
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Representation Learning for Perception and Control

Permalink
https://escholarship.org/uc/item/5sn0t1gt

Author
Lakshminarayanan, Aravind Srinivas

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5sn0t1gt
https://escholarship.org
http://www.cdlib.org/

Representation Learning for Perception and Control

by

Aravind Srinivas Lakshminarayanan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Professor Ken Goldberg
Professor Trevor Darrell

Summer 2021

Representation Learning for Perception and Control

Copyright 2021
by

Aravind Srinivas Lakshminarayanan

1

Abstract

Representation Learning for Perception and Control

by

Aravind Srinivas Lakshminarayanan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

The goal of extracting reusable and rich representations that capture what you care about for
downstream tasks remains challenging even though the field of deep learning has made tremendous
progress in this direction. This thesis presents a few promising contributions to further that goal.
The two axes of contributions are: (1) self-supervised (or unsupervised) representation learning;
(2) deep neural network architectures powered by self-attention. Progress in architectures and the
ability to leverage massive amounts of unlabeled data have been responsible for major advances in
NLP such as GPT-x and BERT. This thesis presents small steps towards realizing such progress for
perceptual and reinforcement learning tasks. This is a thesis by articles containing four articles, two
focused on computer vision benchmarks, with the other two focused on reinforcement learning.

With respect to the first axis, the thesis presents three articles: (1) Data-Efficient Image Recognition
using Contrastive Predictive Coding (CPCv2); (2) Contrastive Unsupervised Representations for
Reinforcement Learning (CURL); (3) Reinforcement Learning with Augmented Data (RAD). The
first two articles explore a form of unsupervised learning called contrastive learning, a technique
better suited for raw inputs such as images compared to generative pre-training that is popular for
language. The first article presents results for label-efficient image recognition. The second article
presents the benefits of contrastive learning for sample-efficient reinforcement learning from pixels.
Contrastive learning in practice is heavily dependent on data augmentations, and the third article
presents a detailed investigation and discussion of its role.

As for the second axis, the thesis presents a thorough empirical investigation of the benefits of
self-attention and Transformer-like architectures for computer vision through the article: Bottleneck
Transformers for Visual Recognition. Self-attention has revolutionized language processing but
computer vision presents a challenge to vanilla Transformers through high resolution inputs that
challenge the quadratic memory and computational complexity of the primitive. The article presents
the empirical effectiveness of a straightforward hybrid composed of convolutions and self-attention
and unifies the ResNet and Transformer based architecture design for computer vision.

i

To my mom

ii

Acknowledgments

I am thankful to my advisor Pieter Abbeel for supporting and mentoring me. He has given
me the freedom to pursue my research ideas and facilitated my career growth immensely. Several
times, I was taken seriously in conversations simply because I was his student, and being his student
has undoubtedly opened up several fantastic career opportunities for me. Our weekly meetings
were something I looked forward to for the optimism and ambition he espouses. Pieter inspires
me to be meticulous, driven, and ambitious for several years down the line, and I am a big fan of
his entrepreneurial drive and insights. Becoming his student has provided me a multi-dimensional
outlook, even beyond academic research, that has significantly improved my understanding of
the world. Thanks to John Canny for admitting me to Berkeley, Pieter for being willing to rotate
with me, and Berkeley EECS, BAIR, and Trevor Darrell for the first-year fellowship. Trevor has
created a fantastic and thriving ecosystem for AI Ph.D. students in Berkeley. In addition, I thank
Trevor Darrell and Ken Goldberg for graciously agreeing to be on my committee and providing
me encouraging feedback along the way. I also had the pleasure of interacting with other excellent
faculty at Berkeley, including John Canny, who gave me the idea to work on contrastive learning for
robotics way back in 2017; Alexei Efros, who is inspiring with his authenticity and taste, Angjoo
Kanazawa for serving on my qualifying exam committee, and James Demmel, a legend in applied
numerical linear algebra. I enjoyed explaining to him how Transformers work.

Thanks to John Schulman for working with me during my first year and hosting me as an OpenAI
intern in 2018. John is still Pieter’s best student undoubtedly and inspired me throughout my Ph.D.
He certainly has shaped a lot of my thinking on what impactful research is. I am thankful to him for
the trust and time he invested in me. The OpenAI internship profoundly impacted me, watching
several famous researchers in action while just being in my first year of Ph.D. Ilya Sutskever, a
hero for me, inspired me to study and do research on unsupervised learning. I thank Peter Chen
and Jonathan Ho for working with me on Flow++ while I was new to generative modeling and
large-scale deep learning. Their mentorship helped me a great lot.

Thanks to my friend Sherjil Ozair who pointed me to Aaron van den Oord’s paper on Contrastive
Predictive Coding (CPC). I still remember spending the entire night in Sweden while at ICML 2018
reading the CPC paper and bumping into Aaron himself the next day at the conference, excitedly
asking him many questions on it. Big thanks to Aaron and Oriol Vinyals for hosting me as an intern
at DeepMind in their team the following summer. The summer of 2019 that we spent scaling and
improving CPC and trying various variants have been critical to my growth as a Deep Learning
researcher. Thanks to my co-authors on CPCv2 - Olivier Henaff, Jeffrey De Fauw, Carl Doersch,
Ali Razavi, Ali Eslami, and Aaron. During my internship, I also had great times with several folks
at DeepMind, including Igor Babuschkin, Jeff Donahue, Karen Simonyan, Sander Dieleman, Yazhe
Li, and Sherjil Ozair Roman Ring, Ankush Gupta, Tejas Kulkarni, Vlad Mnih, Max Jaderberg,
Jacob Menick, Aaron and Oriol. Meeting and interacting with Alex Graves was a highlight. I also
thank Nal Kalchbrenner and Tejas Kulkarni for several inspiring conversations. Both of them are
inspiring researchers with unique tastes and views on deep learning architectures and generative
modeling.

iii

Thanks to Misha Laskin for working with me on CURL and RAD. I still remember having the
1:1 conversation with Pieter where we spotted an opportunity to apply contrastive learning and
data augmentations to significantly simplify and speed up RL from pixels. Later, I wrote design
docs about it and began the efforts with Misha. Thanks to Aaron for sowing the seeds for applying
contrastive learning to improve the sample efficiency in RL.

I thank Ashish Vaswani for being my collaborator on Bottleneck Transformers, where I got
to learn a lot from him on how to design self-attention architectures. It helped me build different
thinking about deep learning architectures - considering compute efficiency, throughput and memory
tradeoffs, and how accelerators could make more efficient use of the FLOPs in a model. I also
thank Quoc Le for hosting me as an intern at Google Brain and pushing for the importance of data
augmentations. I enjoyed talking to folks at Google Brain, including Ashish, Quoc, Ben Poole, Niki
Parmar, Noam Shazeer, David Luan, Durk Kingma, Nal Kalchbrenner, Jonathan Ho, Colin Raffel,
Tsung-Yi Lin, and Jeff Dean.

Thanks to all my labmates who have worked with me on this thesis: Misha Laskin, Kimin Lee,
Adam Stooke, Lerrel Pinto. I also had the chance to collaborate and/or write papers outside of this
thesis with several others, including Jonathan Ho, Peter Xi Chen, Rocky Duan, Wilson Yan, Yunzhi
Zhang, Lili Chen, Mandi Zhao, Ajay Jain, Sean’O Brien, Jeffrey Tao, Aaron Putterman, Allan
Jabri, Chelsea Finn. Thanks to Allan Jabri, Michael Chang, Roshan Rao, Ashvin Nair, Haozhi Qi
for many enjoyable conversations as Ph.D. students from the same cohort. Thanks to other Ph.D.
students in Pieter’s lab, including Olivia Watkins, Yuqing Du, Hao Liu, Josh Achiam, Josh Tobin,
Jason Peng, Roshan Rao. Thanks to the barista at Philz Coffee, Brewed Awakening, Nefeli’s, Asha
Tea House, Caffeinated Coffee Company (beneficial during pandemic lockdowns), and Victory
Point.

Thanks to Ilya Sutskever for profoundly changing my life at so many levels through his
mentorship. A lot of the work done in this thesis contains elements he stands for: minimal
innovation for maximum results, scale, compute. Ilya has maintained contact with me ever since
my 2018 internship and has given a lot of invaluable mentorship along the way. I am also grateful
to Andrej Karpathy for sharing his insights and research ideas during my conversations.

Thanks to my friends, in no particular order: Vinod Ganesan, Ilija Radosavovic, Tejas Kulkarni,
Ashish Vaswani, Peter Chen, Nal Kalchbrenner, Sherjil Ozair, Ankur Handa, Ankush Gupta, Allan
Jabri, Michael Chang. The initial few weeks of the lockdown were tough, and I thank Ilija for being
my buddy for lunch or dinner almost every day. I am glad to have met him through the Berkeley AI
lab, with an initial topic being computer vision benchmarks and Detectron, but broadening to pretty
much everything later on. Ilija helped me by answering countless questions about benchmarks such
as COCO, codebases like Detectron, and backbone architectures in general. I also thank my family
and relatives for believing and supporting me.

I dedicate this thesis to my mom, Jayanthi, for all the hardship she has gone through to provide
me with good education and make my life what it is. My mom inculcated in me values such as
excellence, grit, and hard work; and has motivated me to go to the US for education and a successful
career while she made the sacrifices, and I am forever indebted to her. Thank you, Amma.

iv

Contents

Contents iv

List of Figures vi

List of Tables x

1 Introduction 1

2 Image Recognition using Contrastive Learning 4
2.1 Introduction . 4
2.2 Experimental Setup . 6
2.3 Related Work . 8
2.4 Results . 9
2.5 Discussion . 15
2.6 Self-supervised pre-training . 17
2.7 Linear classification . 18
2.8 Efficient classification . 19

3 Contrastive Learning for Reinforcement Learning 20
3.1 Introduction . 20
3.2 Related Work . 23
3.3 Background . 24
3.4 CURL Implementation . 26
3.5 Experiments . 29
3.6 Results . 33
3.7 Ablation Studies . 33
3.8 Implementation Details . 34
3.9 Atari100k Implementation Details . 38
3.10 Benchmarking Data Efficiency . 40
3.11 Further Investigation of Data-Efficiency in Contrastive RL 41
3.12 Ablations . 42
3.13 Connection to work on data augmentations . 47

v

3.14 Conclusion . 49
3.15 Acknowledgements . 49

4 Reinforcement Learning with Augmented Data 50
4.1 Introduction . 50
4.2 Related work . 51
4.3 Background . 52
4.4 Reinforcement learning with augmented data . 53
4.5 Experimental results . 54
4.6 Conclusion . 61
4.7 Extended related work . 61
4.8 Code for select augmentations . 63
4.9 Time-efficiency of data augmentation . 63
4.10 Discussion . 64
4.11 Acknowledgments . 65

5 Bottleneck Transformers for Visual Recognition 66
5.1 Introduction . 66
5.2 Related Work . 68
5.3 Method . 71
5.4 Experiments . 73
5.5 Conclusion . 81
5.6 Acknowledgements . 81

6 Conclusion 82

Bibliography 84

vi

List of Figures

2.1 Data-efficient image recognition with Contrastive Predictive Coding. With decreasing
amounts of labeled data, supervised networks trained on pixels fail to generalize (red).
When trained on unsupervised representations learned with CPC, these networks retain
a much higher accuracy in this low-data regime (blue). 4

2.2 Overview of the framework for semi-supervised learning with Contrastive Predictive
Coding. Left: unsupervised pre-training with the spatial prediction task (See Section
2.2). First, an image is divided into a grid of overlapping patches. Each patch is encoded
independently from the rest with a feature extractor (blue) which terminates with a
mean-pooling operation, yielding a single feature vector for that patch. Doing so for
all patches yields a field of such feature vectors (wireframe vectors). Feature vectors
above a certain level (in this case, the center of the image) are then aggregated with
a context network (red), yielding a row of context vectors which are used to linearly
predict features vectors below. Right: using the CPC representation for a classification
task. Having trained the encoder network, the context network (red) is discarded and
replaced by a classifier network (green) which can be trained in a supervised manner.
In some experiments, we also fine-tune the encoder network (blue) for the classification
task. When applying the encoder to cropped patches (as opposed to the full image) we
refer to it as a patched ResNet in the figure. 7

2.3 Linear classification performance of new variants of CPC, which incrementally add a
series of modifications. MC: model capacity. BU: bottom-up spatial predictions. LN:
layer normalization. RC: random color-dropping. HP: horizontal spatial predictions.
LP: larger patches. PA: further patch-based augmentation. Note that these accuracies
are evaluated on a custom validation set and are therefore not directly comparable to
the results we report on the official validation set. 10

vii

3.1 Contrastive Unsupervised Representations for Reinforcement Learning (CURL) com-
bines instance contrastive learning and reinforcement learning. CURL trains a visual
representation encoder by ensuring that the embeddings of data-augmented versions oq
and ok of observation o match using a contrastive loss. The query observations oq are
treated as the anchor while the key observations ok contain the positive and negatives,
all constructed from the minibatch sampled for the RL update. The keys are encoded
with a momentum averaged version of the query encoder. The RL policy and (or)
value function are built on top of the query encoder which is jointly trained with the
contrastive and reinforcement learning objectives. CURL is a generic framework that
can be plugged into any RL algorithm that relies on learning representations from high
dimensional images. 21

3.2 CURL Architecture: A batch of transitions is sampled from the replay buffer. Observa-
tions are then data-augmented twice to form query and key observations, which are
then encoded with the query encoder and key encoders, respectively. The queries are
passed to the RL algorithm while query-key pairs are passed to the contrastive learning
objective. During the gradient update step, only the query encoder is updated. The key
encoder weights are the moving average (EMA) of the query weights similar to MoCo
[76]. 24

3.3 Visually illustrating the process of generating an anchor and its positive using stochastic
random crops. Our aspect ratio for cropping is 0.84, i.e, we crop a 84× 84 image from
a 100× 100 simulation-rendered image. Applying the same random crop coordinates
across all frames in the stack ensures time-consistent spatial jittering. 28

3.4 Performance of CURL coupled to SAC averaged across 10 seeds relative to SLACv1,
PlaNet, Pixel SAC and State SAC baselines. At the 500k benchmark CURL matches
the median score of state-based SAC. At 100k environment steps CURL achieves a
1.9x higher median score than Dreamer. For a direct comparison, we only compute the
median across the 6 environments in 3.1 (4 for SLAC) and show learning curves for
CURL across 16 DMControl experiments in 3.7. 34

3.5 Performance on cheetah-run environment ablated two-ways: (left) using the query
encoder or exponentially moving average of the query encoder for encoding keys (right)
using the bi-linear inner product as in [135] or the cosine inner product as in [77, 26] . 35

3.6 The number of steps it takes a prior leading pixel-based method, Dreamer, to achieve
the same score that CURL achieves at 100k training steps (clipped at 1M steps). On
average, CURL is 4.5x more data-efficient. We chose Dreamer because the authors
[69] report performance for all of the above environments while other baselines like
SLAC and SAC+AE only benchmark on 4 and 6 environments, respectively. For further
comparison of CURL with these methods, the reader is referred to Table 3.1 and Figure
3.4. 40

3.7 CURL compared to state-based SAC run for 3 seeds on each of 16 selected DMControl
environments. For the 6 environments in 3.4, CURL performance is averaged over 10
seeds. 41

viii

3.8 CURL with temporal and visual discrimination (red) compared to CURL with only
visual discrimination (green). In most settings, the variant with temporal variant
outperforms the purely visual variant of CURL. The two exceptions are reacher and
ball in cup environments, suggesting that learning dynamics is not necessary for those
two environments. Note that the walker environment was run with action repeat of 4,
whereas walker walk in the main results Table 3.1 and Figure 3.7 was run with action
repeat of 2. 42

3.9 CURL where the CNN part of the encoder receives gradients from both the contrastive
loss and critic (red) compared to CURL with the convolutional part of the encoder
trained only with the contrastive objective (green). The detached encoder variant is able
to learn representations that enable near-optimal learning on most environments, except
for cheetah. As in Figure 3.8, the walker environment was run with action repeat of 4. . 44

3.10 CURL with no data augmentations passed to the SAC agent improves the performance
of the baseline pixel SAC by a mean of 2.0x / median of 1.7x on DMControl500k. For
these runs we use a smaller batch size of 128 than the 512 batch size used for results in
Table 3.4. While the constastive loss alone improves over the pixel SAC baseline, most
environments benefit from data augmentation also being passed to the SAC agent. . . . 45

3.11 Test-time mean squared error for predicting the proprioceptive state from pixels on a
number of DMControl environments. In DMControl, environments fall into two groups
- where the state corresponds to either (a) positions and velocities of the robot joints or
(b) the joint angles and angular velocities. 46

4.1 We investigate ten different types of data augmentations - crop, translate, window,
grayscale, cutout, cutout-color, flip, rotate, random convolution, and color-jitter. During
training, a minibatch is sampled from the replay buffer or a recent trajectory randomly
augmented. While augmentation across the minibatch is stochastic, it is consistent
across the stacked frames. 54

4.2 (a) We ablate six common data augmentations on the walker, walk environment by
measuring performance on DMControl500k of each permutation of any two data
augmentations being performed in sequence. For example, the crop row and grayscale
column correspond to the score achieved after applying random crop and then random
grayscale to the input images (entries along the main axis use only one application
of the augmentation). (b) Spatial attention map of an encoder that shows where the
agent focuses on in order to make a decision in Walker Walk environment. Random
crop enables the agent to focus on the robot body and ignore irrelevant scene details
compared to other augmentations as well as the base agent that learns without any
augmentation. 57

4.3 (a) Examples of seen and unseen environments on ProcGen. (b) The test performance
under the modified CoinRun. The solid/dashed lines and shaded regions represent the
mean and standard deviation, respectively. 59

ix

5.1 Left: A ResNet Bottleneck Block, Right: A Bottleneck Transformer (BoT) block. The
only difference is the replacement of the spatial 3×3 convolution layer with Multi-Head
Self-Attention (MHSA). The structure of the self-attention layer is described in Figure
5.4. 67

5.2 A taxonomy of deep learning architectures using self-attention for visual recognition.
Our proposed architecture BoTNet is a hybrid model that uses both convolutions and
self-attention. The specific implementation of self-attention could either resemble a
Transformer block [186] or a Non-Local block [191] (difference highlighted in Figure
5.4). BoTNet is different from architectures such as DETR [23], VideoBERT [168],
VILBERT [125], CCNet [89], etc by employing self-attention within the backbone
architecture, in contrast to using them outside the backbone architecture. Being a hybrid
model, BoTNet differs from pure attention models such as SASA [145], LRNet [87],
SANet [208], Axial-SASA [86, 188] and ViT [43]. AA-ResNet [14] also attempted to
replace a fraction of spatial convolution channels with self-attention. 69

5.3 Left: Canonical view of the Transformer with the boundaries depicting the definition
of a Transformer block as described in Vaswani et. al [186]. Middle: Bottleneck
view of the Transformer with boundaries depicting what we define as the Bottleneck
Transformer (BoT) block in this work. The architectural structure that already exists in
the Transformer can be interpreted a ResNet bottleneck block [73] with Multi-Head Self-
Attention (MHSA) [186] with a different notion of block boundary as illustrated. Right:
An instantiation of the Bottleneck Transformer as a ResNet bottleneck block [73] with
the difference from a canonical ResNet block being the replacement of 3×3 convolution
with MHSA. 70

5.4 Multi-Head Self-Attention (MHSA) layer used in the BoT block. While we use 4 heads,
we do not show them on the figure for simplicity. all2all attention is performed on
a 2D featuremap with split relative position encodings Rh and Rw for height and width
respectively. The attention logits are qkT + qrT where q, k, r represent query, key and
position encodings respectively (we use relative distance encodings [159, 14, 145]).

⊕
and

⊗
represent element wise sum and matrix multiplication respectively, while 1× 1

represents a pointwise convolution. 73
5.5 All backbones along with ViT and DeiT summarized in the form of scatter-plot and

Pareto curves. SENets and BoTNets were trained while the accuracy of other models
have been reported from corresponding papers. 80

x

List of Tables

2.1 Linear classification accuracy, and comparison to other self-supervised methods. In all
cases the feature extractor is optimized in an unsupervised manner, using one of the
methods listed below. A linear classifier is then trained on top using all labels in the
ImageNet dataset, and evaluated using a single crop. Prior art reported from [1] [196],
[2] [210], [3] [76], [4] [129], [5] [40], [6] [102], [7] [135], [8] [42], [9] [9], [10] [180]. 11

2.2 Data-efficient image classification. We compare the accuracy of two ResNet classifiers,
one trained on the raw image pixels, the other on the proposed CPC v2 features, for
varying amounts of labeled data. Note that we also fine-tune the CPC features for
the supervised task, given the limited amount of labeled data. Regardless, the ResNet
trained on CPC features systematically surpasses the one trained on pixels, even when
given 2–5× less labels to learn from. The red (respectively, blue) boxes highlight
comparisons between the two classifiers, trained with different amounts of data, which
illustrate a 5× (resp. 2×) gain in data-efficiency in the low-data (resp. high-data) regime. 12

2.3 Comparison to other methods for semi-supervised learning. Representation learning
methods use a classifier to discriminate an unsupervised representation, and optimize it
solely with respect to labeled data. Label-propagation methods on the other hand further
constrain the classifier with smoothness and entropy criteria on unlabeled data, making
the additional assumption that all training images fit into a single (unknown) testing
category. When evaluating CPC v2, BigBiGAN, and AMDIM, we train a ResNet-33
on top of the representation, while keeping the representation fixed or allowing it to be
fine-tuned. All other results are reported from their respective papers: [1] [205], [2]
[199], [3] [196], [4] [129]. 14

2.4 Comparison of PASCAL VOC 2007 object detection accuracy to other transfer methods.
The supervised baseline learns from the entire labeled ImageNet dataset and fine-tunes
for PASCAL detection. The second class of methods learns from the same unlabeled
images before transferring. The architecture column specifies the object detector (Fast-
RCNN or Faster-RCNN) and the feature extractor (ResNet-50, -101, -152, or -161). All
of these methods pre-train on the ImageNet dataset, except for DeeperCluster which
learns from the larger, but uncurated, YFCC100M dataset [179]. All methods fine-tune
on the PASCAL 2007 training set, and are evaluted in terms of mean average precision
(mAP). Prior art reported from [1] [44], [2] [40], [3] [137], [4] [207], [5] [39], [6] [196],
[7] [24], [8] [25], [9] [210], [10] [129] [11] [76]. 16

xi

3.1 Scores achieved by CURL (mean & standard deviation for 10 seeds) and baselines on
DMControl500k and 1DMControl100k. CURL achieves state-of-the-art performance
on the majority (5 out of 6) environments benchmarked on DMControl500k. These
environments were selected based on availability of data from baseline methods (we
run CURL experiments on 16 environments in total and show results in Figure 3.7).
The baselines are PlaNet [70], Dreamer [69], SAC+AE [202], SLAC [114], pixel-based
SAC and state-based SAC [67]. SLAC results were reported with one and three gradient
updates per agent step, which we refer to as SLACv1 and SLACv2 respectively. We
compare to SLACv1 since all other baselines and CURL only make one gradient update
per agent step. We also ran CURL with three gradient updates per step and compare
results to SLACv2 in Table 3.5. 30

3.2 Scores achieved by CURL (coupled with Eff. Rainbow) and baselines on Atari bench-
marked at 100k time-steps (Atari100k). CURL achieves state-of-the-art performance
on 7 out of 26 environments. Our baselines are SimPLe [95], OverTrained Rainbow
(OTRainbow) [98], Data-Efficient Rainbow (Eff. Rainbow) [72], Rainbow [81], Ran-
dom Agent and Human Performance (Human). We see that CURL implemented on top
of Eff. Rainbow improves over Eff. Rainbow on 19 out of 26 games. We also run
CURL with 20 random seeds given that this benchmark is susceptible to high variance
across multiple runs. We also see that CURL achieves superhuman performance on
JamesBond and Krull. 31

3.3 Hyperparameters used for DMControl CURL experiments. Most hyperparameters
values are unchanged across environments with the exception for action repeat, learning
rate, and batch size. 35

3.4 Hyperparameters used for Atari100K CURL experiments. Hyperparameters are un-
changed across games. 39

3.5 Scores achieved by CURL and SLAC when run with a 3:1 ratio of gradient updates
per agent step on DMControl500k and DMControl100k. CURL achieves state-of-
the-art performance on the majority (3 out of 4) environments on DMControl500k.
Performance of both algorithms is improved relative to the 1:1 ratio reported for all
baselines in Table 3.1 but at the cost of significant compute and wall-clock time overhead. 43

3.6 CURL implemented on top of Efficient Rainbow - Scores reported for 20 random
seeds for each of the above games, with the last two rows being the mean and standard
deviation across the runs. 47

3.7 CURL implemented on top of Efficient Rainbow - Scores reported for 20 random
seeds for each of the above games, with the last two rows being the mean and standard
deviation across the runs. 48

xii

4.1 We report scores for RAD and baseline methods on DMControl100k and DMCon-
trol500k. In both settings, RAD achieves state-of-the-art performance on all (6 out of 6)
environments. We selected these 6 environments for benchmarking due to availability
of baseline performance data from CURL [164], PlaNet [70], Dreamer [69], SAC+AE
[202], and SLAC [114]. Results are reported as averages across 10 seeds for the 6 main
environments. 56

4.2 We present the generalization results of RAD with different data augmentation methods
on the three OpenAI ProcGen environments: BigFish, StarPilot and Jumper. We
report the test performances after 20M timesteps. The results show the mean and
standard deviation averaged over three runs. We see that RAD is able to outperform the
baseline PPO trained on two times the number of training levels benefitting from data
augmentations such as random crop, cutout and color jitter. 58

4.3 Performance on OpenAI Gym. The training timestep varies from 50,000 to 200,000
depending on the difficulty of the tasks. The results show the mean and standard
deviation averaged over four runs and the best results are indicated in bold. For baseline
methods, we report the best number in POPLIN [189]. 60

4.4 We compare the data augmentation speed between the RAD augmentation modules and
performing the same augmentations in PyTorch. We calculate the number of additional
minutes required to perform 100k training steps. On average, the RAD augmentations
are nearly 2x faster than augmentations accessed through the native PyTorch API.
Additionally, since the PyTorch API is meant for processing single-frame images, it is
not designed to apply augmentations consistently across the frame stack but randomly
across the batch. Cutout and random convolution augmentations are not present in the
PyTorch API. 64

5.1 Architecture of BoTNet-50 (BoT50): The only difference in BoT50 from ResNet-
50 (R50) is the use of MHSA layer (Figure 5.4) in c5. For an input resolution of
1024× 1024, the MHSA layer in the first block of c5 operates on 64× 64 while the
remaining two operate on 32× 32. We also report the parameters, multiply-adds (m.
adds) and training time throughput (TPU-v3 steptime on a v3-8 Cloud-TPU). BoT50
has only 1.2x more m.adds. than R50. The overhead in training throughout is 1.3x.
BoT50 also has 1.2x fewer parameters than R50. While it may appear that it is simply
the aspect of performing slightly more computations that might help BoT50 over the
baseline, we show that it is not the case in Section 5.4. 72

5.2 Comparing R50 and BoT50 under the 1x (12 epochs), 3x (36 epochs) and 6x (72 epochs)
settings, trained with image resolution 1024× 1024 and multi-scale jitter of [0.8, 1.25]. 74

5.3 Comparing R50 and BoT50 under three settings of multi-scale jitter, all trained with
image resolution 1024× 1024 for 72 epochs (6x training schedule). 75

5.4 Ablation for Relative Position Encoding: Gains from the two types of interactions in
the MHSA layers, content-content (qkT) and content-position (qrT). 76

5.5 Comparing R50, R101, R152, BoT50, BoT101 and BoT152; all 6 setups using the
canonical training schedule of 36 epochs, 1024×1024 images, multi-scale jitter [0.8, 1.25]. 76

xiii

5.6 All the models are trained for 72 epochs with a multi-scale jitter of [0.1, 2.0]. 77
5.7 Comparison between BoTNet and Non-Local (NL) Nets: All models trained for 36

epochs with image size 1024× 1024, jitter [0.8, 1.25]. 77
5.8 BoT152 and BoT200 trained for 72 epochs with a multi-scale jitter of [0.1, 2.0]. 77
5.9 ImageNet results in regular training setting: 100 epochs, batch size 1024, weight decay

1e-4, standard ResNet augmentation, for all three models. 79
5.10 ImageNet results in an improved training setting: 200 epochs, batch size 4096, weight

decay 8e-5, RandAugment (2 layers, magnitude 10), and label smoothing of 0.1 79

1

Chapter 1

Introduction

This chapter gives a brief overview of the thesis. It does not introduce the basics of machine learning
such as supervised, unsupervised, reinforcement, deep learning, etc. From that perspective, the
thesis is not self-contained and assumes familiarity on the reader’s part, with foundations and basics
of machine learning and deep learning. The reader is encouraged to check out Ian Goodfellow’s
book on Deep Learning [62] and Rich Sutton’s book on Reinforcement Learning [172] if interested.
Further, unsupervised learning, contrastive learning, and energy-based models are well covered
in a tutorial by Yann LeCun [112]. The individual articles in the thesis are presented as chapters.
Each chapter gives the motivation and basics of their techniques, such as contrastive learning, data
augmentations, self-attention, etc. Considering the empirical nature of the thesis and the fact that
deep learning is, in general, a practical discipline, the thesis has very little mathematical treatment
of the associated techniques and only uses mathematical notations when necessary.

Deep learning of representations and its applications to computer vision and robotics/rein-
forcement learning from pixels is a topic of enormous interest and significance in the machine
learning and artificial intelligence communities. It is seen as an important milestone and an essential
ingredient necessary to progress towards the broader goal of general artificial intelligence and
general-purpose machines and robots that automate a lot of human activity.

Since AlexNet [104] was introduced by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton,
the field has made tremendous progress in learning reusable and rich representations of high
dimensional inputs through large deep neural networks. In computer vision, such representations
have predominantly been achieved through supervised learning on large, carefully annotated
datasets such as ImageNet [150] and COCO [121]. These datasets have led to influential backbone
architectures, object detectors, segmentation models, and image captioning pipelines. On the other
hand, the field of reinforcement learning (RL) has seen incredible progress by fusing established RL
algorithms with deep neural networks as function approximators since DQN from DeepMind [132].
The subsequent progress since AlexNet and DQN for both supervised and reinforcement learning
has been nothing short of outstanding. Naturally, the AI/DL community has been gravitating
towards the next challenge and new techniques for learning even better representations. Could we
rely on fewer labels, scale better with more data, design models faster for the same accuracy, learn
quickly in an environment, etc.? These are the kind of questions that motivate a lot of the current

CHAPTER 1. INTRODUCTION 2

research in the community.
A simple guideline to making further progress in deep learning is to answer the question: How

could I learn better representations of data than what is possible already? Progress in representation
learning has usually been achieved through better learning objectives and better deep learning
architectures. These are the two core axes of this thesis. For better learning objectives, the thesis
studies a form of unsupervised learning called contrastive learning. It shows its benefits for label-
efficient image recognition and sample-efficient reinforcement learning from pixels. For better deep
learning architectures, the thesis studies the design of backbone architectures for object recognition
tasks like classification, detection, and instance segmentation. Notably, it presents a straightforward
yet effective way of combining convolutions and self-attention with a unification of the ResNet [73]
and Transformer [186] architectures.

Let me elaborate on the motivations for each of the above.
Why should we care about better learning objectives and unsupervised learning? There are both

philosophical and practical arguments for this. Turing Award Winner Yann LeCun has a famous
quote on intelligence:

If intelligence is a cake, unsupervised learning is the cake; supervised learning is the
icing on the cake; reinforcement learning is the cherry on the cake.

This became quite popular in the community and is often referred to as LeCake. The argument Yann
LeCun makes is simple: Unsupervised Learning presents orders of magnitude more bits for our
brains to learn than Supervised and Reinforcement Learning and must guide the learning of bulk
of the parameters in an intelligent system. A practical argument favoring unsupervised learning
is: We have way more unlabeled data available than the amount of labeled data. Can we somehow
take advantage of the abundantly available unlabeled data to improve all the models that work
pretty well already for labeled tasks? If we do, could such a system be a lot more label-efficient
and save us time in annotating large datasets? Further, could the same techniques that help us
become label-efficient for passive intelligence like visual recognition or language understanding be
more sample-efficient for active intelligence such as controlling locomotion robots or game-playing
agents?

Chapter 2 presents the article "Data-Efficient Image Recognition using Contrastive Predic-
tive Coding" [79], published in ICML 2020. This paper presented first-of-its-kind results at its
publication by pushing the label-efficiency on the ImageNet benchmark up to 5x and showing
improvements on recognition tasks across all data-regimes through contrastive pre-training. While
the field is quite fast, and follow-up work such as SimCLR [26] and BYOL [64] have improved
upon the architectures and implementation in this article, the article was the first to show the
benefits of contrastive pre-training for label-efficient supervised image recognition on the ImageNet
benchmark.

Chapter 3 and 4 present the articles "Contrastive Unsupervised Representations for Reinforce-
ment Learning (CURL)" [165] (ICML 2020) and "Reinforcement Learning with Augmented Data
(RAD)" [110] (NeurIPS 2020). CURL presented results for the first time that pixel-based reinforce-
ment learning could be as sample-efficient as state-based. To clarify why this is relevant, continuous

CHAPTER 1. INTRODUCTION 3

control tasks often involve a complex sequence of actions to keep a robot satisfy a certain reward
function, for example, walker robot walking, cheetah robot running, etc. While good off-policy
RL algorithms existed to have fast learning from engineered state features (such as joint angles,
velocities, etc.), a fast-enough method to learn directly from pixels was lacking. The core idea is
that: If we could learn good features from pixels through a good representation learning algorithm,
it should allow for as fast learning as state engineering. CURL established new state-of-the-art (for
its time) on DMControl benchmarks, beating several existing relatively more complex baselines that
learn world models in pixel or latent spaces. It also introduced the idea of using data augmentations
and instance-based contrastive learning for RL, an approach popularly referred to in computer
vision as SimCLR [26], a paper published by Geoffrey Hinton in the same conference, ICML 2020.
Data augmentations played an important role in the strong results established in CURL. To study
their importance agnostic of the contrastive learning objective, Chapter 4 discusses the RAD article
(NeurIPS 2020). For several DMControl tasks, directly augmenting the input provides good or
better performance relative to CURL. Nevertheless, both these ideas are relevant and useful in their
form. The community has since developed better pipelines, that combine useful elements from both
CURL and RAD, for better results on Atari, DMControl, and real-world robotic control. The reader
is also highly encouraged to check out the results in CURL that use a detached encoder: i.e., no
backpropagation of RL gradients to the convolutional encoder that learns representations. Such a
recipe might likely be how we perform representation learning for RL in the future, and the early
signs are promising.

Now, let me elaborate on the other axis of the thesis: Why should we care about better deep
learning architectures? Major progress in deep learning has often come through better architectures:
AlexNet, VGG, ResNet, LSTMs, WaveNet, Transformers, so forth. A noticeable trend is how people
have always gone for universal primitives in the architectures that work across multiple problems
(modalities). For example, sequence models in NLP were initially RNN (LSTM) based [169], but
later evolved to convolution-based architectures [97] and then into pure attention models since
the Transformer [186]. There is now a lot of interest in the community to make Transformer
based models that use self-attention, work well for vision (either convolution-free or using hybrid
models involving both convolutions and self-attention). Achieving a universality in the architecture
pipelines across multiple modalities could be crucial to performing multimodal representation
learning with ease at scale. Chapter 5 presents the article "Bottleneck Transformers for Visual
Recognition (BoTNets)," published in CVPR 2021 to that end. It presented (concurrent to the more
popular Vision Transformer (ViT) [43]) (then) state-of-the-art results with a straightforward hybrid
design of convolutions and self-attention, unifying the ResNet and Transformer based architecture
designs for computer vision recognition tasks. Since then, several works have been published in
the field, improving the results presented in this article. Nevertheless, it has become clear that for
efficient models that achieve good accuracy, one needs to have elements of convolutions even in
attention-based architectures such as locality, early convolutions (for the stem), and multi-scale
processing of which are present in the hybrid design of BoTNet.

4

Chapter 2

Image Recognition using Contrastive
Learning

2.1 Introduction
Deep neural networks excel at perceptual tasks when labeled data are abundant, yet their perfor-
mance degrades substantially when provided with limited supervision (Fig. 4.2, red). In contrast,
humans and animals can learn about new classes of images from a small number of examples [108,
126]. What accounts for this monumental difference in data-efficiency between biological and
machine vision? While highly structured representations (e.g. as proposed by [106]) may improve
data-efficiency, it remains unclear how to program explicit structures that capture the enormous

5x fewer
labels

2x fewer
labels

Figure 2.1: Data-efficient image recognition with Contrastive Predictive Coding. With decreasing
amounts of labeled data, supervised networks trained on pixels fail to generalize (red). When trained
on unsupervised representations learned with CPC, these networks retain a much higher accuracy in
this low-data regime (blue).

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 5

complexity of real-world visual scenes, such as those present in the ImageNet dataset [150]. An
alternative hypothesis has therefore proposed that intelligent systems need not be structured a priori,
but can instead learn about the structure of the world in an unsupervised manner [10, 83, 111].
Choosing an appropriate training objective is an open problem, but a potential guiding principle is
that useful representations should make the variability in natural signals more predictable [181, 194,
148]. Indeed, human perceptual representations have been shown to linearize (or ‘straighten’) the
temporal transformations found in natural videos, a property lacking from current supervised image
recognition models [78], and theories of both spatial and temporal predictability have succeeded in
describing properties of early visual areas [146, 136]. In this work, we hypothesize that spatially
predictable representations may allow artificial systems to benefit from human-like data-efficiency.

Contrastive Predictive Coding (CPC, [135]) is an unsupervised objective which learns predictable
representations. CPC is a general technique that only requires in its definition that observations
be ordered along e.g. temporal or spatial dimensions, and as such has been applied to a variety of
different modalities including speech, natural language and images. This generality, combined with
the strong performance of its representations in downstream linear classification tasks, makes CPC
a promising candidate for investigating the efficacy of predictable representations for data-efficient
image recognition.

Our work makes the following contributions:

• We revisit CPC in terms of its architecture and training methodology, and arrive at a new
implementation with a dramatically-improved ability to linearly separate image classes (from
48.7% to 71.5% Top-1 ImageNet classification accuracy, a 23% absolute improvement),
setting a new state-of-the-art.

• We then train deep neural networks on top of the resulting CPC representations using very
few labeled images (e.g. 1% of the ImageNet dataset), and demonstrate test-time classification
accuracy far above networks trained on raw pixels (78% Top-5 accuracy, a 34% absolute
improvement), outperforming all other semi-supervised learning methods (+20% Top-5
accuracy over the previous state-of-the-art [205]). This gain in accuracy allows our classifier
to surpass supervised ones trained with 5× more labels.

• Surprisingly, this representation also surpasses supervised ResNets when given the entire
ImageNet dataset (+3.2% Top-1 accuracy). Alternatively, our classifier is able to match
fully-supervised ones while only using half of the labels.

• Finally, we assess the generality of CPC representations by transferring them to a new task
and dataset: object detection on PASCAL VOC 2007. Consistent with the results from the
previous sections, we find CPC to give state-of-the-art performance in this setting (76.6%
mAP), surpassing the performance of supervised pre-training (+2% absolute improvement).

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 6

2.2 Experimental Setup
We first review the CPC architecture and learning objective in section 2.2, before detailing how we
use its resulting representations for image recognition tasks in section 2.2.

Contrastive Predictive Coding
Contrastive Predictive Coding as formulated in [135] learns representations by training neural
networks to predict the representations of future observations from those of past ones. When applied
to images, CPC operates by predicting the representations of patches below a certain position from
those above it (Fig. 2.2, left). These predictions are evaluated using a contrastive loss [29, 68],
in which the network must correctly classify ‘future’ representations among a set of unrelated
‘negative’ representations. This avoids trivial solutions such as representing all patches with a
constant vector, as would be the case with a mean squared error loss.

In the CPC architecture, each input image is first divided into a grid of overlapping patches
xi,j , where i, j denote the location of the patch. Each patch is encoded with a neural network
fθ into a single vector zi,j = fθ(xi,j). To make predictions, a masked convolutional network
gφ is then applied to the grid of feature vectors. The masks are such that the receptive field of
each resulting context vector ci,j only includes feature vectors that lie above it in the image (i.e.
ci,j = gφ({zu,v}u≤i,v)). The prediction task then consists of predicting ‘future’ feature vectors zi+k,j
from current context vectors ci,j , where k > 0. The predictions are made linearly: given a context
vector ci,j , a prediction length k > 0, and a prediction matrix Wk, the predicted feature vector is
ẑi+k,j = Wkci,j .

The quality of this prediction is then evaluated using a contrastive loss. Specifically, the goal
is to correctly recognize the target zi+k,j among a set of randomly sampled feature vectors {zl}
from the dataset. We compute the probability assigned to the target using a softmax, and rate this
probability using the usual cross-entropy loss. Summing this loss over locations and prediction
offsets, we arrive at the CPC objective as defined in [135]:

LCPC = −
∑
i,j,k

log p(zi+k,j|ẑi+k,j, {zl})

= −
∑
i,j,k

log
exp(ẑTi+k,jzi+k,j)

exp(ẑTi+k,jzi+k,j) +
∑

l exp(ẑ
T
i+k,jzl)

The negative samples {zl} are taken from other locations in the image and other images in the
mini-batch. This loss is called InfoNCE as it is inspired by Noise-Contrastive Estimation [65, 132]
and has been shown to maximize the mutual information between ci,j and zi+k,j [135].

Evaluation protocol
Having trained an encoder network fθ, a context network gφ, and a set of linear predictors {Wk}
using the CPC objective, we use the encoder to form a representation z = fθ(x) of new observations

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 7

fθ gφx z c
InfoNCE

[256, 256, 3] [7, 7, 4096] [7, 7, 4096]
Masked
ConvNet

Patched
ResNet-161

fθ hψx z y
Cross

Ent

[256, 256, 3] [7, 7, 4096] [1000, 1]Linear

Self-supervised
pre-training

100% images; 0% labels

Linear classification
100% images and labels

fθ hψx z y
Cross

Ent

[224, 224, 3] [14, 14, 4096] ResNet-33
Efficient classification
1% to 100% images and labels

fθ hψx z y
Multi
Task

[H, W, 3] [H/16, W/16, 4096]
Transfer learning
100% images and labels

hψx y
Cross

Ent

[224, 224, 3] [1000, 1]ResNet-152
Supervised training

1% to 100% images and labels

Baseline
Pre-training

Evaluation

Pre-trained
Fixed / Tuned

ResNet-161

Image x

Feature Extractor fθ
Patched ResNet-161

z

c

Context Network gφ
Masked ConvNet

Faster-RCNN [20, 1]

[1000, 1]

Pre-trained
Fixed / Tuned

ResNet-161

Pre-trained Fixed
 Patched ResNet-161

Figure 2.2: Overview of the framework for semi-supervised learning with Contrastive Predictive
Coding. Left: unsupervised pre-training with the spatial prediction task (See Section 2.2). First,
an image is divided into a grid of overlapping patches. Each patch is encoded independently from
the rest with a feature extractor (blue) which terminates with a mean-pooling operation, yielding a
single feature vector for that patch. Doing so for all patches yields a field of such feature vectors
(wireframe vectors). Feature vectors above a certain level (in this case, the center of the image)
are then aggregated with a context network (red), yielding a row of context vectors which are used
to linearly predict features vectors below. Right: using the CPC representation for a classification
task. Having trained the encoder network, the context network (red) is discarded and replaced by a
classifier network (green) which can be trained in a supervised manner. In some experiments, we
also fine-tune the encoder network (blue) for the classification task. When applying the encoder to
cropped patches (as opposed to the full image) we refer to it as a patched ResNet in the figure.

x, and discard the rest. Note that while pre-training required that the encoder be applied to patches,
for downstream recognition tasks we can apply it directly to the entire image. We train a model
hψ to classify these representations: given a dataset of N unlabeled images Du = {xn}, and a
(potentially much smaller) dataset of M labeled images Dl = {xm, ym}

θ∗ = argmin
θ

1

N

N∑
n=1

LCPC[fθ(xn)]

ψ∗ = argmin
ψ

1

M

M∑
m=1

LSup[hψ ◦ fθ∗(xm), ym]

In all cases, the dataset of unlabeled images Du we pre-train on is the full ImageNet ILSVRC 2012
training set [150]. We consider three labeled datasets Dl for evaluation, each with an associated
classifier hψ and supervised loss LSup (see Fig. 2.2, right). This protocol is sufficiently generic to
allow us to later compare the CPC representation to other methods which have their own means of
learning a feature extractor fθ.

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 8

Linear classification is a standard benchmark for evaluating the quality of unsupervised image
representations. In this regime, the classification network hψ is restricted to mean pooling followed
by a single linear layer, and the parameters of fθ are kept fixed. The labeled dataset Dl is the
entire ImageNet dataset, and the supervised loss LSup is standard cross-entropy. We use the same
data-augmentation as in the unsupervised learning phase for training, and none at test time and
evaluate with a single crop.

Efficient classification directly tests whether the CPC representation enables generalization
from few labels. For this task, the classifier hψ is an arbitrary deep neural network (we use an
11-block ResNet architecture [73] with 4096-dimensional feature maps and 1024-dimensional bot-
tleneck layers). The labeled dataset Dl is a random subset of the ImageNet dataset: we investigated
using 1%, 2%, 5%, 10%, 20%, 50% and 100% of the dataset. The supervised loss LSup is again
cross-entropy. We use the same data-augmentation as during unsupervised pre-training, none at
test-time and evaluate with a single crop.

Transfer learning tests the generality of the representation by applying it to a new task and
dataset. For this we chose object detection on the PASCAL VOC 2007 dataset, a standard benchmark
in computer vision [50]. As such Dl is the entire PASCAL VOC 2007 dataset (comprised of 5011
labeled images); hψ and LSup are the Faster-RCNN architecture and loss [147]. In addition to
color-dropping, we use the scale-augmentation from [39] for training.

For linear classification, we keep the feature extractor fθ fixed to assess the representation in
absolute terms. For efficient classification and transfer learning, we additionally explore fine-
tuning the feature extractor for the supervised objective. In this regime, we initialize the feature
extractor and classifier with the solutions θ∗, ψ∗ found in the previous learning phase, and train them
both for the supervised objective. To ensure that the feature extractor does not deviate too much
from the solution dictated by the CPC objective, we use a smaller learning rate and early-stopping.

2.3 Related Work
Data-efficient learning has typically been approached by two complementary methods, both of which
seek to make use of more plentiful unlabeled data: representation learning and label propagation.
The former formulates an objective to learn a feature extractor fθ in an unsupervised manner,
whereas the latter directly constrains the classifier hψ using the unlabeled data.

Representation learning saw early success using generative modeling [101], but likelihood-
based models have yet to generalize to more complex stimuli. Generative adversarial models have
also been harnessed for representation learning [41], and large-scale implementations have led to
corresponding gains in linear classification accuracy [42].

In contrast to generative models which require the reconstruction of observations, self-supervised
techniques directly formulate tasks involving the learned representation. For example, simply asking
a network to recognize the spatial layout of an image led to representations that transferred to popular
vision tasks such as classification and detection [39, 134]. Other works showed that prediction of
color [207, 109] and image orientation [57], and invariance to data augmentation [44] can provide
useful self-supervised tasks. Beyond single images, works have leveraged video cues such as object

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 9

tracking [190], frame ordering [130], and object boundary cues [117, 137]. Non-visual information
can be equally powerful: information about camera motion [1, 93], scene geometry [204], or
sound [5, 6] can all serve as natural sources of supervision.

While many of these tasks require predicting fixed quantities computed from the data, another
class of contrastive methods [29, 68] formulate their objectives in the learned representations
themselves. CPC is a contrastive representation learning method that maximizes the mutual
information between spatially removed latent representations with InfoNCE [135], a loss function
based on Noise-Contrastive Estimation [65, 132]. Two other methods have recently been proposed
using the same loss function, but with different associated prediction tasks. Contrastive Multiview
Coding [180] maximizes the mutual information between representations of different views of the
same observation. Augmented Multiscale Deep InfoMax (AMDIM, [9]) is most similar to CPC
in that it makes predictions across space, but differs in that it also predicts representations across
layers in the model. Instance Discrimination is another contrastive objective which encourages
representations that can discriminate between individual examples in the dataset [196].

A common alternative approach for improving data efficiency is label-propagation [209],
where a classifier is trained on a subset of labeled data, then used to label parts of the unlabeled
dataset. This label-propagation can either be discrete (as in pseudo-labeling, [115]) or continuous (as
in entropy minimization, [63]). The predictions of this classifier are often constrained to be smooth
with respect to certain deformations, such as data-augmentation [199] or adversarial perturbation
[131]. Representation learning and label propagation have been shown to be complementary and
can be combined to great effect [205], hence we focus solely on representation learning in this work.

2.4 Results
When testing whether CPC enables data-efficient learning, we wish to use the best representative
of this model class. Unfortunately, purely unsupervised metrics tell us little about downstream
performance, and implementation details have been shown to matter enormously [40, 102]. Since
most representation learning methods have previously been evaluated using linear classification,
we use this benchmark to guide a series of modifications to the training protocol and architecture
(section 2.4) and compare to published results. In section 2.4 we turn to our central question
of whether CPC enables data-efficient classification. Finally, in section 2.4 we investigate the
generality of our results through transfer learning to PASCAL VOC 2007.

From CPC v1 to CPC v2
The overarching principle behind our new model design is to increase the scale and efficiency
of the encoder architecture while also maximizing the supervisory signal we obtain from each
image. At the same time, it is important to control the types of predictions that can be made across
image patches, by removing low-level cues which might lead to degenerate solutions. To this end,
we augment individual patches independently using stochastic data-processing techniques from
supervised and self-supervised learning.

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 10

0.55

0.6

0.65

0.7

Li
ne

ar
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

+MC +BU +LN +RC +HP +LP +PA

CPC v1 CPC v2

Figure 2.3: Linear classification performance of new variants of CPC, which incrementally add
a series of modifications. MC: model capacity. BU: bottom-up spatial predictions. LN: layer
normalization. RC: random color-dropping. HP: horizontal spatial predictions. LP: larger patches.
PA: further patch-based augmentation. Note that these accuracies are evaluated on a custom
validation set and are therefore not directly comparable to the results we report on the official
validation set.

We identify four axes for model capacity and task setup that could impact the model’s perfor-
mance. The first axis increases model capacity by increasing depth and width, while the second
improves training efficiency by introducing layer normalization. The third axis increases task
complexity by making predictions in all four directions, and the fourth does so by performing more
extensive patch-based augmentation.

Model capacity. Recent work has shown that larger networks and more effective training improves
self-supervised learning [40, 102], but the original CPC model used only the first 3 stacks of
a ResNet-101 architecture. Therefore, we convert the third residual stack of the ResNet-101
(containing 23 blocks, 1024-dimensional feature maps, and 256-dimensional bottleneck layers) to
use 46 blocks with 4096-dimensional feature maps and 512-dimensional bottleneck layers. We
call the resulting network ResNet-161. Consistent with prior results, this new architecture delivers
better performance without any further modifications (Fig. 2.3, +5% Top-1 accuracy). We also
increase the model’s expressivity by increasing the size of its receptive field with larger patches
(from 64×64 to 80×80 pixels; +2% Top-1 accuracy).

Layer normalization. Large architectures are more difficult to train efficiently. Early works on
context prediction with patches used batch normalization [90, 39] to speed up training. However,
with CPC we find that batch normalization actually harms downstream performance of large models.
We hypothesize that batch normalization allows these models to find a trivial solution to CPC: it
introduces a dependency between patches (through the batch statistics) that can be exploited to
bypass the constraints on the receptive field. Nevertheless we find that we can reclaim much of
batch normalization’s training efficiency by using layer normalization (+2% accuracy, [8]).

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 11

Table 2.1: Linear classification accuracy, and comparison to other self-supervised methods. In
all cases the feature extractor is optimized in an unsupervised manner, using one of the methods
listed below. A linear classifier is then trained on top using all labels in the ImageNet dataset, and
evaluated using a single crop. Prior art reported from [1] [196], [2] [210], [3] [76], [4] [129], [5]
[40], [6] [102], [7] [135], [8] [42], [9] [9], [10] [180].

Method Params (M) Top-1 Top-5

Methods using ResNet-50:
Instance Discr. [1] 24 54.0 -
Local Aggr. [2] 24 58.8 -
MoCo [3] 24 60.6 -
PIRL [4] 24 63.6 -

CPC v2 - ResNet-50 24 63.8 85.3

Methods using different architectures:
Multi-task [5] 28 - 69.3
Rotation [6] 86 55.4 -
CPC v1 [7] 28 48.7 73.6
BigBiGAN [8] 86 61.3 81.9
AMDIM [9] 626 68.1 -
CMC [10] 188 68.4 88.2
MoCo [2] 375 68.6 -

CPC v2 - ResNet-161 305 71.5 90.1

Prediction lengths and directions. Larger architectures also run a greater risk of overfitting. We
address this by asking more from the network: specifically, whereas the model in [135] predicted
each patch using only context from above, we repeatedly predict the same patch using context from
below, the right and the left (using separate context networks), resulting in up to four times as many
prediction tasks. Additional predictions tasks incrementally increased accuracy (adding bottom-up
predictions: +2% accuracy; using all four spatial directions: +2.5% accuracy).

Patch-based augmentation. If the network can solve CPC using low-level patterns (e.g. straight
lines continuing between patches or chromatic aberration), it need not learn semantically meaningful
content. Augmenting the low-level variability across patches can remove such cues. To that effect,
the original CPC model spatially jittered individual patches independently. We further this logic by
adopting the ‘color dropping’ method of [39], which randomly drops two of the three color channels
in each patch, and find it to deliver systematic gains (+3% accuracy). We therefore continued
by adding a fixed, generic augmentation scheme using the primitives from [33] (e.g. shearing,

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 12

Table 2.2: Data-efficient image classification. We compare the accuracy of two ResNet classifiers,
one trained on the raw image pixels, the other on the proposed CPC v2 features, for varying amounts
of labeled data. Note that we also fine-tune the CPC features for the supervised task, given the
limited amount of labeled data. Regardless, the ResNet trained on CPC features systematically
surpasses the one trained on pixels, even when given 2–5× less labels to learn from. The red
(respectively, blue) boxes highlight comparisons between the two classifiers, trained with different
amounts of data, which illustrate a 5× (resp. 2×) gain in data-efficiency in the low-data (resp.
high-data) regime.

Labeled data 1% 2% 5% 10% 20% 50% 100%

Top-1 accuracy
ResNet-200 trained on pixels 23.1 34.8 50.6 62.5 70.3 75.9 80.2

ResNet-33 trained on CPC features 52.7 60.4 68.1 73.1 76.7 81.2 83.4
Gain in data-efficiency 5× 2.5× 2× 2× 2.5× 2×

Top-5 accuracy
ResNet-200 trained on pixels 44.1 59.9 75.2 83.9 89.4 93.1 95.2

ResNet-33 trained on CPC features 78.3 83.9 88.8 91.2 93.3 95.6 96.5
Gain in data-efficiency 5× 5× 2× 2.5× 2× 2×

rotation, etc), as well as random elastic deformations and color transforms ([36], +4.5% accuracy
in total). Note that these augmentations introduce some inductive bias about content-preserving
transformations in images, but we do not optimize them for downstream performance (as in [33]
and [119]).

Comparison to previous art. Cumulatively, these fairly straightforward implementation changes
lead to a substantial improvement to the original CPC model, setting a new state-of-the-art in
linear classification of 71.5% Top-1 accuracy (compared to 48.7% for the original, see table 2.1).
Note that our architecture differs from ones used by other works in self-supervised learning, while
using a number of parameters which is comparable to recently-used ones. The great diversity of
network architectures (e.g. BigBiGAN employs a RevNet-50 with a ×4 widening factor, AMDIM a
customized ResNet architecture, CMC a ResNet-50 ×2 and Momentum Contrast and ResNet-50
×4) make any apples-to-apples comparison with these works challenging. In order to compare
with published results which use the same architecture, we therefore also trained a ResNet-50
architecture for the CPC v2 objective, arriving at 63.8% linear classification accuracy. This model
outperforms methods which use the same architecture, as well as many recent approaches which at
times use substantially larger ones [40, 135, 102, 210, 42].

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 13

Efficient image classification
We now turn to our original question of whether CPC can enable data-efficient image recognition.

Supervised baseline. We start by evaluating the performance of purely-supervised networks as
the size of the labeled dataset Dl varies from 1% to 100% of ImageNet, training separate classifiers
on each subset. We compared a range of different architectures (ResNet-50, -101, -152, and -200)
and found a ResNet-200 to work best across all data-regimes. After tuning the supervised model
for low-data classification (varying network depth, regularization, and optimization parameters)
and extensive use of data-augmentation (including the transformations used for CPC pre-training),
the accuracy of the best model reaches 44.1% Top-5 accuracy when trained on 1% of the dataset
(compared to 95.2% when trained on the entire dataset, see Table 2.2 and Fig. 4.2, red).

Contrastive Predictive Coding. We now address our central question of whether CPC enables
data-efficient learning. We follow the same paradigm as for the supervised baseline (training and
evaluating a separate classifier for each labeled subset), stacking a neural network classifier on top
of the CPC latents z = fθ(x) rather than the raw image pixels x. Specifically, we stack an 11-block
ResNet classifier hψ on top of the 14×14 grid of CPC latents, and train it using the same protocol as
the supervised baseline (see section 2.2). During an initial phase we keep the CPC feature extractor
fixed and train the ResNet classifier till convergence (see Table 2.3 for its performance). We then
fine-tune the entire stack hψ ◦ fθ for the supervised objective, for a small number of epochs (chosen
by cross-validation). In Table 2.2 and Fig. 4.2 (blue curve) we report the results of this fine-tuned
model.

This procedure leads to a substantial increase in accuracy, yielding 78.3% Top-5 accuracy with
only 1% of the labels, a 34% absolute improvement (77% relative) over purely-supervised methods.
Surprisingly, when given the entire dataset, this classifier reaches 83.4%/96.5% Top1/Top5 accuracy,
surpassing our supervised baseline (ResNet-200: 80.2%/95.2% accuracy) and published results
(original ResNet-200 v2: 79.9%/95.2%, [74]; with AutoAugment: 80.0%/95.0%, [33]). Using
this representation also leads to gains in data-efficiency. With only 50% of the labels our classifier
surpasses the supervised baseline given the entire dataset, representing a 2× gain in data-efficiency
(see table 2.2, blue boxes). Similarly, with only 1% of the labels, our classifier surpasses the
supervised baseline given 5% of the labels (i.e. a 5× gain in data-efficiency, see table 2.2, red
boxes).

Note that we are comparing two different model classes as opposed to specific models or
instantiations of these classes. As result we have searched for the best representative of each class,
landing on the ResNet-200 for purely supervised ResNets and our wider ResNet-161 for CPC
pre-training (with a ResNet-33 for downstream classification). Given the difference in capacity
between these models (the ResNet-200 has approximately 60 million parameters whereas our
combined model has over 500 million parameters), we verified that supervised learning would not
benefit from this larger architecture. Training the ResNet-161 + ResNet-33 stack (including batch
normalization throughout) in a purely supervised manner yielded results that were similar to that of
the ResNet-200 (80.3%/95.2% Top-1/Top-5 accuracy). This result is to be expected: the family of

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 14

Table 2.3: Comparison to other methods for semi-supervised learning. Representation learning
methods use a classifier to discriminate an unsupervised representation, and optimize it solely with
respect to labeled data. Label-propagation methods on the other hand further constrain the classifier
with smoothness and entropy criteria on unlabeled data, making the additional assumption that all
training images fit into a single (unknown) testing category. When evaluating CPC v2, BigBiGAN,
and AMDIM, we train a ResNet-33 on top of the representation, while keeping the representation
fixed or allowing it to be fine-tuned. All other results are reported from their respective papers: [1]
[205], [2] [199], [3] [196], [4] [129].

Labeled data 1% 10% 100%

Top-5 accuracy
Supervised baseline 44.1 83.9 95.2

Methods using label-propagation:
Pseudolabeling [1] 51.6 82.4 -
VAT + Entropy Min. [1] 47.0 83.4 -
Unsup. Data Aug. [2] - 88.5 -
Rot. + VAT + Ent. Min. [1] - 91.2 95.0

Methods using representation learning only:
Instance Discr. [3] 39.2 77.4 -
PIRL [4] 57.2 83.8 -
Rotation [1] 57.5 86.4 -
BigBiGAN (fixed) 55.2 78.8 87.0
AMDIM (fixed) 67.4 85.8 92.2

CPC v2 (fixed) 77.1 90.5 96.2
CPC v2 (fine-tuned) 78.3 91.2 96.5

ResNet-50, -101, and -200 architectures are designed for supervised learning, and their capacity is
calibrated for the amount of training signal present in ImageNet labels; larger architectures only
run a greater risk of overfitting. In contrast, the CPC training objective is much richer and requires
larger architectures to be taken advantage of, as evidenced by the difference in linear classification
accuracy between a ResNet-50 and ResNet-161 trained for CPC (table 1, 63.8% vs 71.5% Top-1
accuracy).

Other unsupervised representations. How well does the CPC representation compare to other
representations that have been learned in an unsupervised manner? Table 2.3 compares our best
model with other works on efficient recognition. We consider three objectives from different model
classes: self-supervised learning with rotation prediction [205], large-scale adversarial feature

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 15

learning (BigBiGAN, [42]), and another contrastive prediction objective (AMDIM, [9]). [205]
evaluate the low-data classification performance of representations learned with rotation prediction
using a similar paradigm and architecture (ResNet-152 with a ×2 widening factor), hence we report
their results directly: given 1% of ImageNet labels, their method achieves 57.5% Top-5 accuracy.
The authors of BigBiGAN and AMDIM do not report results on efficient classification, hence we
evaluated these representations using the same paradigm we used for evaluating CPC. Specifically,
since fine-tuned representations yield only marginal gains over fixed ones (e.g. 77.1% vs 78.3%
Top-5 accuracy given 1% of the labels, see table 2.3), we train an identical ResNet classifier on top
of these representations while keeping them fixed. Given 1% of ImageNet labels, classifiers trained
on top of BigBiGAN and AMDIM achieve 55.2% and 67.4% Top-5 accuracy, respectively.

Finally, Table 2.3 (top) also includes results for label-propagation algorithms. Note that the
comparison is imperfect: these methods have an advantage in assuming that all unlabeled images
can be assigned to a single category. At the same time, prior works (except for [205] which use a
ResNet-50 ×4) report results with smaller networks, which may degrade performance relative to
ours. Overall, we find that our results are on par with or surpass even the strongest such results [205],
even though this work combines a variety of techniques (entropy minimization, virtual adversarial
training, self-supervised learning, and pseudo-labeling) with a large architecture whose capacity is
similar to ours.

In summary, we find that CPC provides gains in data-efficiency that were previously unseen from
representation learning methods, and rival the performance of the more elaborate label-propagation
algorithms.

Transfer learning: image detection on PASCAL VOC 2007
We next investigate transfer learning performance on object detection on the PASCAL VOC 2007
dataset, which reflects the practical scenario where a representation must be trained on a dataset
with different statistics than the dataset of interest. This dataset also tests the efficiency of the
representation as it only contains 5011 labeled images to train from. The standard protocol in this
setting is to train an ImageNet classifier in a supervised manner, and use it as a feature extractor
for a Faster-RCNN object detection architecture [147]. Following this procedure, we obtain 74.7%
mAP with a ResNet-152 (Table 2.4). In contrast, if we use our CPC encoder as a feature extractor in
the same setup, we obtain 76.6% mAP. This represents one of the first results where unsupervised
pre-training surpasses supervised pre-training for transfer learning. Note that consistently with
the previous section, we limit ourselves to comparing the two model classes (supervised vs. self-
supervised), choosing the best architecture for each. Concurrently with our results, [76] achieve
74.9% in the same setting.

2.5 Discussion
We asked whether CPC could enable data-efficient image recognition, and found that it indeed
greatly improves the accuracy of classifiers and object detectors when given small amounts of

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 16

Table 2.4: Comparison of PASCAL VOC 2007 object detection accuracy to other transfer methods.
The supervised baseline learns from the entire labeled ImageNet dataset and fine-tunes for PASCAL
detection. The second class of methods learns from the same unlabeled images before transferring.
The architecture column specifies the object detector (Fast-RCNN or Faster-RCNN) and the feature
extractor (ResNet-50, -101, -152, or -161). All of these methods pre-train on the ImageNet dataset,
except for DeeperCluster which learns from the larger, but uncurated, YFCC100M dataset [179].
All methods fine-tune on the PASCAL 2007 training set, and are evaluted in terms of mean average
precision (mAP). Prior art reported from [1] [44], [2] [40], [3] [137], [4] [207], [5] [39], [6] [196],
[7] [24], [8] [25], [9] [210], [10] [129] [11] [76].

Method Architecture mAP

Transfer using labeled data:
Supervised baseline Faster: R152 74.7

Transfer using unlabeled data:
Exemplar [1] by [2] Faster: R101 60.9
Motion Segm. [3] by [2] Faster: R101 61.1
Colorization [4] by [2] Faster: R101 65.5
Relative Pos. [5] by [2] Faster: R101 66.8
Multi-task [2] Faster: R101 70.5
Instance Discr. [6] Faster: R50 65.4
Deep Cluster [7] Fast: VGG-16 65.9
Deeper Cluster [8] Fast: VGG-16 67.8
Local Aggregation [9] Faster: R50 69.1
PIRL [10] Faster: R50 73.4
Momentum Contrast [11] Faster: R50 74.9

CPC v2 Faster: R161 76.6

labeled data. Surprisingly, CPC even improves their peformance when given ImageNet-scale labels.
Our results show that there is still room for improvement using relatively straightforward changes
such as augmentation, optimization, and network architecture. Overall, these results open the door
toward research on problems where data is naturally limited, e.g. medical imaging or robotics.

Furthermore, images are far from the only domain where unsupervised representation learning
is important: for example, unsupervised learning is already a critical step in natural language
processing [127, 38], and shows promise in domains like audio [135, 6, 5], video [94, 130], and
robotic manipulation [140, 139, 158]. Currently much self-supervised work builds upon tasks
tailored for a specific domain (often images), which may not be easily adapted to other domains.
Contrastive prediction methods, including the techniques proposed in this paper, are task agnostic

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 17

and could therefore serve as a unifying framework for integrating these tasks and modalities. This
generality is particularly useful given that many real-world environments are inherently multimodal,
e.g. robotic environments which can have vision, audio, touch, proprioception, action, and more
over long temporal sequences. Given the importance of increasing the amounts of self-supervision
(via additional prediction tasks), integrating these modalities and tasks could lead to unsupervised
representations which rival the efficiency and effectiveness of human ones.

2.6 Self-supervised pre-training
Model architecture: Having extracted 80×80 patches with a stride of 36×36 from an input
image with 260×260 resolution, we end up with a grid of 6×6 image patches. We transform each
one with a ResNet-161 encoder which terminates with a mean pooling operation, resulting in a
[6,6,4096] tensor representation for each image. We then aggregate these latents into a 6×6 grid
of context vectors, using a pixelCNN. We use this context to make the predictions and compute the
CPC loss.� �
def pixelCNN (latents) :

latents: [B, H, W, D]
cres = latents
cres_dim = cres .shape [- 1]
for _ in range (5) :
c = Conv2D (output_channels=256 ,

kernel_shape=(1 , 1)) (cres)
c = ReLU (c)
c = Conv2D (output_channels=256 ,

kernel_shape=(1 , 3)) (c)
c = Pad (c , [[0 , 0] , [1 , 0] , [0 , 0] , [0 , 0]])
c = Conv2D (output_channels=256 ,

kernel_shape=(2 , 1) ,
type=’VALID’) (c)

c = ReLU (c)
c = Conv2D (output_channels=cres_dim ,

kernel_shape=(1 , 1)) (c)
cres = cres + c

cres = ReLU (cres)
return cres

def CPC (latents , target_dim=64 , emb_scale= 0 . 1 ,
steps_to_ignore=2 , steps_to_predict=3) :

latents: [B, H, W, D]
loss = 0 . 0
context = pixelCNN (latents)
targets = Conv2D (output_channels=target_dim ,

kernel_shape= (1 , 1)) (latents)
batch_dim , col_dim , rows = targets .shape [: - 1]
targets = reshape (targets , [- 1 , target_dim])
for i in range (steps_to_ignore , steps_to_predict) :
col_dim_i = col_dim - i - 1
total_elements = batch_dim * col_dim_i * rows

preds_i = Conv2D (output_channels=target_dim ,
kernel_shape= (1 , 1)) (context)

preds_i = preds_i [: , : - (i+1) , : , :] * emb_scale

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 18

preds_i = reshape (preds_i , [- 1 , target_dim])

logits = matmul (preds_i , targets , transp_b=True)

b = range (total_elements) / (col_dim_i * rows)
col = range (total_elements) % (col_dim_i * rows)
labels = b * col_dim * rows + (i+1) * rows + col

loss += cross_entropy_with_logits (logits , labels)
return loss� �

Image preprocessing: The final CPC v2 image processing pipeline we adopt consists of the
following steps. We first resize the image to 300×300 pixels and randomly extract a 260×260 pixel
crop, then divide this image into a 6×6 grid of 80×80 patches. Then, for every patch:

1. Randomly choose two transformations from [33] and apply them using default parameters.

2. Using the primitives from [36], randomly apply elastic deformation and shearing with a
probability of 0.2. Randomly apply their color-histogram automentations with a probability
of 0.2.

3. Randomly apply the color augmentations from [173] with a probability of 0.8.

4. Randomly project the image to grey-scale with a probability of 0.25.

Optimization details: We train the network for the CPC objective using the Adam optimizer
[99] for 200 epochs, using a learning rate of 0.0004, β1 = 0.8, β2 = 0.999, ε = 10−8 and Polyak
averaging with a decay of 0.9999. We also clip gradients to have a maximum norm of 0.01. We
train the model with a batch size of 512, which we spread across 32 workers.

2.7 Linear classification
Model architecture: For linear classification we encode each image in the same way as during
self-supervised pre-training (section 2.6), yielding a 6×6 grid of 4096-dimensional features vectors.
We then use Batch-Normalization [90] to normalize the features (omitting the scale parameter)
followed by a 1×1 convolution mapping each feature in the grid to the 1000 logits for ImageNet
classification. We then spatially mean-pool these logits to end up with the final log probabilities for
the linear classification.

Image preprocessing: We use the same data pipeline as for self-supervised pre-training (section
2.6).

Optimization details: We use the Adam optimizer with a learning rate of 0.0005. We train the
model with a batch size of 512 images spread over 16 workers.

CHAPTER 2. IMAGE RECOGNITION USING CONTRASTIVE LEARNING 19

2.8 Efficient classification

Purely supervised
Model architecture: We investigate using ResNet-50, ResNet-101, ResNet-152, and ResNet-200
model architectures, all of them using the ‘v2’ variant [74], and find larger architectures to perform
better, even when given smaller amounts of data. We insert a DropOut layer before the final linear
classification layer [167].

Image preprocessing: We extract a randomly sized crop, as in the augmentations of [173]. We
follow this with the same image transformations as for self-supervised pre-training (steps 1–4).

Optimization details: We use stochastic gradient descent, varying the learning rate in {0.05,
0.1, 0.2}, the weight decay logarithmically from 10−5 to 10−2, the DropOut linearly from 0 to 1,
and the batch size per worker in {16, 32}. We search for the best-performing model separately
for each subset of labeled training data, as more labeled data requires less regularization. Having
chosen these hyperparameters using a separate validation set (approximately 10k images which we
remove from the training set), we evaluate each model on the test set (i.e. the publicly available
ILSVRC-2012 validation set).

Semi-supervised with CPC
Model architecture: We apply the CPC encoder directly to the image, resulting in a 14×14
grid of feature vectors. These features are used as inputs to an 11-block ResNet classifier with
4096-dimensional hiddens layers and 1024-dimensional bottleneck layers. As for the supervised
baseline, we insert DropOut after the final mean-pooling operation and before the final linear
classifier.

Image preprocessing: We use the same pipeline as the supervised baseline.

Optimization details: We start by training the classifier while keeping the CPC features fixed. To
do so we search through the same set of hyperparameters as the supervised baseline. After training
the classifier till convergence, we fine-tune the entire stack for classification. In this phase we keep
the optimization details of each component the same as previously: the classifier is fine-tuned with
SGD, while the encoder is fine-tuned with Adam.

20

Chapter 3

Contrastive Learning for Reinforcement
Learning

3.1 Introduction
Developing agents that can perform complex control tasks from high dimensional observations
such as pixels has been possible by combining the expressive power of deep neural networks with
the long-term credit assignment power of reinforcement learning algorithms. Notable successes
include learning to play a diverse set of video games from raw pixels [133], continuous control tasks
such as controlling a simulated car from a dashboard camera [118] and subsequent algorithmic
developments and applications to agents that successfully navigate mazes and solve complex tasks
from first-person camera observations [92, 48, 91]; and robots that successfully grasp objects in the
real world [96].

However, it has been empirically observed that reinforcement learning from high dimensional
observations such as raw pixels is sample-inefficient [107, 95]. Moreover, it is widely accepted
that learning policies from physical state based features is significantly more sample-efficient than
learning from pixels [177]. In principle, if the state information is present in the pixel data, then we
should be able to learn representations that extract the relevant state information. For this reason, it
may be possible to learn from pixels as fast as from state given the right representation.

From a practical standpoint, although high rendering speeds in simulated environments enable
RL agents to solve complex tasks within reasonable wall clock time, learning in the real world
means that agents are bound to work within the limitations of physics. [96] needed a farm of robotic
arms that collected large scale robot interaction data over several months to develop their robot grasp
value functions and policies. The data-efficiency of the whole pipeline thus has significant room for
improvement. Similarly, in simulated worlds which are limited by rendering speeds in the absence
of GPU accelerators, data efficiency is extremely crucial to have a fast experimental turnover and
iteration. Therefore, improving the sample efficiency of reinforcement learning (RL) methods that
operate from high dimensional observations is of paramount importance to RL research both in
simulation and the real world and allows for faster progress towards the broader goal of developing

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 21

Figure 3.1: Contrastive Unsupervised Representations for Reinforcement Learning (CURL) com-
bines instance contrastive learning and reinforcement learning. CURL trains a visual representation
encoder by ensuring that the embeddings of data-augmented versions oq and ok of observation o
match using a contrastive loss. The query observations oq are treated as the anchor while the key
observations ok contain the positive and negatives, all constructed from the minibatch sampled for
the RL update. The keys are encoded with a momentum averaged version of the query encoder.
The RL policy and (or) value function are built on top of the query encoder which is jointly trained
with the contrastive and reinforcement learning objectives. CURL is a generic framework that can
be plugged into any RL algorithm that relies on learning representations from high dimensional
images.

intelligent autonomous agents.
A number of approaches have been proposed in the literature to address the sample inefficiency

of deep RL algorithms. Broadly, they can be classified into two streams of research, though not
mutually exclusive: (i) Auxiliary tasks on the agent’s sensory observations; (ii) World models
that predict the future. While the former class of methods use auxiliary self-supervision tasks to
accelerate the learning progress of model-free RL methods [92, 128], the latter class of methods
build explicit predictive models of the world and use those models to plan through or collect
fictitious rollouts for model-free methods to learn from [171, 66, 95, 154].

Our work falls into the first class of models, which use auxiliary tasks to improve sample
efficiency. Our hypothesis is simple: If an agent learns a useful semantic representation from
high dimensional observations, control algorithms built on top of those representations should be
significantly more data-efficient. Self-supervised representation learning has seen dramatic progress
in the last couple of years with huge advances in masked language modeling [38] and contrastive
learning [79, 76, 26] for language and vision respectively. The representations uncovered by these
objectives improve the performance of any supervised learning system especially in scenarios where
the amount of labeled data available for the downstream task is really low.

We take inspiration from the contrastive pre-training successes in computer vision. However,

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 22

there are a couple of key differences: (i) There is no giant unlabeled dataset of millions of images
available beforehand - the dataset is collected online from the agent’s interactions and changes dy-
namically with the agent’s experience; (ii) The agent has to perform unsupervised and reinforcement
learning simultaneously as opposed to fine-tuning a pre-trained network for a specific downstream
task. These two differences introduce a different challenge: How can we use contrastive learning
for improving agents that can learn to control effectively and efficiently from online interactions?

To address this challenge, we propose CURL - Contrastive Uunsupervised Representations for
Reinforcement Learning. CURL uses a form of contrastive learning that maximizes agreement be-
tween augmented versions of the same observation, where each observation is a stack of temporally
sequential frames. We show that CURL significantly improves sample-efficiency over prior pixel-
based methods by performing contrastive learning simultaneously with an off-policy RL algorithm.
CURL coupled with the Soft-Actor-Critic (SAC) [67] results in 1.9x median higher performance
over Dreamer, a prior state-of-the-art algorithm on DMControl environments, benchmarked at
100k environment steps and matches the performance of state-based SAC on the majority of 16
environments tested, a first for pixel-based methods. In the Atari setting benchmarked at 100k
interaction steps, we show that CURL coupled with a data-efficient version of Rainbow DQN [72]
results in 1.2x median higher performance over prior methods such as SimPLe [95], improving
upon Efficient Rainbow [72] on 19 out of 26 Atari games, surpassing human efficiency on two
games.

While contrastive learning in aid of model-free RL has been studied in the past by [135] using
Contrastive Predictive Coding (CPC), the results were mixed with marginal gains in a few DMLab
[48] environments. CURL is the first model to show substantial data-efficiency gains from using a
contrastive self-supervised learning objective for model-free RL agents across a multitude of pixel
based continuous and discrete control tasks in DMControl and Atari.

We prioritize designing a simple and easily reproducible pipeline. While the promise of auxiliary
tasks and learning world models for RL agents has been demonstrated in prior work, there’s an
added layer of complexity when introducing components like modeling the future in a latent space
[135, 66]. CURL is designed to add minimal overhead in terms of architecture and model learning.
The contrastive learning objective in CURL operates with the same latent space and architecture
typically used for model-free RL and seamlessly integrates with the training pipeline without the
need to introduce multiple additional hyperparameters.

Our paper makes the following key contributions: We present CURL, a simple framework that
integrates contrastive learning with model-free RL with minimal changes to the architecture and
training pipeline. Using 16 complex control tasks from the DeepMind control (DMControl) suite
and 26 Atari games, we empirically show that contrastive learning combined with model-free RL
outperforms the prior state-of-the-art by 1.9x on DMControl and 1.2x on Atari compared across
leading prior pixel-based methods. CURL is also the first algorithm across both model-based and
model-free methods that operates purely from pixels, and nearly matches the performance and
sample-efficiency of a SAC algorithm trained from the state based features on the DMControl
suite. Finally, our design is simple and does not require any custom architectural choices or
hyperparameters which is crucial for reproducible end-to-end training. Through these strong
empirical results, we demonstrate that a contrastive objective is the preferred self-supervised

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 23

auxiliary task for achieving sample-efficiency compared to reconstruction based methods, and
enables model-free methods to outperform state-of-the-art model-based methods in terms of data-
efficiency.

3.2 Related Work
Self-Supervised Learning: Self-Supervised Learning is aimed at learning rich representations
of high dimensional unlabeled data to be useful for a wide variety of tasks. The fields of natural
language processing and computer vision have seen dramatic advances in self-supervised methods
such as BERT [38], CPC, MoCo, SimCLR [79, 76, 26].

Contrastive Learning: Contrastive Learning is a framework to learn representations that obey
similarity constraints in a dataset typically organized by similar and dissimilar pairs. This is
often best understood as performing a dictionary lookup task wherein the positive and negatives
represent a set of keys with respect to a query (or an anchor). A simple instantiation of contrastive
learning is Instance Discrimination [196] wherein a query and key are positive pairs if they are
data-augmentations of the same instance (example, image) and negative otherwise. A key challenge
in contrastive learning is the choice of negatives which can decide the quality of the underlying
representations learned. The loss functions used to contrast could be among several choices such as
InfoNCE [135], Triplet [190], Siamese [29] and so forth.

Self-Supervised Learning for RL: Auxiliary tasks such as predicting the future conditioned
on the past observation(s) and action(s) [92, 160, 135, 153] are a few representative examples of
using auxiliary tasks to improve the sample-efficiency of model-free RL algorithms. The future
prediction is either done in a pixel space [92] or latent space [135]. The sample-efficiency gains from
reconstruction-based auxiliary losses have been benchmarked in [92, 82, 202]. Contrastive learning
has been used to extract reward signals in the latent space [158, 47, 193]; and study representation
learning on Atari games by [3].

World Models for sample-efficiency: While joint learning of an auxiliary unsupervised task
with model-free RL is one way to improve the sample-efficiency of agents, there has also been
another line of research that has tried to learn world models of the environment and use them to
sample rollouts and plan. An early instantiation of the generic principle was put forth by [171] in
Dyna where fictitious samples rolled out from a learned world model are used in addition to the
agent’s experience for sample-efficient learning. Planning through a learned world model [166] is
another way to improve sample-efficiency. While [92, 135, 114] also learn pixel and latent space
forward models, the models are learned to shape the latent representations, and there is no explicit
Dyna or planning. Planning through learned world models has been successfully demonstrated in
[66, 70, 69]. [95] introduce SimPLe which implements Dyna with expressive deep neural networks
for the world model for sample-efficiency on Atari games.

Sample-efficient RL for image-based control: CURL encompasses the areas of self-supervision,
contrastive learning and using auxiliary tasks for sample-efficient RL. We benchmark for sample-
efficiency on the DMControl suite [177] and Atari Games benchmarks [12]. The DMControl suite
has been used widely by [202], [70], [69] and [114] for benchmarking sample-efficiency for image

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 24

Replay buffer

Observation

Query
Encoder

Augmented observations
Reinforcement

Learning

Contrastive
Unsupervised

Learning

CURL

Key
Encoder

Da
ta

 A
ug

q = fθq
(oq)

k = fθk
(ok)

ok

oq

Figure 3.2: CURL Architecture: A batch of transitions is sampled from the replay buffer. Observa-
tions are then data-augmented twice to form query and key observations, which are then encoded
with the query encoder and key encoders, respectively. The queries are passed to the RL algorithm
while query-key pairs are passed to the contrastive learning objective. During the gradient update
step, only the query encoder is updated. The key encoder weights are the moving average (EMA)
of the query weights similar to MoCo [76].

based continuous control methods. As for Atari, [95] propose to use the 100k interaction steps
benchmark for sample-efficiency which has been adopted in [98, 72]. The Rainbow DQN [81] was
originally proposed for maximum sample-efficiency on the Atari benchmark and in recent times
has been adapted to a version known as Data-Efficient Rainbow [72] with competitive performance
to SimPLe without learning world models. We benchmark extensively against both model-based
and model-free algorithms in our experiments. For the DMControl experiments, we compare our
method to Dreamer, PlaNet, SLAC, SAC+AE whereas for Atari experiments we compare to SimPLe,
Rainbow, and OverTrained Rainbow (OTRainbow) and Efficient Rainbow (Eff. Rainbow).

3.3 Background
CURL is a general framework for combining contrastive learning with RL. In principle, one could
use any RL algorithm in the CURL pipeline, be it on-policy or off-policy. We use the widely adopted
Soft Actor Critic (SAC) [67] for continuous control benchmarks (DM Control) and Rainbow DQN
[81, 72] for discrete control benchmarks (Atari). Below, we review SAC, Rainbow DQN and
Contrastive Learning.

Soft Actor Critic
SAC is an off-policy RL algorithm that optimizes a stochastic policy for maximizing the expected
trajectory returns. Like other state-of-the-art end-to-end RL algorithms, SAC is effective when
solving tasks from state observations but fails to learn efficient policies from pixels. SAC is an
actor-critic method that learns a policy πψ and critics Qφ1 and Qφ2 . The parameters φi are learned
by minimizing the Bellman error:

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 25

L(φi,B) = Et∼B
[
(Qφi(o, a)− (r + γ(1− d)T))2] (3.1)

where t = (o, a, o′, r, d) is a tuple with observation o, action a, reward r and done signal d, B is
the replay buffer, and T is the target, defined as:

T =

(
min
i=1,2

Q∗φi(o
′, a′)− α log πψ(a

′|o′)
)

(3.2)

In the target equation equation 3.2, Q∗φi denotes the exponential moving average (EMA) of the
parameters of Qφi . Using the EMA has empirically shown to improve training stability in off-policy
RL algorithms. The parameter α is a positive entropy coefficient that determines the priority of the
entropy maximization over value function optimization.

While the critic is given by Qφi , the actor samples actions from policy πψ and is trained by
maximizing the expected return of its actions as in:

L(ψ) = Ea∼π [Qπ(o, a)− α log πψ(a|o)] (3.3)

where actions are sampled stochastically from the policy aψ(o, ξ) ∼ tanh (µψ(o) + σψ(o)� ξ)
and ξ ∼ N (0, I) is a standard normalized noise vector.

Rainbow
Rainbow DQN [81] is best summarized as multiple improvements on top of the original Nature
DQN [133] applied together. Specifically, Deep Q Network (DQN) [133] combines the off-policy
algorithm Q-Learning with a convolutional neural network as the function approximator to map
raw pixels to action value functions. Since then, multiple improvements have been proposed
such as Double Q Learning [185], Dueling Network Architectures [192], Prioritized Experience
Replay [152], and Noisy Networks [51]. Additionally, distributional reinforcement learning [11]
proposed the technique of predicting a distribution over possible value function bins through the C51
Algorithm. Rainbow DQN combines all of the above techniques into a single off-policy algorithm
for state-of-the-art sample efficiency on Atari benchmarks. Additionally, Rainbow also makes use
of multi-step returns [172]. [72] propose a data-efficient version of the Rainbow which can be
summarized as an improved configuration of hyperparameters that is optimized for performance
benchmarked at 100K interaction steps.

Contrastive Learning
A key component of CURL is the ability to learn rich representations of high dimensional data using
contrastive unsupervised learning. Contrastive learning [68, 112, 135, 196, 76] can be understood
as learning a differentiable dictionary look-up task. Given a query q and keys K = {k0, k1, . . . }
and an explicitly known partition of K (with respect to q) P (K) = ({k+},K \ {k+}), the goal
of contrastive learning is to ensure that q matches with k+ relatively more than any of the keys
in K \ {k+}. q,K, k+, and K \ {k+} are also referred to as anchor, targets, positive, negatives
respectively in the parlance of contrastive learning [135, 76]. Similarities between the anchor and

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 26

targets are best modeled with dot products (qTk) [196, 76] or bilinear products (qTWk) [135, 79]
though other forms like euclidean distances are also common [155, 190]. To learn embeddings that
respect these similarity relations, [135] propose the InfoNCE loss:

Lq = log
exp(qTWk+)

exp(qTWk+) +
∑K−1

i=0 exp(qTWki)
(3.4)

The loss 3.4 can be interpreted as the log-loss of a K-way softmax classifier whose label is k+.

3.4 CURL Implementation
CURL minimally modifies a base RL algorithm by training the contrastive objective as an auxiliary
loss during the batch update. In our experiments, we train CURL alongside two model-free RL
algorithms — SAC for DMControl experiments and Rainbow DQN (data-efficient version) for Atari
experiments. To specify a contrastive learning objective, we need to define (i) the discrimination
objective (ii) the transformation for generating query-key observations (iii) the embedding procedure
for transforming observations into queries and keys and (iv) the inner product used as a similarity
measure between the query-key pairs in the contrastive loss. The exact specification these aspects
largely determine the quality of the learned representations.

We first summarize the CURL architecture, and then cover each architectural choice in detail.

Architectural Overview
CURL uses instance discrimination with similarities to SimCLR [26], MoCo [76] and CPC [79].
Most Deep RL architectures operate with a stack of temporally consecutive frames as input [81].
Therefore, instance discrimination is performed across the frame stacks as opposed to single image
instances. We use a momentum encoding procedure for targets similar to MoCo [77] which we
found to be better performing for RL. Finally, for the InfoNCE score function, we use a bi-linear
inner product similar to CPC [135] which we found to work better than unit norm vector products
used in MoCo and SimCLR. Ablations for both the encoder and the similarity measure choices are
shown in Figure 3.5. The contrastive representation is trained jointly with the RL algorithm, and the
latent code receives gradients from both the contrastive objective and the Q-function. An overview
of the architecture is shown in in Figure 3.2.

Discrimination Objective
A key component of contrastive representation learning is the choice of positives and negative
samples relative to an anchor [9, 180, 79, 76, 26]. Contrastive Predictive Coding (CPC) based
pipelines [79, 135] use groups of image patches separated by a carefully chosen spatial offset for
anchors and positives while the negatives come from other patches within the image and from other
images.

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 27

While patches are a powerful way to incorporate spatial and instance discrimination together,
they introduce extra hyperparameters and architectural design choices which may be hard to adapt
for a new problem. SimCLR [26] and MoCo [76] opt for a simpler design where there is no patch
extraction.

Discriminating transformed image instances as opposed to image-patches within the same
image optimizes a simpler instance discrimination objective [196] with the InfoNCE loss and
requires minimal architectural adjustments [77, 26]. It is preferable to pick a simpler discrimination
objective in the RL setting for two reasons. First, considering the brittleness of reinforcement
learning algorithms [80], complex discrimination may destabilize the RL objective. Second, since
RL algorithms are trained on dynamically generated datasets, a complex discrimination objective
may significantly increase the wall-clock training time. CURL therefore uses instance discrimination
rather than patch discrimination. One could view contrastive instance discrimination setups like
SimCLR and MoCo as maximizing mutual information between an image and its augmented version.
The reader is encouraged to refer to [135, 85, 184] for connections between contrastive learning and
mutual information.

Query-Key Pair Generation
Similar to instance discrimination in the image setting [77, 26], the anchor and positive observations
are two different augmentations of the same image while negatives come from other images. CURL
primarily relies on the random crop data augmentation, where a random square patch is cropped
from the original rendering.

A significant difference between RL and computer vision settings is that an instance ingested by
a model-free RL algorithm that operates from pixels is not just a single image but a stack of frames
[133]. For example, one typically feeds in a stack of 4 frames in Atari experiments and a stack of 3
frames in DMControl. This way, performing instance discrimination on frame stacks allows CURL
to learn both spatial and temporal discriminative features. For details regarding the extent to which
CURL captures temporal features, see Appendix 3.12.

We apply the random augmentations across the batch but consistently across each stack of
frames to retain information about the temporal structure of the observation. The augmentation
procedure is shown in Figure 3.3. For more details, refer to Appendix 3.8.

Similarity Measure
Another determining factor in the discrimination objective is the inner product used to measure
agreement between query-key pairs. CURL employs the bi-linear inner-product sim(q, k) = qTWk,
where W is a learned parameter matrix. We found this similarity measure to outperform the
normalized dot-product (see Figure 3.5 in Appendix 3.8) used in recent state-of-the-art contrastive
learning methods in computer vision like MoCo and SimCLR.

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 28

Figure 3.3: Visually illustrating the process of generating an anchor and its positive using stochastic
random crops. Our aspect ratio for cropping is 0.84, i.e, we crop a 84× 84 image from a 100× 100
simulation-rendered image. Applying the same random crop coordinates across all frames in the
stack ensures time-consistent spatial jittering.

Target Encoding with Momentum
The motivation for using contrastive learning in CURL is to train encoders that map from high
dimensional pixels to more semantic latents. InfoNCE is an unsupervised loss that learns encoders
fq and fk mapping the raw anchors (query) xq and targets (keys) xk into latents q = fq(xq) and
k = fk(xk), on which we apply the similarity dot products. It is common to share the same encoder
between the anchor and target mappings, that is, to have fq = fk [135, 79].

From the perspective of viewing contrastive learning as building differentiable dictionary
lookups over high dimensional entities, increasing the size of the dictionary and enriching the set
of negatives is helpful in learning rich representations. [76] propose momentum contrast (MoCo),
which uses the exponentially moving average (momentum averaged) version of the query encoder
fq for encoding the keys in K. Given fq parametrized by θq and fk parametrized by θk, MoCo
performs the update θk = mθk+(1−m)θq and encodes any target xk using SG(fk(xk)) [SG : Stop
Gradient].

CURL couples frame-stack instance discrimination with momentum encoding for the targets
during contrastive learning, and RL is performed on top of the encoder features.

Differences Between CURL and Prior Contrastive Methods in RL
[135] use Contastive Predictive Coding (CPC) as an auxiliary task wherein an LSTM operates on
a latent space of a convolutional encoder; and both the CPC and A2C [133] objectives are jointly

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 29

optimized. CURL avoids using pipelines that predict the future in a latent space such as [135, 69].
In CURL, we opt for a simple instance discrimination style contrastive auxiliary task.

CURL Contrastive Learning Pseudocode (PyTorch-like)� �
1 # f_q, f_k: encoder networks for anchor
2 # (query) and target (keys) respectively.
3 # loader: minibatch sampler from ReplayBuffer
4 # B-batch_size, C-channels, H,W-spatial_dims
5 # x : shape : [B, C, H, W]
6 # C = c * num_frames; c=3 (R/G/B) or 1 (gray)
7 # m: momentum, e.g. 0.95
8 # z_dim: latent dimension
9 f_k.params = f_q.params

10 W = rand(z_dim, z_dim) # bilinear product.
11 for x in loader: # load minibatch from buffer
12 x_q = aug(x) # random augmentation
13 x_k = aug(x) # different random augmentation
14 z_q = f_q.forward(x_q)
15 z_k = f_k.forward(x_k)
16 z_k = z_k.detach() # stop gradient
17 proj_k = matmul(W, z_k.T) # bilinear product
18 logits = matmul(z_q, proj_k) # B x B
19 # subtract max from logits for stability
20 logits = logits - max(logits, axis=1)
21 labels = arange(logits.shape[0])
22 loss = CrossEntropyLoss(logits, labels)
23 loss.backward()
24 update(f_q.params) # Adam
25 update(W) # Adam
26 f_k.params = m*f_k.params+(1-m)*f_q.params� �

3.5 Experiments

Evaluation
We measure the data-efficiency and performance of our method and baselines at 100k and 500k
environment steps on DMControl and 100k interaction steps (400k environment steps with action
repeat of 4) on Atari, which we will henceforth refer to as DMControl100k, DMControl500k and
Atari100k for clarity. While Atari100k benchmark has been common practice when investigating
data-efficiency on Atari [95, 72, 98], the DMControl benchmark was set at 500k environment steps
because state-based RL approaches asymptotic performance on many environments at this point,
and 100k steps to measure the speed of initial learning. A broader motivation is that while RL
algorithms can achieve super-human performance on Atari games, they are still far less efficient
than a human learner. Training for 100-500k environment steps corresponds to a few hours of
human time.

We evaluate (i) sample-efficiency by measuring how many steps it takes the best performing
baselines to match CURL performance at a fixed T (100k or 500k) steps and (ii) performance by

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 30

measuring the ratio of the episode returns achieved by CURL versus the best performing baseline at
T steps. To be explicit, when we say data or sample-efficiency we’re referring to (i) and when we
say performance we’re referring to (ii).

Table 3.1: Scores achieved by CURL (mean & standard deviation for 10 seeds) and baselines
on DMControl500k and 1DMControl100k. CURL achieves state-of-the-art performance on the
majority (5 out of 6) environments benchmarked on DMControl500k. These environments were
selected based on availability of data from baseline methods (we run CURL experiments on 16
environments in total and show results in Figure 3.7). The baselines are PlaNet [70], Dreamer
[69], SAC+AE [202], SLAC [114], pixel-based SAC and state-based SAC [67]. SLAC results were
reported with one and three gradient updates per agent step, which we refer to as SLACv1 and
SLACv2 respectively. We compare to SLACv1 since all other baselines and CURL only make one
gradient update per agent step. We also ran CURL with three gradient updates per step and compare
results to SLACv2 in Table 3.5.

500K step scores CURL PlaNet Dreamer SAC+AE SLACv1 Pixel SAC State SAC

Finger, spin 926 ± 45 561 ± 284 796 ± 183 884 ± 128 673 ± 92 179 ± 166 923 ± 21
Cartpole, swingup 841 ± 45 475 ± 71 762 ± 27 735 ± 63 - 419 ± 40 848 ± 15
Reacher, easy 929 ± 44 210 ± 390 793 ± 164 627 ± 58 - 145 ± 30 923 ± 24
Cheetah, run 518 ± 28 305 ± 131 570 ± 253 550 ± 34 640 ± 19 197 ± 15 795 ± 30
Walker, walk 902 ± 43 351 ± 58 897 ± 49 847 ± 48 842 ± 51 42 ± 12 948 ± 54
Ball in cup, catch 959 ± 27 460 ± 380 879 ± 87 794± 58 852 ± 71 312± 63 974 ± 33

100K step scores

Finger, spin 767 ± 56 136 ± 216 341 ± 70 740 ± 64 693 ± 141 179 ± 66 811±46
Cartpole, swingup 582±146 297±39 326±27 311±11 - 419±40 835±22
Reacher, easy 538±233 20±50 314±155 274±14 - 145±30 746±25
Cheetah, run 299 ±48 138±88 235± 137 267±24 319±56 197±15 616±18
Walker, walk 403±24 224±48 277±12 394±22 361±73 42±12 891±82
Ball in cup, catch 769 ± 43 0 ± 0 246 ± 174 391± 82 512 ± 110 312± 63 746±91

Environments
Our primary goal for CURL is sample-efficient control from pixels that is broadly applicable across
a range of environments. We benchmark the performance of CURL for both discrete and continuous
control environments. Specifically, we focus on DMControl suite for continuous control tasks and
the Atari Games benchmark for discrete control tasks with inputs being raw pixels rendered by the
environments.

DeepMind Control: Recently, there have been a number of papers that have benchmarked for
sample efficiency on challenging visual continuous control tasks belonging to the DMControl suite

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 31

Table 3.2: Scores achieved by CURL (coupled with Eff. Rainbow) and baselines on Atari bench-
marked at 100k time-steps (Atari100k). CURL achieves state-of-the-art performance on 7 out of
26 environments. Our baselines are SimPLe [95], OverTrained Rainbow (OTRainbow) [98], Data-
Efficient Rainbow (Eff. Rainbow) [72], Rainbow [81], Random Agent and Human Performance
(Human). We see that CURL implemented on top of Eff. Rainbow improves over Eff. Rainbow
on 19 out of 26 games. We also run CURL with 20 random seeds given that this benchmark is
susceptible to high variance across multiple runs. We also see that CURL achieves superhuman
performance on JamesBond and Krull.

Game Human Random Rainbow SimPLe OTRainbow Eff. Rainbow CURL

Alien 7127.7 227.8 318.7 616.9 824.7 739.9 558.2
Amidar 1719.5 5.8 32.5 88.0 82.8 188.6 142.1
Assault 742.0 222.4 231 527.2 351.9 431.2 600.6
Asterix 8503.3 210.0 243.6 1128.3 628.5 470.8 734.5
Bank Heist 753.1 14.2 15.55 34.2 182.1 51.0 131.6
Battle Zone 37187.5 2360.0 2360.0 5184.4 4060.6 10124.6 14870.0
Boxing 12.1 0.1 -24.8 9.1 2.5 0.2 1.2
Breakout 30.5 1.7 1.2 16.4 9.84 1.9 4.9
Chopper Command 7387.8 811.0 120.0 1246.9 1033.33 861.8 1058.5
crazy_climber 35829.4 10780.5 2254.5 62583.6 21327.8 16185.3 12146.5
demon_attack 1971.0 152.1 163.6 208.1 711.8 508.0 817.6
freeway 29.6 0.0 0.0 20.3 25.0 27.9 26.7
frostbite 4334.7 65.2 60.2 254.7 231.6 866.8 1181.3
gopher 2412.5 257.6 431.2 771.0 778.0 349.5 669.3
hero 30826.4 1027.0 487 2656.6 6458.8 6857.0 6279.3
jamesbond 302.8 29.0 47.4 125.3 112.3 301.6 471.0
kangaroo 3035.0 52.0 0.0 323.1 605.4 779.3 872.5
krull 2665.5 1598.0 1468 4539.9 3277.9 2851.5 4229.6
kung_fu_master 22736.3 258.5 0. 17257.2 5722.2 14346.1 14307.8
ms_pacman 6951.6 307.3 67 1480.0 941.9 1204.1 1465.5
Pong 14.6 -20.7 -20.6 12.8 1.3 -19.3 -16.5
Private eye 69571.3 24.9 0 58.3 100.0 97.8 218.4
Qbert 13455.0 163.9 123.46 1288.8 509.3 1152.9 1042.4
Road_Runner 7845.0 11.5 1588.46 5640.6 2696.7 9600.0 5661.0
seaquest 42054.7 68.4 131.69 683.3 286.92 354.1 384.5
Up_n_Down 11693.2 533.4 504.6 3350.3 2847.6 2877.4 2955.2

[177] where the agent operates purely from pixels. The reason for operating in these environments
is multi fold: (i) they present a reasonably challenging and diverse set of tasks; (ii) sample-efficiency
of pure model-free RL algorithms operating from pixels on these benchmarks is poor; (iii) multiple
recent efforts to improve the sample efficiency of both model-free and model-based methods on

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 32

these benchmarks thereby giving us sufficient baselines to compare against; (iv) performance on the
DM control suite is relevant to robot learning in real world benchmarks.

We run experiments on sixteen environments from DMControl to examine the performance of
CURL on pixels relative to SAC with access to the ground truth state, shown in Figure 3.7. For more
extensive benchmarking, we compare CURL to five leading pixel-based methods across the the six
environments presented in [202]: ball-in-cup, finger-spin, reacher-easy, cheetah-run, walker-walk,
cartpole-swingup for benchmarking.

Atari: Similar to DMControl sample-efficiency benchmarks, there have been a number of
recent papers that have benchmarked for sample-efficiency on the Atari 2600 Games. [95] proposed
comparing various algorithms in terms of performance achieved within 100K timesteps (400K
frames, frame skip of 4) of interaction with the environments (games). The method proposed
by [95] called SimPLe is a model-based RL algorithm. SimPLe is compared to a random agent,
model-free Rainbow DQN [81] and human performance for the same amount of interaction time.
Recently, [72] and [98] proposed data-efficient versions of Rainbow DQN which are competitive
with SimPLe on the same benchmark. Given that the same benchmark has been established in
multiple recent papers and that there is a human baseline to compare to, we benchmark CURL on
all the 26 Atari Games (Table 3.2).

Baselines for benchmarking sample efficiency
DMControl baselines: We present a number of baselines for continuous control within the DM-
Control suite: (i) SAC-AE [202] where the authors attempt to use a β-VAE [82], VAE [100] and a
regualrized autoencoder [187, 56] jointly with SAC; (ii) SLAC [114] which learns a latent space
world model on top of VAE features [66] and builds value functions on top; (iii) PlaNet and (iv)
Dreamer [70, 69] both of which learn a latent space world model and explicitly plan through it;
(v) Pixel SAC: Vanilla SAC operating purely from pixels [67]. These baselines are competitive
methods for benchmarking control from pixels. In addition to these, we also present the baseline
State-SAC where the assumption is that the agent has access to low level state based features and
does not operate from pixels. This baseline acts as an oracle in that it approximates the upper bound
of how sample-efficient a pixel-based agent can get in these environments.

Atari baselines: For benchmarking performance on Atari, we compare CURL to (i) SimPLe
[95], the top performing model-based method in terms of data-efficiency on Atari and (ii) Rainbow
DQN [81], a top-performing model-free baseline for Atari, (iii) OTRainbow [98] which is an Over-
Trained version of Rainbow for data-efficiency, (iv) Efficient Rainbow [72] which is a modification
of Rainbow hyperparameters for data-efficiency, (v) Random Agent [95], (vi) Human Performance
[95, 72]. All the baselines and our method are evaluated for performance after 100K interaction
steps (400K frames with a frame skip of 4) which corresponds to roughly two hours of gameplay.
These benchmarks help us understand how the state-of-the-art pixel based RL algorithms compare
in terms of sample efficiency and also to human efficiency. Note: Scores for SimPLe and Human
baselines have been reported differently in prior work [98, 72]. To be rigorous, we take the best
reported score for each individual game reported in prior work.

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 33

3.6 Results

DMControl
Sample-efficiency results for DMControl experiments are shown in Table 3.1 and in Figures 3.4,
3.6, and 3.7. Below are the key findings:

(i) CURL is the state-of-the-art image-based RL algorithm on the majority (5 out of 6)
DMControl environments that we benchmark on for sample-efficiency against existing pixel-based
baselines. On DMControl100k, CURL achieves 1.9x higher median performance than Dreamer
[69], a leading model-based method, and is 4.5x more data-efficient shown in Figure 3.6.

(ii) CURL operating purely from pixels nearly matches (and sometimes surpasses) the sample
efficiency of SAC operating from state on the majority of 16 DMControl environments tested
shown in Figure 3.7 and matches the median state-based score on DMControl500k shown in Figure
3.4. This is a first for any image-based RL algorithm, be it model-based, model-free, with or
without auxiliary tasks.

(iii) CURL solves (converges close to optimal score of 1000) on the majority of 16 DMControl
experiments within 500k steps. It also matches the state-based median score across the 6 extensively
benchmarked environments in this regime.

Atari
Results for Atari100k are shown in Table 3.2. Below are the key findings:

(i) CURL achieves a median human-normalized score (HNS) of 17.5% while SimPLe and
Efficient Rainbow DQN achieve 14.4% and 16.1% respectively. The mean HNS is 38.1%, 44.3%,
and 28.5% for CURL, SimPLe, and Efficient Rainbow DQN respectively.

(ii) CURL improves on top of Efficient Rainbow on 19 out of 26 Atari games. Averaged across
26 games, CURL improves on top of Efficient Rainbow by 1.3x, while the median performance
improvement over SimPLE and Efficient Rainbow are 1.2x and 1.1x respectively.

(iii) CURL surpasses human performance on two games JamesBond (1.6 HNS), Krull (2.5
HNS).

3.7 Ablation Studies
In Appendix 3.12, we present the results of ablation studies carried out to answer the following
questions: (i) Does CURL learn only visual features or does it also capture temporal dynamics of the
environment? (ii) How well does the RL policy perform if CURL representations are learned solely
with the contrastive objective and no signal from RL? (iii) Why does CURL match state-based RL
performance on some DMControl environments but not on others?

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 34

Figure 3.4: Performance of CURL coupled to SAC averaged across 10 seeds relative to SLACv1,
PlaNet, Pixel SAC and State SAC baselines. At the 500k benchmark CURL matches the median
score of state-based SAC. At 100k environment steps CURL achieves a 1.9x higher median score
than Dreamer. For a direct comparison, we only compute the median across the 6 environments in
3.1 (4 for SLAC) and show learning curves for CURL across 16 DMControl experiments in 3.7.

3.8 Implementation Details
Below, we explain the implementation details for CURL in the DMControl setting. Specifically, we
use the SAC algorithm as the RL objective coupled with CURL and build on top of the publicly
released implementation from [202]. We present in detail the hyperparameters for the architecture
and optimization. We do not use any extra hyperparameter for balancing the contrastive loss and the
reinforcement learning losses. Both the objectives are weighed equally in the gradient updates.

Architecture: We use an encoder architecture that is similar to [202], which we sketch in
PyTorch-like pseuodocode below. The actor and critic both use the same encoder to embed image
observations. A full list of hyperparameters is displayed in Table 3.3.

For contrastive learning, CURL utilizes momentum for the key encoder [77] and a bi-linear
inner product as the similarity measure [135]. Performance curves ablating these two architectural
choices are shown in Figure 3.5.

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 35

Table 3.3: Hyperparameters used for DMControl CURL experiments. Most hyperparameters values
are unchanged across environments with the exception for action repeat, learning rate, and batch
size.

Hyperparameter Value

Random crop True
Observation rendering (100, 100)
Observation downsampling (84, 84)
Replay buffer size 100000
Initial steps 1000
Stacked frames 3
Action repeat 2 finger, spin; walker, walk

8 cartpole, swingup
4 otherwise

Hidden units (MLP) 1024
Evaluation episodes 10
Optimizer Adam
(β1, β2)→ (fθ, πψ, Qφ) (.9, .999)
(β1, β2)→ (α) (.5, .999)
Learning rate (fθ, πψ, Qφ) 2e− 4 cheetah, run

1e− 3 otherwise
Learning rate (α) 1e− 4
Batch Size 512
Q function EMA τ 0.01
Critic target update freq 2
Convolutional layers 4
Number of filters 32
Non-linearity ReLU
Encoder EMA τ 0.05
Latent dimension 50
Discount γ .99
Initial temperature 0.1

0 1 20 1 2 0 1 2

Encoding keys
with / without EMA

Using bilinear vs.
cosine similarity

Environment Steps (Millions) Environment Steps (Millions)

Figure 3.5: Performance on cheetah-run environment ablated two-ways: (left) using the query
encoder or exponentially moving average of the query encoder for encoding keys (right) using the
bi-linear inner product as in [135] or the cosine inner product as in [77, 26]

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 36

Pseudo-code for the architecture is provided below:� �
1 def encode(x,z_dim):
2 """
3 ConvNet encoder
4 args:
5 B-batch_size, C-channels
6 H,W-spatial_dims
7 x : shape : [B, C, H, W]
8 C = 3 * num_frames; 3 - R/G/B
9 z_dim: latent dimension

10 """
11
12 x = x / 255.
13
14 # c: channels, f: filters
15 # k: kernel, s: stride
16
17 z = Conv2d(c=x.shape[1], f=32, k=3, s=2)])(x)
18 z = ReLU(z)
19
20 for _ in range(num_layers - 1):
21 z = Conv2d((c=32, f=32, k=3, s=1))(z)
22 z = ReLU(z)
23
24 z = flatten(z)
25
26 # in: input dim, out: output_dim, h: hiddens
27
28 z = mlp(in=z.size(),out=z_dim,h=1024)
29 z = LayerNorm(z)
30 z = tanh(z)� �

Terminology: A common point of confusion is the meaning “training steps." We use the term
environment steps to denote the amount of times the simulator environment is stepped through and
interaction steps to denote the number of times the agent steps through its policy. The terms action
repeat or frame skip refer to the number of times an action is repeated when it’s drawn from the
agent’s policy. For example, if action repeat is set to 4, then 100k interaction steps is equivalent to
400k environment steps.

Batch Updates: After initializing the replay buffer with observations extracted by a random
agent, we sample a batch of observations, compute the CURL objectives, and step through the
optimizer. Note that since queries and keys are generated by data-augmenting an observation, we
can generate arbitrarily many keys to increase the contrastive batch size without sampling any
additional observations.

Shared Representations: The objective of performing contrastive learning together with RL is
to ensure that the shared encoder learns rich features that facilitate sample efficient control. There
is a subtle coincidental connection between MoCo and off-policy RL. Both the frameworks adopt
the usage of a momentum averaged (EMA) version of the underlying model. In MoCo, the EMA
encoder is used for encoding the keys (targets) while in off-policy RL, the EMA version of the
Q-networks are used as targets in the Bellman error [133, 67]. Thanks to this connection, CURL
shares the convolutional encoder, momentum coefficient and EMA update between contrastive and
reinforcement learning updates for the shared parameters. The MLP part of the critic that operates

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 37

on top of these convolutional features has a separate momentum coefficient and update decoupled
from the image encoder parameters.

Balancing Contrastive and RL Updates: While past work has learned hyperparameters to
balance the auxiliary loss coefficient or learning rate relative to the RL objective [92, 202], CURL
does not need any such adjustments. We use both the contrastive and RL objectives together with
equal weight and learning rate. This simplifies the training process compared to other methods, such
as training a VAE jointly [70, 69, 114], that require careful tuning of coefficients for representation
learning.

Differences in Data Collection between Computer Vision and RL Settings: There are two
key differences between contrastive learning in the computer vision and RL settings because of their
different goals. Unsupervised feature learning methods built for downstream vision tasks like image
classification assume a setting where there is a large static dataset of unlabeled images. On the other
hand, in RL, the dataset changes over time to account for the agent’s new experiences. Secondly, the
size of the memory bank of labeled images and dataset of unlabeled ones in vision-based settings
are 65K and 1M (or 1B) respectively. The goal in vision-based methods is to learn from millions
of unlabeled images. On the other hand, the goal in CURL is to develop sample-efficient RL
algorithms. For example, to be able to solve a task within 100K timesteps (approximately 2 hours
in real-time), an agent can only ingest 100K image frames.

Therefore, unlike MoCo, CURL does not use a memory bank for contrastive learning. Instead,
the negatives are constructed on the fly for every minibatch sampled from the agent’s replay buffer
for an RL update similar to SimCLR. The exact implementation is provided as a PyTorch-like code
snippet in 3.4.

Data Augmentation:
Random crop data augmentation has been crucial for the performance of deep learning based

computer vision systems in object recognition, detection and segmentation [104, 174, 34, 26].
However, similar augmentation methods have not seen much adoption in the field of RL even though
several benchmarks use raw pixels as inputs to the model.

CURL adopts the random crop data augmentation as the stochastic data augmentation applied
to a frame stack. To make it easier for the model to correlate spatio-temporal patterns in the input,
we apply the same random crop (in terms of box coordinates) across all four frames in the stack
as opposed to extracting different random crop positions from each frame in the stack. Further,
unlike in computer vision systems where the aspect ratio for random crop is allowed to be as low
as 0.08, we preserve much of the spatial information as possible and use a constant aspect ratio of
0.84 between the original and cropped. In our experiments, data augmented samples for CURL are
formed by cropping 84× 84 frames from an input frame of 100× 100.

DMControl: We render observations at 100 × 100 and randomly crop 84 × 84 frames. For
evaluation, we render observations at 100× 100 and center crop to 84× 84 pixels. We found that
implementing random crop efficiently was extremely important to the success of the algorithm. We
provide pseudocode below:� �

1 from skimage import view_as_windows
2 import numpy as np
3

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 38

4 def random_crop(imgs, out):
5 """
6 Vectorized random crop
7 args:
8 imgs: shape (B,C,H,W)
9 out: output size (e.g. 84)

10 """
11
12 # n: batch size.
13 n = imgs.shape[0]
14 img_size = imgs.shape[-1] # e.g. 100
15 crop_max = img_size - out
16
17 imgs = np.transpose(imgs, (0, 2, 3, 1))
18
19 w1 = np.random.randint(0, crop_max, n)
20 h1 = np.random.randint(0, crop_max, n)
21
22 # creates all sliding window
23 # combinations of size (out)
24
25 windows = view_as_windows(
26 imgs, (1, out, out, 1))[..., 0,:,:, 0]
27
28 # selects a random window
29 # for each batch element
30 cropped = windows[np.arange(n), w1, h1]
31 return cropped� �

3.9 Atari100k Implementation Details
The flexibility of CURL allows us to apply it to discrete control setting with minimal modifications.
Similar to our rationale for picking SAC as the baseline RL algorithm to couple CURL with
(for continuous control), we pick the data-efficient version of Rainbow DQN (Efficient Rainbow)
[72] for Atari100K which performs competitively with an older version of SimPLe (most recent
version has improved numbers). In order to understand specifically what the gains from CURL are
without any other changes, we adopt the exact same hyperparameters specified in the paper [72]
(including a modified convolutional encoder that uses larger kernel size and stride of 5). We present
the details in Table 3.4. Similar to DMControl, the contrastive objective and the RL objective
are weighted equally for learning (except for Pong, Freeway, Boxing and PrivateEye for which
we used a coefficient of 0.05 for the momentum contastive loss. On a large majority (22 out of
26) of the games, we do not use this adjustment. While it is standard practice to use the same
hyperparameters for all games in Atari, papers proposing auxiliary losses have adopted a different
practice of using game specific coefficients [92].). We use the Efficient Rainbow codebase from
https://github.com/Kaixhin/Rainbow which has a reproduced version of [72]. We
evaluate with 20 random seeds and report the mean score for each game given the high variance
nature of the Atari100k steps benchmark. We restrict ourselves to using grayscale renderings of
image observations and use random crop of frame stack as data augmentation.

https://github.com/Kaixhin/Rainbow

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 39

Table 3.4: Hyperparameters used for Atari100K CURL experiments. Hyperparameters are un-
changed across games.

Hyperparameter Value

Random crop True
Image size (84, 84)
Data Augmentation Random Crop (Train)
Replay buffer size 100000
Training frames 400000
Training steps 100000
Frame skip 4
Stacked frames 4
Action repeat 4
Replay period every 1
Q network: channels 32, 64
Q network: filter size 5× 5, 5× 5
Q network: stride 5, 5
Q network: hidden units 256
Momentum (EMA for CURL) τ 0.001
Non-linearity ReLU
Reward Clipping [−1, 1]
Multi step return 20
Minimum replay size for sampling 1600
Max frames per episode 108K
Update Distributional Double Q
Target Network Update Period every 2000 updates
Support-of-Q-distribution 51 bins
Discount γ 0.99
Batch Size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: β1 0.9
Optimizer: β2 0.999
Optimizer ε 0.000015
Max gradient norm 10
Exploration Noisy Nets
Noisy nets parameter 0.1
Priority exponent 0.5
Priority correction 0.4→ 1
Hardware CPU

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 40

3.10 Benchmarking Data Efficiency
Tables 3.1 and 3.2 show the episode returns of DMControl100k, DMControl500k, and Atari100k
across CURL and a number of pixel-based baselines. CURL outperforms all baseline pixel-
based methods across experiments on both DMControl100k and DMControl500k. On Atari100k
experiments, CURL coupled with Eff Rainbow outperforms the baseline on the majority of games
tested (19 out of 26 games).

Environment Steps (Millions)

reacher hard

cartpole swing.

cartpole bal. sparse

cartpole bal.

finger spin

walker stand

cup catch

walker walk

reacher easy

finger turn hard

cheetah run

finger turn easy

hopper stand

hopper hop

cartpole swing. sparse

pendulum swing

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.6: The number of steps it takes a prior leading pixel-based method, Dreamer, to achieve
the same score that CURL achieves at 100k training steps (clipped at 1M steps). On average, CURL
is 4.5x more data-efficient. We chose Dreamer because the authors [69] report performance for all
of the above environments while other baselines like SLAC and SAC+AE only benchmark on 4 and
6 environments, respectively. For further comparison of CURL with these methods, the reader is
referred to Table 3.1 and Figure 3.4.

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 41

3.11 Further Investigation of Data-Efficiency in Contrastive
RL

To further benchmark CURL’s sample-efficiency, we compare it to state-based SAC on a total of
16 DMControl environments. Shown in Figure 3.7, CURL matches state-based data-efficiency on
most of the environments, but lags behind state-based SAC on more challenging environments.

Environment Steps (Millions)

Ep
iso

de
 S

co
re

State SACCURL

Figure 3.7: CURL compared to state-based SAC run for 3 seeds on each of 16 selected DMControl
environments. For the 6 environments in 3.4, CURL performance is averaged over 10 seeds.

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 42

3.12 Ablations

Learning Temporal Dynamics

CURL
(stacked frames)

CURL
(individual frames)

D4PG
(1e8 steps)

Environment Steps (Millions)

Finger, spin Cartpole, swingup Reacher, easy

Cheetah, run Walker, walk Ball in cup, catch

Ev
alu

at
ion

 S
co

re
s

0.0 0.2 0.4 0.6 0.8 0.0 0.8 1.6 2.4 3.2 4.01.0

0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0

0.0 0.4 0.8 1.2 1.6 2.0

Figure 3.8: CURL with temporal and visual discrimination (red) compared to CURL with only
visual discrimination (green). In most settings, the variant with temporal variant outperforms the
purely visual variant of CURL. The two exceptions are reacher and ball in cup environments,
suggesting that learning dynamics is not necessary for those two environments. Note that the walker
environment was run with action repeat of 4, whereas walker walk in the main results Table 3.1 and
Figure 3.7 was run with action repeat of 2.

To gain insight as to whether CURL learns temporal dynamics across the stacked frames, we also
train a variant of CURL where the discriminants are individual frames as opposed to stacked ones.
This can be done by sampling stacked frames from the replay buffer but only using the first frame
to update the contrastive loss:

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 43

� �
1 f_q = x_q[:,:3,...] # (B,C,H,W), C=9.
2 f_k = x_k[:,:3,...]� �

During the actor-critic update, frames in the batch are encoded individually into latent codes,
which are then concatenated before being passed to a dense network.� �

1 # x: (B,C,H,W), C=9.
2 z1 = encode(x[:,:3,...])
3 z2 = encode(x[:,3:6,...])
4 z3 = encode(x[:,6:9,...])
5 z = torch.cat([z1,z2,z3],-1)� �

Encoding each frame indiviudally ensures that the contrastive objective only has access to visual
discriminants. Comparing the visual and spatiotemporal variants of CURL in Figure 3.8 shows that
the variant trained on stacked frames outperforms the visual-only version in most environments. The
only exceptions are reacher and ball-in-cup environments. Indeed, in those environments the visual
signal is strong enough to solve the task optimally, whereas in other environments, such as walker
and cheetah, where balance or coordination is required, visual information alone is insufficient.

Increasing Gradient Updates per Agent Step
Although most baselines we benchmark against use one gradient update per agent step, it was
recently empirically shown that increasing the ratio of gradients per step improves data-efficiency
in RL [98]. This finding is also supported by SLAC [114], where results are shown with a ratio of
1:1 (SLACv1) and 3:1 (SLACv2). We

Table 3.5: Scores achieved by CURL and SLAC when run with a 3:1 ratio of gradient updates per
agent step on DMControl500k and DMControl100k. CURL achieves state-of-the-art performance
on the majority (3 out of 4) environments on DMControl500k. Performance of both algorithms is
improved relative to the 1:1 ratio reported for all baselines in Table 3.1 but at the cost of significant
compute and wall-clock time overhead.

DMControl500k CURL SLACv2

Finger, spin 923 ± 50 884 ± 98
Walker, walk 911 ± 35 891 ± 60
Cheetah, run 545 ± 39 791 ± 37
Ball in cup, catch 948 ± 21 885 ± 154

DMControl100k CURL SLACv2

Finger, spin 741± 118 728 ±212
Walker, walk 428 ± 59 513 ± 41
Cheetah, run 314 ± 46 438 ± 76
Ball in cup, catch 899 ± 47 837 ± 147

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 44

Decoupling Representation Learning from Reinforcement Learning
Typically, Deep RL representations depend almost entirely on the reward function specific to a
task. However, hand-crafted representations such as the proprioceptive state are independent of the
reward function. It is much more desirable to learn reward-agnostic representations, so that the
same representation can be re-used across different RL tasks. We test whether CURL can learn
such representations by comparing CURL to a variant where the critic gradients are backpropagated
through the critic and contrastive dense feedforward networks but stopped before reaching the
convolutional neural network (CNN) part of the encoder.

Scores displayed in Figure 3.9 show that for many environments, the detached CNN represen-
tations are sufficient to learn an optimal policy. The major exception is the cheetah environment,
where the detached representation significantly under-performs. Though promising, we leave further
exploration of task-agnostic representations for future work.

CURL CURL (detached)

Random features

SAC+AE (detached)

D4PG (1e8 steps)

Environment Steps (Millions)

Ev
alu

at
ion

 S
co

re
s

Finger, spin Cartpole, swingup Reacher, easy

Cheetah, run Walker, walk Ball in cup, catch
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.4 0.8 1.2 1.6 2.0

0.0 0.8 1.6 2.4 3.2 4.0

0.0 0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0

0.0 0.4 0.8 1.2 1.6 2.0

Figure 3.9: CURL where the CNN part of the encoder receives gradients from both the contrastive
loss and critic (red) compared to CURL with the convolutional part of the encoder trained only
with the contrastive objective (green). The detached encoder variant is able to learn representations
that enable near-optimal learning on most environments, except for cheetah. As in Figure 3.8, the
walker environment was run with action repeat of 4.

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 45

Removing Data Augmentation for the Actor Critic
Our main results involve the use of data augmentations to regularize both the contrastive and SAC
objectives. Here, we investigate whether the contrastive representations alone are sufficient for
learning effective policies. In these experiments, we only augment the data for the contrastive
objective but not for the SAC agent. As a result, data augmentation is used only to learn features
but does not influence the control policy. The pseudocode is shown below:� �

1 # o = original unaugmented observation
2 # aug = augmentation
3 # contrastive = InfoNCE loss
4 o_anchor, o_target = aug(o), aug(o)
5 curl_loss = contrastive(o_anchor, o_target)
6 sac_loss = critic_loss(o) + actor_loss(o)
7 loss = curl_loss + sac_loss
8 params = update(params, grad(loss, params))� �

Figure 3.10: CURL with no data augmentations passed to the SAC agent improves the performance
of the baseline pixel SAC by a mean of 2.0x / median of 1.7x on DMControl500k. For these runs
we use a smaller batch size of 128 than the 512 batch size used for results in Table 3.4. While the
constastive loss alone improves over the pixel SAC baseline, most environments benefit from data
augmentation also being passed to the SAC agent.

DMControl500k results plotted in Figure 3.10 show that, on average, features learned through
the contrastive loss alone improve the pixel SAC baseline by 2x. Augmenting the input passed to

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 46

the SAC algorithm further improves performance.

Predicting State from Pixels
Despite improved sample-efficiency on most DMControl tasks, there is still a visible gap between
the performance of SAC on state and SAC with CURL in some environments. Since CURL learns
representations by performing instance discrimination across stacks of three frames, it’s possible that
the reason for degraded sample-efficiency on more challenging tasks is due to partial-observability
of the ground truth state.

To test this hypothesis, we perform supervised regression (X, Y) from pixels X to the proprio-
ceptive state Y , where each data point x ∈ X is a stack of three consecutive frames and y ∈ Y is
the corresponding state extracted from the simulator. We find that the error in predicting the state
from pixels correlates with the policy performance of pixel-based methods. Test-time error rates
displayed in Figure 3.11 show that environments that CURL solves as efficiently as state-based SAC
have low error-rates in predicting the state from stacks of pixels. The prediction error increases for
more challenging environments, such as cheetah-run and walker-walk. Finally, the error is highest
for environments where current pixel-based methods, CURL included, make no progress at all
[177], such as humanoid and swimmer.

This investigation suggests that degraded policy performance on challenging tasks may result
from the lack of requisite information about the underlying state in the pixel data used for learning
representations. We leave further investigation for future work.

Figure 3.11: Test-time mean squared error for predicting the proprioceptive state from pixels on a
number of DMControl environments. In DMControl, environments fall into two groups - where the
state corresponds to either (a) positions and velocities of the robot joints or (b) the joint angles and
angular velocities.

CURL + Efficient Rainbow Atari runs
We report the scores (Tables 3.6 and 3.7) for 20 seeds across the 26 Atari games in the Atari100k
benchmark for CURL coupled with Efficient Rainbow. The variance across multiple seeds is

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 47

considerably high in this benchmark. Therefore, we report the scores for each of the seeds along
with the mean and standard deviation for each game.

Pacman Fbite Asterix KungFu Kngroo Gopher RRunner JBond BZone Cquest Assault Krull Qbert
1287 2292 850 8470 600 1036 2820 305 18100 322 634.2 3404.3 1020
1608 1046 525 10870 2280 574 3190 265 18200 236 696.8 2443.5 650
1466 1209 655 10920 1940 540 7840 335 26800 352 655.2 6791.4 830
1430 255 565 7730 1140 618 12060 145 21300 386 443 3022.5 902.5
1114 426 715 17525 520 534 8340 565 7900 458 546 3892.2 3957.5
1083 2280 715 3560 600 596 6920 565 8100 224 564.9 3505.5 772.5
2301 259 770 10940 600 502 2230 350 12000 282 514.4 2564.1 782.5
1128 335 980 23420 900 998 4250 365 16500 339 516.6 4079.7 727.5
1184 1409 665 15160 600 950 1570 140 23900 526 661.5 2376.4 705
1510 258 610 15370 730 544 6300 425 19900 436 664.5 4161.8 757.5
2343 335 905 22260 600 796 3100 315 10000 272 529 3311.1 647.5
1063 1062 800 17320 880 522 1060 335 11200 428 445.2 2517.3 562.5
2040 1542 675 31820 220 392 6050 735 9700 358 573.3 3764.7 2425
1195 1102 795 23360 920 780 11810 950 23500 533 531.3 10150.2 1112.5
1343 2461 585 27460 600 792 4630 520 10500 968 663.6 2883.6 527.5
1354 257 865 7770 2300 454 2530 755 18100 314 795.3 5123.7 472.5
1925 513 730 8820 320 564 6840 750 9000 378 633 3652.5 610
1228 1826 680 2980 600 522 6580 795 8900 168 674.1 2376.4 697.5
1099 1889 965 10100 600 496 10720 450 10700 242 604.8 11745 1847.5
1608 2869 640 10300 500 1176 4380 355 13100 467 665.7 2826 840

1465.5 1181.3 734.5 14307.8 872.5 669.3 5661 471 14870 384.5 600.6 4229.6 1042.4
397.5 856.2 129.8 7919.3 600.1 220.6 3289.3 226.2 5964.3 170.2 89.5 2540.6 828.4

Table 3.6: CURL implemented on top of Efficient Rainbow - Scores reported for 20 random seeds
for each of the above games, with the last two rows being the mean and standard deviation across
the runs.

3.13 Connection to work on data augmentations
Recently, there have been two papers published on using data augmentations for reinforcement
learning, RAD [110] and DrQ [103]. These two papers present the version of CURL without
an auxiliary contrastive loss but rather directly feeding in the augmented views of the image
observations to the underlying value / policy network(s). Both RAD and DrQ present results on both
continuous and discrete control environments, surpassing the results presented in CURL on both the
DMControl and Atari benchmarks. Plenty of researchers have opined in public forums whether the
results in RAD and DrQ make CURL irrelevant if the objective is to use data augmentations for
data-efficient reinforcement learning. We believe that answering this question needs more nuance
and present our opinions below:

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 48

UDown Hero Climber Chopper DAttack Amidar Alien BHeist Breakout Freeway Pong PrEye Boxing
3529 8747.5 19090 560 611.5 150.9 616 95 3.6 29.2 -19.3 100 -0.5
772 3026 8290 1530 707.5 131.2 923 184 5 25.4 -16.9 100 -11.4
5972 7146 12160 1390 843.5 141.5 467 75 3.2 27.6 -12 100 4
2793 7686 8920 1100 330.5 133.7 441 232 5.1 28.6 -19.6 100 3.6
3546 7335 11360 500 759 157.1 716 187 2.9 22.8 -17.8 1357.4 6.2
4552 7325 4110 990 940 125.4 453 367 6.3 29.6 -18.9 100 5
2972 7275.5 9460 780 1136 183.2 273 186 5.9 23.3 -15.9 0 -1.7
2865 3115 20630 1180 758 153.6 540 68 2.6 27.6 -15.2 100 0.1
3098 7424 6780 1380 772.5 127.8 499 60 5.9 26.1 -18.7 100 3.5
1953 7475 13570 970 820 149.4 475 123 4.3 28.3 -13.3 100 -0.5
1467 3135 11890 1200 784 125.7 553 72 3.2 21.8 -17.2 1510 -22.1
2912 5060.5 9160 1130 1080 130.4 446 53 4.8 21.8 -20.1 100 -1.8
4123 4409 10960 1380 847 133 533 68 6.3 28.9 -16.5 100 1.6
2334 6979 17360 1230 771.5 140.5 968 36 7.3 28.2 -14.9 100 3.6
2605 4159 8930 1350 907.5 133.8 499 53 4.8 28.3 -19.3 100 -17.6
2432 7560 11510 1080 1095.5 191.8 523 105 3.7 26.8 -15.6 0 21.7
3826 8587 22690 1210 700 115.5 616 276 6.6 27.5 -21 100 2
3052 4683.5 8120 840 803.5 164 475 69 5.5 26.5 -10.5 0 5.9
3131 7317 13500 730 818 131.7 525 50 4.3 26.8 -13.3 100 18.7
1169 7141 14440 640 866 122.4 622 273 6.2 28.6 -13.1 100 3.7

2955.2 6279.3 12146.5 1058.5 817.6 142.1 558.2 131.6 4.9 26.7 -16.5 218.4 1.2
1181.1 1871.5 4765.6 299.1 176.6 20.0 160.3 94.4 1.4 2.4 2.9 417.9 10.0

Table 3.7: CURL implemented on top of Efficient Rainbow - Scores reported for 20 random seeds
for each of the above games, with the last two rows being the mean and standard deviation across
the runs.

1. If one has access to a rich stream of rewards from the underlying environment and is interested
in optimzing the performance in terms of average reward, RAD and DrQ are likely to work better
than CURL. The reason for this is simply that RAD and DrQ directly optimize for the objective one
cares about, while CURL introduces an additional auxiliary consistency objective.

2. If one does not have access to a rich stream of rewards and is interested in learning good
latent spaces in a task agnostic manner that can allow for data-efficient controllers across multiple
tasks, CURL is the only option since the contrastive objective in CURL is reward independent. Our
ablation on the detached encoder with the CURL objective present evidence that one could build
simple MLPs on top of the CURL features without fine-tuning the underlying encoder and still be
data-efficient on many of the DMControl tasks.

3. Future work in data-efficient reinforcement learning, particularly for real world settings, is
likely to require approaches that do not rely on reward functions. In such scenarios, CURL is likely
to be the more preferred approach. Further, one could potentially use CURL in a scenario where
unsupervised pre-training without reward functions is initially performed before fine-tuning to the
RL objective across multiple tasks.

CHAPTER 3. CONTRASTIVE LEARNING FOR REINFORCEMENT LEARNING 49

Given the above reasons, there isn’t a straightforward answer as to which is the better algorithm
and the answer really depends on what the researcher / practioner wants to solve. We also emphasize
that CURL was the first approach that used data augmentations effectively to significantly improve
the data-efficiency of model-free reinforcement learning methods with very simple changes and
showed improvement over relatively more complex model-based methods. The augmentations and
results in CURL inspired future work in the form of RAD and DrQ. We hope that the analysis and
results presented in CURL encourage researchers to employ data augmentations, contrastive losses
and unsupervised pre-training for future reinforcement learning research.

3.14 Conclusion
In this work, we proposed CURL, a contrastive unsupervised representation learning method for
RL, that achieves state-of-the-art data-efficiency on pixel-based RL tasks across a diverse set of
benchmark environments. CURL is the first model-free RL pipeline accelerated by contrastive
learning with minimal architectural changes to demonstrate state-of-the-art performance on complex
tasks so far dominated by approaches that have relied on learning world models and (or) decoder-
based objectives. We hope that progress like CURL enables avenues for real-world deployment of
RL in areas like robotics where data-efficiency is paramount.

3.15 Acknowledgements
This research is supported in part by DARPA through the Learning with Less Labels (LwLL)
Program and by ONR through PECASE N000141612723. We also thank Wendy Shang for her
help with Section 3.12; Zak Stone and Google TFRC for cloud credits; Danijar Hafner, Alex Lee,
and Denis Yarats for sharing data for baselines; and Lerrel Pinto, Adam Stooke, Will Whitney, and
Ankesh Anand for insightful discussions.

50

Chapter 4

Reinforcement Learning with Augmented
Data

4.1 Introduction
Learning from visual observations is a fundamental problem in reinforcement learning (RL).
Current success stories build on two key ideas: (a) using expressive convolutional neural networks
(CNNs) [113] that provide strong spatial inductive bias; (b) better credit assignment [133, 118,
156] techniques that are crucial for sequential decision making. This combination of CNNs with
modern RL algorithms has led to impressive success with human-level performance in Atari [133],
super-human Go players [161], continuous control from pixels [118, 156] and learning policies for
real-world robot grasping [96].

While these achievements are truly impressive, RL is notoriously plagued with poor data-
efficiency and generalization capabilities [46, 80]. Real-world successes of reinforcement learning
often require months of data-collection and (or) training [96, 2]. On the other hand, biological
agents have the remarkable ability to learn quickly [107, 95], while being able to generalize to a
wide variety of unseen tasks [53]. These challenges associated with RL are further exacerbated
when we operate on pixels due to high-dimensional and partially-observable inputs. Bridging the
gap of data-efficiency and generalization is hence pivotal to the real-world applicability of RL.

Supervised learning, in the context of computer vision, has addressed the problems of data-
efficiency and generalization by injecting useful priors. One such often ignored prior is Data
Augmentation. It was critical to the early successes of CNNs [113, 104] and has more recently
enabled better supervised [33, 34], semi-supervised [200, 198, 16] and self-supervised [79, 26, 76]
learning. By using multiple augmented views of the same data-point as input, CNNs are forced
to learn consistencies in their internal representations. This results in a visual representation that
improves generalization [198, 79, 26, 76], data-efficiency [200, 79, 26] and transfer learning [79,
76].

Inspired by the impact of data augmentation in computer vision, we present RAD: Reinforcement
Learning with Augmented Data, a technique to incorporate data augmentations on input observations

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 51

for reinforcement learning pipelines. Through RAD, we ensure that the agent is learning on multiple
views (or augmentations) of the same input (see Figure 4.1). This allows the agent to improve on
two key capabilities: (a) data-efficiency: learning to quickly master the task at hand with drastically
fewer experience rollouts; (b) generalization: improving transfer to unseen tasks or levels simply
by training on more diversely augmented samples. To the best of our knowledge, we present the first
extensive study of the use of data augmentation for reinforcement learning with no changes to the
underlying RL algorithm and no additional assumptions about the domain other than the knowledge
that the agent operates from image-based or proprioceptive (positions & velocities) observations.

We highlight the main contributions of RAD below:

• We show that RAD outperforms prior state-of-the-art baselines on both the widely used
pixel-based DeepMind control benchmark [177] as well as state-based OpenAI Gym bench-
mark [17]. On both benchmark, RAD sets a new state-of-the-art in terms data-efficiency and
asymptotic performance on the majority of environments tested.

• We show that RAD significantly improves test-time generalization on several environments in
the OpenAI ProcGen benchmark suite [31] widely used for generalization in RL.

• We introduce two new data augmentations: random translation for image-based input and
random amplitude scaling for proprioceptive input that are utilized to achieve state-of-
the-art results. To the best of our knowledge, these augmentations were not used in prior
work.

4.2 Related work

Data augmentation in computer vision
Data augmentation in deep learning systems for computer vision can be found as early as LeNet-
5 [113], an early implementation of CNNs on MNIST digit classification. In AlexNet [104]
wherein the authors applied CNNs to image classification on ImageNet [37], data augmentations,
such as random flip and crop, were used to improve the classification accuracy. These data
augmentations inject the priors of invariance to translation and reflection, playing a significant role
in improving the performance of supervised computer vision systems. Recently, new augmentation
techniques such as AutoAugment [33] and RandAugment [34] have been proposed to further
improve the performance. For unsupervised and semi-supervised learning, several unsupervised data
augmentation techniques have been proposed [16, 200, 163]. In particular, contrastive representation
learning approaches [79, 26, 76] with data augmentations have recently dramatically improved the
label-efficiency of downstream vision tasks like ImageNet classification.

Data augmentation in reinforcement learning
Data augmentation has also been investigated in the context of RL though, to the best of our
knowledge, there was no extensive study on a variety of widely used benchmarks prior to this work.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 52

For improving generalization in RL, domain randomization [151, 182, 141] was proposed to transfer
policies from simulation to the real world by utilizing diverse simulated experiences. Cobbe et
al. [32] and Lee et al showed that simple data augmentation techniques such as cutout [32] and
random convolution can be useful to improve generalization of agents on the OpenAI CoinRun and
ProcGen benchmarks.

To improve the data-efficiency, CURL [164] utilized data augmentations for learning contrastive
representations in the RL setting. While the focus in CURL was to make use of data augmentations
jointly through contrastive and reinforcement learning losses, RAD attempts to directly use data
augmentations for reinforcement learning without any auxiliary loss (see Section 4.10 for discussions
on tradeoffs between CURL and RAD). Concurrent and independent to our work, DrQ [103] utilized
random cropping and regularized Q-functions in conjunction with the off-policy RL algorithm
SAC [67]. On the other hand, RAD can be plugged into any reinforcement learning method (on-
policy methods like PPO [156] and off-policy methods like SAC [67]) without making any changes
to the underlying algorithm.

For a more detailed and comprehensive discussion of prior work, we refer the reader to Ap-
pendix 4.7.

4.3 Background
RL agents act within a Markov Decision Process, defined as the tuple (S,A, P, γ), with the
following components: states s ∈ S = Rn, actions a ∈ A, and state transition distribution,
P = P (st+1, rt|st, at), which defines the task mechanics and rewards. Without prior knowledge
of P , the RL agent’s goal is to use experience to maximize expected rewards, R =

∑∞
t=0 γ

trt,
under discount factor γ ∈ [0, 1). Crucially, in RL from pixels, the agent receives image-based
observations, ot = O(st) ∈ Rk, which are a high-dimensional, indirect representation of the state.

Soft Actor-Critic. SAC [67] is a state-of-the-art off-policy algorithm for continuous controls.
SAC learns a policy πψ(a|o) and a critic Qφ(o, a) by maximizing a weighted objective of the
reward and the policy entropy, Est,at∼π [

∑
t rt + αH(π(·|ot))]. The critic parameters are learned by

minimizing the squared Bellman error using transitions τt = (ot, at, ot+1, rt) from an experience
buffer D,

LQ(φ) = Eτ∼D
[(
Qφ(ot, at)− (rt + γV (ot+1))

)2
]
. (4.1)

The target value of the next state can be estimated by sampling an action using the current policy:

V (ot+1) = Ea′∼π
[
Qφ̄(ot+1, a

′)− α log πψ(a
′|ot+1)

]
, (4.2)

where Qφ̄ represents a more slowly updated copy of the critic. The policy is learned by minimizing
the divergence from the exponential of the soft-Q function at the same states:

Lπ(ψ) = −Ea∼π [Qφ(ot, a)− α log πψ(a|ot)] , (4.3)

via the reparameterization trick for the newly sampled action. α is learned against a target entropy.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 53

Proximal policy optimization. PPO [156] is a state-of-the-art on-policy algorithm for learning
a continuous or discrete control policy, πθ(a|o). PPO forms policy gradients using action-advantages,
At = Aπ(at, st) = Qπ(at, st) − V π(st), and minimizes a clipped-ratio loss over minibatches of
recent experience (collected under πθold):

Lπ(θ) = −Eτ∼π [min (ρt(θ)At, clip(ρt(θ), 1− ε, 1 + ε)At)] , ρt(θ) =
πθ(at|ot)
πθold(at|ot)

. (4.4)

Our PPO agents learn a state-value estimator, Vφ(s), which is regressed against a target of discounted
returns and used with Generalized Advantage Estimation [156]:

LV (φ) = Eτ∼π
[(
Vφ(ot)− V targ

t

)2
]
. (4.5)

4.4 Reinforcement learning with augmented data
We investigate the utility of data augmentations in model-free RL for both off-policy and on-policy
settings by processing image observations with stochastic augmentations before passing them to the
agent for training. For the base RL agent, we use SAC [67] and PPO [156] as the off-policy and
on-policy RL methods respectively. During training, we sample observations from either a replay
buffer or a recent trajectory and augment the images within the minibatch. In the RL setting, it is
common to stack consecutive frames as observations to infer temporal information such as object
velocities. Crucially, augmentations are applied randomly across the batch but consistently across
the frame stack [164] as shown in Figure 4.1.1 This enables the augmentation to retain temporal
information present across the frame stack.

Augmentations of image-based input: Across our experiments, we investigate and ablate crop,
translate, window, grayscale, cutout, cutout-color, flip, rotate, random convolution, and color jitter
augmentations, which are shown in Figure 4.1. Of these, the translate and window are novel
augmentations that we did not encounter in prior work.

Crop: Extracts a random patch from the original frame. As our experiments will confirm,
the intuition behind random cropping is primarily to imbue the agent with additional translation
invariance. Translate: random translation renders the full image within a larger frame and translates
the image randomly across the larger frame. For example, a 100×100 pixel image could be randomly
translated within a 108× 108 empty frame. For example, in DMControl we render 100× 100 pixel
frames and crop randomly to 84× 84 pixels. Window: Selects a random window from an image
by masking out the cropped part of the image. Grayscale: Converts RGB images to grayscale
with some random probability p. Cutout: Randomly inserts a small black occlusion into the frame,
which may be perceived as cutting out a small patch from the originally rendered frame. Cutout-
color: Another variant of cutout where instead of rendering black, the occlusion color is randomly
generated. Flip: Flips an image at random across the vertical axis. Rotate: Randomly samples an

1For on-policy RL methods such as PPO, we apply the different augmentations across the batch but consistently
across time.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 54

Figure 4.1: We investigate ten different types of data augmentations - crop, translate, window,
grayscale, cutout, cutout-color, flip, rotate, random convolution, and color-jitter. During training,
a minibatch is sampled from the replay buffer or a recent trajectory randomly augmented. While
augmentation across the minibatch is stochastic, it is consistent across the stacked frames.

angle from the following set {090180270 and rotates the image accordingly. Random convolution:
Augments the image color by passing the input observation through a random convolutional layer.
Color jitter: Converts RGB image to HSV and adds noise to the HSV channels, which results in
explicit color jittering.

4.5 Experimental results

Setup
DMControl: First, we focus on studying the data-efficiency of our proposed methods on pixel-
based RL. To this end, we utilize the DeepMind Control Suite (DMControl) [177], which has
recently become a common benchmark for comparing efficient RL agents, both model-based and
model-free. DMControl presents a variety of complex tasks including bipedal balance, locomotion,
contact forces, and goal-reaching with both sparse and dense reward signals. For DMControl
experiments, we evaluate the data-efficiency by measuring the performance of our method at 100k
(i.e., low sample regime) and 500k (i.e., asymptotically optimal regime) simulator or environment
steps2 during training by following the setup in CURL [164]. These benchmarks are referred to as
DMControl100k and DMControl500k. For comparison, we consider six powerful recent pixel-based
methods: CURL [164] learns contrastive representations, SLAC [114] learns a forward model and
uses it to shape encoder representations, while SAC+AE [202] minimizes a reconstruction loss as

2environment steps refers to the number of times the underlying simulator is stepped through. This measure is
independent of policy heuristics such as action repeat. For example, if action repeat is set to 4, then 100k environment
steps corresponds to 25k policy steps.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 55

an auxiliary task. All three methods use SAC [67] as their base algorithm. Dreamer [69] and PlaNet
[70] learn world models and use them to generate synthetic rollouts similar to Dyna [170]. Pixel
SAC is a vanilla Soft Actor-Critic operating on pixel inputs, and state SAC is an oracle baseline
that operates on the proprioceptive state of the simulated agent, which includes joint positions and
velocities. We also provide learning curves for longer runs and examine how RAD compares to
state SAC and CURL across a more diverse set of environments in Appendix ??.

ProcGen: Although DMControl is suitable for benchmarking data-efficiency and performance,
it evaluates the performance on the same environment in which the agent was trained and is thus
not applicable for studying generalization. For this reason, we focus on the OpenAI ProcGen
benchmarks [31] to investigate the generalization capabilities of RAD. ProcGen presents a suite
of game-like environments where the train and test environments differ in visual appearance and
structure. For this reason, it is a commonly used benchmark for studying the generalization abilities
of RL agents [32]. Specifically, we evaluate the zero-shot performance of the trained agents on
the full distribution of unseen levels. Following the setup in ProcGen [31], we use the CNN
architecture found in IMPALA [48] as the policy network and train the agents using the Proximal
Policy Optimization (PPO) [156] algorithm for 20M timesteps. For all experiments, we use the
easy environment difficulty and the hyperparameters suggested in [31], which have been shown to
be empirically effective.

OpenAI Gym. For OpenAI Gym experiments with proprioceptive inputs (e.g., positions and
velocities), we compare to PETS [30], a model-based RL algorithm that utilizes ensembles of
dynamics models; POPLIN-P [189], a state-of-the-art model-based RL algorithm which uses a
policy network to generate actions for planning; POPLIN-A [189], variant of POPLIN-P which adds
noise in the action space; METRPO [105], model-based policy optimization based on TRPO [157];
and two state-of-the-art model-free algorithms, TD3 [52] and SAC [67]. In our experiments, we
apply RAD to SAC. Following the experimental setups in POPLIN [189], we report the mean
and standard deviation across four runs on Cheetah, Walker, Hopper, Ant, Pendulum and Cartpole
environments.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 56

Table 4.1: We report scores for RAD and baseline methods on DMControl100k and DMControl500k.
In both settings, RAD achieves state-of-the-art performance on all (6 out of 6) environments. We
selected these 6 environments for benchmarking due to availability of baseline performance data
from CURL [164], PlaNet [70], Dreamer [69], SAC+AE [202], and SLAC [114]. Results are
reported as averages across 10 seeds for the 6 main environments.

500K STEP SCORES RAD CURL PLANET DREAMER SAC+AE SLACV1 PIXEL SAC STATE SAC

FINGER, SPIN
947
± 101

926
± 45

561
± 284

796
± 183

884
± 128

673
± 92

192
± 166

923
± 211

CARTPOLE, SWING
863
± 9

845
± 45

475
± 71

762
± 27

735
± 63

-
419
± 40

848
± 15

REACHER, EASY
955
± 71

929
± 44

210
± 44

793
± 164

627
± 58

-
145
± 30

923
± 24

CHEETAH, RUN
728
± 71

518
± 28

305
± 131

570
± 253

550
± 34

640
± 19

197
± 15

795
± 30

WALKER, WALK
918
± 16

902
± 43

351
± 58

897
± 49

847
± 48

842
± 51

42
± 12

948
± 54

CUP, CATCH
974
± 12

959
± 27

460
± 380

879
± 87

794
± 58

852
± 71

312
± 63

974
± 33

100K STEP SCORES

FINGER, SPIN
856
± 73

767
± 56

136
± 216

341
± 70

740
± 64

693
± 141

224
± 101

811
± 46

CARTPOLE, SWING
828
± 27

582
± 146

297
± 39

326
± 27

311
± 11

-
200
± 72

835
± 22

REACHER, EASY
826
± 219

538
± 233

20
± 50

314
± 155

274
± 14

-
136
± 15

746
± 25

CHEETAH, RUN
447
± 88

299
± 48

138
± 88

235
± 137

267
± 24

319
± 56

130
± 12

616
± 18

WALKER, WALK
504
± 191

403
± 24

224
± 48

277
± 12

394
± 22

361
± 73

127
± 24

891
± 82

CUP, CATCH
840
± 179

769
± 43

0
± 0

246
± 174

391
± 82

512
± 110

97
± 27

746
± 91

Improving data-efficiency on DeepMind Control Suite
Data-efficiency: Mean scores shown in Table 4.1 and learning curves in Figure ?? show that data
augmentation significantly improves the data-efficiency and performance across the six extensively
benchmarked environments compared to existing methods. We summarize the main findings below:

• RAD is the state-of-the-art algorithm on all (6 out of 6) environments on both DMCon-
trol100k and DMControl500k benchmarks.

• RAD improves the performance of pixel SAC by 4x on both DMControl100k and DMCon-
trol500k solely through data augmentation without learning a forward model or any other
auxiliary task.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 57

920 849 635 855 797 650
856 175 349 187 214 231
604 403 268 293 392 394
722 206 376 215 31 284
831 227 420 407 194 265
828 210 391 244 264 223

Crop
Grayscale
Rotate
Cutout

Color-jitter
Flip

Crop Gray
scale

Rotate Cutout Color-
jitter

Flip

(a) Scores on DMControl500k for Walker, walk.

Crop Random Conv

Rotate Cutout-color

Cutout Grayscale

Stacked inputs

No Aug

Color-jitter Flip

(b) Spatial attention map for Walker, walk.

Figure 4.2: (a) We ablate six common data augmentations on the walker, walk environment by
measuring performance on DMControl500k of each permutation of any two data augmentations
being performed in sequence. For example, the crop row and grayscale column correspond to the
score achieved after applying random crop and then random grayscale to the input images (entries
along the main axis use only one application of the augmentation). (b) Spatial attention map of
an encoder that shows where the agent focuses on in order to make a decision in Walker Walk
environment. Random crop enables the agent to focus on the robot body and ignore irrelevant
scene details compared to other augmentations as well as the base agent that learns without any
augmentation.

• RAD matches the performance of state-based SAC on the majority of (11 out of 15) DM-
Control environments tested as shown in Figure ??.

• Random translation or random crop, stand-alone, have the highest impact on final perfor-
mance relative to all other augmentations as shown in Figure ??.

Which data augmentations are the most effective? To answer this question for DMControl,
we ran RAD with permutations of two data augmentations applied in sequence (e.g., crop followed
by grayscale) on the Walker Walk environment and report the scores at 500k environment steps. We
chose this environment because SAC without augmentation fails at this task, resulting in scores
well below 200. Our results, shown in Figure ??, indicate that most data augmentations improve the
performance of the base policy, and that random crop by itself was the most effective by a large
margin.

Why is random crop so effective? To analyze the effects of random crop, we decompose it
into its two component augmentations: (a) random window, which masks a random boundary region
of the image, exactly where crop would remove it, and (b) random translate, which places the full
image entirely within a larger frame of zeros, but at a random location. In Appendix ??, Figure
?? shows resulting learning curves from each augmentation. The benefit of translations is clearly
demonstrated, whereas the random information hiding due to windowing produced little effect.
Table 4.1 reports scores using random translate, a new SOTA method, for all environments except
for Walker Walk, where random crop sometimes reduced variance. In Figure ?? of Appendix ??, we
ablate the size of the final translation image, finding in some cases that random placement within as
little as two additional pixels in height and width is sufficient to reap the benefit.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 58

Table 4.2: We present the generalization results of RAD with different data augmentation methods
on the three OpenAI ProcGen environments: BigFish, StarPilot and Jumper. We report the test
performances after 20M timesteps. The results show the mean and standard deviation averaged
over three runs. We see that RAD is able to outperform the baseline PPO trained on two times the
number of training levels benefitting from data augmentations such as random crop, cutout and
color jitter.

of training
levels

Pixel
PPO

RAD
(gray)

RAD
(flip)

RAD
(rotate)

RAD
(random conv)

RAD
(color-jitter)

RAD
(cutout)

RAD
(cutout-color)

RAD
(crop)

BigFish
100 1.9

± 0.1

1.5
± 0.3

2.3
± 0.4

1.9
± 0.0

1.0
± 0.1

1.0
± 0.1

2.9
± 0.2

2.0
± 0.2

5.4
± 0.5

200 4.3
± 0.5

2.1
± 0.3

3.5
± 0.4

1.5
± 0.6

1.2
± 0.1

1.5
± 0.2

3.3
± 0.2

3.5
± 0.3

6.7
± 0.8

StarPilot
100 18.0

± 0.7

10.6
± 1.4

13.1
± 0.2

9.7
± 1.6

7.4
± 0.7

15.0
± 1.1

17.2
± 2.0

22.4
± 2.1

20.3
± 0.7

200 20.3
± 0.7

20.6
± 1.0

20.7
± 3.9

15.7
± 0.7

11.0
± 1.5

20.6
± 1.1

24.5
± 0.1

24.5
± 1.6

24.3
± 0.1

Jumper
100 5.2

± 0.5

5.2
± 0.1

5.2
± 0.7

5.7
± 0.6

5.5
± 0.3

6.1
± 0.2

5.6
± 0.1

5.8
± 0.6

5.1
± 0.2

200 6.0
± 0.2

5.6
± 0.1

5.4
± 0.3

5.5
± 0.1

5.2
± 0.1

5.9
± 0.1

5.4
± 0.1

5.6
± 0.4

5.2
± 0.7

What are the effects on the learned encoding? To understand how the augmentations affect
learned representations encoder, we visualize a spatial attention map from the output of the last
convolutional layer. Similar to [203], we compute the spatial attention map by mean-pooling the
absolute values of the activations along the channel dimension and follow with a 2-dimensional
spatial softmax. Figure ?? visualizes the spatial attention maps for the augmentations considered.
Without augmentation, the activation is highly concentrated at the point of the forward knee, whereas
with random crop/translate, entire edges of the body are prominent, providing a more complete and
robust representation of the state.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 59

Jumper (seen)

Jumper (unseen)

StarPilot (seen)

StarPilot (unseen)

BigFish (seen)

BigFish (unseen)

(a) ProcGen

Pixel PPO
RAD (grayout)
RAD (color-jitter)
RAD (cutout-color)
RAD (random conv)

RAD (flip)
RAD (rotate)
RAD (crop)
RAD (cutout)

S
co

re

0

10

20

30

40

50

Timesteps (M)
0 50 100 150 200

Test performance

(b) Test performance on modified CoinRun

Figure 4.3: (a) Examples of seen and unseen environments on ProcGen. (b) The test performance
under the modified CoinRun. The solid/dashed lines and shaded regions represent the mean and
standard deviation, respectively.

Improving generalization on OpenAI ProcGen
Generalization: We evaluate the generalization ability on three environments from OpenAI Proc-
gen: BigFish, StarPilot, and Jumper (see Figure ??) by varying the number of training environments
and ablating for different data augmentation methods. We summarize our findings below:

• As shown in Table 4.2, various data augmentation methods such as random crop and cutout
significantly improve the generalization performance on the BigFish and StarPilot envi-
ronments

• In particular, RAD with random crop achieves 55.8% relative gain over pixel-based PPO
on the BigFish environment.

• RAD trained with 100 training levels outperforms the pixel-based PPO trained with 200
training levels on both BigFish and StarPilot environments. This shows that data augmentation
can be more effective in learning generalizable representations compared to simply increasing
the number of training environments.

• In the case of Jumper (a navigation task), the gain from data augmentation is not as significant
because the task involves structural generalization to different map layouts and is likely to
require recurrent policies [31].

• To verify the effects of data augmentations on such environments, we consider a modified
version of CoinRun [32] which corresponds to a simpler version of Jumper. We train agents
on a fixed set of 500 levels with half of the available themes (style of backgrounds, floors,
agents, and moving obstacles) and then measure the test performance on 1000 different levels

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 60

consisting of unseen themes to evaluate the generalization ability across the visual changes.
As shown in Figure ??, data augmentation methods, such as random convolution, color-jitter,
and cutout-color, improve the generalization ability of the agent to a greater extent than
random crop suggesting the need to further study data augmentations in these environments.

Improving state-based RL on OpenAI Gym

Table 4.3: Performance on OpenAI Gym. The training timestep varies from 50,000 to 200,000
depending on the difficulty of the tasks. The results show the mean and standard deviation averaged
over four runs and the best results are indicated in bold. For baseline methods, we report the best
number in POPLIN [189].

Cheetah Walker Hopper Ant Pendulum Cartpole

PETS 2288.4 ± 1019.0 282.5 ± 501.6 114.9 ± 621.0 1165.5 ± 226.9 155.7 ± 79.3 199.6 ± 4.6
POPLIN-A 1562.8 ± 1136.7 -105.0 ± 249.8 202.5 ± 962.5 1148.4 ± 438.3 178.3 ± 19.3 200.6 ± 1.3
POPLIN-P 4235.0 ± 1133.0 597.0 ± 478.8 2055.2 ± 613.8 2330.1 ± 320.9 167.9 ± 45.9 200.8 ± 0.3
METRPO 2283.7 ± 900.4 -1609.3 ± 657.5 1272.5 ± 500.9 282.2 ± 18.0 174.8 ± 6.2 138.5 ± 63.2
TD3 3015.7 ± 969.8 -516.4 ± 812.2 1816.6 ± 994.8 870.1 ± 283.8 168.6 ± 12.7 -409.2 ± 928.8

SAC 4035.7 ± 268.0 -382.5 ± 849.5 2020.6 ± 692.9 836.5 ± 68.4 162.1 ± 12.3 199.8 ± 1.9
RAD 4554.3 ± 1209.0 806.4 ± 706.7 2149.1 ± 249.9 1150.9 ± 494.6 167.4 ± 9.7 199.9 ± 0.8

Timesteps 200000 200000 200000 200000 50000 50000

Data-efficiency on state-based inputs. Table 4.3 shows the average returns of evaluation rollouts
for all methods (see Figure ?? in Appendix ?? for learning curves). We report results for state-
based RAD using the best performing augmentation - random amplitude scaling; for details
regarding performance of other augmentations we refer the reader to Appendix ??. Similar to data
augmentation in the visual setting, RAD is the state-of-the-art algorithm on the majority (4 out of
6) of benchmarked environments. RAD consistently improves the performance of SAC across all
environments, and outperforms a competing state-of-the-art method - POPLIN-P - on most of the
environments. It is worth noting that RAD improves the average return compared to POPLIN-P by
1.7x in Walker, an environment where most prior RL methods fail, including both model-based and
model-free ones. We hypothesize that random amplitude scaling is effective because it forces the
agent to be robust to input noise while maintaining the intrinsic information of the state, such as
sign of inputs and relative differences between them.

These results showcase the generality of incorporating inductive biases through augmentation
(e.g., amplitude invariance) by showing that improving RL with data augmentation is not specific to
pixel-based inputs but also applies RL from state. By achieving state-of-the-art performance across
both visual and proprioceptive inputs, RAD sets a powerful new baseline for future algorithms.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 61

4.6 Conclusion
In this work, we proposed RAD, a simple plug-and-play module to enhance any reinforcement
learning (RL) method using data augmentations. For the first time, we show that data augmentations
alone can significantly improve the data-efficiency and generalization of RL methods operating
from pixels, without any changes to the underlying RL algorithm, on the DeepMind Control Suite
and the OpenAI ProcGen benchmarks respectively. Our implementation is simple, efficient, and
has been open-sourced. We hope that the performance gains, implementation ease, and wall clock
efficiency of RAD make it a useful module for future research in data-efficient and generalizable
RL methods; and a useful tool for facilitating real-world applications of RL.

4.7 Extended related work

Data augmentation in supervised learning
Since our focus is on image-based observations, we cover the related work in computer vision.
Data augmentation in deep learning systems for computer vision can be found as early as LeNet-5
[113], an early implementation of CNNs on MNIST digit classification. In AlexNet [104] wherein
the authors applied CNNs to image classification on ImageNet, data augmentations were used to
increase the size of the original dataset by a factor of 2048 by randomly flipping and cropping
224× 224 patches from the original image. These data augmentations inject the priors of invariance
to translation and reflection, playing a significant role in improving the performance of supervised
computer vision systems. Recently, new augmentation techniques such as AutoAugment [33] and
RandAugment [34] have been proposed to further improve the performance of these systems.

Data augmentation for data-efficiency in semi & self-supervised learning
Aside from improving supervised learning, data augmentation has also been widely utilized for
unsupervised and semi-supervised learning. MixMatch [16], FixMatch [163], UDA [200] use
unsupervised data augmentation in order to maximize label agreement without access to the actual
labels. Several contrastive representation learning approaches [79, 76, 26] have recently dramatically
improved the label-efficiency of downstream vision tasks like ImageNet classification. Contrastive
approaches utilize data augmentations and perform patch-wise [79] or instance discrimination
(MoCo, SimCLR) [76, 26]. In the instance discrimination setting, the contrastive objective aims to
maximize agreement between augmentations of the same image and minimize it between all other
images in the dataset [26, 76]. The choice of augmentations has a significant effect on the quality of
the learned representations as demonstrated in SimCLR [26].

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 62

Prior work in reinforcement learning related to data augmentation
Data augmentation with domain knowledge

While not directly known for data augmentation in reinforcement learning, the following ideas can
be viewed as techniques to diversify the data used to train an RL agent:

Domain randomization [151, 182, 141] is a simple data augmentation technique primarily
used for transferring policies from simulation to the real world where one takes advantage of the
simulator’s access to information about the rendering and physics and thus can train transferable
policies from diverse simulated experiences.

Hindsight experience replay [4] applies the idea of re-labeling trajectories with terminal states
as fictitious goals, improving the ability of goal-conditioned RL to learn quickly with sparse rewards.
This, however, makes assumptions about the goal space matching with the state space and has had
limited success with pixel-based observations.

Synthetic rollouts using a learned world model

While usually not viewed as a data augmentation technique, the idea of generating fake or synthetic
rollouts to improve the data-efficiency of RL agents has been proposed in the Dyna framework [170].
In recent times, these ideas have been used to improve the performance of systems that have
explicitly learned world models of the environment and generated synthetic rollouts using them [66,
95, 69].

Data augmentation for data-efficient reinforcement learning

Data augmentation is a key component for learning contrastive representations in the RL setting as
shown in the CURL framework [164], which learns representations that improve the data-efficiency
of pixel-based RL by enforcing consistencies between an image and its augmented version through
instance contrastive losses. Prior to our work, CURL was the state-of-the-art model for data-
efficient RL from pixel inputs. While the focus in CURL was to make use of data augmentations
jointly through contrastive and reinforcement learning losses, RAD attempts to directly use data
augmentations for reinforcement learning without any auxiliary loss. We refer the reader to a
discussion on tradeoffs between CURL and RAD in Section 4.10. Concurrent and independent to
our work, DrQ [103] uses data augmentations and weighted Q-functions in conjunction with the off-
policy RL algorithm SAC [67] to achieve state-of-the-art data-efficiency results on the DeepMind
Control Suite. On the other hand, RAD can be plugged into any reinforcement learning method
(on-policy methods like PPO [156] and off-policy methods like SAC [67]) without making any
changes to the underlying algorithm. We further demonstrate the benefits of data augmentation to
generalization on the OpenAI ProcGen benchmarks in addition to data-efficiency on the DeepMind
Control Suite.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 63

4.8 Code for select augmentations� �
1 def random_crop(imgs, size=84):
2 n, c, h, w = imgs.shape
3 w1 = torch.randint(0, w - size + 1, (n,))
4 h1 = torch.randint(0, h - size + 1, (n,))
5 cropped = torch.empty((n, c, size, size),
6 dtype=imgs.dtype, device=imgs.device)
7 for i, (img, w11, h11) in enumerate(zip(imgs, w1, h1)):
8 cropped[i][:] = img[:, h11:h11 + size, w11:w11 + size]
9 return cropped

10
11 def random_cutout(imgs, min_cut=4, max_cut=24):
12 n, c, h, w = imgs.shape
13 w_cut = torch.randint(min_cut, max_cut + 1, (n,)) # random size cut
14 h_cut = torch.randint(min_cut, max_cut + 1, (n,)) # rectangular shape
15 fills = torch.randint(0, 255, (n, c, 1, 1)) # assume uint8.
16 for img, wc, hc, fill in zip(imgs, w_cut, h_cut, fills):
17 w1 = torch.randint(w - wc + 1, ()) # uniform over interior
18 h1 = torch.randint(h - hc + 1, ())
19 img[:, h1:h1 + hc, w1:w1 + wc] = fill
20 return imgs
21
22 def random_flip(imgs, p=0.5):
23 n, _, _, _ = imgs.shape
24 flip_mask = torch.rand(n, device=imgs.device) < p
25 imgs[flip_mask] = imgs[flip_mask].flip([3]) # left-right
26 return imgs� �

4.9 Time-efficiency of data augmentation
The primary gain of our data augmentation modules is enabling efficient augmentation of stacked
frame inputs in the minibatch setting. Since the augmentations must be applied randomly across the
batch but consistently across the frame stack, traditional frameworks like Tensorflow and PyTorch
that focus on augmenting single-frame static datasets, are unsuitable for this task. We further show
wall-clock efficiency relative to the PyTorch API in Table 4.4.

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 64

Table 4.4: We compare the data augmentation speed between the RAD augmentation modules and
performing the same augmentations in PyTorch. We calculate the number of additional minutes
required to perform 100k training steps. On average, the RAD augmentations are nearly 2x faster
than augmentations accessed through the native PyTorch API. Additionally, since the PyTorch API
is meant for processing single-frame images, it is not designed to apply augmentations consistently
across the frame stack but randomly across the batch. Cutout and random convolution augmentations
are not present in the PyTorch API.

Ours PyTorch

Crop 31.8 33.5
Grayscale 15.6 51.2
Cutout 36.6 -
Cutout color 45.2 -
Flip 4.9 37.0
Rotate 46.5 62.4
Random Conv. 45.8 -

4.10 Discussion

CURL vs RAD
Both CURL and RAD improve the data-efficiency of RL agents by enforcing consistencies in the
input observations presented to the agent. CURL does this with an explicit instance contrastive loss
between an image and its augmented version using the MoCo [76] mechanism. On the other hand,
RAD does not employ any auxiliary loss and directly trains the RL objective on multiple augmented
views of the observations, thereby ensuring consistencies on the augmented views implicitly. The
performance of RAD matches that of CURL and surpasses CURL on some of the environments in
the DeepMind Control Suite (refer to Figure ??). This suggests the potential conclusion that data
augmentation is sufficient for data-efficient reinforcement learning from pixels. We argue that the
conclusion requires a bit more nuance in the following subsection.

Is data augmentation sufficient for RL from pixels?
The improved performance of RAD over CURL can be attributed to the following line of thought:
While both methods try to improve the data-efficiency through augmentation consistencies (CURL
explicitly, RAD implicitly); RAD outperforms CURL because it only optimizes for what we care
about, which is the task reward. CURL, on the other hand, jointly optimizes the reinforcement and
contrastive learning objectives. If the metric used to evaluate and compare these methods is the
score attained on the task at hand, a method that purely focuses on reward optimization is expected

CHAPTER 4. REINFORCEMENT LEARNING WITH AUGMENTED DATA 65

to be better as long as it implicitly ensures similarity consistencies on the augmented views (in this
case, just by training the RL objective on different augmentations directly).

However, we believe that a representation learning method like CURL is arguably a more
general framework for the usage of data augmentations in reinforcement learning. CURL can be
applied even without any task (or environment) reward available. The contrastive learning objective
in CURL that ensures consistencies between augmented views is disentangled from the reward
optimization (RL) objective and is therefore capable of learning-rich semantic representations from
high dimensional observations gathered from random rollouts. Real-world applications of RL
might involve performing plenty of interactions (or rollouts) with sparse reward signals, and tasks
presented to the agent as image-based goals. In such scenarios, CURL and other representation
learning methods are likely to be more important even though current RL benchmarks are primarily
about single or multi-task reward optimization.

Given these subtle considerations, we believe that both RAD and representation learning methods
like CURL will be useful tools for an RL practitioner in future research encompassing data-efficient
and generalizable RL.

4.11 Acknowledgments
This work was supported in part by Berkeley Deep Drive (BDD), ONR PECASE N000141612723,
DARPA through the LwLL program, and the Open Philanthropy Foundation.

66

Chapter 5

Bottleneck Transformers for Visual
Recognition

5.1 Introduction
Deep convolutional backbone architectures [104, 162, 73, 201, 175] have enabled significant
progress in image classification [150], object detection [49, 121, 60, 58, 147], instance segmenta-
tion [71, 35, 75]. Most landmark backbone architectures [104, 162, 73] use multiple layers of 3× 3
convolutions.

While the convolution operation can effectively capture local information, vision tasks such as
object detection, instance segmentation, keypoint detection require modeling long range dependen-
cies. For example, in instance segmentation, being able to collect and associate scene information
from a large neighborhood can be useful in learning relationships across objects [88]. In order to
globally aggregate the locally captured filter responses, convolution based architectures require
stacking multiple layers [162, 73]. Although stacking more layers indeed improves the performance
of these backbones [206], an explicit mechanism to model global (non-local) dependencies could
be a more powerful and scalable solution without requiring as many layers.

Modeling long-range dependencies is critical to natural language processing (NLP) tasks as well.
Self-attention is a computational primitive [186] that implements pairwise entity interactions with
a content-based addressing mechanism, thereby learning a rich hierarchy of associative features
across long sequences. This has now become a standard tool in the form of Transformer [186]
blocks in NLP with prominent examples being GPT [142, 18] and BERT [38, 123] models.

A simple approach to using self-attention in vision is to replace spatial convolutional layers with
the multi-head self-attention (MHSA) layer proposed in the Transformer [186] (Figure 5.1). This
approach has seen progress on two seemingly different approaches in the recent past. On the one
hand, we have models such as SASA [145], AACN [14], SANet [208], Axial-SASA [188], etc that
propose to replace spatial convolutions in ResNet botleneck blocks [73] with different forms of
self-attention (local, global, vector, axial, etc). On the other hand, we have the Vision Transformer
(ViT) [43], that proposes to stack Transformer blocks [186] operating on linear projections of

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 67

Figure 5.1: Left: A ResNet Bottleneck Block, Right: A Bottleneck Transformer (BoT) block.
The only difference is the replacement of the spatial 3 × 3 convolution layer with Multi-Head
Self-Attention (MHSA). The structure of the self-attention layer is described in Figure 5.4.

non-overlapping patches. It may appear that these approaches present two different classes of
architectures. We point out that it is not the case. Rather, ResNet botteneck blocks with the MHSA
layer can be viewed as Transformer blocks with a bottleneck structure, modulo minor differences
such as the residual connections, choice of normalization layers, etc. (Figure 5.3). Given this
equivalence, we call ResNet bottleneck blocks with the MHSA layer as Bottleneck Transformer
(BoT) blocks.

Here are a few challenges when using self-attention in vision: (1) Image sizes are much larger
(1024 × 1024) in object detection and instance segmentation compared to image classification
(224× 224). (2) The memory and computation for self-attention scale quadratically with spatial
dimensions [178], causing overheads for training and inference.

To overcome these challenges, we consider the following design: (1) Use convolutions to
efficiently learn abstract and low resolution featuremaps from large images; (2) Use global (all2all)
self-attention to process and aggregate the information contained in the featuremaps captured
by convolutions. Such a hybrid design [14] (1) uses existing and well optimized primitives for
both convolutions and all2all self-attention; (2) can deal with large images efficiently by having
convolutions do the spatial downsampling and letting attention work on smaller resolutions. Here is
a simple practical instantiation of this hybrid design: Replace only the final three bottleneck blocks
of a ResNet with BoT blocks without any other changes. Or in other words, take a ResNet and
only replace the final three 3× 3 convolutions with MHSA layers (Fig 5.1, Table 5.1). This simple
change improves the mask AP by 1.2% on the COCO instance segmentation benchmark [121]
over our canonical baseline that uses ResNet-50 in the Mask R-CNN framework [75] with no
hyperparameter differences and minimal overheads for training and inference. Moving forward,
we call this simple instantiation as BoTNet given its connections to the Transformer through the

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 68

BoT blocks. While we note that there is no novelty in its construction, we believe the simplicity and
performance make it a useful reference backbone architecture that is worth studying.

Using BoTNet, we demonstrate significantly improved results on instance segmentation without
any bells and whistles such as Cascade R-CNN [20], FPN changes [122, 54, 124, 176], hyperpa-
rameter changes [175], etc. A few key results from BoTNet are: (1) Performance gains across
various training configurations (Section 5.4), data augmentations (Section 5.4) and ResNet family
backbones (Section 5.4); (2) Significant boost from BoTNet on small objects (+2.4 Mask AP and
+2.6 Box AP) (Appendix); (3) Performance gains over Non-Local layers (Section 5.4); (4) Gains
that scale well with larger images resulting in 44.4% mask AP, competitive with state-of-the-art
performance among entries that only study backbone architectures with modest training schedules
(up to 72 epochs) and no extra data or augmentations.1.

Lastly, we scale BoTNets, taking inspiration from the training and scaling strategies in [175, 145,
116, 149, 143, 206, 15], after noting that BoTNets do not provide substantial gains in a smaller scale
training regime. We design a family of BoTNet models that achieve up to 84.7% top-1 accuracy on
the ImageNet validation set, while being upto 1.64x faster than the popular EfficientNet models in
terms of compute time on TPU-v3 hardware. By providing strong results through BoTNet, we hope
that self-attention becomes a widely used primitive in future vision architectures.

5.2 Related Work
A taxonomy of deep learning architectures that employ self-attention for vision is presented in
Figure 5.2. In this section, we focus on: (1) Transformer vs BoTNet; (2) DETR vs BoTNet; (3)
Non-Local vs BoTNet.

Connection to the Transformer: As the title of the paper suggests, one key message in this
paper is that ResNet bottleneck blocks with Multi-Head Self-Attention (MHSA) layers can be
viewed as Transformer blocks with a bottleneck structure. This is visually explained in Figure 5.3
and we name this block as Bottleneck Transformer (BoT). We note that the architectural design
of the BoT block is not our contribution. Rather, we point out the relationship between MHSA
ResNet bottleneck blocks and the Transformer with the hope that it improves our understanding
of architecture design spaces [144, 143] for self-attention in computer vision. There are still a
few differences aside from the ones already visible in the figure (residual connections and block
boundaries): (1) Normalization: Transformers use Layer Normalization [7] while BoT blocks
use Batch Normalization [90] as is typical in ResNet bottleneck blocks [73]; (2) Non-Linearities:
Transformers use one non-linearity in the FFN block, while the ResNet structure allows BoT block
to use three non-linearities; (3) Output projections: The MHSA block in a Transformer contains an
output projection while the MHSA layer (Fig 5.4) in a BoT block (Fig 5.1) does not; (4) We use the
SGD with momentum optimizer typically used in computer vision [73, 75, 59] while Transformers
are generally trained with the Adam optimizer [99, 186, 23, 43].

Connection to DETR: Detection Transformer (DETR) is a detection framework that uses a
Transformer to implicitly perform region proposals and localization of objects instead of using an

1SoTA is based on https://paperswithcode.com/sota/instance-segmentation-on-coco-minival.

https://paperswithcode.com/sota/instance-segmentation-on-coco-minival

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 69

Figure 5.2: A taxonomy of deep learning architectures using self-attention for visual recognition.
Our proposed architecture BoTNet is a hybrid model that uses both convolutions and self-attention.
The specific implementation of self-attention could either resemble a Transformer block [186]
or a Non-Local block [191] (difference highlighted in Figure 5.4). BoTNet is different from
architectures such as DETR [23], VideoBERT [168], VILBERT [125], CCNet [89], etc by employing
self-attention within the backbone architecture, in contrast to using them outside the backbone
architecture. Being a hybrid model, BoTNet differs from pure attention models such as SASA [145],
LRNet [87], SANet [208], Axial-SASA [86, 188] and ViT [43]. AA-ResNet [14] also attempted to
replace a fraction of spatial convolution channels with self-attention.

R-CNN [60, 58, 147, 75]. Both DETR and BoTNet attempt to use self-attention to improve the
performance on object detection and instance (or panoptic) segmentation. The difference lies in the
fact that DETR uses Transformer blocks outside the backbone architecture with the motivation to
get rid of region proposals and non-maximal suppression for simplicity. On the other hand, the goal
in BoTNet is to provide a backbone architecture that uses Transformer-like blocks for detection
and instance segmentation. We are agnostic to the detection framework (be it DETR or R-CNN).
We perform our experiments with the Mask [75] and Faster R-CNN [147] systems and leave it for
future work to integrate BoTNet as the backbone in the DETR framework. With visibly good gains
on small objects in BoTNet, we believe there maybe an opportunity to address the lack of gain on
small objects found in DETR, in future (refer to Appendix).

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 70

Figure 5.3: Left: Canonical view of the Transformer with the boundaries depicting the definition
of a Transformer block as described in Vaswani et. al [186]. Middle: Bottleneck view of the
Transformer with boundaries depicting what we define as the Bottleneck Transformer (BoT) block
in this work. The architectural structure that already exists in the Transformer can be interpreted a
ResNet bottleneck block [73] with Multi-Head Self-Attention (MHSA) [186] with a different notion
of block boundary as illustrated. Right: An instantiation of the Bottleneck Transformer as a ResNet
bottleneck block [73] with the difference from a canonical ResNet block being the replacement of
3× 3 convolution with MHSA.

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 71

Connection to Non-Local Neural Nets:2 Non-Local (NL) Nets [191] make a connection
between the Transformer and the Non-Local-Means algorithm [19]. They insert NL blocks into
the final one (or) two blockgroups (c4,c5) in a ResNet and improve the performance on video
recognition and instance segmentation. Like NL-Nets [191, 21], BoTNet is a hybrid design using
convolutions and global self-attention. (1) Three differences between a NL layer and a MHSA layer
(illustrated in Figure 5.4): use of multiple heads, value projection and position encodings in MHSA;
(2) NL blocks use a bottleneck with channel factor reduction of 2 (instead of 4 in BoT blocks which
adopt the ResNet structure); (3) NL blocks are inserted as additional blocks into a ResNet backbone
as opposed to replacing existing convolutional blocks as done by BoTNet. Section 5.4 offers a
comparison between BoTNet, NLNet as well as a NL-like version of BoTNet where we insert BoT
blocks in the same manner as NL blocks instead of replacing.

5.3 Method
BoTNet by design is simple: replace the final three spatial (3× 3) convolutions in a ResNet with
Multi-Head Self-Attention (MHSA) layers that implement global (all2all) self-attention over a 2D
featuremap (Fig 5.4). A ResNet typically has 4 stages (or blockgroups) commonly referred to as
[c2,c3,c4,c5] with strides [4,8,16,32] relative to the input image, respectively. Stacks
[c2,c3,c4,c5] consist of multiple bottleneck blocks with residual connections (e.g, R50 has
[3,4,6,3] bottleneck blocks).

Approaches that use self-attention throughout the backbone [145, 14, 208, 43] are feasible
for input resolutions (224 × 224 (for classification) and 640 × 640 (for detection experiments in
SASA [145])) considered in these papers. Our goal is to use attention in more realistic settings
of high performance instance segmentation models, where typically images of larger resolution
(1024× 1024) are used. Considering that self-attention when performed globally across n entities
requires O(n2d) memory and computation [186], we believe that the simplest setting that adheres to
the above factors would be to incorporate self-attention at the lowest resolution featuremaps in the
backbone, ie, the residual blocks in the c5 stack. The c5 stack in a ResNet backbone typically uses
3 blocks with one spatial 3× 3 convolution in each. Replacing them with MHSA layers forms the
basis of the BoTNet architecture. The first block in c5 uses a 3× 3 convolution of stride 2 while
the other two use a stride of 1. Since all2all attention is not a strided operation, we use a 2× 2
average-pooling with a stride 2 for the first BoT block. The BoTNet architecture is described in
Table 5.1 and the MHSA layer is presented in Figure 5.4. The strided version of the BoT block is
presented in the Appendix.

Relative Position Encodings: In order to make the attention operation position aware, Trans-
former based architectures typically make use of a position encoding [186]. It has been observed
lately that relative-distance-aware position encodings [159] are better suited for vision tasks [14,
145, 208]. This can be attributed to attention not only taking into account the content information

2The replacement vs insertion contrast has previously been pointed out in AA-ResNet (Bello et. al) [14]. The
difference in our work is the complete replacement as opposed to fractional replacement in Bello et al.

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 72

stage output ResNet-50 BoTNet-50
c1 512× 512 7×7, 64, stride 2 7×7, 64, stride 2

c2 256× 256

3×3 max pool, stride 2 3×3 max pool, stride 2 1×1, 64
3×3, 64
1×1, 256

×3

 1×1, 64
3×3, 64
1×1, 256

×3

c3 128× 128

 1×1, 128
3×3, 128
1×1, 512

×4

 1×1, 128
3×3, 128
1×1, 512

×4

c4 64× 64

 1×1, 256
3×3, 256
1×1, 1024

×6

 1×1, 256
3×3, 256
1×1, 1024

×6

c5 32× 32

 1×1, 512
3×3, 512
1×1, 2048

×3

 1×1, 512
MHSA, 512
1×1, 2048

×3

params. 25.5×106 20.8×106

M.Adds 85.4×109 102.98×109

TPU steptime 786.5 ms 1032.66 ms

Table 5.1: Architecture of BoTNet-50 (BoT50): The only difference in BoT50 from ResNet-50
(R50) is the use of MHSA layer (Figure 5.4) in c5. For an input resolution of 1024 × 1024, the
MHSA layer in the first block of c5 operates on 64×64 while the remaining two operate on 32×32.
We also report the parameters, multiply-adds (m. adds) and training time throughput (TPU-v3
steptime on a v3-8 Cloud-TPU). BoT50 has only 1.2x more m.adds. than R50. The overhead in
training throughout is 1.3x. BoT50 also has 1.2x fewer parameters than R50. While it may appear
that it is simply the aspect of performing slightly more computations that might help BoT50 over
the baseline, we show that it is not the case in Section 5.4.

but also relative distances between features at different locations, thereby, being able to effectively
associate information across objects with positional awareness. In BoTNet, we adopt the 2D relative
position self-attention implementation from [145, 14].

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 73

H x W x d H x W x dH x W x d

H*W x d

H x 1 x d 1 x W x d

H*W x H*W H*W x H*W

z

H*W x H*W

H x W x d

softmax

Rh

H x W x d

Rw

Self-Attention Layer

WV : 1 x 1

H x W x d

WK : 1 x 1WQ : 1 x 1

x

qr k v

qkTqrT
content-contentcontent-position

Figure 5.4: Multi-Head Self-Attention (MHSA) layer used in the BoT block. While we use 4
heads, we do not show them on the figure for simplicity. all2all attention is performed on a 2D
featuremap with split relative position encodings Rh and Rw for height and width respectively. The
attention logits are qkT + qrT where q, k, r represent query, key and position encodings respectively
(we use relative distance encodings [159, 14, 145]).

⊕
and

⊗
represent element wise sum and

matrix multiplication respectively, while 1× 1 represents a pointwise convolution.

5.4 Experiments
We study the benefits of BoTNet for instance segmentation and object detection. We perform a
thorough ablation study of various design choices through experiments on the COCO dataset [121].
We report the standard COCO metrics including the APbb (averaged over IoU thresholds), APbb

50,
APbb

75, APmk; APmk
50 , APmk

75 for box and mask respectively. As is common practice these days, we train
using the COCO train set and report results on the COCO val (or minival) set as followed in
Detectron [59]3. Our experiments are based on the Google Cloud TPU detection codebase4. We
run all the baselines and ablations with the same codebase. Unless explicitly specified, our training
infrastructure uses v3-8 Cloud-TPU which contains 8 cores with 16 GB memory per core. We
train with the bfloat16 precision and cross-replica batch normalization [90, 195, 75, 59, 138]
using a batch size of 64.

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 74

Backbone epochs APbb APmk

R50 12 39.0 35.0

BoT50 12 39.4 (+ 0.4) 35.3 (+ 0.3)

R50 24 41.2 36.9

BoT50 24 42.8 (+ 1.6) 38.0 (+ 1.1)

R50 36 42.1 37.7

BoT50 36 43.6 (+ 1.5) 38.9 (+ 1.2)

R50 72 42.8 37.9

BoT50 72 43.7 (+ 0.9) 38.7 (+ 0.8)

Table 5.2: Comparing R50 and BoT50 under the 1x (12 epochs), 3x (36 epochs) and 6x (72 epochs)
settings, trained with image resolution 1024× 1024 and multi-scale jitter of [0.8, 1.25].

BoTNet improves over ResNet on COCO Instance Segmentation with Mask
R-CNN
We consider the simplest and most widely used setting: ResNet-505 backbone with FPN6. We
use images of resolution 1024 × 1024 with a multi-scale jitter of [0.8, 1.25] (scaling the image
dimension between 820 and 1280, in order to be consistent with the Detectron setting of using
800× 1300). In this setting, we benchmark both the ResNet-50 (R50) and BoT ResNet-50 (BoT50)
as the backbone architectures for multiple training schedules: 1x: 12 epochs, 2x: 24 epochs, 3x:
36 epochs, 6x: 72 epochs7, all using the same hyperparameters for both the backbones across all
the training schedules (Table 5.2). We clearly see that BoT50 is a significant improvement on top
of R50 barring the 1x schedule (12 epochs). This suggests that BoT50 warrants longer training in
order to show significant improvement over R50. We also see that the improvement from BoT50 in
the 6x schedule (72 epochs) is worse than its improvement in the 3x schedule (32 epochs). This
suggests that training much longer with the default scale jitter hurts. We address this by using a
more aggressive scale jitter (Section 5.4).

Scale Jitter helps BoTNet more than ResNet
In Section 5.4, we saw that training much longer (72 epochs) reduced the gains for BoT50. One
way to address this is to increase the amount of multi-scale jitter which has been known to improve

3train - 118K images, val - 5K images
4https://github.com/tensorflow/tpu/tree/master/models/official/detection
5We use the ResNet backbones pre-trained on ImageNet classification as is common practice. For BoTNet, the

replacement layers are not pre-trained but randomly initialized for simplicity; the remaining layers are initialized from
a pre-trained ResNet.

6FPN refers to Feature Pyramid Network [120]. We use it in every experiment we report results on, and our FPN
levels from 2 to 6 (p2 to p6) similar to Detectron [59].

71x, 2x, 3x and 6x convention is adopted from MoCo [76].

https://github.com/tensorflow/tpu/tree/master/models/official/detection

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 75

Backbone jitter APbb APmk

R50 [0.8, 1.25] 42.8 37.9

BoT50 [0.8, 1.25] 43.7 (+ 0.9) 38.7 (+ 0.8)

R50 [0.5, 2.0] 43.7 39.1

BoT50 [0.5, 2.0] 45.3 (+ 1.8) 40.5 (+ 1.4)

R50 [0.1, 2.0] 43.8 39.2

BoT50 [0.1, 2.0] 45.9 (+ 2.1) 40.7 (+ 1.5)

Table 5.3: Comparing R50 and BoT50 under three settings of multi-scale jitter, all trained with
image resolution 1024× 1024 for 72 epochs (6x training schedule).

the performance of detection and segmentation systems [45, 55]. Table 5.3 shows that BoT50
is significantly better than R50 (+ 2.1% on APbb and + 1.7% on APmk) for multi-scale jitter of
[0.5, 2.0], while also showing significant gains (+ 2.2% on APbb and + 1.6% on APmk) for scale
jitter of [0.1, 2.0], suggesting that BoTNet (self-attention) benefits more from extra augmentations
such as multi-scale jitter compared to ResNet (pure convolutions).

Relative Position Encodings Boost Performance
BoTNet uses relative position encodings [159]. We present an ablation for the use of relative
position encodings by benchmarking the individual gains from content-content interaction (qkT)
and content-position interaction (qrT) where q, k, r represent the query, key and relative position
encodings respectively. The ablations (Table 5.4) are performed with the canonical setting8. We see
that the gains from qrT and qkT are complementary with qrT more important, ie, qkT standalone
contributes to 0.6% APbb and 0.6% APmk improvement over the R50 baseline, while qrT standalone
contributes to 1.0% APbb and 0.7 % APmk improvement. When combined together (qkT + qrT),
the gains on both APbb and APmk are additive (1.5% and 1.2% respectively). We also see that using
absolute position encodings (qrTabs) does not provide as much gain as relative. This suggests that
introducing relative position encodings into architectures like DETR [23] is an interesting direction
for future work.

8res:1024x1024, 36 epochs (3x schedule), multi-scale jitter:[0.8, 1.25]

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 76

Backbone Att. Type APbb APmk

R50 - 42.1 37.7

BoT50 qkT 42.7 (+ 0.6) 38.3 (+ 0.6)

BoT50 qrTrelative 43.1 (+ 1.0) 38.4 (+ 0.7)

BoT50 qkT + qrTrelative 43.6 (+ 1.5) 38.9 (+ 1.2)

BoT50 qkT + qrTabs 42.5 (+ 0.4) 38.1 (+ 0.4)

Table 5.4: Ablation for Relative Position Encoding: Gains from the two types of interactions in the
MHSA layers, content-content (qkT) and content-position (qrT).

BoTNet improves backbones in ResNet Family
How well does the replacement setup of BoTNet work for other backbones in the ResNet family?
Table 5.5 presents the results for BoTNet with R50, R101, and R152. All these experiments use
the canonical training setting (refer to footnote in 5.4). These results demonstrate that BoTNet
is applicable as a drop-in replacement for any ResNet backbone. Note that BoT50 is better than
R101 (+ 0.3% APbb, + 0.5% APmk) while it is competitive with R152 on APmk. Replacing 3 spatial
convolutions with all2all attention gives more improvement in the metrics compared to stacking
50 more layers of convolutions (R101), and is competitive with stacking 100 more layers (R152),
supporting our initial hypothesis that long-range dependencies are better captured through attention
than stacking convolution layers.9

Backbone APbb APmk

R50 42.1 37.7

BoT50 43.6 (+ 1.5) 38.9 (+ 1.2)

R101 43.3 38.4

BoT101 45.5 (+ 2.2) 40.4 (+ 2.0)

R152 44.2 39.1

BoT152 46.0 (+ 1.8) 40.6 (+ 1.5)

Table 5.5: Comparing R50, R101, R152, BoT50, BoT101 and BoT152; all 6 setups using the
canonical training schedule of 36 epochs, 1024× 1024 images, multi-scale jitter [0.8, 1.25].

BoTNet scales well with larger images
We benchmark BoTNet as well as baseline ResNet when trained on 1280 × 1280 images in
comparison to 1024× 1024 using the best config: multi-scale jitter of [0.1, 2.0] and training for 72

9Note that while one may argue that the improvements of BoT50 over R50 could be attributed to having 1.2x more
M. Adds, BoT50 (121× 109 M.Adds) is also better than R101 (162.99× 109 B M. Adds and is competitive with R152
(240.56× 109 M. Adds) despite performing significantly less computation.

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 77

epochs. Results are presented in Tables 5.6 and 5.8. Results in Table 5.6 suggest that BoTNet benefits
from training on larger images for all of R50, R101 and R152. BoTNet trained on 1024 × 1024
(leave alone 1280 × 1280) is significantly better than baseline ResNet trained on 1280 × 1280.
Further, BoT200 trained with 1280 × 1280 achieves a APbb of 49.7% and APmk of 44.4%. We
believe this result highlights the power of self-attention, in particular, because it has been achieved
without any bells and whistles such as modified FPN [122, 54, 45, 176], cascade RCNN [20], etc.
This result surpasses the previous best published single model single scale instance segmentation
result from ResNeSt [206] evaluated on the COCO minival (44.2% APmk).

Backbone res APbb APmk

R50 1280 44.0 39.5

BoT50 1024 45.9 (+ 1.9) 40.7 (+ 1.2)

BoT50 1280 46.1 (+ 2.1) 41.2 (+ 1.8)

R101 1280 46.4 41.2

BoT101 1024 47.4 (+ 1.0) 42.0 (+ 0.8)

BoT101 1280 47.9 (+ 1.5) 42.4 (+ 1.2)

Table 5.6: All the models are trained for 72 epochs with a multi-scale jitter of [0.1, 2.0].

Backbone Change in backbone APbb APmk

R50 - 42.1 37.7

R50 + NL [191] + 1 NL block in c4 43.1 38.4

R50 + BoT (c4) + 1 BoT block in c4 43.7 38.9

R50 + BoT (c4, c5) + 2 BoT blocks in c4,c5 44.9 39.7

BoT50 Replacement in c5 43.6 38.9

Table 5.7: Comparison between BoTNet and Non-Local (NL) Nets: All models trained for 36
epochs with image size 1024× 1024, jitter [0.8, 1.25].

Backbone APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

BoT152 49.5 71.0 54.2 43.7 68.2 47.4

BoT200 49.7 71.3 54.6 44.4 68.9 48.2

Table 5.8: BoT152 and BoT200 trained for 72 epochs with a multi-scale jitter of [0.1, 2.0].

Comparison with Non-Local Neural Networks
How does BoTNet compare to Non-Local Neural Networks? NL ops are inserted into the c4 stack
of a ResNet backbone between the pre-final and final bottleneck blocks. This adds more parameters

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 78

to the model, whereas BoTNet ends up reducing the model parameters (Table 5.5). In the NL mould,
we add ablations where we introduce BoT block in the exact same manner as the NL block. We also
run an ablation with the insertion of two BoT blocks, one each in the c4,c5 stacks. Results are
presented in Table 5.7. Adding a NL improves APbb by 1.0 and APbb by 0.7, while adding a BoT
block gives +1.6 APbb and +1.2 APmk showing that BoT block design is better than NL. Further,
BoT-R50 (which replaces instead of adding new blocks) provides +1.5 APbb and + 1.2 APmk, as
good as adding another BoT block and better than adding one additional NL block.

Image Classification on ImageNet
BoTNet-S1 architecture

While we motivated the design of BoTNet for detection and segmentation, it is a natural question to
ask whether the BoTNet architecture design also helps improve the image classification performance
on the ImageNet [150] benchmark. Prior work [197] has shown that adding Non-Local blocks to
ResNets and training them using canonical settings does not provide substantial gains. We observe
a similar finding for BoTNet-50 when contrasted with ResNet-50, with both models trained with the
canonical hyperparameters for ImageNet [143]: 100 epochs, batch size 1024, weight decay 1e-4,
standard ResNet data augmentation, cosine learning rate schedule (Table 5.9). BoT50 does not
provide significant gains over R50 on ImageNet though it does provide the benefit of reducing the
parameters while maintaining comparable computation (M.Adds).

A simple method to fix this lack of gain is to take advantage of the image sizes typically used
for image classification. In image classification, we often deal with much smaller image sizes
(224 × 224) compared to those used in object detection and segmentation (1024 × 1024). The
featuremaps on which the BoT blocks operate are hence much smaller (e.g 14×14, 7×7) compared
to those in instance segmentation and detection (e.g 64 × 64, 32 × 32). With the same number
of parameters, and, without a significant increase in computation, the BoTNet design in the c5
blockgroup can be changed to uniformly use a stride of 1 in all the final MHSA layers. We call this
design as BoTNet-S1 (S1 to depict stride 1 in the final blockgroup). We note that this architecture is
similar in design to the hybrid models explored in Vision Transformer (ViT) [43] that use a ResNet
up to stage c4 prior to stacking Transformer blocks. The main difference between BoTNet-S1 and
the hybrid ViT models lies in the use of BoT blocks as opposed to regular Transformer blocks (other
differences being normalization layer, optimizer, etc as mentioned in the contrast to Transformer in
Related Work (Sec. 5.2). The architectural distinction amongst ResNet, BoTNet and BoTNet-S1,
in the final blockgroup, is visually explained in the Appendix). The strided BoT block is visually
explained in the Appendix.

Evaluation in the standard training setting

We first evaluate this design for the 100 epoch setting along with R50 and BoT50. We see that
BoT-S1-50 improves on top of R50 by 0.9% in the regular setting (Table 5.9). This improvement
does however come at the cost of more computation (m.adds). Nevertheless, the improvement is a

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 79

promising signal for us to design models that scale well with larger images and improved training
conditions that have become more commonly used since EfficientNets [175].

Backbone M.Adds Params top-1 acc.

R50 3.86G 25.5M 76.8

BoT50 3.79G 20.8M 77.0 (+0.2)

BoT-S1-50 4.27G 20.8M 77.7 (+ 0.9)

Table 5.9: ImageNet results in regular training setting: 100 epochs, batch size 1024, weight decay
1e-4, standard ResNet augmentation, for all three models.

Effect of data augmentation and longer training

We saw from our instance segmentation experiments that BoTNet and self-attention benefit more
from regularization such as data augmentation (in the case of segmentation, increased multi-scale
jitter) and longer training. It is natural to expect that the gains from BoT and BoT-S1 could
improve when training under an improved setting: 200 epochs, batch size 4096, weight decay 8e-5,
RandAugment (2 layers, magnitude 10), and label smoothing of 0.1. In line with our intuition, the
gains are much more significant in this setting for both BoT50 (+ 0.6%) and BoT-S1-50 (+ 1.4%)
compared to the baseline R50 (Table 5.10).

Backbone top-1 acc. top-5 acc.

R50 77.7 93.9

BoT50 78.3 (+ 0.6) 94.2 (+ 0.3)

BoT-S1-50 79.1 (+ 1.4) 94.4 (+ 0.5)

Table 5.10: ImageNet results in an improved training setting: 200 epochs, batch size 4096, weight
decay 8e-5, RandAugment (2 layers, magnitude 10), and label smoothing of 0.1

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 80

Scaling BoTNets

0 200 400 600 800 1000 1200 1400
TPU-v3 Compute Steptime for Batch Size 32 (milliseconds)

81.0

81.5

82.0

82.5

83.0

83.5

84.0

84.5

85.0

To
p-

1
A

cc
ur

ac
y

(%
)

T3

T4

T5

T6

T7

B3

B4

B5

B6

B7

B7-RA

S5

S3

S2

S4

ViT Regularized (DeiT-384)

T7-320

BoTNets (T)
EfficientNets (B)
SENets (S)

Figure 5.5: All backbones along with ViT and DeiT summarized in the form of scatter-plot and
Pareto curves. SENets and BoTNets were trained while the accuracy of other models have been
reported from corresponding papers.

The previous ablations show the BoNets performance with a ResNet-50 backbone and 224× 224
image resolution. Here we study BoTNets when scaling up the model capacity and image resolution.
There have been several works improving the performance of ConvNets on ImageNet [206, 175,
15]. Bello et al [15] recently propose scaling strategies that mainly increase model depths and
increase the image resolutions much slower compared to the compound scaling rule proposed in
EfficientNets [175]. We use similar scaling rules and design a family of BoTNets. The details of
model depth and image resolutions are in the Appendix. We compare to the SENets baseline to
understand the impact of the BoT blocks. The BoTNets and SENets experiments are performed
under the same training settings (regularization and data augmentation). We additionally show
EfficientNet and DeiT [183] (regularized version of ViT [43])10 to understand the performance of
BoTNets compared with popular ConvNets and Transformer models. EfficientNets and DeiT are
trained under strong data augmentation, model regularization, and long training schedules, similar
to the training settings of BoTNets in the experiments.

10ViT refers to Vision Transformer [43], while DeiT refers to Data-Efficient Image Transformer [183]. DeiT can
be viewed as a regularized version of ViT with augmentations, better training hyperparameters tuned for ImageNet,
and knowledge distillation [84]. We do not compare to the distilled version of DeiT since it’s an orthogonal axis of
improvement applicable to all models.

CHAPTER 5. BOTTLENECK TRANSFORMERS FOR VISUAL RECOGNITION 81

ResNets and SENets are strong baselines until 83% top-1 accuracy. ResNets and SENets
achieve strong performance in the improved EfficientNet training setting. BoTNets T3 and T4 do not
outperform SENets, while T5 does perform on par with S4. This suggests that pure convolutional
models such as ResNets and SENets are still the best performing models until an accuracy regime
of 83%. BoTNets scale better beyond 83% top-1 accuracy. While SENets are a powerful model
class outperforms BoTNets (up to T4), we found gains to diminish beyond SE-350 (350 layer SENet
described in Appendix) trained with image size 384. This model is referred to as S5 and achieves
83.8% top-1 accuracy. On the other hand, BoTNets scale well to larger image sizes (corroborating
with our results in instance segmentation when the gains from self-attention were much more visible
for larger images). In particular, T7 achieves 84.7% top-1 acc., matching the accuracy of B7-RA,
with a 1.64x speedup in efficiency. BoTNets perform better than ViT-regularized (DeiT-384),
showing the power of hybrid models that make use of both convolutions and self-attention compared
to pure attention models on ImageNet-1K.

5.5 Conclusion
The design of vision backbone architectures that use self-attention is an exciting topic. We hope that
our work helps in improving the understanding of architecture design in this space. Incorporating
self-attention for other computer vision tasks such as keypoint detection [22] and 3D shape predic-
tion [61]; studying self-attention architectures for self-supervised learning in computer vision [79,
76, 180, 27, 64, 28]; and scaling to much larger datasets such as JFT, YFCC and Instagram, are ripe
avenues for future research. Comparing to, and incorporating alternatives to self-attention such as
lambda-layers [13] is an important future direction as well.

5.6 Acknowledgements
I thank Ilija Radosavovic for several useful discussions; Pengchong Jin and Xianzhi Du for help with
the TF Detection codebase; Zak Stone for extensive compute support throughout this project the
through TFRC program providing Google Cloud TPUs (https://www.tensorflow.org/
tfrc).

https://www.tensorflow.org/tfrc
https://www.tensorflow.org/tfrc

82

Chapter 6

Conclusion

This thesis aimed to present few promising directions to improve the representation learning
pipelines for perception and control. The thesis identified two axes to do so: learning objectives and
deep learning architectures. The thesis took inspiration from Yann LeCun’s LeCake and progress in
NLP such as GPT and BERT for learning objectives. It explored contrastive representation learning
for image recognition and reinforcement learning. The presented results significantly furthered and
simplified the previous state-of-the-art and improved the label-efficiency and sample-efficiency of
computer vision and reinforcement learning models on standardized benchmarks such as ImageNet,
DMControl, Atari. The thesis also identifies the role of data augmentations in contrastive learning.
It presents a detailed investigation of its role and importance in reinforcement learning and empirical
tradeoffs and suitability compared to contrastive learning. As for deep learning architectures, the
thesis tries to unify the architecture design of NLP and computer vision models through a simple
hybrid fusion of ResNets and Transformers, presenting (then) state-of-the-art results on standardized
benchmarks including ImageNet and COCO.

These are small steps towards the grand goal of having one unified architecture and learning
objective across several modalities and realizing general reusable rich representations of raw data
that serve as an engine for powering progress in modern AI research and deployment. The hope is
that contrastive learning and self-attention are essential ingredients to the puzzle. The methods and
ablations presented in this thesis are helpful for future research in this space.

For future research directions, I believe one should question absolutely everything we usually
take for granted in deep learning to make the most significant contributions. For example, plenty
of people told me data augmentations do not work in reinforcement learning, that their role in
computer vision is not as substantial, or that it is boring to keep engineering the augmentation
pipeline when working on contrastive learning. Similarly, when working on contrastive learning,
many felt self-supervised learning is doomed and never likely to work as well as supervised learning.
The same goes for incorporating self-attention in vision; people initially dismissed it as likely too
slow for the same performance compared to convolutions. Some elements of these beliefs have valid
grounding: augmentation engineering is not principled, supervised learning and pure convolutional
architectures still remain a hard baseline to beat. Nevertheless, we would not have made so much
progress if we only had a tunnel vision of what works right now and not think about what is likely

CHAPTER 6. CONCLUSION 83

to work better in the future.
Here are a few key lessons learned while working on the articles presented in this thesis: (1)

Simple baselines, when implemented carefully, are very likely to work a lot better than a fancy
proposed approach one may have in mind, so it is best to always start with the simplest baseline you
could think of, and throw it on the problem, and make sure all the details are right; (2) Paying as
much attention to data loaders as you would for the model or the loss function - this is precisely why
data augmentations are underrated - they are a big reason why we can train models that generalize
well at test-time, yet, not so elegant or fancy to work on in a research project; (3) Working on
methods that can scale well with more data - either computationally as architecture or as a loss
function that can scale with more (unlabeled) data; (4) Investigating the scaling laws of your
proposed model or loss function, across data and compute (FLOPs and model parameters).

Specifically, self-supervised learning began to shine once people started training much larger
models (300M parameters or more) before figuring out a recipe that works well for modestly sized
models. Further, self-supervised learning circa 2016 concluded failure by working on backbone
architectures such as AlexNet or VGG and not exploring the modern state-of-the-art variants such
as deep and wide ResNets. Finally, scaling with more data has enabled several recent advances such
as CLIP. Therefore, it is crucial to investigate the scaling laws across data and compute frontiers to
conclude the success or failure of any proposed idea.

Another specific learning from this thesis and more prominent work in the community is that
few-shot learning (or semi-supervised learning) emerges for free from a well-trained (and scaled)
self-supervised model. There was plenty of research in 2016-18 on meta-learning and few-shot
learning, assuming that deep neural networks are incapable of being data-efficient and, therefore,
one must explicitly train them to be data-efficient (meta-learning). However, it has now been shown
all across computer vision, NLP, and RL that all you need is a very good initialization that can be
achieved through a large-scale pre-training with a simple self-supervision objective (GPT-x, BERT,
T5, CPCv2, SimCLR, DINO, CURL, APT, SPR, etc.).

While it may seem like we have made a lot of progress already, several questions remain
unanswered. Contrastive learning still has its flaws in ignoring several useful properties in a scene
if the augmentations make you invariant to their presence. How to precisely capture all the bits
one may care about without knowing the downstream tasks in advance is a big challenge and
makes unsupervised learning so exciting yet challenging. Choosing the suitable negative samples in
contrastive learning is again a challenge, especially in settings like RL, where negatives across time
may look too visually similar to the anchor or the positive. Investing in Siamese-style methods that
can work without negatives [64] and making them general enough to work for multiple modalities
and problems is a worthy direction. Here are a few questions I believe are worth considering as
future research topics: (1) How can we leverage contrastive (or Siamese-like) representations for RL
and robotics; (2) How can we leverage generative (or partially generative) representations for vision;
(3) How can we build powerful world models for RL; (4) How could we a build a single unified
multi-scale architecture that works for any modality; (5) How could we build a general-purpose AI
layer that we could plug into as an API for almost any task we perform. All these are questions that
currently puzzle even the best scientists, and progress in any of them is likely to be significant for
realizing general-purpose intelligent machines and robots.

84

Bibliography

[1] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. “Learning to see by moving”. In: ICCV.
2015.

[2] Ilge Akkaya et al. “Solving Rubik’s Cube with a Robot Hand”. In: arXiv preprint arXiv:1910.07113
(2019).

[3] Ankesh Anand et al. “Unsupervised state representation learning in atari”. In: Advances in
Neural Information Processing Systems. 2019, pp. 8766–8779.

[4] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: Advances in Neural Infor-
mation Processing Systems. 2017.

[5] Relja Arandjelovic and Andrew Zisserman. “Look, listen and learn”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 609–617.

[6] Relja Arandjelovic and Andrew Zisserman. “Objects that sound”. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, pp. 435–451.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normalization”. In: arXiv
preprint arXiv:1607.06450 (2016).

[8] Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. “Layer Normalization”. In: CoRR
abs/1607.06450 (2016).

[9] Philip Bachman, R Devon Hjelm, and William Buchwalter. “Learning representations by
maximizing mutual information across views”. In: arXiv preprint arXiv:1906.00910 (2019).

[10] H.B. Barlow. “Unsupervised Learning”. In: Neural Computation 1.3 (1989), pp. 295–311.
DOI: 10.1162/neco.1989.1.3.295.

[11] Marc G Bellemare, Will Dabney, and Rémi Munos. “A distributional perspective on re-
inforcement learning”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 449–458.

[12] Marc G Bellemare et al. “The arcade learning environment: An evaluation platform for
general agents”. In: Journal of Artificial Intelligence Research 47 (2013), pp. 253–279.

[13] Irwan Bello. “LambdaNetworks: Modeling long-range Interactions without Attention”. In:
International Conference on Learning Representations. 2021. URL: https://openreview.
net/forum?id=xTJEN-ggl1b.

https://doi.org/10.1162/neco.1989.1.3.295
https://openreview.net/forum?id=xTJEN-ggl1b
https://openreview.net/forum?id=xTJEN-ggl1b

BIBLIOGRAPHY 85

[14] Irwan Bello et al. “Attention augmented convolutional networks”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2019, pp. 3286–3295.

[15] Irwan Bello et al. Revisiting ResNets: Improved Training and Scaling Strategies. 2021.
arXiv: 2103.07579 [cs.CV].

[16] David Berthelot et al. “MixMatch: A Holistic Approach to Semi-Supervised Learning”. In:
Advances in Neural Information Processing Systems. 2019.

[17] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[18] Tom B Brown et al. “Language models are few-shot learners”. In: arXiv preprint arXiv:2005.14165
(2020).

[19] Antoni Buades, Bartomeu Coll, and J-M Morel. “A non-local algorithm for image de-
noising”. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 2. IEEE. 2005, pp. 60–65.

[20] Zhaowei Cai and Nuno Vasconcelos. “Cascade r-cnn: Delving into high quality object detec-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 6154–6162.

[21] Yue Cao et al. “Gcnet: Non-local networks meet squeeze-excitation networks and beyond”.
In: Proceedings of the IEEE International Conference on Computer Vision Workshops. 2019,
pp. 0–0.

[22] Zhe Cao et al. “Realtime multi-person 2d pose estimation using part affinity fields”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 7291–7299.

[23] Nicolas Carion et al. “End-to-End Object Detection with Transformers”. In: arXiv preprint
arXiv:2005.12872 (2020).

[24] Mathilde Caron et al. “Deep Clustering for Unsupervised Learning of Visual Features”. In:
The European Conference on Computer Vision (ECCV). Sept. 2018.

[25] Mathilde Caron et al. “Leveraging Large-Scale Uncurated Data for Unsupervised Pre-
training of Visual Features”. In: 2019.

[26] Ting Chen et al. A Simple Framework for Contrastive Learning of Visual Representations.
2020. eprint: arXiv:2002.05709.

[27] Ting Chen et al. “A simple framework for contrastive learning of visual representations”.
In: arXiv preprint arXiv:2002.05709 (2020).

[28] Xinlei Chen and Kaiming He. “Exploring Simple Siamese Representation Learning”. In:
arXiv preprint arXiv:2011.10566 (2020).

[29] Sumit Chopra, Raia Hadsell, and Yann LeCun. “Learning a similarity metric discrimina-
tively, with application to face verification”. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, CVPR 2005. 2005, pp. 539–546.

https://arxiv.org/abs/2103.07579
arXiv:2002.05709

BIBLIOGRAPHY 86

[30] Kurtland Chua et al. “Deep reinforcement learning in a handful of trials using probabilistic
dynamics models”. In: Advances in Neural Information Processing Systems. 2018.

[31] Karl Cobbe et al. “Leveraging Procedural Generation to Benchmark Reinforcement Learn-
ing”. In: International conference on machine learning. 2020.

[32] Karl Cobbe et al. “Quantifying Generalization in Reinforcement Learning”. In: International
Conference on Machine Learning. 2019.

[33] Ekin D Cubuk et al. “Autoaugment: Learning augmentation policies from data”. In: arXiv
preprint arXiv:1805.09501 (2018).

[34] Ekin D. Cubuk et al. RandAugment: Practical automated data augmentation with a reduced
search space. 2019. eprint: arXiv:1909.13719.

[35] Jifeng Dai, Kaiming He, and Jian Sun. “Instance-aware semantic segmentation via multi-
task network cascades”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 3150–3158.

[36] Jeffrey De Fauw et al. “Clinically applicable deep learning for diagnosis and referral in
retinal disease”. In: Nature medicine 24.9 (2018), p. 1342.

[37] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: Conference on
Computer Vision and Pattern Recognition. 2009.

[38] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: CoRR abs/1810.04805 (2018).

[39] Carl Doersch, Abhinav Gupta, and Alexei A Efros. “Unsupervised visual representation
learning by context prediction”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2015, pp. 1422–1430.

[40] Carl Doersch and Andrew Zisserman. “Multi-task self-supervised visual learning”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2017, pp. 2051–
2060.

[41] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Adversarial feature learning”. In:
arXiv preprint arXiv:1605.09782 (2016).

[42] Jeff Donahue and Karen Simonyan. “Large Scale Adversarial Representation Learning”. In:
arXiv preprint arXiv:1907.02544 (2019).

[43] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recog-
nition at Scale. 2020. arXiv: 2010.11929 [cs.CV].

[44] Alexey Dosovitskiy et al. “Discriminative unsupervised feature learning with convolutional
neural networks”. In: Advances in neural information processing systems. 2014, pp. 766–
774.

[45] Xianzhi Du et al. “SpineNet: Learning Scale-Permuted Backbone for Recognition and
Localization”. In: arXiv preprint arXiv:1912.05027 (2019).

arXiv:1909.13719
https://arxiv.org/abs/2010.11929

BIBLIOGRAPHY 87

[46] Yan Duan et al. “RL2: Fast Reinforcement Learning via Slow Reinforcement Learning”. In:
arXiv:1611.02779 (2016).

[47] Debidatta Dwibedi et al. “Learning actionable representations from visual observations”. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2018, pp. 1577–1584.

[48] Lasse Espeholt et al. “Impala: Scalable distributed deep-rl with importance weighted actor-
learner architectures”. In: arXiv preprint arXiv:1802.01561 (2018).

[49] Mark Everingham et al. “The pascal visual object classes (voc) challenge”. In: International
journal of computer vision 88.2 (2010), pp. 303–338.

[50] Mark Everingham et al. “The PASCAL visual object classes challenge 2007 (VOC2007)
results”. In: (2007).

[51] Meire Fortunato et al. “Noisy networks for exploration”. In: arXiv preprint arXiv:1706.10295
(2017).

[52] Scott Fujimoto, Herke Van Hoof, and David Meger. “Addressing function approximation
error in actor-critic methods”. In: International Conference on Machine Learning. 2018.

[53] Zoubin Ghahramani, Daniel M Wolpert, and Michael I Jordan. “Generalization to local
remappings of the visuomotor coordinate transformation”. In: Journal of Neuroscience
16.21 (1996), pp. 7085–7096.

[54] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. “Nas-fpn: Learning scalable feature pyramid
architecture for object detection”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 7036–7045.

[55] Golnaz Ghiasi et al. Simple Copy-Paste is a Strong Data Augmentation Method for Instance
Segmentation. 2020. arXiv: 2012.07177 [cs.CV].

[56] Partha Ghosh et al. From Variational to Deterministic Autoencoders. 2019. eprint: arXiv:
1903.12436.

[57] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised representation learn-
ing by predicting image rotations”. In: arXiv preprint arXiv:1803.07728 (2018).

[58] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1440–1448.

[59] Ross Girshick et al. Detectron. 2018.

[60] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and semantic
segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2014, pp. 580–587.

[61] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. “Mesh r-cnn”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2019, pp. 9785–9795.

[62] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

https://arxiv.org/abs/2012.07177
arXiv:1903.12436
arXiv:1903.12436

BIBLIOGRAPHY 88

[63] Yves Grandvalet and Yoshua Bengio. “Semi-supervised learning by entropy minimization”.
In: Advances in neural information processing systems. 2005, pp. 529–536.

[64] Jean-Bastien Grill et al. “Bootstrap your own latent: A new approach to self-supervised
learning”. In: arXiv preprint arXiv:2006.07733 (2020).

[65] Michael Gutmann and Aapo Hyvärinen. “Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models”. In: Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics. 2010, pp. 297–304.

[66] David Ha and Jürgen Schmidhuber. “World models”. In: arXiv preprint arXiv:1803.10122
(2018).

[67] Tuomas Haarnoja et al. “Soft actor-critic algorithms and applications”. In: arXiv preprint
arXiv:1812.05905 (2018).

[68] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality reduction by learning an
invariant mapping”. In: 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06). Vol. 2. IEEE. 2006, pp. 1735–1742.

[69] Danijar Hafner et al. “Dream to Control: Learning Behaviors by Latent Imagination”. In:
arXiv preprint arXiv:1912.01603 (2019).

[70] Danijar Hafner et al. “Learning latent dynamics for planning from pixels”. In: arXiv preprint
arXiv:1811.04551 (2018).

[71] Bharath Hariharan et al. “Simultaneous detection and segmentation”. In: European Confer-
ence on Computer Vision. Springer. 2014, pp. 297–312.

[72] Hado P van Hasselt, Matteo Hessel, and John Aslanides. “When to use parametric models
in reinforcement learning?” In: Advances in Neural Information Processing Systems. 2019,
pp. 14322–14333.

[73] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[74] Kaiming He et al. “Identity mappings in deep residual networks”. In: European conference
on computer vision. Springer. 2016, pp. 630–645.

[75] Kaiming He et al. “Mask r-cnn”. In: ICCV. 2017.

[76] Kaiming He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”.
In: arXiv preprint arXiv:1911.05722 (2019).

[77] Kaiming He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”.
In: (2019). eprint: arXiv:1911.05722.

[78] Olivier J Hénaff, Robbe LT Goris, and Eero P Simoncelli. “Perceptual straightening of
natural videos”. In: Nature neuroscience 22.6 (2019), pp. 984–991.

[79] Olivier J Hénaff et al. “Data-efficient image recognition with contrastive predictive coding”.
In: arXiv preprint arXiv:1905.09272 (2019).

arXiv:1911.05722

BIBLIOGRAPHY 89

[80] Peter Henderson et al. “Deep reinforcement learning that matters”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

[81] Matteo Hessel et al. Rainbow: Combining Improvements in Deep Reinforcement Learning.
2017. eprint: arXiv:1710.02298.

[82] Irina Higgins et al. “Darla: Improving zero-shot transfer in reinforcement learning”. In:
Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR.
org. 2017, pp. 1480–1490.

[83] G.E. Hinton et al. Unsupervised Learning: Foundations of Neural Computation. A Bradford
Book. MIT Press, 1999. ISBN: 9780262581684.

[84] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531 (2015).

[85] R Devon Hjelm et al. “Learning deep representations by mutual information estimation and
maximization”. In: arXiv preprint arXiv:1808.06670 (2018).

[86] Jonathan Ho et al. “Axial Attention in Multidimensional Transformers”. In: arXiv preprint
arXiv:1912.12180 (2019).

[87] Han Hu et al. “Local relation networks for image recognition”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2019, pp. 3464–3473.

[88] Han Hu et al. “Relation networks for object detection”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 3588–3597.

[89] Zilong Huang et al. “Ccnet: Criss-cross attention for semantic segmentation”. In: Proceed-
ings of the IEEE International Conference on Computer Vision. 2019, pp. 603–612.

[90] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167 (2015).

[91] Max Jaderberg et al. “Human-level performance in 3D multiplayer games with population-
based reinforcement learning”. In: Science 364.6443 (2019), pp. 859–865.

[92] Max Jaderberg et al. “Reinforcement learning with unsupervised auxiliary tasks”. In: arXiv
preprint arXiv:1611.05397 (2016).

[93] Dinesh Jayaraman and Kristen Grauman. “Learning image representations tied to ego-
motion”. In: ICCV. 2015.

[94] Longlong Jing and Yingli Tian. “Self-supervised Spatiotemporal Feature Learning by Video
Geometric Transformations”. In: arXiv preprint arXiv:1811.11387 (2018).

[95] Lukasz Kaiser et al. “Model-based reinforcement learning for atari”. In: arXiv preprint
arXiv:1903.00374 (2019).

[96] Dmitry Kalashnikov et al. “Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation”. In: arXiv preprint arXiv:1806.10293 (2018).

[97] Nal Kalchbrenner et al. “Neural machine translation in linear time”. In: arXiv preprint
arXiv:1610.10099 (2016).

arXiv:1710.02298

BIBLIOGRAPHY 90

[98] Kacper Kielak. Do recent advancements in model-based deep reinforcement learning really
improve data efficiency? 2020. eprint: arXiv:2003.10181.

[99] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[100] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[101] Durk P Kingma et al. “Semi-supervised learning with deep generative models”. In: Advances
in neural information processing systems. 2014, pp. 3581–3589.

[102] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. “Revisiting Self-Supervised Visual
Representation Learning”. In: CoRR abs/1901.09005 (2019). arXiv: 1901.09005. URL:
http://arxiv.org/abs/1901.09005.

[103] Ilya Kostrikov, Denis Yarats, and Rob Fergus. “Image augmentation is all you need: Reg-
ularizing deep reinforcement learning from pixels”. In: arXiv preprint arXiv:2004.13649
(2020).

[104] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing
Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–1105.

[105] Thanard Kurutach et al. “Model-ensemble trust-region policy optimization”. In: Interna-
tional Conference on Learning Representations. 2018.

[106] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. “Human-level concept
learning through probabilistic program induction”. In: Science 350.6266 (2015), pp. 1332–
1338.

[107] Brenden M Lake et al. “Building machines that learn and think like people”. In: Behavioral
and brain sciences 40 (2017).

[108] Barbara Landau, Linda B Smith, and Susan S Jones. “The importance of shape in early
lexical learning”. In: Cognitive development 3.3 (1988), pp. 299–321.

[109] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. “Colorization as a proxy task
for visual understanding”. In: CVPR. 2017, pp. 6874–6883.

[110] Michael Laskin et al. “Reinforcement Learning with Augmented Data”. In: arXiv preprint
arXiv:2004.14990 (2020).

[111] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553
(2015), pp. 436–444.

[112] Yann LeCun et al. “A tutorial on energy-based learning”. In: (2006).

[113] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceed-
ings of the IEEE 86.11 (1998), pp. 2278–2324.

[114] Alex X Lee et al. “Stochastic latent actor-critic: Deep reinforcement learning with a latent
variable model”. In: arXiv preprint arXiv:1907.00953 (2019).

arXiv:2003.10181
https://arxiv.org/abs/1901.09005
http://arxiv.org/abs/1901.09005

BIBLIOGRAPHY 91

[115] Dong-Hyun Lee. “Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks”. In: Workshop on Challenges in Representation Learning, ICML.
Vol. 3. 2013, p. 2.

[116] Jungkyu Lee et al. “Compounding the performance improvements of assembled techniques
in a convolutional neural network”. In: arXiv preprint arXiv:2001.06268 (2020).

[117] Yin Li et al. “Unsupervised learning of edges”. In: CVPR. 2016.

[118] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv
preprint arXiv:1509.02971 (2015).

[119] Sungbin Lim et al. “Fast autoaugment”. In: arXiv preprint arXiv:1905.00397 (2019).

[120] Tsung-Yi Lin et al. “Feature pyramid networks for object detection”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 2117–2125.

[121] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European conference
on computer vision. Springer. 2014, pp. 740–755.

[122] Shu Liu et al. “Path aggregation network for instance segmentation”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 8759–8768.

[123] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining approach”. In: arXiv
preprint arXiv:1907.11692 (2019).

[124] Yudong Liu et al. “Cbnet: A novel composite backbone network architecture for object
detection”. In: arXiv preprint arXiv:1909.03625 (2019).

[125] Jiasen Lu et al. “Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-
and-language tasks”. In: Advances in Neural Information Processing Systems. 2019, pp. 13–
23.

[126] Ellen M Markman. Categorization and naming in children: Problems of induction. mit
Press, 1989.

[127] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their Com-
positionality”. In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C.
Burges et al. Curran Associates, Inc., 2013, pp. 3111–3119.

[128] Piotr Mirowski et al. “Learning to navigate in complex environments”. In: arXiv preprint
arXiv:1611.03673 (2016).

[129] Ishan Misra and Laurens van der Maaten. “Self-Supervised Learning of Pretext-Invariant
Representations”. In: arXiv preprint arXiv:1912.01991 (2019).

[130] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. “Shuffle and learn: unsupervised
learning using temporal order verification”. In: ECCV. 2016.

[131] Takeru Miyato et al. “Virtual adversarial training: a regularization method for supervised
and semi-supervised learning”. In: IEEE transactions on pattern analysis and machine
intelligence (2018).

BIBLIOGRAPHY 92

[132] Andriy Mnih and Koray Kavukcuoglu. “Learning word embeddings efficiently with noise-
contrastive estimation”. In: Advances in neural information processing systems. 2013,
pp. 2265–2273.

[133] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
Nature 518.7540 (2015), pp. 529–533.

[134] Mehdi Noroozi and Paolo Favaro. “Unsupervised learning of visual representations by
solving jigsaw puzzles”. In: European Conference on Computer Vision. Springer. 2016,
pp. 69–84.

[135] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with contrastive
predictive coding”. In: arXiv preprint arXiv:1807.03748 (2018).

[136] Stephanie E Palmer et al. “Predictive information in a sensory population”. In: Proceedings
of the National Academy of Sciences 112.22 (2015), pp. 6908–6913.

[137] Deepak Pathak et al. “Learning Features by Watching Objects Move”. In: arXiv preprint
arXiv:1612.06370 (2016).

[138] Chao Peng et al. “Megdet: A large mini-batch object detector”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 6181–6189.

[139] Lerrel Pinto, James Davidson, and Abhinav Gupta. “Supervision via competition: Robot
adversaries for learning tasks”. In: arXiv preprint arXiv:1610.01685 (2016).

[140] Lerrel Pinto and Abhinav Gupta. “Supersizing self-supervision: Learning to grasp from 50k
tries and 700 robot hours”. In: ICRA. 2016.

[141] Lerrel Pinto et al. “Asymmetric actor critic for image-based robot learning”. In: arXiv
preprint arXiv:1710.06542 (2017).

[142] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI
Blog 1.8 (2019), p. 9.

[143] Ilija Radosavovic et al. “Designing network design spaces”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 10428–10436.

[144] Ilija Radosavovic et al. “On network design spaces for visual recognition”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2019, pp. 1882–1890.

[145] Prajit Ramachandran et al. “Stand-alone self-attention in vision models”. In: arXiv preprint
arXiv:1906.05909 (2019).

[146] Rajesh PN Rao and Dana H Ballard. “Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects”. In: Nature neuroscience 2.1
(1999), p. 79.

[147] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with region proposal
networks”. In: Advances in neural information processing systems. 2015, pp. 91–99.

BIBLIOGRAPHY 93

[148] Stefan Richthofer and Laurenz Wiskott. “Predictable feature analysis”. In: Proceedings -
2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA
2015. 2016. ISBN: 9781509002870. DOI: 10.1109/ICMLA.2015.158. arXiv: 1311.
2503.

[149] Tal Ridnik et al. “Tresnet: High performance gpu-dedicated architecture”. In: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021, pp. 1400–
1409.

[150] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: Interna-
tional journal of computer vision 115.3 (2015), pp. 211–252.

[151] Fereshteh Sadeghi and Sergey Levine. “Cad2rl: Real single-image flight without a single
real image”. In: arXiv preprint arXiv:1611.04201 (2016).

[152] Tom Schaul et al. “Prioritized experience replay”. In: arXiv preprint arXiv:1511.05952
(2015).

[153] Juergen Schmidhuber. “Making the world differentiable: On using fully recurrent self-
supervised neural networks for dynamic reinforcement learning and planning in non-
stationary environments.” In: Technical Report FKI-126-90, TUM (1990).

[154] Julian Schrittwieser et al. “Mastering atari, go, chess and shogi by planning with a learned
model”. In: arXiv preprint arXiv:1911.08265 (2019).

[155] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified embedding
for face recognition and clustering”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 815–823.

[156] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

[157] John Schulman et al. “Trust Region Policy Optimization.” In: ICML. 2015, pp. 1889–1897.

[158] Pierre Sermanet et al. “Time-contrastive networks: Self-supervised learning from video”.
In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 1134–1141.

[159] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. “Self-attention with relative position
representations”. In: arXiv preprint arXiv:1803.02155 (2018).

[160] Evan Shelhamer et al. “Loss is its own reward: Self-supervision for reinforcement learning”.
In: arXiv preprint arXiv:1612.07307 (2016).

[161] David Silver et al. “Mastering the game of go without human knowledge”. In: Nature
550.7676 (2017), pp. 354–359.

[162] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[163] Kihyuk Sohn et al. “FixMatch: Simplifying Semi-Supervised Learning with Consistency
and Confidence”. In: arXiv:2001.07685 (2020).

https://doi.org/10.1109/ICMLA.2015.158
https://arxiv.org/abs/1311.2503
https://arxiv.org/abs/1311.2503

BIBLIOGRAPHY 94

[164] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. “CURL: Contrastive Unsupervised
Representations for Reinforcement Learning”. In: International Conference on Machine
Learning. 2020.

[165] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. “Curl: Contrastive unsupervised
representations for reinforcement learning”. In: arXiv preprint arXiv:2004.04136 (2020).

[166] Aravind Srinivas et al. “Universal planning networks”. In: arXiv preprint arXiv:1804.00645
(2018).

[167] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfitting”.
In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[168] Chen Sun et al. “Videobert: A joint model for video and language representation learning”.
In: Proceedings of the IEEE International Conference on Computer Vision. 2019, pp. 7464–
7473.

[169] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with neural
networks”. In: Advances in neural information processing systems. 2014, pp. 3104–3112.

[170] Richard S Sutton. “Dyna, an integrated architecture for learning, planning, and reacting”.
In: ACM Sigart Bulletin 2.4 (1991), pp. 160–163.

[171] Richard S Sutton. “Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming”. In: Machine learning proceedings 1990. Elsevier,
1990, pp. 216–224.

[172] Richard S Sutton et al. Introduction to reinforcement learning. Vol. 135. 1998.

[173] Christian Szegedy et al. “Going Deeper with Convolutions”. In: CoRR abs/1409.4842
(2014). URL: http://arxiv.org/abs/1409.4842.

[174] Christian Szegedy et al. “Going Deeper with Convolutions”. In: Computer Vision and
Pattern Recognition (CVPR). 2015. URL: http://arxiv.org/abs/1409.4842.

[175] Mingxing Tan and Quoc V Le. “Efficientnet: Rethinking model scaling for convolutional
neural networks”. In: arXiv preprint arXiv:1905.11946 (2019).

[176] Mingxing Tan, Ruoming Pang, and Quoc V Le. “Efficientdet: Scalable and efficient object
detection”. In: arXiv preprint arXiv:1911.09070 (2019).

[177] Yuval Tassa et al. “Deepmind control suite”. In: arXiv preprint arXiv:1801.00690 (2018).

[178] Yi Tay et al. “Efficient transformers: A survey”. In: arXiv preprint arXiv:2009.06732 (2020).

[179] Bart Thomee et al. “YFCC100M: The new data in multimedia research”. In: arXiv preprint
arXiv:1503.01817 (2015).

[180] Yonglong Tian, Dilip Krishnan, and Phillip Isola. “Contrastive Multiview Coding”. In: arXiv
preprint arXiv:1906.05849 (2019).

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

BIBLIOGRAPHY 95

[181] Naftali Tishby, Fernando C Pereira, and William Bialek. “The information bottleneck
method”. In: Proceedings of the 37th Annual Allerton Conference on Communication, Con-
trol and Computing (University of Illinois, Urbana, IL), Vol 37, pp 368–377. (1999), pp. 1–
16. DOI: 10.1142/S0217751X10050494. arXiv: 0004057v1 [arXiv:physics].

[182] Josh Tobin et al. “Domain Randomization for Transferring Deep Neural Networks from
Simulation to the Real World”. In: arXiv preprint arXiv:1703.06907 (2017).

[183] Hugo Touvron et al. Training data-efficient image transformers and distillation through
attention. 2021. arXiv: 2012.12877 [cs.CV].

[184] Michael Tschannen et al. “On mutual information maximization for representation learning”.
In: arXiv preprint arXiv:1907.13625 (2019).

[185] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
double q-learning”. In: Thirtieth AAAI conference on artificial intelligence. 2016.

[186] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems. 2017, pp. 5998–6008.

[187] Pascal Vincent et al. “Extracting and composing robust features with denoising autoen-
coders”. In: Proceedings of the 25th international conference on Machine learning. 2008,
pp. 1096–1103.

[188] Huiyu Wang et al. “Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmenta-
tion”. In: arXiv preprint arXiv:2003.07853 (2020).

[189] Tingwu Wang and Jimmy Ba. “Exploring model-based planning with policy networks”. In:
International Conference on Learning Representations. 2020.

[190] Xiaolong Wang and Abhinav Gupta. “Unsupervised learning of visual representations using
videos”. In: ICCV. 2015.

[191] Xiaolong Wang et al. “Non-local neural networks”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 7794–7803.

[192] Ziyu Wang et al. “Dueling network architectures for deep reinforcement learning”. In: arXiv
preprint arXiv:1511.06581 (2015).

[193] David Warde-Farley et al. “Unsupervised control through non-parametric discriminative
rewards”. In: arXiv preprint arXiv:1811.11359 (2018).

[194] Laurenz Wiskott and Terrence J Sejnowski. “Slow feature analysis: Unsupervised learning
of invariances”. In: Neural computation 14.4 (2002), pp. 715–770.

[195] Yuxin Wu and Kaiming He. “Group normalization”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 3–19.

[196] Zhirong Wu et al. “Unsupervised feature learning via non-parametric instance discrimina-
tion”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 3733–3742.

https://doi.org/10.1142/S0217751X10050494
https://arxiv.org/abs/0004057v1
https://arxiv.org/abs/2012.12877

BIBLIOGRAPHY 96

[197] Cihang Xie et al. “Feature denoising for improving adversarial robustness”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 501–509.

[198] Qizhe Xie et al. “Self-training with Noisy Student improves ImageNet classification”. In:
Conference on Computer Vision and Pattern Recognition. 2020.

[199] Qizhe Xie et al. “Unsupervised Data Augmentation”. In: arXiv e-prints, arXiv:1904.12848
(Apr. 2019), arXiv:1904.12848. arXiv: 1904.12848.

[200] Qizhe Xie et al. “Unsupervised Data Augmentation for Consistency Training”. In: arXiv:1904.12848
(2019).

[201] Saining Xie et al. “Aggregated residual transformations for deep neural networks”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 1492–1500.

[202] Denis Yarats et al. “Improving Sample Efficiency in Model-Free Reinforcement Learning
from Images”. In: arXiv preprint arXiv:1910.01741 (2019).

[203] Sergey Zagoruyko and Nikos Komodakis. “Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer”. In: International
Conference on Learning Representations. 2017.

[204] Amir R Zamir et al. “Generic 3d representation via pose estimation and matching”. In:
European Conference on Computer Vision. Springer. 2016, pp. 535–553.

[205] Xiaohua Zhai et al. “S4L: Self-Supervised Semi-Supervised Learning”. In: arXiv preprint
arXiv:1905.03670 (2019).

[206] Hang Zhang et al. ResNeSt: Split-Attention Networks. 2020. arXiv: 2004.08955 [cs.CV].

[207] Richard Zhang, Phillip Isola, and Alexei A Efros. “Colorful image colorization”. In: Euro-
pean conference on computer vision. Springer. 2016, pp. 649–666.

[208] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring Self-attention for Image Recog-
nition. 2020. arXiv: 2004.13621 [cs.CV].

[209] Xiaojin Zhu and Zoubin Ghahramani. “Learning from Labeled and Unlabeled Data with
Label Propagation”. In: Technical Report CMU-CALD-02-107, Carnegie Mellon University.
2002.

[210] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. “Local aggregation for unsupervised
learning of visual embeddings”. In: arXiv preprint arXiv:1903.12355 (2019).

https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/2004.08955
https://arxiv.org/abs/2004.13621

	Contents
	List of Figures
	List of Tables
	Introduction
	Image Recognition using Contrastive Learning
	Introduction
	Experimental Setup
	Related Work
	Results
	Discussion
	Self-supervised pre-training
	Linear classification
	Efficient classification

	Contrastive Learning for Reinforcement Learning
	Introduction
	Related Work
	Background
	CURL Implementation
	Experiments
	Results
	Ablation Studies
	Implementation Details
	Atari100k Implementation Details
	Benchmarking Data Efficiency
	Further Investigation of Data-Efficiency in Contrastive RL
	Ablations
	Connection to work on data augmentations
	Conclusion
	Acknowledgements

	Reinforcement Learning with Augmented Data
	Introduction
	Related work
	Background
	Reinforcement learning with augmented data
	Experimental results
	Conclusion
	Extended related work
	Code for select augmentations
	Time-efficiency of data augmentation
	Discussion
	Acknowledgments

	Bottleneck Transformers for Visual Recognition
	Introduction
	Related Work
	Method
	Experiments
	Conclusion
	Acknowledgements

	Conclusion
	Bibliography

