UC Berkeley

UC Berkeley Previously Published Works

Title

Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling

Permalink

https://escholarship.org/uc/item/5sm9v2h4

Journal

Geology, 45(8)

ISSN

0091-7613

Authors

Swanson-Hysell, Nicholas L Macdonald, Francis A

Publication Date

2017

DOI

10.1130/g38985.1

Supplemental Material

https://escholarship.org/uc/item/5sm9v2h4#supplemental

Peer reviewed

1 Tropical weathering of the Taconic orogeny as a driver for

2 Ordovician cooling

- 3 Nicholas L. Swanson-Hysell¹ and Francis A. Macdonald²
- ⁴ Department of Earth and Planetary Science, University of California, Berkeley,
- 5 California 94720-4767, USA
- 6 ²Department of Earth and Planetary Sciences, Harvard University, Cambridge,
- 7 Massachusetts 02138, USA

8 ABSTRACT

9

10

11

12

13

14

15

16

17

18

19

20

21

22

The Earth's climate cooled through the Ordovician Period leading up to the Hirnantian glaciation. Increased weatherability of silicate rocks associated with topography generated on the Appalachian margin during the Taconic orogeny has been proposed as a mechanism for Ordovician cooling. However, paleogeographic reconstructions typically place the Appalachian margin within the arid subtropics, outside of the warm and wet tropics where chemical weathering rates are highest. In this study we reanalyze the paleomagnetic database and conclude that Ordovician constraints from cratonic Laurentia are not robust. Instead, we use paleomagnetic data from well-dated volcanic rocks in the accreting terranes to constrain Laurentia's position given that the Appalachian margin was at, or equatorward of, the paleolatitude of these terranes. To satisfy these allochthonous data, Laurentia must have moved toward the equator during the Ordovician such that the Appalachian margin was within 10° of the equator by 465 Ma. This movement into the tropics coincided with the collision and exhumation of the Taconic arc system, recorded by a shift in neodymium isotope data from shale on the

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G38985.1

Appalachian margin to more juvenile values. This inflection in detrital neodymium
isotope values precedes a major downturn in global seawater strontium isotopic values by
more than one million years, as would be predicted from a change in weathering input
and the relatively long residence time of strontium in the ocean. These data are consistent
with an increase in global weatherability associated with the tropical weathering of mafic
and ultramafic lithologies exhumed during the Taconic arc-continent collision. A Taconic
related increase in weatherability is a viable mechanism for lowering atmospheric CO ₂
levels through silicate weathering contributing to long-term Ordovician cooling.
INTRODUCTION
Ordovician strata record the transition from an Early Ordovician ice-free world to
end-Ordovician glaciation and mass extinction (Cooper and Sadler, 2012). Several
hypotheses have been proposed to account for this cooling and the initiation of glaciation
including: increased carbon burial (Brenchley et al., 1994), aerosol release from
volcanism (Buggisch et al., 2010), decreased volcanic outgassing (McKenzie et al.,
2014), increased silicate weathering due to topography associated with the Taconic
orogeny (Kump et al., 1999), and increased weathering of fresh volcanic rocks (Young et
al., 2009). Oxygen isotope data from brachiopods and conodonts indicate that Hirnantian
glaciation is the culmination of longer term cooling from 480 to 445 Ma (Trotter et al.,
2008; Veizer and Prokoph, 2015). Although short-term perturbations such as increased
organic carbon burial inferred from positive carbon isotope excursions, changes in ocean
circulation, or sulfur aerosol release could account for transient cooling associated with
the Hirnantian glacial maximum, tectonic changes associated with long-term changes to
CO ₂ sources or sinks are required to drive ~35 m.y. of cooling. An increase in

46	global weatherability can lead to CO ₂ levels decreasing through increased silicate
47	weathering, associated delivery of alkalinity to the ocean, and sequestration of
48	bicarbonate in chemical sediments. The silicate weathering feedback can lead to
49	stabilization at a lower steady-state CO ₂ level (Kump et al., 1999).
50	Arc-continent collision is a tectonic process that can combine the mechanisms for
51	cooling outlined here and lead to a decrease in volcanic outgassing through the death of
52	an arc, and an increase in silicate weathering through increased topography and the
53	exhumation of highly weatherable mafic and ultramafic rocks (Reusch and Maasch,
54	1998; Jagoutz et al., 2016). Arc-continent collision associated with the Taconic orogeny
55	has been suggested to be associated with Ordovician cooling (Reusch and Maasch, 1998),
56	but paleogeographic reconstructions typically place the Taconic arc system outside of the
57	tropic weathering belt and within the arid subtropics (e.g., Mac Niocaill et al., 1997;
58	Domeier, 2016; Torsvik and Cocks, 2017). Modern evaporite belts and the paleolatitude
59	of evaporites constrain the arid subtropics to be persistently between latitudes of 15° and 35°
60	(Evans, 2006). Given that weathering rates are strongly dependent on temperature and
61	precipitation, and that weathering rates within basaltic watersheds in the tropics are
62	approximately an order of magnitude higher than those in mid-latitudes (Dessert et al.,
63	2003), such a subtropical position would likely preclude major CO ₂ drawdown associated
64	with arc-continent collision (Jagoutz et al., 2016). Consequently, the reconstruction of the
65	paleolatitude of the orogeny is critical to the hypothesis that an increase in silicate
66	weatherability associated with the Taconic orogeny drove a portion of Ordovician
67	cooling. Did the Taconic arc-continent collision occur in the arid subtropics or in the wet
68	tropics?

Journal: GEOL: Geology DOI:10.1130/G38985.1

TECTONICS OF THE TACONIC OROGENY

The Taconic orogeny encompasses Ordovician collisional and accretionary events
between volcanic arcs that formed within the Iapetus Ocean and the Appalachian margin
of Laurentia. The Taconic orogeny has been separated into three broad phases (van Staal
and Barr, 2012): Taconic 1 (495-488 Ma) includes local amphibolite-grade
metamorphism in the arc terranes; Taconic 2 (488–461 Ma) spans the collision of the
leading edge of the Taconic arc system with distended fragments and promontories of the
Laurentian margin and the initiation of north-directed subduction (Fig. 1); and Taconic 3
(461-445 Ma) comprises later arc accretion events. By ca. 465 Ma, amalgamated arc
terranes and fragments of the margin were thrust onto Laurentia, and delivered arc
detritus, including detrital chromite, into marginal basins (e.g., Hiscott, 1978; Macdonald
et al., 2017).
The colliding Taconic arc system extended west (paleocoordinates in Fig. 1) into
the southern Appalachians as far as Alabama (Hibbard, 2000), and east along the
Greenland margin to Ellesmere Island (Trettin, 1987). This elongate east-west exposure
of the arc system was all within a similar latitude band (Fig. 1).
PALEOGEOGRAPHY
Concerted efforts over decades of integrating geologic and paleomagnetic data
have led to an understanding that from the Cambrian into the Ordovician, Laurentia's
Appalachian margin was oriented east-west as the northern boundary of the Iapetus
Ocean (Mac Niocaill et al., 1997). Although paleogeographic models typically place this
margin south of 20°S in the relatively arid subtropics, this position in the Ordovician is

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G38985.1

92	poorly constrained due to a lack of reliable paleomagnetic poles from cratonic Laurentia.
93	In the comprehensive apparent polar wander path compilation of Torsvik et al. (2012),
94	only two poles are included for the Ordovician: the St. George Group
95	and Table Head Group limestones of
96	Newfoundland. However, the Table Head Group limestones fail a conglomerate test
97	(Hodych, 1989). Therefore, their remanence, and the similar remanence of the underlying
98	St. George Group, must be the result of remagnetization. The Table Head Group rocks
99	pass a fold test, indicating that remagnetization occurred prior to Devonian folding.
100	Exclusion of these poles exacerbates an already large temporal gap between Laurentia
101	poles in the Torsvik et al. (2012) compilation, such that there are no robust poles from the
102	craton between the ca. 490 Ma Oneota Dolomite and the ca. 438 Ma Ringgold Gap poles
103	(Fig. 2). The paleolatitudes implied by Cambrian and Silurian poles for Laurentia's distal
104	margin (e.g., the New York and St. Lawrence promontories) are both in the subtropics
105	(Fig. 2), and extrapolation between these poles (such as a spline fit; Torsvik et al., 2012)
106	keeps Laurentia at a similar position through the Ordovician.
107	Given that there are no robust Ordovician paleomagnetic data from the Laurentian
108	craton, we take the approach of using paleomagnetic data from well-dated volcanic rocks
109	on the accreting terranes with magnetizations that are interpreted to be primary. Because
110	the Appalachian margin must have been at or equatorward of these terranes, these data
111	provide the best existing constraints on the Ordovician paleolatitude of Laurentia and
112	have been interpreted to indicate the presence of peri-Laurentian, intra-Iapetan, and peri-
113	Avalonian arc volcanism (Mac Niocaill et al., 1997). Open source reconstructions
114	developed in GPlates software (https://www.gplates.org/) for the

115	evolution of the Iapetus Ocean (Domeier, 2016; Torsvik and Cocks, 2017) provide an
116	excellent framework that can be modified with this approach.
117	In contrast to the Laurentian craton, eight robust Ordovician paleomagnetic data
118	sets have been reported from accreted Taconic arc terranes through extensive efforts of
119	the Rob Van der Voo research group at the University of
120	
121	Michigan (USA) (see the GSA Data Repository ¹). The interpretation of primary
122	remanence in these volcanic rocks is variably based on dual polarities, positive fold tests,
123	and interpretation of magnetic mineralogy. The oldest such locality is within the Notre
124	Dame arc of Newfoundland, where ca. 477 Ma mafic volcanics of the Moreton's Harbour
125	Group yielded a paleolatitude of ~11°S
126	(8°-15°S at 95% confidence) and were therefore interpreted to have formed in close
127	proximity to Laurentia (Johnson et al., 1991). Four paleomagnetic localities from ca.
128	470–465 Ma volcanic rocks of the Victoria arc of Newfoundland provide paleolatitude
129	constraints; the lowest latitude results are from the Lawrence Head volcanics,
130	which were at ~12°S (2°-24°S at 95% confidence) (see
131	the Data Repository). Similar aged pillow lavas from arc terranes in Newfoundland (the
132	Annieopsquotch arcs in Fig. 2) give paleolatitudes of ~30°S that have been interpreted to
133	indicate that they formed some distance from the margin within the Iapetus Ocean (Van
134	der Voo et al., 1991). In New England (northeastern United States), ca. 467 Ma volcanics
135	of the Bronson Hill arc yield a paleolatitude of ~20°S (12°-29°S at 95% confidence)
136	while younger ca. 458 Ma volcanics give paleolatitudes of ~14°S (8°–23°S at 95%
137	confidence) and ~11°S (6°–16°S at 95% confidence).

	Journal: GEOL: Geology DOI:10.1130/G38985.1
138	Although the Notre Dame arc was at a low latitude by ca. 475 Ma (Johnson et al.,
139	1991) when it collided with hyperextended fragments of the Laurentian margin
140	(Macdonald et al., 2014; van Staal and Barr, 2012), the Taconic seaway separated these
141	terranes from the Laurentian autochthon until they were exhumed ca. 465 Ma. While the
142	width of the Taconic seaway is unconstrained, the hyperextended margin of northeast
143	Australia, which extends >500 km from the craton, may be a modern analog. This ~500-
144	km-wide seaway closed between 475 and 465 Ma.
145	Paleolatitude constraints from ca. 470-465 Ma volcanics of the Taconic arc
146	terranes span $\sim\!20^\circ$ of latitude, suggesting a distended arc system comparable to the
147	modern southwest Pacific arc system (Fig. 1; Mac Niocaill et al., 1997). Although the
148	precise latitudinal spread is difficult to resolve given uncertainty associated with
149	paleolatitude estimates, we interpret the spread of these latitudes to represent the leading
150	and trailing edges of the arc system (Fig. 1). This approach is a simplification; analogous
151	to the modern southwest Pacific, there were probably other active subduction zones.
152	Shortening during the Taconic and subsequent orogenies would have translated these
153	terranes inward toward the craton, further contributing to the interpretation that Laurentia
154	was equatorward of their paleolatitudes. Overall, the paleomagnetic database strongly
155	supports a revised reconstruction wherein the Appalachian Laurentian margin was
156	equatorward of 10°S at 465 Ma (Fig. 1).
157	WEATHERING PROXY DATA
158	Strontium and neodymium isotope data were compiled and recalculated (see the
159	Data Repository) using <i>The Geological Time Scale 2012</i> (see Cooper and Sadler, 2012).
160	

Journal: GEOL: Geology DOI:10.1130/G38985.1

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

⁸⁷Sr/⁸⁶Sr data developed from the conodont apatite record a broad decline from 0.7090 to 0.7088 between 480 and 465 Ma. This gradual decline is followed by a sharp deflection at 465 Ma toward more juvenile ⁸⁷Sr/⁸⁶Sr values, reaching 0.7079 by 450 Ma (Saltzman et al., 2014; Fig. 2). Neodymium isotope (ε_{Nd}) data from finegrained siliciclastic rocks deposited on the distal margin of Laurentia, on the Taconic allochthon, and Sevier basin (Gleason et al., 2002; Macdonald et al., 2017) display an inflection to more positive values at 465 Ma consistent with a substantial increase of sediment being weathered from juvenile lithologies (Fig. 2). This inflection in ε_{Nd} values occurs later in more interior basins (Fig. 2) that did not receive arc-derived sediment until subsequent accretionary events thrust arc rocks onto Laurentia between ca. 455 and 450 Ma (Macdonald et al., 2014, 2017). **DISCUSSION** The paleogeographic reconstruction presented here suggests that the Appalachian margin was at a significantly lower latitude than is typically depicted, equatorward of 10°S by 465 Ma (Fig. 1). Our reconstruction is compatible with paleomagnetic data from the Taconic arc system and is not in conflict with robust paleomagnetic poles from Laurentia. We propose that the broad rise in oxygen isotope values and decline in strontium isotope values between 490 and 465 Ma (Fig. 2) are related to the movement of the Taconic arc system into the tropics and collision of the leading edge with distended fragments and promontories of the Laurentian margin (Taconic orogenic phase 2 of van Staal and Barr, 2012). A concomitant increase in global weatherability would have caused cooling through CO₂ drawdown, moderated by the silicate weathering feedback.

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G38985.1

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

In addition, we argue that the sharp drop in ⁸⁷Sr/⁸⁶Sr values, the shift toward more juvenile ENd values in shale from the distal margin of Laurentia, and the additional increase in oxygen isotope values between 465 and 455 Ma (Fig. 2) are due to the uplift and exhumation of the Taconic arc system in the tropics (peak of Taconic 2) followed by continued Late Ordovician arc accretion (Taconic 3). This exhumation led to uplift and erosion of island arc volcanics and suprasubduction ophiolites, as evidenced by the presence of detrital chromite in Middle to Late Ordovician foreland basins (e.g., Hiscott, 1978). Increased weathering of volcanic arcs associated with the Taconic orogeny was previously invoked to explain the Ordovician drop in ⁸⁷Sr/⁸⁶Sr values (Young et al., 2009). The feasibility of this scenario was supported with a model in which global weatherability was increased by 25% and a new flux of riverine 87Sr/86Sr was introduced from weathering basalt with a composition of 0.7043 (Young et al., 2009). The ε_{Nd} compilation from the Appalachian margin of Laurentia, which records local provenance. is consistent with the hypothesis that the Taconic orogeny played a significant role in the inferred increase in global weatherability and riverine ⁸⁷Sr/⁸⁶Sr input to the ocean. The inflection in ε_{Nd} data from distal margin basins occurs a few million years prior to the inflection in the global ⁸⁷Sr/⁸⁶Sr curve (Fig. 2). This lead time is predicted if the weathering of Taconic terranes is a significant driver of the global strontium signal. Juvenile ε_{Nd} values should be imparted in siliciclastic rocks over the time scale that sediment transits from source to sink (thousand year time scales), whereas strontium has a multimillion year residence time in the ocean such that a prolonged interval of arc weathering would be necessary to significantly change seawater ⁸⁷Sr/⁸⁶Sr. A complication

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G38985.1 age model for the ENd data is anchored by U-Pb zin

207	in this interpretation is that the age model for the ε_{Nd} data is anchored by U-Pb zircon
208	ages from ashes within the same stratigraphic sections (Macdonald et al., 2017), whereas
209	the ⁸⁷ Sr/ ⁸⁶ Sr age model is based on Cooper and Sadler (2012; Saltzman et al., 2014), so
210	the estimated temporal offset is as accurate as the calibration of the geological time scale.
211	Although other arc systems likely enhanced global weatherability in the
212	Ordovician, such as those in the paleo-Asian Ocean and the Fammetanian
213	arc of present-day Argentina, the Taconic arcs likely played an
214	outsized role as they were exhumed along an east-west belt in the tropics during the
215	closure of the Iapetus Ocean (Fig. 1). Exhumation would have created significant
216	topography composed of mafic and ultramafic lithologies through a wide swath across
217	the tropics. This scenario has similarities to the low-latitude closure of the Neo-Tethys
218	Ocean, and two-phase collision of the trans-Tethyan subduction system, which coincided
219	with the two-pronged cooling trend from the Cretaceous to Oligocene (Jagoutz et al.,
220	2016). The closure of major oceanic basins along east-west belts in the tropics may have
221	been a significant driver of long-term cooling trends throughout Earth history. Following
222	the Taconic orogeny, the Appalachian margin moved away from the tropics, so that
223	collisions associated with the Salinic orogeny in the Silurian would have occurred at
224	~20°S, where there would have been a lesser effect on global weatherability (Fig. 2).
225	Lower pCO_2 resulting from elevated global weatherability could have set the
226	stage for the growth of ice sheets during the Hirnantian. However, these tectonic
227	boundary conditions may not be the sole driver for the Hirnantian ice advance, and other
228	factors such as orbital forcing, changing ocean circulation, organic carbon burial, or rapid

Journal: GEOL: Geology DOI:10.1130/G38985.1

changes in albedo may have caused the shorter term cooling associated with the

Hirnantian glacial maximum.

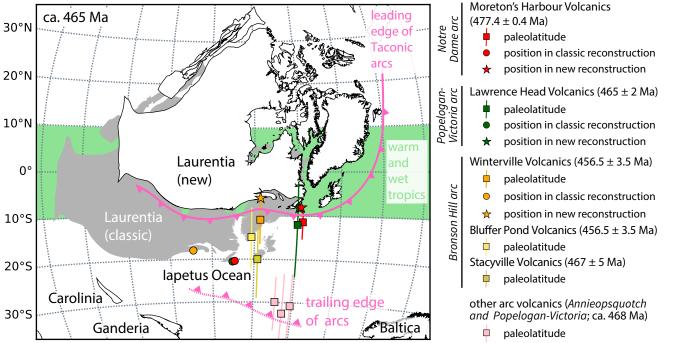
CONCLUSIONS

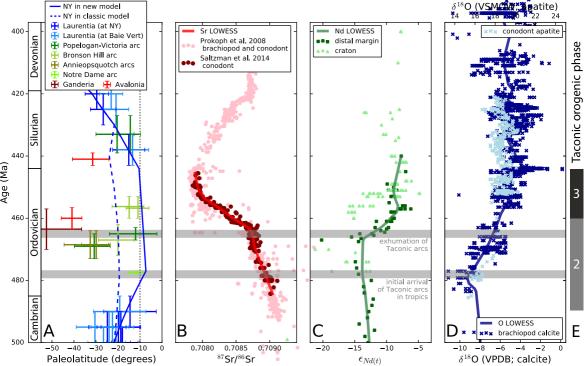
Our paleogeographic reconstruction constrained by the paleolatitude of
allochthonous volcanic rocks demonstrates that Laurentia moved toward the equator
during the Ordovician such that the Appalachian margin was equatorward of 10°S at 465
Ma. This movement into the tropics coincided with (1) collision and exhumation of the
Taconic arc system marked by the appearance of detrital chromite in foreland basins; (2)
a shift in ϵ_{Nd} data from fine-grained siliciclastic rocks on the Laurentian margin to more
juvenile values; (3) a drop in seawater ⁸⁷ Sr/ ⁸⁶ Sr values to more juvenile values; and (4) a
continued trend to higher values in the oxygen isotopic composition of both brachiopod
carbonate and conodont phosphate. These data are consistent with tropical weathering of
the Taconic arc-continent collision as a driver of Ordovician cooling.
REFERENCES CITED
Brenchley, P.J., Marshall, J.D., Carden, G.A.F., Robertson, D.B.R., Long, D.G.F.,
Meidla, T., Hints, L., and Anderson, T.F., 1994, Bathymetric and isotopic evidence
for a short-lived Late Ordovician glaciation in a greenhouse period: Geology, v. 22,
p. 295–298, doi:10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2.
Buggisch, W., Joachimski, M.M., Lehnert, O., Bergström, S.M., Repetski, J.E., and
Webers, G.F., 2010, Did intense volcanism trigger the first Late Ordovician
icehouse?: Geology, v. 38, p. 327-330, doi:10.1130/G30577.1.
Cooper, R., and Sadler, P., 2012, The Ordovician Period, in Gradstein, F.M., et al., The
geologic time scale 2012: Boston, Elsevier, v. 2, p. 489–524.

252	Dessert, C., Dupré, B., Gaillardet, J., François, L.M., and Allègre, C.J., 2003, Basalt
253	weathering laws and the impact of basalt weathering on the global carbon cycle:
254	Chemical Geology, v. 202, p. 257–273, doi:10.1016/j.chemgeo.2002.10.001.
255	Domeier, M., 2016, A plate tectonic scenario for the Iapetus and Rheic oceans:
256	Gondwana Research, v. 36, p. 275–295, doi:10.1016/j.gr.2015.08.003.
257	Evans, D.A.D., 2006, Proterozoic low orbital obliquity and axial-dipolar geomagnetic
258	field from evaporite palaeolatitudes: Nature, v. 444, p. 51–55,
259	doi:10.1038/nature05203.
260	Gleason, J.D., Finney, S.C., and Gehrels, G.E., 2002, Paleotectonic implications of a
261	mid- to late-Ordovician provenance shift, as recorded in sedimentary strata of the
262	Ouachita and southern Appalachian mountains: Journal of Geology, v. 110, p. 291-
263	304, doi:10.1086/339533.
264	Hibbard, J., 2000, Docking Carolina: Mid-Paleozoic accretion in the southern
265	Appalachians: Geology, v. 28, p. 127-130, doi:10.1130/0091-
266	7613(2000)28<127:DCMAIT>2.0.CO;2.
267	Hiscott, R.N., 1978, Provenance of Ordovician deep-water sandstones, Tourelle
268	Formation, Quebec, and implications for initiation of the Taconic orogeny: Canadian
269	Journal of Earth Sciences, v. 15, p. 1579–1597, doi:10.1139/e78-163.
270	Hodych, J.P., 1989, Limestones of western Newfoundland that magnetized before
271	Devonian folding but after Middle Ordovician lithification: Geophysical Research
272	Letters, v. 16, p. 93–96, doi:10.1029/GL016i001p00093.

273	Jagoutz, O., Macdonald, F.A., and Royden, L., 2016, Low-latitude arc-continent collision
274	as a driver for global cooling: Proceedings of the National Academy of Sciences of
275	the United States of America, v. 113, p. 4935–4940, doi:10.1073/pnas.1523667113.
276	
277	
278	
279	Johnson, R.J., van der Pluijm, B.A., and Van der Voo, R., 1991, Paleomagnetism of the
280	Moreton's Harbour Group, northeastern Newfoundland Appalachians: Evidence for
281	an Early Ordovician island arc near the Laurentian margin of Iapetus: Journal of
282	Geophysical Research, v. 96, p. 11,689–11,701, doi:10.1029/91JB00870.
283	Kump, L.R., Arthur, M., Patzkowsky, M.E., Gibbs, M.E., Pinkus, M.T., and Sheehan,
284	P.M., 1999, A weathering hypothesis for glaciation at high atmospheric pCO ₂ during
285	the Late Ordovician: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 152,
286	p. 173–187, doi:10.1016/S0031-0182(99)00046-2.
287	Macdonald, F.A., Ryan-Davis, J., Coish, R.A., Crowley, J.L., and Karabinos, P., 2014, A
288	newly identified Gondwanan terrane in the northern Appalachian Mountains:
289	Implications for the Taconic orogeny and closure of the Iapetus Ocean: Geology,
290	v. 42, p. 539–542, doi:10.1130/G35659.1.
291	Macdonald, F.A., Karabinos, P., Crowley, J.L., Hodgin, E.B., Crockford, P.W., and
292	Delano, J.W., 2017, Bridging the gap between the foreland and the hinterland, II:
293	Geochronology and tectonic setting of Ordovician magmatism and basin formation
294	on the Laurentian margin of New England and Newfoundland: American Journal
295	of Science.

296	DOI:10.1130/G38983.1
297	
298	
299	Mac Niocaill, C., van der Pluijm, B.A., and Van der Voo, R., 1997, Ordovician
300	paleogeography and the evolution of the Iapetus ocean: Geology, v. 25, p. 159-162,
301	doi:10.1130/0091-7613(1997)025<0159:OPATEO>2.3.CO;2.
302	McKenzie, N.R., Hughes, N.C., Gill, B.C., and Myrow, P.M., 2014, Plate tectonic
303	influences on Neoproterozoic-early Paleozoic climate and animal evolution:
304	Geology, v. 42, p. 127–130, doi:10.1130/G34962.1.
305	Prokoph, A., Shields, G.A., and Veizer, J., 2008, Compilation and time-series
306	analysis of a marine carbonate $\delta^{18}O$, $\delta^{13}C$, $^{87}Sr/^{86}Sr$ and $\delta^{34}S$ database through
307	Earth history: Earth-Science Reviews, v. 87, p. 113–133.
308	
309	Reusch, D.N., and Maasch, K.A., 1998, The transition from arc volcanism to exhumation,
310	weathering of young Ca, Mg, Sr silicates, and CO ₂ drawdown, in Crowley, T.J., and
311	Burke, K.C., eds., Tectonic boundary conditions for climate reconstructions: Oxford
312	Monographs on Geology and Geophysics no. 39, p. 261–276.
313	Saltzman, M.R., Edwards, C.T., Leslie, S.A., Dwyer, G.S., Bauer, J.A., Repetski, J.E.,
314	Harris, A.G., and Bergström, S.M., 2014, Calibration of a conodont apatite-based
315	Ordovician ⁸⁷ Sr/ ⁸⁶ Sr curve to biostratigraphy and geochronology: Implications for
316	stratigraphic resolution: Geological Society of America Bulletin, v. 126, p. 1551-
317	1568, doi:10.1130/B31038.1.


Journal: GEOL: Geology DOI:10.1130/G38985.1


318	Torsvik, T.H., and Cocks, L.R.M., 2017, Earth history and palaeogeography: Cambridge,
319	UK, Cambridge University Press, 311 p., doi:10.1017/9781316225523.
320	Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B.,
321	Doubrovine, P.V., van Hinsbergen, D.J., Domeier, M., Gaina, C., and Tohver, E.,
322	2012, Phanerozoic polar wander, palaeogeography and dynamics: Earth-Science
323	Reviews, v. 114, p. 325–368, doi:10.1016/j.earscirev.2012.06.007.
324	Trettin, H., 1987, Pearya: A composite terrane with Caledonian affinities in northern
325	Ellesmere Island: Canadian Journal of Earth Sciences, v. 24, p. 224–245,
326	doi:10.1139/e87-025.
327	Trotter, J.A., Williams, I.S., Barnes, C.R., Lécuyer, C., and Nicoll, R.S., 2008, Did
328	cooling oceans trigger Ordovician biodiversification? Evidence from conodont
329	thermometry: Science, v. 321, p. 550-554, doi:10.1126/science.1155814.
330	Van der Voo, R., Johnson, R.J., van der Pluijm, B.A., and Knutson, L.C., 1991,
331	Paleogeography of some vestiges of Iapetus: Paleomagnetism of the Ordovician
332	Robert's Arm, Summerford, and Chanceport groups, central Newfoundland:
333	Geological Society of America Bulletin, v. 103, p. 1564–1575, doi:10.1130/0016-
334	7606(1991)103<1564:POSVOI>2.3.CO;2.
335	van Staal, C., and Barr, S., 2012, Lithospheric architecture and tectonic evolution of the
336	Canadian Appalachians and associated Atlantic margin, in Percival, J.A., et al., eds.,
337	Tectonic styles in Canada: The Lithoprobe perspective: Geological Association of
338	Canada Special Paper 49, p. 41–96.

339	Veizer, J., and Prokoph, A., 2015, Temperatures and oxygen isotopic composition of	
340	Phanerozoic oceans: Earth-Science Reviews, v. 146, p. 92–104,	
341	doi:10.1016/j.earscirev.2015.03.008.	
342	Young, S.A., Saltzman, M.R., Foland, K.A., Linder, J.S., and Kump, L., 2009, A major	
343	drop in seawater ⁸⁷ Sr/ ⁸⁶ Sr during the middle Ordovician (Darriwilian): Links to	
344	volcanism and climate?: Geology, v. 37, p. 951–954, doi:10.1130/G30152A.1.	
34 FIGURE CAPTIONS		
346	Figure 1. Paleogeographic reconstruction ca. 465 Ma, after the arrival of the leading edge	
347	of the Taconic arc system in the tropics along with the paleolatitude from allochthonous	
348	volcanic rocks shown with 95% uncertainty. The reconstructed positions of these	
349	paleomagnetic localities are shown on the classic position of Laurentia (as in Torsvik and	
350	Cocks, 2017) and the new position proposed herein. While Laurentia most have been	
351	north of these volcanics, in the classic reconstruction their positions	
352	are south of the paleolatitudinal constraints	
353	rather than equatorward, as in the revised position. The positions of other continental	
354	blocks are as in Torsvik and Cocks (2017), other than Carolinia, which is modified to be	
355	traveling in unison with Ganderia.	
356		
357	Figure 2. Paleomagnetic and geochemical data from 500 to 400 Ma. A: Paleolatitude	
358	constraints for Laurentia, Taconic arc terranes (Popelogan-Victoria, Bronson Hill,	
359	Annieopsquotch, and Notre Dame), and the peri-Gondwana Ganderia and Avalonia	
360	terranes. Laurentia paleolatitudes are calculated for two localities on the margin from	
361	paleomagnetic poles with the implied position of New York (NY) shown for the classic	

Journal: GEOL: Geology DOI:10.1130/G38985.1

362	and new models. B: Strontium isotope data from conodont apatite and brachiopod calcite
363	with a locally weighted scatterplot smoothing (LOWESS) regression curve to the data of
364	Saltzman et al. (2014). C: Neodymium isotope data from fine-grained siliciclastic rocks
365	on the Appalachian margin of Laurentia with a LOWESS curve for distal margin data. D:
366	Oxygen isotope data from conodont apatite and brachiopod calcite with a LOWESS
367	curve for the brachiopod data. VPDB—Vienna Peedee belemnite; VSMOW—Vienna
368	standard mean ocean water. E: Orogenic phases wherein Taconic 2 spans the collision of
369	the leading edge of the arc system with promontories of the Laurentian margin. The peak
370	of Taconic 2 coincides with arc exhumation in the tropics and weathering of ophiolite and
371	arc detritus into Laurentian foreland basins. Late Ordovician arc accretion composes
372	Taconic 3. Data sources are provided in the Data Repository (see footnote 1).
373	
374	¹ GSA Data Repository item 2017238, details of the paleomagnetic and
375	chemostratigraphic data compilations, is available online at
376	http://www.geosociety.org/datarepository/2017/ or on request from
377	editing@geosociety.org.

