufferers have higher levels of 

cerebrospinal fluid (CSF) and brain interstitial fluid (ISF) sodium than control groups, while 

there is no significant difference between blood concentration of sodium in migraineurs and 

healthy controls.  Studies have indicated that elevated levels of ISF sodium increase 

neuronal excitability [6, 7], which subsequently results in migraine  Brain sodium levels 

ultimately derive from peripheral circulation. Sodium is exchanged between the blood and 

brain across two major blood-brain interfaces, namely the blood-brain barrier (BBB) and 

the blood-CSF barrier (BCSFB). The BBB is formed by specialized endothelial cells lining 

the cerebral microvasculature and controls sodium exchange between the ISF and blood, 

while the BCSFB is formed by choroid plexus epithelial cells and regulates sodium 

transport between ventricular CSF and blood. Transfer of sodium across the BBB and the 

BCSFB predominantly take places via active, hence transcellular mechanisms. However, 

sodium may be able to cross the BCSFB and the BBB via a paracellular route through tight 
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junctions between epithelial cells at the BCSFB and between endothelial cells at the BBB 

[8].  

It is believed that the BCSFB and BBB are highly responsible for maintaining ion 

homeostasis in the brain. Thus, a disturbance in sodium transport mechanisms at the BCSFB 

and/or BBB can alter CSF and brain tissue sodium concentrations. However, the relative 

contributions of the two interfaces in the regulation of brain sodium homeostasis have yet 

to be determined. In this work, we use mechanistic modeling to study the significance of 

the BCSFB and BBB in controlling brain tissue and CSF sodium levels. We develop a 

mathematical model consisting of four compartments: the ventricular system, subarachnoid 

space, brain tissue and blood. Net movement of sodium across the BCSFB and BBB through 

different active and passive transport mechanisms is modeled by influx and efflux 

permeability coefficients of the interfaces to sodium. Influx permeability coefficients of the 

BCSFB and BBB to sodium refer to sodium movement from blood to CSF and brain tissue, 

respectively, whereas efflux permeability coefficients of the BCSFB and BBB to sodium 

represent sodium movement from CSF and brain tissue to blood, respectively. We study the 

dynamics of sodium distribution in the brain following a perturbation in the influx and 

efflux permeabilities of the BCSFB and BBB to sodium. We then perform a global 

sensitivity analysis (GSA) to assess the significance of the BCSFB and BBB in controlling 

sodium concentrations in the brain tissue, ventricular CSF and subarachnoid CSF. Our 

results reveal that the influx permeability coefficient of the BCSFB to sodium is the most 

sensitive model parameter in controlling ventricular CSF sodium concentration. Depending 

on the time elapsed from perturbations of the permeability coefficients, brain tissue and 
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subarachnoid space CSF sodium levels can be significantly controlled by the BCSFB and/or 

BBB. 

The computational model presented in this study can not only shed light on the dynamics 

of sodium exchange between CSF, brain tissue and blood, but can also provide insight for 

future experimental studies. In addition, this work can potentially offer a new strategy to 

normalize the elevated levels of brain sodium in migraine sufferers and potentially treat 

migraines. 

 

4.2.  Methods 

4.2.1.  Model Development 

We modeled a rat’s brain by three concentric spheres representing the ventricular 

system, brain tissue and subarachnoid space (Fig. 1). Brain tissue was modeled as a single 

compartment. We assumed that blood vessels are distributed randomly, following a uniform 

distribution, throughout the brain tissue.  
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(a) (b) 

 

 

Figure 1. Schematic of the model. (a) A 3D model of a rat’s brain. (b) A 2D view of the cross 

section of the 3D model. The inner circle, shown in blue, represents the ventricular system, while 

the outer ring, shown in blue, is subarachnoid space. The white region between two dashed circles 

is brain tissue. Blood vessels, shown in red filled circles, are distributed uniformly in the brain 

tissue. The green circular border which separates blood from the brain tissue is the BBB. The 

BCSFB which is depicted by a yellow ellipsoid separates blood from the ventricular CSF. 

Numbers in the figure specify the types and locations of sodium transport: 1. capillary-brain 

transport across the BBB; 2. exchange between CSF and ISF; 3. blood-CSF exchange across the 

BCSFB; 4. diffusive transport in the radial direction in the brain tissue; 5. transport by the CSF 

flow from the ventricular system to the subarachnoid space; 6 transport by the CSF flow from the 

subarachnoid space to the blood. Arrows 5 and 6 indicate CSF flow direction from the ventricular 

system to the subarachnoid space, and from the subarachnoid space to the blood. Although CSF 

flow has been modeled (Eqs 1-2), the model does not include actual channels for transferring CSF 

flow between the ventricular system, subarachnoid space and blood. It should be noted that the 

size and number of the graphic symbols of blood vessels, as well as the size of the graphic symbol 

of choroid plexus (a.k.a BCSFB) do not represent their realistic values given in Table 1. 
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The inner sphere, which represents the ventricular system, includes the BCSFB. CSF is 

secreted by the BCSFB cells, a.k.a the choroid plexus epithelial cells, flows into the 

ventricular system, and then passes through small openings (foramina) into the 

subarachnoid space where it is absorbed through blood vessels into the bloodstream. It has 

also been suggested that a part of subarachnoid CSF moves into the brain along paravascular 

routes surrounding cerebral arteries, where it mixes with brain ISF and leaves the brain 

along veins [9, 10]. In the current model, we have ignored CSF flow from subarachnoid 

space to brain ISF (See Section 4 for further discussion of this subject). Thus, we have 

assumed that the CSF secretion rate is equal to the CSF absorption rate from the 

subarachnoid space to the blood. We have also assumed that sodium can be easily 

exchanged between the brain tissue and the CSF at the interface of brain tissue and the 

ventricular system, and at the contact surface of the subarachnoid space and brain tissue 

(dashed circles in Fig. 1b). This is due to the negligible permeability of the contact surfaces. 

This transport can be considered as a diffusive transport with a very large diffusion 

coefficient, and is different from the convective CSF flow from the subarachnoid space to 

the ISF, which has been ignored in this work. Sodium is also exchanged between blood and 

brain tissue across the BBB, and can also diffuse in the brain tissue down its concentration 

gradient.  

4.2.2. Formulation of the model 

Ventricular and subarachnoid CSF sodium concentrations were modeled by ordinary 

differential equations (ODEs) represented by Eqs. 1-2, while the variation of sodium level 
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across brain tissue was modeled by a partial differential equation (PDE), represented by Eq. 

3.   

𝜕𝐶𝑣(𝑡)

𝜕𝑡
=
𝑃𝐵𝐶𝑆𝐹𝐵𝐴𝐵𝐶𝑆𝐹𝐵

𝑉𝑣
𝐶𝑏𝑙𝑜𝑜𝑑 −

𝑃𝐵𝐶𝑆𝐹𝐵
′ 𝐴𝐵𝐶𝑆𝐹𝐵

𝑉𝑣
𝐶𝑣 +

𝑃𝑣𝑏𝐴𝑣𝜆

𝑉𝑣
(
𝐶𝑏𝑟(𝑡, 𝑟𝑖)

𝑓𝑑
− 𝐶𝑣) −

𝑄𝑐𝑠𝑓

𝑉𝑣
𝐶𝑣       (1) 

𝜕𝐶𝑠(𝑡)

𝜕𝑡
=
𝑃𝑠𝑏𝐴𝑠𝜆

𝑉𝑠
(
𝐶𝑏𝑟(𝑡, 𝑟𝑜)

𝑓𝑑
− 𝐶𝑠) +

𝑄𝑐𝑠𝑓

𝑉𝑠
𝐶𝑣 −

𝑄𝑐𝑠𝑓

𝑉𝑠
𝐶𝑠                                                                     (2) 

𝜕𝐶𝑏𝑟(𝑡, 𝑟)

𝜕𝑡
= 𝑃𝐵𝐵𝐵𝐴𝐵𝐵𝐵𝐶𝑏𝑙𝑜𝑜𝑑 −

𝑃𝐵𝐵𝐵
′ 𝐴𝐵𝐵𝐵
𝑓𝑑

𝐶𝑏𝑟 +
𝜆

𝜌𝑓𝑑𝑟
2

𝜕

𝜕𝑟
(𝐷𝑟2

𝜕𝐶𝑏𝑟
𝜕𝑡
),               𝑟𝑖 < 𝑟 < 𝑟𝑜  (3) 

 

where 𝐶𝑣, 𝐶𝑠, 𝐶𝑏𝑙𝑜𝑜𝑑, 𝐶𝑏𝑟 and 𝑡 represent ventricular CSF sodium concentration, 

subarachnoid CSF sodium concentration, blood sodium concentration, sodium level in brain 

tissue and time, respectively. 𝐶𝑣, 𝐶𝑠  and 𝐶𝑏𝑙𝑜𝑜𝑑 are expressed in mole ml−1, while 𝐶𝑏𝑟 is 

defined as moles of sodium per gram of brain (mole g−1). 𝐶𝑏𝑟 includes sodium content in 

brain ISF and in brain cells. The ISF sodium concentration (mole ml−1) was estimated from 

the brain tissue sodium level (mole g−1) by [11] 

𝐶𝐼𝑆𝐹(𝑡, 𝑟) =
𝐶𝑏𝑟(𝑡, 𝑟)

𝑓𝑑
                                                                                                                      (4) 

where 𝐶𝐼𝑆𝐹 and 𝑓𝑑  are the ISF sodium concentration and sodium distribution factor, 

respectively. The model’s parameters are defined in Table 1.  

Table 1. Physiological values of the model’s parameters for an adult rat 

Parameters Description Value Reference 

𝑃𝐵𝐶𝑆𝐹𝐵 

BCSFB influx permeability 

coefficient to sodium (from blood 

to CSF) 

3.8 × 10−5  (cm s−1) [11] 

𝐴𝐵𝐶𝑆𝐹𝐵 Surface area of BCSFB 1 (cm2) [11] 
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𝑃𝐵𝐶𝑆𝐹𝐵
′  

BCSFB efflux permeability 

coefficient to sodium (from CSF 

to blood) 

6.9 × 10−7  (cm s−1) Calculated 

𝑉𝑠 Subarachnoid space volume 0.2 (cm3) [11, 12] 

𝑉𝑣 Ventricular system volume 0.1 (cm3) [11, 12] 

𝑉𝑏 Brain tissue volume 1.1 (cm3) [13] 

𝑃𝐵𝐵𝐵 

BBB influx permeability 

coefficient to sodium (from blood 

to brain tissue) 

1.4 × 10−7  (cm s−1) [11] 

𝐴𝐵𝐵𝐵 Surface area of the BBB 140 (cm2 g−1) [11] 

𝑃𝐵𝐵𝐵
′  

BBB efflux permeability 

coefficient to sodium (from brain 

tissue to blood) 

1.35 × 10−7 cm s−1 Calculated 

𝑓𝑑 Sodium distribution factor 0.34  (cm3 g−1) [11] 

𝐷 
Diffusion coefficient of 

sodium in the brain ISF 

1.15 × 10−5 

(cm2 s−1) 
[14] 

𝑄𝑐𝑠𝑓 CSF flow rate 
3.6 × 10−5 

(cm3 s−1) 
[11] 

𝑃𝑣𝑏 

Permeability coefficient of the 

contact surface of brain tissue and 

ventricular system to sodium 

106  (cm s−1) 
A large 

value was used 

𝑃𝑠𝑏 

Permeability coefficient of the 

contact surface of brain tissue and 

subarachnoid space to sodium 

106  (cm s−1) 
A large 

value was used 

𝜆 ISF/brain volume fraction 0.2 (dimensionless) [11, 15] 

𝜌 Rat brain density 1 (g cm−3) [11] 

 

The parameters 𝑟𝑖 and 𝑟𝑜, which specify the boundaries of brain tissue in Eq. 3 and 

Figure 1b, were obtained via the relationships 

𝑉𝑣 =
4

3
𝜋𝑟𝑖

3                                                                                                                                        (5) 
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and 

𝑉𝑣 + 𝑉𝑏 =
4

3
𝜋𝑟𝑜

3,                                                                                                                             (6) 

where 𝑉𝑣 and 𝑉𝑏 represent the ventricular system volume and brain tissue volume, 

respectively. 𝑟𝑖 is the radius of the inner sphere representing the ventricular system, while 

𝑟𝑜 is the radius of the middle sphere that represents the outer boundary of the brain tissue 

(Fig 1b). The terms on the left-hand side of Eqs. 1 and 2 represent the rate of change of 

sodium concentration (mole ml−1) in the ventricular and subarachnoid CSF, respectively, 

while the term on the left-hand side of Eq. 3 represents the rate of change of sodium level 

(mole g−1) in the brain tissue. The four terms on the right-hand side of Eq. 1 represent 

sodium transport from the blood to the ventricular CSF, sodium movement from the 

ventricular CSF to the blood, exchange of sodium between the ventricular CSF and the brain 

tissue, and sodium loss from the ventricular system due to bulk flow of CSF from the 

ventricular system to the subarachnoid space, from left to right, respectively. The three 

terms on the right-hand side of Eq. 2 denote exchange of sodium between the subarachnoid 

CSF and the brain tissue, sodium input to the subarachnoid CSF due to the bulk flow of 

CSF, and sodium loss from the subarachnoid space due to CSF absorption into the blood, 

from left to right, respectively. The three terms on the right-hand side of Eq. 3 represent 

sodium transport from the blood to the brain tissue, sodium movement from the brain tissue 

to the blood, and diffusive transport of sodium across the brain tissue, from left to right, 

respectively.            

The initial conditions for the ODEs (Eqs. 1-2) are given by [16, 17] 

𝐶𝑣 = 𝐶𝑠 = 145 mM.                                                                                                                       (7) 

We have also assumed that 𝐶𝑏𝑙𝑜𝑜𝑑 is 140 mM at steady state [16]. 
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Rates of exchange of sodium at the boundaries of Eq. 3 are defined by  

 

𝑄𝑣 = 𝑃𝑣𝑏𝐴𝑣𝜆 (𝐶𝑣 −
𝐶𝑏𝑟(𝑡, 𝑟)

𝑓𝑑
)                                        𝑟 = 𝑟𝑖                                                  (8) 

𝑄𝑠 = 𝑃𝑠𝑏𝐴𝑠𝜆 (𝐶𝑠 −
𝐶𝑏𝑟(𝑡, 𝑟)

𝑓𝑑
) .                                       𝑟 = 𝑟𝑜                                                 (9) 

We used large values for 𝑃𝑠𝑏 and 𝑃𝑣𝑏  due to high permeability of the contact surfaces 

to sodium. Thus, the ISF sodium concentration is approximately in equilibrium with 

ventricular and subarachnoid sodium concentrations at the interface of brain tissue and CSF. 

It is important to note that passive transport of sodium across the boundaries of brain tissue 

and CSF is regulated by the concentration gradient between the CSF and brain ISF (Eqs. 7-

8). Brain ISF sodium concentration is estimated from brain tissue sodium level by Eq. 4. 𝐴𝑣 

and 𝐴𝑠 in Eqs. 8 and 9 represent the contact surface area of the brain tissue and the 

ventricular system, and the contact surface area of the brain tissue and the subarachnoid 

space, respectively. The contact surfaces were modeled as concentric spheres with the 

radiuses of 𝑟𝑖 and 𝑟𝑜 (Fig. 1). 𝐴𝑣 and 𝐴𝑠 were obtained by 

𝐴𝑣 = 4𝜋𝑟𝑖
2                                                                                                                                      (10) 

and 

𝐴𝑠 = 4𝜋𝑟𝑜
2                                                                                                                                     (11) 

where 𝑟𝑖 and 𝑟𝑜 were calculated from Eqs. 5 and 6 using the physiological values of 𝑉𝑣 and 

𝑉𝑏 (Table 1). In this model, 𝐴𝑣 and 𝐴𝑠 were obtained to be 1 and 5.5 cm2, respectively, 

consistent with experimental estimates of the contact surfaces areas [18, 19].   

𝑃𝐵𝐶𝑆𝐹𝐵
′  and 𝑃𝐵𝐵𝐵

′  were calculated assuming that the CSF sodium level is in equilibrium 

with the brain tissue sodium concentration at t=0 (steady state): 
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 𝐶𝑏𝑟(𝑡, 𝑟) = 𝐶𝑣 × 𝑓𝑑 = 𝐶𝑠 × 𝑓𝑑 .                                                 for          𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑜      (12) 

This assumption implies that there is no sodium exchange between the CSF and the 

brain tissue at the two contact surfaces of brain tissue and CSF at t=0 [20, 21]. The obtained 

values for 𝑃𝐵𝐶𝑆𝐹𝐵
′  and 𝑃𝐵𝐵𝐵

′  were 6.9 × 10−7  cm s−1  and 1.35 × 10−7 cm s−1, respectively. In 

order to assess the validity of the obtained value for 𝑃𝐵𝐵𝐵
′ , we calculated the rate constant 

for total sodium efflux from the brain tissue to the blood, defined by 
𝑃𝐵𝐵𝐵
′ 𝐴𝐵𝐵𝐵

𝑓𝑑
 [22]. The 

average value of 
𝑃𝐵𝐵𝐵
′ 𝐴𝐵𝐵𝐵

𝑓𝑑
 was 5.5 × 10−5  s−1 in this work, which is consistent with the value 

of 1 × 10−4  s−1 reported by Cserr et al [22]. 

In Section 3, we perform a local sensitivity analysis to investigate how perturbations in 

𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′  or 𝑃𝐵𝐵𝐵

′  affect brain and CSF sodium concentrations. We also perform 

a global sensitivity analysis (GSA) to further analyze the significance of variations in the 

permeability coefficients in controlling the levels of sodium in the CSF and brain tissue. To 

solve the system of differential equations described by Eqs 1-3, we discretize Eq. 3 with 

respect to the variable 𝑟 using the central difference approximation, and we approximate 

the time derivatives via backward differences. The main advantage of this fully implicit 

scheme, a.k.a. backward time central space, is that it is unconditionally stable.    

4.2.3. Global sensitivity analysis  

Global sensitivity analysis (GSA) is a numerical method designed to analyze the impacts 

of uncertain parameters on a model’s output. Compared to local sensitivity analysis, which 

assesses the changes of model response by making small perturbations to each parameter 

while keeping the remaining parameters unchanged, GSA analyzes the variations in the 

model output when all model parameters can vary simultaneously over specified ranges. In 
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other words, GSA investigates how the uncertainty of the model’s output is apportioned to 

variations in multiple model inputs. This feature makes GSA useful for understanding the 

contributions of uncertain model parameters to the variations of the model output. In this 

work, we use GSA to compare the importance of 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′  and 𝑃𝐵𝐵𝐵

′   in 

controlling brain tissue and CSF sodium concentrations, while taking into account the inter-

subject variability in all of the model’s parameters. We use a MATLAB toolbox for GSA, 

called SAFE [23]. We perform Sobol’s sensitivity analysis, which quantitively ranks the 

relative importance of the parameters by decomposing the model’s output variance into the 

contributions associated with each model’s input. Sobol’s method, which has been widely 

applied to complex systems biology and pharmacology models [24-32], calculates the first-

order and total-effect sensitivity indices for each model parameter. The first-order indices 

(𝑆𝑖) measure the individual contributions of each input to the variance of the model output, 

while the total-effect indices (𝑆𝑇𝑖) represent the total contribution of the input, including its 

first-order effect and all higher-order interactions. The total-effect sensitivity indices can be 

used to identify unimportant model parameters. Non-influential parameters can be fixed at 

any value within their range of variability without significantly affecting the model 

response. In Sobol’s sensitivity analysis technique, the model parameters that have total-

effect sensitivity indices below 0.01 are often considered non-influential [33, 34] (see 

Supplementary Information in Section 4.6 for further details).   

4.3. Results 

It is believed that brain sodium homeostasis is highly regulated by the BCSFB and the 

BBB. Elevated levels of sodium in the CSF and brain tissue of migraine sufferers can be 

due to variations in the influx and/or efflux permeability coefficients of the BCSFB and/or 
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the BBB to sodium. Heuristically, one may expect that the elevated CSF sodium 

concentration is due to increased transport of sodium from blood into CSF and/or decreased 

uptake of sodium from CSF into blood. Figure 2 shows the variations in brain tissue, 

ventricular and subarachnoid CSF sodium concentrations within 2 hours after either a 20% 

increase in the influx permeability coefficient of the BCSFB to sodium (𝑃𝐵𝐶𝑆𝐹𝐵), or a 20% 

decrease in the efflux permeability coefficient of the BCSFB to sodium (𝑃𝐵𝐶𝑆𝐹𝐵
′ ). 

 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

 

Figure 2. Variations of (a) 𝐶𝑣 after increasing 𝑃𝐵𝐶𝑆𝐹𝐵 by 20%, (b) 𝐶𝑠 after increasing 𝑃𝐵𝐶𝑆𝐹𝐵 

by 20%, (c) 𝐶𝑏𝑟 after increasing 𝑃𝐵𝐶𝑆𝐹𝐵 by 20%, (d) 𝐶𝑣 after decreasing 𝑃𝐵𝐶𝑆𝐹𝐵
′  by 20%, (e) 𝐶𝑠 

after decreasing 𝑃𝐵𝐶𝑆𝐹𝐵
′  by 20% (f) 𝐶𝑏𝑟 after decreasing  𝑃𝐵𝐶𝑆𝐹𝐵

′  by 20%. 

 

Ventricular CSF sodium concentration increases after a 20% rise in 𝑃𝐵𝐶𝑆𝐹𝐵 or a 20% 

decrease in 𝑃𝐵𝐶𝑆𝐹𝐵
′  (Figs. 2a and 2d). We assumed that sodium exchange between blood 

and CSF does not change blood concentration of sodium significantly, due to the large 

volume of blood compared to CSF. Thus, 𝐶𝑏𝑙𝑜𝑜𝑑 remains unchanged after changing the 

influx or efflux permeability coefficients of BCSFB to sodium. Figures 2c and 2f show that 

the elevated levels of sodium in the ventricular CSF lead to diffusion of sodium from CSF 

to brain tissue and distribution of sodium into the brain tissue over time [11, 35]. Sodium 

moves by bulk flow of CSF from the ventricular system to the subarachnoid space, where 

it can be exchanged between CSF and brain tissue. Subarachnoid CSF sodium concentration 

increases after increasing 𝑃𝐵𝐶𝑆𝐹𝐵 or decreasing 𝑃𝐵𝐶𝑆𝐹𝐵
′  by 20% (Figs. 2b and 2e). Our results 

indicate that ventricular CSF and subarachnoid CSF sodium concentration values at any 

given time point are more sensitive to variations of 𝑃𝐵𝐶𝑆𝐹𝐵 than of 𝑃𝐵𝐶𝑆𝐹𝐵
′ .. Similarly, brain 



  

 
132 

tissue sodium concentration values at any given time point and spatial location are more 

sensitive to changes of 𝑃𝑐𝑝 than of 𝑃𝑐𝑝
′ . These behaviors  can be explained by the observation 

that steady state loss of ventricular CSF sodium is largely due to bulk flow of CSF from the 

ventricular system into the subarachnoid space rather than to sodium uptake by blood across 

the BCSFB (Eq. 1 and physiological data in Table 1). However, the only source for sodium 

in the ventricular system is the choroid plexus epithelial cells, a.k.a BCSFB cells, at steady 

state. Thus, a 20% decrease in 𝑃𝐵𝐶𝑆𝐹𝐵
′  has a less significant impact than a 20% increase in 

𝑃𝐵𝐶𝑆𝐹𝐵 on CSF sodium content. It should be noted that we assume that there is no sodium 

exchange between the ventricular CSF and brain tissue at steady state (t=0).  

Similarly, one may expect that the elevated brain tissue sodium levels during migraine 

are due to increased sodium transport from blood to brain tissue and/or reduced sodium 

uptake from brain tissue into blood. Figure 3 depicts the changes in ventricular CSF, 

subarachnoid CSF and brain tissue sodium levels within 2 hours of either increasing the 

influx permeability coefficient of the BBB to sodium (𝑃𝐵𝐵𝐵) by 20%, or decreasing the 

efflux permeability coefficient of the BBB to sodium (𝑃𝐵𝐵𝐵
′ ) by 20%. 

  

(a) (b) 



  

 
133 

  

(c) (d) 

  

(e) (f) 

Figure 3. Variations of (a) 𝐶𝑣 after increasing 𝑃𝐵𝐵𝐵 by 20%, (b) 𝐶𝑠 after increasing 𝑃𝐵𝐵𝐵 by 20%, 

(c) 𝐶𝑏𝑟 after increasing 𝑃𝐵𝐵𝐵 by 20%, (d) 𝐶𝑣 after decreasing 𝑃𝐵𝐵𝐵
′  by 20%, (e) 𝐶𝑠 after decreasing 

𝑃𝐵𝐵𝐵
′  by 20% (f) 𝐶𝑏𝑟 after decreasing 𝑃𝐵𝐵𝐵

′  by 20% 

 

A 20% increase in 𝑃𝐵𝐵𝐵 or a 20% decrease in 𝑃𝐵𝐵𝐵
′  results in an accumulation of sodium 

in the brain tissue (Figs. 3c and 3f). The elevated levels of sodium in the brain tissue increase 

sodium transport from brain tissue to the ventricular system and subarachnoid space (Figs. 

3a, 3b, 3d and 3e). Our results indicate that brain tissue, ventricular CSF and subarachnoid 

CSF sodium levels are almost equally sensitive to variations in 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′ .  
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Figure 4 shows the sodium flux between the brain tissue and CSF at the interface of 

brain tissue and the ventricular system, and at the contact surface of brain tissue and the 

subarachnoid space, after perturbation of 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′  or 𝑃𝐵𝐵𝐵

′   by 20%. Our results 

indicate that sodium flux from the ventricular system to the brain tissue is larger than 

sodium flux from the subarachnoid space to the brain tissue.  

  

(a) (b) 

  

(c) (d) 

Figure 4. Comparison of sodium flux at the interface of the brain tissue and the ventricular system 

with sodium flux at the interface of the brain tissue and the subarachnoid space after (a) increasing 

𝑃𝐵𝐶𝑆𝐹𝐵, (b) decreasing 𝑃𝐵𝐶𝑆𝐹𝐵
′ , (c) increasing 𝑃𝐵𝐵𝐵 (d) decreasing 𝑃𝐵𝐵𝐵

′  by 20%. The positive sign 

of the flux indicates that sodium is diffusing from the CSF to the brain tissue, while the negative 

sign indicates that sodium is diffusing from the brain tissue to the CSF. 
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Figure 2 and Figure 3 compare the variations in 𝐶𝑣, 𝐶𝑠,  and 𝐶𝑏𝑟 when a single parameter 

(i.e. 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′  or 𝑃𝐵𝐵𝐵

′ ) is perturbed and the rest of the parameters remain 

unchanged. However, in the case of migraines, all influx and efflux permeability 

coefficients can potentially vary. Additionally, Table 1 shows the average values of the 

physiological model’s parameters. These values can change across a population of rats of 

the same type. Thus, we used GSA [23] to consider the effects of variations in all model 

parameters. In this regard, we assumed that physiological concentration of sodium in CSF 

and blood can vary within 5% of the in vitro values (i.e. 𝐶𝑣 = 𝐶𝑠 = 145 mM, 𝐶𝑏𝑙𝑜𝑜𝑑 =

140 mM), while the remaining independent model parameters (𝑃𝐵𝐶𝑆𝐹𝐵, 𝐴𝐵𝐶𝑆𝐹𝐵, 𝑉𝑠, 𝑉𝑣, 𝑉𝑏, 

𝑃𝐵𝐵𝐵, 𝐴𝐵𝐵𝐵, 𝑓𝑑, 𝐷, 𝑄𝑐𝑠𝑓, 𝜆, 𝜌) can vary within 25% of the in vitro values (Table 1). This is 

due to considering the impacts of intrinsic variations between a population of rats of the 

same type, and the effects of measurement errors in the estimations of physiological model 

parameters on our simulations. Following a uniform distribution, we sampled 105 sets of 

parameters within their ranges of variability. We then calculated the dependent parameters, 

i.e. 𝑃𝐵𝐶𝑆𝐹𝐵
′  and 𝑃𝐵𝐵𝐵

′  for each set of parameters, assuming that the model is at steady state 

at t=0. Each of these 105 sets of parameters characterizes one healthy rat with different 

physiological parameters. We then assumed that 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵 , 𝑃𝐵𝐶𝑆𝐹𝐵
′ , and 𝑃𝐵𝐵𝐵

′  can 

undergo pathophysiological changes within 50% of their control values due to migraine 

triggers. We performed a GSA to investigate the significance of pathophysiological 

variations of 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵 , 𝑃𝐵𝐶𝑆𝐹𝐵
′ , and 𝑃𝐵𝐵𝐵

′  in influencing ventricular sodium 

concentration during episodic migraines. The model output was defined as the percent 



  

 
136 

change of total ventricular sodium concentration within 2 hours after perturbations of 

physiological 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′ , and 𝑃𝐵𝐵𝐵

′ : 

Model Output= 
(
∫ 𝐶𝑣 𝑑𝑡
𝑡𝑚𝑎𝑥
0
𝑡𝑚𝑎𝑥

) − 𝐶𝑣(𝑡=0)

𝐶𝑣(𝑡=0)
 . 

Our results indicate that pathophysiological variation of 𝑃𝐵𝐶𝑆𝐹𝐵 is much more important 

than that of 𝑃𝐵𝐵𝐵 , 𝑃𝐵𝐶𝑆𝐹𝐵
′ , and 𝑃𝐵𝐵𝐵

′  in influencing ventricular CSF sodium concentration 

(Fig. 5). It is important to note that each permeability coefficient is defined at two states: 

physiological and pathophysiological. A given permeability coefficient (e.g. 𝑃𝐵𝐶𝑆𝐹𝐵) in the 

physiological and pathophysiological state is shown by 𝑃𝐵𝐶𝑆𝐹𝐵( 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙) and 

𝑃𝐵𝐶𝑆𝐹𝐵( 𝑝𝑎𝑡ℎ𝑜𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙), respectively. Variations in 

𝑃𝐵𝐶𝑆𝐹𝐵(𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 ) account for intrinsic variations between a population of rats of the 

same type and/or measurement errors in the estimations of the permeability coefficients. 

However, migraine triggers can cause a disturbance in sodium transport mechanisms at the 

BCSFB and/or BBB [36, 37]. This implies that migraine triggers can change physiological 

permeability coefficients. 𝑃𝐵𝐶𝑆𝐹𝐵(𝑝𝑎𝑡ℎ𝑜𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙) represents the extent of variations 

in 𝑃𝐵𝐶𝑆𝐹𝐵(𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙) due to migraine triggers. For a given rat with a given 

𝑃𝐵𝐶𝑆𝐹𝐵(𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙), different migraine triggers can change 𝑃𝐵𝐶𝑆𝐹𝐵(𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙) 

differently; these changes are represented by 𝑃𝐵𝐶𝑆𝐹𝐵(𝑝𝑎𝑡ℎ𝑜𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙). Our results 

indicate that variations of 𝑃𝐵𝐶𝑆𝐹𝐵(𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙) and 𝑃𝐵𝐵𝐵(𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙) are much less 

important than those of 𝑃𝐵𝐶𝑆𝐹𝐵(𝑝𝑎𝑡ℎ𝑜𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙) and 𝑃𝐵𝐵𝐵(𝑝𝑎𝑡ℎ𝑜𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙) in 

influencing the percent change of total ventricular sodium concentration during migraines. 

This is mainly because the model output was defined as the percent change of total 

ventricular CSF sodium concentration between the pathophysiological and physiological 
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states. These results suggest that the ventricular CSF sodium concentration is more sensitive 

to an alteration in homeostasis of the transporters which mediate sodium influx into CSF 

across the BCSFB than to a variation in homeostasis of the transporters which regulate 

sodium uptake from the CSF across the BCSFB. In addition, these results indicate that the 

BBB plays a much less important role than the BCSFB in regulation of the ventricular CSF 

sodium concentration. It is important to note that total-effect sensitivity indices, which 

account for total contribution of the inputs to variations in the model response, should be 

used to compare the significance of the model inputs in controlling the model output. 𝑃𝐵𝐶𝑆𝐹𝐵 

has a larger 𝑆𝑇𝑖 than 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′ , and 𝑃𝐵𝐵𝐵

′ , which indicates that 𝑃𝐵𝐶𝑆𝐹𝐵 is a more 

influential parameter in the model. 
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Figure 5. Sensitivity ranking of the model parameters. The model output was set to the time 

integral of 𝐶𝑣 within 2 hours after perturbation of the model’s parameters. The blue bars represent 

first-order sensitivity indices, while the green bars show the total-effect sensitivity indices. The 

error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of 

the mean values. 
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Total-effect sensitivity indices of some of the parameters are smaller than 0.01 (Fig. 5). 

This means that the variations of these parameters do not influence the variance of the model 

output significantly; thus these parameters can be fixed at arbitrary values within their 

ranges [33, 34]. Figure 6 demonstrates the rank order of the model parameters when the 

model output was defined as the percent change of total subarachnoid sodium concentration 

within 2 hours after perturbations of physiological  𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′ , and 𝑃𝐵𝐵𝐵

′  due to 

migraine triggers: 

Model Output= 
(
∫ 𝐶𝑠 𝑑𝑡
𝑡𝑚𝑎𝑥
0
𝑡𝑚𝑎𝑥

) − 𝐶𝑠(𝑡=0)

𝐶𝑠(𝑡=0)
. 

Our results indicate that subarachnoid CSF sodium concentration is highly sensitive to 

pathophysiological changes in 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  (Fig.6). The fact that 

pathophysiological variations of 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  are more important in influencing 

subarachnoid sodium concentration than ventricular sodium concentration (Figs. 5-6) is 

because variations in 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  not only can affect sodium exchange at the contact 

surface of subarachnoid CSF and brain tissue, but also can influence sodium exchange 

between the ventricular system and brain tissue, thus affecting the amount of sodium 

entering the subarachnoid space from the ventricular system.  
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Figure 6. Relative significance of the model parameters in controlling subarachnoid CSF 

sodium concentration (𝐶𝑠) within 2 hours of the perturbation onset (𝑡𝑚𝑎𝑥 = 2 h). The blue bars 

represent first-order sensitivity indices, while the green bars show the total-effect sensitivity 

indices. The error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence 

intervals) of the mean values. 
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We also performed a GSA to identify the influential parameters when the model output 

was the percent change in total level of brain sodium after 2 hours of perturbations of the 

physiological 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′ , and 𝑃𝐵𝐵𝐵

′  due to migraine triggers: 

Model Output= 
(∫ 𝐶𝑏𝑟 4𝜋𝑟

2𝑑𝑟
𝑟𝑜
𝑟𝑖

)−𝐶𝑏𝑟(𝑡=0)×(𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑟𝑎𝑖𝑛 𝑡𝑖𝑠𝑠𝑢𝑒 )

𝐶𝑏𝑟(𝑡=0)×(𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑟𝑎𝑖𝑛 𝑡𝑖𝑠𝑠𝑢𝑒 )
,                   t= 2 hr. 

Our results demonstrate that brain tissue sodium level is highly sensitive to 

pathophysiological variations in 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐵𝐵
′  and 𝑃𝐵𝐶𝑆𝐹𝐵

′  in order of decreasing 

sensitivity (Fig. 7). This result implies that sodium exchange between CSF and brain tissue 

at the contact surface of the ventricular system and brain tissue, as well as at the contact 

surface of the subarachnoid space and brain tissue can significantly influence brain sodium 

levels during migraine.  
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Figure 7. Relative importance of the model parameters in controlling brain tissue sodium 

levels within 2 hours of the perturbation onset (𝑡𝑚𝑎𝑥 = 2 h). The blue bars represent first-order 

sensitivity indices, while the green bars show the total-effect sensitivity indices. The error bars, 

shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of the mean 

values. 
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The above results were obtained after perturbing 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′ , and 𝑃𝐵𝐵𝐵

′  at t=0 

and keeping them unchanged during the experiment time, i.e. t= 2 h. In order to investigate 

the impact of total experiment time on our results, we repeated our numerical experiments 

using different total experiment times including t= 1min, t= 5 min, t= 10 min, t= 30 min,  t= 

1 h and t=3 h. Our results show that brain tissue, ventricular CSF and subarachnoid CSF 

sodium levels are mainly sensitive to pathophysiological variations in 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐵𝐵
′  

and 𝑃𝐵𝐶𝑆𝐹𝐵
′  (See Supplementary Information in Section 4.6: Figures S1-S18). The 

significance of pathophysiological changes of 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐵𝐵
′  and 𝑃𝐵𝐶𝑆𝐹𝐵

′   in 

influencing the ventricular CSF, subarachnoid CSF and brain tissue sodium levels at 

different total experiment times is shown in Table 2.   
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Table 2. Total-effect sensitivity indices of the permeability coefficients at different total 

experiment times  
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Our results demonstrate that the ventricular CSF sodium concentration is highly 

sensitive to pathophysiological variations in 𝑃𝐵𝐶𝑆𝐹𝐵 , independent of experiment duration 

time. However, brain tissue and subarachnoid CSF sodium levels are more sensitive to 

pathophysiological variations of 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  than pathophysiological variations  of 

𝑃𝐵𝐶𝑆𝐹𝐵 at short total experiment times (such as 1, 5, 10  and 30 minutes). Pathophysiological 

variations of 𝑃𝐵𝐶𝑆𝐹𝐵 become more important than variations of 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  in controlling 

brain tissue and subarachnoid CSF sodium concentrations at longer experiment times (such 

as 1,  2 and 3 hours). This implies that the BCSFB becomes more important in controlling 

brain tissue sodium homeostasis as time passes. This change in the significance of BCSFB 

and BBB in the regulation of brain tissue and subarachnoid CSF sodium levels over time is 

mainly due to the model structure, physiological model parameters and the model output 

expression. For instance, increasing brain tissue volume by two-fold (which is not realistic) 

makes the BBB permeability coefficients (𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′ ) the most sensitive parameters in 

controlling brain tissue and subarachnoid CSF sodium levels, independent of the duration 

of the experiment (data not shown). This trend is due also in part to the fact that the 

ventricular CSF, whose sodium content is largely regulated by the BCSFB, would have 

enough time to influence sodium levels of its downstream compartments, including the 

brain tissue and the subarachnoid space.    

To investigate the dynamics of sodium exchange between the CSF and brain tissue at 

the interface of brain tissue and the ventricular system, and at the contact surface of brain 

tissue and subarachnoid space during an episode of migraine, we randomly sampled 105 sets 

of parameters, following a uniform distribution over a 18-dimensional parameter space and 

compared the average absolute sodium flux (𝑞𝑣) between brain tissue and ventricular CSF, 
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with the average absolute sodium flux (𝑞𝑠) between the brain tissue and subarachnoid CSF. 

The average absolute fluxes 𝑞𝑣 and 𝑞𝑠 are defined by  

𝑞𝑣 =
∫ |𝑃𝑣𝑏𝜆(𝐶𝑣 −

𝐶𝑏𝑟(𝑡, 𝑟𝑖)
𝑉𝑏𝑟

)| 𝑑𝑡
𝑡𝑚𝑎𝑥
0

𝑡𝑚𝑎𝑥
                                                                                     (13) 

𝑞𝑠 =
∫ |𝑃𝑠𝑏𝜆(𝐶𝑠 −

𝐶𝑏𝑟(𝑡, 𝑟𝑜)
𝑉𝑏𝑟

)| 𝑑𝑡 
𝑡𝑚𝑎𝑥
0

𝑡𝑚𝑎𝑥
   ,                                                                                 (14) 

where 𝑡𝑚𝑎𝑥 = 2 h. Figure 8 shows the ratio of 𝑞𝑣 to 𝑞𝑠 for the 105 randomly sampled 

parameters. Our results indicate that the ratio of 𝑞𝑣 to 𝑞𝑠 is greater than 1 for the majority 

of the samples, which indicates that the absolute sodium flux at the interface of the 

ventricular system and the brain tissue is greater than the absolute sodium flux at the contact 

surface of the subarachnoid space and the brain tissue. Similar results were obtained for 

other total experiment times including 𝑡𝑚𝑎𝑥 = 10 min, 30 min, 1 h  (data not shown). 

 

Figure 8. The ratio of absolute sodium flux at the interface of the ventricular system and the 

brain tissue (𝑞𝑣) to absolute sodium flux at the interface of the subarachnoid space and the brain 
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tissue (𝑞𝑠). 10
5 points were sampled randomly following a uniform distribution to generate this 

Figure. 

 

 

4.4. Discussion 

Previous studies [2-5] have indicated that migraine sufferers have higher levels of CSF 

and brain tissue sodium than the control group. However, blood levels of sodium remain 

unchanged during migraine [2]. Under the hypothesis that these elevated sodium levels are 

due to variations in the influx and/or efflux permeability of the BCSFB and/or the BBB to 

sodium, we investigated the significance of variations in the influx and efflux permeabilities 

of the BCSFB and the BBB to sodium in influencing CSF and brain tissue sodium levels. 

In this regard, first we developed a computational model for sodium exchange between 

different brain compartments, i.e. blood, brain tissue, ventricular and subarachnoid CSF. 

The model presented in this paper is similar in some respects to that of Smith and Rapoport 

[11]. However, there are two major differences between our model and theirs. First, our 

model includes the ventricular system and subarachnoid space as separate compartments. 

Thus, our model can distinguish between the ventricular and subarachnoid CSF, as well as 

provide insight into the dynamics of sodium exchange between the CSF and brain tissue at 

the interface of brain tissue and the ventricular system, and at the contact surface of brain 

tissue and the subarachnoid space. Second, we have proposed a more realistic model of 

brain tissue compared to previous studies [11, 38, 39]. Unlike previous studies that modeled 

brain tissue as a rectangular sheet bathed on two opposite sides by CSF, we modeled brain 

tissue as the area between two concentric spheres. Concentric spheres are more similar to 

the real shape of a rat brain, which resembles an ellipsoid. As a result, the contact surface 
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area of the brain tissue and the subarachnoid space is larger than that of the brain tissue and 

the ventricular system in our model. Thus, sodium exchange between the CSF and brain 

tissue at the two contact surfaces, as well as sodium diffusion in the brain tissue have been 

modeled more accurately in this work than in previous studies.  

We performed a global sensitivity analysis to compare the significance of the BCSFB 

and the BBB in controlling CSF and brain sodium levels. Our results indicate that 

pathophysiological variations of the BCSFB influx permeability coefficient to sodium 

(𝑃𝐵𝐶𝑆𝐹𝐵) are more important than variations of the BCSFB efflux permeability coefficient 

(𝑃𝐵𝐶𝑆𝐹𝐵
′ ), the BBB influx permeability coefficient (𝑃𝐵𝐵𝐵) and the BBB efflux permeability 

coefficient (𝑃𝐵𝐵𝐵
′ ) to sodium in controlling ventricular CSF sodium concentrations. Brain 

tissue and subarachnoid CSF sodium levels are more sensitive to pathophysiological 

variations of 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  than to variations of 𝑃𝐵𝐶𝑆𝐹𝐵 when total experiment time is 1, 

5, 10  and 30 minutes, while 𝑃𝐵𝐶𝑆𝐹𝐵 becomes more important that 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  in 

influencing brain tissue and subarachnoid CSF sodium levels when total experiment time is 

1,  2 and 3 h. Overall, our results show that 𝑃𝐵𝐶𝑆𝐹𝐵 plays an important role in the regulation 

of brain sodium homeostasis. 𝑃𝐵𝐶𝑆𝐹𝐵 represents the net movement of sodium from blood to 

CSF, which is regulated by a variety of BCSFB sodium transporters such as Na+, K+-

ATPase [40-43], ENaC [40, 44] and NKCC1 [45]. Thus, variations in 𝑃𝐵𝐶𝑆𝐹𝐵 can be 

attributed to hyperactivity and/or hypoactivity of one or more of these sodium transporters. 

Our theoretical mechanism implies that the disturbed sodium homeostasis in the brain 

during a migraine is most likely due to overactivity of Na+, K+-ATPases at the BCSFB and 

the BBB [36]. Na+, K+-ATPase is a highly-conserved membrane protein which is expressed 

in all cells. One Na+, K+-ATPase mediates active transport of three sodium ions out of the 
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cell for every two potassium ions entering the cell against the concentration gradients. We 

believe that disturbed homeostasis of Na+, K+-ATPase plays a key role in the 

pathophysiology of migraine [37], as  many regulators of Na+, K+-ATPase such as estrogen, 

adrenaline, insulin [46, 47], dopamine [48, 49], glutamate [50], etc are involved in the 

pathophysiology of migraine (See [36] for a comprehensive review). Furthermore, there are 

several lines of evidence supporting that CSF secretion as well as sodium transport from 

the BCSFB cells, a.k.a choroid plexus epithelial cells, to CSF is mostly mediated by Na+, 

K+-ATPases, which are expressed on the CSF-facing (apical) membrane of the BCSFB cells 

[42, 51, 52]. It has been shown that intracerebroventricular infusion of ouabain, an Na+, K+-

ATPase inhibitor, at 10 µg/day decreases CSF sodium concentration by almost 8 mM in 

Wister rats on a high-salt diet [41]. Ouabain can also reduce sodium transport from blood 

to CSF by 34% and 60% in frogs and rabbits, respectively [42, 43]. Thus, not only can the 

altered homeostasis of BCSFB Na+, K+-ATPases be a potential cause of the elevated CSF 

sodium concentration in a migraine, but also BCSFB Na+, K+-ATPase could be a candidate 

drug target to correct the elevated levels of sodium in CSF of migraine sufferers, potentially 

treating migraine. This hypothesis needs to be tested experimentally for different migraine 

triggers. ENaC is another sodium transporter which can play a key role in the regulation of 

CSF sodium levels. ENaC mediates passive sodium transport along a concentration gradient 

across the BCSFB. In Wister rats, ENaC is expressed at both membranes of BCSFB cells 

with a higher density at the CSF-facing (apical) membrane compared to the blood-facing 

(basolateral) membrane [53, 54]. This suggests that ENaC may play a major role in sodium 

uptake from CSF into BCSFB cells [55]. It should be noted that sodium movement through 

ENaC is likely to be unidirectional; thus, variations in the activity levels of ENaC at the 
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apical membrane of BCSFB cells can potentially change 𝑃𝐵𝐶𝑆𝐹𝐵
′ , while variations in ENaC 

activity levels at the basolateral membrane of BCSFB cells can possibly change 𝑃𝐵𝐶𝑆𝐹𝐵. It 

is not known how the expression levels of ENaC on the different membranes of BCSFB 

cells are affected by migraine triggers. The other main BCSFB sodium transporter is 

NKCC1, which can regulate CSF production [56] and sodium movement from blood to CSF 

[45]. Overall, sodium transport from blood to CSF across the BCSFB is regulated by a 

variety of transporters, channels and proteins, whose interactions with each other are not 

well understood. Further experimental studies are needed to elucidate the potential effects 

of various migraine triggers on the activity and expression levels of BCSFB Na+, K+-

ATPase, ENaC and NKCC1.  

Our results suggest that the BBB can play a more important role than the BCSFB in the 

regulation of brain tissue and subarachnoid CSF sodium concentrations within 30 minutes 

of pathophysiological perturbations of 𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐵𝐵
′  and 𝑃𝐵𝐶𝑆𝐹𝐵

′ . 𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  were 

used in the current model to simulate the net movement of sodium from blood to brain 

tissue, and from brain tissue to blood, respectively. Variations in  𝑃𝐵𝐵𝐵 and 𝑃𝐵𝐵𝐵
′  can be 

attributed to altered homeostasis of the transporters, which mediate sodium movement 

across the BBB. The principal routes for sodium entry across the luminal membrane of the 

BBB endothelial cells are likely to be NKCC1 [57, 58] and NHE1,2 [59], while sodium is 

mainly pumped out of the BBB endothelial cells into brain ISF by Na+, K+-ATPase [8, 60, 

61]. It has been suggested that sodium transport from the brain ISF into the BBB endothelial 

cells is mainly mediated by sodium-linked transporters of organic solutes, including those 

for amino acids [8]. NHE 1,2 can also potentially contribute to sodium entry across the ISF-

facing (abluminal) membrane of endothelial cells. However, the impacts of migraine 
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triggers on the activity and expression levels of these sodium transporters are yet to be 

understood. Our results suggest that alterations of BBB sodium transporters homeostasis 

have more significant effects than variations of BCSFB sodium transporters homeostasis on 

brain tissue sodium levels within 30 minutes of the perturbation onset. It should be noted 

that our results were obtained using GSA, which gives us some insight into the importance 

of influx and efflux permeability of the BCSFB and the BBB to sodium in controlling CSF 

and brain tissue sodium by covering the entire parameter space, where all model parameters 

can vary within the specified ranges. Thus, in a rat model, the intrinsic variations between 

a population of rats of the same type were considered in this work.  

This study has some limitations. First, for simplicity, we modeled the rat brain with 

three spheres. However, the real geometry of a rat brain is more complicated. A more 

realistic model of the brain and ventricles can provide a better understanding of the 

phenomenon under study. Second, we modeled the CSF with two well-mixed 

compartments, i.e. the ventricular system and the subarachnoid space. However, CSF flows 

through the lateral ventricles, the third ventricle, the cerebral aqueduct, the fourth ventricle, 

the cisterns and the subarachnoid space. Sodium concentration can vary slightly to 

significantly from one ventricle to another one and to the subarachnoid space. Thus, the 

current model can be improved to include all of the ventricles and subarachnoid space as 

separate compartments. CSF flow can be modeled using various numerical methods [62-

65]. However, further information regarding the dynamics of sodium transport between 

different ventricles and adjacent brain tissues is needed.  Furthermore, we assumed that 

there is no rate-limiting diffusion between the CSF and brain tissue at the two contact 

surfaces of the CSF and brain tissue. This results in instantaneous equilibrium between CSF 
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sodium concentration and brain ISF sodium concentration at the contact surface of brain 

tissue and CSF [11]. This assumption may not be true for some ependymal regions such as 

those in the third ventricle as it has been shown that benzamil, an ENaC blocker can prevent 

sodium movement from the third ventricle CSF into brain tissue across the ependyma [55]. 

Third, for simplicity we assumed that the value of the sodium distribution factor (𝑓𝑑) 

remains constant after perturbations of the BCSFB and the BBB permeability coefficients 

to sodium. Thus, we estimated the ISF sodium concentration by 
𝐶𝑏𝑟

𝑓𝑑
 (Eq. 4). This assumption 

implies that the ratio of extracellular sodium concentration to intracellular sodium 

concentration remains unchanged at any time after perturbations of the permeability 

coefficients. In other words, sodium is always distributed between the ISF and the brain 

cells in the ratio of their physiological sodium contents. Previous studies made a somewhat 

similar assumption to estimate the ISF sodium concentration from brain tissue sodium 

levels, using the cerebral distribution volume of sodium [11]. The physiological value of 𝑓𝑑 

was found to be 0.34 ml/g using the average physiological ISF sodium concentration of 145 

mM [16] and the average brain tissue sodium concentration of 50 mM (=50 × 10−6 mol/g) 

[66]. The obtained value of 0.34 ml/g for 𝑓𝑑 in this work is the same as the value of the 

cerebral distribution volume of sodium [11]. The dynamics of sodium exchange between 

the brain cells and the ISF can be better understood by adding the brain cells as a new 

compartment to the current model. Our model can be expanded to include brain cells once 

more information becomes available regarding the permeability coefficients of different 

types of brain cell to sodium. One approach to modeling of dynamic sodium exchange 

between the brain cells and the ISF is to use neuron models which are based on Hodgkin-

Huxley type dynamics and extended to include time-dependent intracellular and 
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extracellular sodium concentration [67-69]. These dynamic models include differential 

equations for concentration of sodium, potassium and chloride. However, coupling these 

models with the current model may require modeling of further mechanisms that regulate 

potassium and chloride in the CSF and ISF. Fourth, we perturbed  𝑃𝐵𝐶𝑆𝐹𝐵, 𝑃𝐵𝐵𝐵, 𝑃𝐵𝐶𝑆𝐹𝐵
′ , 

and 𝑃𝐵𝐵𝐵
′  at t=0 and kept them unchanged during the experiment time. However, in reality 

the BCSFB and the BBB permeability coefficients likely change over time. Thus, the model 

presented in this study can be used to study the contribution of the BCSFB and the BBB to 

variations in the brain tissue and CSF sodium concentrations once there is more information 

about time-dependent variations of the BBB and BCSFB permeabilities to sodium during 

an episode of migraine with a particular trigger. Fifth, we assumed that diffusion is the 

major mechanism of sodium movement in the brain tissue. Although there are several lines 

of evidence supporting the existence of a convective transport mechanism called the 

glymphatic system in the brain [9, 10], several aspects of glymphatic circulation, including 

whether interstitial transport is propagated by convective flow or diffusion [70, 71], the 

identity of the ISF bulk flow driving forces [72, 73], and the role of astrocyte water 

permeability/aquaporin4 [71] are still controversial. Furthermore, it is not well understood 

how the proposed transport mechanisms are affected during migraine and how these 

mechanisms interact with the BBB to regulate ionic homeostasis in the brain. In this work, 

we ignored sodium transport between the CSF and brain ISF via convection, as it has been 

shown that diffusion (without convection) in the brain tissue is enough to account for many 

experimental transport studies in the brain parenchyma [71]. Intuitively, we think that 

adding the convective CSF transport from the subarachnoid space to the brain ISF, based 

on the proposed glymphatic circulation, will increase the effects of subarachnoid CSF (in 
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general CSF) on the brain tissue sodium levels, as the convective transport mechanism 

allows more sodium to be transported in a shorter amount of time compared to diffusive 

transport. Thus, the BCSFB would become more important in controlling brain tissue 

sodium levels. However, the exact extent of the contribution of the glymphatic system to 

the regulation of brain sodium homeostasis depends on not only the dynamical properties 

of the glymphatic system such as the rate of glymphatic flow, the glymphatic efflux 

pathways and the ISF bulk flow driving force, but also the dynamic interactions between 

the glymphatic flow, the BBB and brain diffusive transport mechanisms. The current model 

can be expanded to include the convective CSF flow from the subarachnoid space to brain 

ISF once more information regarding the contribution of the glymphatic flow to the 

regulation of brain sodium homeostasis becomes available. Finally, we ignored water fluxes 

between the model compartments. Thus, the volumes of the model compartments remain 

unchanged during the experiment time. This is because variations of the permeability 

coefficients within the specified ranges in this study result in gradual changes in the brain 

ISF sodium concentration, which suggests that the ISF osmolality changes gradually. The 

gradual variations in the ISF osmolality give the brain cells enough time to adjust to the 

changes in the extracellular space; so that they can minimize the variations in their volume 

through regulating the influx and efflux of osmotically active solutes between the 

intracellular and extracellular fluids. Previous in vitro studies showed that the cultured 

cerebellar neurons and C6 rat glioma cells can exhibit isovolumetric regulation when the 

extracellular osmolality changes at a rate less than or equal to 1.8 and 3 mOsmol/kg/min, 

respectively [74, 75]. The maximum possible rate of change of ISF sodium concentration 

in this work is 1.5 mM/min, equivalent to 1.5 mOsmol/kg/min.  Thus, we believe that the 
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brain cells, which make up 80% of total volume of the brain can significantly maintain their 

volume under the assumptions/conditions in our numerical simulation. This argument is in 

agreement with another experimental observation which suggests that a 50% decrease in 

the activity levels of Na+, K+-ATPase on the brain microvessels does not change total water 

content in the brain significantly [76]. Assuming that the brain tissue volume remains almost 

unchanged in this work, one can conclude that the CSF volume remains almost constant, 

due to the rigid confines of the skull. We have also assumed that the CSF secretion rate 

remains unchanged after pathophysiological variations of the influx and/or efflux 

permeability coefficients of the BCSFB to sodium. Although it has been suggested that 

there is a positive correlation between the CSF secretion and sodium transport rates across 

the BCSFB [8], it is not known how and to what extent water movement is linked to sodium 

transport in the BCSFB during migraine. Migraine is accompanied with a complex chain of 

biochemical changes in the CSF and brain which may contribute, together with sodium, to 

regulation of water movement across the BCSFB. For instance, it has been shown that CSF 

(and plasma) content of organic osmolytes such as taurine and glutamate, which can 

significantly regulate brain cell volume homeostasis [77, 78], changes during migraine [79-

82]. However, it is yet to be determined how the variations in organic osmolyte levels can 

influence the osmotically driven water transport across the BCSFB. Thus, future 

experimental studies are needed to explore whether/how/to what extent the water movement 

rate depends on the sodium transport rate during migraine. The results presented in this 

work may vary depending on how the CSF flow rate changes during migraine. The current 

model can be extended to include dynamic water movement across the BCSFB once further 
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information regarding the extent to which water movement is linked to sodium transport 

during migraine becomes available, 

The fact that the CSF and brain tissue sodium levels are higher in migraine and in an 

analogue of migraine in a rat model than the control groups [2, 3] has relevance to the pain 

of migraine, since increasing extracellular sodium concentration immediately increases the 

firing rate of primary cultures of neurons [7]. We propose that the increasing sodium 

concentration mainly arises from the BCSFB in the cerebral ventricles due to overactivity 

of Na+, K+-ATPases. When the higher CSF sodium concentration emerges from the fourth 

ventricle via the foramina of Luschka and Magendie, it meets the unmyelinated trigeminal 

nerves and the trigeminal ganglions. Unlike the cranial nerves such as the facial nerve that 

are protected by their myelin, we predict that firing of the trigeminal nerve would increase 

in the presence of the elevated sodium concentration, with trigeminal pain as a consequence. 

Moreover, we also predict that this CSF efflux from the fourth ventricle may well be 

lateralized through one of the small foramina of Luschka, and hence would give rise to 

unilateral trigeminal stimulation. An alternative interpretation to the primary effect of CSF 

sodium in the initiation of migraine is that the sodium is a consequence of migraine. We 

consider this to be less likely, since we have recently demonstrated that specific inhibition 

of the BCSFB Na+, K+-ATPase protected the animal migraine model from nitroglycerin-

triggered sensitization [37].   

It is important to note that the altered Na+, K+-ATPase activity simultaneously shifts 

sodium and potassium. However, we have not modeled potassium since we originally found 

that sodium concentration changed in CSF, while potassium concentration did not change 

during migraines [2]. Furthermore, the potassium concentration in the ISF and CSF is 
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maintained lower than in the remainder of the body by active astrocyte reuptake and, if 

potassium is not kept down, neurons will undergo apoptosis [83]. The mechanisms that 

regulate extracellular potassium concentration are substantially independent from Na+, K+-

ATPase-driven changes in sodium. The current model can be improved to include more 

mechanisms once more experimental data for multiple ion and water fluxes and their 

regulation in conjunction with sodium becomes available.  

4.5. Conclusions 

Our proposed mechanism for migraine suggests that a disturbance in brain sodium 

homeostasis causes migraine [36]. This sodium dysregulation is most likely due to 

variations in the influx and/or efflux permeability of the BCSFB and/or the BBB to sodium. 

The influx and efflux permeability of the BCSFB and the BBB to sodium represent the net 

effect of all transporters, channels and enzymes which contribute to movement of sodium 

across the interfaces. Thus, variations of the permeability coefficients can be caused by 

altered homeostasis of one or some of the sodium transport mechanisms at the interfaces. 

Unfortunately, understanding migraine pathophysiology is difficult, not only because the 

effects of various triggers on permeability of the BCSFB and the BBB to sodium are not 

known, but also because migraines have different triggers in different people. To approach 

this problem, we used mechanistic modeling together with global sensitivity analysis (GSA) 

to assess the relative importance of the BCSFB and the BBB in controlling CSF and brain 

tissue sodium levels. GSA provides insight into the significance of the BCSFB and the BBB 

in the regulation of brain sodium concentration when the exact extents of variations in the 

influx and efflux permeability coefficients of the BCSFB and the BBB to sodium are 

unknown. Our results show that the ventricular CSF sodium concentration is highly 
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influenced by pathophysiological variations in the influx permeability coefficient of the 

BCSFB to sodium. Brain tissue and subarachnoid CSF sodium levels are more sensitive to 

pathophysiological variations in the BBB permeability coefficients than the BCSFB 

permeability coefficients to sodium at shorter total experiment times (such as 1,5, 10 and 

30 minutes), while the BCSFB becomes more important that the BBB in influencing total 

brain tissue and subarachnoid CSF sodium levels at longer experiment times (such as 1, 2 

and 3 h). These results suggest that the efficacy of different migraine treatment strategies 

may depend on the time elapsed from migraine onset. This prediction needs to be tested 

experimentally for different models of migraines. This study prompts the hypothesis that 

increased influx permeability of the BCSFB to sodium caused by altered homeostasis of the 

enzymes which transport sodium from blood to CSF is the potential cause of elevated brain 

sodium levels in migraines. This hypothesis needs to be tested experimentally. The current 

model can be used to simulate sodium transport across the BBB, the BCSFB and the 

ependymal surfaces for a particular migraine trigger, given that the effects of the migraine 

trigger on the BBB and the BCSFB permeabilities are known. Further studies on the activity 

levels of different BCSFB and BBB sodium transporters during migraine episodes with 

different triggers can help better understand migraine pathophysiology. 

4.6. Supplementary Information  

4.6.1. Global Sensitivity Analysis 

In this work, we used a MATLAB toolbox called SAFE [23] to perform a global 

sensitivity analysis (GSA). SAFE implements several GSA methods such as the Elementary 

Effects Test, Regional Sensitivity Analysis, and Sobol's technique. Sobol’s method is a 

variance-based global sensitivity analysis technique which evaluates the sensitivity of the 
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solutions with respect to the model parameters as well as the interactions between different 

parameters. Using the principles of variance decomposition, Sobol’s method ranks the 

parameters in terms of their importance. Given an integrable function 𝑓 over a p-

dimensional parameter space Ω𝑝, 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑝)                                                                                                                      (S1)  

Each parameter can vary within a finite range. Sobol’s method considers expansion of the 

response into a set of functions of increasing dimensionality, 

𝑓(𝑥) = 𝑓0 +∑𝑓𝑖

𝑝

𝑖=1

+∑∑𝑓𝑖𝑗

𝑝

𝑗>𝑖

𝑝

𝑖=1

+⋯+ 𝑓123…𝑝 ,                                                                     (S2) 

where each individual term is a function of the parameters in its index. The total variance 

of the function output is defined by 

𝐷(𝑦) = ∫ 𝑓2(𝑥) 𝑑𝑥 − ( ∫ 𝑓(𝑥) 𝑑𝑥

Ω𝑝

)

2

Ω𝑝

.                                                                               (S3) 

Sobol’s technique is based on decomposition of the total variance 𝐷 into partial variances 

indicating the contributions from effects of individual parameters and combined effects of 

pairs of parameters. This decomposition is accomplished using the expansion of 𝑓 into 

terms of increasing dimensions (Eq. S2), 

𝐷(𝑦) =∑𝐷𝑖(𝑦)

𝑝

𝑖=1

+∑∑𝐷𝑖𝑗(𝑦)

𝑝

𝑗>𝑖

𝑝

𝑖=1

+⋯+ 𝐷123…𝑝(𝑦) .                                                        (S4) 

According to Sobol’s method, the first-order sensitivity index for each parameter is given 

by 

𝑆𝑖 =
𝐷𝑖(𝑦)

𝐷(𝑦)
 ,                                                                                                                                     (S5) 

The first-order sensitivity index accounts for the main individual contribution of each model 

parameter to the variance of the model output. The Sobol’s total-effect index, on the other 
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hand, represents total contribution of the input to the response variation. The total-effect 

index for parameter 𝑥𝑖  is calculated by the sum of all sensitivity indices which have 𝑖 in 

their index 

𝑆𝑇𝑖 = 𝑆𝑖 +∑𝑆𝑖𝑗
𝑖≠𝑗

+ ∑ 𝑆𝑖𝑗𝑙
𝑖≠𝑗,𝑖≠𝑙,𝑗<𝑙

+⋯                                                                                    (S6) 

Based on Sobol’s approach, the necessary and sufficient condition for parameter 𝑥𝑖 to be a 

noninfluential factor is 𝑆𝑇𝑖 = 0. However, previous studies have indicated that a parameter 

can be considered noninfluential if its total-effect sensitivity index is smaller than 0.01, and 

significantly smaller than total-effect sensitivity indices of the rest of the parameters [33, 

34, 84-85].  
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Figure S1. Relative significance of the model parameters in controlling ventricular CSF sodium 

concentration (𝐶𝑣) within 3 hours of the perturbation onset (𝑡𝑚𝑎𝑥 = 3 h). The blue bars represent 

first-order sensitivity indices, while the green bars show the total-effect sensitivity indices. The 

error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of 

the mean values. 
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Figure S2. Relative significance of the model parameters in controlling ventricular CSF sodium 

concentration (𝐶𝑣) within 1 hour of the perturbation onset (𝑡𝑚𝑎𝑥 = 1 h). The blue bars represent 

first-order sensitivity indices, while the green bars show the total-effect sensitivity indices. The 

error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of 

the mean values. 
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Figure S3. Relative significance of the model parameters in controlling ventricular CSF sodium 

concentration (𝐶𝑣) within 30 minutes of the perturbation onset (𝑡𝑚𝑎𝑥 = 30 m). The blue bars 

represent first-order sensitivity indices, while the green bars show the total-effect sensitivity 

indices. The error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence 

intervals) of the mean values. 
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Figure S4. Relative significance of the model parameters in controlling ventricular CSF sodium 

concentration (𝐶𝑣) within 10 minutes of the perturbation onset (𝑡𝑚𝑎𝑥 = 10 min). The blue bars 

represent first-order sensitivity indices, while the green bars show the total-effect sensitivity 

indices. The error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence 

intervals) of the mean values. 
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Figure S5. Relative significance of the model parameters in controlling ventricular CSF sodium 

concentration (𝐶𝑣) within 5 minutes of the perturbation onset (𝑡𝑚𝑎𝑥 = 5 min). The blue bars 

represent first-order sensitivity indices, while the green bars show the total-effect sensitivity 

indices. The error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence 

intervals) of the mean values. 
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Figure S6. Relative significance of the model parameters in controlling ventricular CSF sodium 

concentration (𝐶𝑣) within 1 minute of the perturbation onset (𝑡𝑚𝑎𝑥 = 1 min). The blue bars 

represent first-order sensitivity indices, while the green bars show the total-effect sensitivity 

indices. The error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence 

intervals) of the mean values. 
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Figure S7. Relative significance of the model parameters in controlling subarachnoid CSF sodium 

concentration (𝐶𝑠) within 3 hours of the perturbation onset (𝑡𝑚𝑎𝑥 = 3 h). The blue bars represent 

first-order sensitivity indices, while the green bars show the total-effect sensitivity indices. The 

error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of 

the mean values. 
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Figure S8. Relative significance of the model parameters in controlling subarachnoid CSF sodium 

concentration (𝐶𝑠) within 1 hour of the perturbation onset (𝑡𝑚𝑎𝑥 = 1 h). The blue bars represent 

first-order sensitivity indices, while the green bars show the total-effect sensitivity indices. The 

error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of 

the mean values. 
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Figure S9. Relative significance of the model parameters in controlling subarachnoid CSF sodium 

concentration (𝐶𝑠) within 30 minutes of the perturbation onset (𝑡𝑚𝑎𝑥 =  30 min). The blue bars 

represent first-order sensitivity indices, while the green bars show the total-effect sensitivity 

indices. The error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence 

intervals) of the mean values. 



  

 
170 

 

Figure S10. Relative significance of the model parameters in controlling subarachnoid CSF 

sodium concentration (𝐶𝑠) within 10 minutes of the perturbation onset (𝑡𝑚𝑎𝑥 = 10 min). The blue 

bars represent first-order sensitivity indices, while the green bars show the total-effect sensitivity 

indices. The error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence 

intervals) of the mean values. 
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Figure S11. Relative significance of the model parameters in controlling subarachnoid CSF 

sodium concentration (𝐶𝑠) within 5 minutes of the perturbation onset (𝑡𝑚𝑎𝑥 = 5 min). The blue 

bars represent first-order sensitivity indices, while the green bars show the total-effect sensitivity 

indices. The error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence 

intervals) of the mean values. 
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Figure S12. Relative significance of the model parameters in controlling subarachnoid CSF 

sodium concentration (𝐶𝑠) within 1 minute of the perturbation onset (𝑡𝑚𝑎𝑥 = 1 min). The blue 

bars represent first-order sensitivity indices, while the green bars show the total-effect sensitivity 

indices. The error bars, shown in red, indicate the bootstrap confidence intervals (95% confidence 

intervals) of the mean values. 
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Figure S13. Relative importance of the model parameters in controlling brain tissue sodium levels 

within 3 hours of the perturbation onset (𝑡𝑚𝑎𝑥 = 3 h). The blue bars represent first-order 

sensitivity indices, while the green bars show the total-effect sensitivity indices. The error bars, 
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shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of the mean 

values. 

 

 

 

Figure S14. Relative importance of the model parameters in controlling brain tissue sodium levels 

within 1 hour of the perturbation onset (𝑡𝑚𝑎𝑥 = 1 h). The blue bars represent first-order sensitivity 



  

 
175 

indices, while the green bars show the total-effect sensitivity indices. The error bars, shown in red, 

indicate the bootstrap confidence intervals (95% confidence intervals) of the mean values. 

 

Figure S15. Relative importance of the model parameters in controlling brain tissue sodium levels 

within 30 minutes of the perturbation onset (𝑡𝑚𝑎𝑥 = 30 min). The blue bars represent first-order 

sensitivity indices, while the green bars show the total-effect sensitivity indices. The error bars, 
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shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of the mean 

values. 

 

Figure S16. Relative importance of the model parameters in controlling brain tissue sodium levels 

within 10 minutes of the perturbation onset (𝑡𝑚𝑎𝑥 = 10 min). The blue bars represent first-order 

sensitivity indices, while the green bars show the total-effect sensitivity indices. The error bars, 
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shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of the mean 

values. 

 

Figure S17. Relative importance of the model parameters in controlling brain tissue sodium levels 

within 5 minutes of the perturbation onset (𝑡𝑚𝑎𝑥 = 5 min). The blue bars represent first-order 

sensitivity indices, while the green bars show the total-effect sensitivity indices. The error bars, 
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shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of the mean 

values. 

 

 

Figure S18. Relative importance of the model parameters in controlling brain tissue sodium levels 

within 1 minute of the perturbation onset (𝑡𝑚𝑎𝑥 = 1 min). The blue bars represent first-order 

sensitivity indices, while the green bars show the total-effect sensitivity indices. The error bars, 
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shown in red, indicate the bootstrap confidence intervals (95% confidence intervals) of the mean 

values. 
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